
t i'

INFORMATION TO USERS

The most advanced technology has been used to photograph and
reproduce this manuscript from the microfilm master. UMI films the
text directly fi'om the original or rôpy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any
type of computer printer.

The quality of this reproductloB is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photognq)hs, print bleedthrough, substandard margin»,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms iniernational
A Beii & Howell informaiiori Company

300 North Zeeb Road. Ann Arbor Ml 48106-1346 USA
313 761-4700 800 521-0600

Order Number 9101384

Knowledge-based support systems for statistical software

Caxley, Michael Ray, Ph.D.

Iowa State Univenity, 1990

U M I
SOON.ZeebRd
Ann Aibor, MI 48106

Knowledge-based support systems

for statistical software

by

Michael Ray Carley

A Dissertation Sutoitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Departments % Statistics
Economics

Co-majorst Statistics
EconomjScs

Approved*

In Charge of Majo^^ork

For the NajOT Depar^ehts

For the Graduate College

Iowa State University
Ames, Iowa

1990

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

ii

TABLE OF CONTENTS
Page

CHAPTER I. INTRODUCTION 1

CHAPTER II. KNOWLEDGE-BASED SYSTEMS 4

Overview 4

Implementation of Knowledge-Based Systems 9

Knowledge Representation 11

Prolog - A Computer Language for Predicate Logic 24

CHAPTER III. KNOWLEDGE-BASED COMPUTER SUPPORT 26

Conventional Support 26

Question-Answering Systems 27

Alternate Approaches 34

CHAPTER IV. EG EXPERT: A PROTOTYPE KNOWLEDGE-BASED
EXPERT SYSTEM TO SUPPORT THE USE OF
STATISTICAL SOFTWARE 38

Background and Objectives 38

System Overview 40

Using EG Expert 44

Implementation and Knowledge Representation 46

Comments and Conclusions 52

CHAPTER V. EG NETWORK - A KNOWLEDGE-BASED
INFORMATION SYSTEM FOR
STATISTICAL PACKAGES 57

Overview 57

The Network of Examples 59

Prolog Representation of the Example Network 69

Traversing the Network of Examples 75

Comments 91

ill

CHAPTER VI. SUMMARY 93

BIBLIOGRAPHY 96

ACKNOWLEDGEMENTS 101

APPENDIX A. EG EXPERT INFERENCE PROCESS 102

APPENDIX B. PROGRAM LISTING FOR EG NETWORK 104

APPENDIX C. USER BROWSING PATH ALGORITHM 118

APPENDIX D. REACTIVE BROWSING DECISION EXAMPLES 120

é

iv

LIST OF FIGURES
Page

Figure 1. Components of a knowledge-based system 9

Figure 2. A typical rule statement 13

Figure 3. Forward-chaining inference example 15

Figure 4. Backward-chaining inference example 16

Figure 5. Example of a rule incorporating
uncertainty 18

Figure 6. Links and nodes in a semantic network 19

Figure 7. Example of a Regression Frame Network 23

Figure 8. Internal operations in question-answering
systems 29

Figure 9. Overview of EG Expert's (external)
operation 44

Figure 10. Overview of EG Expert's (internal)
operation 47

Figure 11. Example of a general solution 49

Figure 12. Topic link 60

Figure 13. Across-subject link 61

Figure 14. Within-subject link 62

Figure 15. Detail-of link 63

Figure 16. Same-detail-of link 63

Figure 17. Network of examples 66

Figure 18. Language links 68

Figure 19. Language link SAS to description 69

Figure 20. Frame representation of an example program 70

Figure 21. Browse screen with SAS example and
Description 77

V

Figure 22. Browse screen with MINITAB and
SAS windows 79

Figure 23. EG Network after executing next
section move 82

Figure 24. EG Network screen in mapped-traversal
mode 85

Figure 25. Selection of Other Subjects 86

Figure 26. Selection of Other Details 88

1

CHAPTER I. INTRODUCTION

A popular research topic In statistical computing

Involves the application of methodology and programming

techniques from the field of artificial intelligence to

problems in statistics. Most efforts thus far have

involved research into developing knowledge-based expert

computer systems which emulate some of the activities of

the expert statistical consultant - most involve either

guiding a user through a correct statistical analysis or

assisting a user in choosing an appropriate statistical

technique. The motivation behind such systems has been the

recognition that statistical software has become widely

available and is being used more and more by those with

little statistical training. This has opened the door for

"much uninformed, unguided, and simply incorrect data

analysis" (Chambers, 1981). Statistically naive users need

guidance in the application of the data analysis techniques

supported by the statistical software. Knowledge-based

systems are one vehicle by which users can be provided with

this guidance via explicit software implementations of a

statistical consultant's strategy and expertise. For more

information on this topic, the reader is directed to

Chambers (1981), Hand (1984), Gale and Preglbon (1984),

Hahn (1985), Gale (1986), and Streitberg (1989).

2

A more basic need for most users of statistical

software Is support (training and guidance) In using the

software from a programming perspective versus an analysis

perspective. Large general-purpose statistical software

packages like SAS, SPSSX, and BHDP are extremely powerful

but program development can often prove time consuming and

frustrating, especially for Inexperienced or occasional

users. In general, people have trouble uclng and learning

to use statistical packages and often seek guidance of one

form or another. Conventional sources of computer software

support (statistical software and otherwise) include short

courses, paper manuals, computer-based simulations and

tutorials. However, Leigh et al. (1987) note that short

courses are rarely availaible at a user's convenience, paper

manuals are often more general and abstract than might be

best suited for a specific user and his problem, and

computer-based tutorials are expensive and rarely developed

at deeper than an overview level. Furthermore, research

has shown (Lang et al., 1982 and O'Malley, 1986) that when

users of computer software are in need of assistance, they

prefer to consult other people (e.g., the "local expert")

rather than to use manuals (on or off line) or other types

of help availeUale to them. As such, a new approach to

provision of support for computer software systems has been

the development of computer-based support systems which

3

capture the characteristics and expertise of the human

software consultant. Again, knowledge-based systems are

one vehicle by which users can be provided with this

guidance via explicit software implementations of a

software consultant's strategy, knowledge, and expertise.

The specific goal of this research is to study the

design and development of computer-based systems that help

people use and learn to use statistical software by

providing them with workable example programs. Knowledge-

based ideas and programming techniques will be used to

develop these sytems. In Chapter II, we first discuss the

area of knowledge-based expert systems in general including

the topics of knowledge representation and inference.

Chapter III describes some applications of knowledge-based

systems for other types of computer software including

operating systems like UNIX. EG Expert, described in

Chapter IV, is an example of a traditional expert system

design which emphasizes the problem solving role of the

human expert. EG Network, described in Chapter V,

emphasizes the human expert's ability to provide people

with information and to teach them.

4

CHAPTER II. KNOWLEDGE-BASED SYSTEMS

In this chapter, we provide a general overview of

knowledge-based systems and'discuss their implementation.

Various knowledge representation schemes are discussed

including rules, semantic networks, and frames. Finally,

the Prolog programming language is introduced and examples

of knowledge representations implemented in Prolog are

given.

Overview

Knowledge-based systems are generally associated with

an area of computer science called artificial intelligence.

Artificial intelligence is a vast field covering topics

from cognitive modeling, knowledge representation, and .

problem solving to robotics, machine learning, and natural

language processing. The vastness of the field makes a

general definition difficult, but Barr and Feigenbaum

(1981) offer a suitable definition for our purposes: "AI

is the part of computer science concerned with designing

intelligent computer systems, that is, systems that exhibit

the characteristics we associate with intelligence in human

behavior." Intelligence is difficult to define but it

certainly involves the ability to acquire and apply

knowledge. Consequently, much of the focus in applied

5

artificial intelligence research has been on the study of

so called knowledge-based systems. Literature concerned

with this topic is extensive and includes Bobrow and Stefic

(1986), Davis (1986), Waterman (1986), Kowalik (1986),

Walker (1986), and Fisher (1986).

A knowledge-based system (KBS) is a computer program.

The fundamental difference between a KBS and a traditional

computer program is the explicit representation of the

knowledge required to solve a problem - knowledge is not

built into program code but rather exists as a separate

entity referred to in some structures as the knowledge

base. In this regard, the knowledge in a KBS is

declarative as opposed to procedural, the emphasis being on

the expression of "what to know" as opposed to "what to

do". Implicit in this configuration is the feature that

knowledge itself can be represented with symbolic forms

suitable for computer manipulation. Furthermore, a KBS,

through an inference mechanism, is able to reason with such

symbolic forms in order to apply knowledge to the task at

hand and thus appear to act intelligently. As Forsyth

(1984) comments, the traditional viewpoint of DATA +

ALGORITHM = PROGRAM is replaced with the alternative

viewpoint of KNOWLEDGE + INFERENCE = SYSTEM (that is,

intelligent system). Various knowledge representation

structures and inference mechanisms have been studied by

6

researchers in artificial intelligence and are discussed in .

a later section.

The knowledge-based approach is often used to develop

computer programs that model the behavior of a human

expert. Such programs are commonly referred to as

knowledge-based expert systems or simply expert systems.

The knowledge structures in an expert system serve to

capture human expertise in such a way that the expertise

can be generally applied to problems within the system's

domain. Current expert systems are designed to solve

problems only within a narrowly defined domain. This idea

is in contrast to early work in artificial intelligence

which concentrated on the design of general,

non-domain-specific problem solvers (Newell and Simon,

1963). In addition, expert systems are aimed at solving

problems where the expertise involved is not algorithmic

but rather more of an "art", based on experience and

heuristic reasoning (rules-of-thumb). Gottinger (1988)

gives an excellent example:

... fitting a curve through a cloud of data by
nonparametric smoothing does not qualify as expert
behavior - fitting is described by a well-defined
algorithm. Choosing the most appropriate smoothing
technique is expert behavior - it requires heuristic
knowledge about what properties of the data are
displayed by each technique, and which are important
for the data set at hand.

Note that knowledge-based expert systems attack the types

7

of problems that are not easily handled using traditional

procedural programming techniques. Examples include

problems involving diagnosis, interpretation, evaluation,

and planning. Expert systems have been successfully

applied in many of these areas. MYCIN (Buchanan and

Shortliffe, 1984), for example, is an expert system which

assists physicians in diagnosing and treating antimicrobial

infections. PROSPECTOR (Duda et al., 1979) aids geologists

in the evaluation of mineral sites for potential ore

deposits. R1 (McDermott, 1982) is an expert system for

configuring large computer systems. TAXADVISOR (Michaelsen

and Michie, 1983) is an expert system for tax and estate

planning. The range of applications has been quite large

and literature addressing expert systems is extensive.

See, for example. Frost (1986), Forsyth (1984), Johnson and

Keravnou (1985), Buchanan and Duda (1983), and Coombs

(1984).

Ths term expert system has typically been associated

with knowledge-based systems that emphasize the problem-

solving or diagnostic role of the human expert. As Coombs

and Alty (1984) note, this is due to the fact that most

expert systems have been designed with the primary

objective of finding a known solution to a well-

circumscribed problem. Furthermore, the goals of most

expert systems remain the same each time they are used.

8

MYCIN for example, Is designed to Identify the most likely

Infectious organisms based on patient Information supplied

by an attending physician - the only thing that changes

with each use Is the particular patient data. Coombs and

Alty recognize that In real life an expert Is more often

called upon to provide conceptual guidance to associates

and help them solve problems for themselves rather than

simply provide them with an answer to a well-defined

problem. Knowledge-based expert systems designed more

toward this end are often more appropriately referred to as

advlce-glvlng systems or consulting systems, although the

nomenclature Is not well established. An example of such a

system Is KENS, developed by Hand (1987) within the domain

of nonparametrlc statistics. KENS Is described as a

"flexible computer program for providing a user with

Information about nonparametrlc statistics" and was

designed "not to solve problems for Its user, but to assist

the user to solve problems and to Improve the user's

understanding of nonparametrlc statistics." Hand coined

the term knowledge enhancement systam as a more appropriate

description of the aims and capabilities of KENS (Knowledge

Enhancement system for Nonparametrlc Statistics), thus

emphasizing the more didactic role the system is intended

to play in the problem solving process.

9

Implementation of Knowledge-Based Systems

The Implementation of knowledge-based systems In

artificial intelligence is a vast subject which has been

treated extensively in many texts referenced earlier.

Knowledge-based systems are generally composed of four

major components as shown in Figure 1.

Knowledge
Acquisition
Module

Knowledge
Base

Inference
Engine

User
Interface

Figure 1. Components of a knowledg^a-based system

The knowledge base contains the symbolic constructs

representing the system's knowledge about a particular

domain. We will see later that these constructs can take

several forms - there are several different ways of

representing knowledge in a computer program. The

knowledge itself can be classified roughly into two general

10

categories: deep knowledge and surface knowledge. Deep

knowledge refers to theories and accepted principles as

well as causal models, abstractions, analogies, and so

forth. Surface knowledge, ùn the other hand, can be

thought of as that which is "compiled" from an

understanding of deep knowledge. That is, surface

knowledge is that acquired by experience and involves

"know-how" and rules-of-thumb. Such knowledge is often

referred to as heuristic knowledge and usually consists of

empirical as opposed to theoretical associations.

Knowledge-based expert systems generally contain more

surface knowledge than deep knowledge.

The inference engine encapsulates the mechanisms for

inference and control. Inference involves using the

knowledge in the knowledge base to make deductions or

perform tasks necessary to complete the goal of the system.

At a lower level, inference involves manipulating the

symbolic representations of knowledge in a meaningful way.

Control is concerned with the overall operation of the

system. This typically involves agenda control, that is,

the control of what is to be done in what order. Control

also involves how the knowledge is accessed and

manipulated. Often, meta-knowledge (i.e., knowledge about

knowledge) is employed to assist the system in deciding

what rules (for example) are applicable to the problem at

11

hand. In what order they should be examined, and how

conflict-resolution (multiple rules applicable) should be

accomplished.

The user interface handles interaction with the user

including dialogue and input/output. The user interface

often involves a natural language processor which allows

the user to communicate with the system in natural language

format, although this capability is still very limited.

Another important element of any knowledge-based

system is the knowledge acquisition module (KAM). In the

case of a knowledge-based expert system, the KAM simplifies

the transfer of knowledge from the human expert to the

expert system and allows for the updating or modification

of existing knowledge. In addition, the KAM often tries to

verify that the information it receives is consistent with

the existing store of knowledge. The KAM gives the

knowledge-based system a rudimentary capability of learning

by being told.

Knowledge Representation

The power of knowledge-based systems is in their

eUaility to reason with explicitly declared knowledge. As a

result, effective representation of such knowledge is

essential. Winston (1984) lists several characteristics of

good representations including the following:

12

- Good representations make the important things
explicit,

- they expose natural constraints,

- they are complete, saying all that needs to be
said,

- they are concise and efficient,

- they are transparent in that one can understand
what is being said,

- they suppress detail, keeping rarely used
information hidden until needed,

- they facilitate computation and manipulation.

None of the existing knowledge representation schemes

fulfills all of these criteria nor is any completely

satisfactory for all applications. Certain representation

structures are more suitable for certain types of knowledge

and it is not uncommon for more than one type of

representation to be utilized. Regardless of the

representation scheme(s) employed, a knowledge-based system

must be able to make effective use of its knowledge. This

capability involves broader subjects of inference and

control. In the following sections, we give brief outlines

of the major knowledge representation structures which have

been studied by researchers in artificial intelligence. In

particular we discuss rules, semantic networks, and frames.

In addition, we comment on the Inference and control

structures associated with these types of structures and

later discuss their Prolog implementation. More detailed

13

Information on these representation schemes and their

corresponding Inference and control structures can be found

In the following: Davis and Lenat (1982), Winston (1984),

Hand (1985), Harmon and King (1985), Mlchaelsen et al.

(1965), Flkes and Kehler (1985), Generseth and Ginsberg

(1985), Johnson and Keravnou (1985), Hayes-Roth (1985),

O'Hare and Bell (1985), and Walker (1986).

Rules

Rules (Newell and Simon, 1972) are perhaps the

simplest form of knowledge representation available.

Expert systems that use rules to capture expert knowledge

are often referred to as rule-based expert systems. Rules

are statements of the form IF <antecedent> THEN

<conséguent> as shown In Figure 2. The example rule

represents a "chunk" of expert knowledge concerning the

Identification of Infectious organisms. MYCIN'S knowledge

base Is composed of hundreds of these t-/pes of rules.

IF the gram stain of the organism Is gram negative
AND the morphology of the organism is rod
AND the aerobicity of the organism is anaerobic

THEN the Identity of the organism is Bacteroides

Figure 2. A typical rule statement

14

Rules are the most widely used form of knowledge

representation. The simplicity of the rule structure makes

this approach appealing In many ways. For one thing, rules

are both simple and homogeneous. In this respect, rules

offer a relatively easy method by which knowledge can be

encoded Into a formal structure. In addition. Individual

rules are transparent; that Is, It Is easy to look at a

single rule and know what It Is saying. Rules are also

modular In structure. This characteristic allows for

Incremental collection of knowledge through the addition of

more and more rules - the more rules a system contains, the

more "Intelligent" or "expert" the system Is. Modularity

also Implies that rules are Independent "chunks" of

knowledge having no direct links with one another. The

deletion and modification of rules can thus be accomplished

Individually - the entire knowledge base need not be

changed.

Rule-based systems are either antecedent driven

(forward chaining) or consequent driven (backward

chaining). Forward chaining systems operate as follows.

Current Information about the task at hand is kept in

so-called "working memory". The system then uses this

Information to identify rules whose antecedents are

satisfied - such rules are said to "fire". The consequents

of fired rules are then executed accordingly. Such

15

execution often Involves the placement of additional facts

Into working memory or the execution of some procedure

which does so. An example of Inference In a forward-

chaining system is described next.

Working Memory

A, B, D

Figure 3. Forward-chaining inference example

For this example, assume that the goal of the system

is to establish that fact 6 is true, given the knowledge

base and the initial contents of working memory (WM) shown

in Figure 3. The forward-chaining inference process

follows the following steps:

1) Initial state, WM:{A,B,D}
11) Rule 1 fires, infer fact C, WM:{A,B,0,C}
ill) Rule 2 fires, infer fact E, WM:{A,B,D,C,E}
iv) Rule 5 fires, infer fact H, WM:{A,B,0,C,E,H}
v) Rule 4 fires, infer fact F, WM:{A,B,D,C,E,H,Fy
vi) Rule 3 fires, infer fact 6.

Forward chaining has established that fact 6 is true, given

the initial contents of working memory and the rule base.

Knowledge-base

1) IF A and B THEN C
2) IF C and D THEN E
3) IF E and F THEN 6
4) IF H THEN F
5) IF A THEN H

16

Backward-chaining rule systems are consequent driven

and thus operate in a different manner. The backward-

chaining process applied to the above example is depicted

below in Figure 4.

If A mud B THEN C

If C and D THEN B

Hotklng Hnoty

If B and F THEN 0

If H THEN F

If A THEN H

Figure 4. Backward-chaining inference example

Again, assume that the goal of the system is to

establish that fact G is true, given the initial contents

of working memory (WM). The backward-chaining procedure

starts by identifying a rule which has as its consequent

the fact G and then proceeds to establish that the

corresponding antecedent holds true. In the above example,

to establish fact 6, facts E and F must be established.

17

Here, the process becomes recursive - to establish fact E,

facts C and D must be established and so on. The process

continues until either 6 is shown to be true (as it is the

above example) or 6 is shown to be false (that is, 6 cannot

be established by data and rules).

While both inference procedures seem straight forward

enough, in real applications complexities arise. A typical

knowledge base may consist of hundreds of rules and working

memory will often contain a great amount of problem

information. In attempting to match working memory

information to rule antecedents, the entire rule base must

be scanned and each rule's antecedent must be evaluated

individually. Such scanning of the rule base can prove to

be very inefficient for large rule bases. Furthermore, any

number of rules should be able to fire subsequently. When

they do, the system must be able to decide in what order

these rules should be executed. Execution of the first

fired rule may in turn induce changes in working memory.

These changes may disengage certain rules and fire others.

In many cases, the process can get very complicated and

thus the transparency evident in individual rules is lost

for the rules as a whole. In general, control mechanisms

are necessary to handle the types of problems discussed

above. As is apparent, the first-glance simplicity of rule

18

systems does not necessarily hold true for actual

application problems.

In closing, we note that human experts do not always

operate with perfect information. As a result, certain

types of expert systems need the ability to make inferences

under uncertainty. In rule-based expert systems, there can

be uncertainty both in the knowledge base (rules and facts)

and in the information obtained from the user by the system

(data). The uncertainty in data, facts, and rules can be

attributed to many sources. Frost (1986) lists some of

these. Rule-based expert systems incorporate uncertainty

by adding a qualifier to a riile statement as follows : If E

then H with p. In this format, E represents evidence, H

the resulting hypothesis, and p some measure of the

strength of the relationship. Figure 5 gives an example of

an actual rule used in the MYCIN expert system.

IF site of culture is blood
AND organism was able to grow aerobically
AND organism was able to grow anaerobically

THEN there is evidence that the aerobicity of the
organism is facultative (.8) or anaerobic (.2)

Figure 5. Example of a rule incorporating uncertainty

The measure p may have many interpretations depending

on what uncertainty approach is taken. The p may, for

19

example, be a probability, a probability range, or simply

some ad hoc measure of certainty or belief. Whatever the

interpretation, an expert system needs to be able to

somehow use these measures in a meaningful way as rules are

combined and inferences are made.

SAmantic Networks

The semantic network (Quillian, 1968) is a traditional

and very general knowledge representation scheme. Based on

the idea that memory is composed of associations between

concepts, semantic networks (also called associative

networks) represent knowledge through a net structure

composed of nodes and links. The nodes represent objects,

concepts, events, situations, descriptions, ideas, and so

on. The links (or semantics) express associations between

the various nodes. Knowledge is then represented as a

collection of nodes and links as illustrated in Figure 6.

property

—clwcki

OLS BSOBBSSIOH aSCHMigUB

Figure 6. Links and nodes in a semantic network

2 0

An advantage of semantic networks Is the idea of

inheritance. The REGRESSION TECHNIQUE node in Figure 6

may, for example. Include the information that regression

techniques can be used for prediction. Now, the network

tells us that OLS is a type of regression technique. The

inheritance property allows us to infer that OLS can be

used for prediction - the OLS node need not contain this

information. In general, "is_a" links imply property

inheritance; that is, individual members of a class are

assumed to possess the properties associated with the more

general class to which they belong. The inheritance

property allows us to reduce duplication of information and

thus avoid redundancy.

Another advantage of the semantic network for

knowledge representation is the inherent flexibility in the

structure. To add additional knowledge or information, new

nodes and links can be created as necessary. The

flexibility of semantic networks allow the representation

of more diverse types of knowledge.

Unfortunately, the flexibility of semantic networks

also means more complex inference and control mechanisms.

There is in fact no generally accepted set of links (or

semantics) with which semantic nets are formed and thus the

structure to some degree lacks formalism. As Hand (1985)

notes, problems can occur if steps are not taken to prevent

21

the growth of arbitrarily large sets of links. For

example, to use the knowledge encompassed in Figure 6, the

system must know what meanings and implications are

attached to a "property" or "condition" link. If we allow

too large a set of links to be utilized, a separate

knowledge base may be necessary to describe the meanings of

the links themselves. Clearly, such a situation is not

desirable. In general, the inference and control

mechanisms needed to scan and draw conclusions from

semantic networks are quite complex and are invariably

problem specific (since arbitrary links can be used).

Frames

Frames (Minsky, 1975) offer an alternative but related

method for representing knowledge. A frame consists of a

set of slots which serve to capture all important

information about an object, event, or procedure. A frame

can thus be viewed as a chunk of a semantic network, that

is, a construct which brings together all links and nodes

which are associated with some particular item of interest.

Knowledge about a particular subject is then represented as

a collection of relevant frames. The entries in frame

slots often contain not only specific values, but also

procedures for obtaining those values, actions necessary

22

given that a certain value appears, pointers to additional

frames, and other more detailed information.

A common example of frame usage Involves creating a

"blank" frame and then filling in the slots. For example,

a frame for OLS regression could contain, among other

things, slots for parameter values, test statistics, and

assumptions specific to OLS. When an OLS regression

problem is encountered by the system, a blank OLS frame

could be created and filled in. The slots for parameter

values might have associated with them procedures for

calculating the parameter estimates. The slots for test

statistics may point to other frames which describe the

calculation and interpretation of such test statistics.

Finally, the assumption slots may have procedural

attachments which invoke certain actions given that an

assumption is violated.

Frames, like semantic networks provide for

inheritance. A frame will typically be of a certain

general type and will inherit the characteristics

associated with that general type. Frames will also

contain additional slots which specify characteristics

unique to that particular frame. In this regard, OLS, for

example, can be described as a Linear_Regression_Technigue

(LRT) plus a set of properties which distinguish OLS from

other LRTs. Likewise, a LRT can be described as a

23

Regre88lon_Technigue (RgT) plus a set of properties which

distinguish LRTs from other RgTs. Figure 7 Illustrates

these Ideas.

Pram#* Bagĵ actmlqa#

Pram#: Lln#ar Ragraaalon

typ# of:

Pram#: Ron-Lln#ar Ragrvaalon

typ# of: Il#gjraabniqua

Pram#: OLS

typ# of: Lliwar Bagraaalon

Pram#: OLS

typ# of: Llnaar B#gr#aalaa

Figure 7. Example of a Regression Frame Network

An entire knowledge framework can be built up by

combining and expanding these types of frame systems. With

frames, one can obtain very powerful and complete

representations of knowledge. Frame systems, however, can

get very complicated and the Inference and control

structures are generally more difficult to develop and

Implement than for other representation schemes.

24

Prolog - A Computer Language for Predicate Logic

PROLOG (PROgramming in LOGic), developed in the early

seventies by Alain Colmerauer and others at the University

of Marseilles, is a logic-based programming language that

implements elements of first-order predicate calculus.

PROLOG is a declarative programming language as opposed to

a procedural one. In writing a PROLOG program, one does

not specify (directly) how a problem is solved but rather

one uses data structures called predicates to describe the

problem (e.g., facts and rules relating facts) and the

goal. Goal resolution is accomplished via a logic-based

inference procedure which is itself a part of PROLOG.

Examples given in this section are based on Borland's TURBO

PROLOG implementation.

An example of a PROLOG fact is father(tim, joe). This

statement simply expresses the fact that tim is the father

of joe. Predicates can be combined to form, sentences which

define more complex relations. For example, the sentence

brother(X,Y) i- father(Z,Z),father(Z,Y) could be used to

define a brother relationship. In this case X, Y, and Z

are treated as variables and the sentence expresses the

fact that X and Y are brothers if X and Y have the same

father Z. A PROLOG program is a collection of these types

of constructs such as

25

father(tin,joe)
father (tim,matt)
father(ted,frank)
father(ted,bob)
brother(Z,7) »- father(Z,Z),father(Z,T).

The job of the PROLOG interpreter is to resolve goals based

on these facts. Resolution of a goal can involve simply an

indication of the truth of a statement. For example, if we

expressed the goal Goals brother(joe,matt), PROLOG would

respond with True. If we tried Goal: brother(joe,frank),

PROLOG would respond with False. Resolution of a goal can

also involve finding all values of a variable which make a

stated goal true. For example, given Goals brother(X,T),

PROLOG responds with X=joe Y=matt, X=frank T-bob indicating

that there are two pairs of brothers. Note that PROLOG

involves primarily symbolic rather than numeric

computation.

The PROLOG language is especially useful for

representing knowledge and their associated inference

procedures and is thus commonly used to develop expert

systems and other AI applications. We will see later, in

our discussions of EG Expert and EG Network, how PROLOG can

be used to represent knowledge in the form of rules and

semantic networks. References on PROLOG and logic

programming in general include Colmerauer (1985), Cohen

(1985), Campbell (1984), Clocksin and Hellish (1984),

Kluzniak and Szpakowicz (1985), and Kowalski (1979).

26

CHAPTER III. KNOWLEDGE-BASED COMPUTER SUPPORT

As mentioned earlier, a basic need for most users of

statistical software is support (training and guidance) for

the programming activities involved with such packages -

this is especially true for inexperienced or occasional

users. We will see in this chapter how knowledge-based

systems are being developed and used to provide such

support in other computer-related domains. In particular,

we will see applications for operating systems (e.g., UNIX

and VMS), components of operating systems (e.g., UNIX-

Mail), and fourth-generation database systems. Existence

and features of these systems provide motivation for the

development of a knowledge-based support system aimed at

statistical software.

Conventional Support

Conventional sources of computer software support

(statistical software and otherwise) include documentation

and printed manuals, computer-based tutorials, and

classroom short courses. Downfalls of these conventional

sources are well-recognized by several authors including

Leigh et al. (1987), Bannon (1986), O'Malley (1986), and

Lang et al. (1982). Briefly, short courses are rarely

available at a user's convenience, computer-based tutorials

27

are expensive and seldom developed at deeper than an

overview level, and manuals are often more general and

abstract than might be best suited for a specific user and

his/her problem. In addition, Lang et al. (1981) have

found that "very few users take advantage of available

courses [and tutorials], but tend to pick up the knowledge

they need as they go along." On documentation, Bannon

(1986) has written, "There is accumulating evidence that

users do not read manuals, no matter how well-written."

In general, research has shown (Coombs and Alty, 1984

and O'Malley, 1986) that when users of computer software

are in need of assistance, they prefer to consult other

people (e.g., the "local expert") rather than to use

manuals or other types of help available to them. As such,

a new approach to provision of support for users of

computer systems has been the development of knowledge-

based support systems. These systems attempt to capture

the characteristics and expertise of the human software

consultant (i.e., the local expert) in the form of a

computer program that can be made generally available to

users.

Question-Answering Systems

An obvious advantage of a human expert for the

provision of software support is that the expert can

28

communicate with users. For example, a human expert can

(usually) quickly respond to a user question about what

command to use for some situation or problem. This type of

interaction generally produces a quicker answer than if the

user would "go it alone" and try to find the information

himself using manuals or help systems. The advantage is

thus a reduction in the investment in time required to

obtain necessary information, especially for users who are

unfamiliar with the computer system and the documentation

associated with the system. Question-answering systems

thus represent an attempt to make system information more

accessible to users by allowing users to express questions

about the system in somewhat the same form as they would to

a human consultant.

Two examples of knowledge-based support systems that

can understand and respond to queries in natural language

are the UNIX Consultant (Wilensky et al., 1984) and the

QUIZ Advisor (Skuce et al., 1988 and Constant et al.,

1987). The UNIX Consultant (UC) is a natural language help

system which can understand and answer user questions about

the UNIX operating system. For example, if a user types

"How can I compare two files?", UC responds "To compare two

files, type 'diff filel file2'". Note that UC can only

respond to questions, not engage in any form of general

dialogue with the user. The QUIZ Advisor is able to answer

29

"how do I" questions about a fourth-generation software

product called QUIZ (a database report writer). A typical

question form Is "How do I report an Item only after a

subtotal?". Initially, the QUIZ Advisor gives a generic

answer In the form "Use <command> with <optlon>" (for the

above example, "Use a FOOTING AT statement" Is the generic

answer). If requested, the Advisor can extend the answer

and actually generate the QUIZ code necessary, although It

seems that this capability Is currently very limited and

has not been a focus of the research project.

«PUT

OUTPUT

RaapoDM
(In natural

languaga)

Plan solution

for goal

Infar uaer

goal from

query

Baoelva query

(In natural

language)

Produce Internal

representation

of query

Produce internal

representation

of solution

Figure 8. Internal operations In question-answering
systems

30

In general, the internal operations of question-

answering systems follow the outline in Figure 8. The

input to the system is a user's query specified in natural

language format. The first operation is to read the user's

statement (query) and produce an internal representation of

the statement's meaning. The representation is then passed

on to a goal analyzer which (generally) uses a forward-

chaining rule-based inference technique to determine the

user's likely goal. Once a user's goal is recognized, the

system plans out a solution to the user goal (i.e., finds

the appropriate command) and once done, produces an

internal representation of the solution. The last step is

to translate the generated plan into a natural language

response.

OC and the QUIZ advisor both follow this general

design, but efforts have been focused on different

components within the design. UC's strength lies in its

ability to analyze the linguistic structure of user

questions in order to recognize underlying user goals and

intentions. In terms of trying to emulate the actions of a

human consultant, the most important (and the most

interesting) step in UC's operation is the goal-analysis

step. Human consultants are able to translate a user's

stated goal into a goal in terms of the software or

computer system being used (and/or its documentation). For

31

example, the question "How do I cancel a print job" means,

in terms of the UNIX system, "How do I remove a file from

the line printer queue". Once the goal is determined in

terms of the computer system operations, finding the

appropriate command is usually straightforward. In fact,

most of the time, UC simply matches a user goal (once

determined) to a pre-stored planned solution associated

with that goal.

The Quiz Advisor's operation is very similar but the

focus seems more on the planning of the solution. In fact,

the steps leading up to the planning stage are not nearly

so distinct as they are in UC. In parsing the input query,

a forward chaining set of rules is used to directly

identify QUIZ constructs (commands, subcommands) relevant

to answering the query. This is unlike UC which produces

first a distinct representation of a goal and then (in most

cases) matches that goal to some preplanned solution. The

planning stage for the Quiz Advisor thus involves piecing

together the constructs relevant to a solution in order to

produce a meaningful reply. A unique feature of the Quiz

advisor involves the development of its natural language

grammar. Unlike UC, which uses a very general phrase

analyzer to parse natural language input, the QUIZ

Advisor's natural language grammar was constructed after an

in-depth study of actual questions encountered by

32

consultants In the product's telesupport group. The study

of questions was used not only in developing the grammar

but also as a basis for defining the set of knowledge

necessary to address typical user problems.

There are problems associated with question-answering

systems. On the technical side, computer understanding of

natural language input is a challenge due to the variety of

natural language grammars that can be encountered along

with the ambiguities sometimes present in natural language

input. Thus, most systems require users to restrict their

input to some particular grammatical form. Conveying these

grammatical restrictions to the user is a problem - once a

certain form of natural language input is accepted, users

expect the system to be able to understand anything they

enter. Another problem concerns the abilities of users to

ask the right questions. Hartley and Smith (1986) have

found that "inexperienced users find it difficult to

identify their specific knowledge needs and ask clear

questions." Thus the usability of question-answering

systems is at issue for those users who are unable to

formulate a question in such a way that they can obtain

relevant information. Such might be the case for a new

user whose goal is to learn about the system - the user

would not necessarily know what to ask about or how to ask

in a way that the system could respond.

33

Question-answering systems for statistical software

could be useful In some cases. However, most application

programs are far too Involved to be concisely summarized In

a short question. A typical regression application, for

example, might involve reading data, fitting a model,

plotting residuals, and saving predicted values in an

output dataset. It would be quite inconvenient for a user

to express such a lengthy request that completely describes

his problem. Furthermore, a user might not be aware of all

the things a particular package can do or even all the

things he might want it to do. Thus, the user might not

really be able to express a question that adequately

describes the information he desires. Finally, there would

be implementation problems Involved with parsing user input

in the form of lengthy, complex question structures.

A better option might be to allow the user to specify

some major area of interest (like regression) and then let

the system ask the user a series of questions in order to

find out the specifics of the user's needs. This is the

approach taken within our development of EG Expert (see

Chapter IV). Another option would be to show the user a

series of example programs meant to exemplify what options

are available and how to implement them. This, to some

degree, is the approach taken within our development of EG

Network (see Chapter V).

34

Alternate Approaches

As an alternative to the question-answering systems

that attempt to understand natural language input. Hartley

and Smith (1986) have worked on an "intelligent" help

system called EXPLAINER for UNIX-Mail which anticipates

user questions and in particular can "generate menus of

questions which seem to suit the working context and the

user's knowledge, so that selections could be made." Their

strategy is thus to generate a series of best-guess menus

that "span the user's request". When a user hits the help

key, the result is a menu of questions that seem

appropriate given the user's previous actions and the

resulting anticipated user goal(s). Obviously then, this

system places heavy emphasis on the ability to correctly

anticipate user goals and intentions based on recent

command use and help requests in the current context. The

primary activity involved in such a system is the matching

of user actions with prestored plan grammars. A user model

is also employed to keep track of what the user knows and

to thus avoid offering him a question that he already knows

the answer to.

We have embedded the philosophy of this approach into

our EG Network system. In particular, after showing the

user an example program, we offer him a list of other

interesting and related examples that he could view. Our

35

selections, however, are not based on monitoring the user

or updating some model of the user. Rather, our selections

are based more on our heuristic knowledge about common

applications and useful programming features. This

selection procedure is described more fully in Chapter V.

Another approach that is somewhat related to question

answering can be seen by looking at the TEACHVMS system

(Billmers and Carifio, 1985). TEACHVMS is a rule-based

expert system designed to help users learn the about the

VMS operating system. The unique feature of TEACHVMS is

that the assumed audience is a user who knows another

operating system language (in this case TOPS20). The

interface to TEACHVMS resembles the TOPS20 environment.

Users enter TOPS20 commands which are familiar to them and

the system responds with a command set that accomplishes

(as closely as possible) the same result using VMS

operating system commands. This system can thus take

advantage of users' general knowledge about operating

systems and their particular knowledge about specific

commands within one operating system to help, instruct, or

advise them about a new system. In this case, the

"natural" language input most appropriate is the language

of the operating system the user is already familiar with.

Input is not in the form of a direct question but rather in

terms of the TOPS20 command(s) used to perform a specific

36

operation with the implicit question being "how do I

accomplish this same goal in VMS?" Again though, the

general strategy followed is that found in Figure 8. Rule-

based inference techniques are first used to translate the

inputed command(s) into a specific goal and then to

identify the command(s) necessary to accomplish that goal

in an alternative operating system environment.

Within both EG Expert and EG Network, we have

developed processes whereby a user can view an example

implemented in any of the packages supported. Using EG

Network, for example, a user can simultaneously view on the

screen example programs implemented in (at least) two

different package languages. Our approach in EG Network,

as we will see, is not to translate between languages as is

done in TEACHVMS, but rather to associate already-complete

example programs within the knowledge base.

DCL (Shrager and Finin, 1982), a system designed to

help users learn the Vax/VMS operating system, is another

example of an "intelligent" help system. This system,

however, monitors user actions and provides unsolicited

advice whenever appropriate. DCL is thus like the expert

user who watches over your shoulder and breaks in whenever

appropriate advise can be given (i.e., "Don't do that!" or

"A better way of doing that is to ..."). In order to

provide such unsolicited advise, DCL contains catalogs of

37

common user activities, inefficient plans novice users

often employ to carry out these plans, and the

corresponding more efficient methods. If DCL matches user

activities to one of the inefficient plans, the user is

interrupted and provided with information on the preferred

method.

We have not attempted such a user-monitoring activity

within either of the systems that we have developed.

Although the idea is appealing, implementation seems

impractical for anything much beyond a trivial example.

38

CHAPTER IV. EG EXPERT: A PROTOTYPE KNOWLEDGE-BASED EXPERT

SYSTEM TO SUPPORT THE USE OF STATISTICAL SOFTWARE

In this chapter we dlsûuss an initial experiment with

a knowledge-based system developed to support the use of

statistical software. EG Expert is a prototype knowledge-

based expert system designed to answer general "how do I?"

questions about statistical software. The system is

capable of first directing a query process to extract

relevant information from a user and then constructing an

example program for the user to view and or use. Critical

analysis of EG Expert prompted the development of EG

Network, which is described in Chapter 5.

Background and Objectives

Graduate students in the statistical computing section

of the Iowa State University Statistics Laboratory staff a

university-wide consulting room to help support the use of

statistical packages. The primary packages supported are

SAS and SPSSX, although MINITAB and BHDP are also

available. The main function of the consultants is to

provide support for the programming aspect of package

usage; that is, the consultants help users write and debug

SAS code (for example). Although formal training is not a

specific function of the consulting room, many of the

39

contacts can be viewed as short training sessions on the

user's topic of interest. The consultants do not provide a

general statistical consulting service - clients generally

know, or are assumed to know, what type of statistical

analysis is appropriate for their problem, but they need

help in using or learning to use a particular statistical

package for their problem.

The consulting room is very popular as program

development within these statistical packages can often

prove time consuming and frustrating, especially for

inexperienced or occasional users. Furthermore, manuals

for the packages are not always readily available and when

they are, tend to be overbearing and difficult to use. Our

own observations support Lang et al. (1982) observations

that users of computer software, when in need of

assistance, prefer to consult other people (the programming

consultants in our case) rather than to wade through

manuals and search for the information themselves.

The consulting room provides a valuable seirvice to

users of statistical software in the university community

but, because of time constraints, availability of

consultants is limited to only four hours per day.

Furthermore, the service is available only on a walk-in

basis - users in need of assistance cannot call in their

questions.

40

With these constraints In mind, we established a goal

of developing an expert system which could emulate some of

the activities of the programming consultants. The expert

system would capture the expertise of the programming

consultants In such a way that their expertise could be

made generally available to users In the form of a computer

program (operating on a DOS-based personal computer). Of

course, this computer program could be accessed at a user's

convenience In terms of both time and location. The

particular consulting activity targeted for Implementation

was the answering of general "how do I" questions like "How

do I read In this data with SAS?" Questions of this type

are very common In the consulting room and can generally be

answered by providing the client with an example program

which they can modify for use with the particulars of their

problem. EG Expert Is a prototype Implementation of an

expert system designed to model such an activity.

System Oveinrlew

A user Initiates a consulting session with EG Expert

by choosing some major area of Interest (e.g., reading

data) from a menu of choices. Given the major area of

Interest, EG Expert proceeds to Interrogate the user with

questions about the particulars of the problem (Where Is

the data? What form Is It In? and so on). Note that EG

41

Expert really only answers Indirect and very general "how

do I?" questions. Choosing "reading data" from the menu is

much like asking a very general question like "How do I

read in data?". Also, the system always offers the user a

list of suitable responses to its questions, from which he

can simply choose the most appropriate. The use of menus

in general alleviates two problems. From a development

standpoint, the high overhead of incorporating natural

language understanding into EG Expert is avoided. From a

usability standpoint, the choices eliminate the problem of

a user not knowing how to ask or answer a particular

question. Once EG Expert has all the necessary information

from the user, it forms an annotated example program and

presents it to the user. The user can then capture this

example code in a text file and modify it as necessary for

use. Operationally, this procedure seems to be a

reasonable model of a human consultant's activities in a

similar situation. That is, a user rarely confronts a

consultant with a highly specific question - the initial

question is usually very general in nature. The consultant

then proceeds to ask the user more and more specific

questions until he has enough information to provide the

user with an answer.

The expertise EG Expert must possess in such a

scenario involves two major areas. First, just like its

42

human counterpart, the expert system must know what

Information Is relevant for a given major area of Interest.

Thus, If the user Indicates that he wishes to "read some

data", the system must, for example, know that Information

about the location of the data Is relevant. In essence,

the system needs to be able to ask all the right questions

given a user's general goal and his responses to previous

questions.

Secondly, the system must be able to process the

responses and solve the problem. That Is, given the user

responses to appropriate questions, the system needs to be

able to actually construct the example program. EG Expert

accomplishes this as a two-part process. The first

Involves Identifying what major characteristics to Include

In the example program. This set of general

characteristics make up what Is referred to as the generic

solution. For example. If the system has found that the

user Is reading data from an external file, then it knows

that one characteristic necessary in the example program is

some indication to the statistical package about the

external file's location and name. The second step

involves mapping this generic solution into specific code

elements (program statements or keywords) for a particular

statistical package (the final example). For example, if

the system finds that the user's data are located in an

43

external file, it must know that the INFILE statement is

appropriate if a SAS example program is desired.

Furthermore, the system needs to know where the INFILE

statement is located with respect to other code elements

also necessary (e.g., after the DATA statement and before

the INPUT statement). Of course, since multiple packages

are to be supported, EG Expert must be able to make this

translation for any of the supported packages. In fact, it

is because multiple packages are supported that EG Expert

first generates a solution in generic code. Later, we will

show that an advantage of this approach is that a developer

can create the core knowledge base of EG Expert without

regard to any particular statistical package.

A pictorial overview of EG Expert's operation is given

below in Figure 9. PROLOG implementation of EG Expert and

the representation of the knowledge (expertise) involved is

covered in a later section. Note that selection of a major

area of interest initiates the query process. This query

process is further driven by the user's responses. The

information obtained from the user during the query process

is fed into the procedure for producing the generic

solution. After the generic solution is produced the final

example is produced for a particular package of interest.

44

USBt

Produo# coda

tor apaelClo

packaga

Produce gamerio

aolutlon

Praaant Bxaaple

Query m

get apaelflca

of problem

to

Identify major

area of Intereet

Figuré 9. Overview of EG Expert's (external) operation

Using EG Expert

This section shows EG Expert being used for a very

simple example. The output from EG Expert is given in

boldface while the user's responses are in regular

typeface. A user initiates a consulting session with EG

Expert by selecting the appropriate major topic of interest

from a menu of choices. Assume that this user has chosen

the topic "Reading Data", the session proceeds as follows:

45

What package [SAS,SPSSZ,BMDP,MIMITAB] ? SAS

Data to be read from *lnllne* or from «external* file ?

external

Date type «system* or *raw* ? raw

Data format *free* or *other* ? free

An example SAS programs

data work; «identifies operation as data input
with the keyword data
«gives name to data set being created
with the name work

infile 'fname.txt'; «identifies source of data as external
with filename in quotes
«identifies type of data as raw with
keyword infile

input y x; «identifies variable names as y and x
«describes format of variables on
input record as free format

«« End of Example ««

Had the user chosen MINITAB as the package of interest,
the example program generated would have been as follows:

read 'fname.txt' cl-c2 «identifies operation as data
input with the keyword read
«data set name not relevant in
MINITAB
«identifies source of data as
external with file specified in
quotes
«identifies type of data as raw
with keyword read
«identifies variable names as cl
and c2
«describes format of variables on
input record as free format by
default

46

Note that the annotations follow the same pattern. This is

because they are developed from the generic solution first

and then specialized to the particular package during the

translation step.

Implementation and Knowledge Representation

Production of the generic solution

Figure 10 outlines the internal organization of EG

Expert's knowledge structures and inference procedures.

Production of the generic solution is accomplished via an

inference procedure whose goal is to identify what major

characteristics to include in the example program. The

user sees this inference procedure as a series a

questions - a query process. The inference procedure that

produces the generic solution is driven by three types of

knowledge. These include knowledge about major topics

supported by the system, general program characteristics

available in example programs (not specific to any

particular package), and relevant queries and user

responses that help identify the specific set of

characteristics to be included for a particular situation.

We will now consider these elements of knowledge

individually and give examples of their representations

within EG Expert.

47

major

topica

ohmrmotwimtio»

mvmilabl# lu

«UHipl* program#

relevant quarla

and poaaihl#

rvapoÔMa

imfarano# prooadur#

te produce generic

•olutlon

*

generic solutlan *
*

inferenci

to prodiu

apeciflc

procedure

>e code for

package

coding eli

for package

SAS

ita

coding eli

for package

spsax

etc. for ail

packagea

•upported

final exaaple

Figure 10. Overview of EG Expert's (internal)
(knowledge elements;

" inference procedures;
****** generated solutions)

operation

48

The query process is Initiated by the user indicating

some major topic of interest. To do this, a user simply

chooses from a menu. The menu of choices is generated from

an internal representation of the major topic areas

currently known to the expert system. Thus, EG Expert has

a rudimentary capability of "knowing what it knows" and of

course only offers options which it can currently handle.

Prolog representation of this knowledge is accomplished via

simple predicates ast

topic(readdata)
topic(regression).

These two predicates are a simple representation of the

fact that the system can currently help users with the

major topics of data input and regression.

The generic solution to be produced can be viewed as

an example program coded in a generic package language or

pseudocode. The generic solution is made up of what are

called structural elements together which serve to describe

or specify the characteristics to be present in the final

example. The query process seeks to identify what set

structural elements should be included for a user's

particular request within some major topic area. Thus, EG

Expert has a representation of what structural elements are

available. An example of this representation in Prolog is

element(idi,"identifies operation as data input"). This

49

predicate shows that there Is a structural element labeled

as idl which represents the action of identifying the

operation as data input. A generic example program can be

represented as a set of these types of elements such as

{idi, dsn, ids, idt, file, ivar, format}. This collection

provides a general representation of an example program as

shown in Figure 11.

idi t identifies the operation as data input
dsn t gives name to data set being created
ids : identifies source of data
idt t identifies type of data
file % identifies DOS file name with data
ivar : identifies variable names
format: describes format of variables on input record

Figure 11. Example of a general solution

Representation of the elements themselves is not

enough. We also need a set of information that relates the

presence of the structural elements to certain topics and

certain responses to queries. Some examples of

representation of these relationships are:

structure(idi):-topic(readdata).
structure(file):-source(external),type(raw).

The first predicate indicates that structure idi should be

present in an example involving the general topic of

reading data. The second predicate indicates that the

structure file should be present in an example involving

50

Input of raw data from an external file. The second

predicate can also be interpreted as a rule of the form "IF

the data is from an external source AND the data type is

raw data THEN the structure file is required".

Since the selection of a set of elements is driven by

a query process, representation of relevant questions about

certain structural elements is required. Such

representation is accomplished as

query(ids)t-write("\nData to be input *inline* or from
^external* source ? "),

readln(S),assert(source(S)),!.

This predicate simply identifies a query associated with

the structural element ids (identify data source) that

reads the user's input and asserts the appropriate response

into working memory. For example, if the user indicates

that the data are to be input from an external file, the

fact source(external) would be added to the Prolog fact

base.

The inference procedure and its associated query

process, by referencing the above knowledge structures,

seek to identify what structural elements should be

included for a user's particular request. The user's

choice of a major topic initializes this procedure by

placing a set of structures on the "active" list (those to

be included in example). Presence of structural elements

on the active list lead to queries of the user and the

51

resulting Information In turn leads to the activation of

additional structural elements. The process continues and

Is thus dynamic, recursive, and can be viewed as a forward

chaining Inference procedure. The process ends when the

system has no further questions to ask (I.e., the system

needs no more Information). An algorithmic representation

of this process Is

Activate structures based on major goal

— Any queries associated with active structures ?

YES - query user
activate additional structures or add
additional facts based on response

NO - no additional Information needed

Generic solution Is complete.

A simple descriptive example of this process Is given In

Appendix A.

Production of the final example

In this section we discuss the translation of the

generic solution Into a program for a particular package.

As mentioned earlier, this Involves mapping the generic

solution Into specific code elements (program statements or

keywords) for a particular statistical package. As such,

the system must have a representation of specific code

52

elements for all packages. Some examples of this

representation for the SAS package are*

sas(idi,"\ndata work; with the keyword data")
sas(ivar,"\ninput y x; as y and x").

The first predicate gives the SAS example code element and

its annotation for the structural element idi. Note that

the general annotation for this element is specialized by

combining the general annotation string "identifies

operation as data input" (see earlier example) with the

above string " with keyword data input".

Comments and Conclusions

The prototype implementation of EG Expert was

successful in showing that a software representation of the

consulting activity involved in answering "how do I"

questions was possible. However, there were some

shortcomings and concerns that led us not extend the

prototype into a full-scale system. These problems are

discussed below. Recognition of these problems and their

possible solutions steered us toward a new approach and the

development of EG Network which is described in Chapter 5.

Problems in implementation

It is important to recognize that the inference

procedures in EG Expert are independent of the particular

53

knowledge content. That Is, It does not matter to the

system what major topics are Included, what structural

elmnents are defined, or what particular languages are

supported as long as the knowledge is encoded in the

correct form. Of course, the more "knowledge" EG Expert

has encoded, the more "expert" the system will be - the

more situations it will be able to handle. This

characteristic should allow for easy extension and

modification of the knowledge within EG Expert. However, a

major problem in implementation came into play when trying

to extend this system to one of any reasonable magnitude.

That is, to one that could handle enough situations such

that it would be considered a useful system. Use of

statistical packages involve a wide range of applications

and It seems a formidable task to construct a system

capable of handling even a significant number of

interesting situations. Further, a knowledge base capable

of handling such might be so large as to be Intractable.

Related to this was a more general situation of being able

to fashion the knowledge base to suit the needs of any

particular consulting site. We did not necessarily see our

system as being one all-complete system which could be

generally distributed, but rather a skeleton system that,

for example, various departments could tailor to their

specific needs and applications. For example, an MIS

54

department might have a system focusing primarily on

applications of data manipulation and reporting versus one

Involving several applications of ANOVA problems.

A major problem In extensibility and/or modlflablllty

of the system Involved simple recognition and definition

(or redefinition) of a useful set of structural elements.

Keeping In mind that collections of the structural elements

together made up the general solution, elements had to be

defined In such a way that they spanned the requirements of

all particular packages supported by the system and to some

degree the requirements of all particular examples the

system could generate. Thus, changes in packages supported

and or application areas supported necessarily involved

changes in the set-up of the structural elements and their

relations. Since the relations become somewhat complicated

beyond any simple example, modification or addition of even

one element might produce cause for a restructuring of the

entire network or knowledge base. As a result, allowing

for extensibility of the system in a general and flexible

way would necessitate the production of a so-called

knowledge acquisition module to manage and oversee any

changes or additions to the knowledge base. The knowledge

acquisition module would contain metaknowledge or knowledge

about knowledge such that it could assist the producer in

adding or changing knowledge within the system. Production

55

of such a KAM seemed a major task and was not attempted,

rather a new approach was taken that removed the need for

such a module. Similar problems occur when trying to add

or modify the knowledge about particular coding for a

certain package.

A general conclusion we made was that the granularity

of the knowledge Involved on the system was too small. In

fact, as we will see In the next chapter, the granularity

could go as far as complete examples versus elements which

make up the examples.

Problems in Usability

More crucial than the problems described above in

terms of implementation involved short comings we observed

in the usability of the system from the user's standpoint.

The traditional expert system situation of reading a series

of questions, providing answers, and then finally getting

an answer seemed a bit Inflexible for the way we saw the

system as actually being used. A typical user might be

using the system not to obtain the answer to a specific

problem but rather to extend their knowledge in a more

general way. For example, a user interested in learning to

read data might be Interested in seeing several examples,

one involving data input from a file, one involving data

input from inline data, one from a system file existing on

56

an external drive, etc. EG Expert does not lend Itself

well to these types of Interactions. Rather, the user must

go through the same or an overlapping series of questions

for each unique example they wanted to see. Further, If

the user had a question about one very small detail of a

problem, in order to construct a complete example, the

system would still have to ask several questions for

completeness, eventually coming to the one that is

relevant. In other words, the user would be asked about

things they already know because EG Expert needs a complete

set of information to construct an example. We thought of

modifying EG Expert in such a way that users could indicate

or the system could deduce in some way the user's knowledge

prior to the query process being undertaken. In other

words, the system could form a user model about the user

and operate in a special way for unique classes of users.

This again seemed like a major undertaking that could be

avoided by simply rethinking the way in which such a system

could be implemented.

57

CHAPTER V. EG NETWORK - A KNOWLEDGE-BASED INFORMATION

SYSTEM FOR STATISTICAL PACKAGES

In this chapter, we describe EG Network, a knowledge-

based Information system for statistical packages. An

overview of the system Is given along with a description of

the Prolog Implementation of the example network. Finally,

methods for traversing the network are described.

Overview

EG Network represents a completely different approach

to the supporting of statistical software when compared to

EG Expert. Recall that EG Expert is a system capable of

directing a query process to extract information from a

user and then constructing a relevant example program based

on the user's responses. It was found that the query

process of EG Expert was much too inflexible for maximum

user benefit and the procedure for constructing examples

required knowledge constructs that were difficult to extend

and or modify. EG Network is meant to be a more user-

oriented system. It can be described as a knowledge-based

information system that contains an integrated collection

of example programs linked together in the form of a graph

or network. The system assists users in accessing relevant

58

information and sets of information within the network in

meaningful and flexible ways. Note that while EG Expert

involved querying a user and constructing an example

program, EG Network will contain already complete examples

and the emphasis will be more on the provision of

information to the user.

The core of EG Network is the network structure of

nodes and links. The nodes contain the text representing

example programs or program segments. The links represent

associations between the nodes (i.e., between the example

programs). A user will obtain information by moving

throughout the network, viewing the contents of relevant

nodes and making meaningful jumps to other interesting

nodes. The knowledge in EG Network thus consists of two

components. The first comes from the example programs.

Each example is a representation of how to accomplish a

certain task using a software package. This is the form of

knowledge that the user is directly interested in gaining

access to. The second comes from the links defined within

the network. Each link represents knowledge about how two

example programs are related. EG Network uses this

knowledge to assist the user in deciding which nodes are

relevant and which jumps are meaningful.

59

The Network of Examples

In order for EG Network to be able to assist users in

traversal of the example network, it needs to know how the

nodes (example programs) within the network are related.

In this section, we see how a hierarchical structuring of

the example programs gives rise to links within the

network.

At the highest level of this hierarchy is the concept

of a topic. Topics break examples into major areas such as

reading data and regression analysis. Within a topic,

example programs are further categorized by subject area.

Within the topic of regression analysis, for example, some

subject areas are specifying a model, creating output

datasets, and requesting variable selection routines.

Finally, within a particular subject area, examples are

further classified according to the level of detail

involved.

The highest level link between two nodes is directly

related to the topic level and is thus called a topic link

(tl). This link simply represents the fact that two

examples are from different major topic areas as shown in

Figure 12 (for SAS example programs). Example El is an

example program within the major topic area of regression.

Example E2 is an example program within the major topic

area of reading data. If a user were currently located at

60

example El, traversal via the tl link would take him to

example E2. Of course, many different topic links might

exist for any given node. To minimize the number of

defined links, a topic-entry example is assigned for each

major topic area. Any time a user moves within a

particular topic area for the first time, he will be

located at this topic-entry example. Topic links are then

only explicitly defined between topic-entry examples.

El E2

Proc Reg;
Model Y = XI - X5; <-[tl]->

Data One;
Infile "data.txt";
Input Y X1-X5;

Figure 12. Topic link

Within the same topic, we define another link between

two nodes called an across-subject link (asl). This link

represent the fact that two examples are about different

subjects within the same major topic group. Figure 13

shows two examples involving the major topic of regression

analysis. Example E3 is concerned with the subject of

variable selection in regression programs while example E4

is concerned with the subject of hypothesis testing of the

regression coefficients. Again, many possible across-

subject links could be defined within a large network of

61

examples. To minimize the number of explicitly defined

links, a subject-entry example is defined for each of the

subject areas within a topic. The first time a user moves

within a given subject area, he is located at this subject-

entry example. Across-subject links are then only

explicitly defined between subject-entry examples. Note

that in can be the case that a topic-entry example might

also serve as a subject-entry example for a particular

subject.

E3 E4

Proc Reg;
Model Y = XI - X5
/ Method=Stepwise;

<-(asl)->
Proc Reg;
Model Y = XI - X5;
Test Xl+X2=l;

Figuré 13. Across-subject link

A related link is the within-subject link (wsl). This

link connects two examples within the same subject area as

shown in Figure 14. Both examples here are about the

subject of variable selection in regression programs but

example E3 involves stepwise selection while example E4 is

involves forward selection. Within-subject links are

defined only for so-called primary examples within a

subject as defined below.

62

E3

Proc Reg;
Model Y = XI - X5
/ Method»Stepwlse;

< - (W 8 l) - >

E5

Proc Reg;
Model Y = XI - X5
/ Method=Forward;

Figure 14. Wlthln-subject link

Within a particular subject we can also define a

detall-of link (dol). Figure 15 shows that this link

simply represents the fact that one example Is a more

detailed version of another. In the context of our

organization, example E6 Is a detailed version of example

E3 because It contains an extra level of detail within the

code. Essentially, the two programs are examples of the

same procedure - stepwise regression. Example E6 however

is more detailed because It shows how to explicitly set the

entry significance level. If a user were currently viewing

example E3, a move to example E6 via the detail link might

be of interest.

Examples like EG, which is a more detailed version of

E3, is referred to as a secondary example within a subject.

Nodes like E3, which in this case is not a more detailed

version of some other example, is referred to as a primary

example. Within-subject links, explained above, are only

defined between primary examples. All subject-entry

63

examples are primary examples. Additional primary examples

can serve as entry points to other sub-subjects within a

particular subject area.

E3

Proc Reg;
Model Y = XI - X15
/ Method=Stepwi8e;

<—(dol)—

E6

Proc Reg;
Model Y = XI - X15
/ Method = : Stepwise
Slentry = .25;

Figure 15. Detall-of link

Two secondary example programs that are both details

of the same node are also related. This link is called a

same-detall-of link (sdo). Figure 16 shows this

association. These two programs are both more detailed

examples of the stepwise regression procedure in example

E3. Example E6 shows how to set the entry significance

level while example E7 shows how to set the stay

significance level. If a user were currently viewing

example E6, a move to E7 via the same-detall-of link might

be of interest.

E7

Proc Reg;
Model Y = XI - X15
/ Method=Stepwise;
Slstay - .20;

<-(sdo)->

E6

Proc Reg;
Model Y = XI - X15
/ Method = : Stepwise
Slentry = .25;

Figure 16. Same-detall-of link

64

The set of examples above (E1-E7) and the described

links might be pictured as a hierarchical network structure

as shown In Figure 17. In this simple example, there are

only two major topics: Regression and Data Input. The

topic-entry examples (**) are El and E2. Within the topic

of Regression, there are three subjects: Basic Regression,

Variable Selection, and Parameter Testing. The subject-

entry examples (*) are El, E3 and E4 respectively. Note

that El serves as both a topic-entry example and a subject-

entry example. Within the area of Variable Selection,

another primary example is found In E5. More detailed

examples of E3 are found in E6 and E7 (secondary examples).

Within this small example set of nodes, it is now easy

to identify all (8) possible links of the types defined

earlier. First there is a topic link defined between the

topic-entry examples. El and E2. Within the topic of

Regression, there are across-subject links defined between

all subject-entry examples. In this case, all possible

links are defined between examples El, E3, and E4. Within

the subject of Variable Selection, there is a within-

subject link between the primary examples E3 and E5. For

example E3, there are two detail-of links defined for the

secondary examples E6 and E7. Finally, examples E6 and E7

are linked via a same-detail-of link.

65

Note that for this set of seven examples, we have

defined a total of eight possible links. The links all

represent meaningful associations between examples. If, on

the other hand, we had attempted to define links between

all possible pairs of nodes, we would have had to define 21

such links (n[n~l]/2 in general). For a large set of

examples (which we would need to have a useful system),

defining all possible links and their meanings within the

knowledge base would be a difficult and many of the links

would not be very meaningful. By limiting our links to be

of a certain form, we are taking advantage of our heuristic

knowledge about how example programs can be usefully

related within our network. In terms of choosing

alternative links out of a given node, we are then reducing

the solution space from one of all other nodes to one of a

smaller set of nodes all of which satisfy one of a few

well-known relations.

Consider example El. Figure 17 show us that there are

three links leading from El: the topic link to E2, the

across-subject link to E3, and the across-subject link to

E4. Now, if a user has viewed the contents of node El and

now wishes to see another example, his choices are E2, E3,

or E4. These represent moves that the developer of the

knowledge base has deemed to be meaningful for a user.

Without these defined links, the user would be faced with a

66

Topics Regression

Basic Regression Variable Selection

**E1 *E3 E5

/ \
E6 E7

*E3 E5

/ \
E6 E7

Parameter Testing

*E3 E5

/ \
E6 E7

*E4

Topic; Data Input

Basic Data Input

**E2

Example descriptors

Elt Multiple regression
E2: Simple data input
E3: Stepwise selection
E4: Testing linear combination of parameters
E5: Forward selection
E6: Entry significance level
E7: Stay significance level

Links recognized

topic tl(El,E2)
across-subject asl(El,E3), asl(El,E4), asl(E3,E4)
within-subject wsl(E3,E5)
detail-of dol(E6,E3), dol(E7,E3)
same-detail-of sdo(E6,E7)

Figure 17. Network of examples

67

choice between all other nodes in the network (E2-E7 in

this example). Especially important is that the defined

links can give the user an indication of what type of

information he will be led to given his choice.

The defined links can also serve to limit the

allowable paths through the network. Given the links

defined in Figure 17, we see that the only way for a user

at El to view E7 is to first view E3. This makes sense

because the example in S7 is a more detailed version of the

example in E3. The links can thus represent prerequisites

information for certain examples. In this case, it makes

no sense to view node E7 if node E3 has not been viewed

first.

Another benefit of having a given set of predefined

links is that algorithms can be developed, in terms of

these links, that serve to make suggestions to the user

about which link is best given his current location. EG

Network can then "compute" its recommendations in terms of

link activation. In other words, if a user is currently

viewing an example program and wishes to be advised on what

example to see next, EG Network can provide this advice in

terms of a link or set of links. For example, the system

might recommend that the user "view a detail of the current

example" (execute a detail link) or "view another example

within the same subject" (execute a within-subject link).

68

A trivial example of a recommendation algorithm Is to

always give preference to a certain link type (e.g., an

across-subject link). A more complicated example might

involve ranking the links based on the amount of future

information available along paths given the choice.

Before describing the PROLOG implementation of the

network structure, we discuss a final type of link called

the "language link" (11) which associates two example

programs that accomplish the same thing but are implemented

in different package languages as shown in Figure 18.

Proc Reg;
Model Y = XI - X5; <-(11)->

Figuré 18. Language links

Regress c6 on 5
cl—c5.

These two programs are both examples of regression

programs, one being implemented in SAS the other in

Minitab. The existence of language links is kept simple by

the concept of parallel networks. Essentially this means

that the network shown in Figure 17 is replicated for each

package language supported and each node is associated with

its corresponding node in another language network via the

language link. Regardless of what languages are supported,

a language network for generic package called 'description'

69

is maintained. The examples in the generic language

network are not really program examples, but rather English

descriptions of the task to be carried out as shown in

Figure 19. The core network of examples and links can be

developed with respect to this generic language and can

thus represent examples of using statistical packages in

general versus using one particular package language.

Given this core network of examples and links, additional

language links can be easily incorporated into the network.

Proo Reg;
Model Y = XI - X5;
Output Out=Rstats
P=Yhat R=Resid

<—(11)—>
Outputs residuals
and predicted
values to dataset

Figuré 19. Language link SAS to description

Prolog Representation of the Example Network

The set of nodes within the network can be viewed as a

collection of frames structured like that shown in Figure

20. Within Prolog, this representation is accomplished

using a set of three predicates of the form

eg("E3","Variable Selection","none")
lang("E3","SAS","Proc Reg;\n Model ...")
entry_subject("El","E3").

70

Each eg() predicate has three entries. The first entry

corresponds to the node id slot and represents an internal

identification number for the node. The second entry is a

subject area descriptor. Sô, for the above example, node

E3 is within the subject area "Variable Selection". The

third entry corresponds to the Detail-Of slot and indicates

the id number of the node for which E3 is a detail of. In

this case, E3 is not the detail of any node so the entry is

"none". E3 can thus be identified as a primary example.

Figure 20. Frame representation of an example program

The lang() predicate also has three entries. The

first entry is again the id number and serves as a hard

link to the eg() predicate. The second entry tells us to

which particular language network the node belongs. In

this case, the example is for the SAS package. The third

entry is simply the text making up the actual program

Node id # t
Topic t
Topic_Entry :
Subject :
Subj ect_Entry %
Detail Of :

t E3
Regression
No
Variable Selection
Yes
None
SAS
"Proc Reg;
Model Y = XI - X5;
/ Method=Stepwise; "

Package
Text

71

example (\n Is a Prolog control code for a line feed).

Note that by separating the eg() and lang() predicates, we

can provide a more efficient representation of examples

across packages. Using this design, to add parallel

examples for the generic Description package and the

Minitab package, we simply need to add new lang()

predicates like

lang("2","Description","Forward Multiple regression")
lang("2","MTB","Stepwise c6 on variables cl-c5").

Note that the information on subject classification and

detail status need not be repeated across packages.

Furthermore, operations involving movements around the

network can be defined without regard to any particular

package.

The entry_subject() predicate simultaneously

identifies the topic-entry example and a particular

subject-entry example. The first entry is the id of the

topic-entry example, in this case node El. The second

entry is the id of a subject-entry example within the topic

associated with node El, in this case E3. An entry-

subject () predicate like this is used to identify each

subject-entry example. For example, if E4 is also a

subject-entry example, then the predicate

entry_subject("El","E2") would also be present. If a node

does not have an entry_subject() predicate associated with

72

It, then it is not a subject-entry example - "NO" entries

in the topic-entry and subject-entry slots are not

explicitly represented. Separation of this particular

piece of information was done primarily for convenience in

later operations.

An entire collection of these frame structures make up

a representation of the network of nodes. The set of

predicates for the topic of Regression for the network

shown in figure 17 are as follows (for languages SAS and

Description):

entry_subj ect("El","E3")
entry_subject("El","E4")

eg("El"t "Basic Examples","none")
eg("E3","Variable Selection","none")
eg("E5","Variable Selection","none")
eg("E6","Variable Selection","E3")
eg("E7","Variable Selection","E3")
eg("E4","Parameter Testing","none")

lang("El","Description","\n Multiple regression example.\n
\n Dependent variable is Y,\n independent variables
are XI X2\n X3 X4 and X5.")

lang("El","SAS","\n Proc Reg;\n Model Y = XI X2 X3 X4 X5;")
lang("E3","Description","\n Stepwise selection. ")
lang("E3","SAS","\n Proc Reg;\n Model Y = XI - X15 \n /

Method=Stepwise; ")
lang("E5","Description","\n Forward selection.")
lang("E5","SAS","\n Proc Reg;\n Model Y = XI - X15 \n /
Method=Forward; ")
lang("E6","Description","\n To set entry significance level

for \n stepwise method to .25.")
lang("E6","SAS","\n Proc Reg;\n Model Y = XI - X15 \n /

Method = Stepwise\n Slentry = .25;\n \n /*
Default is .15 */")

lang("E7","Description","\n To set stay significance level
for\n stepwise method to .10.")

73

lang("E7","SAS",'' \n Proc Reg;\n Model Y = XI - X15 \n /
Method = Stepwise\n Slstay = .10;\n \n /*
Default is .15 */")

lang("E4","Description","\n To test linear combinations of
\n parameters.")

lang("E4","SAS","\n Proc Reg; \n Model Y = XI - X5;\n Test
X1+X2-1;").

Within the EG Network design, this entire set of predicates

would be held externally in a file readable by the Prolog

package. A similar collection of nodes for other topics

would likewise be held in other external files, each topic

in its own file. The topics and their corresponding files

are recorded using predicates like

topic ("Data Input ", "data__eg. dba ")
topic("Regression","reg_eg.dba")
topic("Analysis of Variance","anova.dba")
topic ("Descriptive Statistics ", "desc__eg. dba ").

To keep track of the current topic, the predicate ifile()

is used. For example, if the current topic is Regression,

then the predicate ifile("Regression") is present in

working memory. When a topic is changed, the ifile()

predicate is replaced as necessary.

The nodes in the example network, represented by the

eg(), lang(), and entry_example() predicates described

above, reside in external data files. Links of the type

described earlier can now be defined in terms of the

predicate structures used to represent the nodes. These

definitions can be set up within the primary database

(knowledge base) as they are not dependent on the

74

particular Information In the external files, only the form

of the Information known to be present.

Given the eg() representation, we can immediately

define a within-subject link. In particular, consider the

Prolog statement

within-subject(X,Y)i-eg(X,Sl,_),
eg(Y,S2,_),
S1=S2.

The statement can be read in rule form as "IF node X is in

subject area SI, AND node Y is in subject area S2, AND SI

is the same as S2, THEN Nodes X and Y have within-subject

link."

It would seem that we could define an across-subject

link in a similar fashion, replacing the S1=S2 with S1<>S2.

However, recall that across-subject links are to be defined

only for subject-entry nodes. The appropriate definition

then uses the entry-subject() representation as

across-subject(X,Y)î-entry-subject(T,X),
entry-8ubject(T,Y).

The statement can be read in rule form as "IF node X is a

subject-entry example (under topic-entry example T), AND

node Y is a subject-entry example (under topic-entry

example T), THEN nodes X and Y have an across-subject

link."

This eg() representation also leads directly to the

definition of the detail-of link using the statement

75

detall-of(X,Y)t-eg(X,_,Y). The interpretation of this

statement is obvious given the structure if the eg() node.

In a similar fashion, the same-detail-of link can be

recognized via a Prolog statement like

same-detail-of(X,T):-eg(X,_,K),eg(Y,_,K).

This statement can be read as "IF node X is a detail of

node K, AND node Y is a detail of node K, THEN nodes X and

Y have a same-detail-of link."

Finally, topic links and language links are not

explicitly represented in forms like those given above.

This will become apparent in the next section where we

describe usage (traversal) of the example network.

Traversing the Network of Examples

À user obtains information from the system by moving

throughout the network and viewing nodes (examples). EG

Network's role is to assist the user in making the moves

and, thus, in deciding what information to view. This

assistance can come in terms of individual moves or sets of

moves (paths). For example, a user could request that EG

Network guide him through a particular topic, showing him

all relevant information in a meaningful order (this mode

is called user browsing). Alternatively, the user could

take the initiative and proceed through the network using

the provided mapping tools (this mode is called mapped

76

traversal). These two types of support have been fully

implemented and are described in this section. Other types

of traversal support have been experimented with and are

also described.

User browsing

When a user enters EG Network in browse mode, he sees

a list of topics from which he can choose. Selection of a

major topic area places the user at the topic-entry example

designated for that topic. Assume that the user selects

Regression analysis from the menu. The browse screen is

set up as shown in Figure 21.

The top of the browse screen has a status line

identifying the current topic and subject area. Three

windows labeled as <F9>, <F10>, and. <Actions> are also

present. <F9> and <F10> are windows to the textual content

of the current node. These windows can be opened to any of

the package networks supported. For example, in Figure 21

window <F10> is opened to the SAS network and thus the

window contains the SAS version of the current example.

Likewise, <F9> is opened to the Description network (the

generic package code) and thus contains a descriptive

version of the current example. At any one time then, a

user simultaneously views corresponding nodes from two of

77

Toplai Rasraaalea analytla Bubjaoti Baalo Bxaaplaa

— <*9> I Daaorlptlofl

Multipla ragraaalon aocaapla.

Dapandant vaxlabla la Y,

Indapandant varlablaa arm XI X2

X3 X4 and X5.

<Aotiooa>

- <F10> I SM

Pxoo Bag;

Modal Y - XI X2 X3 X4 X5;

Raxt Bxaapla > <PgDn>

Pxavloua Bxaapla i <PgUp>

Pravlou# Subjaet i <F7>

Raxt Subjaet i <Fe>

Haw Topic t <P6>

Figure 21. Browse screen with SAS example and Description

the parallel networks. Pressing the F9 or FIO function

keys toggle the contents of their respective windows. For

example, if the FIO function key is pressed for the above

example, the window closes to SAS and opens to the next

package network supported (like MINITAB). This process is

akin to moving to a new example via a language link.

Continually pressing the FIO key can thus show you the

current example implemented across various packages with

tha description of the example staying open in the <F9>

window. Appropriate settings of the <F9> and <F10> windows

78

can also provide the user with the screen shown in Figure

22. In this case, we are simultaneously viewing the same

example program implemented in MINITAB and SAS. If a move

is made to a different node (see below), the windows remain

linked to their respective packages and a new example,

implemented in both packages as above, is now shown. In

this regard, in moving through the network, we actually are

moving through the various package networks in a parallel

fashion. This process provides a very good way for

learning a new package given knowledge about another. For

example, a user who knows MINITAB could use the above setup

and browse through various familiar MINITAB examples and

see at the same time the corresponding SAS examples. Of

course, if no other package language is known, the

Description package provides the familiar examples. We now

describe how a user can move through various examples using

the browse tools supported by EG Network.

The <Actions> window shown in the above figures

identifies for the user what browsing actions are

available. When the user initially enters browse mode, EG

Network analyzes the set of examples and plans a somewhat

flexible p&th for the user to take. The path is

essentially an ordered list of nodes to visit and the user

proceeds through this ordering example by example using the

79

loplei R#gr###ioa analyala Subjaoti Baaio Bxaaplaa

- <F9> I MIIIITRB

KCB> Ragtaaa C8 on S CI C2 C3 C4 CS

- <no> I SM

Pxoe Rag;

Modal y - XI X2 X3 X4 XS;

—— <Jtatlona>

Raxt Bxaapla i <PgOn>

Pravloua Bscaapla i <FgUp>

Pxavloua Subjaot i <P7>

Maact Subjaot i <pa>

Haw Toplo I <F6>

Figure 22. Browse screen with MINITAB and SAS windows

PgDn and PgUp keys. In addition, the user can take larger

steps (at the subject level) using the <F7> and <F8> keys.

The path is developed using only knowledge about how

examples can be linked within the network. We now

exemplify this process using the set of examples shown in

Figure 17. To construct the path, EG Network first

accumulates a list of all subject-entry examples within the

topic chosen. The resulting list is {[El], [E3], [E4]>.

Note that the examples within the list are all connected

via across-subject links. By construction, the first

80

subject-entry example found will correspond to the topic-

entry example (El). The ordering of the other subject-

entry nodes is currently only dependent on the physical

location of the eg() constructs within the knowledge base;

that is, the examples are listed in the order they are

found (which corresponds to the order in which they were

entered into the knowledge base by the developer). The

procedure could be modified to allow for some form of index

ranking but this has not yet been done. The next step is

to expand this list around each of the subject-entry nodes.

This expansion involves adding to the list all of the

primary examples within each subject area or eguivalently,

adding all within-subject links to the subject-entry

examples. For the examples of Figure 17, the only other

primary example is E5 and the resulting list is thus {[El],

[E3, ES], [E4]}. Note that within the {} grouping, the

first examples of each of the [] groupings are linked via

across-subject links. Within a [] grouping, the examples

are linked via within-subject links. The final step is to

expand this list around each member, adding all detail-of

links from secondary examples. E6 and E7 both have detail-

of links to E3, so the resulting list is {[El], [E3, (E6,

E7), E5], [E4]}. All examples within the () groupings have

same-detail-of links between their members. Prolog

Implementation of this procedure is given in Appendix C.

81

As mentioned earlier, the user proceeds through this

ordering example by example using the PgDn and PgUp keys

and can take larger steps (at the subject level) using the

<F7> and <F8> keys. For example, If, within the middle of

a subject, the user finds that he Is no longer Interested

In seeing examples within that subject, he can use the F8

function key to Immediately move to the next subject-entry

example In the list. Likewise, the F7 key will take the

user back to entry-subject nodes previously viewed. Figure

23 shows the screen that might be present after the user

has hit the F8 function key from the situation In Figure 21

(these examples do not correspond to E1-E7 above). Notice

that the status line has Identified the new subject

descriptor and the window contents have been updated

accordingly.

A user continues to utilize the action keys as

necessary to traverse the network within the topic chosen.

In essence, by viewing sets of examples in this way the

user is receiving an example-based tutorial on the

particular topic chosen. Of course, the tutorial can be

specialized by the user if he chooses to skip less

interesting subjects. Finally, if a new topic is desired

at any time within the browse (before reaching end), the F6

function key can be used.

82

Soplai Ragrasalen analyala Subjaoti Nodal Spaolfioatloa

— <F9> I Daaorlptluu

Thlm axaapla flta mora than ona

xagraaalon modal for tha dapandant

variabla Y.

— <F10> i SM

Proa Rag;

Nodal Y •> XI X2 XI X4 XS;

Nodal Y - XI X2 X3;

Aetlona

Raxt Bxaapla s <PgDn>

Pravloua Bxaapla i <PgUp>

Pravloua flubjaot i <y7>

Maxt Subjaet : <P8>

Raw zopla I <Fft>

Figure 23. EG Network after executing next section move

Note that we have only provided the user with the

opportunity to move example by example or subject by

subject. It might seem that we should also provide

opportunities for movement sub-subject to sub-subject and

so on. However, recall that this mode is meant to be

guided not user controlled. That is, in this mode the user

is requesting that EG Network guide him through a

particular topic and show him all relevant information in a

83

meaningful order. Some variations on this mode have been

experimented with and are described later. The next

section deals with the opposite situation - a mode where

the user is in complete control of all movements within the

network. This mode is called mapped traversal.

trayesgsl

In user browsing mode, EG Network has pre-selected a

path through a topic of interest; that is, EG Network has

developed a suggested movement at each node. Mapped

traversal puts the movement decision at each node in the

hands of the user. EG Network's role in this case is to

let the user know what other Information is available and

provide him with the mechanisms for moving to that

information. In essence, mapped traversal mode involves

implementing the link movements described earlier and

allowing the user to choose which movement to make. Figure

24 shows the screen when a user enters mapped traversal

mode. Note that the only difference is in the actions

window - the two example windows operate as in user

browsing mode. The actions window lists five possible

actions the user can initiate. These are described below.

Other Subjects When a user selects this option,

the first thing EG Network does is to examine the network,

identifying all possible across-subject links and

84

accumulating their subject descriptors into a list. The

list is presented to the user who can then choose which

particular subject he wishes to move to. Figure 25 shows

the screen after a user has selected this option. Note on

the subject list that an asterisk (*) is placed next to all

subjects which have been viewed (in this case only the

current subject). Once a user selects one of the new

subject areas, EG Network executes the across-subject move

and places the user at the entry-subject example

corresponding to his selection. As was the case in

browsing mode, the ordering of the subject list is based on

the physical location of the eg() constructs within the

knowledge base - subjects are listed in the order they are

found. Again, the accumulating procedure could be modified

to allow for some form of index ranking but this has not

yet been done. This ranking could be entered at the time

that the knowledge base is developed or EG Network could

calculate a weighting number based on, for example, the

number of examples within that particular subject (assuming

that subjects with a lot of examples are the more important

subjects).

Recall that across-subject links are explicitly

defined only for subject-entry examples. Thus if the

current example being viewed is not a subject-entry

example, no across-subject links are found. In this

85

Toplei RagrMalon uuilysla Subjaeti Baalo Bxaaplaa

— <P9> I Daaorlptlon

Maltlpla ragcaaalon axample.

Mpandant varlabla la t,

indapandant vaxlablaa ara XI X2

X3 X4 and XS.

- <f10> I 8*8

Fxoa Dag;

Modal Y - XI X2 X3 X4 XS|

Xotloaa —

Otbar aubjaota < a

Qthar Examplaa i a

Oatalla i d

Othar Datalla i o

Othar Soploa i t

Figure 24. EG Network screen In mapped-traversal mode

situation, EG Network takes advantage of a concept called

Inheritance. Briefly, if 'Other Subjects' is chosen for

any non-subject-entry example, EG Network Identifies the

subject associated with the current example and 'inherits'

the across-subject links from the relevant subject-entry

example. Referring again to the examples in Figure 17, if

'Other Subjects' is requested for example E7, EG Network

will automatically associate with E7, the across-subjects

links attached to E3 (the relevant subject-entry example).

86

Topic: RagrMalon analyala Subject: Basic Sxaaplaa

— <F9> : Macriptioir

Nultipl# ragnaaicn «caapla.

Mpandant variabla ia Y,

indapandant variablaa ata XI X2

X3 X4 and XS.

Aotiona

- <Fio> : au

Free Rag;

Modal y - XI X2 X3 X4 XS)

Othar Subjaota : a

Otbar Bxaaplaa : a

Datailai Obhar Sub jacta

Othat D *Basle Bxaaplaa

Othar T Modal SpacKicaticn

Variabla Salactlon Boutinaa

Pit Option#

— Input Dmtaaata

Output Dataaata

Print Options

Intaractiva Fitting

Bypothaaia Xaating

Figure 25. Selection of Other Subjects

Other Examples The Other Examples action operates

much like the Other Subjects action except that the

relevant link is the within-subject link. Again, within-

subject links are defined only for primary examples within

a subject. Thus if 'Other Examples' is requested while

viewing a secondary example, EG Network associates with

that example, the within-subject links of the corresponding

primary example. For instance, if 'Other Examples' is

requested for the secondary example E7, the relevant

87

within-subject links are those associated with the primary

example E3 since E7 has a detail-of to E3.

Details The Details action accumulates a list of

all nodes which have a detail-of link to the current node

being viewed. Again, the user can select from a menu which

particular detail node he wishes to move to. No

inheritance procedures need be employed for this operation.

other Details The Other Details action accumulates

a list of nodes with a same-detail-of link to the current

node. This allows a user to directly move to a different

detail without first moving back to the detailed node and

reselecting the Details action. An example of the results

of using this action is shown in Figure 26. Originally,

the user was viewing a simple example on stepwise

regression. He then selected the Detail Action and moved

to the new example showing the specification of entry

significance levels. Finally, he has now selected the

Other Details action to view other examples which are also

details of the original simple stepwise regression example.

In this case, an asterisk (*) is placed next to all detail

nodes which have already been viewed.

Other Topics This action simply allows the user to

choose a new general topic and thus is an implementation of

the topic link.

88

Topic: Ragraaaion analyaia Subjacti Varlabla flalaotlon Routlnaa

— <*9> : Daacrlptiuu

To a#t entry aignlflcanea laval for

atapwia# aathod to .25.

Jtotiona

I- <F10> I BAB

Vroo Rag;

Nodal y - XI - XIS

/ Natbod " Stapwlaa

Slantxy - .29;

/* Dafault la .15 */

Otbar Sobjaota

Othax Sxaaplaa

Datalla

Otbar Dataila

Otbar Topi I

I a

I a

I d

I o

Otbar ..

*aatry alonifieanoa laval

atmy algnifloanoa laval

foroad vmriabl# inoliuion

Figure 26. Selection of Other Details

Other Methods

Shortcomings associated with each of the traversal

methods described above have led to additional experiments.

The first is most directly involved with user browsing.

For completeness sake, a network of examples might be very

large with some showing rather obscure features of a

package language that are only employed in rare instances

and others showing very detailed examples that might only

be of interest to a select few users. Since the path that

89

EG Network creates through a particular topic is complete,

involving all examples present in the knowledge base, a

user traversing the network via this path may be forced to

view examples that are not of interest to him. This is not

a severe problem since all the user need do is press the

PgDn key to go on. However, this brings up the point of

how EG Network might customize its created path based on

characteristics of a particular user. One simple solution

that has been experimented with is to label each example in

the knowledge base as being either a 'common' or an

'uncommon' application. EG Network still creates a

complete path but if the user so desires, the examples

marked uncommon can be masked out of the list and thus be

made unavailable to the user. At any time, however, the

user can switch modes and either have uncommon examples

included or excluded. This idea could be expanded upon to

allow for further subsetting of examples. For instance,

examples could be categorized as being appropriate for new,

common, or experienced users.

The above ideas are somewhat appealing, but have not

been pursued for the following reason. Under close

examination, it seems that the developer of the knowledge

base could avoid this problem by simply creating subject

groupings that correspond to different categories of users.

For instance, rather than create only a subject area called

90

"Data Input", one could create subjects called "Basic Data

Input", "Intermediate Data Input", and "Advanced Data

Input". This would eliminate the problem of a user seeing

inappropriate examples for their level of expertise.

Another traversal method experimented with is meant to

be a midpoint between the user browsing method, which

allows little user control, and the mapped traversal

method, which demands complete user control. This method

is called reactive traversal and involves incorporating

user feedback into EG Network's suggestive process. This

method is much like the user browsing method except that

the path is determined dynamically as the user traverses

the network and views examples. The process begins with EG

Network accumulating a list of examples (or a path) just as

was done in user browsing mode (in fact, the same list is

created). At each step along the path, however, EG Network

shows the user an example and then asks ior user feedback

on the example shown. This feedback is kept simple by

simply asking the user whether or not the example shown was

of interest. An affirmative response results in EG Network

showing the user the next example on the list. In fact, if

the user gives an affirmative response at every node, the

path followed will be exactly that which would be followed

under the user browsing method if the user simply paged

through the list. A negative response, on the other hand.

91

forces EG Network to reevaluate its next proposed move.

The new decision is based on where in the network the user

is currently located. Some examples of rules used in the

process for making such a new selection are given in

Appendix D. Once an alternative example is selected, the

user is shown that example and is now positioned at that

new choice on the list. So, the next example shown to the

user will be the next one on the list after the new

selection. The process continues as above form that point

on.

Comments

EG Network can help users traverse the example network

by either developing a path through the network for the

user to follow or by providing him with enough information

at each step so that he can make the decision. In the

former case, the resulting activity is system-initiated in

that the user has little input into what links are

traversed when. In the latter case, the resulting activity

is user-initiated in that the user decides what link to

traverse at each stage. Both modes are useful. If a user

knows nothing or very little about a package, he might wish

for the system to make all the decisions on what

information he sees. If, on the other hand, a user knows

the package fairly well, he might just be looking up how

92

some small detail or some Item that has been forgotten. In

this case, the user would like to be in complete control so

that only relevant information is viewed. Of course, EG

Network still provides assistance in this situation by

letting the user know what information is available where.

93

CHAPTER VI. SÏJMMARY

Knowledge-based programming techniques have typically

been used to develop statistical expert systems that help

users correctly apply a statistical tool. In this

research, we have investigated an alternative application.

In particular, we have shown that knowledge-based

programming techniques can be used to develop support

systems for users of statistical computer software.

Current statistical software packages (SAS for example) are

extremely powerful but program development can sometimes

prove time consuming and frustrating, especially for

inexperienced users. Furthermore, manuals for software are

often cumbersome and rarely contain the useful rules of

thumb or shortcuts employed by expert users. With respect

to these ideas, we consider knowledge-based systems that

can help people use and learn to use statistical software.

The first system developed, EG Expert, is a prototype

knowledge-based expert system designed to answer general

"how do I?" questions about statistical software. Using

knowledge about typical applications in statistical

software, EG Expert first queries a user to extract

information about his problem. Based on the information

received, the system then builds a generic description of

the example program to be generated. The generic example

94

is not specific to any particular package and can be

thought of as a pseudocode representation of the example.

EG Expert can then translate this generic example to any

particular package language using knowledge specifically

relating the generic elements with package commands.

The second system, EG Network is less like a

traditional expert system and more like an intelligent

information system. EG Network contains an integrated

collection of example programs linked together in the form

of a graph or network. A user obtains information from the

system by moving throughout the network and viewing nodes

(examples). EG Network's role is to assist the user in

making the moves and in deciding what information to view.

The emphasis of EG Network is more on the provision of

information to the user. The result is a system more

flexible from a user's standpoint and easier to produce and

maintain from a developer's standpoint.

Nevertheless, further research needs exist for EG

Network. The most pressing is the need to develop a

substantial database of examples and to submit the system

to extensive testing. We were able to evaluate the system

during the development process but feedback from potential

users is critical. Such feedback will help us to further

refine and develop the traversal methods implemented. In

addition, full scale development of a large database of

95

examples will allow us to better study the development

process and further refine the tools for such.

In conclusion, this work can be viewed from two

perspectives. First and foremost, it is an investigation

into the use of knowledge-based and related programming

techniques for statistical application. Most work in the

literature focus on the analysis aspect of statistical

applications of AI. Our work, on the other hand, focuses

on systems that can serve as assistants or a tools and make

a user more productive. Secondly, this work can be thought

of as an investigation into computer-based support for use

of computer software. Some work exists in the literature

regarding this topic but ours is the first to focus

specifically on statistical software. Furthermore, our

methods, in EG Network especially, differ substantially

from methods employed by others in this area.

96

BIBLIOGRAPHY

Bannon, L. J. 1986. Helping users help each other.
Pages 399-410 in D. A Norman and S. W. Draper, eds.
User Centered System Design. Lawrence-Erlbaum,
Hillsdale.

Barr, A., and E. Felgenbaum. 1981. The handbook of AI.
Pitman, Boston.

Blllmers, M. A., and M. 6. Carlflo. 1985. Building
knowledge-based operating system consultants.
Proceedings of the Second IEEE Conference on
Artificial Intelligence Applications, IEEE Computer
Society Press, Washington D.C., 449-454.

Bobrow, D. 6., and M. J. Stefic. 1986. Perspectives on
AI programming. Science 231(4741):951-957.

Buchanan, B. 6. and R. O. Duda. 1983. Principles of
rule-based expert systems. Pages 106-157 in M. C.
Yovits, ed. Advances in Computers. Academic Press,
New York.

Buchanan, B., and E. Shortliffe. 1984. Rule-based expert
systems: The MYCIN experiments of the Stanford
Heuristic Programming Project. Addison-Wesley,
Reading.

Campbell, J. A. 1984. Implementation of Prolog. Wiley,
New York.

Chambers, J. M. 1981. Some thoughts on expert software.
Computer Science and Statistics: Proceedings of the
13th Symposium on the Interface, Springer-Verlag, New
York, 36-40.

Clocksin, W. F., and C. S. Hellish. 1984. Programming in
Prolog. Springer-Verlag. New York.

Cohen, J. 1985. Describing Prolog by its interpretation
and compilation. CACM 28(12):1311-1324.

Colmerauer, A. 1985. Prolog in 10 figures. CACM
28(12):1296-1310.

97

Constant, P., S. Matwln, and S. Szpakowlcz. 1987.
Question-driven approach to the construction of
knowledge-based software advisor systems.
Proceedings of the Third Annual Conference on
Artificial Intelligence Applications, IEEE Computer
Society Press, Washington D.C., 29-35.

Coombs, M. J., ed. 1984. Developments in expert systems.
Academic Press, New York.

Coombs, M., and J. Alty. 1984. Expert systems % An
alternative paradigm. Pages 135-157 ia M. J. Coombs,
ed. Developments in Expert Systems. Academic Press,
London.

Davis, R. 1986. Knowledge-based systems. Science
231(4741):957-963.

Davis, R., and D. Lenat. 1982. Knowledge-based systems
in AI. McGraw-Hill, New York.

Duda, R., J. Gaschnig, and P. Hart. 1979. Model design
in the PROSPECTOR consultant system for mineral
exploration. Pages 153-167 in D. Michie, ed.
Expert Systems in the Microelectronic Age. Edinburgh
University Press, Edinburgh.

Fikes, R., and T. Kehler. 1985. The role of frame-based
representation in reasoning. CACM 28(9):904-920.

Fisher, E. 1986. Building AI behind closed doors.
Datamation 32(15)*46-50.

Forsyth, J., ed. 1984. Expert systems: Principles and
case studies. Chapman and Hall, New York.

Frost, R. 1986. Introduction to knowledge-based systems.
Collins, London.

Gale, W. A., ed. 1986. AI and statistics.
Addison-Wesley, Reading.

Gale, W. A., and D. Pregibon. 1984. An expert system for
regression analysis. Proceedings of the 14th
Symposium on the Interface of Computer Science and
Statistics, Springer-Verlag, New York, 110-117.

Generseth, M., and M. Ginsberg. 1985. Logic programming.
CACM 28(9):933-941.

98

Gottlnger, H. W. 1988. Statistical expert systems.
Expert Systems 5(3):186-195.

Hahn, 6. 1985. More Intelligent statistical software and
expert systemst Future directions. American
Statistician 39(1):1-8.

Hand, D. J. 1984. Statistical expert systems: Design.
The Statistician 33:351-370.

Hand, D. J. 1985. AI and psychiatry. Cambridge
University Press, Cambridge.

Hand, D. J. 1987. A statistical knowledge enhancement
system. Journal of the Royal Statistical Society
150:334-345.

Harmon, P., and D. King. 1985. Expert systems: AI in
business. John Wiley and Sons, New York.

Hartley, J., and M. Smith. 1986. Question ansering and
explanation giving in on-line help systems. Pages
339-359 la D. A Norman and S. W. Draper, eds. User
Centered System Design. Lawrence-Erlbaum, Hillsdale.

Hayes-Roth, F. 1985. Rule-based systems. CACM
10(4):921-932.

Johnson, L., and E. T. Keravnou. 1985. Expert systems
technology: A guide. Abacus Press, London.

Kluzniak, F., and S. Szpakowicz. 1985. Prolog for
programmers. Academic Press, New York.

Kowalik, J. S. 1986. Knowledge-based problem solving.
Prentice-Hall, Englewood Cliffs.

Kowalski, R. 1979. Logic for problem-solving. North
Holland, New York.

Lang, K., T. Lang, and R. Auld. 1981. Support for users
of operating systems and applications software.
International Journal of Man-Machine Studies 14:269-
282.

Lang, K., R. Auld, and T. Lang. 1982. The goals and
methods of computer users. International Journal of
Man-Machine Studies 17:375-399.

99

Leigh, W., 6. D. Huffman, and H. R. Souder. 1987. Aiding
and training novice computer users online with
executable documentation. Journal Educational
Technology Systems 15(1)t27-33.

McOermott, J. 1982. Rl% A rule-based configurer of
computer systems. AI 19(1):39-88.

Michaelsen, R., and 0. Michie. 1983. Expert systems in
business. Datamation 29(11)t240-246.

Michaelsen, R., D. Michie, and A. Boulanger. 1985. The
technology of expert systems. Byte 10(4)t303-312.

Minsky, M. 1975. A framework for representing knowledge.
Pages 211-277 in P. Winston, ed. The psychology of
Computer Vision. McGraw-Hill, New York.

Newell, A., and H. A. Simon. 1963. GPS, a program that
simulates human thought. Pages 279-293 in E.
Feigenbaum, ed. Computers and Thought. McGraw-Hill,
New York.

Newell, A., and H. A. Simon. 1972. Human problem
solving. Prentice-Hall, Englewood Cliffs.

O'Hare, 6. M., and D. A. Bell. 1985. The coexistence
approach to knowledge representation. Expert Systems
2(4):230-237.

O'Malley, C. E. 1986. Helping users help themselves.
Pages 377-398 in D. A Norman and S. W. Draper, eds.
User Centered System Design. Lawrence-Erlbaum,
Hillsdale.

Quillian, M. 1968. Semantic memory. Pages 227-270 in M.
Minsky, ed. Semantic Information Processing. MIT
Press, Cambridge.

Shrager, J., and T. Finin. 1982. An expert system that
volunteers advice. Proceedings of the National
Conference on Artificial Intelligence, AAAI, Menlo
Park, 339-340.

Skuce, D., R. Stanley, and B. Tauzovich. 1988. An expert
advisor that answers coding questions about
commercial fourth-generation software. International
Journal of Expert Systems 1(3):217-235.

100

Streltberg, B. 1989. On the nonexistence of expert
systems critical remarks on artificial intelligence
in statistics. Statistical Software Newsletter
14(2):55-62.

Walker, A. 1986. Knowledge systemsx Principles and
practice. IBM Journal of Research and Development
30(1):2-13.

Waterman, D. 1986. How do expert systems differ from
conventional programs. Expert Systems 3(1):16-19.

Wilensky, R., 7. Arens, and D. Chin. 1984. Talking to
UNIX in English* An overview of UC. CACM 27(6) i574-
593.

Winston, P. H. 1984. AI. Addison-Wesley, Reading.

101

ACKNOWLEDGEMENTS

I would like to thank my major professor. Dr. William

J. Kennedy, for his guidance and support throughout this

project. I would also like to acknowledge the rest of my

committee for their time and interests. Thanks also go to

everyone in the Statistics Lab for their friendship and

support.

I would also like to thank my family for all of their

love and support over my years in school. Special thanks

to my wife Nancy. Her constant love, understanding, and

encouragement made completion of this degree possible.

102

APPENDIX A. EG EXPERT INFERENCE PROCESS

103

User Indicates that they would like an example of reading
data.

System begins to look for structural elements associated
with major goal of readdata, finds

sisIdentify operation as data input
B2sgive name to data set created
B3sidenti^ source of data
84iidenti^ type of data

S3 instigates the query "Data to be input inline or from
external source", assume answer is external, add fact that
source of data is external.

84 instigates the query "Data in form of system or raw
values", assume answer is external, add fact that form of
data is external

No more queries found.

Additional structural elements identified based on facts
(external,raw):

s5: identify DOS file name containing data
s6: identify format of variables in input record
s7: identify variable names

Final generic program is sl-s?

identify operation as data input
give name to data set
identify source of data
identify type of data
identify DOS file name containing data
identify format of variables in input record
identify variable names

This generic form is now ready for conversion to any
package.

104

APPENDIX B. PROGRAM LISTING FOR EG NETWORK

105

ood#"304a

dOMlns
llat'ayBbol*

integer*

dmtmhmm#

•dMo(•yabel, atring)

t#rm(a%mbol)

q_topie(ayBbol)

llnk(ayabol,Byabol)

l«v#l(ayBbol,ayabal)

qMva(ayabol,ayabal, atring)

ogoaKayabol)

nat.quazy(ayabol,atrIng)

aoliat(liat)

ellat(llat)

•atap(ayabol)

•tapCayabol)

Bd(ayHbol)

aotiv#(a%mbol)

•IraadyCayabol)

baaa(a%mbol)

bel(intagar,ayabol)

ont(Integar)

final(ayabol)

bid

lang(ayabol,aynbol,string)

ifilatayabol)

lang_liat(liat)

nat_liat(liat)

laft_win(aymbol)

naxt(ayBbol)

nodatmila

avar(aymbol)

prav(ayabol)

r#f(aymbol)

rigbt_*dn(ayabol)

SMa(ayabol)

ag2(ay«bol,aymbol,aymbol) /* nod#,nat,d#t#il_of */

nat(aymbol)

coManda (ayabol, ayabol, aynbol)

inoluda "namitil.pro"

inoluda "manuZ.pro"

pradloatM

oh_m«#n(•trlng,atrlng,atrlng)

dathdra(Hat, Hat)

dattidra2 (Hat, Hat)

d#tmil(ay#bol)

othar.datall(aymbol)

oth#r_«K#mplm(ayabol)

otbar.iub jaot(ayabol)

••ka_lndaac

ohaok_t#rm(ayabol)

aaa#rt_t#taa (Hat)

t«zg«tjaatchaa(ayBbol,aynbol/ayabol)

gat_quary_atrlng(ayabol,atrlng)

•oaua(Hat)

opraoaaa(llat)

oov#r(Hat)

Uat(Hat)

oov*mat(Hat)

aaaroh

ovarvlaw

brama

•g2d«talla(ayabol)

«ll(Hat)

•llnat(llat)

ohaok(ohar)

oblld(ayabol,ayabol)

oiik.aaot (ayabol, ayabol)

obk_paaot(ayabol,ayabol)

ohk_laat(ayabol,ayabol)

obk_prav(ayabol,ayabol)

chkgoal(ayabol)

chlcaaan(ayabol)

olaaraot

olaarag

olaarold

elrdat

olrflla

oollaat(ayabol)

noollaot(ayabol)

do

doaxlt

aapty(Hat)

(—t_ood#(atrlng)

gat.codal(atrlng)

go(ayabol)

baaddlat, ayabol)

haadar3

ln(ayabol,llat)

•ohX(ayabol,ayabol)

107

•axk.llat(list,syafaol)

•goal

naKt_a*atloa(ayabol,11at,ayabol)

nmKt_noo#(ayabol, Hat, ayabol)

naxt.dat (ayabol, Hat, ayabol)

n#%t_up(ayabol. Hat, ayabol)

prav.aaotlen (ayabol, Hat, ayabol)

qnaoct_a«etlon(ayabol, Hat, ayabol)

procasa(kay)

rapaat

apaclal

atart

apHt(Hat,ayabol, Hat)

aubHat(Hat, Hat)

tall (Hat, ayabol)

topic(ayabol,ayabol)

walt(k#y)

wrlta_all(Hat)

procaaa_qaaty

aount_aatahaa(ayabol. Hat, Intagar)

atr_to_Hat(atrlng. Hat)

otiaokin(ayabol,Hat, Intagar)

aatcboa (Hat, Hat, Intagar)

olauaaa

/* Sat up for wlndawa */

mgoal:-

ratractall(cHat(_)) ,ratractall(aaHat(_)),

ratraatall(Hnk(_,_)),

BBkawlndQW(l,14,lS,"",l,0,10,S0), /* laCt window */

aakawlndaw(2,l2,0," Maaaagaa ",6,0,1,40), /• dialogua window *!

•akawlndaw(4,12,15," Actlona ",0,40,10,30), /* aotlona window */

•Bkawlndaw(3,13,15,"",10,0,18,80), /* right window */

aakawlndowC10,7,0,,0,0,8,40),

atalftwlndcwC1),alaarwlndaw,

ahlftwlndow(3),alaazwlndow,

aiilf twlndaw(4) ,alaarwlnduir,

ahlftwlndow(2),claarwlndow,

ablftwlndow(10),claarwlndow,

aakawlndaw(9,26,0,*",0,0,2S,80),

ahlftwlndow(9),

claarwlndow,

aakewlndow(8,26,l5," Walcoaa to SXMffiLSS I ",4,10,10,60),

atart, do.

/* Baalc loop and aatup "/

108

(loi-npMt,walt(X) ,pxoeM«(X)« fall.

Malt(X) I -rMulkay (X).

mlt(X)i-wait(X).

tapaat.

npaati-rapMt.

ohkgoalC"btowaa*)i-aaaart(ogaal(tarawa«)),

ptooaaa(fkay(6)) ,alilftwlndaw(8) ,r#mova*lndow,

all(L),qaort(L,ai,),aaa#rt(lang_ll"t(8L)),

allMt(ll) ,aaaart(nat_llat(N)),

aaaart(rl9ht_wln("BM")),

aaaart(laft_wln("Daaarlptlon")),

ahiftwindow(4),

broma,

I.

ohkgoaK "aaaroh") i-aaaart(agoal(aMroh)),

procaaa (fkay (6)), ahift*lmdo*(8), raawvawlndow,

•11(L),qaort(L,SL),aaaart(lanfl_llat(SL)),

allMt(H) ,aaaart(nat_llat(N)),

aaaart(rlgbt_wlD("8*8")),

aaaart(l«ft_wln("Daaarlptlon")),

ahlftwindow(4),

aaarob,

% •
chkgoal("ovarvlaw"):-aaaar̂ (ogoal(ovmrvlaw)),

proaiiaa(fkay(6)), ablf twlndowf 8) .ranovawlndow,

•11(L),qaort(L,aL),aaaart(langLllat(SL)),

allnat(N),aaaart(nat_llat(N)),

•##art(rigbt_win("aAS")),

aaaart(laft_wln("Daaarlptlon")),

ahlft*indow(4),

ovarvlaw,

I.

abkgoal ("apaolal") i -procaaa (fkay (6)), ahi ftwlndaw(8), ramovawindow,

all(L),qaort(L,SL),aaaart(lang_llat(SL)),

allnat(N),aaaart(nat_liat(N)),

aaa#rt(rigbt_wlu("aW)),

•aamrt(l«ft_wln("Daaarlptlon")),

ahlftwlndaw(4),

apaolal,

I.

ohkgoal(X)s-wrlta(X," not yat avallabla I"),raa(lln(_),olaazwlndow,abiftwlndo*i(4),

atart:-ahlftwlndow(8),wrlt#("0oal 7 "),r#adln(0),ohkgoal(0),l.

109

n«ct_Matieii(A,L, "noil") t -nioct_alaMat3 (A,L, "null").

n«ct_Motlon(A,L,B) i-«g2(A,M,_) ,n«t_«l«Mnt2(A,li,B) ,ag2(B,Rl,_) flloHl.

n«ct_Matlon(A,L,C) i-n«xt_alMMnt2(A,Ii,B) ,n«Kt_Matlon(B,L,C).

nmt_non*(A,L, "null") :-n#Kt_*l#m#nt2(A,I,, "noil").

n«t_non«(A,Xi,B)i-ag2(A,_,_),n«ct_al«Hnt2(A,L,B),ag2(B,_,"nona").

nagct_nena(A,L,C) i-n«(t_alaMnt2(A,L,B) ,naxt_nona(B,L,C).

n«ct_dat(D, [H|_],H):-ag2(H,_,D).

nagct_dat(D, [_| V] ,B) i-naxt_dat(D,T,B).

naxt.upCA, [B|J ,B) i-«g2(B,_,D),otaUd(A,D).

n«ct_up(D, [_|T] ,B) i-naKt_up(o,T,B).

aplit([H|T],a,T).
apllt([_|T] ,H,I1) :-mplit(T,B,Tl).

pxav_aaatlon(A,L,C) i-ravazaa(L,Ll),naxt_aaatlaa(A,Ll,B) ,ag2(B,N,_) ,«g2(C,H,_).

qnaxt_aaatlon(A,L,A) i-na)ct_alaMnt2(A,L,"nttll").

qnaxt_aaetlon(A,L,B)i-ag2(A,H,_),naxt_alaaant2(A,L,B),ag2(B,Hl,_) ,H<>N1,

nat_quaxy(Ml,Q),

•ak«MlndoM(e, 26, IS, "" ,4,12,6,60), abietwindow(8) ,ala«rwlnda«r,
wrlta(g),raadahat(R),xamovawindaw,ataaok(R).

qna]ct_aaetlon(A,L,C)i-na)ct_alaMnt2(A,L,B),qnaxt_8aotlon(B,L,C).

ohk_laat(_,"null")i-Bblftwlndaw(10),flald_atr(7,0,35," Laat axaapla t"),Bhlftwlndow(4),I.

/* atak_laat(A,N)i-ag2(A,Nl,_),ag2(N,II2,_),Nl<>N2,alil£twindow(10),flald_8tr(7,0,3S," Laat axanpla in

thla aaotlon i"),alii£twlndaw(4),!.*/

ohfc_laat(A,N)i-ratraot(aatlva(A)),aaaart(aotlva(N)),go(N),I.

ohlc_prav(_,"null")i-ahi£twlndaw(10),flald_atr(7,0,3S," Flrat axaapla I"),mhi£twindow(4),I.

/* chk_pr«v(A,H)t-ag2(A,Hl,_),ag2(N,H2,_),Nl<>N2,ahl£twindow(10),£lald_8tr(7,0,3S,'' Flrat axaapla In

thia aaotlon l"),abl£twlndcw(4),i.*/

ohk_prav(A,N)i-ratraot(aotlva(A)),aaaart(aotlva(N)),go(N),I.

obk_aaat<A,N)i-ag2(A,Hl,_),ag2(H,N2,_),Hl-N2,abl£twlndow(10),£lald_atx(7,0,35," Laat Saotlon £or tbla

topic l"),ahi£t*indow(4),l.

ohk_aaot(A,N)t-iatraot(aotiva(A)),a#aart(aotiva(N)),go(N),I.

ahkjpaaot(A,N):-ag2(A,Rl,_),ag2(N,H2,_),Nl-(t2,ahlftwlndaiir(10),flald_atr(7,0,35,'' FlraC Saotlon for

thla topic l"),ahlftwlndatr(4),l.

obk_paaot(A,N)i-ratract(actlva(A)),aa8art(aotiva(N)),go(N),t.

/* Procaaa Xayatroka Ccaaanda */

110

ptocwas(fkay(1)) I-piaaaM(pgdn), I.

pxoeMS(C1wy<2)) i-aotlva(A) ,aallBt(L) ,taMd(L,A}, I.

proeua(fkayC 2)) t -aotlvaCA) ,aallat(L) ,haad(L,H) ,

n«nct_aaatlon(A,L,B),

ratrmot(aotiva(A)),ma«att(*otiva(B)),go(B),I.

pxacMaa(f)cay(2)) i-aotlva(A) ,aollat(Xi) ,haad(L,B) ,not(link(a,A)),

ag2(A,0, "noiM*) ,naxt_iioiw(A,L,lf) ,ag2(M,0, *nona*),
catraat(aotlva(A)) ,aaaart(aatlva(M)) ,go(ll), I.

pzoaaaa(fkay(2)) i-aotlva(A) ,aollat(L) ,haad(L,B) ,not(link(B,A)),

ag2(A,a,"iioM"),nBtt_noiM(A,L,N),ag2(M,01,"nona''),a<>ai,

naxt_8aatloii(A,L,B),

ratraet(aatlva(A)),aaMrt(aotlva(B)) ,go(B), 1.

p£aoaaa(fkMy(2)) t-aotlva(A) ,aallat(l),apllt(L,A,Ll) ,ag2(A,_,D) ,iiaxt_dat(0,Ll,N),

ratraot(aatlva(A)),aaaaxt(aotlva(N)),go(N),I.

pxoeaaa(fkay(2))i-aoeiva(A),aallat(L) ,apUt(L,A,Ll) ,n«t_ttp(A,Ll,R),

xatraot(aatlva(A)),aaaart(aetlva(N)),go(N),I.

pxacaaa(flMy(2))i-aativa(A),as2(A,M«D),ag2(D,N,''iioiia*),aaliBt(L),
nwt_alaMiit2(A,L,B) ,ag2(B,_, "nana*),

ratraot(aotlva(A)),aaaart(aatlva(B)),go(B),I.

prooaBB(fkmyC 2)):-aotiva(A) ,writ#("*ô anggaatlon (n«ct)")«aollat(L),

n«ct_alaaant2(A,L,B) ,iatxaat(aqtlva(A)) ,asMrt(aativa(B)),

ga(B),l.

procaaB(fkay(4))t-aatlva(N),
•tk«wliidaw(S,26,15,''Laval",4,12,6,60),Bhlftwlndow(e),alaaxvrlndcw,

xaadln(Laval),

aBBart(laval(R,Laval)) «raanvawlndow, I.

/* Look around */

/• pxooaaB(fkay(7)):-aotiva(A),flndall(X,qBova(A,_,X),L),
manu(16,41,120,120,1,"Info Availabla",1,C)r

writa(C),l.

* /

f* Changa Saotlona */

pxocaa8(ekay(8)) i-ogaal(bxowaa) ,aotlva(A) ,ollat(L) ,nwct_aactlon(A,L,M) ,chk_a«ct(A,N), I.

proc#aa((kay(7)) i-ogoal(brcwaa) ,aotlva(A) ,allat(L),p-av_aaotlon(A,L,N),chk_paact(A,N), I.

pxocaaa(eKay(8)) i-agoal(apaaial) ,aatlva(A) ,oll«t(L) ,qnaxt_aaatioa(A,Ii,ll),

ag2(K,m,_) ,uat_quazy(ini,M) ,ratraot(aoll8t(_)),
•axK_llat(L,N),findall(X,aatap(X),L1),ratraatall(aatap(_)),

aMart(aollat(Iil)),

ohk_»aot(A,N),l.

Ill

pxaciMi(fkay(6)) i -ol«#rold,olr(il#, (ind#ll(T,topic(T,_)

m«au(16,41,130,130,Tlimt,"Cboo## a Xopla",l,C),

plak(C,Tllat,K) ,topia(K,Ill*) ,a3clatflla(Pll«),

aaa«rt(lfll«(rll«)),oonault(Fll«),

ablftwliidow(lO) ,alaazwlndaw,atr_lan(X,llI),

flald_8ta:(2,l,7,"Itoploi

£l*ld_atr(2,8,III,K) ,Cl«ld_attr(2,8,NI,15),

/*ogaal(a),

mtr_lmi(a,m), flald_atr(1,1,7, "Mod#: "),

flald_atr(l,8,lia,0),fl«ld_attx(l,8,Ra,lS),«/i.

prooammffkay(6))i"Pila not avallabla"),nl,l.

/* Toggla laft window »/

pzocaaa(fkay(9))i-laft_%dn(R) ,langLllat([H|T]),naxt_lang(R, [B|T] ,

ratraatall(laftjMln(_)),a«sart(laft_win(R)),

aotiva(A),go(A),i.

/* Toggla tight window */

pzoaaaa(fKay(10)) i-right_win(R} ,lang_liat([H|S]) ,iMxt_lang(R, [B|S] ,N,B),

xatraatall(rlght_win(_)),aaaart(right_win(M)),

aotiva(A),go(A),l.

prac«aa(pgdn) i-aativa(A),acliBt(L) ,naxt_alaB8nt2(A,L,N) ,ahk_laat(A,N), I.

pxocoaa(pgup) i-aativa(A) ,aaliat(L) ,pxav_alaMnt(A,L,N) ,chk_prav(A,R), I.

ptocaaa(baaa)i-iatraatall(aativa(_)),aoliat(L),haad(L,R),

aaaart(aotiva(R)),go(N),I.

pxocaaa(aiid) i-ratraatall(activa(_)) ,aoliat(L) ,tall(L,R),

aaaart(aotiva(R)),go(H),I.

/» Quit (Kao) •/

ptoeaaa(aac) «-doaocit.

pracaaa(obar('q'))>-pxocaaa.quaxy,I.

procaaa(obar('w'))i-Mdcairiiidow(14,26,15," Quary ",1,1,5,65),shlftwindaw(14),

olaarwiiidaw,wxita("Input Daaoxiptori "),nl,raadln(Q),

aotiva(X) ,aaaart(odaao(X,Q)),claaxwindow,r«aovawindmr, I.

procaaa(ohar('d'))i-findall(D,datail(D),L),dathdta(L,Hliat),

manu(16,69,120,120,Hliat,"Othar ... ",1,C),

plok(C,L,K),

ratraatall(actlva(_)),a##art(aotiva(K)),go(K),i.

112

pcaMM(ohar('o')) i-flndall(0,othar_dat«ll(D) ,L),d#thdrm(Ii,Hli#t),

•«iu(16,69,120,130,ailat,"0thar ... ",1,0),

plok(C,L,X),

r#trmct#H(*otlv#(_)) ,aM#rt(motiv#(K)) ,ga(X), I.

proo###(oh*r('•'))> -f lndall(D,otiwr_«caapla(D) ,L) ,datlidn(L,Bllat),

manu(16,69,130,120,Bliat,"Othar ... ",1,0),

plek(C,L,X),

ratraatall(aatlva(_)),aaaart(aotlva(X)),go(X),I.

piocasa(otiar('a')) s-flndall(D,otl)ar_aubjaat(D),L) ,datiidta2(L,BllBt),

•anu(16,69,130,120,Bll8t,*Othar ... ",1,0),

plak(C,L,X),

ratraotall(aotiv#(_)),aaaart(aotiva(K)),go(K),I.

ptocia8a(obar('t')) i -flndall(T,topla(T,_) ,L),

manu(16,69,120,120,1,,"Othar ... ",1,C),

plak(C,I,,X),

ratraotall(aatlva(_)),«aaart(aetlva(X)),go(K),I.

/* Edit axlatlng axaapla - languaga */

prooaaa(ohar(' 1')) i-laftjirln(X) ,aotlva(R) ,lang(N,X,Coda),

makawindow(9,26,15,X,0,0,15,40),gotowindow(9),

adltMg(Coda,Neoda,"","*,"ldlt axaapla daaerlptlon",0,••,_),

xatraot(lang(N,X,Coda)),aaaaxt(lang(N,X,Naoda)),ramovawindaw,

go(N),i.

prooaaa(o)̂ ('2')) i-rlgbt_trln(X) ,aotlva(R) ,lang(H,X,Coda),

Bakawlndaw(9,26,15,X,0,40,15,40),gotcwlndow(9),

adltMg(Coda,Heoda,"Edit axaqpla daaoription",0,"",_),

ratraot(lai>g(R,X,Codo)),aaaart(lang(R,X,Ncoda)),raBovawlndcw,

go(H),i.

pToo#a#<ohar('<'))> -rlgbt_wlii(X) ,«ctlva(H) ,lanff (N,X,Coda},

•akawindowC 9,26,15 ,X, 10,0, IS, 80) ,gocawliidow(9),

dlaplay(Coda),raaovawlndow,I.

pracaaa(X)i-aliiftwlndaw(2),alaazwlndow,wrlta("Kay not racognizadi ",X),

baadar3,aativa(L),go(L),I.

/* Baadar4 Routinaa */

baadatS I-ogoal(browaa), activa (_), abl£twlndow(4) ,olaaiwlndaw,nl,

wrlta(" Haxt Bxaapla < <PgOn>\n''),

wrlta(" Pzavloua Bxaapla i <FgUp>\n\n"),

writa(" Pzavloua Saotlon s <F7>\n"),

wrlta(" Haxt Sactloa t <P8>\n").

baadar]t-cgoal(ovarvlaw),activa(_),ablftwlndaw(4),claazwlndcw,nl,

vorltaC Intaraatad : <Pl>\n"),

113

wrlt«(" Mot Intanatad i <P2>\n").

hMdara.

go(Id)i-ag2(Id,ll,_),ehkM«a(Zd),hM(tor3,

•iilftwlndcw(lO),fl«ld_str(4,0,38," amotion:

f i#ld_attr (4,0,38,7), mtr_l«n(N,III),

fi#ld_mtr(4,10,NI,M),fi#ld_mttr(4,10,NI,15),

fi«ld_#tr(7,0,38," •),fi«ld_«tr(6,0,5,Id),

•hiftwindow(1), olMuwindow, l«ft_win (L), g#t_ood#l (Cod#),

eeneat(" <79> i ",1,1,1),
gri—idndow(19,tl,l,"\2ia\191\192\217\196\179"),

window_atc(Ceda),

•bi{twlndow(3) ,ol«azwindair,right_«dn(R) ,g#t_ood#(BCod#),

aoncat(" <riO> i ",R,R1),

fraMWindaH(lS,Rl,l,"\201\lB7\300\188\209\186"),

fxaMWindaw(19,81,1, "\218\191\192\217\196\179"),

windcw_atx(RCoda),ahi:twindaw(4).

/*,nmt(N),

oanoat(" Saotion i ",W,W1),

framawindow(15,Ml,l,'\301\187\200\188\205\186").•/

g#t_coda(Cod#) t-right_win(X) ,aativa(ll) ,lang(H,X,Coda), I.

gat_coda("\n No Bxaapla Availabla").

gat_codal(Coda) i-laet_wln(X) ,aatlva(N) ,lang(ll,X,Coda), I.

gat_codal("No Bxaapla Availabla").

topio (•jCaat2", "t#at2. dba").

topic("Rtaat","rtaat.dba").

topic("Data input and manipulation","naw3.dba").

topic("Ragraaaion analyala","xnaw2.dba").

topio("Analyaia of Vaxianca","X").

topic("Daaoriptiva Statiatioa", "X").

/* Claar databaa# for naw topio */

alxfilai-xatraatall(l£ila(_)).

olrdati-ratraatall(nat(_)).

claaroldi-olaaxag,olaataat,olxdat,xatraotall(raf(_)),ratraotall(lang_liat(_)),

ratraotall(nat_liat(_)),£atraatall(aaan(_)),£atraotall(baaa(_)).

claaragi-xatcaotall(ag2(_,_,_)),ratraotall(lang(_,_,_)).

alaaraati-ratraotall(aotiva(_)),ratractall(£igtat_viin(_)),xatraatall(laft_win(_)),

ratractalK aaan(_)),£atractall(basa(_)).

doaxiti-iCila(X),olxdat,clsa£aat,ol£Clla,abi£twlndaw(2),

£atraotall(nat_liat(_)),ratractall(lang_liat(_)),

r#tractall(oliat(_)),xatraatall(acli8t(_)),

ratraatall(ogoal(_)),

wxita("8ava changaa 7 "),xaadchar(Clik),ohaok(Chk),

aava(X),ramovawindow,claarold,

114

#hiftwindow(1), xMovawlndew,
•lilftwlndow(3), rmnvMdndcM,
•xlt.

ebaak('n')I-I,fall.
abaak(_).

oollaat(B) i -lang(_,H,_) ,not(«lrMdy(B)) «••••rt(alrMdy(B)).
•11(L) i-flndaU(B,aollaot(B) ,L) ,r«traotall(alzMdy(_)).

iiaollaat(B) i-ag2(_,B, "non#"), not(mlr#mdy(B)) ,UMrt(alr#ady(B)).
•llnet(L) i-flndall(B,naoll#at(B) ,L) ,r#traotall(ali-Muly(_)).

h»md([B{_],B).

tall(tB|[]],B).
t*ll([_,«|[)],T)i-l.
trnlK :-t*ll(T,P).

ln(X,[X|_])i-l.
ln(X,[_|*])i-ln(X,Y).

•ubllat([],_).
•ubllat([BIT],L)t-ln(B,L),mubli#t(T,L).

abks##n(Id)i-m##n(Id),1.
ahkM#n(ld) :-a«#«rt(m##n(Id)), i.

Mpty((I).

/* 8#aroh ooNwrnda */

/" Number of Itaaa In llatl that ara alao in llat2 */
•atehaa([],_,0).
•atoh#a([Bl|Tl],L2,N)i-ah#olcln(Bl,L2,T),Batataaa(Tl,L2,K),N>KfT.

/* Bvaluataa to 1 If X la In Llat, alaa 0 */
ctaaokln(X,£,1)i-ln(X,L).
obaalcln(X,Ii,0) i-not(ln(X,L)).

/* ahaokaatob(Noda,Nuab*ri-ag(Mod*,Taxt,_,

atr_to_llat(,t])s-l.
atr_to_llat("
atr_to_llat("\n",t1)i-l.
8tr_to_llat(StrlDg, [H|T]) : -fronttokai<{ String,a ,a#at),

Btr_to_liat(Raat,T).

115

eouiit_MtalMa(ll«ny,Count) t-
•B2(II,_,_) ,fl«t_qu«ry_«tring(II,ï) ,Btr_to_Xl«t(T,Tll«t),

Mmtoh##(K#y,Tli«t,Count).

gatjqu«ry_etrlng(ll,T) i-q_topla(Q) ,lang(N,g,T).

pracaM_quaiyi-wrlta("Kay In quaxy :"),raadln(Q),atr_to_liat(Q,Qliat),

nl,writa_all(Qliat).

writ#_all(Q):-count_matohaa(N,Q,Count),writa("Nod# ",N," haa Count,

" matehaaXn"),r#adln(_),fail.

wtit#_all(_).

#g2dataila(B):-ag2(D,_,:),writ#(" Mtalli ",r>),nl.

ohild(c,A)I-•g2(C,_,A).

ehlld(C,A) i-og2(B,_,A) ,alilld(C,B).

aooum(P):-r#txaatall(atap(_)),nat_ll»t(L),oov#r(L),findall(X,atap(X),P),

r#traotaU(atap(_)).

oov#x([]).

oav#r([B|I])i-flndall(X,ag2(X,B,"nona"),L),cov#rn#t(L),cov#t(T).

cov#rn#t([]).

eovarn#t(,(B|T]) i-flndall(X,eg2(X,_,B) ,I,),aaaart(#tap(B)) ,covaxnat(L) ,covarn#t(T).

browa#t-acouB(L),aaaart(cllBt(L)),aaaazt(<wllat(L)),opxocaaa(L).

oprac#aa([B|_]):-r#ttaotall(aotiv#(_)),aaa#rt(aativa(B)),go(B),I.

ap#aiali-aaa#rt(cgoal(apaalal)) ,aooua(X>),aaaart(ollat(L)) ,nark_llat(li,"coBBon"),

flndall(X,aat#p(X),L1),r#ttactall(aat#p(_)),

aaaart(aollat(Ll)) /oproc#aa(Iil).

ovarvi#*: -aooum(L) ,aaa#rt(ollat(I,)) ,aaaact(aoliat(L)) ,aprocaaa(L).

/*mark_liat(L, "coaon"),

Clndall(X,aatap(X),Ll),z#tractall(aatap(_)),

aaa#rt(aoUat(Ll)) ,̂ rocaaa(Ll).

• /

mark_llat([],_).

«ark_liat([BIT],M)*-#ohk(B,M),=ark_liat(r,M).

nchk(B,M)i-ag2(B,_,_),lav#l(B,N) ,aaaart(aatap(B)),i.

K!hk(_,_).

116

/*(ind*ll(N,n#t_qu»ty(W,"null"),Wli#t),oov#:(Nlimt),findmll(X,«t«p(X) ,P),

m«m#rt(oli«t(P)) ,oproeMa(V), I.

• /

list([]).

llBt([B|T])t-ag2(H,R,D),writ«(ll,' • ",B," * '',b),nl,llat(I).

##mrohi-#oouM(Ii),####rt(oli«t(Ii)) ,aH*zt(aollat(L)) ,optoo##«(I,),

mmkwimdow! 14,26,15," SMXob TWplat# ",S,S,lS,6S),ablCtHlndaw(14),

alMxwladaN,nl,

wrlta(" DMoriptlva twna t \n"),nl,

mitml* Target pmokag# i \n"),

wrlta(" Target tanw i \n"),nl,

writ#(" MfaraoM paokag* i \n"),

writ#(" RafaraoM taraa i \n"),

ounor (l,21),r#adln(D),

ourwr (3,21),r#adlu(T),

cniraer (4,21),r#mdln(TT),

ourwr (6,21),r#adln(R),

ouraor (7,21),raadln(ia),

•tr_to_llat(D,Dllat),nl,aa«art(q_tapio("Daaorlptlon")),

writ#("Daaoriptiv# Mitotiaa"),nl,wrlt«_all(01iat),ratractall(q_tppla(_)),

targat_Mtabaa(•Targat",T,ra) ,targat_mmtobam("Rafaranea",R,RI),

raa(Un(_) ,r«nvawlndow().

targat_Mtohaa(P,T,_)t-not(lang(_,T,_)),wrlta(P,<' not avallabla ").

targat_Batohaa(P,T,IT):-lamg(_,T,_),

atr_to_liat(TT,m,imt) ,aaa#rt(q_topio(T)) ,nl,

wrlta(P," mmtohaa ",T),nl,

writ#_all(TTliat),ratraatall(q_topla(_)).

maka_ind#OH-lang(_, "Daaorlptlon" ,T), #tr_to_liat(T,TLlat) ,aaaart_tarma(Tllat), fall.

•aka.lndsK.

aaaart_taraa([]).

aaa«rt_taraa([H|T]):-ohaolc_tar=(B) ,aaa#rt_t#ma(T).

chaolc_taca(B) t-not(tara(B)) ,aaaart(tani(B)).

abaok_twa(_).

datall(D)i-aatlva(A) ,ag2(D,_,A).

othar_datall(D) i-aotlva(A) ,ag2(A,_,X) ,ag2(D,_,K) ,K<>"nona".

ctlMr_aKaHpla(E)i-aotiva(A),ag2(A,0,_),ag2(B,a,"nona").

117

otlMt_aubjwt(8) i<-aellat(Ii) >liMd(L,B) ,ag2(S,_,_) ,lliik(H,S).

d«thdn([],[]).

d«tlidxa((B|T],[Hl|S!l])i-nr2(B,_,_),MdMa(B,B2),oh_«Mn(B,B2,Bl),d*tbdra(T,Tl).

dathdni2((],[]).

d#thdrm2([B|T], [B1|T1]) :-#g2(B,_,_) ,«g2(B,B2,_) ,oh_M«i(a,B2,Bl) ,d«thdta2(T,Zl).

oh_###n(B,B2,B3):-«##n(B),oaco#t(•**,B2,B3),I.

oli_###a(_,B,Bl)i-oonomt(" ",a,Bl).

118

APPENDIX C. USER BROWSING PATH ALGORITHM

119

The main predicate used to create the path is accum(). A
call to accum(P) returns a list of node id numbers in the
list variable P. This list represents the path. See
Appendix A for complete code of EG Network.

accum(P)*-retractall(step (_)),
allnet(L),
cover(L),
findall(X,8tep(X),P),
retractall(step(_)).

allnet(L)t-findall(H,ncollect(H),L),
retractall(already(_)).

ncollect(H):-eg2(_,H,"none"),
not(already(H)),
assert(already(H)).

cover([]).
cover([H|T]):-findall(X,eg2(X,H,"none"),L),

covernet(L),
cover(T).

covernet([]).
covernet([H]T]):-findall(X,eg2(X,_,H),L),

assert(step(H)),
covernet(L),
covernet(T).

Given the following eg() constructs in the database:

eg2("El"f "Basic Examples","none")
eg2("E3","Variable Selection Routines ","none")
eg2("E4","Hypothesis Testing ","none")
eg2("E5"/"Variable Selection Routines ","none")
eg2("EG","Variable Selection Routines ","E3")
eg2("E7","Variable Selection Routines ","E3")

A call to accum(P) returns P-[E1,E3,E6,E7,E5/E4].

120

APPENDIX D. REACTIVE BROWSING DECISION EXAMPLES

121

In r#motiv# broMlng mod#, m umt la •boim an «caapla and than aakad wbathar or not tha aouapla la of

Intaraat. A nagatlv# taapona# raaulta In th# following daolaloa ptoeaaa for aalaotlng th# nasct

anampl# to b# ataewn. Tha daolalon la baaad aolaly on th# currant nod# b#lng vl#w#d and Ita location

within th# network. Th# following ar# axaiplaa of laplaaantad rulaa. L#t C rapxvaant tha eurrant

wampla.

1) IF C la tha topio-antxy amapl#

3BBI ohanga toplca.

If a uaar la not Intaraatad in th# toplc-antxy nod#, it la an indioation that tha uaar la not

intacaatad in tha topic.

2) IV C la a aubjaot-antxy ageaapl#

AMD C la not a topic-antry #xaapl#

SHBI go to th# naxt aubjaot-aotry naapla.

If a uaar haa vlawad hayond th# topio-antry axaapl#, than tha toplo la aaamlngly intaraatlng but

thia particular aubjaot la not.

3) IT C la a primary axampla

AMD C la not a aubjaot-antry axampla

AMD thara la anothar primary axampla within currant subjact

IBBN go to naKt primary axampla within currant aubjact.

If a uau la haa vlawad within a particular aubjact, than tha aubjaot la aaamlngly intaraatlng but

thia particular aub-aubjact la not.

4) IF C la a primary axampla

AMD c la not a aubjact-antry axampla

AMD thar# la no othar primary axampla within currant aubjact

THBa go to naxt aubjaot-antry axampla.

If a uaar la haa vlawad within a particular aubjaot, than tha aubjaot la aaamlngly Intaraatlng but

thia particular aub-aubjact la not. Bcwavar, thar# la nothing ala# in tha aubjact to aaa, ao mova

on to tha naxt aubjact.

5) IF C ia a aaeondaiy axampla

THEM go to naxt primary axampla.

If a uaar haa vlawad and la not Intaraatad in thia datall, than ha will aaamlngly not b# intaraatad

in othara, mov# on.

