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The objective of this study is to improve Eulerian-Eulerian models of particle-laden turbulent flow.
We begin by understanding the behavior of two existing models—one proposed by Simonin �von
Kármán Institute of Fluid Dynamics Lecture Series, 1996�, and the other by Ahmadi �Int. J.
Multiphase Flow 16, 323 �1990��—in the limiting case of statistically homogeneous particle-laden
turbulent flow. The decay of particle-phase and fluid-phase turbulent kinetic energy �TKE� is
compared with direct numerical simulation results. Even this simple flow poses a significant
challenge to current models, which have difficulty reproducing important physical phenomena such
as the variation of turbulent kinetic energy decay with increasing particle Stokes number. The model
for the interphase TKE transfer time scale is identified as one source of this difficulty. A new model
for the interphase transfer time scale is proposed that accounts for the interaction of particles with
a range of fluid turbulence scales. A new multiphase turbulence model—the equilibration of energy
model �EEM�—is proposed, which incorporates this multiscale interphase transfer time scale. The
model for Reynolds stress in both fluid and particle phases is derived in this work. The new EEM
model is validated in decaying homogeneous particle-laden turbulence, and in particle-laden
homogeneous shear flow. The particle and fluid TKE evolution predicted by the EEM model
correctly reproduce the trends with important nondimensional parameters, such as particle Stokes
number. © 2006 American Institute of Physics. �DOI: 10.1063/1.2180289�
I. INTRODUCTION

Modeling dilute particle-laden turbulent flows is an im-
portant research topic with applications in the freeboard of
fluidized beds, and in particle transport through pneumatic
conveying.1,2 Turbulence enhances the momentum, heat, and
mass transfer between the dispersed phase and the carrier
phase. Our focus is on solid suspensions that are low in
volume fraction, but which still have relatively high mass
loading due to high thermodynamic density of the particles.
Since the particle volume fraction is low, the influence of
particles on the carrier phase mass conservation equation is
often neglected, and so are interparticle collisions. However,
the particles significantly alter carrier phase turbulence;
hence, “two-way” coupling needs to be taken into
consideration.

It is useful to adopt a statistical description in these
flows. Two commonly used modeling approaches to describe
two-phase turbulent flows are the two-fluid �or Eulerian-
Eulerian approach�,3 and the number-density-based
Lagrangian-Eulerian approach.4,5 In the Eulerian-Eulerian
approach, flow quantities such as the velocity in each phase
are averaged, and these averaged quantities are used to de-
scribe the characteristics of the carrier and dispersed-phase
flow fields. This approach leads to unclosed terms represent-
ing the interaction between the phases. Once these terms are
modeled to close the equation system, the Eulerian-Eulerian
approach can be used in computational fluid dynamics
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�CFD� calculations of multiphase flow. In this work we focus
on the Eulerian-Eulerian approach.

Two popular multiphase turbulence models based on the
Eulerian-Eulerian approach are reviewed here. Ahmadi6 used
the ensemble-averaging method to derive the evolution equa-
tion for TKE in the carrier and dispersed phases. The trans-
port equation for dissipation rate in fluid phase is taken to be
the standard k-� model for single-phase turbulence. Ahma-
di’s model contains the specification of model constants for
dilute two-phase flows and dense granular flows as special
limiting cases. Validation of this model has been reported for
simple shear flow of a dense mixture.7 In this case the par-
ticle volume fraction is relatively high ��0.1� compared to
the test cases described in this work �particle volume fraction
�10−3�. A four-equation model proposed by Simonin and
co-workers8,9 is widely used in multiphase flow calculations.
It has been tested by other researchers,10 and compared with
experimental results for turbulent gas-solid flows in a verti-
cal pipe,1 and in a vertical riser.2

Eulerian-Eulerian �EE� models, such as those described
here, are used in CFD codes for simulating multiphase flows
in engineering applications. Typical applications include de-
sign and scaleup of circulating fluidized combustors and coal
gasifiers. These CFD simulations can be improved if the tur-
bulence model reproduces important physical phenomena
such as turbulence modification with variation in particle
Stokes numbers. The turbulence model should also satisfy
some basic modeling and performance criteria, and must be
validated in canonical turbulent particle-laden flow prob-

lems. Model validation can be performed by using direct

© 2006 American Institute of Physics1-1
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numerical simulation �DNS� data or experimental data for
gas-solid turbulent flows. By performing these validation
tests, the prediction of multiphase flows using general pur-
pose CFD codes can be further improved.

Direct numerical simulations of particle-fluid interaction
in turbulent flows have been performed by many
researchers.11–18 The flow configurations in these studies in-
clude homogeneous turbulence �decaying and stationary�,
homogeneous shear flow, and plane-strain turbulence. Differ-
ent aspects of the particle-phase influence on fluid turbulence
have been studied using DNS, including: �i� the modification
of TKE decay rate in fluid phase with increasing particle
Stokes numbers;11,12,18 �ii� the effect of mass loading on the
decay rate of fluid-phase TKE;11,12,14,15 �iii� the modification
of fluid TKE spectra and fluid-phase dissipation rate due to
the presence of particles.11,12,14,16,18 These studies provide
physical insight into the nature of particle-turbulence inter-
actions, as well as data on TKE evolution in both phases. The
multiscale interaction mechanism that is revealed by DNS
directly motivates the development of the new EE model
proposed in this work. The DNS data on TKE evolution are
also used to test and validate EE models in this study. How-
ever, the validation of EE models using DNS data is limited
by the quantities reported in the literature. Although direct
numerical simulations11,12,14,15,18 report the influence of par-
ticle Stokes number and mass loading on TKE of fluid and
particle phase, they do not report detailed budgets of terms in
the TKE and dissipation rate evolution equations. The inter-
phase TKE transfer term, which is important for validating
two-fluid EE models, is also not available from these studies.

The interaction between particles and fluid turbulence
has also been studied using large eddy simulation �LES� with
Lagrangian particle tracking. This approach is not so se-
verely restricted to the range of Reynolds numbers and flow-
field configurations, while DNS calculations remain re-
stricted to relative low Reynolds numbers due to high
computational cost. LES studies with Lagrangian particle
tracking are used primarily to investigate one-way coupling
between the fluid and particles.19–21 In these works the effect
of the velocity field �which is only partially resolved in LES�
on particles is modeled. However, even for volumetrically
dilute gas-solid flows the effect of two-way momentum cou-
pling is important if the mass loading is significant. This
necessitates modification of the LES subgrid model for fluid
turbulence, as discussed by Squires.22 For these reasons
alone, it is not fruitful to use the predictions from LES with
Lagrangian particle tracking to validate EE models or to cali-
brate EE model constants. Therefore, this study is focused on
using DNS results to validate and improve EE models for
particle-laden turbulence.

The objective of this work is to

�1� perform a comparative assessment of model predictions
with direct numerical simulation data for a canonical
turbulent particle-laden flow;

�2� identify modeling criteria based on this comparative
assessment;

�3� propose a new multiphase turbulence model for dilute

particle-laden turbulent flows, and derive the transport
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equations for the Reynolds stress tensor in the fluid and
particle phases; and

�4� validate this new multiphase turbulence model in ca-
nonical turbulent particle-laden flow problems, and en-
sure that this model satisfies the modeling criteria iden-
tified in the comparative study.

II. COMPARATIVE ASSESSMENT OF SIMONIN
AND AHMADI’S MULTIPHASE TURBULENCE MODELS

An important limiting case of turbulent multiphase flows
is statistically homogeneous particle-laden turbulent flow
evolving in a zero-gravity environment. The principal find-
ings from direct numerical simulations of this flow by
Sundaram and Collins,11 and the results from a comparative
assessment of two multiphase turbulence models, are sum-
marized in this section.

If gravity is absent and the mean velocity fields are ho-
mogeneous, the mean pressure gradient is zero and the mean
momentum equation system results in the trivial solution of
zero mean velocity in each phase, which implies a zero mean
slip velocity.5 If the flow field is initialized with zero mean
velocity in both phases, the mean velocities will remain zero.
In this case, it is easy to study the evolution of second mo-
ments of fluctuating velocity solely influenced by interphase
TKE transfer and viscous dissipation �without effects of
mean velocity gradients�.

In this DNS study,11 rigid, spherical solid particles
evolve in freely decaying homogeneous turbulent flow. There
is no interphase mass transfer. The flow is dilute, with par-
ticle density much larger than fluid density ��p /� f �103�.
The particle size is in the sub-Kolmogorov range ��=0.035
and d /��1, where d is the mean particle diameter�, but the
particles are large enough to ignore Brownian motion.
Hence, a linear drag law can be applied to each particle in
the momentum equations.

The boundary layer around each particle is neglected,
and particles are viewed as point particles in the flow field.
�However, kernel averaging is performed to interpolate the
interphase momentum transfer to the fluid momentum equa-
tion.� Particle collisions are assumed to be elastic, so colli-
sions conserve particle kinetic energy. Since the particle vol-
ume fraction is quite low, the influence of the particles on the
fluid-phase continuity equation is neglected, but the effects
on fluid momentum are still taken into account.

The predictions from DNS show that the energy in both
phases decreases monotonically and the net effect of par-
ticles is to reduce fluid energy. An important nondimensional
quantity that characterizes the inertia of the solid particles is
the Stokes number St=�p /� f, which is defined as the ratio of
the characteristic particle momentum response time �p

= ��p /� f�d2 /18� f to a characteristic flow time scale � f. In
Sundaram and Collins’ DNS study,11 the characteristic flow
time scale is chosen to be the Kolmogorov time scale ��

= �� /��1/2, and therefore the Stokes number in this work is
defined as St��p /��. DNS results11 show that the effect of
the particles to reduce fluid energy grows with increasing

particle Stokes number. The particle energy also decays
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monotonically in time, and the decay rate increases with in-
creasing particle Stokes number �for fixed mass loading�. See
the solid lines in Figs. 1 and 2.

We now summarize the two multiphase turbulence mod-
els that are used to predict the decay of kinetic energy in the
decaying homogeneous turbulence case described above.
Hereafter, Simonin’s model is referred to as model I in this
work, and Ahmadi’s model is referred to as model II.

A. Model I—Simonin’s model: Model description
and results

For decaying homogeneous particle-laden turbulent flow,
the simplified model equations for TKE and dissipation rate
in fluid phase from model I8,9 are

FIG. 1. Evolution of TKE in fluid phase from model I for decaying homo-
geneous particle-laden turbulent flow. Arrows in the figure indicate the di-
rection of increasing particle Stokes number.

FIG. 2. Evolution of TKE in particle phase from model I for decaying

homogeneous particle-laden turbulent flow.
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� f� f

dkf

dt
= 	kf

− � f� f� f , �1�

� f� f

d� f

dt
= C�,3

� f

kf

	kf
− � f� fC�,2

� f
2

kf

, �2�

where C�,2=1.92 and C�,3=1.2. The particle-phase influences
fluid-phase TKE through the interphase TKE transfer term
	kf

=�p� fFD�kfp−2kf�, where FD plays the role of an effec-
tive particle response frequency.

The model transport equation for TKE in particle phase
simplifies to

�p�p

dkp

dt
= 	kp

= − �p�p

1

� 12
F

�2kp − kfp� , �3�

�p�p

dkfp

dt
= 	kfp

− �p�p� fp, �4�

where kfp is the covariance of fluid-particle velocity. The
dissipation of particle energy in Eq. �3� is neglected because
of the assumption of elastic collisions in the DNS study. The
interphase TKE transfer term 	kp

accounts for the influence
of fluid-phase turbulence on kp. The time scale � 12

F is the
particle response time.

In the equation for fluid-particle covariance kfp, the in-
terphase 	kfp

transfer is modeled as

	kfp
= − �p�p

1

� 12
F ��1 + 
�kfp − 2kf − 2
kp� ,

where 
=�p�p /� f� f, is the mass loading. The term � fp ac-
counts for the dissipation of kfp due to viscous effects in the
fluid phase and the loss of correlation by crossing–trajectory
effects. This dissipation rate is modeled as � fp=kfp /� 12

t ,
where � 12

t is the time scale of the fluid turbulent motion
viewed by the particles. The model specification for this time
scale is

� 12
t = � 1

t �1 + c��r
2�−1/2, where �r =

�V̄r�
	2

3kf

,

where c� varies with the angle between the mean particle
velocity and the mean relative velocity. This angle is taken to
be zero in the homogeneous turbulence case, resulting in
c�=0.45. The time scale of the energetic turbulent eddies
� 1

t is

� 1
t =

3

2
C

kf

� f

,

where C=0.09.
The effective particle response frequency FD is given in

terms of local mean particle Reynolds number Rep,

FD =
3

4

CD 
�vr��2, 
�vr��2 = 	Vr,iVr,i + 
vr,i� vr,i� �2

d
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CD =
24

Rep
�1 + 0.15Rep

0.687�� f
−1.7, for Rep � 1000,

where the particle Reynolds number Rep is defined as

Rep =
� f
�vr��2d

� f
. �5�

The averaging method 
·�2 is defined as the dispersed phase
mass average in model I. The average value of the local
relative velocity between each particle and the surrounding
fluid flow Vr,i can be expressed as

Vr,i = �Up,i − Uf ,i� − Vd,i Vd,i = 
ũf ,i�2 − Uf ,i = 
uf ,i� �2, �6�

where Up,i and Uf ,i are the mean velocity of each phase; the
drifting velocity Vd,i represents the correlation between the
instantaneous distribution of particles and turbulent fluid mo-
tion on characteristic length scales which are large compared
to the particle diameter. To apply model I in this simple test
case, some quantities need to be specified. One is 
�v�r�2, the
magnitude of the averaged value of the local relative velocity
between particles and the surrounding fluid flow. In model I,

�vr � �2 is defined as


�vr��2 = 	Vr,iVr,i + 
vr,i� vr,i� �2,

where Vr,i is the mean relative or slip velocity, which is zero
in the homogeneous particle-laden decaying turbulent flow,
and vr,i� needs to be modeled. In this study, the following
approximation is used:

vr,i� � � f�p�uf� + up�� ,

where uf�=	2/3kf, up�=	2/3kp.
Also in model I, the fluid-particle velocity covariance kfp

needs to be initialized. If the fluid-particle velocity covari-
ance is expressed as

kfp�t� = � fp�t� · kf
1/2�t� · kp

1/2�t� , �7�

then � fp�t� is a “fluid-particle” correlation coefficient, which
should be bounded by 0 and 1 �based on the Cauchy-
Schwarz inequality. �Implementations of this model10 do not
impose the bounds on � fp, and recommend specification of
values up to 2 so as to improve the model predictions. In this
work also, � fp�0�=2.0 is used.�. Using this definition, we can
determine kfp�0� by setting � fp�0� values. The role of the
quantity kfp, which is really a single-point surrogate for the
fluid-particle velocity covariance, is discussed in detail
elsewhere.23 It is argued that kfp is not an independent flow
variable in single-point closures of two-phase turbulent
flows. This conclusion is consistent with the theoretical
analysis presented in Sundaram and Collins �cf. Eqs. �29c�
and �29d� on p. 113 in Ref. 11�.

The principal time scale in the model is � 12
F , the particle

response time, which is related to the inertial effects acting
on the particles,

� 12
F = FD

−1
�p

� f

. �8�

However, this time scale is based on the slip velocity 
�v̄r � �2,
	 	
which is defined on the basis of uf�� kf and up�� kp. Since
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the particle Reynolds number Rep is based on 
�v̄ � �2, and is
approximately unity in this flow, the time scale � 12

F can be
further simplified as

� 12
F =

4

3

d̄

CD
�v̄r��2

�p

� f

=
4

3

d̄

CDRep� f

�p

� f

�
� fd̄

2

18� f

�p

� f

.

Since Rep�1, the product of CD and Rep is approximately
equal to 24. Hence, in this homogeneous turbulence, under
the condition of all particles having Rep approximately equal
to 1, the particle response time is approximately constant
during the TKE evolution.

The prediction from model I is that TKE in the fluid
phase decreases monotonically, but the net effect of particles
to reduce fluid energy is found to decrease with increasing
Stokes numbers, which is opposite to the DNS result �see
Fig. 1�. The model predictions for fluid energy evolution also
show a much steeper decay at the beginning than the DNS
result. The same steep decay is also observed in the particle
energy evolution, which is shown in Fig. 2. The particle en-
ergy decays monotonically. The decay of particle energy is
observed to increase with increasing particle Stokes numbers
after t /Te=0.8, which is consistent with DNS data, but there
is some crossover at the beginning of evolution, as seen in
Fig. 2.

B. Model II—Ahmadi’s model: Model description
and results

The evolution equations of TKE in fluid and particle
phase from model II,6,7 simplified for decaying homogeneous
particle-laden turbulent flow, are

� f� f

dkf

dt
= 2D0�kp − ckf� − � f� f� f , �9�

�p�p

dkp

dt
= 2D0�ckf − kp� . �10�

�In model II,6,7 the notation used to represent fluid and
particle-phase variables and volume fraction is slightly
different.�

The transport equation for the dissipation rate in the fluid
phase is given by Ahmadi,24 which is essentially the same as
that in the standard k -� model for single-phase turbulence.
For decaying homogeneous turbulence, the evolution equa-
tion for � f is

� f� f

d� f

dt
= − C�,2

� f
2

kf

, �11�

where C�,2=1.92. Since particle collisions are elastic in the
DNS test case, the dissipation rate of particle energy is taken
to be zero in model II.

The coefficient c is related to the ratio of the particle
time scale �p�p /D0 to the macroscale Lagrangian turbulence

time scale TL,
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c =
1

1 +
�p�p

D0TL

, TL =
0.165kf

� f

.

The drag coefficient D0 is given as

D0 =
18 f�p

d̄2

�1 + 0.1�Rep�0.75�

�1 −
�p

�m

0.25�m
, �12�

where d̄ is the mean particle diameter and model coefficient
�m=0.643 56. The particle Reynolds number Rep is defined
as

Rep =
� fd̄�Uf ,i − Up,i�

 f

,

where Uf ,i and Up,i are the ith components of the mean ve-
locity in the fluid and particle phase, respectively.

In model II the term D0 / ��p�p� represents a particle re-
sponse frequency. The expression for this particle response
frequency �cf. Eq. �12�� can be further simplified because the
particle Reynolds number Rep based on the mean slip veloc-
ity is zero in this case. In the limit of volumetrically dilute
flow ��p�1�, the resulting simplified expression for the par-
ticle response frequency tends to its limiting value of the
reciprocal of the particle response time,

D0

�p�p
=

18� f

d2

� f

�p

1

�1 −
�p

�m
0.25�m

�
18� f

d2

� f

�p
for �p � 1.

Figure 3 shows that the prediction from model II shows
satisfactory agreement with DNS results for the evolution of
fluid energy, except for some quantitative difference after
t /Te=1.5. The decay of kf is not enough after t /Te=1.5. This

FIG. 3. Evolution of TKE in fluid phase from model II for decaying homo-
geneous particle-laden turbulent flow.
is probably because the single-phase turbulence model is
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used for the dissipation rate of fluid energy. The incorrect
variation of fluid energy evolution with increasing particle
Stokes numbers that was observed in model I is not found in
model II. Model II predicts a very steep decay of particle
energy at early time, and the quantitative discrepancy be-
tween model predictions and DNS data is quite large, as seen
in Fig. 4.

C. Summary of model results

It is obvious that the definition of the particle response
time in model I is almost the same as that in model II under
conditions of particle Reynolds number close to unity, and
particle volume fraction far less than 1. The particle response
time is used as the time scale for interphase TKE transfer
term in both these models, and the interphase TKE transfer
plays the dominant role in the equation system of both mod-
els. We arrived at this conclusion based on the budget study
of the equation systems of the two multiphase turbulence
models, and the detailed budget analysis is shown in Ref. 23.
Given the significant discrepancy between the TKE decay
rate predicted by the models and that predicted by the DNS
for different Stokes numbers, it is hypothesized that the par-
ticle response time is not the appropriate time scale for in-
terphase TKE transfer.

The physical reason behind the incorrect behavior of kf

evolution with increasing particle Stokes number in model I,
and the anomalous steep decay of kp at early time lies in the
fact that the particle response time is the appropriate time
scale for only a limited range of particle-eddy interactions. In
reality, particle-turbulence interaction is a complex multi-
scale process. Even for a monodisperse gas-solid two-phase
flow, particles interact with a range of eddies with different
length and time scales. Furthermore, the particle response
time and the Stokes number for each particle is different,

FIG. 4. Evolution of TKE in particle phase from model II for decaying
homogeneous particle-laden turbulent flow.
since each particle has a different instantaneous velocity. The
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particle response time defined here can only represent the
characteristic time scale of particles interacting with the ed-
dies in the dissipation range.

In Eulerian-Eulerian models, all the quantities in the
governing equations are averaged. Since the interphase TKE
transfer represents the average interaction of all particles
with the entire range of turbulent scales, the model for this
term should somehow account for this complex multiscale
interaction.

III. MULTISCALE INTERACTION MODEL
FOR INTERPHASE TKE TRANSFER

Based on the discussion in the previous section, a new
time scale is proposed to model the interphase TKE transfer.
This new time scale is implemented in model I and model II,
and it improves the performance of both models in decaying
homogeneous particle-laden turbulent flow.

From the model testing in the previous section, it was
noted that the incorrect variation of kf with increasing par-
ticle Stokes numbers, and the steep decay of kp that are
found in the model results, need to be improved. In model I
and model II, the complex particle-fluid interaction repre-
sented by the interphase TKE transfer terms, is characterized
by a single time scale, the particle response time �p, which
needs further improvement. A multiscale interaction model
was first proposed by Pai and Subramaniam,25 to improve the
multiphase turbulence model in KIVA,26 which is based on the
Lagrangian-Eulerian approach. An equivalent form of this
multiscale interaction model is implemented in the Eulerian-
Eulerian models discussed in this work, and this time scale
improves the predictions from model I and model II.

One can define a particle Stokes number based on �l, a
characteristic time scale for an eddy in the inertial subrange
of turbulence, as

Stl =
�p

�l

,

where

�l =
l

�ug��
=

�ug��
2

� f

,

such that l is the characteristic length scale of the eddy, and
�ug�� is the characteristic eddy velocity in inertial subrange.
Therefore, the particle Stokes number based on �l scales as

Stl �
1

�ug��
2 .

For the EE implementation, the distribution of ug� is assumed
to be joint normal for homogeneous turbulence. This means
that energetic eddies can be associated with a small Stokes
number and small fluctuations can be associated with a large
Stokes number. Thus, there are different particle Stokes num-
bers Stl that correspond to eddy of different sizes l.

The hypothesis is that for Stl�1, particles respond im-

mediately to the flow. When particles are entrained in the
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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eddies with Stl�1, particles will basically follow the char-
acteristic time scale of the eddies. As Stl approaches zero,
particles follow the eddy turnover time �.

For Stl�1, the particle responds slowly to the flow. In
this case, the characteristic size of the eddies is small and
�ug��

2 is also very small. Particles will not be entrained in
these small eddies. The inertia of the particle plays an im-
portant role when particle interacts with small-size eddies.
Since the particle response time is a measure of the particle
inertia, which depends on the density and the size of the
particles, the particle follows its response time when Stl�1.

For the case of zero-gravity homogeneous particle-laden
turbulent flow, the fluctuating velocity in the fluid phase is
assumed to be isotropic and joint normal, and the probability
density function for Z= �ug�� is

fZ�z� =	 2

�

1

� f
3z2e−z2/2�f

2
,

where z is the corresponding sample space variable of ran-
dom variable Z, and � f is the standard deviation of ug�, which
is 	2/3kf for isotropic homogeneous turbulent flows. Figure
5 is a sketch of the probability density function of Z. The
value of Z, where Stl=�p /�l=1, is of special significance and
is denoted �ug��

*. This transition value of �ug��
* divides the z

axis into two regions: Stl�1 and Stl�1.
The interaction time �i is assumed to be a random vari-

able, which is a prescribed function of Z= �ug��. The mean
interaction time 
�i� is obtained from the conditional mean

�i �Z= �ug� � � by


�i� = �
0

�


�i�z�fZ�z�dz .

The conditional mean of �i is assumed to be of the following
form:


�i�Z� = �p, 0 � �ug�� � �ug��
*, �13�


�i�Z� = Stl · ��p − �� + �, �ug��
* � �ug�� � � . �14�

The conditional mean 
�i �Z� in the range �ug��
*� �ug� � �� is

simply modeled as a linear function of Stl. As Stl→0 
�i �Z�

FIG. 5. Sketch of the probability density function Z= �ug��.
is equal to the eddy turnover time � and particles just move
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with the eddies. When Stl�1, particles respond slowly to the
flow, and the particle response time �p is dominant here.

One can retrieve model I and model II from the expres-
sion of 
�i� by considering the limit of �ug��

*→� and

�i��ug��*→�=�p, where �p is the particle response time. This
means that particles respond to the flow at the particle re-
sponse time scale for the entire range of �ug��.

The mean of �i is defined as


�i� = �
0

�ug��*

�pfZ�z�dz + �
�ug��*

�

�Stl · ��p − �� + �� · fZ�z�dz ,

�15�

where fZ�z� is the probability density function of �ug��.
This new multiscale interaction time scale is imple-

mented in both multiphase turbulence models investigated in
this study. For model I, Eqs. �1�–�4� are solved with � 12

F

replaced by 
�i�. With the implementation of 
�i� in model I,
the steep decay at the beginning of kf and kp evolution is
improved, and the incorrect trend of kf decay with increasing
particle Stokes numbers is also corrected, as seen in Fig. 6.
For model II, Eqs. �9�–�11� are solved with �p�p /D0 replaced
by 
�i�. The fast decay of particle energy at the beginning of
the evolution is eliminated after the implementation of 
�i�
�see Fig. 7�. The incorporation of the multiscale interaction
time scale improves the performance of both models tested
in this study.

IV. THE EQUILIBRATION OF ENERGY MODEL

Turbulence models for particle-laden flows reviewed in
this study use the particle response time �p as the time scale
for interphase TKE transfer, which results in a very steep
decay of particle-phase TKE compared with DNS results. In
model I, the decay of kf with increasing particle Stokes num-
bers is incorrect. Model I requires an equation for the fluid-

FIG. 6. Evolution of TKE in fluid phase from model I with the multiscale
interaction time scale 
�i�. Comparison of model results with DNS data.
particle velocity covariance kfp, which is a pseudoflow quan-
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tity, and it is unclear how this quantity should be initialized
and how its boundary values should be specified. Model II
uses the single-phase dissipation rate model for turbulent
two-phase flows. For all of these reasons, both models are
deemed unsatisfactory for general applications.

A new model is proposed in this study that incorporates
the mean multiscale interaction time scale, 
�i�, and seeks to
address some of the difficulties encountered in model I and
model II. This model is formulated by considering the be-
havior of a two-phase flow system in the limit of stationary
turbulence. In this limit, the mixture TKE is kept constant by
artificially forcing the fluid turbulence in a homogeneous
particle-laden turbulent flow. The particle-phase TKE kp and
fluid energy kf evolve to their respective equilibrium values,
kf

e and kp
e, over a TKE transfer time scale ��, where the

superscript e denotes the quantity at the equilibrium state. At
the equilibrium state, the ratio of specific fluid energy ef

e to
the specific mixture TKE em is a constant, which may depend
on mass loading 
, particle Stokes number St, particle Rey-
nolds number Rep, and other nondimensional parameters.

In Sec. IV B, transport equations for the Reynolds stress
tensor in the fluid and particle phases are derived based on
the equilibration of energy concept. For simplicity of expo-
sition, we first present the EEM model in the simple case of
decaying homogeneous turbulence. The k -� equation im-
plied by the EEM Reynolds stress model is used to simulate
the test case discussed in Sec. II.

A. Description of EEM

The model equations are written in terms of specific en-
ergy ef =� f� fkf and ep=�p�pkp, which are the contributions
to the total mixture energy em=�mkm from both phases,
where �m=� f� f +�p�p is the mixture density. For the decay-
ing homogeneous turbulence, the following equation system

FIG. 7. Evolution of TKE in particle phase from model II with the multi-
scale interaction time scale 
�i�. Comparison of model results with DNS
data.
holds:
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def

dt
= −

�ef − ef
e�

��

− � f� f� f , �16�

dep

dt
= −

�ep − ep
e�

��

. �17�

For the test case considered in this study, elastic collisions
are assumed in the particle phase, and there is no dissipation
of particle energy. However, the dissipation of particle en-
ergy arising from inelastic collisions can be easily incorpo-
rated into Eq. �17� if necessary.

Adding Eqs. �16� and �17�, the evolution equation for em

is obtained,

dem

dt
= − � f� f� f ,

where the specific mixture energy em decays by dissipation in
the fluid phase. It is assumed that the interphase TKE trans-
fer term is conservative, in the sense that 	kf

=−	kp
. In

model II, the interphase TKE transfer terms are conservative,
while the interphase TKE transfer terms in model I are not
conservative.

The equilibrium values of fluid and particle-phase spe-
cific energy, ef

e=� f� fkf and ep
e =�p�pkp, are determined by a

model constant C2, which is defined as

ep
e

em

= C2,
ef

e

em

= 1 − C2, �18�

where C2 must be bounded by 0 and 1. The model parameter
C2 is the fraction of the specific mixture energy present in
the particle phase at equilibrium. The definition of C2 can be
rewritten as

C2 =
�p�pkp

e

�mkm

=
�p�pkp

e

� f� fkf
e + �p�pkp

e
=



kp

e

kf
e

1 + 

kp

e

kf
e

. �19�

Based on dimensional analysis, C2 can be a function of mass
loading 
, particle volume fraction �p, particle Stokes num-
ber St�=�p /��, particle Reynolds number Rep, and the initial
kf /kp ratio. Recall that �� is the Kolmogorov time scale and
�p is the particle response time, which is defined as

�p =
�pd̄2

� f18�
,

where d̄ is the mean particle diameter. As the particle re-
sponse time �p increases, it takes longer for the particles to
respond to the instantaneous turbulent fluctuations in the
fluid phase. For two-phase turbulent flows with constant
mass loading 
, smaller particle response time �p will drive
the particle-phase equilibrium energy kp

e closer to the fluid-
phase equilibrium energy kf

e. In the limit of zero Stokes num-
ber, the energy in fluid and particle phases is equal and C2
=
 / �1+
�. For a constant particle Stokes number, increas-
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ing mass loading would increase the fraction of specific mix-
ture energy in the particle phase at equilibrium.

A model for the fluid-phase dissipation rate is needed to
close the equation system Eqs. �16� and �17�. The fluid-phase
dissipation rate � f in EEM is modeled similar to Simonin’s
proposal �cf. Eq. �2�� as

� f� f

d� f

dt
= − C�,3

� f

kf

�ef − ef
e�

��

− C�,2

� f
2

kf

, �20�

where the first term represents the influence from interphase
TKE transfer �and is modeled as C�,3� f � kf 	kf

�, and the sec-
ond term represents the dissipation of dissipation rate. Al-
though the EEM dissipation equation is similar to Simonin’s
proposal, the dissipation rate predicted by EEM is different
from model I. This is because the interphase TKE transfer
term is modeled differently: EEM has no kfp variable, and
the interphase TKE transfer time scale is ��, whereas in
model I it is proportional to the particle response time.

The concept of the equilibration of energy, and the mul-
tiscale interaction time scale 
�i� discussed in Sec. III, are
easily extended to formulate the corresponding transport
equations for the Reynolds stress in gas-solid two-phase tur-
bulent flows.

B. Transport equation for Reynolds stress

The Reynolds stress in phase � in a two-phase flow is
defined as3,4,27,28

R�,ij �

I��u�,i� u�,j� �


I���
, �21�

where �= f denotes the fluid phase, �= p represents the par-
ticle phase, 
·� denotes the ensemble average, and I� is the
indicator function for phase �. For constant thermodynamic
density, 
I��� simplifies to ����, where �� is the volume
fraction and �� is the density in the �th phase. The fluctuat-
ing velocity in phase � is denoted u�,i� .

A general transport equation for two-phase turbulent
flows is derived in Refs. 4 and 27. For gas-solid two-phase
flows with the constant thermodynamic density in both
phases and with no interphase mass transfer, the transport
equation for the Reynolds stress in phase � simplifies to


I����� �

�t
+ U�,k

�

�xk
�R�,ij +

�

�xk


I��u�,i� u�,j� u�,k� �

= − 
I��u�,i� u�,k� �
�U�,j

�xk

− 
I��u�,j� u�,k� �
�U�,i

�xk

+�u�,i�
��I��kj�

�xk
� +�u�,j�

��I��ki�

�xk
�

+ 
u�,i� S�,Mj� + 
u�,j� S�,Mi� . �22�

The terms on the first line from left to right are the material
derivative of the Reynolds stress in phase � following U�,k

�the mean velocity in phase ��, the triple velocity correlation
term. The terms on the second line are the production of

Reynolds stress due to the mean velocity gradients. The
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terms on the third line are fluctuating velocity-stress gradient
correlation. The terms on the fourth line are fluctuating
velocity-interfacial momentum transfer correlation. In Eq.
�22�, S�,Mj is the interphase momentum transfer source term
in phase �. In the above equation, the production terms and
the material derivative of Reynolds stress are in closed form.
The triple velocity correlation term, and the fluctuating
velocity-interfacial momentum transfer correlation terms
need model closures.

1. Triple velocity correlation term

The triple velocity correlation term in fluid phase is
modeled using the gradient-diffusion concept,

�

�xk


If�uf ,i� uf ,j� uf ,k� � =
�

�xk
�� f� fCs

kf
2

� f

�

�xk


uf ,i� uf ,j� �� , �23�

where Cs is a model constant.
In the particle-phase Reynolds stress equation, the triple

velocity correlation term is also modeled using the gradient-
diffusion concept as

�

�xk

Ip�up,i� up,j� up,k� � =

�

�xk
��p�pCs,p
�i�kp

�

�xk

up,i� up,j� �� ,

�24�

where 
�i� is the multiscale interaction time scale discussed
in Sec. III and Cs,p is a model constant. The model constants
Cs and Cs,p need to be determined based on experimental
data or DNS results.

2. Interphase energy transfer terms

The fluctuating velocity-interfacial momentum transfer
correlation terms in the last line of Eq. �22� are modeled
using the equilibration of energy concept. For the fluid
phase, the interphase energy transfer term is modeled as


uf ,i� Sf ,Mj� + 
uf ,j� Sf ,Mi� = − � f� f

�
uf ,i� uf ,j� � − �ij
2

3
kf

e�

��

, �25�

where kf
e is the fluid-phase TKE at the equilibrium state. For

the particle phase, the interphase energy transfer term is
modeled as


up,i� Sp,Mj� + 
up,j� Sp,Mi� = − �p�p

�
up,i� up,j� � − �ij
2

3
kp

e�

��

, �26�

where kp
e is the particle-phase TKE at the equilibrium state.

Contracting indices of Eqs. �25� and �26� results in twice the
interphase TKE transfer terms in Eqs. �16� and �17�.

3. Model equation for dissipation rate
in fluid-phase �f

The fluctuating velocity-stress gradient correlation terms
in the fluid phase include the dissipation of fluid energy due
to the viscous effects in the flow field, and are modeled by
� f ,ij =�ij� f as a consequence of local isotropy. The modeled

evolution equation for � f is
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� f� f

�� f

�t
+ � f� fUf ,i

�� f

�xi

= � f� f

�

�xi
�C�

kf

� f


uf ,i� uf ,j� �
�� f

�xi


− � f� fC�,1

� f

kf

· 
uf ,i� uf ,j� �
�Uf ,i

�xj

− � f� fC�,2

� f
2

kf

+ � f� fC�,3

� f

kf

·
�kf

e − kf�

��

, �27�

where �� is the interphase TKE transfer time scale. The
model constants are chosen to be C�,1=1.44, C�,2=1.92,
C�,3=1.2, and C�=0.15. The model constants C�,1, C�,2, and
C� are chosen after the dissipation model for single-phase
turbulence.29 The value of C�,3 is taken to be 1.2 as sug-
gested by Simonin8 in model I.

Since elastic collisions are assumed in particle phase in
this study, the dissipation rate in particle energy kp is zero in
the particle-phase Reynolds stress transport equation. How-
ever, the dissipation of particle Reynolds stress due to inelas-
tic collisions can be easily incorporated into the modeled
evolution equation for the particle Reynolds stress tensor.

C. The k -� equations for particle-laden
turbulent flow

The k -� equations for gas-solid two-phase turbulent
flows can be obtained by contracting the indices of the trans-
port equation for the Reynolds stress tensor. In the k -� for-
mulation, the fluid velocity covariance 
uf ,i� uf ,j� � appearing in
the production of Reynolds stress �cf. Eq. �22�� needs a
closure model. It is modeled using a turbulent eddy viscosity
� f

T as


uf ,i� uf ,j� � = − � f
T� �Uf ,i

�xj

+
�Uf ,i

�xj
� +

2

3
�ij�kf + � f

T
�Uf ,k

�xk
� .

�28�

The turbulent eddy viscosity � f
T in fluid phase is modeled as

� f
T = C

kf
2

� f

.

The model constant C could be a function of particle Stokes
number St�, and mass loading 
. Since there are no DNS
data to validate the turbulent eddy viscosity hypothesis in
turbulent particle-laden flows, the model constant C is cho-
sen to be 0.09, which is the value in single-phase turbulence
models.

For relatively dense collision-dominated mixtures, the
turbulent eddy viscosity in particle phase is modeled as p

T

=C2�p�pd̄�kp�1/2 in Ahmadi’s work,6,7 where C2 is a func-

tion of particle volume fraction and d̄ is the mean diameter of
particle phase. For dilute mixtures, fluid turbulence is domi-
nant and particles are transported by the fluid motion. It is
suggested in Refs. 6 and 30 that the fluid length scale should

T
be the relevant scale in p. The multiscale interaction time
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�i� is a function of kf, which is the appropriate scale to
model the dilute mixture. So, for particle phase, the particle
velocity covariance tensor is modeled as


up,i� up,j� � = − �p
T� �Up,i

�xj

+
�Up,j

�xi
� +

2

3
�ij�kp + �p

T
�Uf ,k

�xk
� ,

�29�

where

�p
T = C2kp
�i� ,

and C2 is the model constant that can be obtained by com-
paring with experimental data or DNS results. This corre-
sponds to specifying p

T=C2�p�p
�i�kp. In this study C2 is
chosen to be 0.001.

Based on the transport equation for the Reynolds stress
tensor, the k-� model corresponding to the EEM Reynolds
stress model for fluid and particle phase is

� f� f

�kf

�t
+ � f� fUf ,i

�kf

�xi

=
�

�xj
�� f� f

� f
T

�kf

�kf

�xj


− � f� f
uf ,i� uf ,j� �
�Uf ,i

�xj

− � f� f� f

− � f� f

�C2kf − �1 − C2�
kp�

��

, �30�

� f� f

�� f

�t
+ � f� fUf ,i

�� f

�xi

=
�

�xj

�� f� f

� f
T

��

�� f

�xj


− C�,1� f� f

� f

kf


uf ,i� uf ,j� �
�Uf ,i

�xj

− C�,2� f� f

� f
2

kf

− � f� fC�,3

� f

kf

�C2kf − �1 − C2�
kp�

��

,

�31�

�p�p

�kp

�t
+ �p�pUp,i

�kp

�xi

=
�

�xj

��p�p�p
T
�kp

�xj


− �p�p
up,i� up,j� �
�Up,i

�xj

− �p�p

��1 − C2�kp −
C2



kf�

��

, �32�
where �kf
=1.0 and ��=1.3.
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D. Model results for decaying homogeneous
turbulence

In this section the simplified equations for decaying ho-
mogeneous turbulence are described. The predictions from
EEM for decaying homogeneous particle-laden turbulent
flows are compared with DNS results.

The EEM equation system for decaying homogeneous
turbulence is

dkf

dt
= −

1

��

�C2kf − �1 − C2�
kp� − � f , �33�

d� f

dt
= − C�,3

� f

kf

�C2kf − �1 − C2�
kp�

��

− C�,2

� f
2

kf

, �34�

dkp

dt
= −

1

��

��1 − C2�kp −
C2



kf� . �35�

The interphase TKE transfer time scale �� is related to the
multiscale interaction time scale 
�i� �which was introduced
in Sec. III� by the expression

�� =

�i�
C�

or C� =

�i�
��

, �36�

where C� is chosen to be 2.5 in this model.
As discussed in Sec. IV A, in general C2 is a function of

mass loading 
, particle volume fraction �p, particle Stokes
number St�, particle Reynolds number Rep, and initial kf /kp

ratio. In the absence of relevant data from DNS of stationary
turbulence, it is hypothesized that the mass loading 
 of the
system strongly affects C2, whereas it is likely that C2 de-
pends very little on particle Stokes number St�. The depen-
dence on the particle volume fraction �p is neglected for
dilute flows. For particle Reynolds number in the Stokes re-
gime, Rep�1, the dependence of C2 on the particle Rey-
nolds number Rep is also neglected. For simplicity, C2 is also
assumed to be independent of initial kf /kp ratio, but this as-
sumption may not be justified for initial kf /kp ratio far from
1. Under these assumptions, C2 is modeled as a linear func-
tion of mass loading 
,

C2 = 0.6
 . �37�

This specification is chosen such that the model predictions
from EEM match well with DNS results. It is natural to
require the model for C2 to reproduce the correct limiting
value 
 / �1+
� as St�→0. With the current specification of
C2=0.6
, the value of C2 in the limit St�→0 differs from

 / �1+
� by approximately 10%. The model constants used
in EEM are listed in Table I.

The predictions from EEM are shown in Figs. 8 and 9.
The model results match the DNS results for fluid-phase

TABLE I. The coefficients for EEM.

C C�,2 C�,1 �kf
�� C�,3 C2 C�

0.09 1.92 1.44 1.0 1.3 1.2 0.001 2.5
TKE evolution quite well at early time �see Fig. 8�, but a
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small quantitative discrepancy is observed after t /Te�1.5.
The decay rate in particle energy shows larger separation
with increasing particle Stokes number than the DNS �see
Fig. 9�, but the overall trend is satisfactory.

V. PARTICLE-LADEN TURBULENT HOMOGENEOUS
SHEAR FLOW

In this section the test case of particle-laden homoge-
neous shear flow is described, and major results from the
DNS study by Elghobashi12 are discussed. The predictions
from model I and EEM are then compared with DNS data.

A. Description of test case

In the DNS study of particle-laden homogeneous shear
flow by Elghobashi,12 the flow field has an identical imposed
mean velocity for both phases. In the fluid phase, the x1

component of mean velocity U varies linearly in x3 �U
=Sx3�, where S is the mean velocity gradient taken to be S

FIG. 8. Evolution of TKE in fluid phase for EEM compared with DNS data.

FIG. 9. Evolution of TKE in particle phase for EEM compared with DNS

data.
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=1 in the simulation. The x1 component of particle-phase
mean velocity is also imposed with unit mean velocity gra-
dient. The mean velocity in x2 and x3 direction is zero in both
fluid and particle phase. A schematic of the flow configura-
tion is shown in Fig. 10. The solid particles are rigid spheres
��p is constant�, and there is no interphase mass transfer. The
particle volume fraction is small ��p�10−3�, and the effect
of the presence of particles on the fluid mass conservation
equation is neglected. The particle size is in the sub-
Kolmogorov range. The point-particle approximation is also
used in this DNS study, so a linear drag law is assumed for
each particle.

The major results from the particle-laden homogeneous
shear flow DNS are the following:

�i� The evolution of the fluid velocity covariance 
uf ,1� uf ,3� �
is reported for �p=1.0 and mass loading 
=1.0. The
fluid velocity covariance is important to validate the as-
sumption of turbulent eddy viscosity in Eq. �28�.

�ii� The effect of varying the particle inertia ��p

=0.1,0.25,0.5,1.0� on the evolution of fluid-phase TKE
is studied. It is found that as the particle inertia in-
creases, the decay rate of fluid-phase TKE increases �for
fixed mass loading 
�.

B. Comparative assessment of model results

The simplified governing equations for particle-laden
homogeneous shear flow from model I are given in Appendix
A. Model II results are not presented for the homogeneous
shear test case because the volume fraction of particles in
this test is well beyond the realm of applicability of model
II’s closure for the TKE production in particle phase �see
Appendix B�. The particle-phase TKE production term in
model II is modeled using a turbulent eddy viscosity analogy,
and is intended for rapid granular flows where the effect of
the fluid phase is negligible �or secondary�, and the transport
of momentum is dominated by particle-particle collisions.
The particle TKE production term in the kp equation has a

FIG. 10. Schematic of the flow configuration in the particle-laden homoge-
neous shear flow.
1/�p dependence �arising from the model constant C2� that
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becomes unbounded in the limit �p→0. �These details of
model II are given in Appendix B.� If this closure model is
used for volumetrically dilute flows �the particle-laden ho-
mogeneous shear flow studied here is quite dilute, with �p

around 10−4�, then the particle TKE production term results
in an unphysical growth of kp. Therefore, only predictions
from model I and EEM are compared with DNS results for
this case.

For EEM, the simplified governing equations for homo-
geneous shear flow are

dkf

dt
= 	kf

− � f − 
uf ,1� uf ,3� �
�Uf ,1

�x3

, �38�

d� f

dt
= 	�f

−
� f

kf
�C�,1
uf ,1� uf ,3� �

�Uf ,1

�x3

+ C�,2� f� , �39�

dkp

dt
= 	kp

− 
up,1� up,3� �
�Up,1

�x3

, �40�

where 	kf
, 	�f

, and 	kp
represent the influence of interphase

TKE transfer. The velocity covariance in the fluid phase

uf ,i� uf ,j� � and the velocity covariance in particle phase

up,i� up,j� � are modeled using the turbulent eddy viscosity con-
cept �cf. Eqs. �28� and �29��.

For �p=1.0 and 
=1.0, the evolution of fluid-phase en-
ergy is compared in Fig. 11. It is found that the decay rate of
kf from model I is much steeper than DNS results, which is
up to 70% off at T=3. With the implementation of 
�i� in
model I by replacing the time scale � 12

F in Eqs. �1�–�4�, the
steep decay of fluid-phase TKE is improved, and the quanti-
tative difference is around 30% at T=3. EEM predicts the
decay rate of kf quite close to the DNS results at the begin-
ning of evolution T�1. After T�1, the fluid energy starts to
increase. In EEM’s results, the relative error is 20% off at
T=3 compared with DNS results.

For model I, the budget plot is shown in Fig. 12, which

FIG. 11. Evolution of TKE in fluid phase for model I, model I with multi-
scale interaction time scale 
�i�, and EEM model for homogeneous particle-
laden shear flow.
shows that the interphase TKE transfer term is dominant and
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contributes most to the fast decay at early time. The budget
of the interphase TKE transfer term, dissipation rate, and the
production in Eq. �38� for EEM is plotted in Fig. 13. It shows
that the growth of fluid-phase TKE is mainly due to the
almost linear increase in the production as time evolves. The
budget plot in Fig. 13 also shows that production and dissi-
pation rate are the two major terms in the fluid energy evo-
lution equation �interphase TKE transfer is very small�. The
evolution of fluid-phase dissipation rate � f is also reported in
the DNS study. If the fluid-phase dissipation rate in the EEM
model is specified from DNS data, the growth of fluid energy
is eliminated, as seen in Fig. 14. This shows that if the fluid
dissipation can be modeled with more accuracy, the predic-
tions from EEM can be further improved.

The velocity covariance 
uf ,1� uf ,3� � is reported for �p=1.0,

=1.0 in the DNS results. Since this term determines the
production term in the k -� equations for fluid phase �cf. Eqs.

FIG. 12. Budget plot for fluid-phase TKE equation from model I for 

=1.0 and �p=1.0 in homogeneous particle-laden shear flow. Note that the
production term equals −
uf ,1� uf ,3� � since the mean velocity gradient S is 1.

FIG. 13. Budget plot for fluid TKE equation in EEM model for 
=1.0 and
�p=1.0 in homogeneous particle-laden shear flow. Note that the production

term equals −
uf ,1� uf ,3� � since the mean velocity gradient S is 1.
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�30� and �31��, it is important to model this quantity accu-
rately. In this test case, the velocity covariance −
uf ,1� uf ,3� �
equals the shear production since the mean velocity gradient
S is 1. In Figs. 12 and 13 the comparison of 
uf ,1� uf ,3� � shows
a large discrepancy between the DNS and model results.
However, it is perhaps more appropriate to compare the cor-
relation coefficient � f13, which is defined as

� f13 =

uf ,1� uf ,3� �

	
uf ,1� uf ,1� �
uf ,3� uf ,3� �
, �41�

and this comparison is shown in Fig. 15. There is a large
difference at early time, but after T=4 the difference is small.
The discrepancy could be due to the influence of initial con-
ditions or the interphase TKE transfer term.

FIG. 14. Evolution of TKE in fluid phase for EEM model with dissipation
rate specified from DNS results for the particle-laden homogeneous shear
flow with 
=1.0 and �p=1.0. Fluid-phase TKE evolution from DNS is also
shown for comparison.

FIG. 15. Evolution of the velocity correlation � f13 for model I, model I
implemented with multiscale interaction time scale 
�i�, and EEM model in
homogeneous particle-laden shear flow. DNS result is shown for

comparison.
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The particle inertia study is performed for �p

=0.1,0.25,0.5,1.0 with the same mass loading 
=0.1. DNS
data show that, with the increasing particle response time,
the decay rate of kf increases. The predictions of model I are
shown in Fig. 16, where model I gives the opposite trend
with increasing particle response time �p �or particle inertia�.
After implementing the multiscale interaction time scale 
�i�
in place of � 12

F in model I, the incorrect trend of fluid-phase
TKE decay rate is corrected and the evolution of fluid energy
becomes closer to the DNS results, as seen in Fig. 16.

The model results from EEM for particle inertia study
are shown in Fig. 17. These results are very close to DNS
data, and the trend of TKE evolution with increasing particle
inertia is correct. However, the difference in the decay rate of

FIG. 16. Evolution of TKE in fluid phase with increasing particle inertia
�constant mass loading� for particle-laden homogeneous shear flow. Solid
line represents DNS results; dashed line represents the predictions from
model I; dash-dot line represents the results from model I improved with
multiscale interaction time scale 
�i�. The symbol � represents �p=0.1; �
represents �p=0.25; � represents �p=0.5; and � represents �p=1.0.

FIG. 17. Evolution of TKE in fluid phase for increasing particle response
time �p �constant mass loading 
=0.1� from EEM. DNS data are shown for

comparison.
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fluid energy with increasing particle inertia is too small. A
possible reason for this deficiency is that there is no infor-
mation of particle inertia in the fluid-phase production term.
One improvement is to use 
�i� to substitute eddy turnover
time in � f

T. However, without detailed DNS data for variation
of shear production with different particle inertia, the model
for fluid and particle shear production terms in EEM cannot
be validated.

VI. DISCUSSION

With the equilibration of energy concept, the evolution
of TKE in fluid and particle phase is shown to be improved
when compared with the DNS results of decaying homoge-
neous particle-laden turbulence and homogeneous particle-
laden shear flow. Incorporation of the multiscale interaction
time scale 
�i� into model I and model II corrects the incor-
rect trend of kf decay rate with increasing particle inertia,
and the evolution of TKE in fluid and particle phase is shown
to match with DNS results satisfactorily. Implicit in the
above statement is the assumption that the DNS is itself an
accurate representation of the physics of the particle-laden
turbulent flows. The point-particle assumption for the par-
ticle drag in such DNS studies is justified in a limited flow
regime where particle Reynolds numbers Rep are of order 1,
the density ratio �p /� f �O�1000�, and particles are sub-
Kolmogorov size with negligible wake effects. Also, volume
displacement effects are neglected in such DNS studies, and
the fluid velocity field is assumed to be solenoidal.

The homogeneous problem that forms the basis of this
study, and for which the DNS database exists, corresponds to
a flow regime where the aforementioned assumptions are
valid. However, a good approximation to the particle drag in
the DNS does not necessarily guarantee accurate calculation
of the fluid-phase dissipation rate in the presence of particles.
Also, particle-particle interaction effects are not accounted
for in the point-particle approximation, and the effect of the
point-particle approximation on the pressure field is not
quantified either.

The only way to test these approximations is by per-
forming true DNS, where flow field around each particle is
fully resolved and exact boundary conditions are imposed on
particle surface. Using such true DNS calculations, the con-
sequence of the point-particle approximation on the solenoi-
dality of the fluid velocity field �which will in turn affect the
fluid pressure field�, and the neglect of particle-particle inter-
action effects can be evaluated. Recent studies by Moses and
Edwards31 seek to assess the consequences of the point-
particle approximation. However, their study is in 2D for
considerably large cylinders �particle Reynolds number
based on diameter of cylinder Rep=26�, with an emphasis on
evaluating the effects of filtering the velocity field. Their
study is relevant to the examination of the validity of LES
based on the point-particle approximation. Similar studies
are necessary for DNS, but such calculations are still limited
by computational cost. Therefore, the DNS datasets per-
formed with point-particle approximation that are used in
this study are the best data available for model testing and

validation.
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It appears likely that the existing DNS database does
capture the major trends of the TKE variation with important
nondimensional parameters like Stokes numbers and mass
loading. It is possible that the true DNS might revise the
exact quantitative predictions. Since the principal conclu-
sions in this study concern qualitative trends rather than an
exact quantitative match between model predictions and
DNS results, it is reasonable to assert that incorporation of
the new multiscale interaction time scale leads to a better
representation of the problem physics.

It is worthwhile to examine whether any experimental
data can be used for model validation. Experimental study of
nearly isotropic particle-laden turbulence includes work by
Rogers.32 This work reports the preferential concentration of
particles in microgravity conditions with variation of particle
Stokes number, but the turbulence kinetic energy in either
phase that is required for model validation is not reported.
While this experimental result is useful for models that pre-
dict preferential concentration, information of the second
moments of fluid and particle fluctuating velocity that is use-
ful for model validation is not reported.

Experimental investigation of homogeneous dilute
particle-laden flows includes studies by Faeth.33 This work
investigates the settling of uniform flux of monodisperse
spherical particles in a stagnant water bath. This study re-
ports the second moments of fluctuating velocity in fluid
phase varying with particle volume fraction and particle
sizes, but there is no systematic study of TKE evolution with
variation of important nondimensional parameters, such as
particle Stokes number. The results of these experiments will
be useful for further evaluation of model performance, now
that the model constants have been determined based on
comparison with DNS of particle-laden turbulence.

VII. SUMMARY

Two multiphase turbulence models �model I by
Simonin8,9 and model II by Ahmadi6,7,24� are compared with
direct numerical simulations �DNS� of two canonical flows:
decaying homogeneous particle-laden turbulence,11 and ho-
mogeneous particle-laden shear flow.12 The principal find-
ings from this comparative assessment of the two models are
the following:

�1� For homogeneous particle-laden turbulent flow, both
models predict a faster decay rate of fluctuating energy
�in both phases� than found in the DNS. The reason for
the faster decay is that the particle response time ��p

=d2�p /18 f� is used as the time scale for interphase
TKE transfer in both models. For monodisperse particles
there is a single particle response time scale. The results
indicate that a single particle response time does not
adequately characterize the interaction between the par-
ticles and the range of turbulent eddy sizes, which is
responsible for interphase TKE transfer.

�2� Anomalous variation of TKE with different particle
Stokes numbers is found in the model I results. The
interphase TKE transfer is the dominant term in model I
that causes this anomalous model behavior. A pseudof-

low quantity kfp is introduced in the interphase TKE
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transfer terms in model I, and the particle response time
is used as the relevant time scale for interphase TKE
transfer.

The following areas for model improvement are identi-
fied: �i� model for interphase TKE transfer, especially the
time scale of interphase TKE transfer, and �ii� correct predic-
tion of TKE evolution with variation of particle Stokes num-
ber. In model I the fluid-particle covariance kfp is introduced,
which is not an independent flow variable in single-point
closure of two-phase turbulent flows, and it is unclear how
the initial and boundary conditions for this term should be
specified. These deficiencies in model I and model II limit
the application of these two models.

A new multiphase turbulence model, equilibration of en-
ergy model �EEM�, is proposed in this paper. A noteworthy
feature of EEM is that a multiscale interaction time scale 
�i�
is proposed to account for the interaction of a particle with a
range of eddy sizes. As the particle Stokes number ap-
proaches zero, 
�i� approaches the eddy turnover time; and

�i� approaches particle response time �p in the limit of
St→�.

This new multiscale interaction time scale 
�i� is incor-
porated into the interphase TKE transfer terms of models I
and II. It is found that for particle-laden isotropic turbulence,
the predicted steep decay of TKE at the beginning of simu-
lation is improved. The incorrect variation of TKE decay
with increasing particle Stokes numbers in model I is also
eliminated by using the time scale 
�i�. The predictions from
EEM shows satisfactory agreement with the DNS results for
particle-laden isotropic turbulence.

For more complicated flow cases like the homogeneous
particle-laden shear flow, the model predictions can be fur-
ther improved if the dissipation rate in fluid phase is modeled
with more accuracy. A difficulty that is encountered in shear
flows is that the detailed budget of terms in the TKE equa-
tion is not available from existing DNS studies.

EEM is a simple model, but it has a clear physical inter-
pretation, and it gives reasonable trends with the important
nondimensional parameters of particle-laden turbulent flow
such as particle Stokes number. Although many fundamental
issues need to be addressed for this class of two-phase tur-
bulence models—including realizability34 and the assump-
tion of local isotropy of small-scale motions—the EEM
model can still be a useful engineering tool for CFD simula-
tion of particle-laden turbulent flows.
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APPENDIX A: MODEL I—MODEL EQUATION
FOR HOMOGENEOUS SHEAR FLOWS

In this section, the governing equations from model I for
homogeneous shear flows are described in detail.

The simplified model equations for TKE in fluid phase
from model I are

dkf

dt
= − 
uf ,1� uf ,3� �

�Uf ,1

�x3

+
	kf

� f� f

− � f , �A1�

d� f

dt
= −

� f

kf

C�,1
uf ,1� uf ,3� �
�Uf ,1

�x3

+
	�f

� f� f

− C�,2

� f
2

kf

. �A2�

The interphase TKE transfer term and dissipation term were
already discussed. The production due to the mean velocity
gradient takes effect in this case, and the velocity covariance

uf ,i� uf ,j� � is modeled using the turbulent eddy viscosity
concept,


uf ,i� uf ,j� � = − � f
T� �Uf ,i

�xj

+
�Uf ,j

�xi
� +

2

3
�ij�kf + � f

T
�Uf ,m

�xm
� ,

�A3�

where the turbulent eddy viscosity in fluid phase is modeled
as

� f
T =

2

3
kf� 1

t = C

kf
2

� f

. �A4�

The simplified equations for TKE in particle phase are

dkp

dt
= − 
up,1� up,3� �

�Up,1

�x3

+
	kp

�p�p

, �A5�

dkfp

dt
= − 
uf ,1� up,3� �

�Up,1

�x3

− 
uf ,3� up,1� �
�Uf ,1

�x3

+
	kfp

� f�p

− � fp.

�A6�

The velocity covariance tensor in particle phase is modeled
with the concept of turbulent eddy viscosity,


up,i� up,j� � = − �p
T� �Up,i

�xj

+
�Up,j

�xi
� +

2

3
�ij�kp + �p

T
�Up,m

�xm
� .

�A7�

The algebraic expression for the turbulent eddy viscosity in
particle phase is obtained from the off-diagonal correlation
equations written in a quasiequilibrium homogeneous shear
flow, providing that the difference between the fluid and the
particle mean velocity gradients remains negligible,

�p
T = �� fp

T +
1

2
� 12

F 2

3
kp��1 +

� 12
F

2

�c

� 2
c�−1

, �A8�

where � 2
c is the interparticle collision time; �c takes the gen-
eral form
ct to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

2 Apr 2014 23:30:22



033301-16 Y. Xu and S. Subramaniam Phys. Fluids 18, 033301 �2006�

 This ar
�c = �1 + ec��3 − ec�/5. �A9�

Since the interparticle collision is assumed to be elastic �ec

=1� in the DNS case, �c leads to the Grad’s value �c=0.45.
Following Simonin,35 if � 2

c is small compared to the other
time scales, the particle fluctuating motion is controlled by
collisions between particles without effects from the fluid
motions. On the other hand, if � 2

c is large, the gas is expected
to play a dominant role in the fluid fluctuating motion of
particles. So, for very dilute gas-solid two-phase flows, � 2

c is
expected to be very large �� 2

c → � �. The turbulent eddy vis-
cosity in particle phase for the dilute mixtures is further sim-
plified as

�p
T = � fp

T + 1
2� 12

F 2
3kp. �A10�

The fluid-particle turbulent viscosity � fp
T is written in terms

of the fluid-particle velocity covariance kfp and an eddy-
particle interaction time � 12

t ,

� fp
T = 1

3kfp� 12
t . �A11�

The fluid-particle covariance is modeled as


uf ,i� up,j� � =
1

3
kfp�ij +

� f

1 + �r
�
uf ,i� uf ,j� � −

2

3
kf�ij�

−
� fp

T

1 + �r
� �Uf ,i

�xj

+
�Up,j

�xi

−
1

3

�Uf ,m

�xm

�ij

−
1

3

�Up,m

�xm

�ij� , �A12�

where �r=� 12
t /� 12

F . The closure assumption is that as particle
response time tends toward 0, the fluid-particle covariance is
consistent with the fluid velocity correlation.

APPENDIX B: MODEL II—MODEL EQUATION
FOR HOMOGENEOUS SHEAR FLOWS

In this section, the governing equations from model II
for homogeneous shear flows are described:

� f� f

dkf

dt
=  f

T
�Uf ,1

�x3

�Uf ,1

�x3

+ 2D0�ckf − kp� , �B1�

� f� f

d� f

dt
= C�,1 f

T
� f

kf

�Uf ,1

�x3

�Uf ,1

�x3

− � f� fC�,2

� f
2

kf

, �B2�

�p�p

dkp

dt
= p

T
�Up,1

�x3

�Up,1

�x3

+ 2D0�ckf − kp� . �B3�

The coefficient c and drag coefficient D0 were discussed pre-
viously. The production due to the mean velocity gradient
takes effect in this case, which is modeled using the turbulent
eddy viscosity concept. The turbulent eddy viscosity in fluid
phase is modeled6,7 as

 f
T = C� f� f

kf
2

� f

, �B4�
and turbulent eddy viscosity in particle phase is modeled as
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p
T = C2�p�pd̄kp

1/2, �B5�

where

C = 0.09, C2 = 0.0853����p�−1 + 3.2 + 12.1824��p� .

�B6�

The crowding effect exhibits itself through the radial distri-
bution function �. For spherical particles and rapid granular
flows, the radial distribution function � is modeled as

� =
1 + 2.5�p + 4.5904�p

2 + 4.515 439�p
3

�1 − ��p

�m

3�0.678 021
, �B7�

with �m=0.643 56.
In Ahmadi,36 the value of coefficient C is modified as

C = 0.09C
* ,

where the coefficient C
* is introduced to account for the

effect of higher particle volume fraction of damping the fluid
turbulence, and is given as

C
* =

1

1 +
�p�p

D0TL

��p

�m

3
.

The drag coefficient D0, time scale TL, and �m are described
in Sec. II B.

Turbulent eddy viscosity in particle phase is also modi-
fied as

p
T = C2

* C2�p�pd̄kp
1/2, �B8�

where C2
* is given as

C2
* =

1

1 +
TLD0

�p�p

��p

�m

3
.

The coefficient C2
* is introduced in the turbulent eddy vis-

cosity in particle phase p
T to account for the reduction of

collisional effect as particle response time becomes small.
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