
INFORMATION TO USERS 

This reproduction was made from a copy of a document sent to us for microfilming. 
While the most advanced technology has been used to photograph and reproduce 
this document, the quality of the reproduction is heavily dependent upon the 
quality of the material submitted. 

The following explanation of techniques is provided to help clarify markings or 
notations which may appear on this reproduction. 

1.The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. This 
may have necessitated cutting through an image and duplicating adjacent pages 
to assure complete continuity. 

2. When an image on the film is obliterated with a round black mark, it is an 
indication of either blurred copy because of movement during exposure, 
duplicate copy, or copyrighted materials that should not have been filmed. For 
blurred pages, a good image of the page can be found in the adjacent frame. If 
copyrighted materials were deleted, a target note will appear listing the pages in 
the adjacent frame. 

3. When a map, drawing or chart, etc., is part of the material being photographed, 
a definite method of "sectioning" the material has been followed. It is 
customary to begin filming at the upper left hand comer of a large sheet and to 
continue from left to right in equal sections with small overlaps. If necessary, 
sectioning is continued again—beginning below the first row and continuing on 
until complete. 

4. For illustrations that cannot be satisfactorily reproduced by xerographic 
means, photographic prints can be purchased at additional cost and inserted 
into your xerographic copy. These prints are available upon request from the 
Dissertations Customer Services Department. 

5. Some pages in any document may have indistinct print. In all cases the best 
available copy has been filmed. 

UniversiV 
Micrdrilms 

International 
300 N. Zeeb Road 
Ann Arbor, Ml 48106 





8407128 

Tegene, Abebayehu 

A RATIONAL EXPECTATIONS APPROACH TO THE MODELLING OF 
AGRICULTURAL SUPPLY: A CASE STUDY OF IOWA 

Iowa State University PH.D. 1983 

University 
Microfilms 

I ntern&tiOriEll 300 N. zeeb Road, Ann Arbor, Ml 48106 





PLEASE NOTE: 

In all cases this material has been filmed in the best possible way from the available copy. 
Problems encountered with this document have been identified here with a check mark V . 

1. Glossy photographs or pages 

2. Colored illustrations, paper or print 

3. Photographs with dark background 

4. Illustrations are poor copy 

5. Pages with black marks, not original copy 

6. Print shows through as there is text on both sides of page 

7. Indistinct, broken or small print on several pages 

8. Print exceeds margin requirements 

9. Tightly bound copy with print lost in spine 

10. Computer printout pages with indistinct print 

11. Page(s) lacking when material received, and not available from school or 
author. 

12. Page(s) 

13. Two pages numbered 

seem to be missing in numbering only as text follows. 

. Text follows. 

14. Curling and wrinkled pages 

15. Other 

University 
Microfilms 

International 





A rational expectations approach to the modelling 

of agricultural supply: A case study of Iowa 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major: Economics 

by 

Abebayehu Tegene 

Approved : 

Chatge pt Major Work 

For the GrMuate College

Iowa State University 
Ames, Iowa 

1983 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



ii 

TABLE OF CONTENTS 

Page 

DEDICATION vii 

CHAPTER I. INTRODUCTION 1 

Some Theories of Expectation Formations 2 

Price Expectations and Agricultural Supply 14 

Objective of the Study 18 

Organization of Report 20 

CHAPTER II. THEORETICAL FRAMEWORK AND MODEL 
SPECIFICATION 22 

Rational Expectation Models 22 

A Land Allocation Model 30 

CHAPTER III. PRELIMINARY DATA ANALYSIS 54 

The Unrestricted Vector Autoregressive Model 55 

The Moving Average Representation 60 

Results 66 

Stability Over Time 76 

CHAPTER IV. DATA AND ESTIMATION 84 

Corn and Soybeans in Iowa 85 

Government Policy 86 

Model Specification and Estimation 88 

Supply Elasticities 105 

Rational Expectation vs. Nerlove-type Models 112 

Simulation 116 



iii 

Page 

CHAPTER V. CONCLUSIONS 123 

BIBLIOGRAPHY 130 

ACKNOWLEDGMENTS 136 

APPENDIX A: OPTIMAL PREDICTIONS 137 

APPENDIX B: PLOTS OF CORN ACREAGE (AC) AND SOYBEAN 
ACREAGE (AS) 141 

APPENDIX C: TESTING LAG LENGTH FOR AUTOREGRESSIVE 
SYSTEM 144 

APPENDIX D: IMPULSE RESPONSES 145 

APPENDIX E: THE DATA 156 



Table 1.1. 

Table 3.1. 

Table 3.2. 

Table 3.3. 

Table 3.4. 

Table 3.5. 

Table 4.1. 

Table 4.2. 

Table 4.3. 

Table 4.4. 

Table 4.5. 

Table 4.6. 

Table D.l. 

Table D.2. 

Table D.3. 

Table D.4. 

iv 

LIST OF TABLES 

Page 

Comparative expectional regimes 12 

Percentage of forecast error variance 
12 years ahead produced by each tri-
angularized innovation 75 

Test for model homogeneity: 1948-1959 
vs. 1959-1980 ' 79 

Test for model homogeneity: 1959-1969 
vs. 1948-1958 and 1970-1980 79 

Test for model homogeneity: 1948-1969 
vs. 1970-1980 ' 79 

Estimated parameters of the production 
function 82 

Estimated parameters of the RES model 103 

Estimated parameters of the URES model 104 

Estimated RES model 106 

Estimated URES model 107 

rms error and rms % error of historical 
simulation 120 

Theil's forecast error measures 121 

Impulse responses to (triangularized) 
shock in prices K periods after shock 146 

Impulse responses to (triangularized) 
shocks in YS K periods after shock 147 

Impulse responses to (triangularized) 
shocks in YC K periods after shock 148 

Impulse responses to (triangularized) 
shocks in AC K periods after shock 149 



V 

Page 

Table D.5. Impulse responses to (triangular!zed) 
shocks in AS K periods after shock 150 

Table D.6. Percentage of forecast error variance 
K-years ahead produced by each tri-
angularized innovation 151 

Table D.7. The data set 15S 



vi 

LIST OF FIGURES 

Figure 2.1. 

Figure 3.1. 

Figure 3.2. 

Figure 3.3. 

Figure 4.1. 

Figure 4.2. 

Figure B.l. 

Figure B.2. 

Figure D.l. 

Figure D.2. 

Figure D.3. 

Figure D.4. 

Graph of 0 = - (XS + -) 

Plot of responses of area of corn and 
area of soybean to one standard 
deviation shock in prices 

Plot of responses of area of corn and 
area of soybean to one standard devia­
tion shock in yield of corn 

Plot of responses of area of corn and 
area of soybean to one standard devia­
tion shock in area of corn 

Response of land allocation for corn 
to a one standard deviation shock in 
price 

Historical simulation of corn acreage: 
Time bounds: 1950-1980 

Plot of area of corn from 1948-1980 

Plot of area of soybeans from 1948-
1980 

Plot of responses of area of corn and 
area of soybeans to one standard 
deviation shock in yield of soybeans 

Plot of responses of area of corn and 
area of soybeans to one standard devia­
tion shock in area of soybeans 

Plot of responses of price to one 
standard deviation shock in area of 
soybeans 

Plot of response of price to one 
standard deviation shock in area of 
corn 

Page 

41 

71 

72 

73 

111 

117 

142 

143 

152 

153 

154 

155 



vii 

DEDICATION 

This work is dedicated to my late brother Begashaw 

G. Christos. 



1 

CHAPTER I. INTRODUCTION 

The issues concerning agricultural production and food 

supply have concerned economists for years. These concerns 

have resulted in extensive research in the area of farmers' 

responses to price changes as typified by the works of 

Ezekiel (1938), Heady and Kaldor (1954), Nerlove (1955, 1958, 

1972, 1979), Behrman (1968), Askari and Cummings (1976) and 

Nerlove et al. (1979), among others. The central theme of 

these studies is the quantitative and qualitative understanding 

of the determinants of the dynamics of agricultural supply and 

its responses to altered incentives. 

Nerlove wrote: 

Whether such market forces, however, impinge directly 
and visibly on individual farm entrepreneurs, it will 
nonetheless be true, if we accept the presupposition 
of optimizing behavior, that shadow prices and oppor­
tunity costs are crucial determinants of agricultural 
supply. It follows that responses to changing "prices" 
for outputs and inputs, whether made visible by markets, 
must be a key element in our attempt to understand the 
agricultural production and food supply . . . 
(Nerlove, 1979, p. 874). 

Different theoretical and empirical methods for evalu­

ating farmer's responses to price changes have been sug­

gested in the literature. One basic difference among 

these approaches is the assumption made about price expecta­

tion formation. 
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Some Theories of Expectation 
Formations 

As economists have increasingly recognized the impor­

tance of expectations in determining economic behavior, they 

have attempted to incorporate within their behavioral models 

some representation of the mechanism by which economic agents 

form their expectations. How do agents form their expecta­

tions about future outcomes of economic variables? What 

kind of information is used? How are different pieces of 

information combined together to make predictions about 

the future? Attempts to answer these questions have gen­

erated considerable discussion and debate and several by 

potheses. It should be noted, however, that although data 

on agents anticipation are collected in many ways, only a 

few studies have tried to determine how individual decision­

makers actually form expectations (Heady and Kaldor, 1954; 

Turnovsky, 1970; Fisher and Tanner, 1978; and Nerlove, 

1983) . 

The most popular device for representing expectations 

formation has been distributed lags on the variable in ques­

tion. The general form is 

t-l^t = .:n"iXt-l-i (I'l) 
1—u 

,e where is the expectation of X at time t held at time 

t-1 (hereafter written as X^); is observed X at time t. 

The underlying assumption is that economic agents form 
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forecasts about future values of X based entirely on its 

past history. Two important issues are determination of 

W's and lag length. 

Most of the popular expectations formation rules used 

in economic studies are special cases of Equation (1.1). 

1. Static expectations: This is the simplest of all 

expectation theories. It states that the forecast of a vari­

able, say price, for the period t+1 is the currently ob­

served price, i.e., 

pG+1 = Pt ^.2) 

It is in the general class of (1.1) where W^=l and W^=0, 

. The theory is based on the assumption of no memory and 

no learning by economic agents. 

2. Extrapolative expectations : Under extrapolative 

expectations theory, the expected value of a variable, say 

price, is defined as 

Pt+1 = ft + % (Pt-Pt:-]L) (1- ' 3) 

where P^+l ^t defined above and n is a coeffi­

cient of expectation. The purpose of the extrapolative 

expectation is to modify the static expectation theory to 

take into account the most recent trend in prices. If ri=0, 

this model is identical to static expectations. If n>0, 

the expected price will be the weighted sum of the present 

and the past prices with weights (l+n) and -n for and 
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respectively. 

This model assumes a simple learning process on the 

part of the economic agent such that the expected price for 

next period is the actual price for the present period 

plus (or minus) some proportion of the change in the actual 

price between one period ago and the present period. This 

approach, while more satisfactory than the simple static 

theory, is nonetheless rather naive itself. Economic 

agents are still assumed to have very short memories. 

3. Adaptive expectations: During the 1950s and early 

1970s, this theory became very popular. According to 

this theory, individuals are assumed to revise their expec­

tations according to the most recent experience: 

where 6 is the coefficient of expectations and the other 

variables are as defined earlier. The purpose of the adapta­

tive expectation theory is to permit agents to adjust ex­

pectation to take account of immediate past errors in expec­

tation formation. Rearranging (1.4), we obtain 

(1.4) 

(1.5) 

Replacing (1-8) by S, we obtain 

[(1-6)L]P®^^ = (1-6) (1.5) 

where L is the lag operator such that = ^t-j' that 
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(1.7) 

T_ n p 
Provided |B| < 1, we can expand as 1 + 3L + B L + 

3 3 
3 L + ... and thus write (1.7) as 

(1-6) Z gKp (1.8) 

Under the adaptive expectation hypothesis, the expected 

price may be expressed as an infinite weighted average of 

past observed prices with weights declining geometrically 

as the lag length increases. 

Econometricians have a long history of using distribu­

ted lags to represent expectations. If the same process 

generates future as past outcome, the distributed lagged 

models, using past values of a variable, give the best 

forecast of the variable. In general, these approaches to 

expectations perform well for the sample period; however, 

their performance for forecasting beyond the sample period 

is questionable. If the structure of the economy changes, 

there is no mechanism in distributed lag models to capture 

these changes. 

4. Rational expectations: In his paper, "Rational 

Expectations and the Theory of Price Movements", Muth (19 61) 

develops a rational expectations model that eliminates the 

theoretical weakness common to previous theories of expec­

tation formation. Muth's theory is based on three hypotheses 

about individual behavior. 
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(1) Information is scarce, and the economic system 
generally does not waste it. (2) The way expecta­
tions are formed depends specifically on the struc­
ture of the relevant system describing the economy. 
(3) A "public prediction", in the sense of Grunberg 
and Modigliani, will have no substantial effect on 
the operation of the economic system (unless it is 
based on inside information) (Muth, 1961, p. 316). 

This theory implies that economic behavior underlies 

the formation of expectations and that expectations are based 

on information, which is assumed implicitly to be costless. 

Rational expectations, by Muth's definition, states that 

economic agents form their expectations as if they know the 

process which will ultimately generate the actual outcomes 

in question; i.e., agents subjective probability distribu­

tion describing the future outcomes are identical to the 

corresponding objective probability distribution conditional 

on the "true" model of the economy. 

Although Muth's definition of rational expectations 

seems to be straight forward, there are other definitions 

of "rational expectations" in the economics literature (see, 

for example, Friedman, 1979) . Rawls noted that "one might 

reply that the rationality of a person's choice does not 

depend upon how much he knows, but only upon how well he 

reasons from whatever information he has, however incomplete. 

Our decision is perfectly rational provided that we face up 

to our circumstances and do the best we can" (Rawls, 1971) . 

Much of the confusion surrounding the concept of 
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rational expectations stems from the failure to distinguish 

between (a) the general assumption that economic agents 

use efficiently, given available information; and (b) 

a specific assumption identifying the available infor­

mation. There is a general agreement on (a). The 

specific information availability assumption (b) in Muth's 

rational expectations hypothesis (REH) is that the informa­

tion which is available to economic agents is sufficient 

to permit them to form expectations characterized by condition­

al subjective distribution of outcomes that are equivalent 

to the conditional objective distribution of outcomes 

indicated by the "relevant economic theory". 

If an economic agent's expectation about a future value 

of a variable is the same as the predictions of the relevant 

economic theory, then his expectation is rational (in the 

sense of Muth). Muth's theory does not say how economic 

agents derive the knowledge which they use to formulate 

expectations meeting these requirements. As noted by 

Wallis (1980), "the informational requirement of rational 

expectations has led some to doubt the empirical applicability 

of these models but this seems to be as yet unresolved . . . ", 

In this dissertation, Muth's concept of rational expec­

tations is adopted. In order to derive the price expected 

to prevail at (t+1)^^ period on the basis of information 
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through t period, Muth assumes "... (1) The random 

disturbances are normally distributed; (2) certainty equiva­

lence exists for the variable to be predicted; and (3) the 

equations of the system, including the expectation formulas, 

are linear". Mathematically, the price expected to prevail 

at time t+1 is equal to the conditional mathematical 

expectation of price, which is the mathematical expectation 

of price conditional on information available through time 

t, or 

St'Pt+l/Ot' = Pt+1 (1-91 

where 

is expectation operator, 

0^ is information set available at cime t. 

Muth's rational expectations framework requires economic 

agents to have a structural model and utilize all available in-

;formation. An agent's expectation about future price outcome 

changes if new information becomes available. The information 

includes the laws of motion that describe the exogenous sto­

chastic variables such as prices of outputs and inputs, 

innovations, government policy variables and other relevant 

variables. A change in the economic agent's perception 

of the laws of motion that govern these variables will change 

the decision rule for choice variables. 

Consider the following example adopted from Muth's 

1961 paper: 
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= -3P^, 3>0 (Demand) 

~ ^t' (Supply) (1.10) 

(Market equilibrium) 

where is the amount consumed, represents the number of 

units produced in a period lasting as long as the production 

lag, is the market price in the t^^ period and p® 

is the market price expected to prevail at t^^ period on the 

basis of information available through the (t-1)^^ period, 

u^ is stochastic disturbance, e.g., variation in yield due 

to weather. All variables are in terms of deviations from 

equilibrium values. Solving (1.10) for P^, we obtain 

ft - - 8 <^t' - K 'l-]-!' 

If there is no serial correlation of and (u^) = 0, 

then we obtain 

= - F'ft' . <1-121 

By the rational expectations assumption (1.9), P® = 0 or P^ 

is equal to the equilibrium price. 

Now, suppose there is serial correlation among the 

u's and that they can be written as a linear combination of 

the past history of normally and independently distributed 

2 
random variables, e^, with zero mean and variance a : 
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E(ej) = 0 (1.13) 

, if i=j 
E(e.e.) = f 

^ lo, if 

•u® = E(u^/...e^_2e^_^) = .f^Vt-i (1.14) 

Taking expected value of (1.11) and substituting (1.14), we 

obtain 
00 

From (1.11) , 

Pt = - F ft - g "t 

or 

and 

"A-i 

1=0 

where 

..-4 
Wi 

Ki = - 9+6 ' 
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The e's are not observable. Therefore, we need to 

write P® in terms of the past history of prices, i.e., 

j=i 

We can solve for the V's in terms of the II's in the 

following manner. From (1.19) and (1.18) 

E n.e. . = Z V.P^ . • (1.20) 
i=i ^ j=i ] 

Substituting (1.17) into (1.20), we obtain 

E n. 0, . — E V. s n • G, 
i=i ^ i=i : i=o ^ t-i-] 

=  2 ( 1  V .n. . )e, . . (1.21) 
i=l j=i ] 1-] t-i 

Since the equality must hold for all e's, the coefficient 

must satisfy the equations 

i 
n. = I v.n. ., i = 1,2,3,... (1.22) 
^ j=l ^ 

The V's can successively be solved from the H's which are 

themselves functions of 3, y and w's. If we assume 

that = 1 for all i = 1,2,..., then 

"o = - f 

"i = - !1.23) 

From (1.22) it can be seen that the expected price is a 
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geometrically weighted moving average of past prices: 

It is important to note that the result that expected 

price is a weighted average of past prices, (1.24), followed 

directly from the fact that could be expressed as a 

weighted sum of the.e's alone. If there are other exo­

genous variables in the model (1.10), then the rational ex­

pectations of price will involve the past history of 

those exogenous variables as well as (Nelson, 1975b). 

It is helpful at this point to summarize the four ex-

pectational regimes in Table 1.1. 

Table 1.1. Comparative expectional regimes 

Expectations ^t+1 

Static P^ 

Extrapolative P^ + n(P^-P^_^) 

Adaptive (1-3) Z B P, , , |8|<1 
k=0 ^ 

Rational f 
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In the first three expectional regimes, the coefficients 

of the distributed lags are not derived from structural 

models. In the fourth regime, the coefficients are a non­

linear function of the parameters (3 and y) of the under­

lying model. Thus, with rational expectations, any change 

in the structural parameters S and 7 will change . 

Such changes do not affect under the other expectional 

regimes. 

The REH implies that agents know the structure of the 

system in which they operate and form their expectations 

about future variables within the framework of the system. A 

change in the structure will induce economic agents to revise 

their expectations accordingly. To use Sim's (1930) example, 

it is possible that upon reading news of a frost in Brazil, 

U.S. consumers will stockpile coffee in anticipation of a 

price increase. The implication is that variables known to 

affect coffee supply also enter the coffee demand equation 

(and vice versa) through their effect on expected prices. 

Therefore, the optimal price predictor will contain informa­

tion from both the supply and the demand equations. This 

implication agrees with the evidence presented by Heady and 

Kaldor on farmers; formation of price expectations. 

For their 1948 and 1949 forecasts, the majority was 
not using simple mechanical models such as the pro­
jection of the current price or recent price trend 
in the next year but was attempting to analyze and 
predict the more complex price making forces. A 
rather common procedure appeared to start the process 
of devising expected prices from current prices. 
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The current price then was adjusted for the expected 
effect of important supply-and-demand forces. Where 
farmers possessed little information about these 
forces, there was a tendency to project either the 
current price or the recent price trend (Heady and 
Kaldor, 1954). 

Price Expectations and 
Agricultural Supply 

The general practice in agricultural supply models has 

been such that when expected future values of a variable were 

thought to be important in a behavioral equation, they were 

replaced by a distributed lag on that same variable. Early 

studies (e.g., Ezekiel, 1938), were based on the assumption 

of static expectations; i.e., prices observed at the time 

of planting were expected to prevail at the time of harvest. 

Using static expectations, researchers were able to explain 

the observed oscillatory movements in some agricultural 

output and prices (Cobweb models). The computed elasticities 

implied that farmers were not responsive to price changes, but 

this conclusion was contradicted by farmers' behavior under 

the price support system (Nerlove, 1958; Cochrane and Ryan, 

1976). 

Nerlove's early work (1956, 1958) made a landmark in the 

area of supply response functions. He showed that insuffi­

cient attention had been given to the problem of identi­
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fying the price variable to which farmers react. This was the 

principal reason other researchers obtained small estimates 

of price elasticities of crop supply. 

Using adaptive expectations, Nerlove (1956, 1958) showed 

that farmers' responses to changes in prices can be repre­

sented by a distributed lag. In particular, he derived an 

equation for current area (a proxy for output) as a function 

of lagged area, lagged prices and other current and lagged 

exogenous variables. The coefficients of the model are non­

linear functions of the parameters of a linear supply func­

tion, an adjustment parameter between desired and actual 

acreage, and an adaptive expectation parameter. 

More recently, the adequacy of adaptive expectations 

as a representation of agents' forecasts of future vari­

ables has been criticized (Sargent and Wallace, 1976; 

Nerlove, 1979; Wallis, 19 80; and Goodwin and Sheffrin, 

1982). Adaptive expectation is not criticized because it 

implies that expected price is some weighted average of 

present and all past prices. It is, however, criticized 

because it requires some ad hoc assumptions about the 

parameters of the lag process and it does not consider other 

relevant variables. In particular, in the Nerlove-type 

agricultural supply analysis, the model's parameters are im­

plicitly assumed to be independent of the process that gen­

erates crop prices. Therefore, the estimated coefficients are 
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invariant to changes in government policies which influence 

the paths of the price process. Thus, these models are sub­

ject to Lucas's criticism of economic policy evaluations 

(Lucas, 1981a). Here, the emphasis is on a'change in policy 

rules or regimes, rather than a change in a particular value 

of a policy instrument. 

An alternative to adaptive expectations is offered by 

the rational expectations hypothesis of Muth (19 61). With 

rational expectations, agents are assumed to take account of 

the interrelationships among economic variables. In particu­

lar, the hypothesis, as presented above, states that "expec­

tations, since they are informed predictions of future 

events, are essentially the same as the predictions of 

the relevant economic theory" and hence, depend "specifically 

on the structure of the relevant system describing the 

economy" (Muth, 1961). If we can accept that farmers are 

rational in the sense that they are optimizers, then rational 

expectations can provide a framework to circumvent problems 

associated with adaptive expectations. 

An additional shortcoming of the Nerlovian models 

is that the dynamic element in the basic supply response 

model is introduced without a formal theory. The simple 

ad hoc assumption is that each period, if we are dealing 

with discrete time, a fraction of the difference between 
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the current position and the long-run equilibrium is 

eliminated (Nerlove, 1979) . There is, however, no need 

to follow an ad hoc strategy because the production process 

provides most of the essential dynamic structure. The cur­

rent yield (productivity) of land depends crucially on how 

land was employed during previous periods. The deteriora­

tion of land productivity under some cropping patterns 

introduces a nontrivial dynamic element in the allocation 

of land between crops (see, for e.g., Eckstein, 1981). 

For a given technology, producing some crops cause the 

land or soils to deteriorate faster than producing others. 

This deterioration occurs in the form of soil erosion, de­

pletion of some essential nutrients for plant growth and 

build-up of harmful pest population. Compare growing corn 

and soybean. Soybean causes a significantly higher rate of 

soil erosion because the fibrous roots of the plant exten­

sively loosen the soils. Soybeans also have a beneficial 

effect of increasing the nitrate content of soils. Corn, 

on the other hand, is less erosive than soybeans, but it 

depletes the nitrate content of soils. To maintain the 

soil fertility, farmers use fertilizes and/or practice 

crop rotation. Cyclical movement in corn and soybean 

output can be attributed to farmers' choice of technology 

(crop rotation) rather than to their naive price expecta­

tions formation process (static expectations). 
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Furthermore, crop production is subject to some forces 

beyond farmers' control, e.g., weather and natural soil 

characteristics. The price level and shocks to agricultural 

productivity can be viewed as uncontrollable stochastic 

processes that affect farmers' net incomes. Hence, farmers' 

choices of tillage practices, fertilizer and pesticide 

application rates, and cropping systems can be represented 

as outcomes of a stochastic dynamic optimization problem 

that they solve. 

Objective of the Study 

In recent years, there has been increasing interest in 

the application and econometric implication of the REH. 

A considerable amount of the applied work so far has been in 

macromodels; especially in the area of monetary economics. 

A number of papers, such as Lucas (1981b), Nelson (1975a,b), 

McCallum (1976a,b), Blanchard and Kahn (1980), Wallis (1980), 

Taylor (1979), Hansen and Sargent (1981a,b) have discussed the 

estimation of models which contain rational expectations. 

Another group of papers, including Revankar (1980), Wallis 

(1980) and Hoffman and Schmidt (1981) have discussed testing 

the restrictions implied by REH. Actual models embodying the 

REH have been estimated by Sargent (1976, 1978a,b, 1979), 

Taylor (1979); among the others. Stanley Fischer (1980) edi­

ted a number of papers concerned with the rational expectations 
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and economic policy issues. However, few studies have pro­

posed a rational expectation's version of agricultural supply 

(Huntzinger, 1979; Eckstein, 1981; Goodwin and Sheffrin, 

1982; and Fisher, 1982). Even fewer studies have at­

tempted to estimate models and to test restrictions imposed 

by the REH within the context of agricultural supply. 

The objective of this research is then to build a 

dynamic model of agricultural supply where expectations of 

exogenous variables are assumed to be formed rationally and to 

test the restrictions implied by the REH. Specifically, 

farmers' choices of outputs and inputs are derived from a 

model of optimizing behavior. Farmers are assumed to make 

choices that maximize the expected present value of their 

income stream subject to dynamic and stochastic technology 

and their information. The dynamics arise from the technology; 

and, the assumption that farmers form their expectations 

rationally implies that they know the actual distribution 

generating the exogenous variables. Hence, farmers' deci­

sion rules depend on the parameters of the actual dynamic 

process of prices, including government as policies. 

The theme of this work is that land allocation and out­

puts supplied are outcomes of an optimizing process. By 

specifying an explicit approximation of the optimization 

problem that farmers are assumed to solve, we hope to improve 

our qualitative and quantitative understanding of farmers' 
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decision-making process and behavior. 

The model gives rise to a system of simultaneous 

equations containing equations for acreage, crop yield,price 

ratios, and other exogenous variables. Estimates of pa­

rameters of the model are obtained by fitting the system 

of equations to aggregate time series data. The worth 

of this model is of course dependent on how well the 

model explains the data. The dynamic rational specifica­

tion of the model gives a set of testable restrictions on 

parameters. One test of "the" model is to see if these 

restrictions implied by the theory are supported by the 

data. The model will be fitted to Iowa aggregate time 

series data on soybeans, corn, and other related variables 

for the period 1948-80. 

Organization of Report 

In the first chapter, some important issues concerning 

the formation of expectations have been reviewed. In par­

ticular, recent developments in the theory of rational ex­

pectations can remedy some of the shortcomings of tradi­

tional specifications of agricultural supply functions. 

The objective of this dissertation is to develop a dynamic 

rational expectations model of agricultural supply. 

The rest of the report is organized as follows. Chapter 
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II develops the theoretical framework of the model. In 

Chapter III, a vector time series model is utilized to per­

form some preliminary tests. Some of the assumptions under­

lying the model will also be tested in this chapter. Chapter 

IV includes some more detailed discussion of the data and 

the empirical results, while Chapter V contains summary and 

conclusions as well as some conjecture for future research. 
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CHAPTER II. THEORETICAL FRAMEWORK AND 

MODEL SPECIFICATION 

This chapter emphasizes theoretical aspects of models 

containing rational expectations. Procedures for formulating 

and estimating rational expectation models are discussed. 

In the context of agricultural supply, the rational expecta­

tions model derived in this chapter is observationally 

equivalent to the usual agricultural supply functions. 

However, the rational expectation model is optimal in each 

time period and the parameters of the model have different 

interpretations from the supply functions. 

In the first part of the chapter, two approaches to 

the formulation and estimation of rational expectation 

models are discussed. A model of land allocation under 

rational expectations is presented in the second part. 

Rational Expectation Models 

There exists in the recent literature, two common 

methods for incorporating the REH into econometric models. 

In the first method, an economic agent is assumed to maxi­

mize a constrained objective function. In particular, the 

agent is assumed to maximize his expected income stream sub­

ject to some technological constraints. The maximization 

problem can be formulated in an infinite or finite time 
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horizon. Then, by imposing rational expectations by postu­

lating some autoregressive moving average (ARMA) processes 

for all the nonchoice variables in the model, a closed-form 

solution to the problem can be obtained. To make the control 

problem mathematically tractable, the return function is 

assumed to be linear-quadratic. The solution to the maxi­

mization problem is a set of stochastic processes, some of 

which describe the agents' decision rules. As a result of 

REH, within-equation and cross-equation parameter restric­

tions are imposed on the equations describing the decision 

rules and equations describing the laws of motion for the 

other exogenous variables. 

The strategy for estimating the above model-types is to 

jointly estimate the equations for agents' decision rules 

and the equations for the stochastic processes describing 

exogenous variables, subject to within and cross restric­

tions implied by the REH. However, even for very simple 

models, the cross-equation restrictions are of complicated 

form because they contain nonlinear restrictions on the 

parameters of the model. The formulation and estimation of 

such models is discussed in Hansen and Sargent (1981a,b). 

The above approach provides a tractable procedure for 

combining econometric methods and dynamic economic models 

for the purpose of modeling and interpreting economic time 
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series. Thus, the estimation strategy has the advantage of 

combining time series analysis and traditional econometric 

estimation techniques. The time series analysis is util­

ized to generate the necessary forecasts of the exogenous 

v^^i^bles. The second method, also follows an integrated 

time series - econometric approach. 

In the second method, REH is imposed on a traditional 

simultaneous econometric model that contains expected values 

of the endogenous variables (or a subset). In this approach, 

the equations in the system describe both the optimal deci­

sion rules of the agents and the way they interact with each 

other. See Wallis (1980) and McCallum (1975a). 

As an example of the second approach, we present a 

generalization of Wallis' (1980) model: 

By^ H. Ay^ + = "t 

where y^ is a vector of g endogenous variables, y^ is a 

vector of g anticipated values of the endogenous variables 

formed in period (t-1), is a vector of uncertain exo­

genous variables, is a (K-K^) vector of intercept and 

seasonal terms whose future values are known with cer­

tainty. For simplicity, assume there are no lagged 

endogenous variables in the system. The parameter 

matrices B, A, and have dimensions (gxg), (gxg), 

(gxK^) and [gx(K-K^)], respectively. 



25 

The expected variables, y^, are unobservable and it is 

assumed that expectations are formed rationally, i.e., 

y® = From (2.1) note that 

By^ + Ay^ = (2.2) 

Taking conditional expectations, we obtain 

(B+A)y® = - r2X2t (^'^1 

where 

= EKitlVl'-

From (2.3) it follows that 

Y® =  - (B+A) " ^R^X^^  -  (B+AJ-LRGXGT (2 .4 )  

Thus, rational expectations, y®, are a linear combination of 

the predicted values of uncertain exogenous variables (X^^^) 

and of actual values of certain exogenous variables (%^^). 

In order to complete the specification of the model, we need 

to specify the process by which the vector of uncertain 

exogenous variables, is generated. This is usually 

done by postulating a vector ARMA process for X^^ or 

univariate ARMA process for each component of X^^. 

To write (2.1) in terms of observable variables, 

substitute (2.4) into (2.1) to obtain 

By^-A(B+A)"^r^)^^^ + r^X^j. - AXB+Aj'lpgXgt (2.5) 

+ ^2*27 = "t 
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The reduced form of the system then becomes 

Yt = + B"^A(B+A)~^r2X2^ 

+ B~^U^ . (2.6) 

The observed value of is determined by predicted and actual 

values of uncertain exogenous variables and actual values of 

certain exogenous variables. 

Procedures for identifying and fitting this type of 

models are discussed in Wallis (1980) , Chow (1980) , McCallum 

(1976a). 

The error in rational expectations is the difference 

between y^ and y®, i.e., 

Yt - Yt = (2.7) 

The error depends solely on the unanticipated part of the 

current exogenous variables and current disturbances. Wallis 

e 2 
(1980) and Nelson (1975a) have shown that E[y^-y^] is smaller 

than for any other (nonrational) expectional rules. There­

fore, rational expectation has an optimal property of smallest 

mean-squared-error among expectational formulas. Nelson 

(1975a) has also shown that RE are efficient in the broader 

sense of maximizing expected utility for each market partici­

pant. 

To illustrate policy analysis via rational expectations, 



27 

1 
consider a specific case of (2.1) . 

Qt + *11?% + + ^'IS = ^It (supply) 

°21^t + ^ '^22^t "23 ^2t (2.8) 

The quantity supplied Q^, is a function of the price ex­

pected in period t, P®, the price of inputs, PI^, and 

the value of an input subsidy (or tax)/ S^. In this case, 

may represent a subsidy paid on fertilizer, or it could 

represent an excise tax on fuel prices. Price, P^, is 

specified as a function of the quantity sold and disposable 

income, z^. Expectations are formed rationally, and the 

market is assumed to clear each period. Define y^ = (Q^ P^) ' 

°t = ''it "at' 

and apply the procedures outlined in Equations (2.2)-(2.5), 

then the reduced form for (2.8) is: 

^t ̂  ̂ ll^^t ^12^t "l4^^t '^IS^t '^16^t 

+ ^It (2.9] 

^t '^21^^t ''^22^t '"23^t ^24^^t ''^25^t ''26^t 

+ ^20 + Vgt 

^This example is adopted from Fisher (19 82). 



28 

where is some nonlinear function of *^±2' ^21' 

«23' «23 ^22' ^t denotes the forecasts of X^. 

Equation (2.9) can be employed to analyze the impact 

on output of a change in the subsidy. Assume the stochastic 

processes underlying S^/ PI^ and are 

Pit = *221^-1 ®2t (2.10) 

= 1'3^t-l + ^3t 

where a white noise process independent of U^; 

so that 

PI = ^2^^t-l (2.11) 

St = *3Zt-l 

Then, from Equations (2.8), the quantity equation becomes 

= ^10 + ^11^2^^t-l ^12'^l^t-l ^ ^13*3^t-l 

"^14^^t ^15^t ^16^t ^It' (2.12) 

Announced and unannounced changes in have different 

effects on the actual quantity in the market. The impact of 

an unannounced change in on the quantity produced is given 

by the coefficient because unchanged. 
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Alternatively, the government might announce that it plans to 

phase out the subsidy evenly over a four-year period. One 

might calculate the change in from Equation (2.12) by 

lowering by 25%. This type of adjustment is labeled as 

"traditional" approach. However, when the government 

announces the plan, the process generating changes. This 

announced policy might be represented by: 

- .255, for the first four years 

= 0, after four years (2.13) 

where S is the initial subsidy level. The predictor for 

St is 

- .255 (2.14) 

Substituting (2.14) and the predictors for PI^ and 

(Equation 2.11) into the quantity Equation (2.19), we 

obtain 

^t ~ ̂ 10 ~ -25^2.2^ ^^1^2^^t-l ^12^t-l 

•*" ^^3^3^t-l ^15^t L'lG^t ^It (2.15) 

Let us compare Equations (2.15) and (2.12). Some of 

the reduced form parameters have changed. Equation (2.15) 

contains new coefficients for S^.^ and a new term -.25u^^S. 

It is obvious that Equation 2.12 gives a very different 
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prediction about the change in due to an announced change 

in policy than does Equation (2.15) . Using Equation 2.12 

2 might be considered the "traditional" econometric practice. 

In summary, there are at least two ways in which 

rational expectations can be incorporated in simultaneous 

equation models: first, by specifying a constrained 

objective function where the future value of any variable 

is taken to be its conditional expectation; second, by im­

posing rational expectations on some or all of the endo­

genous variables in the usual system of simultaneous equa­

tions. In either case, the REH results in some restrictions 

being imposed on the models parameters. These restrictions 

are often called the "hallmark" of rational expectations. 

In the following section, we follow the first approach to 

develop an agriculture supply model. 

A Land Allocation Model 

For almost all crops, yield (productivity) of land de­

pends on how land was employed the previous periods. Pro­

duction of some crops (e.g., corn) results in a severe 

soil fertility deterioration due to the nitrate depletion 

from the soil. On the other hand, production of leguminous 

plants (e.g., soybean) supplement the nitrate content of the 

2 Anderson (1979) has devised a method for making rational 
forecasts from unrational models. 
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soil. However, soybeans cause a significantly higher rate of 

soil erosion. Farmers use fertilizers and/or practice crop 

rotation in order to maintain soil fertility. 

Furthermore, farmers are faced with uncontrollable 

forces such as weather and natural soil characteristics. 

Thus, farmers choice of input and cropping patterns can be 

represented as a stochastic dynamic optimization problem. 

The problem can be a complicated dynamic programming problem 

and the solution might require dynamic programming procedures. 

Under a certain set of assumptions, however, the problem can 

be solved by econometric techniques. In this dissertation, 

the following simplifying assumptions are made in order to 

solve the dynamic optimization problem by econometric 

techniques: 

(1) Farmers are risk-neutral so that maximization of 

expected profit is equivalent to maximization of expected 

utility. 

(2) Relative crop prices are exogenously determined; i.e., 

the allocation of land between crops and the quantities of out­

puts supplied by farmer(s) in any one state do not affect 

relative output prices. 

(3) The production is one period long. Decisions on 

inputs in period t result in output in period t+1. 

(4) A representative farmer has a given land and has 

the option of allocating this land to either crop 1 or crop 2. 
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This land allocation must be made before the output prices 

are known. 

(5) Finally, the only variable input of the farmer 

is land. 

Farmers are assumed to make choices that maximize the 

expected present discounted value of their profit subject 

to some technological constraint. To present the problem in 

a mathematical form, consider the definition of the following 

variables. 

= output of crop 1 at time t 

^2t ~ output of crop 2 at time t 

= land allocation to crop 1 at time t 

^2-t ~ allocation to crop 2 at time t 

= total cultivated land available at time t 

= price of crop 1 at time t 

^2t ~ P^^ce of crop 2 at time t 

^it ~ cost of production (per acre) of crop 1 

'^2t ~ cost of production (per acre) of crop 2 

W, = a qxl vector containing variables that help 
predict future variables 

a^^ = shock to productivity of 

a^^ = shock to productivity of A^^ 

E = the mathematical expectation operators, 

= information set available at time t; 

^t-1 ̂  
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g = a discount factor. 

The representative farmer's problem is to choose a 

land allocation plan to maximize expected present 

discounted value of farm profits. 

^0 [G^it+l^lt+l ^^2t+1^2t+l 
t—*0 

^ît^lt " ̂ 2t^2t^ (2.16) 

The maximization is subject to land and technology 

constraint. The land constraint is: 

The production function for crop 1 is:^ 

di 
^lt+1 ~ ^^0 ~ "3^1t '^2^\~^lt-l^ ^it^^lt (2.18) 

and the production function for crop 2 is: 

Xgt+l ~ ^^3 " 2^2t ^2t-l) ^2t^^2t (2.19) 

where d^, d^, d^, d^,. d^, and d^ are production parameters 

and they all have positive signs, and a^^ and a^^ are shocks 

to productivity (yield) in the production of crop 1 and crop 

2, respectively. 

The terms <^2^\"^lt-l' ^5(\^2t-l^ imply that the 

yield of each crop in period (t+1) increases proportional to 

• 3 
The production functions are formulated to be quad­

ratic so that (1) they meet the concavity conditions; and 
(2) following the tradition in such maximization problems, 
the maximization problem has a linear-quadratic set-up which 
leads to a tractable expression for the solution. Note that 
after substituting (2.18) and (2.19) into (2.16), the objective 
function is quadratic in A^j. with a linear constraint (2.17). 



34 

the amount of current land which has not been used for the 

same crop during the previous period (t-1). In other 

words, the yield of each crop at time (t+1) is assumed to 

be inversely related to the amount of land allocated to 

that particular crop at time (t-1) and directly related to 

the amount of total cultivated land available at time t(A^). 

If is increasing, farmers would have more land which 

was not planted to neither crop during the previous period 

which means that they are more flexible and can avoid the 

loss in yield due to land productivity deterioration. 

These specifications imply that the current marginal 

product of past land allocation for each crop is negative. 

Some crops (e.g., soybean) have the positive effect of sup­

plementing the nitrate of the soil, and at the same time, 

they have the negative effect of making the soil erode 

rapidly. The parameters d^ and dg capture the net effect 

of past cropping patterns on current production. The 

hypothesis that d^, dg>0 is that producing the same crop 

year after year on the same plot of land results in reduced 

crop yield. 

The simple quadratic form of the production func­

tions of crop 1 and crop 2 (strictly concave in and 

^2t' ' enables us to obtain a linear analytical 

solution to the maximization problem. This linear-

quadratic set-up is similar to the linear-quadratic version 

of Lucas and Prescott's model of investment under uncertainty, 
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Sargent's dynamic labor demand model (Sargent, 1978b), and 

to the more general class of Hansen and Sargent's dynamic 

linear rational expectation models (Hansen and Sargent, 

1981a). 

By substituting (2.17), (2.18) and (2.19) into (2,16), the 

objective function is restated as a function of one choice 

variable per time period, 

Max m ^^0"'"°2t"^lt'^^lt^^lt "~2^1t''"'^2Vlt 

^2^1t-l^lt ^t+l\ ~ ^t+l^lt^ (2.20) 

where 

P X 
p = • 2t+l , is the shadow price of crop 1 land 

^lt+1 ^2t 

allocation; 

^it _ _ °2t 
=it = 5p7-7' =2t = =lt 

in terms of the present 
value of P^^^2' 

The farmer's information set at time t is assumed 

to be 

^t " ̂ •^lt-l"^lt-2'• • •^2t-l"^2t-2'• •'^t'^t-l' 

. . -Pit'^lt-l* • •^2t'^2t-l* • -^t'^t-l" • • (2.21) 

°lt'^lt-l'^2t'°2t-l''•*^lt-l'^2t-l' • • ' ' 

For the maximization of 2.20 to be a well-posed problem, it 
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is necessary to be explicit about farmer's views about the 

laws of motion of the exogenous random variables that he 

cannot control, because these variables influence his choice 

of best land allocation. For problem (2.20), these exogenous 

or uncontrollable variables are P^, a^^, c^^, c^^ and W^. 

Farmers care about the present and future behavior of the 

variables {P^ W^} because they influence the future be­

havior of output prices. Farmers care about the evolution 

of the variables {A^ a^^} because they affect output directly 

through the production function. The process for the vari­

ables {c^^ Cg^} affects the future course of costs of 

production. It is, therefore, necessary to assume that 

farmers know the processes by which these exogenous vari­

ables are generated. 

The maximization of 2.20 is subject to a given level of 

and to laws of motion for the stochastic processes 

P^, A^, W^, c^^ and Cg^. The shock to productivity 

(a^^), the production costs (c^^ and Cg^) and the total 

cultivated land (Â^) are assumed to be generated by the 

following stochastic processes: 

6c^(L)c 
1 t 

( 2 . 2 2 )  
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where each disturbance U^, and is a white 

noise and L = lag operator, where L 
k" 

5,{L) - 1 - S 6 L^, where 6 is a scalar 
j=l A] 

^a 
(S^CL) = 1 - Z Ô , where S is a scalar 

i=i Sj 

5 (L) = 1 - Z 6 ; where ô (i=l,2) is a 
''i j=l ^i] °ij 

scalar. 

Let be a (q+l)xl vector with being the first 

element and the remaining q elements being which helps 

predict P^; i.e.. 

f 

Wt 

Assume that follows r^^^ order vector autoregressive 

process 

6^(L)Z^ = where is a (q+l)xl (2.23) 

vector of white noise and 

""z i 
6„(L)=i - L 8 1/ where 

j=i 

62 is a (q+1) x (q+1) matrix and is the 

^ identity matrix. 

Each of the above stochastic processes, Equations (2.23) 

and (2.22) is assumed to be of exponential order less than 
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1//^,^ and all random variables have finite first- and 

second-order moments. 

With these specifications, the maximization is now 

well-posed. The representative farmer maximizes (2.20) 

subject to the laws of motion for the stochastic 

processes (Equations 2.22 and 2.23) and the information 

available to him (Equation 2.21). Solutions to quadratic 

objective functions like (2.20) have special characteristics 

in the sense that they exhibit the "certainty equivalence" 

or separation principle (Sargent, 1979) . The problem can be 

solved in two steps; first, solve the nonstochastic version 

of the optimizing problem; second, obtain the minimum mean 

squared error forecast of the exogenous variables, which 

are the conditional expectations, and replace the exogenous 

variables in the solution of the first step by their condi­

tional expectations. 

The first-order necessary conditions for maximization 

of (2.20) are the "Euler equations" and transversality 

condition. The following system of T stochastic "Euler 

equations" are derived by differentiating (2.20) with 

is of exponential order less than 1//B if for some 

K>0 and some x such that lj<x_<l//3, | EZ^_j_ ̂  | <K (x) for all 

t and j^O (see Sargent, 1979). This is a necessary condition 
for the transversality condition (defined below) to hold. 
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respect to t = 0,1,2,..., T-1: 

6 [do+C2t-Cit+ait) - ̂ i^it "*• d^Z&t ~ ^^^lt-1 ~ ^t+1^ 

- = " (2-241 

The transversality condition is: 

lim 3 ^ ( ô'^'^2T~^1t'^^1T^ ~'^l^lt'^'^2^T~^2^lT-l~^T+l^ ~ ° T^oo 
(2.25) 

Note that if d2=0, Equation (2.24) and (2.25) are identical 

and Equation 2.20 is a static model with linear demand 

equations for land. 

The system of second-order difference equations of A^^, 

(2.24), can be written as 

or 

a (2.2G, 
. 1 

To solve Equation (2.26), two boundary conditions are needed. 

One boundary condition is given by the initial value 

and the other is given by the terminal conditions, ;jf;uation 

(2.25). Sufficient conditions for the terminal condition 

to hold are that each of the sequences {a^^}, {c^^}, 

{Â^}, {P^} and the solution for A^^ be of exponential order 
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less than 1//3. 

The necessary condition for an optimal solution for 

(2.20) is then satisfied if we can find a solution to the 

difference Equation (2.26) subject to the transversality 

conditions (2.25) and the initial value A, To aid in ob-
1 / -L 

taining a solution to Equation (2.26), it is rewritten using 

(2.27) 

To obtain a solution to Equation (2.27), we seek a factori­

zation of the second-order polynomial in lag operator: 

the lag operator : 

3(1+ |-L + |L^)A lt+1 

(1 + |L + |L^) = (1-A^L)(l-A^L) 

= l-(À^+X2)Ii + ^'1^2^ 
2 

( 2 . 2 8 )  

where and are the reciprocals of the roots of the 

polynomial (1 + ^-L + =0. Equating powers of L 

on both sides of 2.28, we have 

( 2 . 29 )  

so solutions for A^ fulfill the condition: 

$A^A+ A— -d^/d2 . (2.30). 
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P =.96 

-2/p 
-(1 + 3) 

Figure 2.1. Graph of (p = -{A3 + —) 
A 
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Since > 0, the solution values for (2.30), occur in 

the 3rd quadrant of Figure 2.1 and are negative. Note that 

if satisfies (2.30), so does since = (A^g)"^. 

As Figure 2.1 shows, the function -(j> attains a 

then maximum value of -2/0 at X-, = -1//6. If X, = —-, 
- 1 - 1  d ,  1  / g  

A, = (A, 3) - —; hence A, = A-. If :r- >2/0, then the 
2 1 /g 1 2 d2 

smaller root of A^ ̂  + A, 0 must be greater than - —; and A-, 
^ ^ /0 2 

must be less than -1/0; i.e., 0<|A, | < — <|A-|. 
/0 ^ 

To obtain a stable solution for A,,, we require that 
di 

I A, I <1 and this requires > 1+0. Thus, the restrictions 
± ^2 

on A^ and Ag are 

0 < |A^| < |1| <—< |A 
/0 - 2' 

We now rewrite Equation (2.27) as 

0(1-A^L) (l-^2^')Alt+l ^ ̂2 '•'^0''"^2t~'^lt'''^lt"^^2\~^t+l^ 

(2.31) 

where |A^| <1, |A~^| <1 

Applying the forward inverse of (l-AgL)^ to both sides 

of (2.10), we obtain 

^The forward inverse of (l-A^L) is 

1/A L 
(1-A„L) ̂  -

(AgL)-! 

l-fAgL)"^ 
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(gdLA-L)"l 

(l~^lL)\t+l " " , ,-1-1 * 
I-A2 L 

'•'^0'*"'^2t~°lt'''^lt'^'^2\~^t+l ̂ • (2.32) 

(^2^^ -1 °° 1 i 
Observe that - ^ ?— X. = — A « Z (?—) X, ,-] , • 

l-A^V^ ^ 2 i=0 ^2 t+l+i 

and that = A^g, thus, the solution of Euler's equation 

is 

^1 " i 
^lt+1 " ̂ l^lt " d^ ' f'^0''"*^2t+l+i"^lt+l+i 

"^^lt+l+i"^'^2\+l+i~^t+2+i^ (2.33) 

or 

^1 ~ i 
^It " ̂ rut-l ' d7 . ^^1^^ '•"^0"^^2t+i ^It+i'^^lt+i 

A  1 — U  

+ '^2Vi"^t+l+i^ 

Applying the certainty equivalence principle to Equation 

(2.34), the optimal solution to Equation (2.20) is 

^It ̂  ̂ l^lt-1 ' dT ^ '1^^ '^^0"^^^^2t+i^"^''^lt+i^ 
A 1—U 

^ E(a^t+i'+'^2''\+i' -^'"t+l+l" '2-35, 

Thus, the optimal land allocation at time t depends, among 
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other things, on the land allocation at time t-1 and all 

future values of weighted by a factor which depends on 

the production parameters of the model and the discount 

factor.^ 

Equation (2.35), however, cannot be a decision rule 

because the expected values of the random variables 

^2t.+i.' ^It+i' ̂ t+i' ̂ t+l+i known to farmers at time 

t. If farmers form rational expectations about these vari­

ables, they make predictions of these variables that are 

conditional on their information. These predictions are 

the same as the conditional mathematical expectations of 

the variables which depend on the stochastic processes 

generating them. 

We use the Weiner-Kolmogorov formula to obtain the 

conditional expectations of the exogenous variables; i.e., 

the Wiener-Kolmogorov prediction formula is applied to 

express ^t+j ^ function of lagged values of If the 

^Recall that Aj is a function of the production function 
parameters and the discount factor. 

7 The Weiner-Kolmogorov formula is; 

5 (L)"^ 
W+j " f^(2.36) 

where 
00 

[  Z  a . L ^ ]  +  E  a . I / .  
j=_0O- J j=0 ] 

Using (2.36), we express E(.) in (2.35) in terms of known 
variables (Appendix A). 
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exogenous variables in right-hand side of (2.35) have a 

finite order autoregressive representation, then, from the 

results of Appendix A, the land allocation decision rule 

can be written as a function of lagged land allocation and 

current and lagged values of the exogenous variables : 

^it = ^0 + ^i^it-1 •*" %2(L)P^ + n^CDc^^ 

+ n^(L)c2^ + ng(L)a^^ + IlgCDWj^^ +...+ 

+ nq^5(L)Wq^ (2.37) 

where n^(L) is a finite order polynomial in the lag operator 

which depends on the order of the autoregressive process of 

the variable. The II's are nonlinear functions of the produc­

tion function parameters, the discount factor and parameters 

of the laws of motion for the stochastic process {A^, P^, 

°lt' °2t' ̂ It' These nonlinear functions imply cross-

equation restrictions on the parameters of decision rule. 

Because the parameters in (2.37) are functions of the 

parameters in the farmers objective function and the 

parameters of the stochastic processes of the exogenous 

variables which includes government policy variables, 

Equation (2.37) is not invariant to governmental policy. 

Because of potential land fertility deterioration. Equation 

(2.37) also exhibits first-order negative serial co-relation 

(A^<0) in land allocation. 
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Unlike the traditional supply response models, a 

change, for example, in the price process affects the 

structure of the correlation between the right-hand-side 

variables in (2.37) and land allocation. To see this 

point and the effect of a price changes on land alloca­

tion, consider the following specification for uncertain 

exogenous variable: 

^t " "l^t-1 '^2^t-l "t' (2.38a) 

\ = l-lVl + ^2^-2 * 

= gG^_2_ + U^/ |g| <1 (2.38c) 

^It " ^lt-1 + |p| <1 (2.38d) 

^It = C2t = 0 

where U^, U^, and are iid with zero mean and constant 

2 variance; and the roots of jl+y^x+y^x | = 0 lie outside 

the unit circle. contains only one variable G^, govern­

ment policy variable (e.g., government price support). 

Using the results of Appendix A and Equations 2.38a-

2.38d), Equation (2.35) reduces to the following land allo­

cation decision rule 

^It ^0 ^l^lt-1 "l\ "*• ^2^t-l ^3^t 

^ ''4^t ^ -"^S^lt-l (2.39) 
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where 

n„ = 
0 (l-A^ ) 

n ^ (2.40) 

^ (1-YiAJ_B-Y2(A3_6)^) 

n. = - ^ 

^1 "l 
^3 dg 

n = ̂  . °2 
4 dg (l-gAj_3) (l-a^A^g) 

Rr = _ 
5 • 0.2 (l- pA^ -3 )  

= - 4 " ̂1® 

l^ll < 1, IPI < 1, |g| < 1, Iy^I < 1/ Yi+Y2< 1' Y2-Yi< 1-

Equation (2.40) shows the restrictions across liquations 

(2.38) and (2.39) as well as the restriction within Equation 

(2.39). These restrictions are restrictions implied by 

rational expectations hypothesis for this particular case. 

In general. Liquation (2.37) characterizes the land alloca­

tion decision rule. 
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Supply elasticities 

Both long run and short run supply elasticities are 

defined for the model. Let be one of the variables beyond 

the control of the farmer. Following Eckstein (1983), we 

define two types of elasticities: 

(1) Elasticity of expected output with respect to an 

expected change in X^; and 

(2) Elasticity of actual output with respect to an 

unexpected change in X^. The long run elasticity of expected 

output (acreage) with respect to an expected change in X^, 

n"^, measured at the sample mean is defined as 

3E(A, ) 

'^x " 3E(x) ' ̂  
^1 

The short run elasticity of expected output with respect 

to X^ is defined as 

aCt'Ait' X 
"x -

The long-run elasticity measures the effect of an ex­

pected change in the mean of X^ on the mean of output 

(land allocation); and the short-run elasticity measures 

the effect of an expected change in X^, j periods ahead, 

on the current land allocation. From Equation (2.35), 

the short-run elasticity of supply with respect to price 

is 
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• I 
To calculate the long-run supply elasticity with 

respect to price, ignore, without loss of generality, 

the other terms in the right-hand side of (2.35) so that 

(2.35) becomes 

A, » 

^It " ̂l^lt-l d7 .2 (4^)''^(^t+l+i) (2.35a) 
Z 1—U 

is a stationary time series, and taking expectations 

of both sides of (2.35a) ; 

(l-A^)E(A^) = ̂  • E(P) 

and 

- ^ _ P_ 
p d^fl-A^) (1-Aj^3) ^ 

The long-run supply elasticity for crop 1 is negative but 

the short-run supply elasticity may be either positive 

g 
or negative. The long-run supply elasticity of crop 1 

is negative because A^<0, d2>0, 1-A^>0 and 1-A23>0, given 

that the price of crop 1 is in the denominator of or P. 

However, the short-run elasticity oscillates in sign because 

of the alternating sign of (Aj^B)^. The magnitude of the 

g 
These elasticities (long-run and short-run) depend on 

the production function parameters and the discount 
factor. 
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elasticities declines for a change in expected price that 

is further away in time. This alternating signs in the short-

run supply elasticities can be explained by the crop technology 

(crop rotation) incorporated in the model. If at t the price 

of crop 2 relative to the price of crop 1 is expected to be 

higher at harvest time (t+l), farmers will plant more of 

crop 2 or less of crop 1 in t. This is consistent with the 

partial derivative of with respect to being nega-

^•^It ^1 
tivs, i.e., 5ËÎP^ = a; < 0-

If, at t, the price of crop 2 relative to the price of 

crop 1 is expected to be higher 2 time periods ahead or at 

t+2, farmers plant more acres of crop 1 at time t so that 

the yield of crop 2 when planted at time t+l will be 

larger. Thus, 

= as i is 

j — 1,2,... 

Unlike the elasticities with respect to expected 

changes, the elasticities with respect to an unexpected 

change in prices depend not only on the production 

parameters and the discount factor, but also on the 

parameters of the price process. In other words, the 

computation of elasticities of supply with respect to 

an unexpected change in prices requires complete identifi-
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cation of the parameters of the decision rule for land 

allocation. To see this, we first define elasticities 

with respect to an unexpected change in a variable. Let 

= X^-E(X^) be an unexpected change (shock) to at 

time t. Suppose = s/var (U*) , K = 0 

= 0 K M 0 

The elasticity response of output, K periods ahead, 

with respect to an unexpected once-but-not-for-all 

one standard deviation shock in X^ is defined as (Eck­

stein, 19 83) 

y(kj = ^It+k ^ . 

a^-E(Xt) Aj 

where is the value of land allocation at time t+k 

and A]_g= E{A^^) for s<t. We note that since |Aj^|<l, the 

Alt Process is stationary so that in the long run 

^It+s"^^ ̂^It^ and y(s)'^0« In order to calculate the 

elasticity with respect to an unexpected shock in prices, 

consider the decision rule, with other variables 

ignored/and the price process. 

'^it = + OsPt + V' 

ft ' 
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Let 

Vt =  0 ,  

^It - \-l - ̂ t-1 ~ ̂ t " °-

Now suppose there is a shock in at time t with the 

following property: 

= Cp, = 0, Vs^t 

so 

^t = '^p 

Pt+k = "ï"? 

and 

^It - HgOp 

^lt+1 ^ ̂ 3^p(^l^Gl) 

2 
^lt+2 ^ [À^(A^+a^)+a^]; etc. 

Thus, response of crop acreage to a one standard deviation 

unit shock in prices depends not only on the parameter of 

the production function and the discount factor (through 

and 11^) but also on the parameter of the price process 

(a^). Using the above results, the elasticity response of 

output to an unexpected shock in prices, Y(S)'S, can be 

calculated. Further, we observe that since ||<1 and 

|a^{<l, K-X». The above sequence of follows 

a cobweb cycle. If is negative, A^^ is negative; 
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•positive and so on. 

From the preceding discussion, it is clear that to 

see the response of output to some changes in prices we 

need a complete identification of the models parameters. 

However, if the aim is to estimate supply elasticities 

with respect to expected change in prices, we need to know 

the production parameters only (the discount factor being 

9 given). 

9 
See Eckstein (1983) for details about this point. 
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CHAPTER III. PRELIMINARY DATA ANALYSIS 

In this chapter, an empirical model is proposed and 

preliminary tests are performed. The model proposed is a 

vector autoregression. Some of the assumptions made in 

Chapter II are tested with this model, e.g., exogeneity of 

prices. A moving-average representation is also derived 

from the vector autoregression in order to analyze the 

responses of land allocations to shocks in prices and vise 

versa. 

In the first section of this chapter, the unrestricted 

vector autoregressive model (VAR) is described and formulated. 

The VAR. is then used to derive, by simulation, a moving 

average representation (MAR) which provides a convenient 

framework from which a general description of dominant 

characteristics of the variables in the vector autoregression 

can be developed. This aspect of the analysis is presented 

in the second section. The results of the VAR and MAR 

analysis when applied to aggregate time series data on 

acreages, yields and relative price for the state of Iowa 

are presented in the third section. The last section pre­

sents some tests of stability of the model over the sample 

period. 
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The Unrestricted Vector 
Autoregressive Model 

In this section, an unrestricted reduced form of an 

econometric model following Sims (1980), Sargent (1978b), 

Eckstein (1981) and Falk (1982) is formulated. These 

models are called unrestricted in the sense that no 

restrictions based on a priori knowledge is imposed on 

coefficients and all variables are treated as endogenous. 

When these models are fitted to multivariate time series 

data, they may suggest feedback relationships that might 

be incorporated in the macroeconometric modelling. In 

what follows, a VAR model is formulated for the time series 

of land allocation outputs and prices. 

Land allocation and output are correlated over time. 

Output decisions are based on anticipated or expected future 

prices which are mainly a function of past prices. Thus, 

prices and output should be correlated. Anticipation of a 

higher price for corn relative to soybeans should lead to a 

larger area being planted to corn and larger total corn pro­

duction. Unexpected increases in output may have a downward 

pressure on prices. To analyze the nature of these feed­

backs between prices and output or land allocation it is 

convenient to present the time series of output/land 

allocation and prices as a vector process. 
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Let be a nxl vector of output or land allocation 

and let be an mxl vector of relevant relative prices. 

Define = (X^,P^) and assume the (n+m)-dimensional vector 

Y^ is covariance-stationary. ̂ The vector Y^ can be regarded 

as an n+m dimensional, covariance-stationary stochastic 

process. Furthermore, let Y^ be arbitrarily well-approxi­

mated (in the mean-square sense) by the following r^^ order 

vector autoregressive process: 

= Vt-l + ^^2^-2 +---+ Vt-r + "t- 13.11 

Equation (3.1) can be expressed as 

""t = * "t (3.21 

or 

Y^ = A(L)Y^ + (3.3) 

where 

A(L) = A^L + A^I? +...+ A^L^. 

Y^ is an (n+m)xl vector of random variables, 

A(j), j = l...r, are (n+m)x(n+m) matrices of time-in­

variant coefficients, i.e., A^ in (3.2) depends on s 

but not on t. This follows from the stationarity of Y^. 

is cov-stationary if: (1) The expected value 
of X. is constant for all t, (2) the covariance matrix 
of (X. X ,...,X ) is the same as the covariance matrix 

1 ' 2 n 
of (X^ +h' t +h'*''^t +h^ all nonempty finite sets of 

indicei ''^n^ and all h such that t^,t^,.,.,t^, 

t^ + h,t^+h,...,t^+h are contained in the index set 

(Fuller, p. 4) . 
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is an (n+mxl) "innovation vector" in the process. 

The innovation of a stochastic process is that part of 

the process which cannot be predicted on the basis of in­

formation available from the past. This definition implies 

that the expected value of the current innovation, condi­

tional on the past information, is zero, and the innovation 

process is serially uncorrelated. Thus, = A^Y^_^ + 

^2^t-2 ^r^t-r the "best" predictor of Y^. 

The model (Equations 3.1-3.3), is unconstrained in 

the sense that, a priori, each of the components of the 

vector process Y^ is assumed to be endogenous with respect 

to the other components of the process and the lag structure 

is symmetric across the variables and equations of (3.2). 

In other words, none of the components of the matrices, 

where 

All(s) ^12: 
nxn nxm l 

I ' 
A2i(s) A22(s) I 
mxn mxm i 

are assumed to be zero a priori. Given this specification 

for the system of equations, Zellner's seemingly unrelated 

regression methods is appropriate for estimating the A's. 

Because the same explanatory variables (RHS variables) are 
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used in each equation, ordinary least-squares estimation 

applied equation by equation to each equation in the 

vector process is equivalent to applying generalized least 

squares (Theil, 1971; Kmenta, 1971; and Judge et al., 

1980). 

An appropriate lag length for 3.1 must be determined. 

This can be accomplished by performing a statistical test 

that a subset of the Aj's are zero. Consider the following 

two specifications of (3.1). 

''t = Vt-l + "it (3.1a) 

+ "2t "here 

(3.1b) 
The system (3.1a) can be viewed as a restricted 

version of (3.1b), the restriction being = 0, s = 

r^+l,...r2. Under this null hypothesis, the 

likelihood ratio statistic is T (Log|Dr|-Log||) which 

2 has a X (q) as its asymptotic distribution. and 

are the sample covariance matrices for the unrestricted 

and the restricted system, respectively; T is the sample 

size; and q is the total number of restrictions tested. 

To account for some bias which is believed to be inherent 

in such tests (Sims, 1980, p. 17), Sims modified this 

test by using (T-K) rather than T for calculating the 

test statistic; where K is equal to the number of 

coefficients per equation in the unrestricted system. 
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The modified test statistic is employed in this study. Tests 

will be confined to cases for rg-r^ = 1, and an increase by 

one of the lag length increases the number of unknown 

2 parameters by (n+m) . 

The VAR of the process, as Sims (198 0) and Falk 

(1982) have argued, is hard to interpret. The reason is 

that VARs will generally be characterized by oscillating 

signs of coefficients on successive lags of a variable and 

complicated cross-equation feedbacks which are difficult to 

untangle. However, VAR of can be employed to perform 

informative statistical tests about the nature of economic 

relationships among the variables in Y^. These tests are; 

2 (i) does not Granger-cause . In Chapter II, 

output prices were assumed to be exogenous. For this to 

be the case, must not Granger-cause P^. If X^ does 

not Granger-cause P^, Ag^fs) must equal zero for all 

s = l,2,...r. Therefore, testing the hypothesis that price 

is not Granger-caused by output/land allocation is equiva­

lent to testing for Ag^fs) = 0. Since this test is per­

formed on only one equation, the price equation, an F-

statistic is employed. 

(ii) No structural change during the sample period. 

^Granger-causality is defined below. 
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This test can be executed by adding dummy variables to per­

mit coefficients to be different for each variable in 

different sample periods. The test statistic for each 

component of is an F-statistic while for the vector 

process Y^, the test-statistic is the modified likelihood 

ratio statistic. 

The Moving Average Representation 

The autoregressive system like Equation (3.1) are 

difficult to describe succinctly. It is especially diffi­

cult to understand and interpret the estimated coefficients. 

The estimated coefficients on successive lags tend to oscil­

late, and there are complicated cross-equation feedbacks. A 

common practice is to derive the MAR of the VAR and examine 

how the system of variables respond to shocks. As a result, 

the MAR will generally be a more convenient device to pro­

vide an economic interpretation to the estimated system.^ 

The derivation MAR from a VAR and the description of the MAR 

are the objectives of this section. 

Examination of how each component of the VAR system 

responds over time to shocks originating from various sources 

within the system, will give an insight to the dominant feed­

backs among the components over the sample periods. For 

example, if prices are exogenous, with respect to output, the 

^For a detailed discussion of this point, see Sims 
(1980 ) .  
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time path of prices should not be very responsive to shocks 

originating from output. The shocks, which are considered, 

are residuals from the equations of the VAR, i.e., the inno­

vations in the systems dependent variable. In particular, 

it is interesting to see the responses of land allocation 

to shocks in crop prices and the response of prices to 

shocks in land allocations. Before proceeding further with 

the discussion of the MAR, it seems useful to describe 

the derivation of the MAR from VAR. 

Recall from (3.3): 

r 
= E A + U, (3.3a) 

t 3^1 s t-s t 

where the roots of the characteristic equation det{l-A(Z)}= 

0 exceed one in absolute value (a necessary condition for 

Y^ to be stationary), and is the vector of innova­

tions in the Y^ process. These conditions guarantee 

that Y^ has a moving average representation, i.e., 

00 00 

Y. = Z B = Z B L^U. (3.4) 
^ s=0 ^ s=0 = t 

From (3.3), [(I-A(L)]Y^ = 

or 

Y^ = (I-A(L))~^U^. 

S *"1 
Therefore, = (I-A(L)) ; which exists since Y^ 

is assumed to be stationary. 

Finding the B coefficients is equivalent to in­
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verting the matrix polynomial [I-A(L)]. It will be shown 

that except for scaling, tracing out the response of 

(3.1) to typical random shocks is equivalent to deriving 

the moving average representation by matrix polynomial 

long division. 

The coefficients of the VAR, are obtained by esti­

mating (3.1) after the appropriate lag length has been 

determined. Denote the individual elements of as 

follows ; 

^t ^^lt'^2t' ' ' "^nt'^lt'^2t' " ' ' '^mt^ ' 

^^l,t''^2,t'*'"\,t'^n+l,f"'^n+m,t^ ' 

and after estimating VAR(3,1), consider a set of initial 

conditions in which y. _ = 1 and all other elements of Y-
] , u u 

are set equal to zero and Yj^ = 0, k^O. This initial condi­

tion is equivalent to setting u. . = 1 and all other elements 

"o = ("1,0' equal to zero, 

and = Ofkf^O . Simulating the VAR, (3.1), to these 

initial conditions, will give the column of the matrix 

Bg of Equation (3.4) which shows the responses, s period 

ahead, of each variable of the model, to an initial shock 

to the variable. Through successive simulations in 

which the initial values of all the residuals in (3.1), 

except for one, are set equal to zero, all the components of 

Bg of the MAR (3.4), can be obtained. The i,j^^ element of 
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Bg, (s) , which is obtained by such simulation is equiva­

lent, except for scaling to ^'i,k' - i, 2 ' * ' *^i, T' 

Therefore, one can regard the i,j^^ component of 

Bg, b^j(s), as the response s periods ahead of the i^^ 

variable to an initial shock in the variable. However, 

problems arise if the elements of the innovation vector 

are contemporaneously correlated. The above simulation 

does not take this correlation into consideration. It will 

be useful to analyze the degree to which each innovation 

contributes to the overall variance in each variable. How­

ever, the presence of substantial contemporaneous correla­

tion among the innovation vector makes it difficult to 

uniquely decompose the variance of the y^'s in this manner. 

This problem can be circumvented. Consider a matrix H 

such that = HU^ has a variance-covariance matrix equal 

to the identity matrix. To obtain H, apply a Choleski de­

composition to the variance-covariance matrix of U^. Let M 

denote the contemporaneous covariance matrix of the innova­

tion process, U^. Since M is symmetric positive definite, 

M can be decomposed into M = GG' where G is a lower tri-

4 angular (n+mxn+m) matrix and G' is its transpose. Define a 

- Using triangular decomposition means that, in 
general, the matrices G and G' will vary with the 
ordering of y^,y2 / « « «, y^^+n ' Suppose m+n=4 and the vari­

ables are ordered as y^/y2/y-|_»y3' Then the transformation 

would imply that innovations in y. are instantaneously 
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-1 vector process = G U^, then is serially uncorrelated 

and its elements are contemporaneously uncorrelated; i.e., 

E[V^V^] = E[G~^U^U^G~^'] = E[G~^GG'G~^'] = I. Further, 

since = GV^, the MAR, (3.4), can be written as 

^t " Jq ®s^^t-s • (3.6) 

The MAR, (3.6), that has coefficients equivalent to 

(3.4) can be derived as follows: Having obtained G from 

the estimated variance-covariance matrix of the VAR's residual 

process, B^G, s = 0,1,2,... can be obtained from the above 

simulation procedure. For some j, j = l,2,...,m+n, set 

yj g equal to one and all the other elements of Yg equal to 

zero. Then, premultiply this specification of Yg by G to 

obtain a new initial value of Yg. This new initial value of 

Yg takes into account the possibility that the shock origi­

nating in variable j is being instantaneously reflected in 

other variables of the model. Holding U^,U2,..., equal to 

their unconditional mean value of zero, the response of 

Y^,Y2,... to these initial conditions are obtained by 

(footnote continued from p. 6 3) 

reflected in all the three variables in the system. The 
innovation in y^ instantly affect all the variables in the 

system except for y^, and so on. Finally, innovation 

in yg affect y^, but they have no immediate impact on 

any of the other variables (although, of course, through 
the pressure of lagged yy's, they will eventually affect 

the rest of the system). Since this ordering is es­
sentially arbitrary, several should be tried. 
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simulation. 

The interpretation given to the component of the 

MAR, Bg, can be applied to the component of B^G. In particu­

lar, the sum of the squares from s=0 to s=k of the i,j^^ 

element of B^G represents the part of the error variance 

in the k+1 step ahead forecast of which is accounted 

for by innovation in y^ at s=0. 

Define hj^ (t) as : 

Z kf.(s) 

m+n 2 ( ^ - 7 )  
Z Z bT. (s) 
s=0 j=l 

•N# th 
where b..(s) is the i,j component of B G. Equation (3.7) 

13 s • 

represent the proportion of the k+1 step-ahead forecast 

error variance in y^ attributable to shocks in y^. 

In particular, it is interesting to analyze output/ 

land allocation responses to shocks in prices and vise 

versa. Exogeneity of prices can be evaluated by computing 

the percentage of forecast error in prices accounted for by 

innovations in output or land allocation. For price exo­

geneity assumption to be plausible, innovations in output 

or land allocation should account for only a small share of 

the forecast errors in prices. 
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Results 

In the first section of this chapter, a VAR for land 

allocation/output and prices was formulated and in the 

second section a method of deriving the MAR was outlined. 

The procedures outlined in these sections are applied to 

the state data on acreages, yields and prices of corn 

and soybeans from lowa.^ In this section, the main results 

of the vector autoregression for the relative price (P^), 

yield of soybeans (YS^), yield of corn (YC^), area (acreage) 

of soybeans (AS^) and area (acreage) of corn (AC^) are pre­

sented. Each of the variables AS^, p^, YC^ and YS^ is 

filtered with a constant and a linear trend. The variable 

AC^ is filtered with a constant, a linear trend and a 

dummy variable to account for governmental policies on 

feed grains (see Chapter IV). These filtered variables 

are presented by a vector Y^; Y^ = (P^, YS^, YC^, AC^, AS^). 

A test of the null hypothesis that the lag length was 

four for the VAR against the alternative hypothesis of 

five could not be rejected at the 5 percent significant 

level (Appendix C). 

A test for exogeneity of prices is performed with the 

aid of Granger's causality tests (Granger 1969). 

^The data are aggregates for the state of Iowa for the 
years 1948-1980. The data set is given in Appendix E. 
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Definition : 

Granger causality in the bivariate case: Consider 

two univariate stochastic processes and The 

process is said to Granger-cause the process 

if, in a one-sided (population) projectionn of Z^ on 

past Z^'s and past Y^'s, past Y^'s "matter". Or Y^ 

Granger causes Z^ if: (1) = a(L)Z^ + b(L)y^ + v^; 

where 

2 
(i) a(L) = a^L + a^L +... 

(ii) b(L) = bj^L + bgL^ +. . . 

(iii) is innovative in Z^ process; and 

(iv) bj is nonzero for some ]>!. 

A similar definition holds for the multivariate case. 

Granger-causality and econometric exogeneity are related 

in the following way in the bivariate case: For two uni­

variate stochastic processes Y^ and Z^, if Y^ Granger-

causes Z^, then Z^ is not econometrically exogenous with 

respect to Y^ in an equation expressing Y^ as a one-sided 

distribution lag of Z^. If Y^ fails to Granger cause Z^, 

then there will exist a representation of Y^ expressed as 

a one-sided distributed lag of Z^ in which Z^ is strictly 

exogenous. The failure of Y^ to Granger-cause Z^ is a 

necessary and sufficient condition for existence of a rela­

tionship in which Y^ is expressed as a distributed lag of 

Z^ and in which Z^ is strictly exogenous. 
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The following causality hypotheses concerning acreages, 

yields and prices of corn and soybeans were tested: 

(i) Area of corn, area of soybeans, yield of soybeans 

and yield of corn each has zero coefficients in a fourth-

order autoregressive equation for the relative price P^. 

When AC, AS, YS and YC are each excluded from the price 

equation, the F-values are 2.44, 1.34, 1.58 and 1.85, 

respectively. The critical value of F (4,9) at 5 percent 

significance level is 3.09. The exclusion of these vari­

ables from the price equation is supported. 

(ii) Areas (corn and soybeans jointly) and yields 

(corn and soybeans jointly) have zero coefficients in the 

equation for the relative prices. When areas (jointly) are 

excluded from the price'equation, the sample F-value is 1.72; 

and when yields (jointly) are excluded, the F-value is 1.23. 

The tabular value for F(8,9) is 3.23. Thus, the hypothesis 

of zero coefficients for yields and zero coefficients for 

areas in the price equation cannot be rejected. 

(iii) All the variables except lagged prices, in the 

right-hand-side of the price equation of (3.10) have zero 

coefficients. A price equation containing four lags of price 

(lagged areas and lagged yields excluded) is tested against 

a price equation containing four lags of the five variables. 

The result has an F-value of 2.28 with a critical value of 
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•F(16,9) = 3.00. Thus, lagged areas and lagged yields can 

be excluded from price equation containing lagged 

prices, lagged areas and lagged yields of corn and soy­

beans. 

(iv) Price has a zero coefficient in the equation 

for areas of corn and soybeans in Equation (3.1). When 

price is excluded from the corn area equation, the sample 

F-value is 4.2, When price is excluded from the equation for 

area of soybean, the sample F-value is 5.1. The tabular 

value of F (4,9) at 5 percent significance is 3.63. Thus, 

the hypotheses of price exclusion from the separate equations 

for area of corn and area of soybeans are rejected. 

(v) Acreage (AC and AS) equations have jointly zero 

coefficients for lagged price. When the four lags of price 

are excluded from area equations, the sample value of 

X~(8) is 15.91 with the critical value of X^(3) at 5 

percent being 15.51. We reject the hypothesis of excluding 

price from the acreage equations. 

The statistical tests (i-v) imply that while prices 

Granger-cause areas (acreages), areas do not Granger-

cause prices. Thus, the tests support the assumption of exo-

geneity of prices. 

From the estimated five dimensional vector of auto-

regressive equation for AS, AC, P, YS and YC, the moving-

average representation (MAR) is obtained by simulating 
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the estimated equation using the procedure outlined in 

3.3-3.7. The MAR coefficients are equivalent to the 

responses of the VAR (3.1) to a random shock. The random 

shocks employed in the simulation are the residuals of 

the VAR. The responses of each variable in the five-

dimensional vector process the shocks within the system 

appear in Appendix D. 

Figures 3.1, 3.2 and 3.3 show the responses of AS(RAS) 

and responses of AC(RAC) to innovations (one standard de­

viation shock) in prices, yield of corn and area of corn, 

respectively (figures for responses to other innovations 

are given in Appendix D). In all cases, the order of 

variables is (P YC YS AC AS).^ A price shock increases 

the area of soybean and decreases the area of corn in the 

first period. An interesting phenomenon is the cyclical 

movement of land allocations in response to innovations. 

This feature exists for almost all innovations. The other 

interesting feature is that the area of corn and soybean 

respond in opposite directions in most of the cases. The 

responses of both area of soybeans and area of corn to inno­

vations in yields persist over a longer period. 

The responses of price to innovation in corn 

and soybeans areas are given in Figures D.3 and D.4 (Appendix 

^Changing the order to (P YS YC AS AC) did not change 
the result very much. 



PLOT OF RAC«YR SYMBOL USED IS • 
PLOT OF RAS*YR SYMBOL USED IS 0 

6 0 .  +  

50 

10 

RAC 

0 

*1*0 

-50 + 
I  

Figure 3.1, 

7 

YR 

\0 

Plot of responses of area of corn and area of soybean to one 
standard deviation shock in prices 



PLOT OF RACYR SYMBOL USED IS » 
PLOT OF RAS»YR SYMBOL USED IS 0 

0.5 

RAG 

0 .0  

-0.5 

-1.0 

5 

- 2 . 0  +  

1 2 3 5 6 7 9 6 10 12 

YR 

Figure 3.2. Plot of responses of area of corn and area of soybean to one 
standard deviation shock in yield of corn 



PLOT OF RAC'YR 
PLOT OF RAS»YR 

SYMBOL USED IS • 
SYMBOL USED IS 0 

Figure 3.3. Plot of responses of area of corn and area of soybean to one 
standard deviation shock in area of corn 



74 

D). A one-standard-deviation innovation in area of soybeans 

results in a decrease in relative price of soybean to price 

of corn in the first period. A one-standard-deviation inno­

vation in area of corn results in an increase in the rela­

tive price in the first period. While the negative response 

of price to an innovation in area of soybean is greater in 

the first period, the response of price to innovation in 

area of corn takes a longer period to converge. Furthermore, 

like the responses of areas to almost all innovations, the 

response of price to innovations in areas exhibit a cyclical 

pattern. 

Table 3.1 summarizes the results of 12 years ahead 

decomposition of the forecast error variance. About 55% 

of the forecast error variance in prices is accounted for 

by innovations in prices. This result also provides some 

support to our assumption of price exogeneity. In the long 

run, yields seem to account for more of the forecast error 

variance in land allocation than prices while a greater 

percentage is accounted by prices in the short-run (Appendix 

D). This result, of course, is for this particular ordering. 

Some characteristics of these results are particularly 

important. First, there is some dynamic interaction among 

output (land allocation), yields and relative prices. In 

particular, the data show that innovation cause alternating 
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Table 3.1. Percentage of forecast error variance 12 
years ahead produced by each triangularized 
innovation^ 

Innovation 
AS AC YS YC P 

AS 24 14 21 17 19 

AC 10 28 15 36 10 

YS 3 8 79 8 1 

YC 5 20 12 56 6 

P 23 17 2 3 55 

^Detailed results are given in Appendix D. 

positive and negative influences on land allocation. 

Responses of price show similar pattern to innovations 

in areas. Even though responses of areas to innovations 

in yields are, in general, smaller in absolute value than 

to innovations in prices, the responses to innovations 

in yields persist over a longer period. The responses 

of price to innovations in area of corn is small (com­

pared to innovations in area of soybeans) but persistent 

over a longer period. Second, the data seem to be con­

sistent with the assumption that prices are not Granger-

caused by output and yields. Third, in the long-run, 

innovations from yield account for a larger percentage 
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of the forecast error variance in land allocation than 

do innovations from prices. 

Stability Over Time 

One assumption underlying classical linear model is 

that the econometric structure generating the sample obser­

vations remains unchanged over all observations. This 

assumption includes a single parameter vector relating the 

dependent variable and the independent variables, a single 

set of error process parameters and a single functional 

form. A frequent concern is that the parameters change 

over time or as the sample size increases. 

In the land allocation model of Chapter II, an im­

plicit assumption was made that structural change in the 

production function did not occur over the sample period. 

This assumption will be tested here. Tests for stability 

of the equations for areas, yields and relative price, 

and other variables are performed. 

One way of testing for structural change is to par­

tition the sample into two (or more) groups and then per­

form a test of the null hypothesis that parameters of these 

groups are equal. This approach is feasible when a large 

sample exists, and a criteria is available for partitioning 

the sample. Alternatively, one can use dummy variables to 

account for the expected change. This can be done by adding 
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dummy variables to that part of the sample where changes 

are expected to have occurred. A test of the null hypothesis 

that the fit of the model with and without the dummy vari­

ables is the same is then performed. 

For the five-variable vector of areas, yields and 

relative price we do not have a priori reason to believe 

that a structural change has taken place in any given year. 

Therefore, the sample was split arbitrarily into three 

parts ; 

(1) At 1958, i.e., structural shifts have taken place 

after the first 11 years; 

(.2) At 1959 and 1969, i.e., the middle 11 years of 

the sample period are different from the first and the 

last 11 years; and 

(3) At 1969, i.e., there has been structural change 

during the last third of the sample period. 

A set of regressions was run by adding a set of dummy 

variables (for the smaller segment of the sample) to the 

right-hand-side of all regressions in the system, accounting 

for the period being tested. The test statistic for the VAR 

of AS, AC, P, YS and YC is the likelihood ratio statistic 

which is calculated as described in Equation 3.10a-3.10b, 

comparing the fit of the system with and without dummy 

variables. The test statistic for each single equation in 
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the system is the usual F-statistic. Tables 3.2, 3.3 and 

3.4 present the results. 

The tabular value at .05 of F(1,8) is 5.32 and of 

2 
X (5) is 11.07. In all the three cases, the sample value 

2 2 of the X is greater than the critical value of the % . 

Thus, the hypothesis of no structural change is rejected 

and the data supports the hypothesis that some structural 

change has taken place. On the other hand, equation by 

equation application of the test of the hypothesis of no 

structural change cannot be rejected for all except the 

equation for yield of soybeans (YS). As Sims (19 80) 

pointed out, the likelihood test can be biased: "... the 

statistics (the likelihood statistics) are probably biased 

against the null hypothesis when the degrees of freedom 

in the test statistic are small". Thus, the conclusions 

of the overall test may be too strong. The analysis pro­

ceeds under the assumption of no structural change. 

The stability of the production function is tested 

next. From Equation 2.18 of Chapter II, average output per 

unit of land can be written as: 

di 
Vt = <3o " 2~ ''it (3-S) 
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Table 3.2. Test 
1959 

for model 
-1980 

homogeneity: 1948 -1959 vs. 

Equation Test statistic 

AS F(l,8) = .11 

AC = .12 

YS = .19 

YC = 1.37 

P .66 

Overall %2(5) = 11.22 

Table 3.3. Test 
1958 

for model homogeneity: 
and 1970-1980 

1959 -1969 vs. 1948-

Equation Test statistic 

AS F (1,8) = 1. 87 

AC = . 85 

YS = 6.29 

YC = 2.26 

P = 1.18 

Overall y^CS) = 15. 62 

Table 3.4. Test 
1980 

for model homogeneity: 1948--1969 vs. 1970-

Equation Test statistic 

AS F(1,8) = 1.14 

AC = .105 

YS = 5.89 

YC = 3.58 

P = 1.63 

Overall = 13.11 
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where 

U^'s are iid; and 

is yield, bushels of corn per acre of land. 

Equation (3.8) seems to have the properties of a 

regression equation with serially correlated disturbances 

and no lagged dependent variable on the right-hand-side. 

However, since and are correlated, the orthogonality 

condition or conditional expectation E[a^/A^, ^it-1^ ~ 

0 is violated. Therefore, the generalized least squares 

estimation is not a consistent estimator. 

Applying the operator (1-pL) to (3.8) and writing the 

result in terms of deviations from means, a new specification 

for y^ is obtained: 

"^1 . , 
= Pyt-l - 2- '^It + "2- \t-l + dzlAt-Alt-i' 

+ + "t ".9) 

The conditional expected value of in Equation (3.9) 

is zero, i.e., 

^^^t/^t-l' ̂ It' ̂ lt-1' ̂ lt-2' \-l^ ̂  0. 

Equation (3.9) can now be estimated using nonlinear 

regression methods. 

To test the stability of the parameters of this pro­

duction function over time, a procedure suggested by Judge 
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et al. (1980) is applied. Consider the model = X^3 + e^. 

A test for discrete shifts in slope parameters^ when the 

shift point is unknown has been suggested by Farley, Hinich, 
O 

and McGuire (1975). A discrete shift in the slope at an 

unknown point can be approximated by a continuous linear 

shift using a time varying parameters model 

Yt ' Vt + 

where 

3^ = 3 + t6. 

This means that the "full" model can be written as 

y^ = X^3 + X^t<5 + e^ (3.11) 

Thus, the full model is obtained by replacing p, d^, and 

dg by p + tô^, dj^ + tdg, and d^ + t6^ in (3.9) . The 

test of the null hypothesis of no slope change is the like­

lihood ratio test of the hypothesis that 6=0, i.e., 6^^ = 

dg = ^2 = 6^ = 0. Equation (3.9) is then the "reduced" 

or restricted model. The "full" and "reduced" models were 

estimated using the Gauss-Newton method. The results are 

presented in Table 3.5. 

^The model of Chapter II which includes the production 
function will be estimated in terms of deviations from 
means and linear trends. Therefore, we only need to test 
shifts in slope parameters of the production function. 

*^We do not have information after which year, if any, 
structural shifts have occurred. Therefore, we let the 
parameter change on the basis of time. 



Table 3.5. Estimated parameters of the production function 

Model 
p  " 1  ^ 2  " 1  " 2  - 3  

(SEE) (SEE) (SEE) (SEE) (SEE) (SEE) 
Residual 
sum of 
squares 

Full . 2 7  
( . 2 2 4 )  

.  0088 
( . 0 0 0 7 3 )  

. 0 0 4 4  
(  . 0 0 0 3 1 )  

. 0 0 3 9  
(  . 0 0 2 3 )  

. 0 0 0 7 2  
(  . 0 0 0 4 9 )  

. 0 0 0 3 3  
(  . 0 0 0 2 0 )  1 0 5 3 . 6 4  

Reduced .39 
( . 1 7 5 )  

. 0 0 0 2 3  
(.00016) 

. 0 0 0 2 3  
(  . 0 0 0 0 8 7 )  

1 2 0 8 . 5 9  
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The sample value of the test statistic for the null 

hypothesis of no change in the parameters of the produc­

tion function is F (3,25) = 1.23. The tabular value at 

.05 of F(3,25) is 2.99. Thus, we fail to reject the null 

hypothesis of no changes in the parameters of the pro­

duction function. This conclusion is clearly conditioned 

by the particular specifications of the parameter change 

that is stated in Equation 3.10. 

In summary, in this chapter, some of the dynamic 

interactions among land allocations, yields and relative 

prices are examined. The stability of the equations for 

these variables as well as the parameters of the produc­

tion function are also tested. Even though the test 

results were inclusive in some cases, the assumption of no 

structural shifts over the sample period is maintained. 

The next chapter focuses on a strategy for the joint esti­

mation of the equations for the decision rule for land 

allocation, the production function and the processes 

generating the exogenous variables. 
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, CHAPTER IV. DATA AND ESTIMATION 

In Chapter II, a dynamic land allocation model for two 

crops was derived for a representative farmer whose objec­

tive function was assumed to be maximization of present 

discounted value of expected net income. This model gave 

a set of simultaneous equations that contain within equa­

tion and cross equation restrictions. In this chapter, the 

land allocation model is tested by fitting it to data on 

land allocated to corn and soybean in Iowa. Data on 

acreage, production, yield and price for corn and soybeans 

and on total cultivated land are obtained from the publi­

cations of Iowa and United States Department of Agri­

culture.^ Using the estimated equation for land allocation, 

elasticities of supply are computed and historical simu­

lation of corn acreage is made. 

This chapter is organized as follows: In Sections 

1 and 2, the data and government policies that have been 

affecting the production and price of corn and soybeans 

are discussed. In Section 3, the model is specified, esti­

mated and the results presented. The supply elasticities 

are discussed in Sections 4 and 5, the land allocation 

model is compared to Nerlove-type models. The simulation 

results are presented in the last section. 

^The data are given in Appendix E. 
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Corn and Soybeans in Iowa 

The selection of corn and soybean acreage as the focus 

of the empirical analysis is motivated by the major role 

that these crops play in the agricultural economy of Iowa. 

Iowa is an agricultural state that specializes in both 

crop and livestock production. Of the 35 million acres 

which form the total area of the state, the acreage in 

farms has remained roughly stable at 34 million acres or 

94% of the state since 1950. Despite the fact that row 

crops accelerate soil erosion, the share of row crops as 

a percent of total farm land in Iowa has grown from 405 in 

1950 to over 60% in 1980 while the share of nonrow crops 

has fallen from 40% in 1950 to about 161 in 1980. The 

corn and soybean acreage accounts for over 85% of the 

cultivated land during this 80 year period. For the 

years 1979-81, for example, the total acreage allocated for 

corn and soybean averaged about 87% of the total cultivated 

land. Furthermore, Iowa has ranked high nationally in pro­

duction of corn for grain and production of soybeans for 

beans. 

In addition to fertilizer and pesticides application, 

crop rotation is employed by Iowa farmers to prevent rapid 

deterioration of soil fertility that occurs when the same 

crop is planted year after year on the same acreage. Corn 
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and soybeans are part of the crop rotation system that a 

large share of Iowa farmers follow (see e.g.. Heady and 

Langley, 1981) . 

Government Policy 

For most of the years since the 19 30s, American agri­

culture has been under some sort of supply control or land 

retirement programs - acreage allotments, price supports, 

payment in kind etc." These programs have especially 

affected the production of feed grains. 

There were two main components of the feed grain 

program from 1948-1958: price support and acreage allot­

ments. In most years when acreage allotments were in 

effect, compliance was a requisite for obtaining a price 

support for corn. The acreage allotments were in effect 

in 1950 and 1954-1958. In 1959 and 1960, no allotment was 

in effect for corn, and United States corn production was 

exceptionally high and in 1950 exceptionally low (Cochran 

and Ryan, 1976), In 1961, a new program ("acreage diversion 

payments") where producers, in order to qualify for price 

support, were required to divert land from corn and sorghum 

to conserving uses was introduced. In 1967, some changes 

in the program were made to relax production restrictions. 

As a result, production of corn rose sharply in 1967. 

2 
See for e.g., Cochrane and Ryan (1976) or A. Essel 

(1980) for detailed description of these and other programs. 
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"Because of high world demand and other factors, no signifi­

cant supply control restriction was imposed on corn pro­

duction during the 1970s. 

The government has not had acreage allotment as diver­

sion programs for soybeans. Soybeans differ from other 

crops in that demand has matched supplies at or above the 

support rate in almost all years. This has resulted in 

steady growth of soybean production. 

The impact of these government policies on total pro­

duction of corn and soybean acreage in Iowa is similar to 

their impact on the production of these crops in the U.S. 

As Figure B.l (Appendix B) shows, the corn acreage in Iowa 

has three peaks - 1959, 1960 and 1967. These peaks 

correspond to the years when no corn allotment was in effect 

(1959, 1960) and to the year when the program was relaxed 

(1967). The corn acreage in Iowa in 1950 was unusually 

low because of the acreage allotment in that year. The 

corn acreage began an upward trend in the next years when 

the programs were not in effect. Since the early 1970s, 

the Iowa corn acreage has a sharp upward trend. In the 

early 1970s, feed grain set aside program was initiated. 

Cropland diversion payments did not require a reduction in 

acreage planted to any particular crop and price supports 

loans were not contingent upon compliance with planting 

restrictions for a given crop. These changes might have led 
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to the expansion of corn acreage at the expense of other 

feed grains. 

Figure B.2 (Appendix) shows a steady growth in the 

acreage of soybeans. There were no acreage allotment 

programs for soybean and the support price, in almost 

all the years, was below the market price. Therefore, 

soybean acreage has not been affected directly by a 

government program. 

Model Specification and 
Estimation 

The objective is to apply the dynamic decision rule 

developed in Chapter II to Iowa corn and soybean acreage. 

The model contains a set of equations for a land alloca­

tion rule, production function and for the stochastic 

processes for relative prices and other related variables. 

The set of equations is to be estimated simultaneously 

with constraints imposed. The model is specified and tested 

in this section. 

Specification of the model 

Given the definitions of variables in Chapter II and 

replacing crop 1 by corn and crop 2 by soybean, the farmer's 

maximization problem is given by Equation 2.20 of Chapter 

II. 
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Before proceeding further, nonland costs of produc­

tion should be discussed. Some production costs are in­

curred at time t, when input decisions are made (e.g., 

costs of land preparation). Other costs are incurred at 

time t+1, harvest time (e.g., costs of variable harvesting). 

The c^^'s and Cg^'s are the discounted per acre costs of 

corn and soybeans, respectively. Data on production costs 

by crop were available only for the years 1970 to 1981. 

The data for these eleven years show that relative per 

acre production cost (c^^/Cg^), has been reasonably constant, 

Thus, the result may not be very sensitive to excluding c^^ 

and C2^ from the maximization problem. The decision problem 

is restated as maximization of the present discount value 

of gross rather than net income: 

t=0 ^ ^^^^^^It^^lt ~ 2~^l t  ~ ^2Vit  

'^2^1t-l^lt ^t+l^t " ̂ t+l^lt^ (4.1) 

From Chapter II, Equation (2.14), optimal land allo­

cation is: 

Z 1—u 

- E(Pt+l+i': (4-2) 

3 ^21 For the eleven years has been 2.1, 2.3, 2.4, 
°lt 

2.2, 2.3, 2.3, 2.4, 2.6 and 2.7. 
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where 

-1 di 
I I <1 and A.2 — ~ ~ 

To estimate the parameters of the model, it is suffi­

cient to fit the model to variables from which the mean 

4 and linear trend have been removed. Therefore, all the 

variables, except corn acreage, have been filtered with a 

constant term and linear trend. Corn acreage has been 

filtered with a constant term, linear trend and dummy 

variables for presence of a land retirement program for 

corn. Henceforth, no equation contains a constant term. 

In order to make Equation (4.2) estimable, E(-) must be 

expressed in terms of observable variables. First, how­

ever, a decision must be made on variables to include in 

the price equation; i.e., variables that contain informa­

tion about relative prices. Bivariate Granger causality 

tests (Granger, 1969) are applied to the relative price 

and a variable X^; where both and have been ad-

justed for a linear trend. A pair of regression is needed 

4 
If a^, Aq and P^ are the constant terms of the a^^, 

and P processes, respectively, then the estimated constant 
An 1 

term in Equation (4.2) is - -y-fd +a_+A_-P ) 
dg 0  "0  0  0 '  (1 -A j_3)  *  

Thus, a^, Aq, Pq and d^ are not identifiable. 
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to complete the tests. They are: 

(1) Hq*. (X^ "Granger causes" P^) 

ft = *0 + J' ̂̂ t-i + + "it 

The hypothesis is equivalent to testing the null hypothesis 

that C^=0, i = l,...k^. 

(2) Hg: P^^X^ (P^ "Granger causes" X^) 

\  =  " o  + biXt-i + J '  +  ® 2 t  

This test is equivalent to testing Hq: dU=0 for i=l,...,k2. 

A variable X^ will be included in the RHS of the price 

equation, if Hq is "accepted" in (1) and Hg is rejected in 

(2). However, there can be unlimited number d variables for 

which such tests should be performed. Variables are limited 

to ones employed in other studies and to variables sug­

gested by economic theory. For the price equation, several 

variables including government price support for corn and 

soybean, livestock prices and futures market for these 

crops were tried. In case of futures prices, there was 

stronger evidence of causality going from observed market 

prices to futures prices rather than in the reverse direc­

tion. These results are consistent with Choi's (1982) 

findings. 
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The following equation met the requirements of the 

test; 

^t ̂ ^l^t-1 '^2'^t-l °'2'^t-2 ^t (4.3) 

where 

p = price of soybean production of soybean 
t price of corn acreage of soybean 

= ratio of government price support for corn in dollars 
per bushel to market price for corn in dollars per 
bushel 

Tests on lag length of supported a lag length of one: 

Gt = 9Gt_i + Ut' (4.4) 

In order to find the expectations of the exogenous 

variables (a^^,A^,P^) in Equation 4.2, it is necessary to 

define the processes generating these variables. The 

process generating is given by Equations (4.3) and 

(4.4). The total cultivated land, A^, is found to follow 

a second order autoregressive process. 

\ + W2 * "t '4-5' 

As Sargent (1978b) stated: 

. . . optimizing rational expectations models does 
not entirely eliminate the need for side assumptions 
not grounded in economic theory. Some arbitrary 
assumptions about the nature of serial-correlation 
structure of the disturbance and/or about strict 
econometric exogeneity are necessary in order to 
proceed with estimation (Sargent 1978b, p. 479) . 

It is assumed that the a^^ process has a first-order auto­

regressive representation. 
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ait ~ ^t' and is iid. (4.5) 

Given the forms (4.3), (4.5) and (4.6) for the 

stochastic processes P^, and a^^ and the prediction 

formula in Appendix A, the following equations are obtained 

for the prediction part of (4.2) : 

dg ^2 '  (l- A ^ B p )  ^lt-1 

i 
A Z (A,3) E(A ) = ^ . A, + 

i=0 ^ (1-YiAi3-Y2(Ai3) ) ^ 

(1-YiAI3-Y2(^I3)^) ^ ̂  

(4.8) 

3: = 'è • 
2 i=0 " ^2 (l-A^gOi) t 

^1 (Gg^^l^Gg) 

d^" (l-gAiB) (l-a^AiB) ^t ^ 

+ 

A ,  a ,  
_1 . 3 . g (4.9) 
*^2 (l-A^Ba^) t-1 

After substituting Equations 4.7-4.9 in 4.2, the final 

decision rule (4.2) is as follows: 
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+ + OgSit.! (4.10) 

where 

-1 ^1 *^1 
^1 " ~ dj -9^1 dj ̂ 

n ^ — 
(1-Y3_A^3-Y2(^I3) ) 

n = 2-
(1-Y3_A^3-Y2UI3) ) 

^1 °l 
^3 dg ' (l-a^A^g) 

^ ^ ^1 (Gg+^lOO]) 

4 d^ (l-a^Y^G)(l-gÀ^B) 

(4.11) 

(l-a^A^g) 

( 1 - A ^ 3 P )  

Equation (4.11) is a set of restrictions on the parameters 

that is implied by the rational expectations hypothesis. 
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Estimation 

To test the dynamic model, the production function, 

the acreage decision rule and the exogenous processes are 

expressed as a system of simultaneous equation and are 

estimated jointly. This approach insures efficient esti­

mation. 

Equation (4.10) is deterministic in the sense that 

all the variables on the RHS are assumed to be known 

which makes the relationship exact. Although is 

assumed to be in the farmer's information set, it is not 

observable to the econometrician. Therefore, operate with 

(1-pL) on Equation (4.10) to obtain 

Alt = ( VP)Alt:.l - PVlt-2 + % + 

P^2\-2 ^3^t ' '^S^t-1 ^4'^t 

'^^5^t-2 "e^t-l (4.12) 

which does not contain When Equation (2.18), the 

production function for corn is divided by an equation 

for average yield of corn is obtained: 
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P^t-1 ~ 2^it * (P 2 

•*" ^2\  "'" P^2\-l "*" '^t (4.13) 

Thus, the system of equations to be estimated consist 

of equations for the decision rule (4.12), average 

yield derived from the production function (4.13), and 

for the processes generating the exogenous variables P^, 

and A^, Equations (4.3), (4.4) and (4.5), respectively. 

The system of these equations is given in Equation (4.14): 

+ + (iig-piig)G^_]_ - piigG^_2 + ngu;_^ 

(4.14) 

\ ^l^t-l ^2\-2 ^t 

+ (P^ - d 

Where the n^'s (i = 1 f • • • 6) are defined in (4.11) 
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This system of equations is highly nonlinear in the 

parameters and is subject to cross-equation restrictions. 

In particular, the coefficients in the decision rule are 

nonlinear function of the coefficients of the yield equa­

tion, the stochastic processes and the discount factor. 

The system of Equations 4.14 can be written in 

vector form as 

" ^It 0 
:i ^3 ^4 0 ' Alt' 

0 0 0 0 0 

= 0 0 c 0 0 + 

Gt 0 
dl 
2 

0 

^2 

0 

0 

0 

0 

0 

0 

Gt 

(X j_+p) (n^ -pn^) -pHg (Hg-pn^) 0 
^It-l 

0 
^1 0 0 0 

0 0 <^1 "2 0 
^t-1 

0 

(p_-d2) -

0 

Pdg 

0 

0 

g 

0 

0 

p 

Gt_l 

\-l 
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-p A-

0 

0 

-pli, 

^2 

0 

u: 

u 

u 

r.a 

0 

0 

-pHg 0 'Alt-z' 

Â, _ 
t-2 

Pt-2 

Gt-2 

^t-2 

« 

Where U^, U^, and are innovations defined in 

Equation (2.38a-d). Thus, = (VgU^U^U^U^), is a 

vector of innovations, and is assumed to have a multi­

variate normal distribution with variance-covariance matrix 

E(e^e^) = V. Estimators of the free parameters: 

0 = {p, d^, d^, Y^/ Yg' "l' ̂ 2' "3' 

can be obtained by maximizing the likelihood function for 
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the model with respect to 6; the discount factor is set 

independently. Let e^ = (e^^ e^^ e^^ e^^ e^^)' be the sample 

residual vector for 0, then the log likelihood function 

for the observations on the residuals over t = 1,2,...,T 

is (see Bard, 1974, p. 94; Anderson, 1974, p. 45). 

T 
L(0) = |T'log(27r) - |log|v| - | ^ (4.15) 

t=l 

For a given 6, with V unknown, the maximum likelihood 

estimator of V can be obtained from (Bard, p. 66) 

V(0) E^e^(0) .0^(8) =^(0) (4.16) 

or the concentrated likelihood function is 

L(0) = I" T [log (^) -1] - I log det. M(0) . (4.17) 

Equation (4.17) may be maximized with respect to the 

vector of parameters 0 to obtain the maximum like­

lihood estimators of the parameters. 

A null hypothesis about the parameters of the model 

can be tested by employing the likelihood ratio test 

statistic. If L„(0) is the value of likelihood function of 

the restricted model (e.g., the restrictions imposed by 

the rational expectations hypothesis, Equation (4.11) 

and L^(0) is the value of the likelihood at its un-
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1 L (8) 
restricted maximum, then log ^ )  i s  a s y m p t o t i c a l l y  

distributed as x (q) where q = g^-q^ (q^ is the number of 

parameters to be estimated in the unrestricted model, and 

is the number of parameters to be estimated in the re­

stricted model). An approximation of the likelihood ratio 

is T{log II-log||}, where T is the sample size, 

is the variance-covariance matrix of the restricted model, 

is the variance-covariance matrix of the unrestricted 

model. The null hypothesis or the restrictions are rejected 

for large value of the likelihood ratio. 

Results 

Data for fitting the model are corn acreage (A^^) , rela­

tive price of soybean to corn (P^), total cultivated land 

, yield of corn (Y^) and ratio of government price support 

for corn to market price for corn (G^) (see Appendix E). All 

variables are in terms of deviations from mean and linear 

trend. The time period is 1948-1980. 

Two versions of the system of Equations (4.14) are 

estimated using the nonlinear estimation procedure in the 

SAS/ETS 79.6 version. 

(1) The restricted (RES) model - the system of 

Equations (4.14) subject to the within equation and 

cross equations restrictions (4.11). In this restricted 

model, there are nine free parameters to be estimated. 
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They are 0^ = d^, p, a^, a^, a^, y^, q}; 6 is fixed 

at .96, which implies a real fixed rate of return of 4% 

per year. 

(2) The unrestricted (URES) model - this is the 

system of Equations (4.14) without the restrictions 

(4.11). This version of the model has fifteen param- -

sters 0^ {dj^, ^2' ^1' ' ̂2' *^3' ^1' ^2' 9r 

112' ^3' ^4' ̂ 5}" the restrictions are correctly speci­

fied, the restricted version, RES, will not be significantly 

different from the unrestricted model. 

Nonlinear iterative three-stage least squares (IT3SLS) 

and joint generalized least squares (seemingly unrelated 

regression) were tried using the "modified Gauss-Newton" 

method to obtain parameter estimates of both the restric­

ted and the unrestricted models. In all cases, less than 

50 iterations were required to obtain convergence to a 

maximum. The parameter estimates obtained using iterative 

three-stages least squares and generalized least squares 

were identical in signs and very .close in magnitude. How­

ever, the estimates from the iterative three-stage least 

squares had, on the average, smaller standard errors. There­

fore, the results obtained from iterative three-stage least 

squares are viewed as being superior. 

The parameter estimates of the RES model is given 

in Table 4.1. Actually, there are ten parameters in this 
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model. But only nine of the parameters are free since 
d, 

^1' ̂ 1 ^2 related by the equation ̂  +A^3) • 

Thus, and d^ are estimated and d^ is recovered from the 

relation.5 The estimated parameters of the URES model 

are presented in Table 4.2. 

Using the approximate value of the likelihood ratio 

statistic T(log II-log II), the value of the likelihood 

2 ratio is 9.68. The critical value of the % at the .05 

significance level is 12.59. Thus, the RES model is not 

rejected at this 5% significance level. This may be taken 

as strong support for the specification of the model in 

general and to the restrictions imposed by the rational 

expectations hypothesis in particular. 

The estimated parameters of the RES (Table 4.1) 

satisfy all the regularity conditions imposed on the 

parameters; i.e., |A^|<1, |p|<l, |g | <1, |aj^|<l and the 

roots of ll-y^Z-YgZ I = 0 lie outside the unit circle. 

The restrictions on the production function parameters 

are also satisfied; i.e., d^>0 and d2>0. The signs of 

all the parameters are as expected. The positive sign of 

supports the claim that soybean production causes net soil 

fertility deterioration. In this model, the loss in yields 

^The standard error of d, has not yet been calcu­
lated . 
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Table 4.1. Estimated parameters of the RES model^'^ 

Parameter Estimate 

À ,  - . 0 4 7 9  
(.0377) 

p .479 
(.108) 

a  . 0 0 3 3  
( . 0 0 9 1 )  

a„ 73.27 
( 1 4 . 9 6 )  

a -  - 8 2 . 5 5  
( 1 4 . 4 2 )  

Y i  1 . 5 9  
^ (.128) 

-.666 
(.131) 

d .0011 
^  ( . 0 0 0 9 3 )  

g  . 5 6 4  
(.108) 

. 0 2 2 6  

^Standard errors are given in parentheses. The 
The determinant of the var-covariance matrix is 8.3228E 
+ 11. 

^See p. 96 for the model. 
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Table 4.2. Estimated parameters of the URES model^ 

Parameter Estimates 

A, .033 
( . 0 2 6 2 )  

p .152 
(.162) 

a-i -. 084 
(.0126) 

a, 86.87 
^ (16.25) 

-90.68 
(14.76) 

1.59 
(.124) 

as 

^1 

Y- -.656 
^ (.127) 

d, .014 
^ (.0053) 

d -.0011 
^ (.0009) 

g . 727 
(.125) 

n, .456 
^ (.378) 

n, -.172 
^ (.347) 

^Standard errors are given in parentheses. The de-
determinant of the var-covariance matrix is 6.70 33E + 11. 
T{log|D^|-log|D^|} = 7.14. 
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Table 4.2 (Continued) 

Parameter Estimates 

-9.49 
(8.04) 

"4 2852.10 
(1411.65) 

n. -765.72 D (889.33) 

due to continuous planting of the same crop on a given plot 

of land is represented. Although the loss in yield can 

be reduced by application of fertilizers and perhaps 

other inputs, this analysis considers only the effect 

of crop rotation. Hence, the parameters of the pro­

duction function (d^ and d^) may be subject to "omitted 

variables" bias. 

The results of the RES and URES models are summarized 

in Tables 4.3 and 4.4. 

Supply Elasticities 

In this section, the results of the last section 

are employed to calculate the two types of elasticities 

defined in Chapter II. 

(1) Elasticity with respect to an expected output 

price change. Elasticity of supply with respect to an 
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Table 4.3. Estimated RES model 

r
 

4-
1 0 .0446 -.144 -3315.07 0 

0 0 0 0 0 

= 0 0 0 0 0 

S 0 0 0 0 0 

-.0113 .0011 0 0 0 

.431 -.020 .069 -2073.17 0 

0 1.59 0 0 0 

0 0 .0033 73.27 0 

0 0 0 .564 0 

.0043 -.00053 0 0 .479 

.0229 .00066 0 1753.66 0 

0 -.666 0 0 0 

0 0 0 -82.55 0 

0 0 0 0 0 

.0011 0 0 0 0 
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Table 4.4. Estimated URES model 

Alt' 0 .456 -9.49 2852.1 o" ' Alt' 

0 0 0 0 0 At 

^t 
= 0 0 0 0 0 

Gt 0 0 0 0 0 Gt 

\ . -.007 -.0011 0 0 0 1 
-p >4 

.185 -.2413 -1.44 1199.2 0 [Alt-J 
0 1.59 0 0 0 At-l 
0 0 -.084 86.87 0 Pt-1 
0 0 0 .727 0 Gt-1 

.00004 -.00167 0 0 .152 , Vl 

-.005 -.026 0 116.39 0 Alt-2 

0 -.655 0 0 0 Ât-2 

0 0 0 -90.68 0 Pt-2 

0 0 0 0 0 Gt-2 

-.0016 0 0 0 0 _V2 
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expected change in prices corresponds to the elasticity of 

supply obtained from a Nerlove-type supply model. The 

long run elasticity of supply is calculated as: 

% ~ ' (1-Y (1-A^g) • I "2153 (4.18) 

1 

(P/Âj_ = .00542). 

Short run elasticities are calculated as: 

n_(i+l) = ;^(A,6)^ • ^ (4.19) 

n (1) = -.236 

n (2) = .0109 

ripO) = -.00049 

rip(r) = . 000023 

n (1+k) = ripd) • (-.46)^ 

A price (ratio) change, expected to occur beyond three 

years from the current period does not seem to have much 

impact on the current land allocation. 

(2) Elasticity with respect to an unexpected change: 

As discussed in Chapter II.the long run elasticity of supply 

with respect to an unexpected price change is zero. 

Computation of elasticities with respect to an un­

expected change in prices requires the estimation of the 

entire system, but not necessarily the identification 
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of the underlying parameters (parameters of the production 

function). In general, estimation of the land allocation 

equation and the price equation enable us to analyze 

acreage responses of one standard deviation shock in 

prices. As discussed in the last chapter, finding these 

responses is equivalent to tracing out the moving average 

representation of the estimated acreage and price 

equations. If the interest is to compute elasticities 

with respect to an unexpected change in prices, the esti­

mated equations of the unrestricted model can be used to 

compute these elasticities. 

To compute the short run elasticity of supply with 

respect to a one standard deviation change in price, con­

sider the land allocation Equation (4.10). Without 

loss of generality, suppose the only variable in the RHS 

of (4.1Q) is price so that: 

^It ^l^lt-1 ^3^t ^t^ 

suppose 

^1 = Alt-1 = ^t-l = P = 0 

yP = a = 25.48 

Ug = 0, Sf^t 

= 0, vt 
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Then, using the results from Table 4.3, the land allocation 

follows : 

\t+j " ̂ l\t+(j-l) ^'3^t+j 

where 

=(-.084)i"(25.48) j=0,l,2,... 

= —241.8 

^lt+1 11-25 

^lt+2 ^ -1-34 

^lt+2 ^ -0993 

Âlt+4 = -'00904 

Figure 4.1 shows the response of land allocation to a 

one-standard deviation shock in prices. The short run 

elasticity is y(0) = -.0514. It might be interesting to 

compare the responses of acreage to unexpected change 

(shock) in prices with unexpected change in government 

support prices. To this end, we consider the land allo­

cation Equation (4.10) with all the variables, other 

than and G^, ignored. A one standard deviation unit 

shock is at time t causes an increase of 425,800 

acres in acreage of corn. A one-standard deviation shock 

in prices leads to a decrease of 241,800 acres of corn. 

In terms of elasticities, the response of corn acreage to 

a one standard deviation unit shock in G^ is equal to .063. 



I l l  

RAC 

1 1 . 2 5  

- 1 . 3 4  

Figure 4.1. Responses of land allocation for corn 
to a one standard deviation shock in 
price 
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This implies that corn area is more responsive to the govern­

ment support price than to the market prices. This result 

is consistent with the findings of Houck and Ryan (1972). 

Houck and Ryan estimated corn acreage supply function for 

United States by regressing corn area on lagged prices and 

lagged government support prices and concluded that varia­

tions in the weighted support price variable corn acreage 

better than the lagged market price. 

In what follows, the traditional Nerlove-type supply 

functions and the elasticities derived from these models 

are compared to the land (acreage) allocation model 

specified and estimated in this chapter. The land alloca­

tion Equation (4.10) is observationally equivalent to 

Nerlove-type supply models. A typical Nerlove-type supply 

model has the following equations (see Behrman, 1968, 

for e.g.) : 

Rational Expectation vs. 
Nerlove-Type Models 

At = ao + aiPt+i + a2%t + "t (4.20) 

(4.21) 

(4.22) 
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where 

= actual area under cultivation at time t 

A^ = desired area to be cultivation at time t 

= price that is expected to prevail at time t+1 

= actual price at time t 

= other exogenous variable(s) that affect supply 
at time t 

= disturbance term 

3 and a are expectation and adjustment parameters, 

respectively. 

^t+1 ^t observable. Solving for 

in (4.22) in terms of past observed prices and using (4.20), 

we can write (4.21) as 
CO 

A^ = (l-a)A^_^ + aa^ + aa^g Z (l-g)^P^_^ 
i—0 

+ aagZ^ + (4.23) 

To eliminate the infinite sum, multiply the one period 

lagged value of (4.23) by (1-3) and subtract the result 

from (4.23) to obtain 

^ ̂ 0 ^ ̂ l\-l •*" ^2\-2 ^3^t ̂  ̂ 4%t "*• ^5^t-l ®t 

(4.24) 

where 

bo = 3aaQ 

b^ = (1-3) + (1-a) 

bg = -(1-3)(1-a) 
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^3 ~ G&i# 

^4 = aag (4.25) 

bg = -(1-6) {aa^) 

% = a[U^-(l-6)U^_^] 

Equation (4.24) is equivalent to Equation (2.39) of 

Chapter II if in (4.24) is a vector consisting of 

and of Equation (2.39). However, the interpretations 

of the coefficients are quite different. The elastici­

ties computed from Nerlove-type supply models depend on 

the serial correlations between output (land allocation) 

and prices only (by). Elasticities computed from models like 

the one presented in Chapter II depend not only on the serial 

correlation between output and prices but also on the 

parameters of the stochastic process governing prices and 

other exogenous variables and the parameter of the pro­

duction function. 

For the Nerlovian model, the immediate effect 

of a change in relative price on land allocation (short 

run) is given by b^. Hence, the short run elasticity of 

output (land allocation) with respect to prices, measured 

at the sample means, is given by 
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"p = "3 =-

It 

= a3a, (4.27) 

^It 

whereas, for the rational expectations model, the im­

mediate short run elasticity is computed as 

= ̂  • —— (4.28) 

In order to estimate the long-term elasticity, it is 

necessary to rewrite Equation (4.24) after full adjustment 

in land allocation has taken place as 

Mt = r=E^ • fto + + Vt + 

Then, the long-run•elasticity is given by 
(4.29) 

n ' = 
bs 

• 3— (4.30) 
^It 

Thus, the long-run acreage elasticity of the Nerlovian model 

depends on the correlation between output and prices only. 

The long-run (expected) elasticity with respect to a 

change in relative price for the rational expectation 

model, is given by 
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"p = • (iri^Tïirï^-

This elasticity is tied to the production function 

(4.31) 

parameters. 

Simulation 

One way to evaluate the performance of a model is to 

perform an historical simulation and examine how closely 

the actual data on a variable is tracked by the predicted 

values of the variable. In what follows, we present 

the simulation result of the model estimated in this 

chapter. 

Figure 4.2 presents plots of the predicted values of 

acreage of corn (PAC) from the dynamic simulation of 

the restricted model and of the actual corn acreage (AC) 

for the years 1950 to 1980. The model simulates the 

turning points reasonably well. 

The following criteria are frequently applied to 

evaluate the performance of a simulation model (Pindyck 

and Rubinfeld, 1981): 

1. Root-mean-square (rms) simulation errot. The rms 

simulation error for the variable y^ is defined as 

(4.32) 
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Figure 4.2. Historical simulation of corn acreage: Time bounds: 1950-
1980 
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where 

= simulated value of 

y^ = actual value of y^ 

T = number of periods in the simulation. 

The magnitude of this error is evaluated relative to the mean 

of yj. 

Rms percent error: This is defined as 

Ems % error = — E _ 1 : hkf (4.33) 
a 

The rms % error measures the deviation of the simulated vari­

able from its actual time path in percentage terms. 

3. Theil's inequality coefficient: This coefficient 

is defined as 

U = ^ ̂  (4.34) 

Notice that the numerator of U is the rms error and that U 

lies between 0 and 1. If U=0, y® = y^ for all t and there 

is a perfect fit. On the other hand, U=1 implies the other 

extreme. It can be shown that 

T 

i J, + 2 U-OlOgOa ,4,35, 
U—1 
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where Y®, a , and a are means and the standard devia­

tions of the series and y^, respectively, and pis their 

correlation coefficient. 
T 

Divide both sides of (4.6.4) by & Z (4.36) 
1 t=l ® ^ 

to obtain 

1 = 

where 

2(l-p)c^a^ 
u — -

U^, and U*^ are called the bias, the variance, and the 

covariance proportions, respectively. 

This decomposition of Theil's inequality is a useful 

means of breaking .the simulation error into its char­

acteristic sources. measures the extent to which the 

average values of the actual and the stimulated series 

deviate from each other; hence, it is an indication of 

systematic error. A small value of U™ is a desirable 
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property of a model. 

The variance proportion, U®, indicate the model's 

ability to capture the degree of variability in the variable 

of interest. If U® is large, it means that the actual 

series has fluctuated considerably while the simulated 

series shows relatively little fluctuation, or vice versa. 

Whatever the value of the inequality coefficient U, U® should 

be close to zero. 

Finally, the covariance proportion, U°, measures 

the residual. That is, it represents the remaining error 

after deviations from average value and average variability 

have been taken into account. The ideal values for the com­

ponents of the Theil's U coefficient are =[J^ =0 and u'^ =1. 

Tables 4.5 and 4.6 report the values of these measures. 

Table 4.5. rms error and rms % error of historical 
simulation 

Variable Means rms 
Error 

rms % 
Error 

A 11518.33 482.37 .99 

Y 79.44 5.74 1,45 

P 62.47 16.96 1.00 

Â 21913.33 1477.93 .90 

G 1.04 .184 .96 
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Table 4.6. Theil's forecast error measures 

Variable u"" U® 

A .01 .03 .96 

Y .02 .40 .58 

P .01 .03 .96 

Â .19 .04 .78 

G .20 .00 .80 

For a model that was not designed for forecasting, 

the model seems to simulate rather well Among the set 

of five equations, the equation for yield has the poorest 

performance. The equation for yield (Y) has the highest 

rms percentage error and the variance component (U^) 

is large (Tables 4.5 and 4.6). The yield equation was 

derived from the production function and it has some 

deficiencies. Thus, we are not too surprised that the yield 

equation does not perform as well as the other equations. 

Some highlights of this chapter follow. The model 

developed in Chapter II was not rejected when fitted to 

data obtained from the agricultural sector of Iowa. In 

particular, the "acceptance" of the reduced model gives 

strong support to the application of rational expecta­

tions to farmer's production decisions. The signs of all 
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the parameters are correct; the stationarity conditions 

imposed on the processes of the exogenous variables and the 

boundary conditions of the parameters are all satisfied. 

Also, the computed price elasticities are of reasonable 

magnitude. The positive results suggest that further 

improvements and refinements of the model are promising 

sources of information on agricultural supply functions. 
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CHAPTER V. CONCLUSIONS 

The objective this study was to develop and fit an agri­

cultural supply model for a stochastic and dynamic environ­

ment. The work is best viewed as an attempt to suggest a 

method for analyzing the determinants of the dynamics of agri­

cultural supply. The attempt has a microeconomic foundation 

of discounted profit maximization of a representative farmer. 

The empirical analysis is, however, macro because the data 

are aggregate time series for one state. The empirical 

analysis combines time series analysis with standard econo­

metric techniques. 

Agricultural supply decisions are characterized by 

the fact that input decisions have to be made before out­

put prices are known. These decisions are made on the 

basis of, among other things, expected prices. Changes 

in relative prices are the main constituent of the deriving 

forces of agricultural supply. The understanding of how 

farmers form their expectations of future prices (and 

other variables) is a crucial step in modeling the dynamics 

of agricultural supply. 

Unlike the traditional supply models which assume 

that farmers expectations of prices are naive (static 

expectations) or are some weighted average of past 

prices alone (adaptive expectations), this study pro­
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motes the view that farmers take into account past prices 

and other available information when they make price fore­

casts (rational expectations). 

On the proposition that people base their expecta­

tions on past prices alone, Tobin has commented that 

these "are almost surely inaccurate gauges of expecta­

tions. Consumers, workers, and businessmen ... do 

read newspapers and they do know better than to base 

price expectations on simple extrapolation of price 

series alone" (Tobin, 1972, p. 14). According to 

rational expectations, price movements that are un-

correlated do not give any information about the future 

course of prices. That is, if prices are uncorrelated, 

a rational person would not base his forecasts of 

future prices on past observed prices. "Price movements 

observed and experienced do not necessarily convey infor­

mation on the basis of which a rational man should alter 

his view of the future. When a blight destroys half the 

midwestern corn crop and corn prices subsequently rise, 

the information conveyed is that blight raise prices. 

No trader or farmer under circumstances would change his 

view of the future of corn prices, much less of their 

rate of change, unless he is led to reconsider his esti­

mate of the likelihood of blights" (Tobin, 1972, p. 14). 
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The cyclical movements in crop production may be an 

outcome of optimizing behavior of farmers in a dynamic environ­

ment rather than due to their alleged backwardness in forming 

expectations. The results of this study support the opti­

mizing behavior perspective. 

By assuming that farmers form rational expectations 

of prices and other unknown variables in making input 

decisions and that they maximize the expected present 

value of their income stream, a land allocation or acreage 

decision rule was derived. This land allocation decision 

rule is observationally equivalent to the traditional 

supply model of Nerlove. However, the two models have dif­

ferent interpretations. In particular, the price elastici­

ties computed from the traditional supply models depend on the 

correlation between acreage and prices only. The elasticities 

computed from the model developed in this study depend on 

the correlation between acreage and prices, the parameters 

of the objective function and the parameters of the production 

function. 

If the production function and the objective func­

tion are correctly specified, the method employed in this 

dissertation can give a more reliable estimate of the supply 

elasticity than a traditional supply analysis. The method 

has a major advantage in policy analysis because policy 

variables are incorporated into the model. Governmental 



126 

policy variables are incorporated into the objective func­

tion (e.g., subsidy to farmers) or in the stochastic process 

for prices (e.g., government price supports). When policy 

variables are included in the model, the price elasticities 

are functions of, among other things, the parameters of the 

policy variables. This facilitates making a correct assess­

ment of the effect of a change in governmental policy an 

agricultural supply. 

For the particular model employed in this study, 

the results obtained are encouraging. The constraints on 

the parameters are satisfied and the signs of all the 

parameters are correct. Furthermore, the restrictions 

implied by the rational expectations hypothesis are sup­

ported by the data. The land allocation or acreage 

decision rule simulates the Iowa corn acreage rather 

well. However, the estimated yield equation which was de­

rived from the production function simulates relatively poorly. 

The elasticities computed from the model are of 

reasonable magnitude. Nerlove (1958) computed long run 

elasticities of supply of corn for the U.S. for the period 

1903-19 32. He obtained estimates ranged from .09 to 

.35, depending on the assumption he made about the magni­

tude of the expectation parameter, 3. The model of 

Chapter III gave a long run price elasticity of -.22 for 
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corn^. The results also showed that corn area is more 

responsive to the government support price for corn than to 

the market price. This conclusion supports Houck and Ryan's 

(1972) results. 

The main disadvantage of the model is the somewhat 

restricted nature of the production function. A compli­

cated production function does not have a closed-form 

solution for the maximization problem. Thus, a trade­

off exists between accuracy and estimability. In any 

case, the model in its present form is able to capture 

the main dynamics and to show good potential as a model 

for explaining Iowa land allocation. 

A note on rational expectations models and some 

shortfalls of our model follow. Shiller (1978) gives 

a good critical review of dynamic rational expectation 

models. In general, rational expectations models give 

rise to some within equation and cross-equation restric­

tions on parameters. More often, these restrictions are 

very highly nonlinear and create multicollinearity among 

the parameters and results in the ultimate "rejection" 

of the restricted model (e.g., Langley, 1982). One way 

^The elasticity is negative since we have the price 
of corn in the denominator of the price ratio on which the 
elasticity is computed. Note that while Nerlove used 
national data, ours is Iowa data. Also, the sample period 
is quite different. 
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to go about this problem is to use the "guasirational 

expectation" approach as suggested by Nerlove and 

others (Nerlove et al., 1979). 

If agents form rational expectations of unknown 

variables, they must know the actual probability distri­

bution of these variables and use them to form forecasts. 

This is a strong assumption. According to McCallum (1980, 

p. 38), there are two common criticisms. First, it may 

be unrealistic to assume that agents use all information 

that is available. Second, it may be unrealistic to 

assume that agents use information as intelligently as 

the hypothesis claims. Fisher (19 82), however, argues 

that as in any economic model, these assumptions are 

made so that approximate solutions to some practical 

problems can be obtained. 

Another criticism is the simplifying assumptions that 

information is costless and agents learn instantly. Some 

attempts have been made to incorporate a learning process 

into the rational expectations models (e.g.. De Canio, 1979) 

and costs of acquiring information (Feige and Pearce, 1976). 

These early attempts are unsatisfactory. 

In the particular model of Chapter II, only one 

input (land) was considered. Further research should 
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include the role of other inputs such as fertilizer and 

capital. If the production function is separable among 

inputs, the decision rule derived in this s'tudy holds 

with some minor modifications. In this study, only one 

aspect of the technology, the deterioration of land 

fertility or soil erosion, has been considered. For our case, 

this aspect seems to be able to capture the main phenomenon 

of crop rotation and the resulting fluctuation in land 

allocation. Future research should incorporate other im­

portant elements of the crop production technology. 
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APPENDIX A: OPTIMAL PREDICTIONS 

The optimal land allocation is 

Xi CO 

^It " ̂l^lt-l~ Tdp" f^0"^^^'^2t+i^"^^'^lt+i^ 

+ E(a^^^.)+d2E(Â^^.)-E(P^^^^.)] 

In order to get an estimable equation for A^^, expres­

sion for the expectation operator must be derived. In 
CO 

particular, we need formulas for Z A E(a,. .) and 
CO . i=0 
Z  A ^ E ( P  . w h i l e  A =  A , 6 .  
i=0 

Note that since |A| <1, the infinite sum is conver­

gent so that we need not consider the constant terms. 

Following a long tradition in these problems, assume 

that the law of motion governing the series P^ and a^^ 

are known by the decision-maker. Let the stochastic 

processes be: 

®lt = PlSlt-l + "2^1t-2 Vlt-q + "t 

or 

= (A.l) 

where 

p(L) = 1-p^L PqL^ 

We assume P^ is the first element of a vector auto-

regressive process that satisfies: 

6(L)Xt = (A.2) 
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where and are each (pxl) vector; and 

Ô(L) = I - 6^L^. 

(U^, U^) are innovations for the joint process. 

It follows that 

E(U^|0^_l) =0, and 

= 0, where 

is as defined in the text. 

We further assume that a^^ and are jointly co-

variance stationary. We want formulas for the terms; 

1=0 1=0 1=0 

where I = (1,0,0,...,0) is a (Ixp) row vector. 

By stationarity of a^^ and X^, we can write the moving 

average representation: 

-1 
a,. = p(L) = (}){L)UJ = [ Z (j).L^]U^ (A.3) 
i-c c t 

00 

X. = 6(L)"^U^ = = [ Z (A.4) 
r c ^ i=0 ^ 

The Wiener-Kolmogorov prediction formulas is 

^t^t+1 ~ , while [ ]_^ is the annihilation 

operator (see Sargent, 1981). Therefore, 
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Vt+i = '%-S) 

Then, we have, 

00 . 00 

Z  X ^ E  X . , .  =  [  Z  Z  
i=0 ^ i=0 j=i ^ 

=  Y ( L ) U ^  ( A .  6 )  

00 00 

where y  ( L )  =  Z  Z  A^4;.L^L~^ 
i=0 j=i J 

Interchanging of summations gives 

00 00 . . 

Y( L )  =  I  Z  

j=0 i=0 ] 

Y( L )  can now be rewritten as (see Hansen and Sar­

gent, 1 9 8 1 ) :  

°° n -1 °° 
[  Z  Z  

Y(L) = 
1 - A L  

By Equation (A.4) we get 

y ( L ,  =  ( A .  7 ,  

1 - À L  

Substituting Equation (A.7) into Equation (A.6) we get 

z A^E X . = (a.8) 
i=0 ^  ^  1 - A L  ^  
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Noting that = ô(L)X^ = i/j (L) rewrite Equation (A.8) 

as: 

" ,i„ ^ _ rI-L"^AÔ(À)"^.ô(L) 

i=o' ' Ilri 

By long division of ^ , we find that 
1-AL 

— — •  ( L )  ^  5 ( x ) - l [ i +  z  (  z  A ^ " ^ 6 . ) L ^ ]  
1-AL"^ i=l i=j+l 1 

Therefore, 

«> . , r-1 r . . 
Z A^E.X,^, = jl6{A)~ [1+ E ( S A "]&. )&]]?, (A.9) 

i=0 ^ j=l i=j+l ^ t 

Using similar arguments, we have 

" i -1 ^5-1 q i_4 4 
Z A E, a_ , . =p(A) [1+ E E A ^p.)L^]a, 
i=0 ^ i=l i=j+l ^ 

(A.10) 

Equations (A.9) and (A.10) are the optimal prediction 

formulas. 

Note that 

+ "t+i + *W---

and 
« . 0° 

A" [ Z A^X .-X ] = E A^X, (A.12) 
i=0 ^ i=0 

00 

Equation (A. 12) can be used to obtain E A^E X, . 
i=0 

from Equation (A. 9) 
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APPENDIX B: PLOTS OF CORN ACREAGE (AC) AND 
SOYBEAN ACREAGE (AS) 
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APPENDIX C: TESTING LAG LENGTH FOR AUTOREGRESSIVE 

SYSTEM 

Lags T T-K (T-K)Log( 
Dr 
DU 

1 vs. 2 31 21 38.624 

2 vs. 3 30 15 40.483 

3 vs. 4 29 9 44.876 

4 vs. 5 28 3 19.78 

X^(q) = 24.3366 (50% level) 

= 29.3389 (25% level) 

= 34.3816 (10% level) 

= 37.6525 (5% level) 

= 44.3141 (1% level) 

q = 25 is the number of restrictions 
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APPENDIX D: IMPULSE RESPONSES 



Table D.l. Impulse responses to (triangularized) shock in prices K 
periods after shock 

ous K AC AS . YC YS p 

1 O -0.013 0. OÎTJ 0. 060 -0.01 0. , 700 
2 1 -  5.11.600 57. ,000 5. , 100 1 .60 21 .  , 700 
3 ? 2' ! .  301) 6.  , 11)0 -0. ,9/0 -1 .  30 6. , 300 
<1 3 7 .  POO - / ,  ,000 -1 , ,030 0. 35 1 ,  ,  >11)1) 
• j  '1 -P.OOO , 300 0. , O' lO -0.26 '1. .  300 
6 5 -?.9(I0 1 ,  ,0111) 0.  , ; " jO 11.29 2. , OflO 
7 6 1 . ' jOO -0 , .110 -0 . O' j l )  -0.20 0 . , 900 
8 1 -0.3/0 », .( l /U 0 ,001 0 . 1  -0 , ,008 
9 G -U.O' lO -0 .0^0 0 .  f.  !0 0. o.i ;  0,  ,006 



Table D.2. Impulse responses to (triangularized) shocks in YS K periods 
after shock 

ons K AC AS YC YS p  

1  0  -0 .  , 0007 -0 .  007 -0 ,  .05000 0. 030 0. .  000 
2  1  -1 ,  ,11000 2 .  •jOO 1 ,  .90000 I I .  000 0 .  .  002 
3 2  -0 .  , 7:hhj 1 .  • jOO 0 .  .66000 2 .  .000 -0 .  .003 
<1 3  1 ,  .9000 -0 .  9' j l )  0,  .13000 -0 ,  .  2 t |0  0 .  ,001 
5 14 -0.  .  9U00 (1. 150 0 ,  .30000 0. .160 -0 .  .009 
6 5 0, ,1)000 0 .  .  150 -0 .  .01000 0 ,  .00 7 6 .  .  000 
7 7 1). ,  2900 -0 .  . 120 -0 ,  ,00100 -u, ,005 0, ,000 
8 B -0, ,  1900 0.  .070 0 .  .00008 0 .  .003 0.  .  01)0 
9 y 1 1 .  .  U^Od - I I .  .  O' j l l  0  .00000 -0  .002 0  .  000 

10 10 -0, .0 ! )00 0 .  .  O' lO 0  .  01)000 0  .  002 0  .000 
11 11 0, ,  OfiOO -0 .  ,  020 0  .00000 -0. .001 0 .000 
12 12 -0, .  U'KJl) 0.  .010 0 .00000 0.  ,  000 0 .  000 



Table D.3. Impulse responses to (triangularized) shocks in YC K periods 
after shock 

ons K AC 

1 0 -0.0006 0 
2 1 1.9000 -1 
3 2 O. l lDOO -1 
l |  3 -1.5U00 0 
5 '1 0 .7900 -0 
6 5 -O.S' lOO 0 
7 6 0.2801) -0  
8 7 -0.2300 0 
9 0 0.1500 -0 

10 9 -0.1000 0 
1 1 10 0.0700 -0 
12 11 -0.0500 I )  
13 12 0.0100 -0 

YC YS p 

0.  0700 0,  .  000 0,  ,  000 
2.  1000 -0,  .  300 -0,  .  200 
0.  5000 0,  ,  200 0,  ,230 
0.  0 100 -0.  ,120 -0,  .010 
0.  OHIO 0.  .  080 0.  ,007 
0.  , 0800 -0.  ,  060 -0,  ,005 
0.  0100 0.  .  O' lO 0 .  .  001)  
0 .  0001 -0 , ,030 -0.  ,002 
0.  00(10 0 ,  .  002 0.  ,001 
0.  0000 -0,  , 001 -0.  , 001 
0.  (1000 0.  , 000 0.  000 
0.  0000 0,  , 0(10 0 .  000 
0.  0000 0.  , 000 0.  000 

AS 

0l)01> 
0000 
OfJOO 
7900 
1DOI) 
11 oil 
I'100 
0900 
0500 
O'lOO 
0300 
02 no 
0100 



Table D.4. Impulse responses to (triangularized) shocks in AC K 
periods after shock 

Ol iS K AC AS YC YS P 

1 0  0 .  OO' I  0 .  00 0 .  00 0 .  00 0 .  00 
2  1  2! ) .  l lO l )  31 | .  70  -3 .  80 -2 .  50 5 .  '10 
3  2  -7 .  300 8 .  03 1 .  '10 0 .  73 -1  .  '10 
<1 3  9 .  imo -G.  ' lO -6 .  ,  80  -0 .  ,  78  '1 ,  60  
5  l |  -3 .  300 -2 ,  ,  10  0 .  6 8  0.  51 I  .  70 
6  5  0.  ,2 /0  0 .  .  79  -0 .  ,52 0 .  ,  30 2 .  20 
7  6  - 0 ,  .990 1  ,  .80  0  . 6 ' \  0.  .23 -1  ,  ,  70  
8  7 1  ,  ,  OHO - 1  .  .50 -0 .  .58 -0 .  ,  16 1  ,  ,08 
9  8  - 0 .  .  590 1  .  20  0 ,  .?3 0 .  .  1  1  -0 .  ,  73  

U)  9  0 .  .  360 0 ,  .  I |0  -0 ,  .  I ' l  0,  .07 0 .  53 
1 1  10 -0  .270 -0  . 1 " }  0 .  13 0  .05 -0 .  .  38 
1 2  1 1  0 ,  .  020 -0  .01 -0  .09 -0  .31 0 .  ,26 
13 0 ,  .  000 0  .00 0  .06 0 ,  .27 -0 .  ,  18  



Table D.5. Impulse responses to (trianqularized) shocks in AS K periods 
after shock 

ons K AO 

1  0 ,  .1)1)1)9  0 ,  ,  0021,  
2  2  .  DOUO 8 ,  .  1000 
3  3 ,  .0(11)0 3 ,  .  101)0 
'1  I t ,  .  (10(10 20,  .9000 
5  5 .  ,  0000 2 ,  .  3000 
6  6 .  ,0000 1 .  .20(10 
7  7 .  ,  0000 1 ,  ,  1000 
n 0 .  ,  0000 -1 .  ,  2000 
9 9.  .  0000 5. ,  5000 

10 10,  0000 0 .  ,2100 
11 11.  ,  0000 0 .  ,  1300 

AS YC YS P 

00 0 .  ,  00  0 .  ,00 1  ,  .00 
10 -0 .  ,  7  I  -0 .  .63 -1  .  .90 
60 -1  ,  ,  70  -0 .  .67 2 .  ,20 
90 0 .  .  16 0 .  ,  11  -2 ,  .  30 
l |0  0 .  .  19 -0 .  , ' I9  0 .  ,81 
95 -0 ,  , m 0,  ,26 -0 ,  ,25 
10 0 ,  .  10 -0 .  ,22 0 .  ,  10  
111 0 ,  .69 0 .  ,  17  -0 .  .  10 
13 -0 ,  .  1  7 -0 ,  . n 0,  .07 
15 0 .  .0  I  0,  .0  7 -0 ,  .05 
12 -0 ,  .01 -0 ,  .05 0 ,  .03 

0 
3 7 
?.o 
5 
3 
0 
-1 

0 
- 0  
0 

- 0  
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Table D.6i Percentage of forecast error variance K-
years ahead produced by each triangularized 
innovation 

Forecast error Innovation in: 
in K AC AS YC YS P 

AC 0 8.5 1.1 .2 .26 90 
1 21 4.1 2.3 3.6 59 
5 15.9 11.1 13.4 13.9 56.7 
12 28 10 36 15 10 

AS 0 0 .78 .04 6.7 92.4 
1 16.6 21.4 2.7 6.3 53 , 
5 18.1 34.3 6.9 13.0 27.7 
12 14 24 17 21 19 

YC 0 0 0 59.1 30.1 10.8 
1 28,1 5.6 50.1 7 9.1 
5 25.4 5.1 53.1 8.9 7.6 
12 20 5 56 12 6 

YS 0 0 0 0 90 10 
1 19 2.5 1.4 66.9 10.2 
5 20.6 3.7 4.1 63.2 9.4 
12 8 3 8 79 1 

P 0 0 0 0 0 100 
1 5.1 11.6 .7 .7 8 2  
5 9.2 13.8 1.6 1.4 74 
12 17 23 3 2 55 
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Figure D.l. Plot of responses of area of corn and area of soybeans 
to one standard deviation shock in yield of soybeans 
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Figure D.2. Plot of responses of area of corn and area of soybeans 
to one standard deviation shock in area of soybeans 
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Figure D.3. Plot of responses of price to one standard deviation 
shock in area of soybeans 
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Figure D.4. Plot of response of price to one standard deviation shock 
in area of corn 
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APPENDIX E: THE DATA 

The data used in this dissertation appear on page 

The sample period is from 1948 to 198 0. The data 

were compiled from various publications: 

(i) Agricultural Year books, USDA 

(ii) Iowa Crop and Livestock Reporting Services, 
Iowa Department of Agriculture 

(iii) Statistical Annuals, Chicago Board of Trade. 

Variables: 

The first entry in the data set (OBS) is the observa­

tion number. The second entry (YR) is the year; 48 stands 

for 1948 and 80 for 1980. The remaining variables are 

defined as follows: 

AS = area (acreage) of soybeans in thousands of 
acres 

YS = yield of soybeans in bushels per acre 

AC = area (acreage) of corn in thousands of acres 

YC = yield of corn in bushels per acre 

• PS = price of soybeans in cents per bushel 

PC = price of corn in cents per bushel 

PDS = production (output) of soybeans in thousands 
of bushels 

P = relative price of soybeans to price of corn 
defined as 
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GPC = Government support price for corn in cents 
per bushel 

FPK = Futures price of corn (April contract for 
December delivery) in cents per bushel 

FPB = Futures price of corn (April contract for 
December delivery) in cents per bushel 

AT = total acreage cultivated in thousands of 
acres 



Table D.7. The data set 

ous YR AS YS AC vc PS PC POS 

1 1)8 1616 22. 5 11213 60. 5 222 131 35190 
2 M9 1380 23. 0 111*93 M8. 0 222 127 30820 
3 50 1960 22. 0 98 37 MB. 5 26<> 152 M2>l60 
q 51 1638 20. 5 10366 M5. 0 268 161 32:152 
5 52 15'iO 25. 5 10/82 55. 0 . 269 150 36913 
6 53 1679 21. 5 nj?13 50. 0 291 Kl 1 35ÛJ6 
7 5U 21'J9 26. 5 105»i0 52. 0 2>tl 1ll5 561(18 
8 55 2278 20. 0 10799 M8. 5 22M 1l|(| M5220 
9 56 2551 20, 0 10',03 53. 0 217 131 50000 

10 57 28'm 27. 0 I0;»'i9 62. 0 205 105 76329 
. 11 58 3128 25. 5 10005 66. 0 202 108 79U56 

12 59 2377 26 5 121193 65. .0 191 100 62778 
13 60 2615 25 5 12658 63. 5 213 97 6627(1 
lu 61 3i|. '6 28. 5 10ÎU3 75. 5 228 108 970ii2 
15 62 3'i15 27. 5 10151 77. 1 233 100 93636 
16 63 3586 30, 5 11155 81. 5 2 H n  101* 109038 
17 64 26 .5 |o;>73 79. 0 257 110 121239 
ia 65 M»ûi| 26 .0 Î0î|6? 82. .0 261 113 126100 
19 66 5010 29 .5 10676 89.0 270 117 1117382 
20 67 5361 27 .5 12171 68 .5 250 101 l»(i*265 
21 68 55/6 32 .0 103146 93.0 2M«I 107 17 7952 
22 69 5632 33 .0 10'»'»9 98 ,0 236 111 179850 
23 70 5/09 32 .5 10/60 92. 0 282 125 I8'(600 
2ti 71 5516 32 .5 12208 102. .0 300 105 178750 
25 72 6050 36 .0 11255 110.0 1*7*1 165 216000 
26 73 7000 3M .0 11970 107.0 565 250 26)50 
27 T l  7200 28 .0 13100 90 .0 636 29 7 1990ft0 
28 75 7(100 3<1 .0 13)50 95 .0 509 250 236980 
29 76 6M70 31 .0 13950 97 .0 705 205 199950 
30 77 7100 35 .5 1)800 96 .0 592 199 2513MO 
31 78 7600 37 .5 1 3600 115 .0 66«l 217 283125 
32 79 0î?t)O 37 .5 13 750 127 .0 617 2M2 306375 
33 80 8300 39 .0 umoo 110 .0 739 297 322530 

P GPC FPK F PB AT 

36. 903 1MM 171, 50 293. 00 221UU 
39. 039 1M0 116. 13 201. 75 22208 
37. 626 IU7 127. 05 212. 00 225M8 
32. 979 157 171. 28 299.50 22336 
1*5 31M 160 171. M3 273. 50 22336 
fi3. 7V2 160 156. 50 272. 36 22336 
1*3. 635 162 IMM. 68 263. 13 22MMU 
30. 679 158 137. 55 232. 38 22685 
32. M67 150 1M3. 15 253.63 22685 
52. ,399 1>iO 128. 13 226. 25 22620 
f*7. 511 136 119. MO 223. 03 22620 
50.MUM 112 115. 50 212. 65 22873 
55. 652 106 110. 60 208. 88 22208 
59 ,798 120 117. 90 252. 00 21861 
59, . 15M 120 117. 90 239. 53 2151U 
71 .339 125 11M. 13 2M3. ,26 20M73 
66. .383 125 ug. M l  2<*M. ,13 19952 
59. .030 125 121. .50 256. . 70 19722 
67 .687 130 120. 88 279 .05 19665 
66.609 135 139. 00 278. .25 19320 
72 .776 135 123. MO 26U, .50 19320 
67 .805 135 118 ,78 235, .38 19287 
72 .9'(8 135 120. .68 265. ,25 19952 
92 .568 1)5 1M2, MO 28U .20 206M0 

102 .563 1M1 126 88 321, , 15 21266 
7 .396 I6<i 156 , 36 M30 . 15 22295 

59 .210 138 253. . 38 5M2, .50 23065 
68 .9^7 138 26U . 38 555 .50 2)256 

106 .260 157 26»* .63 503 .50 23598 
105 .311 200 26M .75 731, .00 239M0 
113 .992 210 252 .25 616 .25 2M265 
95 .260 220 267 .25 705 . 38 2M1M0 
96 .690 235 296 .50 650 .25 2MIM0 


