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I. INTRODUCTION 

A. The Classification Problem 

Let X, a p X 1 vector, be an observation which is known to have 

come from one of two populations, denoted by and with density 

functions f̂ (X) and f̂ Ĉ ), respectively. The problem of classifying 

the observation consists of deriving a procedure to assign X into one 

of the two populations and evaluating the performance of the proposed 

procedure. 

Anderson (1958) shows that when the population density functions 

are known and for given prior probabilities and costs of misclassifica-

tion, the Bayes procedure classifies X into Tr̂  if 

f](X) 

where k is a constant depending on the prior probabilities and the costs 

of misclassification; if the ratio in (1.1) is less than k, X is classi­

fied into TTg. 

Under the assumptions that the populations are distributed as multi­

variate normal, denoted by N(ŷ , Z), i = 1, 2, and the populations param­

eters ŷ , and Z are known, the Bayes classification rule reduces to: 

classify X in if R(JQ ̂  log k, 

(1.2) 
classify X in if R(X) < log k. 
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where 

R(X) = (X - (1.3) 

is known as the best linear discriminant function. 

When the population densities are N(ŷ , Z), i = 1, 2, but the 

parameters Z are unknown, we can no longer use the procedure 

given in (1.2). For this case, no best classification rule has been 

found yet. In order to classify the observation X, information must be 

obtained about the unknown parameters by taking random samples of sizes 

and Ng from populations and ir̂ . The classification rule will be 

based on the data collected in the samples. 

Suppose that we have a random sample X̂ ,̂...,X̂  from â d̂ an 

independent random sample ̂ 21'"''̂ 2N 2̂* usual estimators 

of the parameters and Z are Xĵ , X̂  and S respectively, where 

n. 
_ 1  ̂
X = ̂  Z X , i = 1, 2 (1.4) 

i j=l  ̂

and 

1 2  ̂
S = i  z  Z  ( X  -  X  ) ( X  -  X  ) ,  ( 1 . 5 )  

i=l j=l  ̂ 1 i-J 1 

with n = - 2. 

Any classification rule based on X̂ , X2 and S will be denoted by 

C(X̂ , Xg, S). 

A widely used classification procedure is derived by simply 

replacing and Z by X̂ , X2 and S in (1.2). This rule is given 

as follows : 
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classify X in if W ̂  log k. 

(1.6) 

classify X in tt, if W < log k. 

where 

W = (X - i(X̂  + x̂ ))'s"i(x̂  - Xg). (1.7) 

This is known as the Anderson's classification statistic. 

An alternative procedure to classify observations in the case when 

the populations are normally distributed and with unknown parameters, 

is the likelihood ratio test procedure. The classification problem is 

viewed as a testing problem. The null hypothesis states that 

X̂ ,̂ — ,X̂  are distributed as Z) and X, ̂ 21''"'̂ 2N 

distributed as NCŷ , Z). The alternative hypothesis states that 

X, X̂ ,̂— are distributed as N(ŷ , S) and ̂ 21'"•'̂ 2N dis­

tributed as N(M2» . The likelihood ratio test, see Anderson (1958), 

leads to the following procedure: 

classify X in if L > (ri - l)n, 

where Ti is a given constant and L is the likelihood ratio test statistic 

given by 

classify X in tt. if L < (m - l)n 

(1 .8)  

(X-Xj_) * s"̂ (x-x̂ )- n ̂ (̂x-x̂ ) ' s~̂  (x-x̂ ). (1.9) 
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Han (1979) examined several different approaches to the classifica­

tion problem. One of them, using Bayesian arguments, also leads to the 

L classification statistic. 

When n = 1, L reduces to the John's classification statistic, John 

(1960), given by 

 ̂ _ N _ 
z = iĵ (x-Xĵ )'s ̂ (x-x̂ ) - (X-Zg) (1.10) 

and the classification rule in (1.8) simplifies to 

classify X in 1T̂  if Z £ 0, 

(1.11) 

classify X in if Z > 0. 

The performance of a given classification rule, C(X̂ , X̂ , S) can 

be evaluated by examining the probabilities of misclassification. Three 

different pairs of probabilities are of interest here. The first one 

consists of the optimum probability of misclassification, 

2̂ -  ̂K. I At n̂ J 

and 

** , 
= P[f̂ (X)/f2(X) < k I %E TT̂ ] (1.13) 

These are the probabilities of misclassifying an observation coming 

from 7T̂  or from when the population densities are completely specified. 

When fL(X) is N(û , Z), i = 1, 2, both (1.12) and (1.13) reduce to 

** 
(R(X)) = $(-6/2), (1.14) 
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2 
where k is equal to zero, 6 is the Mahalanobis distance between the two 

populations, defined as 

6̂  = - y2)'Z"̂ (ŷ  - Wg) (1.15) 

and $(') denotes the standard normal cumulative distribution function. 

The next pair of probabilities of misclassification is given when 

the parameters are unknown and estimated by samples. The unconditional 

probabilities of misclassification are given by 

P2(C) = P̂ LCCX̂ jX̂ jS) classifies X into ir̂  | Xc (1.16) 

and 

Pĵ (C) = P̂ [C(X̂ ,X2,S) classifies X into ir̂  | Xe ir̂ ]. (1.17) 

Finally, the conditional probabilities of misclassification, are 

defined as, 

P2(C) = P2[C(X̂ ,X2,S) classifies X in | XE X̂ ,X2,S] (1.18) 

and 

P̂ (C) = P̂ [C(X̂ ,X2>S) classifies X in ̂ 2 j Xe ir̂ , X̂ ,X2>S]. (1.19) 

When the Z classification statistic is used, the unconditional 

probabilities of misclassification are 

PgCZ) = P[z < 0 I XE TT2j (1.20) 

and 

P*(Z) = P[Z > 0 I Xe TT̂ ]. (1.21) 
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The conditional probabilities of misclassification are 

PgCZ) = P[Z < 0 I xe X̂ ,X̂ ,S] (1.22) 

P̂ (Z) = P[Z > 0 I Xe TT̂ , (1.23) 

A concept which is usually of interest is the overall error rate, 

defined as 

i(P*(C) + pJ(C)) (1.24) 

* ** 
Note that all three types of probabilities P, P and P are func­

tions of the parameters and Z. When the parameters are unknown, 

the probabilities are also unknown and the problem of estimating these 

probabilities arises. In this thesis, we shall consider the estimation 

of the probability of misclassifying the observation to ir̂ , when it comes 

from 1̂ 2' The estimation of the probability of misclassification when X 

comes fromTT̂ , can easily be obtained by interchanging the subscripts. 

B. Literature Review 

The problem of classification of observations has been the subject 

of considerable amount of research since Fisher (1936) introduced the 

linear discriminant function. An extensive bibliography on this area 

has been published in a review paper by DasGupta (1973) and in the book 

by Lachenbruch (1975). 

A large portion of the work done is related to Anderson's classifi­

cation statistic W. Initially, the aim was directed mostly towards 
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obtaining the exact distribution of W; see for example Wald (1944) and 

Sitgreaves (1952). Since Sitgreaves (1961) concluded that the exact 

distribution is too complicated to be useful numerically, Okamoto (1963) 

gave an asymptotic expansion for the distribution of W up to the second 

-1 -1 -1 
order with respect to and n . Also, Anderson (1973) gave 

another expansion for the distribution of the studentized W. 

More recently, attention has been given in the literature to the 

problem of estimating the probabilities of misclassification since they 

provide a way to evaluate the performance of the classification procedure. 

A bibliography on this subject is given by Toussaint (1974). 

Smith (1947) proposed the first estimator for the probabilities of 

misclassification. This estimator, denoted as is defined as the 

proportion of observations in the sample from population that are 

misclassified when using C(X̂ ,̂X̂ ,S). It has the advantages of being 

simple to compute and does not require any distributional assumptions. 

However, it is seriously biased and gives too optimistic results when 

and are small. 

Hills (1966) considered the problem of estimating the three types 

of probabilities of misclassification defined above. He obtained some 

inequalities on these probabilities and examined the performance of some 

estimators when the populations are not normal. 

Lachenbruch (1967) suggested a modification of Smith's estimator to 

correct for bias. He proposed a jackknife type classification procedure, 

known in the literature as Lachenbruch's leaving one-out method. This 

procedure produces an estimator of the probabilities of misclassification 
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having second order bias without requiring any distributional assumptions. 

This estimator will be denoted by P̂ . 

Lachenbruch and Mickey (1968) used a simulation study to compare the 

performance of several estimators of the conditional probability of mis-

classification when Anderson's classification statistic is used. They 

compared the P and P estimators and four others, denoted by Do, DS, 0 

and OS, which assume that the populations are normally distributed. The 

2 
estimators Do and DS are obtained by replacing 5 , in the expression for 

2 
the optimal probability of misclassification given in (1.14), by D and 

2 
((n-p-l)/n)D respectively, where 

D̂  = (iĉ  - X2)'S"̂ (X̂  - Xg) a.25) 

is the sample Mahalanobis distance between the two populations. The 

2 
estimators 0 and OS are similarly obtained, except that ô is replaced 

2 2 
by D and ((n-p-l)/n)D in Okamoto's asymptotic expansion for the 

probability of misclassification. By examining the overall performance, 

the estimators P- and Do were the worst; the best estimator was the OS 

2 
estimator, except for small S and small sample sizes. 

Broffitt and Williams (1973) obtained the UMVUE for the expecta­

tions of P̂  and P̂ . They also gave exact expressions for the uncondi­

tional probabilities of misclassification using Anderson's W statistic. 

McLachlan (1974b) verified analytically most of the results in 

Lachenbruch and Mickey's simulation study. Assuming that the popula­

tions are normally distributed, he derived an asymptotic expansion for 

the AMSE for each one of the estimators Do, DS, 0 and OS. The estimators 
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are then compared by using the AMSE. He also proposed another estimator, 

-1 -1 -1 
denoted by M, which has third order bias with respect to and n 

The performance of M in terms of AMSE is similar to that of the OS 

estimator. 

A criterion proposed by Kudo (1959) and John (1960) as an alterna­

tive to the W classification procedure is the Z procedure, given in 

(1.10). DasGupta (1965) proved that this procedure is admissible and 

minimax in the class of invariant procedures. 

The exact distribution of the Z statistic has not been obtained yet. 

Memon and Okamoto (1971) gave an asymptotic expansion for the distribu­

tion function of Z with respect to 1)̂ ,̂ and n 

Based on this expansion and on Okamoto's. expansion for the probabil­

ity of misclassification when using W, Memon and Okamoto (1971) concluded 

that when the error rates for the Z and W statistics are compared, the Z 

procedure is better. 

Siotani and Wang (1977) compared the W and the Z statistics with 

respect to the error rates, including the third order terms in the expan-

2 
sions. They obtained a set of values of N̂ , N2> P and 6 for which the 

Z procedure is better than the W procedure. 

The Z and W statistics have also been compared in other respects. 

Aitchison et al. (1977) compared two methods of estimating density 

functions, known as the estimative method and the predictive density 

function method. They found that, in relation to the Kullback and 

Liebler measure of closeness, the predictive density function method is 

better than any other method of estimating densities. Moran and Murphy 
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(1979) showed that when the predictive density function method is used 

to classify observations, it reduces to the L classification statistic. 

It is well-known that the estimative method reduces to the W classifica­

tion statistic. 

Han (1979) gave an expression for the conditional probability of 

misclassification when using the L statistic, given X̂ , and S. 

C. An Overview of the Present Research 

The primary goal of this thesis is to study the John's classifica­

tion statistic and the estimation of the probability of misclassification. 

In Chapter II, John's classification statistic is obtaî 'd from two dif­

ferent approaches to the classification problem. First, it is derived as 

a special case of the likelihood ratio test statistic. Then, it is 

obtained from a Bayesian point of view, using the predictive density 

function concept. In Section B, expressions for various probabilities of 

misclassification are given. The Memon-Okamoto (1971) asymptotic expan­

sions for the unconditional probabilities of misclassification are of 

special interest and will be extensively used in this thesis. In Section 

C of Chapter II, we examine the problem of selecting a cutoff point. The 

commonly used cutoff point is zero. An alternative cutoff point is given 

so that it minimizes the overall error rate. We show that, with respect 

to overall error rate, the zero cutoff point is not too far away from 

the optimum. 

In Chapter III, Section B, several estimators for the unconditional 

probability of misclassification, PgCZ), are proposed. All these esti­
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mators are based on the normal distribution. Expressions for the 

asymptotic bias and for the asymptotic mean square error (AMSE) of each 

one of the proposed estimators are given in Sections C and D, respec­

tively. In Section E of Chapter III, a jackknife estimator is proposed 

and its properties are investigated. 

In Chapter IV, the estimators proposed in Chapter III are compared, 

first with respect to their asymptotic bias and then with respect to 

their AMSE. In Section C of this chapter, two additional estimators for 

the unconditional probability of misclassification are given; these two 

estimators, do not require any distributional assumptions. A simulation 

study is then used to compare all estimators. General conclusions about 

the relative superiority of the estimators are given in Section D. 
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II. THE LIKELIHOOD RATIO TEST STATISTIC 

FOR CLASSIFICATION 

A. Derivation of the Statistic and its Properties 

The likelihood ratio test approach considers the problem of 

classification of observations as one of testing the null hypothesis 

that are drawn from Z) and are drawn 

from NCŷ , Z) versus the alternative hypothesis that X,X̂ ,̂—,X̂  are 

drawn from N(û , Z) and drawn from NCŷ » Z) with 

ŷ  and Z being unspecified. Following Anderson (1958), it can be shown 

that the likelihood ratio criterion is the (N̂  + + l)/2 th power of 

the ratio 

N 
n + ̂   ̂̂ (X - X̂ )'S ̂ (X - X̂ ) 

^2 - -1 -
n +(X - X2)'S (X - Xg) 

(2.1) 

where X̂ , X̂ , S and n are defined in (1.4) and (1.5). 

The region of classifying the observation into ir̂  is then equiv­

alent to the region of rejection of the null hypothesis. This region 

contains all those X for which the ratio in (2.1) is smaller than a 

certain constant n. This leads directly to the likelihood ratio test 

procedure which is given as 

Classify X in it̂  if L _< (ri - l)n. 

Classify X in Wg if L > (ri - l)n. 
(2 .2)  
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where 

(X - xp's ̂(X - X̂ ) -n (X - X̂ )'S"̂ (X-X̂ ) (2.3) 

is the likelihood ratio test statistic. For the special case when n = 1, 

it is obvious that we obtain the classification procedure given in (1.11) 

with classification statistic Z, defined in (1.10). 

An alternative derivation of the likelihood ratio test statistic is 

obtained using the predictive density function approach to the problem 

of classification. This is a Bayesian approach and requires the assess­

ment of a prior distribution for the unknown parameters n̂d Z. 

The solution to the problem of classification of observations is 

obtained when the likelihood functions in (1.1) are replaced by the 

respective predictive density functions, defined (see Aitchison, 1975) 

as follows: 

Let f be a future experiment with class of density functions 

{p(z|6); 6e0} and sample space Z. Let e be an informative experiment 

with class of density functions {pvyjo); Sôo] and sample space Y. For 

each 9e0, denote its prior density function as p(6) and assume that f 

and e are independent experiments. Then, the predictive density 

function is 

P(z|y) = I p(z|8)p(8|y)d8 
JR 0 

(2.4) 
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where p(0|y) is the posterior density function. Note that p(z|y) is 

the posterior Bayes estimator of the density function p(z|9). 

Suppose that the informative experiment e consists of random 

samples « - «'̂ iN Z) i = 1,2. Then and S are 

independently distributed, with X. distributed as N(u., ̂  Z), i = 1,2 
i 

and nS as a Wishart with n degrees of freedom. Denote their joint 

distribution as f(X̂ , X̂ , S). Let 6 = (]î , ŷ , Z ) and assume its 

prior density g(6) is such that g(9) d6 is proportional to 

l̂ l'SCP  ̂with p < n. Then, the posterior density of 6, 

h(0|x^, X̂ , S) is proportional to g(9) f(X̂ , X̂ , S) and the predictive 

density function for ir̂  is 

q^(xlx^, x^, s) = ^ p^(xle)h(elx^, x^, s)de; i = 1,2 (2.5) 

Aitchison and Dunsmore (1975) showed that the q̂ (x|x̂ , X̂ , S) 

i = 1,2 are equal to 

r(̂ )TT-P/̂  
'  (2 .6 )  

r(̂ ) (l+jp)nS 
i 

(1+(X-X̂ ) ' [ (1 nS] ̂ (X-X_) ]} 

When the q̂ (x|x̂ , X̂ , S) are substituted for the f̂ (X), i = 1,2 

respectively in (1.1) we obtain that the predictive density function 

approach to the problem of classification reduces to 

* 
Classify X in tt if L < (n - l)n. 

Classify X in ir̂  if L > (n - l)n. 

(2.7) 
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* k + 1) 

1 + 1) ' 

2 
n+1 

Han (1979) showed that a procedure called the Best invariant 

estimative method also gives the L classification statistic. This will 

not be presented here. 

Now let us consider the properties of the statistic L. 

First, we can rewrite it as 

L = ĉ m̂  - ncgmg. 

where, 
N. 

î BL + 1 ' ̂ 

and = (X - X̂ )'S ̂ (X - X̂ ) i = 1,2. (2.8) 

Then we can show that. 

EClIx e t t .  )  = — r o ( l  -  n )  -  c „ i S ^ j  
X n—p—X " z. 

E(L|XE1T^) = [p(l - n) + c^6^]. 

(2.9)  

This can be established since X̂ , X̂  and S are mutually independent 

-1 1 -1 
and E(S ) = 7 Z , see Press (1972). Using these results, we have 

n—p—J. 

that 
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ECĉ m̂ lxeTT̂ ) = ĉ E[ ' S"̂ (X-Ij_) ] 

= ĉ E [ tr {(X-X̂ ) ' S"̂  (X-X̂ ) ] 

= ĉ E[tr{S~̂ (x-X̂ )(X-X̂ )'] 

= Cj_tr{E[S~̂ (x-X̂ )(X-X̂ )*]} 

= ĉ tr{E(S~bE[(x-xp(X-\)']} 

c! .''z+i 

-P-. — — "2 

n—p—1 n—p—1 

Similarly, 

ECnĉ m̂ lXETT̂ ) = TiC2tr{E(S~̂ )E[(X-X̂ )(X-X̂ )']} 

1 -1 N,+l 

- "=2" '<-57 

= np/(n-p-l). 

Then, 

ECLlxETTg) = [p(l-Tl) + Ĉ gZ]. 

The derivation of E(LjX£iT̂ ) is omitted since it is very similar to 

the procedure just outlined. 

An alternative expression for the likelihood ratio test statistic 

for classification is given by 
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L = b[(X-X̂ +â (X2-X̂ ))'S ̂ (X-X̂ +â (X2-X̂ ))-â (â +l)D̂ ] (2.10) 

where, 

b = - ncg, 

and (2.11) 

= (X̂ -X2)'S~̂ (X̂ -X2) 

This result can be obtained by setting ĥ  = ĉ X̂  - ĉ X̂  and 

ĥ  = ĉ X̂ S ̂ -̂nCgX̂ S ̂ 2 and expanding L as 

L = ĉ (X-X̂ )'s"̂ (X-X̂ )-nc2(X-%̂ )'S'̂ CX-Xg) 

= ĉ (X' S"̂ -2X' s"̂ +̂x̂ s"̂ )̂-nc2 [X' S"̂ -2X' 

= bX*s"̂ -2X'S~\̂ +h2 

= b[X's"̂ -2(-̂ )X's"̂ +̂h2/b] 

>1 
= b[(X-(̂ )ĥ )'S"-(X-(̂ )ĥ )-(|)\p"̂ +̂-̂ - ] 

= b [ (X-X̂ -tô (X2-X̂ ) ) ' s"̂ (X-X̂ +â (X2-X̂ ) )-â (ct̂ +l)D̂ ] 

Since 
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- *̂"2 - ^̂ 2 

= X - + â cx̂  - X̂ ) 

and b* = -̂  [bhg -
b 

= [bĥ - (ĉ X̂ -nĉ X̂ ) ' s"̂  (ĉ X̂  - TlCgXg) ] 
b 

= -\ [ (ĉ -nĉ ) (ĉ xĵ s'̂ -̂nĉ x̂ s'̂ x̂ )-
b 

ĉ x̂ ŝ'̂ -̂n̂ cgx̂ s'̂ g+znĉ ĉ x̂ s'̂ g] 

= 2 [-nCĵ C2Xĵ s"̂ -̂nĉ C2X̂ s"̂ 2''"2TlCĵ C2Xp"̂ 2̂  
(ci-ric2) 

-nĉ c _ 1 _ _ 
Ô (X -XJ'S Cx,-xJ 

(ci-ncg)̂   ̂  ̂

= - â (â +l)D̂ . 

Using this alternative form, we can now obtain the conditional 

characteristic function of L, given X̂ , X̂ » and S. Following Johnson 

and Kotz (1972), we have 

*L(C) = ELe'-̂ ÎXsTT̂ , Xg' S] 

-itbâ (a,+l)D̂  
= OqCtb) • e 

where Q = [ (X-X̂ )-l-â (X̂ -X̂ ) ] 'S (X-X̂ )+â (X2~X̂ ) ] • Hence, the expression 

for is 
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2 
2 "1 P 0 1 P P 

exp{-itba, (â +DD Z w + j Z , } n(l-2itbX.) ̂  (2.12) 
2 ] 2 j_2 l-2itbÂ  j=i J 

with the Wj and , j = l,...,p given in the above reference. Condi­

tional moments can then be generated from (2.12) in the usual way or 

from the cumulant generating function given also in Johnson and Kotz 

(1972). 

B. Expressions for the Probabilities 
of Misclassification 

Let us consider first the case when E is known. The likelihood 

ratio criterion leads directly to the rule: 

Classify X in if  ̂0, 

(2.13) 

Classify X in ir̂  if > 0, 

where, 

Z o  =  c ^ ( X - Î L ) ' Z " ^ ( X - X ^ ) - C 2 ( X - X 2 ) ( 2 . 1 4 )  

Geisser (1964) obtained the predictive density functions for 

i = 1,2. They are proportional to 

N • N. _ _i _ 
!̂ ! exp{- (X-X̂ )'Z (X-X̂ )}. (2.15) 

Therefore, the predictive density function approach also leads to 

a classification rule which uses the Z classification statistic. 
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The conditional probability of misclassification is then given by 

p2(Zo) = 1 OlxETTg, Ëg]. 

Using the alternative expression for L given in (2.10), 

= P[(X-3î +â (X2-X3_))'2"̂ (X-X̂ +â (X -Xĵ ))lâ (â +l)D̂ lx̂ ,X2,XeTT2] 

= p[' (P,X)<â (â +̂DD̂ IX]̂ ,̂ ,XszTTg], (2.16) 

where 

2 '  and X (P,X) denotes a noncentral chi-square random variable with p 

degrees of freedom and noncentrality parameter X. Note that (2.16) 

depends on which is unknown, and hence must be estimated. 

The unconditional probability of misclassification P2(Ẑ ) = 

E[P2(Ẑ )] was obtained by John (1960), in terms of an infinite series. 

-1 
An asymptotic expansion of this probability T-jith respect to and 

-1 
Ng is given by Memon and Okamoto (1971). 

We now consider the Z unknown case. It has been shown in Section 

A of Chapter II that the likelihood ratio criterion and the predictive 

density approach to the classification problem both lead to the rule 

which uses the L classification statistic defined in (2.3). Using the 

alternative expression for L in (2.10), the derivation of the exact 

distribution of the likelihood ratio test statistic for classification 

could be pursued applying some of the results on the distribution of 
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indefinite quadratic forms. Johnson and Kotz (1972) present several 

methods to deal with this problem. In spite of this, the exact distri­

bution would be of little help since it is very complicated. 

Given X̂ , X2 and S, the conditional probability of misclassification 

P̂ CL) = P[L£ (n-DnjxE'T̂ , Xj_, X2' (2.17) 

was obtained by Han (1979). 

Although there is no asymptotic expansion available in the litera­

ture for the distribution of the L statistic, Memon and Okamoto (1971) 

-1 -1 -1 
have obtained an asymptotic expansion with respect to and n 

for the distribution function of Z. This is an asymptotic expansion 

for the distribution function of L when n = !• 

Using this expansion, the unconditional probabilities of misclassi­

fication when classifying with the Z statistic are given as 

f a, a a b 
P(Z < 01XSTT ) = $(- g) + îT N~ "~2 

(2.18) 

and 
f a a a b 

P(Z > OlxETT ) = ̂ (-i) + N n 
± z iNi 1M2 n 

r o  1 a\ 
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with 

a. = —̂  [-d̂  + (p-4)d̂ ] 
1 26̂  ° o 

a- = —̂  [3d̂  + (p+8)d̂ ] 
^ 2 6  °  

1/- i\j2 as = ' 

(2.20) 

d̂  = (d̂ /dŷ )#(y) 
y=-2 

6 i = 2,4,6,8 

and the b's defined in Memon and Okamoto's paper. 

Using (2.20), we can rewrite (2.18) as 

P(Z < OlXETT̂ ) = $(- 1) + + O3 (2.21) 

where, 

Â  =(-|){jp(36+4(p-l)6 ̂ )+•ĵ (-ô+4(p-l)ô ̂ )4-  ̂ (2.22) 

Â  contains the second order terms and 4(*) is the standard normal 

density function. 

Exact expressions for the unconditional probabilities of misclassi-

fication, P2(Z) and P̂ (̂Z), will be derived in section E of Chapter III. 
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C. Selection of a Cutoff Point 

In classifying observations into one of two populations, it is 

commonplace to assume equal costs of misclassification and equal prior 

probabilities, so that the value for k in (1.1) is one and hence the 

cutoff point in (1.2) is zero. 

Sedransk (1969) considered the problem of selecting an optimum 

cutoff point when Anderson's W statistic is used. She proposed a cut-

* 
off point k , such that the error rate is minimized. 

In this section, we will consider the problem of selecting a 

desirable cutoff point k̂ , when the Z classification statistic is used. 

Let the overall probability of misclassification be 

P(k) = P(Z £ k|xETT̂ ] + P[Z _> k|xEiT̂ ]. (2.23) 

The problem is to find k̂  so that 

P(k̂ ) = min P(k). (2.24) 
k 

Note that minimizing P(k) with respect to k is equivalent to 

minimizing the error rate when the prior population probabilities are 

both 1/2. 

Since the exact distribution of Z has not been derived yet, we 

will make use of the Memon-Okamoto expansion for the cumulative dis­

tribution of Z when or Xôir̂ . This leads to 
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P(k) = 1-0(a) - (J)(a)F̂  + 1 - 0(c) - ({)(c)F̂  + 0̂ , (2.25) 

where 

k 5 
 ̂= 26 + 2 ' 

and 

where, 

dF 

(2 .26)  

F̂  = (2N̂ 5 )̂"̂ [3a-â +S(â -l)-pa] 

+ (2N2Ô̂ )~̂ [3a-â -H5(â -l)-pa+ô̂ a-Ô̂ ] (2.27) 

+ n ̂  [ 3a—â +5 (â —1)-̂  (5̂ +6p+6) a+ (̂ )̂ 5 ] 

Fg = (2N̂ 6̂ )"̂ [3c-ĉ +ô(ĉ -l)-pc+6̂ c-ô̂ ] 

+ (2N̂ 5̂ )"̂ [3c-ĉ +g(ĉ -l)-pc] 

+ n"̂ [3c-cV6(ĉ -l)-|(6̂ +6pf6)c+(2|̂ )ô] (2.28) 

-1 -1 -1 
and 0„ stands for second order terms of N. . N, and n 

Z L  •  L  

Taking the first derivative with respect to k, we obtain, 

1 1 
?' (k) = - -̂ (a) - <p(a) [ (- -̂ )aF̂  + -̂ ] 

1 1 *̂ 2̂ 
+-̂ (c) - 4)(c) [ (!̂ )cF2 + (2.29) 

= (2ô)"̂ {(2N̂ ô̂ )~̂ [3-3aV2ôa-p]+(2N2Ô̂ )"̂ [3-3â +26a-p+ô̂ ] 

+ (n~̂ )[3-3â +2ôa-|(ô̂ +6p+6)]} (2.30) 
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and 

-̂  = (-26) ̂ {(2N̂ ô̂ )"̂ [3-3ĉ +2ôc-p+ô̂ ]+(2N2Ô̂ )"̂ [3-3ĉ +2ôc-p] 

+ (n"̂ )[3-3ĉ +26c~(Ô̂ +6p+6)]}. (2.31) 

From these expressions, it is not clear how we can solve for k 

after Equation (2.29) is set equal to zero, since P'(k) involves 

((̂ (•̂  + -j) $(~ "2g Y) each of these factors is multiplied by a 

third degree polynomial in k. 

Although it is expected that zero is not the optimal cutoff point, 

it is anticipated that the optimum will lie close to zero since this is 

the case when all the parameters are known. 

Expanding P*(k) as a Taylor's series about zero gives 

P'(k̂ ) = 0 = P*(0) + k̂ P"(0) + 02 (2.32) 

This can be further simplified by noting that P(k) can be written 

as f(k) + g(k) + O2» with 

f(k) = 1 - 0(a) + 1 - 0(c) 

and 

g(k) = -[({)(a)F̂  + 4,(c)F̂ ]. (2.33) 

Since g(k) involves only first order terms with respect to N, 

-1 -1 
and n , and k̂  is assumed to be close to zero, it follows that 

k̂ g"(0) is of higher order than the other terms in (2.32) and may be 

omitted. Hence, solving for k̂ , we have 
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 ̂ f(0) + g'(0) 
o f"(0) 

- -f# • <2-34) 

From Equations (2.30), (2.31) and (2.33), we obtain 

k = 

° (46) ̂ *(6/2) 

= (iÇ - (l+T̂  • (2.35) 

This implies that for is positive and P[Z ̂  k̂ lXGir̂ ] < 

P[Z 2 0|xeir̂ ]. For < N̂ , k̂  is negative and P[Z _< k̂ |] < 

P[Z ̂  01XETr2]. This means that if we have more information, i.e., 

larger sample size, on population ir̂  than on population ir̂ , i,j = 1,2, 

the probability of misclassifying an observation from is smaller 

when we use cutoff point k̂ , than when we use zero as cutoff point. 

2 
Also, as 0 increases, k̂  moves away from zero making it easier 

to classify correctly an observation that comes from the population for 

which we have more information. 

In order to get an idea of the improvement accomplished by using 

k̂  instead of zero as cutoff point, we must look at the difference 

P(0) - P(k̂ ). The expression for this difference is so complicated 

that it is very difficult to reach general conclusions. Hence, we 

will study this difference in overall probabilities of misclassification 
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2 
by substituting some specific values for the population parameter 6 , 

the sample sizes N̂ , and the dimension p, 

A numerical evaluation of P(0) - P(k̂ ) was done for several combi-

2 
nations of p, N̂ , and 5 values. Six different values of the popula­

tion Mahalanobis distance were used. They were selected so that the 

overall optimum probability of misclassification attained a fixed value. 

They are given in Table 2.1. 

Table 2.1. Mahalanobis distance between the two populations and 
corresponding overall probability of misclassification 

5̂  2 $(-5/2) 

1.098 0.6 

1.817 0.5 

2.836 0.4 

4.293 0.3 

6.574 0.2 

11.842 0.1 

2 
For each ô , three different values of p were used and for each p 

value, eight pairs of values for and N2 were examined. These are 

given in Table 2.2. 
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Table 2.2. Sample sizes and dimension 

p = 3 p = 4 p = 8 

4 5 

4 8 

4 16 

4 24 

10 11 

10 20 

10 40 

10 60 

8 9 

8 16 

8 32 

8 48 

20 21 

20 40 

20 80 

20 120 

8 9 

8 16 

8 32 

8 48 

20 21 

20 40 

20 80 

20 120 

The values of P(0) - P(k̂ ) obtained for each combination of p, N̂ , 

2 
and 6 are given in Tables 2.3 to 2.5. 

Several conclusions can be obtained by looking at these tables. 

First, for any given pair of sample sizes and the difference 

2 2 
P(0) - P(k̂ ) decreases as 5 increases. This means that for large 5 

the advantages of using k̂  instead of zero as cutoff point become 

2 
smaller. Second, for any given p and 6 , P(0) - P(k̂ ) increases as the 

ratio N„/NT increases. This indicates that it is better to use k than 
i i o 

zero as cutoff point when .the sample sizes are different. Third, for 

2 
given N̂ , and 6 , the difference in overall probabilities of mis-

classification increases as p increases. This suggests that it is 

better to use cutoff point k̂  when dealing with higher dimensions. 



Table 2.3. Values of P(0) - P(k̂ ) when p = 3 

Ng 6^ = 1.098 6^ = 1.H17 6^ = 2.836 6^ = 4.293 6^ = 6.574 6^ = 11.482 

4 5 0.0002129078 0.0001917481 0.0001789927 0.0001673102 0.0001482368 0.0000983477 

4 8 0.0011911980 0.0010766380 0.0010125040 0.0009590387 0.0008699894 0.0006174445 

4 16 0.0023151040 0.0021045200 0.0019981260 0.0019205210 0.0017874240 0.0013632170 

4 24 0.0026750560 0.0024388430 0.0023254150 0.0022497170 0.0021170370 0.0016615390 

10 11 0.0000059009 0.0000059009 0.0000055432 0.0000054240 0.0000045896 0.0000038147 

10 20 0.0001735687 0.0001592636 0.0001530051 0.0001491904 0.0001427531 0.0001170039 

10 30 0.0003727674 0.0003429055 0.0003308654 0.0003249049 0.0003142953 0.0002636313 

10 40 0.0004503727 0.0004143119 0.0004005432 0.0003947020 0.0003833175 0.0003239512 
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Table 2.4. Values of P(0) - P(k) when p = 4 

Ng 6^ = 1.098 6^ = 1.817 6^ = 2.836 6^ = 4.293 6^ = 6.574 6^ = 11.482 

8 9 0.0000212193 

8 16 0.0003762841 

8 32 0.0007484555 

8 48 0.0008745193 

20 21 0.0000000596 

20 40 0.0000488162 

20 80 0.0001039505 

20 120 0.0001257658 

0.0000179410 

0.0003197789 

0.0006406903 

0.0007512569 

0.0000008345 

0.0000434518 

0.0000932813 

0.0001133680 

0.0000163317 

0.0002921820 

0.0005906820 

0.0006948113 

0.0000007749 

0.0000414252 

0.0000888109 

0.0001075864 

0.0000147223 

0.0002754331 

0.0005631447 

0.0006642938 

0.0000002980 

0.0000397563 

0.0000866055 

0.0001050830 

0.0000132322 

0.0002544522 

0.0005286336 

0.0006284714 

0.0000002980 

0.0000382066 

0.0000842214 

0.0001016855 

0.0000101328 

0.0001969934 

0.0004245043 

0.0005128384 

0.0000005960 

0.0000325441 

0.0000712276 

0.0000874400 

Lo 
O 
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Table 2.5. Values of P(0) - P(k̂ ) when p = 8 

N 6̂  = 1.098 6̂  = 1.817 6̂  = 2.836 6̂  = 4.293 6̂  = 6.574 6̂  = 11.482 

8 9 0, ,0000479817 0. ,0000364184 0. 0000305176 0. ,0000265241 0. ,0000225306 0. ,0000158548 

8 16 0. 0007818341 0. 0005925894 0. 0004994273 0. ,0004424453 0. 0003862381 0. ,0002748966 

8 32 0. 0014165040 0. 0010690090 0. 0009016395 0. 0008033514 0. 0007105470 0. 0005264282 

8 48 0. 0015848270 0. 0011911980 0. 0010030260 0. 0008941889 0. ,0007960200 0. 0006018281 

20 21 0.0000002980 0. 0000010729 0. 0000009537 0. 0000004768 0. 0000003576 0. 0000007153 

20 40 0. 0000741482 0.0000604391 0. 0000542998 0. 0000500679 0. 0000462532 0. 0000373125 

20 80 0. 0001463294 0. 0001204610 0. 0001083612 0. 0001016855 0. 0000955462 0. 0000776052 

20 120 0. 0001710653 0. 0001414418 0. 0001270175 0. 0001196861 0. 0001122355 0. 0000930429 
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Finally, relative to the overall optimal probability of misclassi­

fication, and hence to error rate, the differences P(0) - P(k̂ ) in all 

cases are small and negligible. 

Summarizing, it has been demonstrated that the usual cutoff point, 

zero, is not always an optimal choice; an alternative cutoff point 

11 
ô ~ ~ (1 + —) has been found. However, it appears that the 

improvement of using over zero is very small and the two procedures 

may be regarded as equivalent. This can be taken as a justification of 

the use of zero as cutoff point. For this reason we will use zero in 

the remaining part of this thesis. 
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III. ESTIMATORS FOR THE UNCONDITIONAL PROBABILITY 

OF MISCLASSIFICATION 

A. Introduction 

The unconditional probability of misclassification with the use of 

the Z statistic and zero cutoff point is given by 

P*(Z) = P[Z < OlXETT̂ ]. (3.1) 

Since the exact distribution, of Z is not known, we will use the 

Memon-Okamoto asymptotic expansion for (3.1) given in Equation (2.18) 

in Chapter II. Since ̂ 2̂ ^̂  depends on the unknown parameter S , the 

unconditional probability of misclassification must be estimated from 

samples. 

Let independent samples of sizes and be available from the 

two populations. Denote by X̂ , and S the sample means and sample 

covariance matrix respectively and let = (X̂  - X̂ ) 'S ̂ (X̂  - X̂ ) be 

the Mahalanobis squared distance. Five different estimators of (3.1) 

with the following general form will be considered in this chapter: 

Q = $(- |) + q. (3.2) 

2 -1 
where q is a function of D and consists of first order terms of N̂  , 

and n n = t - 2. 

Other estimators, not of this form, will also be considered in 

this thesis. The Lachenbruch jackknife estimator will be studied in 

Section E of this chapter and the apparent error rate will be considered 
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in Chapter IV. 

The estimators for the unconditional probability of misclassifica-

tion are proposed in Section B of this chapter. The asymptotic bias and 

asymptotic mean square error, for each of the proposed estimators, are 

derived in Sections C and D, respectively. To obtain these results, we 

use a theorem by McLachlan (1972 and 1974a). This theorem and its 

assumptions are given at the end of this section. 

In Section E of this chapter, we will obtain the uniformly minimum 

variance unbiased estimator (UMVUE) of the expectation of the estimator 

given in Equation (3.64). We will also derive expressions for the 

first two moments of this estimator; the first moment of this estimator 

will then be used to obtain an exact expression for the unconditional 

probability of misclassification. 

We now state the theorem by McLachlan: 

Theorem 1. Consider a function of ïï̂ , and S, H(X̂ , X̂ , S), 

which may also be an explicit function of the parameters Z, 

assumed to be the identity matrix, and of the sample sizes N,, N„. 

Suppose that H satisfies the following conditions: 

a) For all possible values of X̂ , X̂  and S, |H| < K where K is a 

nonnegative constant independent of and N̂ . 

b) In some neighborhood of the point 

(Xi = U^, Xg = 1^2' S = I), (3.3) 

H is continuous and possesses continuous derivatives of the first to 

sixth orders inclusive, with respect to the X̂ ,̂ X̂ ^̂  and Ŝ . (i ̂  j). 
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-1 -1 -1 
these derivatives all being 0(1) with respect to (N̂  , and n ). 

With the notation 

î,j " 9(X̂ )j  ̂  ̂

and 

= aTsTT j 

where is the Kronecker's delta, the second order expansion of the 

expectation of H over the joint distribution of X̂ , and S is given by 

E(H) = 0H(iî , Mg, I) + O3 

where 0 is the differential operator defined formally by 

" ' ' + ' '2%: =1.1 + ̂  4.i 4=1+;̂  »i.j 

, .2 , 1 -2 -2 , 1 .2 -2 
ĝ 2 ̂ 2,i ̂ 2,j l̂,i ̂ 2,j 2N̂ n ̂ l,i ̂ jk 

+ 2î  4,i ĵk + ;& 4 îj + i ̂iiVkî '̂ 

and 0H(]i,, is the value of 0H at the point (3.3); the single 

summation symbol denotes summation over the range 1 to p of the 

subindices appearing in the summands. 
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B. Estimators Based on the Normal Distribution 

When the population are assumed to be normally distributed and the 

parameters Z are known, the optimal probability of misclassi­

fication is 

$(-5/2). (3.5) 

The first two estimators for the unconditional probability of 

misclassification, P2(Z), denoted by and Qjjg> are defined as 

Qj3 = $(-§) (3.6) 

and 

where 

0.7) 

= (Xg - X̂ )'S ̂ (Xg - X̂ ) (3.8) 

and 

(3.9) 

The next two estimators for P*(2), denoted by and are 

defined as 

Oxo = + 4 (3.10) 

and 

M̂OS ~  ̂ 1̂' (3.11) 

/\ 2 2 *2 
where and are obtained by replacing 5 by D and D respectively 

* 
in the linear term of Memon-Okamoto expansion for P2(Z) given in Equa­

tion (2.22). 
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Note that the estimators and Q̂ g can also be obtained from the 

Memon-Okamoto expansion in a similar way, but using only the leading 

term. 

The last estimator of the form in (3.2), denoted by is 

obtained as in McLachlan (1974a and 1974c), with the linear term in the 

Okamoto (1963) expansion replaced by the linear term in the Memon-

Okamoto (1971) expansion. This estimator is defined as 

QjlC = + ̂  - (3.12) 

where is obtained by replacing 6 by D in 

=-̂ (~){(-̂ +-jp) (5-4(p-l)<S ̂ +̂ (5̂ -4(2p+l))}, (3.13) 

which is obtained from 0̂  0(-5), where is the operator consisting 

only of the first order terms with respect to and n ̂  of the 

operator 0 given in Theorem 1. 

We will now show that all these five estimators take the form 

given in (3.2). It is obvious that can be written as in (3.2), with 

q equal to zero. 

Since 

= (1 _ 2±1)1/2 
n n 
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Qgs = 

= $(-5(1 - + O2)) 

QDS = ̂ (-§+̂ ° + 02) 

= $(-§) + ̂  D({)(~) + Og. (3.14) 

with the last expression obtained by Taylor's series expansion. 

Similarly, we can show that 

(-2) + 0̂ , (3.15) 

and hence all the proposed estimators take the form given in (3.2), with 

the q terms as defined in Table 3.1. 

* 
Table 3.1. Estimators for P2(Z) and the corresponding first order terms 

Estimator First order term 

9^= 0 

%S D̂S = 

'̂ MO %0 1̂ 

M̂OS %0S ̂  

M̂C M̂C 1̂ ®1 
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C. Asymptotic Biases 

In this section, we will use Theorem 1 to obtain an expression for 

the asymptotic bias of each one of the estimators Q̂ , Q̂ g» M̂OS 

and of the unconditional probability of misclassification, (Z). 

Since 0 _< PgCZ) 1 and 0 £ $(•) £ 1, it follows that (Z)-$(-5) | 

and |P̂ (Z)-0(— )I are bounded by one. In order to show that 

|P2(Z)-Qĵ q|, jPgCZ) - Q̂ Qgl and jP̂ (Z) - are bounded by a constant 

which is independent of and N̂ , we follow McLachlan (1974a), and 

2 
assume that D > 6̂  with 6̂  a very small positive constant. This 

2 
restriction on D has to be imposed since the estimators Qj q̂> QjiqS 

-2 2 
involve powers of D . Then, under the condition that D > 6̂ , we 

can verify that |P2(Z)-Q̂ Q[, n̂d |P*(Z)-Q̂ g| indeed satisfy 

assumption a) of Theorem 1. McLachlan (1974a) showed that Theorem 1 

2 
still holds when D is assumed to be greater than 6̂ . 

Since the five estimators considered here depend on X̂ , and S 

only through = (X̂ -X̂ )'S ̂ (Xg-X̂ ), we can verify, using results on 

the derivatives of a quadratic form with respect to the elements of a 

matrix, that condition b of Theorem 1 is also satisfied. 

Using Theorem 1 and Equation (2.21), we have. 

Bias (Q̂ ) = E[P*(Z)-$(~)] 

= 0['l(-̂ ) + + Â  - 5>(-̂ )] + 0̂  

= 'î'(-^) 4- A^ + A^ - 80 (-^) + 0^ 

= A^ - B^ + Og. (3.16) 
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where and are defined in Section B of Chapter II and B̂  is given 

in Equation (3.13). 

Using qjjg as defined in Table 3.1 and Theorem 1, it follows that. 

Bias (Qgg) = E[P*(Z)-$(-|) - q̂ g] 

= 0[$(-|) + Â  + Â  - $(-̂ ) - q̂ g] + 0̂  

= $(-|) + Â  + Â  - G$(-̂ ) - Gq̂ G + 0̂  

=  A i  -  B i  -  ̂  5 4 , +  O g ,  ( 3 . 1 7 )  

since B̂  = 0̂ <î>(~). 

Using Equations (2.22) and (3.13), we have. 

Bias (Qjjg) = ̂  4'(-̂ ){̂ (6 + 4(p-l)6 ̂ ) 

+ ̂ (- 5 + 4(p-l)6 ̂ ) 
1N2 

2 
+ •̂ (2p - 3 - -̂ )} + 0̂  (3.18) 

Using q̂ Q, q̂ ĝ, and q̂  ̂from Table 3.1 and applying repeatedly 

Theorem 1, we have. 

Bias (Q̂ ()) = E[P*(Z) -

= 81Y("2̂  "1 "2 ~ ~ "1̂  

= - Bi + O2 

1 W 5^ r, 1 
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-|j-(5̂ -4 (2p+l) )} + Og, (3.19) 

Bias (QjjQg) = E[P2(Z) - Q̂ gg] 

= 0[<j)(~) + - $(-̂ ) - Â  - q̂ g] + 0̂  

= -(B̂  + iS(!)(~)) + (3.20) 

and 

Bias (Q̂ ) . E[P*(Z) -

= G[0(-̂ ) + Â  + Â  - 4»(-2) - Â  + B̂ ] + 0̂  

= Â  - B̂  - (Â  - B̂ ) + Og 

= zero + Ô . (3.21) 

D. Asymptotic Mean Square Errors 

To obtain an expression for the asymptotic mean square error for 

each one of the estimators Q̂ , Q̂ g, Q̂ ĝ and we will use 

Theorem 1 in Section A of this chapter. In doing so, we will first 

derive an expression for the asymptotic mean square error (AMSE) of an 

estimator Q of the form given in (3.2). Then, the AMSE for each one of 

the estimators Q̂ , Q̂ g, Q̂ ĝ and will be obtained as a partic­

ular case of this general result. 

The argument used to verify that the assumptions of Theorem 1 were 

satisfied by the functions |P*(Z) - Q|, where Q can be any of the five 
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estimators considered, can again be used to verify that the function 

[P̂ (Z) - Q] also satisfies assumptions a) and b) of that theorem. 

From Theorem 1 and Equation (2.21), we have that, 

AMSE(Q) = E[P*(Z) -  Q]̂  

= e[p*(z) - Q]^ + 03 

= 0[$(-̂ ) + + A2 - - q + Og]̂ + O3 

= G[$(-̂ ) - 0[Â  + A2 - q]̂  

+ ©{2[$(~)-<ï>(~) ] [Â  + A2 - q]} + Og 

= m̂ (Qp) + [Â  - q(6)]̂  + 2$(-|)[Â  + Â  - 0[q]] 

- 8{2$(-̂ )(Â  + Â  - q)} + O3 

= m̂ (Qjj) + [Â  - q(Ô)]̂  - 2$(-|)0[q] 

- 2Â 0̂ [$(~)] + 20[q$(-2)] + O3 

= + [Â  - q(ô)]̂  - 2Â B̂  + T + O3, (3.22) 

where 

T = 20[q$(-2)] - 2$(-|)0[q] 

= 20̂ [q$(-2)] - 2$(-|)0̂ [q], (3.23) 

0̂  is as defined in Theorem 1, 

m̂ CQg) = E[tf(~) - <̂ (~)]2 
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and q(ô) is a function of 5, N̂ , and p obtained by replacing D by 6 

in the function q defined in Table 3.1. 

Since appears in the expression for the AMSE of each one of 

the estimators, we now obtain its form up to the first order terms. 

From Theorem 1, we have 

= 0[$(-f)-<f(-|)]̂  + O3 

+ + O3 

= -2$(~)0̂ [$(-2) ]+0̂ [i|i(-2) + 0̂  

= + G^[$(-5)]^ + Og, (3.24) 

where is given in Equation (3.13) and 0̂ [̂ >(-̂ )]̂  is obtained as 

follows: From Theorem 1 

D,,2 L/ 1 -yZ , 1 2̂ ,1 ̂2 D,,2 (3.25) ®l['̂ ("2)̂  - 2{(-̂  3i,i + 2nJ ̂ 2.i + n 

where the notation  ̂indicates the value evaluated at the point (3.3). 

Since the distribution of the Z classification statistic is invariant 

under any linear transformation on the observations X, we may suppose 

without loss of generality that, 1̂ 2 ~ ~̂ o S = I, where 

denotes a vector with first component equal to 6/2 and the other com­

ponents equal to zero. 
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The contribution of the term in (3.25) can now be obtained by 
1 

first setting ~ 1̂ 2' ̂  ~ ̂  and hence. 

= Z (X, . - %_,)2 (3.26) 
i=l 

and then taking derivatives with respect to X̂  ̂and evaluating at the 

point (3.3). Proceeding in this way, we have that, 

- 2$(~)c})(~) (-i) (i)D ^(2)(X^^ - U2i^ 

= -0(-̂ )4)(-̂ )D - ̂ 2̂ )» 

and 

3l̂ i[̂ (-§)l̂  = -̂ (~)ci)(-§)[D"̂ -(̂ + D-3)(Xi. -

+ - W2i)̂ -

so that. 

2#: 1 x=x 

Similarly, the contribution of the terms in (3.25) is 
N2 

+ (3.28) 
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To obtain the contribution of the ̂  term in (3.25), we take deriva­

tives with respect to the (i,j)th element of the inverse of the sample 

variance covariance matrix S. After setting and hence, 

= 6̂ (S") (3.29) 

where (S") denotes the (1,1)th element of S we can obtain 3̂ j[$(-̂ )] 

by using Lammas 2 and 3 in Okamoto (1963). Proceeding in this manner, 

we have, 

9ij[̂ (-§)]̂  = 2$(-|)(j,(-|)(-|)(|)(S")"̂ ^̂ (S")y 

= $(-§)$(-§) (S")-̂ /̂ (S")_ 

and 

3̂ [̂ (-|)]̂  = -̂ $(-9)4)(-̂ {(S")-̂ /2(S").j .j-ï(S")-3/2(S")ij 

-â \:s")-i/2(s")2.} 
O 1] 

2 
+ 1 [4)(-5)]\s")-̂ (s")̂ j. 

It then follows that, 

.2 
i E3y{[$(~)]̂ } = •̂ [-|K-|)(i>(-|)(p4-i 

O 

2 
+ ̂  (4>(-|))̂ }. (3.30) 



46 

Substituting (3.27), (3.28) and (3.30) in (3.25), we have 

0l['î'(-|)]̂  = (ĝ  + •ĝ )̂ (-|)4'(-|) [iS-4(p-l)(5 

+-̂ [̂  $(~)(f)(-|) (ô̂ -4(2p+l))] 

+<Ŝ [(l'(-|)/2]̂  (3.31) 

Finally, substituting (3.31) in (3.24), we obtain that, 

mi(QQ) = [f̂ (~)]̂ { 3̂  + + &} + 0% (3-32) 

Using (3.22) we can now derive the expressions for the AMSE of each 

one of the estimators. 

AMSE(Qjj) = m̂ (Qĵ ) + AJ - 2Â B̂  + 0̂  

"l̂ "l ~ (3.33) 

4MSE(Qj,j) . + [A^ - q^jCS)]^ - 2A^B^ + 1^^ + O3 (3.34) 

• ™SEW„) + ,j,3(S)[,j,3(S) - 2A^1 + T„3, (3.35) 

where 

D̂S ®̂l'-̂ DŜ *' 2̂  ̂ 2̂ ®l'-'̂ DŜ " (3.36) 
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In order to obtain T̂ g, we will proceed in a similar way in 

obtaining (3.31). Denote by the contribution of the ̂  term of 

D̂S' 

?DS1 - 3l,i)f°4(-5)} 

+2 
1=1 1 

(3.37) 

When we examine the contribution of the derivatives 

and 

1̂ 

1̂ I[D$(-̂ )$(-̂ )] 

= 3̂  ̂ [D<}>(-̂ )]*î'(-̂ )+D(S)(~)3̂  ̂ $̂(-̂ )] 

+ 23i_̂ lD«-5)13i_i»(-5)l. (3.38) 

we observe that, after taking the derivatives in (3.37) and evaluating 

the resulting expression at the point (3.3), the first term on the right 

hand side of (3.38) will cancel with the first term on the right hand 

side of (3.37). After this simplification, reduces to, 

?DS1 - #>2 {23,_,[D4.C-5)13̂ _J«-5)1 

+ D(f)(~)9̂  ̂ ['î'(-|)]}) (3.39) 
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2 P - 2 
Using D = Z (X - . ) , we have that 

i=l 

3l̂ i[$(-f)] = *(-§)(-̂ )(+ |)D"̂ (2)(X̂ . - U2i) 

and 

- ~(J>(~)D - Ugi)' 

= -|<Î>(-§)[D -̂(D ̂  (X̂ J_ -

3l̂ i[D(J)(~)] = 4)(-§)9̂ .̂(D)+D3̂ .̂[4)(-5)] 

= 4,(-§)(D-:̂  - 5)(x̂  _ 

Substituting these in (3.39), it follows that 

1 1=1 

-1 
+ D(})(~) [~(j)(~) [D ^-(D ^^^^-)(X^^-U2i)^]]} 

= 35̂ -4 (p+l)]. (3.40) 

Similarly, it can be shown that the contribution to the ̂  term in 

Tgg is given by 
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D̂S2 -3̂  
(3.41) 

Now let T_-„ be the contribution of the — term of T__. Then we have 
D& o n i/D 

that, 

J 

5̂ J 

(3.42) 

It is not difficult to show that after taking derivatives and 

evaluating the resulting expression at (3.3), reduces to 

+ D(j)(-|)9̂ j [̂ (-|)} (3.43) 

Using = ô̂ (S"), we have that 

3ij[$(-5)] = -I *(-§)[(S") 

3̂ j[*(-2)] =̂ (~)[Ô̂ (S") ̂^̂ (S")̂ +4(S")̂ j(S") 

-8(S") ̂ 2̂(3") ] 
Ij 9 -^J 

and 

3̂ j [D(b(-2) ] 4'(-|)3ij[D] + D9j_j [<p(-|) ] 

(})(-)[j(s")-̂ /̂ (s").. -̂ (S")̂ /̂ (S"). .], 
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It follows that. 

3 

+5(-5) (-5) [5̂ (S")-l/2(S")̂ .+4(S")̂ j (S")"3/2 

-8(S")-l/2(sn) ])} 

[̂<{>(~)]̂ {(|̂  - ̂ ) + 1̂ (0̂ -4 (2p+l)) 
2ii 

£ti p-f ,[(j)(~)] [Ô (36 -12-8p)]. (3.44) 
64n  ̂

Substituting Equations (3.40), (3.41) and (3-44) in Equation (3.36) 

we obtain 

2 
D̂s = (ĵ  (36̂ -4(p+l)) + -̂ (36̂ -12-8p)}. (3.45) 

From Equation (3.22) and using q̂  ̂as defined in Table 3.1, we have 

that 

®SE«^0' = "•!<%> + [*1 - - "A + •'mo + =3 

= m, (Q_) - 2A.B, + T,„ + 0.. (3.46) 
± U X i i'lU j 

where 

which is obtained following the same procedure used to obtain T̂ g. 
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Letting + T̂ OZ + ̂M03' ĥat 

—3 -1 
0̂1 " (0̂ +4(p-l))-(̂ ) (30̂ -4(p-l))j-'̂ (p-l) 

+(|) [3̂ (-5+4(P-1)5-̂ )+£̂ (30+4(P-1)0-̂ )+̂ (̂P-1) ] 

•(l + |(6-4(p-l)ô"̂ ))}, (3.48) 

M̂02 " M̂Ol (3.49) 

and 

'̂ M03 " ̂[4)(-̂ )]̂ {̂ [̂ (6̂ +4(p-1))- ̂ (3ô̂ -4(p-l))]- ̂ (p-1) 

)̂+3̂ (36+4 (p-1) 6 ̂ )+-̂ (p-l)] 

.(30̂ -4(2p+l))}. (3.50) 

Again, from Equation (3.22) and with q̂ Qg as defined in Table 3.1, 

we have that 

= "i«D> + [4 - 'MOS(«I' " + "MOS + °3 

• »1«D' + t'DS<«l' - ̂ Vl + ̂ MO + ̂DS + s 

. MSE(Q„„) + [,j,g(S)!' + T„5. (3.52) 

The last expression for AMSE(Q̂ Qg) will be useful when comparing 

the relative performance of the estimators with respect to AMSE. 
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Finally, from Equation (3.22) and with q̂  ̂as defined in Table 3.1, 

we have that. 

SMSECQ^C» - + [4 - + \c + «3 

»!<%> + - 2Ai) + tyj, + O3 

m̂ (Qĵ ) + B̂ (B̂  - 2Â ) + T̂  ̂- R + O3, (3.53) 

where 

with 

= TmO - (3-54) 

R= 20̂ [B̂ $(-|)]-2$(-|)0̂ [B̂ ] (3.55) 

and 

B̂  = -̂ ("l) [ (jp+-̂ ) (D-4(p-l)D ̂ )+-̂ (D̂ -4(2p+l)) ]. (3.56) 

Finally, in order to obtain R, we proceed as we did when we 

obtained T̂ g and T̂ .̂ Writing (3.55) as R = R̂  + R̂  + R̂ , we have that 

3 
R̂  = ̂ [(J)(-|) ]̂ {-6 ̂ [•̂ (•̂ +̂ ) (ô̂ +4(p-l))+-|̂ (3ô-4(2p+l)ô ̂ ) ] 

(6-4(p-l)6 ^̂ (6̂ -4 (2p+l))] 

.(1 + j(ô-4(p-l)5"̂ ))}, (3.57) 
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Rz = ̂  Ri (3.58) 

and 

R3 = (0̂ +4(p-l))+-1̂ (30-4(2?+l)ô ̂ )] 

(ô-4(p-l)6 h+ -̂ (6̂ -4(2p+l))] 

•(36̂  - 4(2p + 1))}. (3.59) 

In summary, the expressions for the AMSE of Q̂ , Q̂ g, Qĵ Qg and 

are given in Equations (3.33), (3.34), (3.46), (3.51) and (3.54) 

respectively. 

E. Jackknife Estimator 

In this section we consider a jackknife classification procedure 

which produces an estimator whose properties can be used to derive an 

•k 
expression for the unconditional probability of misclassification P, (Z). 

Since this probability depends on the sample size and N̂ , we will 

* 
write Pi(Z) as aCN̂ , N̂ ) whenever this dependence needs to be explicit. 

Let us consider the Lachenbruch (1967) jackknife estimator P̂ , 

defined as, 
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where 

K. = 
J 

1 C(%j, Xg' S(j)) 2 0 (3.61) 

0 otherwise. 

^(X.-Xj)'S-J)(X.-X2). (3.62) 

and a statistic with a subscript (j) indicates that the observation 

has been removed from the calculation of that statistic. 

The estimator is obtained by successively omitting an observa­

tion from the first sample and calculating the classification statistic 

based on the remaining (N̂ -l)+N̂  observations. This modified classifica­

tion statistic is then used to classify the observation that was left 

out. For each of the classifications, the omitted observation and 

the corresponding classification statistic are independent. Hence, the 

proportion of misclassified observations is an unbiased estimator of 

a(N̂ -l,N̂ ). Denoting the expected value of by we have that, 

EP̂  = tCN̂ .N̂ ) 

= > 0) 

= a(N,-l,N,), (3.63) 
J. £. 

Note that P̂  is defined without any assumptions on the distribution 

of the observations and, thus, can be used when these distributions are 

unknown. However, when the populations are normal, P̂  can be improved. 
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Since a(N̂ ,N̂ ) is a function of \x̂  and Z, and (X̂ jX̂ jS) is a 

complete sufficient statistic for the estimator, defined by 

= E(K̂ 1X̂ ,X2,S) (3.64) 

is the UMVUE for T. Clearly, the estimator has smaller variance than 

the estimator P̂ . 

The problem then is to obtain this conditional expectation for 

given values of X̂ , X̂  and S. From Equations (3.61) and (3.64), it 

follows that, 

P* = P[C(X̂ ,X̂ ^̂ ,̂X2,Ŝ ^̂ ) > Olx̂ .Xg.S] (3.65) 

We will now write C(̂ '̂̂ 1(1)'̂ 2(1)̂  terms of X̂ , X̂  and S. 

-1 -Letting c = N̂ (N̂ -l) , û  = X̂ -X̂ , j = 1,...,N̂ , we have that, 

"l N X -X. 

ÛJ) • X.-X.) = 

^ 1 - 1  -  1  
X - X. = X - (Tr̂ )u. (3.66) 

N̂ -1 1 N̂ -1 j 1 "N̂ -l" j 

and 
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1 _ 2 _ 
nS = Z (X.-X )(X-X )• + Z (X.-X )(X.-X )' 

i=l  ̂ 1 ± X z X z 

u. u. 2̂ 

l̂(j) N̂ -1̂  l̂(j) ~ N̂ -1̂ 2̂̂ ' 

N, 

T u<u-' 
(N̂ -1)̂   ̂: 

• (-l)S(j)+(Xj-Xi + (Xj-Xj + N̂ )' 

" Hj-l "j ®l"^l * ' 

- " IÇ]? " 

= (n-1)S_̂ +c(Xj-X̂ )(Xj-X̂ )', j = 1,...,N̂  (3.67) 

Hen«. Xj-X̂ ŷ - c(X,-Xj) »d CCX̂ .X̂ y, .X̂ .Ŝ ,̂) - i(Xj-iĈ )'S'̂ , (X̂ -X̂ ) 

"2 - -1 -
(X,-X̂ )'S,t,(X -XJ. N̂ +l̂  1 2' (1)̂  1 2 

Using the alternative expression for L (n = 1) given in Equation 

(2.10), we can write C(X̂ ,X̂ ^̂  ̂,X̂ ,Ŝ )̂ as 

b* [ (x̂ -x̂ +â  (Xg-Xi) ) * (x̂ -x̂ +â  (Xg-Xi) )-a2 (ctg+Dô ]̂, 

where 

di = c = N̂ (N̂ -l)"̂  

dg = C2 = «^(N^+l)"^ (3.68) 

b* = - d̂  

"2 ~ d̂ /b* 
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and 

From Equation (3.65), it follows that, 

P*=P [ (Xg-X̂ )) 's"];̂  (x̂ -x̂ +â )>â (â +DD| x̂ .x̂ ,s] 

=P[ (X̂ -X̂ ) ' (X̂ -X̂ )+2a2(Xĵ -X̂ ) (X2-X̂ )>a2Dĵ |x̂ ,X2,S] (3.69) 

-1 
where the matrix is obtained using the following result. If A and 

B are two nonsingular matrices and û  and û  are two column vectors 

such that B = A + uĵ û  then B  ̂= A -̂(l+û A ̂ û ) ̂ A ̂ û û A Hence, 

using Equation (3.67), we have 

,-i . ,.-1, --1, 's'') 

 ̂ 1 - ̂  (X̂ -X̂ )'S"̂ (X̂ -X̂ ) 

c(nS) ̂ (X,-X,)(X,-X,)'(nS) 
= (n-l){(nS) V J: } . (3.70) 

1-c(X,-X̂ )'(nS) ̂ (X,-X,) 

We now define the Vectors V and Z as 

V = (c)̂ ^̂ (nS)"̂ ^̂ (X̂ -X̂ ) (3.71) 

and 

a = S"̂ '̂ (X̂ -X2)/D. (3.72) 
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Substituting Equations (3.70), (3.71) and (3.72) in Equation (3.69) 

gives 

P* = P{ (X̂ -X̂ ) ' [ (nS)"̂ +(-Y2#ry) (nS)"̂ (X̂ -X̂ ) (X̂ -X̂ ) ' (nS)"̂ ] (X̂ -X̂ ) 

+2a2(X̂ -X̂ )'[(nS) (̂X̂ -X̂ ) (X̂ -X̂ ) ' (nS) (X̂ -X̂ ) 

>a2(X2-X̂ ) ' [ (nS) (nS)~̂ (X̂ -X̂ ) (X̂ -X̂ ) ' (nS)"̂ ] (X̂ -X̂ ) 

lX̂ ,X2,S}. 

After multiplication and some simplifications, this reduces to 

P*=P{(i)V'V+(i) -lâ icn)'̂ ĥVV-2â (.-̂ )̂VYD 

. (Jl'VD)̂  
— n 1-V'V nc 

Since 1-V'V > 0 with probability one, 

,2 

P*=P{— - 2a_D(cn) ̂ ^̂ (2'V)> (1-V'V + (&'V)^)|X, ,X_,S] 
L c Z — n X Z 

= P{V'V>a„D-(-)[l-V'V+(Jl'V)-]+2a„(Jl'V)D(-) |X_,X_,S] 
— z n Z n 1 Z 

a„D̂ (-)+a_D̂ (-) (£'V)̂ +2a„(Jl'V)D(-)̂ ^̂  
=P[V'V> ^ ^ ^2 |X.,X-,S] 

14̂ (̂5)  ̂ 2 
z n 

1/2 

.p[v'v>2Î«:s!waZ4̂ WW |J J J_ 
nk +D 
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where k* = ̂  = + ̂ . 

Noting that both Z and D are fixed when X̂ , and S are fixed, 

we can rewrite the above equation as 

p* - |X,.X,.S]. 
 ̂ nk +D  ̂  ̂

where a period above a variable indicates that the variable is fixed. 

Since Broffitt and Williams (1973) have shown that V is stochastically 

independent of (X̂ jX̂ .S), it follows that 

* = prv-v > a'V)̂ +2(n/c)(£'v)+D̂  
L — * .9 •> *  «2  

nk +D 

- F[y> °Vh-2(„/c)̂ /W , (3.73) 

nk +D 

where w = £'V and y = V'V. 

The joint density function of w and y and the density function of 

w were obtained by Broffitt and Williams (1971). They are given as 

f(".y) -  (3.74) 

6(2: "~2~̂  8(2' 

and 

9  1 /9  

tW • ;  -I<w<l (3.75) 
8(5, i(n-l)) 
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When p 2 2 and under the restrictions n ̂  p + 1,  ̂2 and  ̂1, 

* 2 * 
the estimator is obtained from (3.74). When p = 1, y = w and P̂  is 

obtained from (3.75). Under the same restrictions on N̂ , and n, we 

have 

P* = l-P{(-)̂ ^̂ (̂ "̂ "̂̂  ̂  ̂)D<w<(-)̂ ^̂ (̂ "'"̂ ^̂ \'̂  ̂  ̂)D} (3.76) 
 ̂  ̂ k c ~ ~ k c 

where the limits on w are the roots of w in the quadratic equation 

2 ̂  D̂ ŵ +2(n/c)̂ ^̂ Dw+D̂  
" * «2 

nk +D 

The estimator P̂  depends on X̂ jX̂  and S only through the value of 

D̂ ; to emphasize this dependence, we let P̂  = P̂ D̂̂ ). Notice that 

* 2  2  
P̂ (D ) is a continuous function of D with maximum value of one, when 

2 2 
D = 0 and approaching zero as D goes to infinity. 

•k 
In order to obtain the distribution function and moments of P̂ , we 

*  ?  9  
will first show that P̂ (D") is a strictly decreasing function of B~. 

Then we will apply the following result given by Broffitt and Williams 

(1973). 

2 2 
Let i|j(D ) be a positive and strictly decreasing function of D for 

2 9 2 2 2 2 2 
0 ̂  < D~ <  ̂ where and are constants, i{;(D ) = ̂ (D̂ ) for 

0 < and 4'(D̂ ) = 0 for > of. Define 
— — o — 1 

h(t) =• 
1(C) 0< t< ii)(D̂ ) 

t = 0 
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and 

Y(t) = 

h(t) 
niirfh(t) 

_2 

nnri-D, 

0 < t < iXDg) 

t = 0 and f 

t = 0 and = ®® 

where m = (N̂  + N̂ )(N̂ N̂ ) Then 

P{i|;(D )<t} = 1- E 
» ,i.-X y(t) 

i=0 

X e 
i t 
6(̂ , 

t < 0 

, 0<_t<ii;(Dp (3.77) 

where À = -|in 6̂̂  and 

E[V(D2))=] 
00 i — 

r Z ' 
i=0 i! 

«°o) 
n  I  Yi  T>  _  1  1  

Q r— • f 
r-1 " ̂ ? ' 2 ' ' 

t""  ̂ 4i: dt (3.78) 

* 2 
We will now show that P (D ) is a strictly decreasing function in 

D . From Broffitt and Williams (1973), it is known that the function 

± ? 
TgCD̂ ), given by 

. p[y > iV + _ 

nk + D 
(3.79) 
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11 2 
with k = ——̂  + Tj—, is strictly decreasing in D . This implies that the 

function 

H(D̂ ) . (3.80) 
nk + D 

2 
is strictly increasing in D . Since y is positive with probability one, 

2 
we can assume without loss of generality that H(D ) is positive. Also, 

without loss of generality, we can assume that N_ < - 1 and hence 
* 2 
k = ——1- — is greater than k; it follows that the functions —̂  ̂and 

2 '̂ l nk +D 

H*(D̂ ) = H(D̂ ) (3.81) 

2 2 
are both strictly increasing in D . It follows that, for each value D_ 

2 2* 
of D , there is a corresponding value such that, 

H*(D̂ *) = H(D̂ ). (3.82) 

T T.va  •«n r .T -»» -?  +-  a  ^  o  c  

+ (3.83, 
nk + D nk +D 

2 2 2 2 2 
and consider two values D and D, of D , such that D < D, , we can 

a b a b 

establish, using Equations (3.79) to (3.83), that, 

P[y > E*(D̂ *)] = P[y > H(D̂ )] (3.84) 

and 

P[y > H*(D2*)] = P[y > H(D̂ )] (3.85) 
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2* 2* 2 2 
where and are the corresponding values of and D̂ , defined in 

(3.82). 

Since TgCD̂ ) is strictly decreasing in D̂ , we have that, TgCD̂ ) = 

P[ŷ H(D̂ )] > P[ŷ H(D̂ )] = T̂ CD̂ ). Equations (3.84) and (3.85) imply 

that P[y _> H*(D̂ *)] > P[y > H*(D̂ *)]. Hence H*(D̂ *) < H*(D̂ *) and since 

* ,  1  2  2 * 2 *  
H (D ) is strictly increasing in D , it follows that . Thus, 

we can conclude that, the function P̂ D̂ ) is strictly decreasing 

2 
function of D . 

* 
The distribution function and moments of P̂  can now be obtained 

from Equations (3.77) and (3.78), respectively, by setting i|;(D̂ ) = P (D̂ ), 
A 

with = 0, = =0 when p > 2 and D, = S( ^ .  ) ^  w h e n  p  =  1 .  
^ - 1 c |i_(i+k*c)l/2| 

The expectation of P̂ (D ) as a function of and is of special 

interest since it can be used to obtain an exact expression for the 

* 
unconditional probabilities of misclassification P̂ (Z), i.e., 

EP*(D̂ ) = t(N̂ ,N2) and t(N̂  + 1, N̂ ) = a(N̂ ,N̂ ) = P*(Z). 

Letting 9 = ((N̂  + 1)N̂ /(2(N̂  + + 1)))6̂ , then 

* 0̂ e P (Z) = a(N ,N ) = z 
i=o 

e(̂ , Î M )  

0  

dt, (3.86) 

where 

Y(t) : , 0 < t < 1 
(n+3)[(N̂ +l)N2] + Tp (t) 

2 * 2 
and iJj(D ) = P̂ ^̂  +1 N ) ̂̂  ̂ can be obtained from Equations (3.73) or 

(3.76) with all values of replaced by N̂ +1. 
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From (3.86) we observe that although the estimator was designed 

as an estimator for it can also be viewed as an estimator of 

pj(z). 

•k 
The expression for PgCZ) can now be obtained by interchanging 

A 
and ̂ 2 in the expression for P̂ (Z). 
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IV. COMPARISONS AITO CONCLUSIONS 

A. Comparisons with Respect to Asymptotic Bias 

In the previous chapters, several estimators of the unconditional 

probability of misclassification were given. In this chapter, we will 

examine the performance of these estimators with respect to their 

asymptotic bias and asymptotic mean square error. Let us first study 

the bias. 

In practice, the consideration of bias is important. For example, 

in medical applications, it is highly desirable to have accurate values 

* * 
of and P̂ ; estimators which underestimate these probabilities will 

indicate that the classification procedure is much better than what it 

actually is. In such a case, serious misclassification may result. 

From the expressions of asymptotic bias of the estimators con­

sidered in Chapter III, we obtain the relationships of the asymptotic 

biases as follows. 

Bias (Qn) = h - \ + ^2 (4.1) 

Bias (Q̂ g) = Bias (Q̂ ) - q̂ g(5) (4.2) 

Bias = Bias (Qjj) - Â  (4.3) 

Bias %o) = (Qos) + (4.4) 

Bias (4.5) 

Bias %os) = (Qn) - [4 + qDs(^)] (4.6) 

Bias %os) = (Qng) - 4 (4.7) 

and 

Bias (Q̂ ç) = zero + 0, (4.8) 
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where q̂ g(ô), and are given, respectively, as 

SggCG) = (4.9) 

= -̂ (̂~) [•jp(3ô+4(p-l) Ô )̂+•ĵ (-ô+4(p-l)ô ̂ )+ (p-1) ] (4.10) 

and 

Bi = -̂ (~) [̂ (0-4(p-1)6" V ̂(5-4 (p-1)6"1)+ ̂ (5̂ -4(2p+l)) ] (4.11) 

From Equations (4.1) to (4.8) it follows that, except for all 

-1 -1 
the other estimators have first order bias with respect to and 

n . Hence, of the five estimators for the unconditional probability 

of misclassification, the estimator is best when they are compared 

with respect to their asymptotic baises. 

From Equations (4.1) to (4.7), we observe that in order to compare 

the asymptotic bias of the estimators Q̂ , Q̂ g, and Q q̂S' have to 

examine the difference Â -B̂ . However, from this difference, it is 

difficult to obtain general conclusions about the relative superiority 

of the estimators. Hence, we must introduce some restrictions on the 

2 
values of N̂ , N̂ , p and S . 

2 
Assuming that  ̂N̂ , we can show that Â -B̂  ̂  0 for all p and 6 

2 
values such that S _< 4(4p-l). Considering that in most practical 

situations the Mahalanobis distance between the two populations is such 

2 2 
that 1 _< Ô _< 10, the restriction ô < 4(4p-l) will usually be satisfied. 
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It follows that, among the estimators for PgCZ) considered here, 

Qjj is the worst in most practical situations when the comparison is 

made with respect to asymptotic bias. However, the estimator may be 

2 
the best when S 2 4(4p-l) and for some values of the sample sizes. 

From equations (4.5) and (4.7) and under the above restrictions 

2 
on N̂ , N̂ , p and 6 , it follows that, the estimator is consistently 

the second best among the five estimators Q̂ , and 

The bias of Q̂ jQg is only larger than that of which was explicitly 

constructed to have second order bias. However, we should note that 

2 2 
when Ô > 4(4p-l) or 5 large, the estimator Q̂ jQg may be worst than 

* 
other estimators of P2(Z). 

From (4.4) we observe that, the relative performance of the esti­

mators Q̂ g and with respect to asymptotic bias, depends on the sign 

of the quantity - q̂ ÔS). From (4.9) and (4.10), we have that, 

= "̂ ;<î>(-̂ ) ["ĵ (36+4(p-l)(S ̂ )+•̂ (-6+4(p-l)ô (4.12) 

2 
which will be positive, except when 6 is large, p is small and is 

much larger than N̂ . Hence, under most practical situations, the 

estimator will be better than the estimator Q̂ g-

B. Comparisons with Respect to Asymptotic 
Mean Square Error 

In this section, we will assess the relative superiority of the 

"k 
estimators of the unconditional probability of misclassification,  ̂

with respect to Asymptotic Mean Square Error. 
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The expressions for the AMSE of the estimators Q̂ , Q̂ g, 

and were derived in Chapter III, Section D. Since these expressions 

are rather complicated, the comparison of these estimators with respect 

to their AMSE, will be quite difficult. 

An examination of the expressions of the AMSE of the estimators of 

•k 
P-(Z) considered here, reveals that each estimator has the same leading 

^ 2 
term of the first order  ̂ in the AMSE. This 

1 * 2 
indicates that all five estimators of PgCZ) are equivalent when they 

are compared with respect to AMSE and up to the first order terms. How­

ever, the second order terms in the AMSEs are different, and by a 

comparison of these second order terms, the relative performance of the 

estimators will be determined. Also, since the term m̂ (Qp) appears in 

all the AMSE expressions, it is not required in the evaluation of the 

relative superiority of the estimators. 

In comparing the estimators with respect to their asymptotic mean 

square errors, we will first examine the relative performance of the 

* 
estimators of P̂ CZ), which have first order bias, i.e.. 0̂ , Q̂ g; Q̂ Q 

and Qĵ Qg- We will try to obtain., under certain conditions, the best 

estimator in this class and then compare its AMSE against that of the 

estimator 

From Equation (3.35), we have that. 
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AMSE(Q̂ g)-AMSE(Q̂ ) = [q̂ gCd)]̂  - 2Â qDs(5) + T̂ g 

= (̂ )V[̂ (-|)]̂ -(̂ ĝ̂ )0[c{)(-|)]̂  

* (p-1) S ̂ )+ -̂ (-6+4(p-1) Ô )̂+ ] 

2 
+(3̂  ̂[41 (-̂ ) ]̂ [ (36̂ -4(p+l))+̂ (36̂ -12-8p) ] 

= (§̂ ) [ <}> (-|) ] ̂{-8ô[ĵ (35+4 (p-1) 6"b+̂ (-5+4 (p-1) ) 

 ̂45(p-1)j 
n 

2 
+8 [ (ĵ +ïp) (36̂ -4 (p+1) )+|̂ (35̂ -12-8p) ] 

I 16(P+1)6̂ ] 

After multiplying and rearranging terms, we have. 

AMSE(Qĵ g)-AMSE(Q̂ ) = (-g|--)[<î)(-̂ )]"{:̂ [(3ô'-4(pfl))-Ô(3 +4 (p-1) 6 b] 

+-̂ [ (35̂ -4(p+l))-5(-5+4(p-l)6 ̂ )] 
2 

2 
+ (3ô̂ -12-8p)+2ô̂  (p+l)-4ô̂  (p-1) ]} 

= + (̂6̂ -4p)} + O3 (4.13) 
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2 
From this expression, it follows that, for S and p values such 

2 
that 6 _< 2p, AMSE(Qjjg) _< AMSE(Q̂ ) for any values of and Under 

2 
certain restrictions of the sample sizes, the range of values of ô , for 

which (4.13) remains positive, can be increased. For example, for 

sample sizes and such that the difference AMSE(Q̂ g) -

2 2 
AMSE(Qĵ ) will be negative for all values of p and 6 such that 6 £ 3p. 

2 
Moreover, for fixed values of 6 , the relative superiority of the 

estimator over the estimator increases as p increases. Also, for 

2 
fixed values of p, AMSE(Qgg) ~ AMSE(Qg) becomes positive when 6 is much 

larger than p. This indicates that the estimator will be better than 

2 
the estimator Q̂ g only in the most unusual situations, i.e., ô >10, 

p £ 5 and 6̂  > 2p, p ̂  6. 

The performance of the estimators and Qĵ Qg can be compared in 

a similar manner. Using Equation (3.52), we have that, 

amse(Q„os'-®=^«MO>-[-'DS«>1^ + I„5 

16n 

2 
(30̂ -4 (p+1) )+|̂ (36̂ -12-8p) ]} 

" 32̂  • 

.2 
{(ĵ +]p) (36̂ -4 (p+l))+|̂ (3ô̂ -4(p+2))}+02' (4.14) 
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It follows that, 

2 
]"̂ (ir+iÇ+&) (35̂ -4(p+l))}-H)̂  (4.15) 

2 2 4 
When p and o are such that ô  ̂•j(p+l), the above difference is 

negative for any and N̂ . Hence, the estimator Q̂ Qg will be better 

than the estimator Q̂ Q when 6̂  ̂  y(p+l). Moreover, from Equation (4.14), 

2 
we have that for fixed 6 and increasing p, AMSE(Q̂ gg) becomes 

increasingly smaller in relation to AMSE(Q̂ Q). 

Noting that -̂ (p+1) ̂  2p for p _> 2 and from the previous remarks, 

we have that whenever the estimator Q̂ Qg is better than the estimator 

Q̂ Q, the estimator Q̂ G will be better than the estimator Q̂ . 

In order to simplify the analysis of the remaining differences in 

AMSE of any two estimators, it is necessary to introduce some additional 

2 
restrictions on the values of N̂ , p and 6 . First, we will only' 

2 
consider 6 values in the interval [1,10] since these are the values 

for the Mahalancbis distance that are more frequently found in practice. 

And second, we will assume that the sample sizes are such that _< 3N2. 

Under these general restrictions and from Equations (3.33) and 

(3.46), we have that the difference AMSE(Q̂ ) - AMSE(Q̂ g) = Â  -

From Equations (3.47) to (3.50) we can observe that it is very difficult 

to obtain general conclusions about the sign of this difference. How-

2 
ever, when 6 is small relative to p, is negative and hence 

AMSE(Q̂ ) > AMSE(Q̂ Q). Since the estimator is better than the 

estimator when 6̂  < -̂ (p+l), it is expected that the estimator Q̂ Qg 



72 

2 
will be better than the estimator when 6 is small relative to p. 

We can conclude that among the estimators Q̂ g, and 

* 
for (Z), the estimator is, in most practical situations, con­

sistently inferior than any of the others. The estimator will be 

2 
better than the others when ô is large compared with p. 

Since we have already shown that the estimator is better than 

2 4 
the estimator when 6 —(p+1), it remains to compare the per­

formance of the estimators and However, the difference in 

their AMSE, given by, 

- 4MSE(Q„„g) . [Aj - + O3 (4.16) 

is very difficult to analyze. In view of this, a numerical evaluation 

2 
of (4.16) was done for several values of N̂ , N̂ , p and 6 . The 

results are given in Table 4.1. 

From Table 4.1, we observe that the difference in AMSE, AMSE(Qgg)-

2 
AMSE(Q̂ Qg) is positive for 5 < 4 and all p values and is negative when 

6'̂  _> 4 and p is small. We also observe that the range of values of p 

2 
for which AMSE(q̂ g)-AMSE(Q̂ Qg) is negative, becomes wider as 6 

2 
increases. For fixed 6 and p ̂  2, this difference in AMSE increases 

2 
as p increases. This indicates that for those values of 6 for which 

Q̂ Qg is better than Q̂ g, the relative superiority of Q̂ ĝ over Q̂ g 

2 
increases as p increases. On the other hand, for those values of ô 

for which Q̂ g is better than Q̂ ĝ, the relative superiority of Q̂ g over 

Qĵ jOs decreases with p. Finally, we observe that for fixed p ̂  2 and 

2 9 
1 _< 0 £ 11J AMSE(Qpg)-AMSE(Q̂ Qg) decreases as 5" increases. 



Table 4.1. Values of AMSE(Qĵ g) - AMSE(Q̂ ,̂ g) 

Ni 6 p = 1 p == 2 p = 3 p = 5 p = 8 p = 10 

8 16 1 

1.69 

2.25 

4 

9 

11 

10 30 1 

1.69 

2.25 

4 

9 

11 

0.000337861 0 

0.000172481 0 

0.000051890 0 

-0.000229036 -0, 

-0.000419198 -0, 

-0.000372519 -0, 

0.000209981 0. 

0.000114005 0. 

0.000044445 0. 

-0.000116415 -0. 

-0.000225657 -0. 

-0.000200558 -0. 

000367497 

,000360067 

000235228 

000183582 

000582726 

000535774 

000249760 

000241476 

000174977 

000045233 

000263909 

000245967 

0.002591451 

0.002080837 

0.001662773 

0.000618235 

-0.000506962 

-0.000545519 

0.001344055 

0.001088439 

0.000880298 

0.000362941 

-0.000201242 

-0.000227473 

0.013622310 

0.010121940 

0.008250505 

0.004490957 

0.000362452 

-0.000104480 

0.006696206 

0.004940838 

0.004015297 

0.002190258 

0.000226859 

0.000001226 

0.046625960 

0.033682430 

0.027453530 

0.015972770 

0.003461274 

0.001708396 

0.022633340 

0.016115660 

0.013028700 

0.007458668 

0.001625923 

0.000823553 

0.079599910 

0.057055380 

0.046493500 

0.027409110 

0.006723624 

0.003684542 

0.038530660 

0.027163020 

0.021911590 

0.012655880 

0.003063235 

0.001691288 
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Although no general conclusions can be derived from Table 4.1, 

about the relative superiority of the estimator over the estimator 

Ô g, the results of the numerical evaluation of the difference 

AMSE(Qjjg)-AMSE(Q̂ Qg) hint that the estimator Qĵ Qg is a better estimator 

2 
than the estimator Q̂ g when 6 is small compared with p. The estimator 

2 
Q̂ g is better than the estimator Qĵ gg when 6 is large in relation to p. 

The AMSE of the estimator for the unconditional probability of 

* 
misclassification, P2(Z), will be compared to the AMSE of the estimators 

Q̂ Qg and Q̂ g- The differences in AMSE involved in these comparisons are 

given by 

»ISE(Q^„g)-AMSE(Qj,c) " Igg + + K - + O3 _ (4.17) 

and 

mSE(q^g)-MSE (Q^g). (Aj-q„5 («) ) (4.18) 

respectively. 

From these expressions, no direct conclusion about the relative 

superiority of these estimators can be obtained. Hence, a numerical 

evaluation of (4.17) and (4.18) was done for several values of N̂ , N̂ , 

2 
p and 6 . The results are given in Tables 4.2 and 4.3. 

From Table 4.2, we find that the difference in AMSE, AMSE(Q̂ Qg)-

2 AMSE(Q̂ )̂ is positive and increasing with p for all p ̂  8 and 6 fixed. 

For p < 8, this difference decreases when p increases and is negative 

2 
for most 6 values. We also observe that, when is inferior to 

Q̂ os Che AMSE criterion, the difference in their AMSE is small. 



Table 4.2. Values of AMSE(Q|̂ Qg) - AMSE(Qj,,p) 

"i "2 

8 16 1 

1.69 

2.25 

4 

9 

11 

10 30 1 

1.69 

2,25 

4 

9 

11 

-0,000397945 

-0.000317114 

-0,000251867 

-0,000058507 

0,000270317 

0,000302808 

-0,000180148 

-0,000137332 

-0.000104203 

-0.000012705 

0,000122075 

0.000131416 

-0.001871120 

-0.001230066 

-0.000973922 

-0,000537045 

0.000027012 

0.000119028 

-0.000901831 

-0,000582555 

-0.000455569 

-0,000242967 

0.000010167 

0.000048047 

-0.002799590 

-0.001642357 

-0,001245134 

-0,000697858 

-0,000103855 

0.000008366 

-0.001348069 

-0,00078087.0 

-0,000588033 

-0,000324286 

-0,000051600 

-0.000003067 

-0.003022425 

-0.000964937 

-0.000435027 

-0.000066304 

-0.000028276 

0.000006398 

-0.001414209 

-0.000436770 

-0.000196255 

-0,000040097 

-0,000024718 

-0,000008531 

0,000728577 

0.003806137 

0,004161440 

0,003263962 

0.000928375 

0.000551835 

0.000552405 

0.001931183 

0,002033174 

0.001503260 

0.000391646 

0.000225182 

0.005952779 

0.009490207 

0.009479981 

0.007072777 

0.002128326 

0.001281053 

0.003240693 

0.004744366 

0.004613984 

0.003276873 

0.000919922 

0.000542264 



Table 4.3. Values of AMSE(q̂ g) - mSE(Q̂ g) 

Ni 6 p = 1 p == 2 p = 3 p = 5 p = 8 p = 10 

8 16 1 

1.69 

2.25 

4 

9 

11 

10 30 1 

1.69 

2.25 

4 

9 

11 

-0.000060085 -0 

-0.000144634 -0 

-0.000199977 -0 

-0.000287542 -0, 

-0.000148882 -0, 

-0.000069711 -0. 

0.000029834 -0, 

-0.000023327 -0, 

-0.000059748 -0. 

-0.000129120 -0. 

-0.000103582 -0. 

-0.000069142 -0. 

001503623 

000869999 

000738694 

000720627 

000555715 

000416746 

000652072 

000341078 

000280592 

000288199 

000253742 

000197920 

-0.000208138 

0.000438480 

0.000417639 

-0.000079623 

-0.000610817 

-0.000537153 

-0.000003014 

0.000307570 

0.000292265 

0.000038655 

-0.000252842 

-0.000230540 

0.010599880 

0.009157013 

0.007815477 

0.004424654 

0.000334175 

-0.000098082 

0.005281996 

0.004504070 

0.003819042 

0.002150161 

0.000202140 

-0.000007305 

0.047354540 

0.037488570 

0.031625070 

0.019236730 

0.004389647 

0.002260230 

0.023185740 

0.018046840 

0.015061870 

0.008961931 

0.002017569 

0.001048735 

0.085552690 

0.066545540 

0.055973480 

0.034481890 

0.008851953 

0.004965592 

0.041771350 

0.031907390 

0.026525570 

0.015932750 

0.003983155 

0.002233552 
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However, when is superior to Qĵ Qg» the difference in their AMSE is 

not necessarily as small. 

Although no general conclusions can be given from Table 4.2, the 

results of this numerical evaluation indicate that the estimator Q̂ Qg 

is better than the estimator when p < 8. Also, the estimator 

is better than the estimator Q̂ Qg when p ̂  8. 

A comparison of the estimator Q̂ g and can be done by examining 

the results in Table 4.3. From this table we find that, the difference 

AMSE(Q̂ g)-AMSE(Q̂ g) is negative in almost all cases for which p £ 3. 

This indicates that the estimator Q̂ g is better than the estimator 

when p £ 3. However, from Table 4.1, we have found that Q̂ g is 

2 
inferior to Q̂ gg when ô is small relative to p. Also, from Equation 

2 
(4.13), we have that for 6 2 2p, the estimator is better than Q̂ g-

From the results of the previous comparisons, we have found that 

among the estimators Q̂ , Q̂ g, and of the unconditional 

* 
probability of misclassification, P̂ (Z), there is no estimator which is 

2 
uniformly better than the others for all values of , N̂ , p and ô . 

2 2 
However, when 1 £ 6 £ 10, p < 8 and 6 is small relative to p, i.e., 

2 
6 £ 2p, the estimator Q̂ ĝ is the best and the estimator is the 

2 
worst. For p < 8 and 5 very large with respect to p, the estimator 

Qg will be better than the others. For p > 8, the numerical evaluation 

of the difference in the AMSE of the estimators Q.,̂  and indicates 
i'iV, I'iV o 

that the estimator is better than the estimator Q̂ ĝ. 
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C. A Monte Carlo Study 

We will consider two additional estimators of the unconditional 

probability of misclassification, (Z). These two estimators do not 

require any assumptions on the distribution function of the populations. 

The first estimator was originally proposed by C.A.B. Smith (1947). 

It is defined as, 

(4.19) 

where 

R - l  =  

1 if C(Xĵ ,X̂ ,X̂ ,S) < 0 

0 otherwise 

(4.20) 

and 

C(X.,XJ,X2,S)- •5̂ (X.-X̂ )'S-̂ (X.-X̂ )- î (x.-x̂ )'s-:(x.-x̂ ). 

i 1)...3̂ 2" (4.21) 

The other estimator is the Lachenbruch (1967) jackknife estimator, 

defined as 

' "2 i!i 

where 

\2 = 

1 if C(X̂ ,X̂  X̂ d) '̂ (i)) - ° 

0 otherwise 

(4.22) 
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and a statistic with the subscript (i) indicates that the observation 

has been removed from the calculation of that statistic. 

The estimator is obtained by successively omitting an observa­

tion from the second sample and calculating the classification statistic 

based on the remaining + (N̂  - 1) observations. This modified 

classification statistic is then used to classify the observation that 

was left out. For each one of the classifications, the omitted 

observation and the corresponding classification statistic are independ­

ent. Following the procedure used in Chapter III, Section E, we can 

show that, 

», 
nS = (n-l)Ŝ ^̂  ' (4.24) 

«2 -1 _ _ -1 
j-̂ (nS) ̂(X̂ -X̂ ) (X̂ -X̂ ) ' (nS) ̂  

= (n-l){(nS)"̂ +  ̂ } (4.25) 

1 =—/'V _v \ T ^ 

—  ̂—X "2.^ *̂"2̂  

for i = 1,— jN̂ . 

Using these equations, the classification statistic 

C(X̂ ,X̂ ,X̂ (i)̂  be written in terms of the original variables 

X̂ , X̂  and S , requiring the inversion of only one matrix. 

In this section, the performance of the estimators Q̂ , Q̂ , Q̂ , Q̂ g» 

Qĵ O' Q̂ Qg and will be evaluated using a simulation study and 

assuming that the population are normally distributed. Since the Z 
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classification statistic is invariant under linear transformation on 

the observation X, we can assume, without loss of generality, that 

N(ŷ , I) and 11̂  I), respectively, where = 0 and ̂ 2 = 

( 6 ,  0  0 ) .  

A total of 720 random samples was taken from two normal populations 

2 
and II2. Several combinations of N̂ , N̂ , p and ô were used. They 

are given in Tables 4.4 and 4.5. Forty repetitions of the experiment 

2 were done for each combination of N̂ , N̂ , p and 6 . Letting t denote 

any of the suffixes R, L, D, DS, MO, MOS or MC, the quantities 

Q̂ ,|P2(Z) - Q̂ l and (P2(Z) - Qj.)̂  were calculated. The value of P2(Z) 

was approximated using up to the second order terms in the Memon-

Okamoto (1971) asymptotic expansion. Then, the average of the measure­

ments |P2(Z) - Q̂ l and (P2(Z) - were obtained for each estimator. 

These averages were used to compare the relative performance of the 

estimator of the unconditional probability of misclassification. Since 

the conclusions obtained based on the mean of the absolute deviation are 

identical to the conclusions obtained based on the mean of the square of 

I * I the deviations, only the results based on IP2(Z) - Q̂ | are given in 

Tables 4.4 and 4.5. 

Several observations can be made in these tables. First, we 

observe that there is no estimator which is uniformly better than any 

2 
of the others for all values of N̂ , N2, p and 6 . Second, when the 

observations that are being classified come from normal populations, the 

estimators based on normality are consistently better than the estimators 

that are not based on this assumption. Third, among the two estimators. 



Table 4.4. Average values of |(Z) - Q̂ | when p = 1 

6 
"l N2 % D̂S M̂O M̂OS M̂C QR 

1 8 16 0.06299 0.05925 0.05978 0.05639 0. 05969 0.08943 0.08787 

10 30 0.04930 0.04711 0.04656 0.04470 0. 04665 0.05794 0.05557 

15 30 0.04707 0.04688 0.04690 0.04670 0. 04702 0.06736 0.06736 

4 8 16 0.04360 0.04211 0.04230 0.04165 0. 04336 0.06975 0.07074 

10 30 0.04317 0.04262 0.04263 0.04290 0. 04317 0.06255 0.06423 

15 30 0.03940 0.03949 0.03946 0.03986 0. 03988 0.04266 0.04281 

9 8 16 0.03192 0.03219 0.03209 0.03359 0. 03327 0.05037 0.04979 

10 30 0.03145 0.03170 0.03178 0.03263 0. 03244 0.03823 0.03656 

15 30 0.02363 0.02362 0.02362 0.02438 0. 02418 0.04102 0.04102 



Table 4.5. Average values of |(Z) - | when p = 2 

6'̂  
1̂ •̂ 2 Qo D̂S M̂O M̂OS M̂C QL 

1 8 16 0. 07304 0.06402 0.06404 0.05894 0.06569 0.07684 0.07542 

10 30 0. 04993 0.04693 0.04953 0.04816 0.05353 0.07039 0.07282 

15 30 0. 05387 0.05076 0.05216 0.05002 0.05333 0.06522 0.06785 

4 8 16 0. 07251 0,06902 0.07143 0.06952 0.07465 0.08242 0.08672 

10 30 0. 03633 0.03568 0.03701 0.03819 0.03934 0.05387 0.05360 

15 30 0. 03208 0.02974 0.03024 0.03100 0.03156 0.04384 0.04726 

9 8 16 0. 04159 0.03552 0.03570 0.03530 0.03681 0.05628 0.05800 

10 30 0. 02350 0.02260 0.02343 0.02619 0.02485 0.03965 0.03968 

15 30 0. 02059 0.02070 0.02106 0.02307 0.02222 0.03310 0.03667 
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and Q̂ , the estimator is consistently superior to Fourth, 

among the estimators using normality, it appears that the estimator Q̂ jQg 

2 
is the best estimator when S is small relative to p. On the other hand, 

2 
if 6 is large relative to p, there is no estimator which is consistently 

better than the others; however, for this case, the estimator is better 

than the estimator and the estimator is better than the estimator 

M̂OS' from the simulation study, we observe that the estimator 

Qjjg and are very similar in their performance. 

D. Conclusions 

We have considered seven estimators for the unconditional probability 

* " of misclassification, P̂ lZ). Five of these estimators were proposed in 

Chapter III and are based on normality assumptions; the other two esti­

mators, proposed in Section C of this chapter, do not require any 

assumptions on the population distribution functions. 

When the observations that are being classified come from normal 

populations, the simulation study shows that the estimators based on 

normality are consistently superior than the estimators that do not use 

this assumption. It also indicates that the estimator is consistently 

inferior than the estimator Q̂ . 

Among the estimators based on the normal distribution, we obtained 

the following conclusions. In Section A of this chapter, it was found 

that the estimator denoted as has the smallest first order bias. 

In Section B, Chapter IV, we found that these estimators are equivalent, 

when the comparison is made using only first order terms in the 
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expressions for the AMSE. If in the comparison of the AMSE we include 

second order terms, we find that no estimator is uniformly better than 

2 
any of the others for all values of N̂ , p and 6 . Also, the 

expressions involved in these comparisons are so complicated that, 

general conclusions about the relative superiority of any one estimator 

over the others can be reached only in few cases. For example, we 

found that, the estimator is better than the estimator when 

2 
6 _< 2p; the estimator Q̂ Qg is better than the estimator when 

2 4 2 
Ô _< *2(p+1). When 6 is large relative to p, the estimator is better 

than the estimator and the estimator is better than the esti­

mator Q̂ Qg- In those cases, for which it was difficult to analyze the 

difference between the AMSZ of the estimators, that were being compared, 

a numerical evaluation of that difference was done for several values of 

2 
N̂ , p and ô . Although no general conclusions can be obtained from 

these particular cases, they indicate that in most practical situations, 

i.e., 1̂ 5 10, the estimator Q̂ Qg is the best estimator for P2(Z) 

2 
when 5 is small relative to p and p < 8. when p ̂  S, it seems that 

* 
the best estimator of (Z) is the estimator The results of the 

simulation study presented in Section C of this chapter seem to be in 

agreement with these conclusions. 

Finally, it should be noted that most of the conclusions obtained 

in this thesis are similar to the conclusions obtained by McLachlan 

(1974b, 1974c) where he considered the problem of estimating various 

types of probabilities of misclassification using Anderson's W statistic 

and zero cutoff point. 
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