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CHAPTER 1. INTRODUCTION 

Diffusion is said to occur in a mixture when there is 

a relative motion of its components. such a motion is often 

attributed solely to the diffusion force, the dominant factor 

of which is a gradient in the chemical potential (modified, 

of course, to ranove that part of the chemical potential 

gradient which produces macroscopic flow). Diffusion arising 

from these diffusion forces is commonly termed ordinary dif

fusion. Diffusive flow may also arise from other irihomoge-

neities within the mixture. In the case of a nonuniformity 

of the temperature this phenomenon is called thermal dif

fusion. 

Thermal diffusion is then the relative motion of the 

components of a mixture due to temperature differences within 

the mixture. When a temperature gradient is imposed upon a 

mixture thermal diffusion will result in the creation of 

concentration gradients which in turn cause ordinary diffu

sion. The balancing of these two effects leads to a net 

mass flux of zero. 

Thermal diffusion in mixtures of gases belongs to a 

small class of physical phenomena which were predicted 

theoretically before being observed experimentally. In 

liquids the existence of thermal diffusion was first dis

covered experimentally by Iiuflwig (T) in 1856 and i nwRti _ 

gated more fully by Soret (2-5) in 1879-81. Thermal diffusion 
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in liquids is still ccxmnonly referred to as the Soret Ef

fect. As early as 1873 Fedderson (6) suspected the existence 

of thermal diffusion in gases and in fact, the effect was 

observed in several phenomena without being recognized. The 

most notable example in this latter category was the ob

servation Tyndall (7) in 1870 of the dust free region in 

the gas space about a hot body, which shows the effect of a 

temperature gradient on the motion of small particles sus

pended in a gas. A common example of this effect is the 

dust patterns which are often seen on walls near hot pipes 

and radiators. 

Despite such observations, thermal diffusion in gases 

escaped identification until 1917 when the kinetic theory 

of gases in nonequilibrium states was developed independ

ently by Chapman (8-11) and Enskog (12-15). These theories 

predict that diffusion due to a temperature gradient should 

exist; the experimental verification by Chapman (16) soon 

followed. 

The phenomenological diffusion equations illustrate 

the basic principles involved in diffusion. If for sim

plicity we consider a binary mixture, the phenomenological 

flux equation for component oc can be written (17) as 

Jot — Ĵ  - 0̂  y T (1.1) 
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where J"< is the flux density, n is the total number density, 

P is the mass density, and are the masses of components 

« and respectively, is the ordinary diffusion coef

ficient, and oZ is the coefficient of thermal diffusion. 

The diffusion force vector, , includes the gradients in 

concentration and pressure as well as the effects of the 

external forces. A similar equation may be written for ̂ . 

To study the counter balancing effects of thermal diffusion 

and ordinary diffusion, it is convenient to use the thermal 

diffusion ratio Jij, where 

(1.2) 

Both kinetic theory and experiment (18) show that is ap

proximately proportional to the mole fraction product x«X,. Thus 

it is convenient to define the thermal diffusion factor, , by 

o I t  = X / S  •  ( 1 * 3 )  

It is this quantity which is usually chosen for study. 

Clusius and Dicdcel (19) in 1938 showed how thermal dif

fusion could be utilized to effect the nearly complete sep

aration of the components of a gas mixture. This discovery 

revived both a theoretical and experimental interest in 

thermal diffusion. An excellent review of thermal diffusion 

by Mason, Munn, and Smith 120) summarizes the resulting 
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developments in these areas. 

Since the phenomenon itself depends strongly and sen

sitively on the forces between the unlike molecules in a 

mixture, we will utilize thermal diffusion as an experimental 

tool to study intermolecular forces. This sensitivity on the 

detailed manner in which molecules exchange linear and angular 

momentum upon collision leads to severe difficulties when 

attempting to give a simple physical description of thermal 

diffusion. This is in sharp contrast to other transport 

properties such as thermal conductivity, viscosity, and 

ordinary diffusion which are adequately described by simple 

mean-free-path theories. These properties primarily depend 

upon the probability of a molecular collision and only to a 

very small extent upon the detailed nature of the collision. 

The elementary theories which have been proposed for 

thermal diffusion in binary mixtures, such as those of 

Furth (21), Frankel (22), or Furry (23), seem either to 

be incorrect in basic essential points or else almost as 

cattç>licated as the rigorous Chapman-Enskog kinetic theory 

itself. Recent work by Whalley and Winter (24) and 

Laranjeira (25) has extended the elenentary theories to 

include multicomponent mixtures. 

The transport phenomena in a linear phenomenology are 

characterized by the Lransport coefficients, vhich relate 

the relevant fluxes to diffusion forces and the gradients 
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in the streaming velocity and temperature. Thus these 

transport coefficients arise naturally in the computation 

of the fluxes of the appropriate mechanical properties 

(mass, momentum, or energy). The distortions frcan the 

Maxwell-Bol tanann equilibrium distribution which give rise 

to these fluxes are obtained by using the Chapman-Enskog 

theory to solve the Boltzmann equation. The resulting set 

of integral equations is commonly esqpressed in algebraic 

form, utilizing a matrix representation of the collision 

operator. The matrix elements of this representation are 

sometimes called collision integrals since they involve 

integration over the orientation and momentum variables of 

a pair of interacting molecules. The evaluation of the 

transport coefficients thus involves assuming a molecular 

model for which the dynamics of a collision may be deter

mined. This allows the calculation of the appropriate col

lision integrals. 

The transport coefficients were first calculated for 

the rigid sphere model. These efforts were followed by 

calculations for numerous spherical potential functions. 

Hirschfelder et (17) shows the comparison between ex

periment and theory for several of these models. In gen

eral, the spherical collision models give good comparison 

wifh #»*Tyari TTisknt for fhoR#» transTaort tsrooerties which detsend 

qiainly on the probability of the occurrence of a collision. 



6 

such as thermal conductivity, viscosity and ordinary dif

fusion. The spherical collision models give poorer results 

for the thermal diffusion ratio for polyatomic gases, par

ticularly in mixtures of isotopes. This indicates the need 

for a molecular model with internal structure. 

The theory of transport phenomena in polyatomic gases 

is greatly complicated by the existence of inelastic molecu

lar collisions. Inelastic in this sense implies the pos

sibility that the interacting molecules may exchange ro

tational energy as well as translational energy. It is 

assumed that collisions have little effect on the vibra

tional states of the interacting molecules, since the vi

brational energy spacing is large compared to jLT. This 

results in vibrational relaxation times which are of the 

order of the time required for several molecular encounters. 

Recently, classical dynamics has been applied to the treat

ment of the internal degrees of freedom and the thermal 

diffusion factor has been calculated for rough spheres by 

Triibenbacher (25) and for loaded spheres by Sandler and 

Dahler (27). Matzen et al. (28) have extended the calcu

lations to ellipsoids of revolution. In the strictest sense 

these internal degrees of freedom should, of course, be 

treated quantally, but classical mechanics gives reliable 

pared to ÀT, For CO and Ng (molecules of interest in this 
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work), the average value of the rotational angular momentum 

quantum number J is about 10 at room temperature. In com

parison the average of CT for Hj. is 1 and the rotational 

collision dynamics for this molecule must be treated by 

quantum mechanics. 

The purpose of the present work is to develop the ex

pressions for the transport properties of a multicomponent 

mixture of polyatomic gases in both a field-free space and 

in a constant, static magnetic or electric field. We also 

wish to examine these expressions for physical insights into 

the phenomena of thermal diffusion. 

The following study of thermal diffusion begins with 

a brief development of the Boltzmann equation for a poly

atomic gas mixture. The method of solution of these equa

tions is then presented in general and the kinetic equations 

developed in detail for multicomponent gas mixtures. In 

addition we develop the generalized Onsager force-flux re

lationships in tensorial form. The perturbation theory for 

matrices is given in a general form and applied specifically 

to the kinetic equations of interest for both the field-free 

and constant magnetic field cases to derive an analytic ex

pression for the thermal diffusion coefficient. In order to 

perform the matrix inversions required in the perturbation 

theory for an externally applied field, vs develop the 

theory for the reduction of a general Cartesian tensor into 
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a linear combination of basis tensors of one dimensional 

irreducible representations of the group of rotations 

about the field direction. Finally, we use the ellipsoid 

of revolution collision model to ccanpare our theory with 

experimental results for several isotopic binary mixtures. 

Our major emphasis is on isotopic CO mixtures. 
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CHAPTER 2. DERIVATION OF THE BOLTZMANN EQUATION 

A general classical mechanical treatment of the Boltz-

mann equation for polyatomic gases has recently been given 

by Hoffman and Dahler (29). The development given here will 

closely follow their outline. 

The state of a single-ccsiçîonent gas consisting of N 

molecules is described by the distribution function 

, t) / where X; is a multidimensional 

Cartesian vector whose components are the conjugate co

ordinate and momenta (^) variables of molecule i .  

Both and have as many components as the molecule has 

degrees of freedom. This distribution function is defined 

such that is the number of hf-molecule sys-

tCTis which have one molecule in the range dK, about z,, one 

molecule in the range about and so on for all Z-

and dZj. Here JZi implies the Cartesian volume element 

where and are the conjugate coordinate 

and momentum associated with the ̂  degree of freedcan of 

molecule 6 . The function is normalized to A/.'. The 

lower order distribution function for an -molecule 

system (l€n£/V) is defined to be the probability of finding 

n molecules in respective ranges Jl,, about 

"'f?n without regard to the positions and momenta of 

the remaining (W-<i) molecules. To obtain we can inte

grate the N-molecule distribution function over all the 
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coordinates and momenta of the (w-n) molecules^ that is, 

"='"'=[<5̂ ] /JI... F'"'. (2-11 

The equation of motion for the ̂  -molecule system is 

the Liouville equation 

v^ere is the Hamiltonian for the system. If we assume 

that H can be written in the form 

M'"' = Z hI" f ? z: Vij , (2-3) 

where is the single-particle Hamiltonian for molecule 

I and is the pair interaction potential for the inter

action between molecules i and and if we integrate Equa

tion 2.2 over / then we obtain the BBGKÏ 

hierarchy of coupled equations 

'I I, i -t 

! . fn) 
"Vfhicli govern ths low^r ordmr distribution functions F 

For systems to which the Hamiltonian in Equation 2.3 is 
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applicable/ the macroscopic properties may be calculated 

from a knowledge of f"' and the singlet and pair 

distribution functions. These functions are needed to com

pute the kinetic and potential contributions, respectively, 

to the macroscopic properties. The distribution functions 

and are proportional, respectively, to the density 

and the square of the density. Thus for low densities the 

kinetic effect will be the dominant contribution and 

will be sufficient to describe the macroscopic properties 

of interest. Hence the remainder of this chapter will be 

concentrated on the singlet distribution function. 

We wish now to define a distribution function, f , 

for molecules which are not in the midst of collisional 

encounters as 

F,"' ' ) F"", (2.5) 

where the subscript indicates that is a function of the 

position and momentum variables of molecule l. Let us define 

0% to be a body fixed, convex region enveloping molecule L. 

The dimensions of (r- are arbitrarily chosen but in practice 

the shape is dictated by the molecular geometry. A convex 

region 07̂  ̂, which is a function of the orientation of bodies 

I ar>»R JL . 4 a 4-r* -hVna Wfil lime <ar»ri1 ncorl VrtT +->>o manner 

of mass of ̂  as it is moved about molecule i in such a way 
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that the orientations of both bodies is held fixed and the 

regions oj and <!j are just in contact. The function , 

of Equation 2.5 is then defined to be zero whenever regions 

05 and <r; are in contact (or equivalently, when the center 

of mass of molecule y is inside and is equal to one 

otherwise. Thus is the distribution of molecules 

which are "isolated" in the sense that no other molecule 

j, is in the region around molecule i. If we write 

^ = 1 - , where is defined to be zero when 

is one and one vAien is zero, then the product 

77" can be written as the expansion 

Putting Equation 2.6 into Equation 2.5 and integrating we 

obtain this new distribution function in terms of the usual 

(2 .6)  

distribution functions as 

F,l'> » i /jZ, / JIj F,Ji (2.7) 

or. 

F,"'= Ç. £(-0%!] F (2.8) 

The first term on the right hand side just represents the 
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molecule density, the second term subtracts from this the 

number of paired molecules (paired in the sense that molecule 

2. is in the <r,̂ a region about molecule I ), the third corrects 

for the counting of pairs which are embedded within molecular 

trios, and so on. 

For any realistic choice of an intermolecular potential, 

only a finite number of molecules can be confined to a small 

region about molecule 1. This causes the truncation of the 

above series after a finite number of terms. In fact, for 

the rigid collision models which will be of concern in this 

work, can always be chosen so that f by 

letting be only infinitesimally larger than the volume 

excluded to molecule ̂  by the presence of molecule 1. 

To obtain the equation of change for F , we multiply 

the Al-particle Liouville equation by n2,, where 

S,= ̂7r , and integrate, to obtain 

where the brackets represent Poisson brackets for the N-

molecule system and are of the form 

(2.9) 

(2.10) 
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This in turn reduces to 

44-' » : «.'"J" -1J r. c • «."'J 

with V - I Z  v.- ; and where 
i ;>i •'/ 

fjr, •••fJly (2.12) 

is the distribution function for isolated molecule pairs. 

If we assume that the linear dimensions of the region 

exceed the range of the intermolecule forces, or 

equivalently, that the interroolecular potential is zero 

for all states of the two molecules 1 and > when the center 

of mass of ̂  is outside <r,̂  ̂, then the right hand side of 

Equation 2.11 vanishes and we have 

r '  (2.13) 

with 

-;jr. (2.14) 
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The space of the center of mass variable of one molecule 

can be spanned by a sequence of surfaces which are similar 

in a geometric sense to the surface of the convex region 

and scaled by a parameter Thus, the location of the center 

of mass of molecule a can be given in terms of P, which 

specifies the convex surface on which the mass center lies, 

and X, which is the surface normal at the position of the 

mass center. When the center of mass of a. lies on 

and therefore ̂  , where is the unit step func

tion. We can then replace the Poisson bracket in Equation 

2.14 by 

( 2.15) 

where 0 Is a delta function and / =  ̂

The Poisson bracket of a function with the flamiltonian is the 

implicit time derivative of the function through the posi

tion and momenta coordinates. 

The variables of molecule 2. may be written in the 

separated form where a is the collection of 

all linear and angular momentum variables, ̂  is the set of 

molecular orientation variables, and is the position 

vector of the center of mass. It is convenient to use the 

molecular rotation variables even though they do not form a 
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conjugate set of coordinate and momentum variables. If we 

let jv , where ©• and 4> are the polar angles 

describing the orientation of an arbitrary body fixed vector 

and f gives the orientation of a second body fixed vector 

which is perpendicular to the first, then it is easy to show 

that the Jacobian of the transformation from a conjugate set 

of rotation variables to these variables is unity (29). The 

differential position vector may be written as 

d F where 'î S is the differential surface element 

of and  ̂ î ) ' t is the supporting function for 

the convex region, 07,a . Here the symbol 5- ( i or i) 

represents a vector extending from the center of mass of 

molecule i  to the point of contact of 07 and 0^ when 1 .  

It can be shown (29) that / k at /* = ! is the relative vel

ocity of the points of contact of <ç and <r̂  projected onto 

the surface normal at the point of contact on 07 (which, 

as previously defined, is also the surface normal to 07, x 

at the position of the center of mass of 2). Therefore we 

can write /k where ̂  is the relative velocity of the 

points of contact and is given by 

 ̂ (2.16) 

Here is the inertial tensor (where indicates 

that the inertial tensors must be referenced to the space 
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frame)/ L; the angular momentum of molecule I, and is 

the relative velocity of the centers of mass of molecules a 

and i. The quantity is the angular velocity of 

molecule 

We can now write Equation 2.14 as 

4 f;"' = a-̂ ) p;"'. (2.17) 

Since the quantity is the normal component of the rela

tive velocity of the points of contact of and (t̂ , the 

quantity represents the differential 

rate at which molecules become paired (̂ •̂ '=0) or unpaired 

The entire integral is called the collision 

operator, since in a physical sense it is the net rate of 

encounters of molecule 1 with all other molecules j.. 

In this work we will evaluate the collision operator 

by assuming that the colliding molecules are rigid, non-

deformable convex bodies. This model allows us to consider 

the entire collision event as a single iir̂ ulsive encounter 

(if we ignore the possibility of chattering, that is, a two 

body collision which consists of a sequence of correlated 

impulses resulting frm the nonspherical nature of the 

bodies). These rigid collision models are certainly not 

entirely realistic approximations of the interaction po

tential. However, they should be reasonably accurate for 
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fluids ccxitposed of relatively small, weakly polar molecules, 

particularly when the thermal energy is large compared to 

the van der Waals attractions between the molecules. As 

mentioned earlier, for rigid collision models we can make 

pfcn) _ pin) jjy taking to be differentially larger than 

the excluded volume. At the point of contact, 

r t») _ f- £a), V 
^ 5a J a ; . 

The collisional impulses of rigid bodies are of in

finitesimal duration and thus the possibility of a third 

body affecting the position and momentum states of the two 

interacting bodies is negligible. Therefore each precol-

lision state of the two colliding molecules which have 

positions and momenta such that a collision is about to 

occur can be uniquely connected through the two particle 

dynamics to a postcollisional state. The probability of 

observing a pair of molecules in this precollisional state 

at a given time is exactly equal to the probability of ob

serving the molecules in the associated postcollisional 
C l )  

state a short time later. That is, ' 

where tg. is the duration of the collision (which is in

finitesimal for rigid bodies). If the surfaces are smooth 

it can be shown from conservation of energy and linear and 

angular momentum that the collision reverses the algebraic 

—: ,——. f ^ 4 _ a  ^  
•  W A A  W A A W  w  —  »  « M U . »  w  f  ^  —  V  » — — — — — 

l.̂ f̂lfor the postcollisional surface. We can now write 
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Equation 2.17 in the form 

F/' -Î  + fz ,2̂  ; t -o 

(2.18) 

'*'U^UA l-f P"'fX,f,jiJif + S,-/a,̂ :i : *) . 
L'^<o 

The asterisks denote the state on the precollisional surface 

which is uniquely connected to a state on the postcollisional 

surface by the collision dynamics. 

The next approximation we make is that of molecular 

chaos/ which is to say that in precollision regions there 

is no statistical correlation between the probable distri

butions of molecule I and molecule &. Under this assumption 

the pair distribution function for a precollisional state 

factors into a product of the singlet distribution functions 

The difference in position of the centers of mass of molecules 

I and 2 in the singlet distribution functions is negligible 

to lowest order in the density. Thus we assume the position , 
1 

variables of the two molecules to be identical and will 

hereafter indicate only the momentmn and orientation vari

ables explicitly. Equation 2.18 now becomes 

J-C f,"' 'iJiUh U'S  Di -J.) F"'l,X ) F ">( : u:  ) 
>0 

(2.19) 
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- wCi>/a'/»,' I 1/8, 

where /'y9/a.̂ j) is the transition rate of the momentum 

variables from the I'l' to the /z states and is seen to be 

^(1 ( f ,  I  f  A^S A- j f ,  £C > ' - ! * )  (2.20) 
4'f>» 

The asterisks again refer to precollisional states which 

are correlated to the 12 states through the binary col

lision dynamics. In reference (29), the property of 

bilateral normalization, 

//Ji'da'» //il'ja'w(;'ys/a'/s,' \ (2.21) 

is established. This is sufficient to reduce Equation 2.19 

to the usual form of the collision operator 

Jf t  '  // r  J l 'Jx 'd  2 wCl f i ,3 /3^ l  I ' f i /  3 ' /S j  )JC 

The derivation presented for Equation 2.22 is specific 

to the rigid convex body model. However the same form is 

obtained for a general zcdcl if i-re utilize slightly more 

general assumptions. First we consider systems of low 
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density, so that . Next we assume that the 

collisional interactions are isolated binary events, which 

allows us to replace 2,4,*) with ' 

where tc is the duration of the interaction and where again 

the asterisks denote a state on the precollision surface. 

We then assume molecular chaos and factor the pair dis

tribution function in precollision regions into a product 

of the corresponding singlet distribution functions, 

F̂ re ( 2, We assume in these expres

sions for that variations in pO are negligible over time 

intervals, , of the order of the duration and distances 

of the order of the spatial extension, » of a col

lision event. Taking into account these small variations 

in the position and time dependence of the singlet dis

tribution functions leads to density corrections in the 

theory. 

We are now in position to reduce Equation 2.13 to the 

usual form of the Boltzmann equation. Since the orienta

tions of the molecules vary on a time scale which is very 

short compared to the collision frequency, the distribution 

function must be nearly independent of those orientation 

variables which are rapidly changing. The Boltzmann dis

tribution function, f(U , is then conveniently defined as 

an svsrags ever en interval of time which is long compared 

to the duration of a collision but less than the interval 
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between successive collisions. Thus the distribution 

function -fCi) is a function only of the linear and angular 

momentum variables and the orientation variables which are 

free flight invariants. In practice we ignore all the 

orientation variables and hence define fo) by 

fO) = ;  (2.23) 

The case of the rigid rotor model (used to represent 

linear molecules) deserves special attention since this 

model has only two active rotational degrees of freedom. 

Since such molecules are cylindrically symmetric about the 

internuclear axis the distribution function is independent 

of the angle specifying the orientation about this axis and 

at the same time the component of angular momentum along 

this axis is collisionally conserved. For molecules in a 

Z state (which represents most of the cases of interest) 

this con̂ onent of angular momentum is zero whereas for 

molecules such as WO there is a nonzero component of angu

lar momentum due to the electrons. The distribution func

tion in the full phase space (that is, with three Eulerian 

angles and three ccat̂ Kjnents of angular momentum), which for 

present purposes we denote by , can be written 

i •= -̂ rs. L / k  
' Kt) •*" ta.) ; 

( 2 . 2 4 )  
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where h(L,) is the normalized distribution of b, , the com

ponent of angular momentum along the molecular axis, the 

factor 1/2 JT is a normalization constant arising from the 

trivial Eulerian angle, and is the distribution func

tion which includes the two active rotational degrees of 

freedom. The rotational variables in this case can be taken 

to be either the vector ê, along the internuclear axis 

(which is described by 3 angles) and the two components of 

angular momentum and in the plane perpendicular to 

£,, or can be described by L in a space fixed frame (3 com

ponents) and the phase angle, ̂  , of the internuclear axis 

in the plane perpendicular to the angular momentum. The 

relationship between these variables is such that 

The choice of independent variables will be dictated by 

convenience. 

Under these considerations, we can substitute Equation 

2.22 into Equation 2.13 and perform the integrations as in

dicated in Equation 2.23 to obtain 

which is the standard form of Boltzmann's equation for a 

single species system. Here 7 - * and is the 

J L J t f  = je, jb* JLj. (2.25) 

^ + tf'-fiOJ^-PcO 1 (2 .26)  

i 
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torque and the external body forces which act on the 

particles during their free-flight motion. The quantity 

 ̂is the dipole moment (electric or magnetic) and f is the 

external field (electric or magnetic). For diamagnetic 

molecules in the magnetic field case (which is the case of 

interest in the present work), ̂  is proportional to , 

where j is the gyromagnetic ratio. Collisional forces are 

assumed to be much larger than external forces and hence ̂  

and do not affect the transition rates. 

The generalization to multicomponent mixtures is 

straightforward. The rate of change in the distribution 

function of any one species due to collisions is just the 

sum of contributions from collisions of that species with 

itself and with all other species. That is, 

Cjfe +£.-y f*(') 

(2.27) 

where the subscripts «. and /s represent species and Z is 

a suitmation over all species in the mixture. 
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CHAPTER 3. LINEAR TRANSPORT TEÎEORY FOR A 

DILUTE POLYATOMIC GAS MIXTURE 

Our objective is to obtain numerical estimates of the 

linear transport coefficients, particularly those associated 

with concentration and thermal diffusion. This information 

can be extracted from the "normal" solutions of the Boltzmann 

equation which are generated by the method of Chapman 

and Enskog. Since the status and interpretation of 

these solutions have been considered thoroughly elsewhere 

(30), the only concern here is with the mechanics of the 

solution procedure. We assume the external forces, to 

be so weak that they do not significantly alter the states 

of the molecules during the brief intervals between their 

successive collisions. Also, if we adopt as our unit in

terval the free-path transit time, the three terms on the 

left hand side of Equation 2.27 all are of the same order 

of magnitude and each is smaller by a factor of approxi

mately Xfp/jP than the right hand side (29). Here Xfp is 

the free-path length and the scale of the spatial 

inhomogeneities of temperature, velocity and concentration. 

To construct the normal solution of Equation 2.27 we 

multiply its entire left hand side by a dimensionless marker 

and assume that there is a solution of this mod

ified equation of the form Z . Furthermore, we assume 
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(see reference (30) for a thorough discussion of the in

ternal consistency of these various assun̂ tions) that the 
t  k )  

time and position dependence of each function is im

plicit and governed by the variations with t  and x  of the 

m a c r o s c o p i c  v a r i a b l e s  f  ( = =  n ^ i t x ) f T ( t x )  ,  a n d  u i t x ) ) .  

Finally, we expand the time derivatives of these macroscopic 

variables in series I - Z£'̂ lA)n£ • After these expansions 

are substituted into the modified Boltzmann equation of 

Equation 2.27, we assume that the resulting expressions are 

satisfied order-by-order in the perturbation parameter £. 

The first of the equations obtained by this procedure are 

satisfied by the Maxwell-Boltzmann distributions 

(ŵ /air £-•]|y t-i+̂ *)} (3.1) 

where Ç = ç - iz , is the rotational energy of an ot-species 

molecule and is the rotational partition function de

termined by classical mechanics. Finally, n*, g, and T, 

respectively, are chosen equal to the local, instantaneous 

values of the number density of species oc, the mass average 

velocity, and temperature. Because of this the higher order 
Ck) 

terms , k > o , must conform to the subsidiary conditions 

- 2L fJI C. i) = ZfjIf a M.,+ E_, 1 \i) = 0. (3.2) 
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We also require the internal angular mOTientum density of 

each species to be zero so that fdl L Ci) - o , /< >o . 

The linear phenomenological description of the fluid 

is completely determined by the functions 

which satisfy the linear, inhomogeneous integrodifferential 

equations 

~̂ ̂ ̂  ̂î̂ /S ) +•  ̂̂  (3.3 

with 

& 
(3.4) 

r". à  

and (3.5) 

 ̂( a.) r 

{ 

where 
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with ̂ =; or 2-. If we define and to be the o(th 

components of the "composition vectors" and $, respec

tively, and interpret and to be the 
A  ̂

«<j2-elements of the operators n© and in ccanposition 

space, then Equation 3.3 can be written in the compact form 

8 = -n &($) - n^rC$) = -_A (f ) 

For these equations to be soluble it is both necessary 

and sufficient that ̂  be orthogonal to all solutions ̂  of 

the homogeneous adjoint equations -Â fx) -=0 . These solu

tions consist of the composition vectors with components 

(for all species ̂ ), ç , and 

= i + £ * and correspond, respectively, to the sum

mational invariants, namely, the mass for each species, 

mcOTientum, and energy. The resulting orthogonality con

ditions, 

/dl At (I) = Zf = zP IH t £ji)l 4,0) = 0, (3.7) 

can be rewritten in the forms, 

(m) O  

(3.8) 

= -y.-gw.-f-' 2 p f z ce/Fj 

and 

= -u -VT - Ç. u 
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with Y = A ' ' F - > P / and 

Cy = 3« Va-r £n^ / where is the contribution of in

ternal degrees of freedcxn to the heat capacity (per molecule) 

of the species oc. 

Therefore, we must choose for , (ĵ )o u , and 

(̂ ]̂ T the functions defined by Equation 3.8 in order that 

the integrodifferential equations in Equation 3.3 be 

soluble. When this is done we find that 

+ {a WW - ( yy ' i - £ * -  j t  -  T^^hJ }  :  ? i ^ ]  

where is the rank 2 unit tensor in 3-dimensional space (see 

Chapter 6), vj ^ t . £* = S^/M.r , 1* = I^/JLT, 

and where the generalized diffusion forces 

=  7 ( m x / n ) f  r o K / n  - / » « / / > ) - ^  -  ( 3 . 1 0 )  

satisfy the condition Ld̂ -=o of linear dependence. 

Since the operator J\ is linear and since & depends 

linearly upon the variables VT, S and V'U, the distor

tion ̂  must be of the form, 

V + n (3.11) 
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where | is the traceless and symmetric portion of the second 

rank tensor vu-- The most general solution of Equation 3,3 

would also include a linear combination,  ̂ ç 

fk , of solutions of the corresponding homogeneous 

equation (where and H are arbitrary constants). How

ever, the subsidiary conditions of Equation 3.2 which arise 

frcan our choice of the arbitrary constants in require 

that - ^ = h = 0 . It is for this reason and the fact 

that ̂  is independent of curl g that we omit from a term 

proportional to curl u. The linear dependence ( Z = o) of 

vectors causes an arbitrariness of definition of the co

efficients I which we resolve by requiring that 

I" - 0 for all species ot. 

The functions , ft , , and f (which are the «tth 

components, respectively, of the conçKDsition vectors A, §, 

0, and ) are independent of the generalized forces and, 

in addition, the second rank tensors are both symmetric 

and traceless. The diffusion forces for all 

/3 form a linearly independent set of N - i  vectors where 

/V is the number of components. (Here Jf is arbitrarily 

chosen.) We conclude from Equations 3.3, 3.9, and 3.11, 

the identify iJfU - àn ! ' and the 

independence of the generalized forces, that the unknown 

tensor functioixs aàtisty Laê SépâTâLé llnêoT equations 
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with 

fl" [wtw'fgj'-i - c' )] 

- 2fl*' C 5-]'" 

At '= f"'c(I - p/rc,)w^- 5%  ̂ C*Ef%; (> •• C)- '?J 

•S* - C' ' Ç, [- Cy + A- /f] . 

The symbol denotes the highest weight irreducible 

part of the polyad formed from n X's , that is, X x • • • x 

(see caiapter 6). 

The subsidiary conditions in Equation 3.2 impose the 

restrictions 

/"J' 

and (3.14) 

2  J J l  ^  X ^ ' ' ^  -  0  J  i  -  2  o r  3  

upon the tensor-valued functions G?̂  (= â̂ , ict 

To the linear approximation (  f -fi" = C  i  +  p ^ )  
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with given by Equation 3.11) the fluxes of mass, momentum 

and energy are 

= f i  I  M*. Ç,  ̂  I  " f t  -1 

f = x/ji f ^o )  ww [ç,]'' g [f 7'*^ 

(3.15) 

TT- - ^  Z  f j l  -P^C)  ^  i ^U \  f îb>  

Q - ZI/JÎ ĈO Ç, ciM. c/f f̂ o)] ̂  z  + g', 

where the pressure tensor p is given by 

f = pi"*+ F + TT̂ "* (3.16) 

and where 

H., = AT + ) 

and 

g' = - i ^ - r  -

By means of Equations 3.12, 3.13, and the orthogonality 

conditions in Equation 3.7, it is readily established that 

s""}} 
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F  = A T  Z I J I  ^  ,  B ] ]  

(3.17) 

TT = AT Z /j / f{ d]} 

Q ' = AT (a 4.t/» Z /j ! -- AT ̂ a at/» {{ 4,4 33, 

where we have introduced the (double) bracket integral 

of two tensors a. and k. Fran Equation 3.11 we establish 

the general force-flux relationships 

+ ?.«a o . s ' " ' } } - n T u , / f , y  fffw 

Ï Ï -  =  - JLT Ï Ï f f  VT  .  f { 4 ,  | ] }  +  S :  { {  Q ,  I } ]  

Sn ]  

(3.13) 

TT = -AT[(̂ / 7T. -t- S : {{i, P}} 

+ v.u {£d, p}} - n Z //%)' îfi"^ , P}jJ 

q '  =  - X T  ( 2 J L 7 f ^  C  I T ) ' ^  £ T  '  U & ,  ^  • * ( { | , ^ ] }  
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+  2 - ! I Î { P > 6 ] ]  - n  f A ] 3 J .  

The fluxes are ail polar quantities from which it 

follows that they are eigenf unctions of the parity operator 

P with the properties 

PIM  - - I* j f J = & 

(3.19) 

P Q' = - g' I  P TT - IT .  

In reference (29) it was shown that f r = r̂ f , where 

T is the total time-reversal operator and the symbol t in

dicates the transpose conjugate of the operator. It is 

readily verified that ê = -©^ is antisymmetric, where© is 

a function of the magnetic or the electric field. If we 

consider the total time-reversal operator,T, to be the 

product , where and operate only on the 

momentum and external field variables, respectively, then 

T„ 0 = t and © = + ©t̂  (upper sign for magnetic field, 

lower sign for electric field). Thus T© = &̂ T and hence 

f_A=-A^T . 

At this point we diverge a moment to prove a useful 

operator property. For siitç)licity, consider a general 

function of two variables, y ) , and an operator 6. 

If à operates on the integral of FCx, y) over the entire 

space spanned by x, we can write 
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O / J x  F C x . y )  =  j  J x  O y  f ^ C x . y )  (3.20) 

where Oy indicates that ô operates only on the variable y. 

Since the integral is over the entire space spanned by x, 

we can replace x with to obtain 

O/J* F U ^ y \  -  f  J  (  0 ^ '  x )  6y y) , (3.21) 

when we have assumed that the Jacobian of the variable 

change is unity. Now, changing oj' x to x changes x 

to 0; X , so 

O j J x  F ( X j y }  • =  f J x  b y  (̂0, Xj/) = /jjf y F ( . X j  y )  , (3.22) 

where now 0%̂  y operates on both x and y . Thus operating on 

the integral which is a function only of y is equivalent to 

operating on all the variables in the integrand. 
A 

Since T is its own inverse, we can write the bracket 

integrals in the form 

= (g-, (b)). (3.23) 

I f a n d  a r e  a s s u m e d  t o  b e  e i g e n f u n c t i o n s  o f  T  

with eigenvalues and , respectively, and if we write 
A 

T in its component product form, then 
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Using the operator property of Equation 3.22, we can write 

Equation 3.24 as 

bll = (3.25) 

T5ie operator T„ is a function only of the variables of in

tegration, and so by integrating by parts and using the 

fact that f_Â =_̂ f we have 

i) b ). (3.26) 

Performing the T operation and transposing the indices, we 

finally obtain the result 

(3.27) 

Here a. and b are tensors which may contain a field de

pendence and the superscript r indicates bulk transposition 

of the two sets of indices associated with 3. and Jb. 

The expressions for the fluxes as given in Equation 

3.18 together with the parity relations (Equation 3.19) 

and the integral theorem (Equation 3.27) lead immediately 

to the Onsager-Casimir relationships which may be summarized 

as follows : 

(i) Each of 1£4,î"'5]S3\ 

Uî"',l'"n= tes»', Î"'3î , and iîe,̂  ?J 
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can be expressed in the form 

where is an odd function of T for 7 = v 

and is identically zero for f=i . Here £ 

is a unit vector in the direction of the field 

and is the rank 2. unit tensor in 3-

dimensional space. 

(ii) The integrals and 

d}] - - Pj are zero for - H 

and proportional to X for ? Ç . 

(iii) In the case of J = 2^ the integrals j ill 

and f£ |}] * f{| ̂ 3 3 ̂  are zero. How

ever, with J-? / and 

- Ct I, are of the form 

where f' and are the two third rank tensors 

which are odd in the field and traceless and 

symmetric on their last pair of indices, 

(iv) ClPj§3} ={Cfj P}} is proportional to 

(v) can be expressed as a combination of 

the five linearly independent fourth rank 

tensors which are traceless and symmetric in 

their first and last pair of indices. In the 
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case that f = £ , the coefficients of two of 

these tensors (those odd in the field) vanish. 

The independent tensors for each of the above cases are 

determined by methods described in Chapter 5. As a further 

consequence of the integral theorem (Equation 3.27) we note 

that the rate of entropy production, which is 

(A, is the Boltzmann constant) in the linear approximation, 

satisfies the relationship = f . 

The flux vectors of Equation 3.18 can now be written 

as 

~ -£-«<0 * ? ̂T) ~ t ̂  ) 

o 
F = - a. g e S 

(3.28) 

2 'it 

The used in Equation 3.28 can be defined either in 

terms of the form of Equation 3.15 or Equation 3.17 as 

- 2 A. T * / J / f i w 

I 
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= - ̂  Sf (3.29) 

H i ,  i l l  ; ^k=AT{£D,P}} 

-Q-oo = 

= f /»:̂  2k^T^ ! i \  £* - :̂  - £* } 

l̂ io - ^-Q-ou - ^ -Q-'i-fi i -?(8'< " ̂  • 

In the field-free case all of the force-flux coupling 

coefficients must be isotropic tensors and thus we find 

that 

TT =• - 2-»̂  S 

TT = -1ZL J-W. 

(3.30) 

= -O-w " T ̂  

where now 

•"•J. 



40 

In the standard treatment of the kinetic theory of 

mixtures (17) the final term in Equation 3.11 is written 

as n ̂  with the conditions - o (to account 

for the linear dependence of the forces ĵ ). The coef

ficients of oĵ  in this convention are related to our pre

vious choice of coefficients toy the expressions 

el"=sl% -.eV/u 

(3.32) 

Using this form of leads to the following expressions 

for Joe and g' in the field free case: 

f DJ/ r; 2 T 

§' = -p Z ( //^) - A'vr 

where 

(3.33) 

dI » (2LTJ3) r«lf / «// w, ' 4̂ 0) (3.34) 
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A' = ( 2 Z fi'o) L f L*Ci) - ̂  - Êf ] w,'4*(0. 

From Equations 3.11, 3.15, 3.32, and 3.34 we then have 

 ̂ ' ~tt ) (3.35) 

or conversely, 

n'-T/p /»̂ ) [- + z 

and (3.36) 

•o-Uo » TpJ : -n.;, - T̂ A' 

which establishes the relationships between the transport 

coefficients in the two treatments. 
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CHAPTER 4. SOLUTION OF OHE KINETIC EQUATIONS 

Since our ultimate concern is with a con̂ arison of 

theory and experimental thermal diffusion, thermal con

ductivity, and diffusion data, we need only determine the 

coefficients and . To this end we follow the usual 

procedure of converting the appropriate integral equations 

into matrix forms by expanding the unknown functions in a 

complete set of functions which are dependent upon the 

momentum variables of single molecules. We take these 

variables to be the reduced linear momentum w = ù 

and the reduced angular momentum̂ . The tth component of 

the reduced angular momentum in the principal axis frame is 

, where Lj and I; are the ith component of 

rotational angular momentum and the ith principal moment of 

inertia, respectively. 

The functions and can be e3q>ressed in terms of 

a complete set of expansion functions as 

a. 

and (4.1) 

# »  - ?  — ^  ^  - Î  •  •  « 2  ^  ^  T  —  — •• '• ma M  ^3 ItJÏ T ^ WiiXUii WO& cut • 

Here denotes a Sonine polynomial (17), £ denotes 
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the highest weight irreducible part of the polyad formed 

from y X 's (these are discussed in detail in Chapter 6), 

and the coefficients and are tensors of 

rank p+g+i. The symbol 0̂ ** indicates a (p + ;)-fold scalar 

product of the two tensors between which it is placed and 

r indicates the number of rotational degrees of freedcxn of 

the molecules. The functions and are themselves 

the e(th components of the "composition" vectors 4 and . 

We can thus write Equation 4.1 in the more general form 

f i s t  -

and (4.2) 

Pfst 

where ̂  g basis vector in the composition space 

and is defined by 

f,'"'"' • s (4-3) 

The series expansion of Equation 4.1 is convenient due 

to the orthogonality properties of the Sonine polynomials 

and of the Cartesian tensors. Thus under the integrations 

of the form required in the calculation of the fluxes in 

^ ik j ^ -X— ^ 4" f ^ C H 1 <0 

tensorial forms 
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y Y  
 ̂ (4.4) 

4̂ = C/'/ïrf/nm̂ ) (A.T/inv)'̂  Âoaéc} ~ $ fC,oo*)1 

where only a few tensor coefficients e2q)licitly contribute. 

The effect of an external field on these transport co

efficients is given by property (i) of the Onsager-Casimer 

relationships in Chapter 3. If we represent the direction 

of the external field by JL/ then each tensor coefficient 

must be of the form 

£cr )  = i.X/(£'•') (4-5) 

where i(y) represents or for pjst , 

/o/o# or 1001 . If, for example, we consider the thermal con

ductivity X'(.7) , then the thermal conductive contribution 

to the heat flux is 

X ' -7T  = ^'i|A.+ ^j^(2r-Â,'7TX)-Atr A X 2 T . (4.6) 

The subscript labels ii , _L, and tr can be seen to emphasize 

the roles the coefficients play in transport parallel to 

the field, perpendicular to the field but in the direction 

of the thermal gradient, and perpendicular to both the field 

and thermal gradient (transverse in the sense of the Hall 
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effect). 

In the absence of external fields the tensors 
(g) 

and ^̂ st transform according to the totally sym

metric representation of the three-dimensional rotation 

group. Therefore, as the field strength shrinks to zero 

the only coefficients which do not vanish identically will 

be those which reduce to isotropic tensors (see Chapter 6). 

In this limit each of the pairs of indices s,t and 

such that p or yield a single term with a scalar 

valued expansion coefficient. These restrictions arise 

since the direct products such as C contain 

the vector representation once and only once if p and 

 ̂are so related (see Chapter 5). When the external fields 
( /s) 

are present the tensor coefficients and 

transform only according to the totally symmetric repre

sentation of the group of rotations about the direction 

of the field and hence are not isotropic. The direct 

products of the form can now in general 

contain the vector representation more than once, although 

not all of these will necessarily remain after the con

traction of .the p*<j, indices. These field considerations 

greatly expand the dimension of the matrix form of the 

integral equations, with an associated increase in algebraic 

conrolexity. 

To illustrate these principles we choose five functions 
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of the expansion in Equation 4.1: 

= %Lf ̂  3 (4.7) 

where the superscripts /, i, 3 , H , and S are shorthand nota

tion which correspond to the index sets p^st - tooo , loio , 

tool , ixûô , and iioo, respectively. These particular func

tions are of interest because they form the truncated basis 

set which we will ultimately use in our calculations. The 

trial functions and are formed from linear com

binations of these basis elements with tensor coefficients 

of rank p + ; + ;, that is, rank a for * rank 

V for , and rank 3 for . 

In the field-free case each of these terms in the 

trial functions contain the vector representation once. 

Thus we can write the trial solutions iti the forms 

= and Ç «lîo . where and 
w ^̂ li) are scalar coefficients and the five vector trial 

functions corresponding to Equation 4.7 are 

(4.8) 

%
 ̂

 

II
 

fi" V 

./ LS) ; 
>H3) 
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The transport coefficients could be computed using these 

trial functions. However, this is not necessary since Equa

tion 4.5 gives the field-free result when the tensor coef

ficients and are isotropic. That is 

ôru ,  =  S . ; ,  

and (4.9) 

The explicit expressions for the field-free transport co

efficients are 

f  
='''TZ L-s - a 

dJ - = A.T 
(4.10) 

~ ( ̂ /n ) ( A.T'/anî )̂  Û. , 

It is convenient to characterize the tensor 

by the value = which it assumes 

in the absence of the external field, and by the field 

distortion 

= U (4.11) 

Thus we associate with each of the tensor /y four transport 
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coefficients ru ' ̂̂ rx' and̂ X,̂ .̂ 

To calculate these transport coefficients, we express 

the integral equations in a matrix representation. From 

Equations 3.12, 4.2 and 4.3, we write 

( d )  
&. ~ ̂  ̂  "0 (4.12) 

where Q represents A or and where 

' s u i f  

and (4.13) 

Here, as in Equation 4.7, for notational sinç>licity we use 

a single index to represent the set of indices ffst. Prom 

this definition of and by following a sequence of 

steps similar to those in the proof of Equation 3.27, we 

have 

t,. (4.14) 

and thus we say that the matrix representation -A is self-

adjoint in the sense that . This transposed, time-

reversal definition of self-adjoint is similar to the usual 

transposed, ccmplex conjugate definition. 
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As previously discussed, the presence of an external 

field expands the number of independent scalar coefficients 

which must be included in the solution vector . To de

termine the number of these independent scalar coefficients 

for each tensor coefficient, we find the number of irre

ducible bases contained in the direct product representa

tion. Since each of these irreducible bases will contain 

one and only one element which is invariant to rotations 

about the field direction, the number of independent co

efficients is equal to the number of irreducible bases (see 

Chapter 6 for a more coinplete discussion). As an example, 

consider * which is a 4th rank tensor which is 

traceless and symmetric on its first two indices. It is, 

therefore, a direct product of a weight 2 and two weight 1 

irreducible representation bases and thus contains one 

weight 4, two weight 3, and three weight 2, two weight 1, 

and one weight 0 irreducible representation bases. There 

are a total of nine irreducible representation bases and 

therefore nine independent scalar coefficients in ) • 

Similarly, we find are the 

direct product of two weight 1 irreducible representation 

bases and hence contain three independent scalar coeffi

cients. The coefficient  ̂̂oo) is the direct product of 

three weight 1 irreducible representation bases and conciliai» 

seven independent scalar coefficients. As previously 

! 
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discussed, in the absence of external fields, each tensor 

coefficient has only one independent scalar coefficient. 

To illustrate the form of these matrix equations, we 

consider the field-free case for binary mixtures of species 

«t and /8. In keeping with the notation of Equations 4.7-4.9, 

we can write the column vectors of Equation 4,12 in the 

partitioned form 

S-^ 

ë f  

er'\ 

i> 

4 -A 4 

where each of the vectors in the function space are 

= riv ' r  " >  

'7 
3«-
Z 

O 

o 

1 

% 

O 

0 

0 

Ù 

A ̂ = 

J ly 

°-ro) 

*-*(.3) 

: 1 

(4) 
jrilJ 
(0) 

(») 
M 3) 

(a) 

L F  
• i L6 )  

\ •: 

(4.15) 
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Only the coefficients corresponding to Equation 4.7 are 

e:q)licitly displayed. 

The matrix -A has the partitioned structiire 

-A = 

-̂ •c< 

-Ap(S 

(4.16) 

where each of the explicitly displayed elements is a matrix 

element in the two species composition space. These compo

sition elements are themselves matrices of elements in the 

function space defined by the expansion in the corrplete set 

of functions of Equation 4.1, and frcxti Eqpiation 3.5 can be 

written explicitly as 

(4.17) 

and 

= (n^n^y' aa/y'aO 

with Yj S = ci or fi and Ke I or 2,. 

The matrix equations A and = _Jv 

as given have indeterminant solutions. This arises frcsn 

(4.18) 
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the fact that ̂  must be arbitrary to within a linear com

bination of the summational invariants/ which are the 

solutions to the hcanogeneous equations. This singularity 

is removed through the use of the auxiliary conditions of 
t k )  

Equation 3.2 (in particular, E/J I -T̂  C t )  =  o  ). Making 

use of these conditions, we find unique solutions for the 
If i) 

coefficients and . 
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ŒAPTER 5. REDUCTION OF THE KINETIC EQUATIONS 

THROUGH PERTURBATION THEORY 

Previous attonpts (21-23) to explain thermal diffusion 

in isotopic polyatomic mixtures in terms of a simple phys

ical model are inadequate due to the importance of the con

tributions of the internal degrees of freedcan to the effect 

itself. Since the present work allows the inclusion of 

these internal degrees of freedom into the collision model, 

physical insights into the phenomena of the thermal dif

fusive process may be gained from an analysis of the effects 

of the potential and kinematic parameters on the kinetic 

equations. 

The matrix equations which arise in the solution of 

the kinetic equations are difficult to analyze in an in

tuitive way, since their exact solution involves matrix 

inversion of rather large matrices. Thus it is desirable 

to reduce these expressions to an analytic form through 

the use of perturbation techniques. 

Given a set of linear inhomogeneous equations in 

matrix form 

y = T c (5.1) 

where J" is a nonsingular matrix and y is the inhomogeneity. 
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C = J--'y. (5.2) 

For our kinetic equations, T represents the collision 

integral matrix-A defined in Equation 4.13 modified by the 

subsidiary condition of Equation 3.9 to remove the singu

larity. If J" is assumed to consist entirely of pieces which 

are zero and first order in the perturbation, that is, 

3" = + é J",, then the solution vector may be written in the 

form 

c =  £ . ( 5 . 3 )  

The perturbation solution then is Çt'û: where 

Co = J"/' y 

= (5.4) 

4 

and where the subscript indicates the order of the perturba

tion. 

The inhomogeneities of the last chapter are a function 
I 
of macroscopic variables and the number of degrees of free

dom (Equations 4.13 and 4.15) and therefore it is convenient 

to take than to be entirely of zeroth order. To obtain the 
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corresponding solutions then requires a consistent def

inition of the zeroth and first order parts of the matrix, 

T. TO this end we define a matrix transformation which 

will nearly block diagonalize the collision integral matrix 

-A in a physically meaningful way. The zeroth order matrix 

will then be determined by the diagonal blocks. 

We are concerned with the thermal diffusion of 

isotopic mixtures, so it seems reasonable to formulate the 

perturbation expansion in terms of kinematic parameters 

(that is, parameters relevant to molecular free-flight such 

as the total molecular mass and internal mass distribution) 

about what is effectively an average molecule. 

Since thermal diffusion is a flux of mass due to a 

temperature gradient, we propose that the transformation 

should block diagonalize the collision integral matrix in 

such a way that the diagonal blocks can be interpreted as 

the thermal conductivity and self-diffusion integrals in 

an average molecule limit. The off-diagonal blocks then 

become the isotopic perturbations. 

As a conĉ tual aid in the discussion which follows it 

is convenient to write the linear kinetic equations in the 

form of Equation 3.3 rather than the separated form of 

Equation 3.12 which utilizes the independence of the gen

eralized forces. If we consider the set cf diffusion force 

vectors, , and the thermal gradient, yr, to be the only 
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sources of distortions from equilibrium contained in 

(Equation 3.11), then the inhomogeneity in Equation 3.9 is 

a linear ccmbination of only these force vectors. For the 

//th species. 

#..= n - ̂Su 
S M - "jt 

T 

O 

o 

k 

o 

o 

o 

Ô 

(5.5) 

where the «th species has been chosen as a reference for 

removing the linear dependence of the diffusion force vec

tors (see Chapter 3). Each component of the composition 

vector will contain as many elements (Which in general are 

tensors) as there are terms in the expansion set of Equa

tion 4.1 and the general inhomogeneity composition vector 

is of the form 

£) = ér (5.6) 
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for an A/-coirrponent mixture. 

We now define the transformation 

Jlx 

 ̂T "•«) 
-é ̂  

(5.7) 

where JL represents a rotation matrix of the composition 

vector d. The matrix operation XQ then serves to effect 

a separation of the independent force vectors in the form 

U 
T 

(5.8) 

^ - M 

That is, the inhomogeneity separates into parts correspond

ing to the temperature gradient for the mixture and the in

dependent diffusion forces. 

Having chosen S in this manner, we now wish to define a 

con̂ sition transformation matrix P such that the combina

tion ZJkP'* yields the self-adjoint (in the sense of Equa

tion 4.14) form 
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• At t  -A 

- ^ 1  

TDj 

p, p/ 
(5.9) 

Here -Â r contains thermal conductivity type integrals, 

contains self-diffusion type integrals for the Atth 

species, and and type matrices contain the 

isotopic perturbation integrals. Since-A is itself self-

adjoint and has the structural form 

-A = 

-Aifi -A^ y 

-A^y 

_A,̂  
(5.10) 

Choosing yields the self-adjoint matrix product 

ÀJilJ'. The total transformation can then be written in the 

form 

A3 = 

Since we have chosen f'- 4̂ " , we have also that 

= (4")^ . From Equation 5,7 and the distortion ̂  of 

(5.11) 
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P $ = 

f I f}),. 

A Y 
f ;f i/KÇ' '* 

¥ I i 
(5.12) 

If we now use Equation 3.13 to express the mass and heat 

flux vectors of Equation 3.17 as 

and (5.13) 

*. w , 
M 

where are again Sonine polynomials ̂ the direct cor

respondence of to the independent flux vectors is seen 

from 

§' = AT (aAT)'̂ fJw e. w f- (*-*)] 

and (5.14) 

= iSTf/J„ Us-(fi\ K 

Note that we have chosen ̂  as the reference vector to re-

mr\%'r^ •h'Ko 1 4 noar* r t o  n  /  T" r ^ A 
^-•n -

Lastly, we note that the first row and first column 
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of ̂J\ f"' are identically zero. That is, the first row of 

' -̂ rô  ' ••• the first column of 

_Ap ... are zero. We choose to remove this singularity 

by arbitrarily setting the 1,1 element of-Â r egual to one, 

and then replacing the first element of the <*.th conposition 

vector with the relationship between the expansion coef

ficients derived from the subsidiary conditions in Equation 

3.2, 

Finally, we emphasize that f' becomes a block diagonal 

matrix in the limit of the average molecule. 

We now wish to apply these general perturbation tech

niques to binary systems. In this case, the matrices as

sume the forms 

-A -

~A pf (5.16) 

'à ~ 
/* 

and 
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e = 
^ 1 

- r.f. U f a  

(5.17) 

Here and in all other matrix equations in this section, 

each of the explicitly displayed elanents is a matrix ele

ment in the two species composition space. We again em

phasize that these composition elements are themselves 

matrices of elements in the function space defined by the 

e:q)ansion in the complete set of functions of Equation 4.1. 

The transformed Equation 5.11 is now of the form 

(5.18) 

and since the generalized forces ̂  and (̂  " •̂  ) are inde-

pendent, this is equivalent to the two matrix equations 

and 

0 
! 

'TT 

'or 

TO 

'BP 

(5.19) 

0 ~̂ TT -̂ TO 

-̂ OT DP 

Here the subscripts T and 0 on ̂ , s > and Jp indicate that 
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these transformed vectors take on forms that we associate 

with thermal conductivity and self-diffusion, respectively. 

Furthermore represents single species thermal conductiv

ity type integrals, -App the single species self-diffusion 

type integrals, and and the i so topic perturbation 

integrals. Defining the thermal conductivity and the self-

diffusion integrals to be the zeroth order elanents in 

the isotopic perturbation parameter £,, and the first order 

elements to be the isotopic perturbation blocks, we find 

that the solution vectors to zeroth order in 6, are: 

\ = -̂ 14 A- ; = 0 

(5.20) 

® 1 ~ -^OD • 

The first order solution vectors are: 

'AJ- '  0 

~ TT 

I . (5.21) 
Xj. - TO PO 

'f, - . 

Here the order of the perturbation is denoted by a super

script to the left of the symbol for the solution vector. 

From Equations 4.4 and 4.10 it is seen that the 
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coefficient of interest for thermal diffusion is • 

The method of ramoving the singularity of J\ with the sub

sidiary condition of Equation 5.15 requires that 

is identically zero to all orders of the perturbation, and 

thus we see frcan Equation 5.20 that the lowest order nonzero 

perturbation solution vector is '/jp . It is easily shown 

that '/}p (and in fact all even order perturbations of A, ) 

is zero. Hence it is likely that 'â  is an adequate ap

proximation to Ap, (This is confirmed by calculations in 

Chapter 8.) 

The expression for 'A g is a matrix product so further 

simplification is desirable. It is possible to perform yet 

another perturbation e3q>ansion on each of the blocks con

tained in the transformed collision integral matrices, 

P'', The rationale for this further perturbation expan

sion is that there is a dominant elastic contribution to 

the molecular scattering cross sections. We can in principle 

construct a spherical collision operator from these elastic 

cross sections, or equivalently, from the corresponding 

transition rates. This spherical collision operator, of 

course, does not affect the molecular angular momentum part 

of the expansion set terms and hence in the spherical col

lision integral matrix, all collision integrals correspond

ing to the coupling of terms which are or diffêféuL tensor 

rank in the angular momentum are zero. That is, the 



64 

spherical collision integral matrices are diagonal with 

respect to the angular mcanentum. 

For the true collision operator, these off-diagonal 

elenents are nonzero but small in coiiparison to the dominant 

diagonal elements. This suggests we can formulate a per

turbation about the spherical limit or alternatively, we 

can take the total diagonal blocks to be the zeroth order 

matrix. To simplify the expansion we choose the latter 

alternative. For example, the zeroth order matrix of 

in our "nonsphericity" perturbation contains the exact 

diagonal elements 

-^A80l) 0 û 

-ÛA8(ai> "2:» S tas) 0 0 

-̂ «10 (3a) -0 A 8(3 3) 0 0 

0 0 0 o 

^ -ÙAfLSS) 

(5.22) 

where A and 0 are either T or D. This is in general an 

infinite matrix corresponding to the complete set of func

tions in Equation 4.1 but only elements contained in Equa

tion 4.7 are explicitly displayed with corresponding sub

scripts. The first order perturbation nonsphericity matrices 

contain all the clensnts not included in zeroth order. 

Marking the nonsphericity perturbation expansion by 
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we can write 

i-Xc \r 'A'; + CÎA;; iAp/jv;; +%;, iA,. tA;'^ 

h-^vo -J^oo -^po -^oo -^ov or -^tt 
(5.23) 

+ Vp'p -Xo Xr'-̂ rr  ̂rr ̂ "t t  rr Xr 

Our choice of the zeroth order matrices causes the first 

order contribution in é̂ to go to zero. This behavior is 

particularly useful if we wish to analyze the specific 

pieces of the thermal diffusion in terms of single species 

thermal conductivity and self-diffusion, as is illustrated 

in the following equations. 

If we again display eaqplicitly only those basis func

tions which appear in Equation 4.7 and emphasize that the 

form will hold for the general expansion of Equation 4.1, 

the matrices to zero order which appear in Equation 5.23 

are 

0  o  . . .  

g ® J o . . 
-A.. = ' 

:  • • •  I  
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and 

!A or 

(5.24) 

O 

lo 

-^DTLHti a 

O 

O 

LH) 

where the subscript A represents T or D and correspondingly 

4, r̂ resents or . Here , and 6, are the 3x3 

zero order matrices of the diffusion, thermal conductivity, 

and isotopic perturbation. The first order matrices in 

are given by 

and 

!a AA 

6. Ji • tt) a) 

W) 
^  . . .  

tf*) I 
(f) 

(5.25) 

JV pr 

-̂ OT< i.y) 
(v) 

, , c(») . 
€»-*pr(rp à 

6» -̂ prfva) = 

O 

(a) 
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where again A is either o or T and where J)̂ (y)and rep

resent the 1x3 matrices of the thermal conductivity 

integrals (t and y =/, 2, or3), |(4.r*) g tensor of 

rank IL-t-l) which is the matrix elanent of two basis set 

terms of rank A. and i, respectively, and 0 in̂ lies a 3 x 3 

null matrix. Substituting Equations 5.24 and 5.25 into 

Equation 5.23, the solution vector to zero order in 

becomes 

I'" (5.26) 

and to second order in becomes 

•a:o) - Jlrr...) I'*'"»' -Br 

= f T.-

(5.27) 

-Br 

'/Iw = 2 I""]'®' T-;s. 

Here the left, arid right superscripts label the £, and 6̂  

perturbations, respectively, and the number in parentheses 
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labels the five terms of second order in 6 3. 

The thermal conductivity and diffusion type integrals 

in Equation 5.19 are for a binary mixture of isotopic 

species. We suspect (and model calculations verify) that 

these integrals are not sensitive to isotopic changes within 

the molecules and can therefore replace these isotopic 

mixture integrals with integrals corresponding to single 

species thermal conductivity and self-diffusion, where the 

single species is defined by some average of the isotopic 

species. The isotopic perturbation blocks -Ap-r and are 

identically zero for a single species so if we perform a 
j 

nonspheyicity perturbation for single species thermal con

ductivity and self-diffusion with the same zero order ap

proximation as was assumed above, we obtain the expressions 

(5.28) 

s; i<" 

V ' /"'J''»' î"*"D,-* . 

The "bar" over the coefficient indicates that the coef

ficients are for an average molecule. If we substitute 

these expressions into Equation 5.27 we find the thermal 
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diffusion coefficients to be 

in zero order and 

= J? 

K f"'"' < 

'à! (3) = f v'-»..!.,) S""V |"T'® , 
n-i V — (5.30) 

in second order. 

The five second order terms above may be split into 

three sets according to their external field dependence. 

The coefficients (0 and **pCa) contain the magnetic field 

dependence of the single species thermal conductivity co

efficients, and 'Ip ts") contain the field dependence 

of the diffusion coefficients, and '4̂ (3) has a hybrid 

field dependence. For the mixtures we will consider our 

model calculations show that this hybrid field term is 

small and thus v.'s can vrrite the second order gffmct as 

the sum of a modified thermal conductivity contribution 
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and a modified self-diffusion contribution. It is this 

last analytic sum which provides a means to investigate 

thermal diffusion in terms of the molecular parameters. 
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CHAPTER 6. CARTESIAN TENSOR REDUCTION 

Cartesian tensors may be used to form a basis for a 

representation of the 3-dimensional rotation group. For 

examplef a 3-dimensional vector, A (which is an element of 

the vector space spanned by the usual unit vectors Î , f , 

and A), is a first rank tensor of weight 1. It forms a 

basis for a representation of the 3-dimensional rotation 

group whose elements are second rank tensors. If R is the 

usual rotation matrix, the operation g 'A serves to rotate 

A into a new vector a', that is, A'= *'8 . Performing a 

second rotation R d ' = à" is equivalent to the single rota

tion I where s"- S . This defines the group 

operation. E3q>ressed in matrix form, the vector A is a 

column matrix of three elements whereas the rotation oper

ator ̂  is a 3 X 3 matrix. The identity element for this 

representation is the symmetric tensor 

The eigenvectors of are just the unit vectors t, ?, 

and 1 with eigenvalues of 1, Of course, they are not 

unique since any linear combination of these eigenvectors 

is also an eigenvector. In a similar manner we can extend 

these ideas to higher rank tensors. For example, a second 

rank tensor is a basis for a fourth rank representation of 

the rotation group. Expressed in vector form, the second 

rank tensor is a column matrix containing nine elements and 

the fourth rank representation is a 9x9 matrix. In general. 
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the number of independent elements in a 3-dimensional tensor 

of nth rank is (3)". Thus, the dimension of the represen

tation is (3)" . 

Let us now consider the subgroup of rotation operations 

consisting of only rotations about a fixed axis, that is, 

the 2-dimensional rotation group. Any basis for a repre

sentation of the 3-dimensional rotation group is also a 

basis for the representation of the 2-dimensional group. 

However, a basis for an irreducible representation of the 

3-dimensional rotation group in general is a basis for a 

reducible representation of the 2-dimensional rotation 

group. 

The collision integrals we calculate are isotropic 

tensors, that is, tensors which are unchanged by any rota

tion operation. Likewise, the expansion coefficients of 

Equation 4.1 in field-free space are isotropic tensors. 

These isotropic tensors form a basis for the totally sym

metric representation of the rotation group. In the 

presence of an external field, the expansion coefficients 

are anisotropic in 3-dimensional space but must be 

invariant to rotations about the field. The formal cal-' 

culations of the last chapter are greatly facilitated 

through the consideration of some general group theo

retical principle?r 

From group theory we know that for the 3-dimensional 
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rotation group the direct product of the bases of two ir

reducible representations of rank p and respectively, 

forms a basis of rank fp + %,) îch is in general reducible. 

It can be resolved into irreducible bases of weights 

+  I p - f l  . For a weight i  ir

reducible basis there are (si-hi) independent elements. 

The quantity dii-t) is thus the dimension of the irreduc

ible basis. Since Cartesian tensors provide bases for the 

representation of the rotation group, they conform to these 

general group properties. For the remainder of this chap

ter we will consider Cartesian tensors exclusively. 

There is, of course, an identity element for the 

direct product representation as well as identity elements 

for each of the irreducible representations it contains. 

Here n is the rank of the direct product basis and 

A = Z . The identity elements are isotropic 

tensors of rank an and since they belong to different ir

reducible representations are orthogonal to each other, 

that is, 

i;."V r;-'. I»'. (6.1) 

Thus, they act as projection operators in that they will 

proj ect out of any given tensor in the direct product basis 
I 

the part of that tensor which lies in the irreducible 

representation corresponding to the identity element. 
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The perturbation expressions for the thermal diffusion 

coefficients in Equation 5.27 and 5.30 require that we cal

culate the inverse of the diagonal matrix elanents. If we 

for simplicity, first consider the field-free case, these 

diagonal elements will be a linear combination of collision 

integrals of the form given in Equation 4.13 and thus can 

be expressed as an isotropic tensor . Here the rank of 

is where n is the rank of the associated basis 

function that is, n = )̂ . By the inverse of 

we imply 

(6.2) 

We generate the inverse of by first projecting 

onto the identity element, , of the ith irreducible 

representation contained in the direct product basis. This 

operation gives back the identity element times a scalar 

coefficient namely 

T<">0" r;-'= rr\ (6.3) 

Thus projecting onto transforms the general 

isotropic tensor into a linear combination of identity 

elements of the irreducible representations, that is. 

jc.) , Ç ir' = ? (6.4) 
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The inverse of T*"' is easily found from Equations 6.1 and 

6.4 to be 

= xi; jr'- (6.5) 

Therefore, the problem of finding the inverse of our 

diagonal matrix.elements has been reduced to finding the 

identity elements of the irreducible representations of the 

3-dimensional rotation group. 

An alternate procedure also exists for calculating the 

inverse of by assuming a preferred direction. Since 

is invariant to any rotation, it is also invariant to 

rotations about the preferred direction. The identity 

element for the direct product representation can then be 

deccmposed into a sum of identity elements for the irre

ducible representations of the 2-dimensional rotation group 

just as explained above for the 3-dimensional rotation group. 

Again, projecting onto any of these identity elements 

will project out of that part of which lies in 

the irreducible representation corresponding to that 

identity element. Thus using the 2-dimensional identity 

elements gives the inverse in a form similar to Equation 

6.5. 

The irreducible representations for the 2-dimensional 

rotation group are all one dimensional. Thus, the direct 
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product representation formed frcan the direct product of 

two Cartesian tensors of weight p and ̂  will contain 

irreducible one dimensional representations 

of the 2-dimensional rotation group. In contrast, the 

direct product will contain ipi-i (where irreducible 

representations of the 3-dimensional rotation group. 

The identity element for the highest weight irreduc

ible representation of the 3-dimensional rotation group 

formed from any direct product basis is denoted by ̂  

where n is the rank of the direct product. The tensor 

f is of rank an and is traceless and symmetric on its 

first n and last n indices. If we denote the orthogonal 

eigenvectors of by the symbol where n is the 

tensorial rank and m, -nrwsn, labels the independent 

eigenvectors/ then 

- 2 (6.6) 
- rn- -n 

where t denotes the transpose conjugate. If we choose 

these eigenvectors such that the direct products 

are the identity elonents for the one-dimensional irreduc

ible representations for the 2-dimensional rotation group 

contained in i , then they form a unique set. We now 

wish to determine this particular set of eigenvectors. 

[ 
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Cooper and Hofâaan (32) have written the 3-dimensional 

identity elements, in terms of a sum of real tensors 

8^ (h) which are traceless and syimietric on their first 

and last n indices, as 

f"' = f (6.7) 

To make the connection with the present discussion we note 

that the quantities in) which they define are then-

selves identity elements for mutually orthogonal represen

tations of the group of rotations about the preferred 

direction in space. The tensor is the identity 

element for the Irreducible totally symmetric, one-dimen

sional representation of the 2-dimensional rotation group 

whereas (n") , m>o, is the identity element for a two-

dimensional reducible representation of the 2-dimensional 

rotation group. They further define a group of tensors 

by 

m s IÎ, = i I glfcn) , (6-8) 

where Z denotes the sum of the terms obtained by crossing 

£ into each of the n right (or left) hand indices of 

. It is shown in reference (32) that these defini

tions give the toiiowing multiplication relationships s 
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=-|m*"̂ «) fmm' (6'9) 

«z»)©" 0̂ !̂ %) = fmm.' . 

(m) 
We now construct a set of tensors 4 ̂ as 

-  i .  [  

i  -  A - ( 6 . 1 0 )  

where X is the usual imaginary unit, that is, /̂  = -f . 

From the orthogonality relationships of Equation 6.9, we 

have immediately that 

(M ini (M) 
Q ± m ® 9t»' " ̂  ± m ^1. 

glm »" g;l = 0 • 

(6.11) 

From Equations 6.10 and 6.11 we conclude that the set of 

g-nema n, contains (an-n) orthogonal elements labeled 

by m, each of tensor rank am and contained entirely in the 

irreducible representation formed from the direct product 

basis of weight n . Thus each is necessarily an 

identity element of an irreducible one-dimensional 
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representation of the 2-dimensional rotation group and we 

have 

I"" - Z a 
In) (6.12) 

m 

which also follows directly from Equations 6.7 and 6.10. 

From Equation 6.11 and 6.12 we make the correlation 

irt) /* " y» T (6.13) 

It follows immediately from Equation 6.7 and 6.9 that 

* the eigenvector corresponding to - 8%"̂ , is 

(6.14) 

where (1)" denotes a polyad of n A's/ that is, X.X-- X.-

The tensor X̂ ln) is obviously an eigenvector of both 

and 1"̂ "̂  with eigenvalue of 1. 

To generate the explicit expressions for the remaining 

one-dimensional eigenvectors x̂ Ln), we construct the fol

lowing operator formalism. Let us define the Cartesian 

operators and H by 

ê i '  = ->• £'"̂ 21 - - J u Z  r »  (n) 

=  -X  Z  f  =  ' j L  1  jmy  C )  
(6.15) 
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-  ' j i  Z  t  *  - Â  z  w  C n )  )  

where as in Equation 6.8, the symbol Z indicates the sum 

of terms obtained by crossing i (or Î or f) into each of 

the n right hand indices of £ and now the subscript x , 

y, or * corresponds to crossing Î, or respectively. 

The unit vectors Î i $, and Z are assimed to form a right-

handed coordinate systen. We can also define the operators 

and (6.16) 

If we now define the comnutator bracket in general as 

h',1 s 

and consider explicitly the ccanmutation of and Wy"' / 

we have 

= - (ti ^ . 2{) 

(6.18) 

-  -  t ) .  

In the Appendix we show in detail that this crossing operation 

leads to the commutation relationship 



81 

(6.19) 

In a similar manner, we find that 

r=r' sn = - i ' "  

csr. iri - ir 

L i r . s r i - i ' : '  

Ck', = -51-' 

rs;-', «.'"'J = 2|V'• 

If we now define 

-- H^vsr»- 5r®"i')r"' <• jr®"ir (6.21) 

then it follows immediately that for r = x , y , or z, 

r  "  • .  - 0  
m ^ ^ s — — 

r(A'"r,|"']--o ; [(«"")% gr]'" (6.22) 

rf )', ' 0. 

It is of some interest to note the direct corre

spondence of the Cartesian tensors to the more familiar 

spherical case. The eigenvectors, X̂ cn) , are analogous 
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to the spherical harmonics and the H operators are analogous 

to the angular momentum operator, J. 

From the commutation relationships in Equation 6.22, 

it is evident that and can have a 

set of simultaneous eigenvectors which we denote by Xm (''J, 

where again labels the independent eigenvectors of tensor 

rank n. The following arguments show that in fact the 

choice of this set of eigenvectors is unique. 

It follows immediately from the definitions of c o ) 

in Equation 6.14 and Wg"* in Equation 6.16 that Xot*») must 

be an eigenvector of H,"' with an eigenvalue of zero. That 

is# 

Xot»») = Co ) Xod«). 

As in the more familiar case of the angular momentum we can 

show from Equations 6.16 and 6.21 that and h'-' are 

the raising and lowering operations with the properties 

®  X p n C f » )  •  Y e n - m )  C  n - h m  i - i )  X p , 4 , ( n )  

and (6.23) 

hJ"^ (*») = î(r) +m)(n-m+-0' L n )  

where are eigenvectors of H 3"̂  obeying the eigenvalue 

equation 
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, - n g M 3 n . (6.24) 

All of the I x n i - i )  one-dimensional eigenvectors of 

generated in this manner span the space of the irreducible 

representation containing the identity element Fur

thermore, since the eigenvectors for each of the fan + i) 

one-dimensional projection operators Q are unique and 

and commute, it follows that the eigenvectors of 
AtHi 
"a are identical to the eigenvectors of the one-dimensional 

projection operators. Hence, determining the ân+0 eigen

vectors of by means of Equation 5.23 provides a method 

for finding all of the desired eigenvectors . We show 

in the Appendix that is given by 

= n(n+,) (6.25) 

Thus it is easily established that the vectors /*(*) are 

also eigenvectors of with eigenvalues ncn + 0 . 

To this point we have generated only those eigenvectors 

which belong to the highest weight (n» p+j) irreducible 

representation formed from a direct product basis of two 

irreducible representation bases of weight p and re

spectively. However, the close correspondence of the 

theories for the Cartesian and spherical harmonic bases 

suggests that by appropriate formulation of the direct 

product operations for Cartesian tensors we can obtain a 
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direct correlation to the more familiar problem of the 

addition of angular momenta. This correspondence will 

allow us to express the eigenvectors of the lower weight 

irreducible representations of any direct product in terms 

of the eigenvectors of the direct product bases through 

the use of Clebsch-Gordon coefficients. We now outline 

this formulation. 

Let us consider a tensor of rank which is 

symmetric and its first and last ̂  indices, imbedded in a 

tensor of rank ip which is symmetric on its first and 

last p indices, vAiere the indices are ordered as in the 

direct product C . The resulting 

tensor which is of rank aiptj) we denote by 6̂ *̂ . Then 
A 

the H operators for the direct product representation may 

be defined as 

(6.26) 

where s is either x, y, or g. As shown in the Appendix, we 

have also that 

, (6.27) 

With these definitions all the commutation relations listed 

product operators, . The operators of the 
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preceding discussion are simply that part of  ̂''*̂ în the 

highest weight irreducible representation of the direct 

product. That is, 

H/"" ' I"-»' e"» i"*«' . (6.28) 

Furthermore, the i) simultaneous eigenvectors of 

and are unique and since these operators 

commute with the iâ +/)cafn-0 identity elements of the 

irreducible representations of the 2-dimensional rotation 

group contained in the direct product, the eigenvectors 

must in fact be identical to the desired basis vectors of 

the direct product, which we denote by Here M 

labels the independent basis vectors of the ̂ th weight 

irreducible representation formed from the irreducible 

basis vectors of rank p and g.. 

Prom our previous discussion, the highest weight 

eigenvectors are 

+ , (6.29) 

but no such simple expression exists for the lower weight 

eigenvectors. These can, however, be expressed in terms of 

the direct products x*(f) by the use of Clebsch-

Gordon coefficients. The construction of these relations 

will not be given here in detail since the procedure is 
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exactly that of the familiar angular momentum case. We 

find that 

Xl ~  ̂̂  ̂i *** *"  ̂  ̂X,h' ̂ y) 

( W* • »K * r 

and (6.30) 

Lfp) L'(;) = Z c(p, ; M «') J 

where C(pj j, j ; rvi;»0 are the Clebsch-Gordon coefficients (33). 

The identity element for the direct product representation 

can now be written 

(6.31) 

From this equality we see that 

or (6.32) 

 ̂ A  ̂t 
. r f Y;%)C, 
f ' l r f i  M= } 

since 

M m f ' 
fA.33l 
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We may also express I in terms of the direct product 
®  r  

basis as 

î T '  ' i, U i  ^  I  Lw Î., 'f) î: % 
£m»m'rrtj ^ n f 

GCP) ;  rn^M- rx  )  c  (p^< i J  ̂  • n , ; 

ft) 

(6.34) 

where C ip,mV are the Clebsch-Gordon coefficients. 

We are now prepared to calculate the inverse of the 

diagonal elements required in Equation 5.27. From Equation 

3.3, 3.5, and 3.6 the form of these elements is seen to be 

= r"*" <• (6.35) 

where is a rank isotropic tensor which is a 

sum of collision integrals, 5" is the scalar coefficient for 

the field terms, and indicates the sum of terms obtained 

by crossing X into the last ̂  indices of . From Equa

tions 6.15, 6.24, and 6.31 we have that 

r 4- I c .  ̂f  ̂+ . 
* A Z K m  /m' «1̂  • 

(6.36) 

We can also write 

I""' = z î'""';.?,, t-i 
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If we now interchange the summation order on ̂  and n and 

then use Equation 6.30 to express in the 

basis (and for the sake of défini teness assume that p % ) ), 

then 

 ̂ (6.38) 

M--/p-JI "»/»»- n-J 

-If- i l - i  -i>f «•{ 

+ Z_ 8 (P; L 'N,(g) %% IP) X̂ . , 
M: f g ***/" = -f 

where 

JL (6.39) 
2- «<- C (pjf ̂  i C ; J n , M-n). 

#»-*• 

By combining Equations 6.36 and 6.38, we see that J\̂ ĵ.)is 

given by 

I" f** 
i<) ~ I / ^ f A 7(M-n) 

L n - I ^ T f l * !  M-; 

I f - s l  ^ 1  

+ y/ / {oCp,;, iP-jl, P + ( 3  ̂  ̂ Jwn ] 

+ r' -JSil 
1/1 il A> \ W 

n - - f - j  m , n  =  ' P  
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-vv-r'* /* fiT f -1 
1 (P) '̂ M-k ̂ ' 

From Equation 6.40 it is evident that i-s a block 

diagonal matrix where the total number of blocks is de

termined by the possible values of M and the dimension of 

the blocks is determined by the mjn summation. Thus to 

find the inverse of ̂„,(̂ v)We must find the inverse of a block 

diagonal matrix, the largest block of which is of dimension 

We note that Equations 6.38 and 5.40 have been written 

for the case where For we simply interchange the 

p and ̂  indexes in the «jn summation and replace M-n by n 

in A. (M-r») We also note that the choice of representa

tion for combining Equations 6.36 and 6.37 is arbitrary. 

We have chosen the direct product representation for sim

plicity in the performance of the index contractions which 

are required in Ec[uation 5.27. 
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CHAPTER 7. STUDY OF MODEL PARAMETERS AND COMPARISON 

WI1H EXPERIMENT, NUMERICAL RESULTS 

Our goal in the present study of thermal diffusion is 

two-fold. First we wish to utilize the sensitivity of the 

effect itself on the detailed nature in which molecules 

interact as an experimental tool to parameterize the 

molecular collision model. Secondly, we would like to gain 

insight into the nature of the physical phenomena involved 

in the thermal diffusive process. In this chapter we will 

use the full set of algebraic equations (as given explicitly 

in Equations 4.12, 4.15 and 4.16 for a binary mixture in 

field-free space) to study the intermolecular potential 

parameters and to compare our results with experiment. 

These calculations then provide the "exact" limit for the 

perturbation study of the physical phenomena in Chapter 8. 

The truncated basis set we choose for our calculations 

are those five terms which are e:}q>licitly displayed in 

Equation 4.7. There is considerable evidence (34) that 

this limited basis set yields adequate approximations for 

the transport coefficients of a single component gas. How

ever, since it is known that the distribution of angular 

momenta is of little importance for these simple gas 

transport coefficients but can have a significant effect 

upon the numerical value of the thermal diffusion coef

ficient (27), the basis set of Equation 4.7 may be 
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inadequate for a quantitative comparison of experiment and 

theory. This basis set does at least include the two lowest 

order symmetry types (functions which are odd and even in 

the angular momentian, that is, with time reversal eigen

values of +1 and -1, respectively) which can contribute to 

the anisotropy of the angular momentum distribution. Add

ing more terms to the basis set increases the nvimber of 

algebraic equations, so the inclusion of more basis func

tions is best explored in terms of the perturbation tech

niques of Chapter 5. 

In this work we compare experiment and theory for 

binary mixtures of isotopic diatomic molecules. This choice 

is occasioned by the availability of good experimental data 

(35) and the fact that these are the sinç>lest systems which 

exhibit thermal diffusion influenced by the internal struc

ture of the molecules. To account for this internal struc

ture we choose the rigid ellipsoid of revolution as our 

interaction model. Previous calculations (36) have shown 

that the detailed structure of rigid models of the same 

general shape has little effect on single species thermal 

conductivity and viscosity. We expect similar behavior for 

mixtures and for thermal diffusion and thus have chosen the 

rigid ellipsoid collision model for mathematical convenience 

XXX uux vaxcuxQuxwwp. 

The potential parameters of the rigid ellipsoid model 
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are <<r> = average cross sectional area, R = ratio of major 

to minor axis, and S = separation of the geometric center 

of the ellipsoid from the center of the bond. The macro

scopic parameters are the mole fractions and the tempera

ture. The total molecular mass and the distribution of the 

atomic masses within the diatcanic molecule are fixed by the 

relative masses of the atoms in the molecular species under 

consideration. We consider these mass differences to be 

kinematic parameters which are model independent and thus 

for present purposes need only consider the potential 

parameters and the macroscopic parameters. 

The thermal diffusion factor, oCj, which is defined as 

®̂ T " (7.1) 

is the property which we will calculate to compare with 

e:q>eriment. We begin our study by using binary mixtures 

of CO molecules to examine the effect of the potential and 

macroscopic parameters on ocj- in a field-free space. For 

binary mixtures and the truncated basis set we have chosen, 

the column matrices in Equation 4.15 contain five elements 

and the matrix in Equation 4.16 is of dimension 10x10. 

The explicit expressions for the transport coefficients 

themselves are given in Equation 4.10. We emphasize that 

from a qualitative viewpoint the results of these parameter 
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studies are independent of the species chosen. We use CO 

mixtures only for concreteness and because of our future 

interest in comparing theoretical and experimental results 

for these mixtures. 

The differential cross section for a rigid model is 

independent of the energy of the interacting molecules. 

This fact ultimately leads to a dependence for both the 

thermal diffusion, oj , and binary diffusion, £Up , coef

ficients. Therefore «tr is independent of temperature for 

the rigid ellipsoid model. We also find that is es

sentially independent of the mole fraction, x.t, and average 

cross section, <<r>, as illustrated in Tables 1 and 2, re

spectively. We note here that the perturbation expressions 

of Chapter 5 predict that is nearly independent of mole 

fraction whereas oZ should contain an x̂ X/s dependence. 

This leads to the fact that e<T is independent of mole 

fraction. 

The remaining two potential parameters, R and S, have 

a much larger effect on «r- In Table 3 we illustrate the 

effect of varying R from 1.0 to 1.3, which spans the 

realistic range of molecular shapes for diatomic molecules. 

By varying S we are in effect moving the center of mass 

within the ellipsoidal shell. These variations in S may 

^ ̂ - I I ^ «3 M f 5* 1 *1 1 Q 

within the ellipsoid while keeping the bond length fixed. 
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Two isotopes have the same value of S since the electronic 

structure is little affected by isotopic differences in 

the nuclei. The dependence of on S is shown in Table 4. 

A positive value of S implies that the bond center is dis

placed in the direction of the heaviest atom from the geo

metric center of the ellipsoid (e.g., towards in the 

molecule ̂  . 

In summary, is insensitive to ten̂ erature, mole 

fraction and cross section, but is reasonably sensitive to 

the parameters R and S. By varying R and S simultaneously 

at constant mole fraction and cross section, we obtain the 

contours of shown in Figure 1 for the equimass mixture 

It is found experimentally that this mixture 

has an inversion tenqperature at 247®K, that is, <Kt> 0 for 

T>247°K and oCŷ O for T<247°K. This inversion occurs 

due to the attractive part of the true molecular interaction 

potentials (17). Since our rigid model is a purely re

pulsive potential, we can only hope to calculate the thermal 

diffusion factor for temperatures greater than the inversion 

temperature, where the repulsive part of the molecular inter

action potential dominates. The contours in Figure 1 are a 

particularly convenient way to e:q>ress the results of our 

calculations, since a vertical linear interpolation of o(̂  

between different contours is quite reliable. 

As discussed in detail in Chapter 4, the presence of 
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an external magnetic field increases the dimension of the 

matrix expressions of Equations 4.15 and 4.16. For the 

basis set we have chosen, each column matrix in Equation 

4.15 in this case contains 30 elements and correspondingly, 

-A is a 60 X 60 matrix. The explicit expressions for these 

field transport coefficients are given in Equation 4.4 and 

the coefficients we choose to characterize are given in 

Equation 4.11. As in Chapter 4, we use the notation 

"Ao » where y denotes the species of interest and 

now I = t\, Jl , or fcr corresponds to the parallel, perpen

dicular, and transverse components, respectively. 

The effect of an external field on for a hy

pothetical binary mixture <o% =<(r)̂ =(2.0)̂ Â , 

R̂ =1.05, R̂ =l.l, Ŝ =Ŝ =0, X̂ =0.5, T=300.0®K) is shown in 

Figure 2. This behavior is precisely what we would expect 

fron analogy with the Senftleben-Beeneikker effect on 

thermal conductivity (37), which is given the following 

physical interpretation. 

The presence of a thermal gradient creates an 

anisotropy in the angular velocity distribution of non-

spherical molecules. The rotation of a diamagnetic mole

cule creates a magnetic moment along the direction of the 

angular momentum (for paramagnetic molecules we need only 

consider the cCnnipOnent o£ thé muyiïêLlû rûOIûëlït âlong the 

angular momentum). When an external magnetic field is 
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imposed upon the system, this magnetic moment precesses 

about the field. This precession will partially destroy 

the anisotropy of the angular velocity distribution and 

cause a corresponding decrease in the transport property 

of interest. The decrease will be noticeable when the 

precession frequency is of the order of the collision 

frequency and will saturate when the precession frequency 

is much greater than the collision frequency. Since 

precession frequency is proportional to the field strength 

H and collision frequency is proportional to the pressure 

P/ the quantities (H/ï>)̂  and ' n or X, should 

characterize the effect. The transverse effect reaches a 

maximum when the precession frequency is of the order of 

the collision frequency and decreases to zero in the limit 

where the precession frequency is much greater than the 

collision frequency. Thus the characteristic values in 

this case are the value of H/P which gives 

that maximum. 

Most mixtures of diatomic molecules will show the be

havior as illustrated in Figure 2. However, we find that 

certain sets of parameters give rise to the type of 

anomalous behavior that is shown in Figure 3. In general 

we find that these anomalies occur in the neighborhood of 
^ ^ «1 • i where = o . Furthermore, these imll poinLâ cor

respond to a sign inversion of ̂  . In Figure 4 we show 
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the locus of points in the R̂ -R̂  plane vfliere 4 ojj, - ù for 

our hypothetical mixture. These curves do, of course, de

pend also upon the value of the total masses, mass distri

bution, cross sections, and mole fractions. We can, for 

exan̂ le, obtain similar inversion points from a variance 

of the mass distribution alone, leaving all other parameters 

fixed. We defer a discussion of these anomalies until the 

perturbation analysis in Chapter 8 is presented. 

We now wish to compare our calculations with experiment 

for the various binary mixtures of CO isotopes in field-

free space. We emphasize again that this choice is based 

on the availability of good experimental data (35) and the 

fact that several different isotopic mixtures have been 

studied. Since the isotopic nature of the nuclei should not 

affect the electronic structure of the molecules, the R and 

S values for all species should be the same. The rigid 

ellipsoid parameters R and <<r> are selected to give an op

timal fit of thermal conductivity data (38, 39/ for 

, and (H/P)î , where the e3q)erimental 4 A corresponds 

to + ziAj. We find R̂ =1.143 and <<r>̂ Q= (2.17) 

We now use the experimental value of for the equimass 

mixture ̂ Ĉ̂ 0̂-̂ Ĉ̂ ®0 to find S=-0.027. Using these param

eters we obtain the comparison with experiment as shown in 

Table 5. 

The error for the mixtures other than the equimass 
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mixture seems to be related to the fact that the rigid 

sphere is not a good approximation to the spherical part 

of the interaction potential (17). The relative difference 

between the values of for the mixtures in which the com

ponents differ by two mass units, however, indicates good 

agreement between experiment and theory, as shown in Table 

5. If at this point we assume that the total mass dif

ference and the internal structure give separate, additive 

contributions to «y, and also assume that the effect is 

linear in the mass difference for small mass differences 

(these assumptions are treated fully in Chapter 8), the 

calculated numbers are approximately .0073 per mass unit 

too high. Making this correction we obtain Table 7. 

The values of en-p given in Table 5 are calculated using 

the parameters which give the experimental fit of thermal 

conductivity in an external magnetic field and field-free 

thermal diffusion at 300®K. According to the empirical ex

pressions for given by Boersma-Klein and deVries (35), the 

experimental varies as the InT, Since the calculated 

value of ot-ris independent of T, we must vary the value of 

S to fit experimental values of oCj for the equimass mixture 

at other temperatures (see Figure 1). The mass correction 

demonstrated in Tables 6 and 7 works about equally well for 

any value or S. 

Since the magnetic field thermal conductivity data is 
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available only at 300®K, we propose a second, less specific, 

method of chbosing these potential parameters for other 

toirperattires. The field-free thermal conductivity is rel

atively insensitive to R and S but is very sensitive to <<r>. 

Since for rigid models, A= Â rH we plot as a func

tion of <<r> for our model. Then to find the cross section 

which fits experiment at any terrperature, , we calculate 

Kkp/tJ''' from experimental data and graphically determine 

<<r>. 

The two sets of contours (of for the equimass mix

ture corresponding to the two values of cross 

section which fit experimental thermal conductivity data 
12 16 

for C O at the temperatures 260 and 420QK are shown in 

Figure 5. Since the inversion temperature of this mixture 

is 247®K. these cross sections span a large portion of the 

temperature range of interest. We note again that a verti

cal linear interpolation between different contours of 

constant cross section is quite reliable. It is also pos

sible to perform a linear interpolation between contours of 

different cross sections. 

This method does not provide a unique fit of R and S 

values. That is, we have an entire contour of corresponding 

R and S values which will give the experimental value of 

w s ^ • V * - »  **4-11 T*Tô macc: _Htl*LiT *t * ^ ^ — — — 

rection illustrated in Tables 6 and 7 again works equally 



101 

well for any set of R, S values on the constant oc,. contour. 

For both types of parameter fits, we see that a higher tem

perature requires a positive shift in the value of S. This 

seems in agreement with the fact that oxygen is more elec

tronegative than carbon. 

It is interesting to examine the effect of the el

lipsoid parameter R on for the system D̂ -HT, since this 

mixture has been studied previously by Sandler and Dahler 

(27) using a loaded sphere model. In Table 8 we show the 

variation of oc-r with R and mole fraction. Because of the 

symmetry of S must necessarily equal O for this systan. 

Varying R from 1.0 to 1.3 we obtain the improvement in agree

ment with experiment (40) as demonstrated in Figure 6. The 

apparent fit of experiment for R=1.3 is rather tenuous, 

since previous experience has shown that a value of R=1.3 

is an unrealistic distortion for Also, as mentioned 

earlier, molecules whose rotational levels are so widely 

spaced cannot be reliably treated using classical mechanics. 

We turn now to the study of the effect of an external 

magnetic field on the thermal diffusion and binary diffusion 

coefficients of binary mixtures of isotopic diatomic mole

cules. Since the experimental data available is limited, 

the most important aspect to these calculations using the 

exact algebraic equations is to provide a basis foi numerical 

analysis of our perturbation studies. As in the field-free 
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case, the parameters for CO are fit frOTi ê r̂imental thermal 

conductivity and we find R̂ =̂1.143 and <<r>̂ =(2.17)̂ Â . 

For purposes of ccanparison we also calculate the magnetic 

field effect on isotopic mixtures of for which we find 

R;̂ =̂1.154 and (2.004) The thermal conductivity 

in the field is not sensitive to variations in S. The 

parameters we calculate are and (H/P)|̂  (the ratio 

of the magnetic field strength to pressure at half satura

tion) for i = « or X, and (A/y (hA») of that maxi

mum for the transverse effect. 

The field induced effects on the thermal diffusion and 

binary diffusion coefficients for an equimolar binary mix

ture are shown in Figure 7. All isotopic 

binary mixtures of diatoms display similar behavior. In 

Table 9 and Table 10 we list the appropriate saturation or 

maximum values together with the field positions of these 

effects for thermal diffusion and binary diffusion, re

spectively. In general we find the decrease in the parallel 

and perpendicular ccn̂ nents at saturation to be about 1% 

for thermal diffusion (except for the equimass CO mixture 

—3 vAiich shows a larger effect) ;and 10" % for binary diffusion. 

This small effect on diffusion can be seen from Equations 

4.4, 4.15, 5.20, 5.21 and 5.22 to arise from the fact that 

tliê flrsL £lélu contribution to diffusion is second order 

in both the €, and 6̂  expansions. 
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Again, these results are precisely what we would expect 

frcm analogy with the Senftleben-BeenaKker effect on thermal 

conductivity (37). However, experiments performed upon 

isotopic mixtures containing the paramagnetic triplet 

©2 (̂ Z) have reported no external magnetic field effect on 

thermal diffusion to within the error limit of the experi

ments (41, 42) • Although our calculations are specific to 

diamagnetic Ng and CO, the previous success (36, 43) of the 

rigid ellipsoid model in calculating related transport co

efficients lends credibility to our belief that we have 

correctly modeled the physical effect itself and suggests 

that perhaps more experimental effort in these areas is in 

order. 

i 
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Table 1. Dependence of «r on mole 
(R?=l.l, s=0, <r>=3.25TrA2) 

fraction 

Mixture 

X«e - 14 

.01 .00536 .01569 02474 .03046 

.1 .00536 .01567 .02471 .03041 

-3 .00534 .01565 .02463 .03030 

.5 .00532 .01562 .02455 .03020 

.7 .00530 .01559 .02447 .03010 

.9 .00528 .01556 .02440 .03000 

.99 .00527 .01555 .02436 .02996 

Table 2. Dependence of ê r on crogg 
expressed in units of ttâ  
(R=l.l, S=0, X« = .Ol) 

: section. Cross section 

Mixture 

<«r> 12cl8o.l2cl6o 

3.00 .00526 .01572 .02491 .03053 

3.25 .00536 .01569 .02475 .03046 

3.50 .00545 .01566 .02460 .03039 

3.75 .00553 .01563 .02446 .03032 

4.00 .00561 .01560 .02432 .03026 
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Table 3. Dependence of «y on R 
(«r>=3.26TrÂ , S=0, X* = .01) 

Mixture 

R 

1.00 .00381 .01632 .02762 .03190 

1.05 .00426 .01610 .02670 .03139 

1.10 .00536 .01569 .02474 .03046 

1.15 .00614 .01527 .02315 .02956 

1.20 .00613 .01486 .02238 .02874 

1.25 .00546 .01437 .02214 .02784 

1.30 .00448 .01378 .02199 .02676 

Table 4. Dependence of 0(7-on S. s is ê ressed in units 
of the length of the minor axis 
(Rpl.l, <<r>=3.26Tr&2̂  /*=.01) 

S 

1 • 0
 

w
 

.00177 .01482 .02686 .02878 

1 • 0
 

to
 

.00290 .01511 .02622 .02935 

—.01 .00410 .01540 .02552 .02990 

0 .00536 .01569 .02474 .03046 

.01 .00672 .01599 .02390 .03103 

.02 .00816 .01631 .02301 .03162 

.03 .00969 .01664 .02207 .03224 

f 
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Table 5. Comparison of calculated off with experiment 
«<r>=(2.17)2TrA2, R=1.143, S&-0.027, X =.5, T=300°K) 

Mixture E3q>eriment Calculation 

. .00254 .00254 

.00544 .0141 

.0100 .0245 

.0132 .0278 

Table 6. Comparison of relative values for mixtures 
whose ccmponents differ by two mass units 

Mixture Experiment Calculation 

.0132 .0278 

.0100 .0245 

difference .0032 .0033 

Table 7. Comparison of mass corrected 
experiment 

values with 

Mixture Experiment Calculation 

.00254 .00254 

13cl6o_12cl6o .00544 .0068 

.0100 .0099 

1V60-1V®0 .0132 .0132 
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Table 8. as a function of R and for Dg-HT. 

<T>=1.885TrÂ , 8=0; â  is the eccentricity 

parameter of Sandler-Dahler (27) 

.01 .2 .4 .6 .8 .99 

Sandler-Dahler 
Loaded Sphere .0579 .0568 .0558 .0548 .0538 .0528 
Cap = .16667) 

1.0 .0579 .0567 .0560 .0549 .0538 .0528 

1.10 .0551 .0546 .0541 .0536 .0531 .0527 

1.15 .0494 .04925 .04907 .04890 .04873 .04858 

1.20 .04162 .04166 .04171 .04177 .04183 .04189 

1.30 .02815 .02839 .02864 .02899 .02916 .02940 



Table 9. Characterization of field effects on thermal diffusion for various mix
tures (see text). The units of jApZi are ç|m am""̂  sec-1. Here (H/P)u is 
the value of at Which a quantity which saturates has half its satu
ration value, and (H/̂ )max is the value of H/P at which a quantity which 
possesses a maximum has that maximum. The subscript oc refers to the 
first species as the mixture is written 

-4.2x10"' 6.3x10̂  -6.4x10"® 4.2x10̂  3.1x10"® 4.1x10̂  

-5.4x10 -9 

-9.6x10 -9 

6.4x10 -8.2x10 -9 4.2x10" 3.9x10 -9 

6.4x10̂  -1.5x10"® 4.3x10̂  6.9xlO~* 

4.2x10' 

4.2x10' 

-9.0x10 -9 7.7x10- -1.4x10"® 5.2x10̂  6.5x10"* 5.0x10" 

6.5x10"̂ ° 8.5x10̂  9.8x10"̂ ° 5.6x10̂  -4.7x10"!° 5.4x10̂  

-1.6x10"® 7.6x10̂  -2.4x10"® 5.0x10̂  1.2x10"® 5.1x10̂  

!4cl6,̂ _12gl8Q -.1.8x10"® 7.7x10 ̂ -2.7x10"® 5.0x10̂  1.3x10"® 5.1x10̂  



Table 10. Characterization of the field effects on binary diffusion for various 
mixtures. The units of are an̂  sec-1 and (H/P) is defined as 
in Table 9 

Mixture f 

-4.5x10-7 6.1x10̂  -6.9x10"'̂  4.1x10̂  S.SxlO"? 4.0x10̂  

-4.5x10-7 6.2x10̂  -6.9x10"? 4.2x10̂  3.3x10"? 4.1x10̂  

-5.2x10"? 6.2x10̂  -7.9x10"? 4.2x10̂  3.8x10"? 4.1x10̂  

-7.2x10"® " 7.8x10̂  -1.1x10"? 5.2x10̂  5.2x10"® 5.1x10̂  

-5.8x10"® 7.5x10̂  -8.8x10"® 5.0x10̂  4.2x10"® 4.9x10̂  

-2.2x10"? 7.6x10̂  -3.4x10"? 5.0x10̂  1.6x10"? 5.1x10̂  

-2.2x10"? 7.5x10̂  -3.4x10"? 5.0x10̂  1.6x10"? 4.9x10̂  
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.008 
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R 
Figure 1. Contours of constant ar as a function of R and S 

for an equimolar mixture of 14cl6o_12cl8o. The 

value of <o-> is (2.17) The numerical values 
of ctj. are indicated on the contours 
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H/P (Gauss/Torr) 

Figare 2. Field-induced effects on the parallel, perpendicular, and trans
verse thermal diffusion coefficients (in units of g/cm sgc) for 
the mixture defined by: m̂ =30, mp=28, <<r>̂ =<(r>p= (2.0) 
R^—1.05, Rp—1.1, Xg—.5, Sg=Sp=0 
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H/P (Gauss/Torr) 
Piciure 3. Field-induced effects on the parallel/ perpendicular, and trans

verse thermal diffusion coefficients (in units of g/can s§c) for 
the mixture defined by: mg=30, mo=28, <er>̂ =<o->-= (2.0) 
Rjj—1»091/ Rp=l«l/ • 5/ Ŝ =Sp=0 



" / r \ Figujre 4. The solid curves represent the locus of points where (4 
ishes and the dashed curve represents the locus of points where 
vanishes for rigid ellipsoid models; in̂ =30, mg= 28, 

f X^—«5/ S^j—Sp=0 



114 

.03 

.009 / 

/-.02 
.008 

.007 

.006 S 

.005 
-.01 

.004 
.003 

.002 -.02 

-.03 
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R 

Figure 5. Contours of constant «r as a function of R and S 
for the system 14cl6o-12cl8o. Dashed lines rep
resent <<r>co=3.06TrA2 and smooth lines represent 
<o->co=3.75ir5l2. The numerical values of ot̂ -are 
indicated on the contours 
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Figure 6. Dependence of «t  on R for D2-HT. 

<er>H2=1.8857rÂ , Sjĵ =0. Dashed line represents 

the experimental value at 338°K 



ADÎ, X 10® UNITS 
T -I -I ADaj gm cm sec 

ADa/9j cm2 sec"' ADa^i X 10 

ADLX 10® 

ADqS « X 10 

ADoyStpX 10 

ADÎtrX I09 

Figure 7. 

H/P (gauss/torr) 
Field-induced effects on thermal diffusion (solid curves) and binary 
diffusion (dashed curves) coefficients of an equimolar mixture of 
13cl6o and Rco=l-143, <cr>̂ Q= (2.17) 3̂ 0=0 

0% 



117 

CHAPTER 8. CALCULATIONS AND IMPLICATIONS OF THE 

PERTURBATION IHEORY, NUMERICAL RESULTS 

Our objective in this chapter is to examine the analytic 

e]q)ressions given in Equations 5.26 and 5.27, which were de

rived using perturbation techniques. First we will examine 

the field-free limit with the aim of gaining some physical 

insights into the thermal diffusive phenomenon. Next we 

will investigate the nature of the magnetic field effect 

and study the anomalies we found in the model studies of 

Chapter 7. Lastly, we explore how to use these expressions 

to predict the magnetic field effect on thermal diffusion 

from the available data on thermal conductivity and field-

free thermal diffusion. 

For our actual calculations we again choose the trun

cated basis set displayed in Equation 4.7 and proceed to 

examine explicitly the associated tensors which appear in 

Equations 5.24, 5.25, and 5.27. As discussed in Chapter 5, 

the 3x3 arrays. Tot §o, and 6* contain as their only 

tensor element so their inverse is simply multiplied 

by the inverse of the scalar coefficient array. The 
i 

tensorial nature of the off-diagonal elements is determined 

by the direct product of the corresponding basis set func

tions. The element  ̂= f , a, or 3 , is a fourth rank 

isotropic tensor which is traceless and syranetric on its 
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first two and last two indices. It must, therefore, be 

propoirtional to The diagonal elanent is a 

sixth rank isotropic tensor which is traceless and symmetric 

on its second and third indices and its fifth and sixth 

indices. As discussed in Chapter 6, there are three such 

independent tensors. 

It can be shown that for rigid models the matrix ele

ments -̂ ikBLis) ' i ̂  , 2, or 3 are identically zero. This may 

be seen from the fact that such integrals are third rank 

isotropic tensors and hence are proportional to the Levi-

Civita density |, which is the only isotropic third rank 

tensor. By definition % i for I, and a. in cyclic 

order, for an anticyclic order, and is zero if any 

two indices are equal. The rigid model collision integral 

formulas (44) immediately give that these third rank tensor 

matrix elanents are symmetric on two of their three indices 

and hence they must be identically zero. The only nonzero, 

off-diagonal matrix elements with vf-Q- are in fact the ele

ments , and is thus coupled to the 3x3 blocks 

L / go f and 6. only through the term w As a conse

quence, the effect of on diffusion, thermal conductiv

ity, and thermal diffusion is of fourth order in the 

perturbation. This is evidenced by the fact that in the 

"exact" calculations of Chapter 7, inclusion ot the w-Or term 

is responsible for 1-2% of the field effects which, as we 
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have seen in Chapter 5, are of second order in the €% 

perturbation. 

In the presence of an external field, the diagonal 

element takes the form of Equation 6.35 and can be 

expressed in the form of Equation 6.40 in order to perform 

the required inversion operation. Our choice of represen

tations in Equation 6.40 is now apparent, since if we con

sider the elements in Equation 5.27, we have the 

tensor form 

'ij ft i  ̂ X ] (8.1) 

which can be expressed in terms of the one dimensional unit 

tensors as 

"C ( t (8.2) 

The contraction of the indices of the unit tensors yields 

the result 

^ 0 «C f ^ h) ?.,<«) /.! « oj. (8.3) 

If we e:}q>ress the isotropic sixth rank tensor in terms of 

a linear combination of the identity elements , that is. 

^ t if' , (0.4) 
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where are scalars, then the coefficients b; are given by 

fc ,  =  (  a + >ar) / ( IL +xV) 

b ,  =  [ f  f  % -  ^ , ) ]  ( 8 . 5 )  

b-, * (u-x v)/( U- xVj 

Where 

u. = <Aj - iâ: y ̂  

V = ?( % -̂ a 4" it •̂ a) 
(8 .6)  

tt= XL, - 7^Cs- '^1 ^  ̂ 3 ) 

V = 5" f % -^1 •*» + ^ "A, -*3 + % '^*3. 

We can in turn express the coefficients in terms of 

real second rank tensors as 

* [!,„<>) ÎÎ * -t.,o)a/|">)J, (8.7) 

where 

= (  U a + V V)/ (U* + V*)  

and (8.8) 

= iUv -Vu.)/(11®-+ V"^). 

The expression in Equation 8.7 can be seen to correspond to 
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property (i) of the Onsager-Casimer relations in Chapter 3. 

Before applying these perturbation expressions to the 

systems of interest, we need to check their convergence 

against the exact calculations of Chapter 7. Using the 

potential parameters which fit experimental data (Chapter 

7)/ we find that first order in a, ccmipares to the exact 

inversion to within 5 parts in 3000 for all field-free and 

magnetic field coefficients. Furthermore, these coeffi

cients to second order in the nonsphericity perturbation, 

6̂ , cœ̂ are with the first order €, coefficients to within 

2%, This excellent convergence assures that our perturba

tion calculations contain the essence of the exact inver

sion calculations. 

We further proposed in Chapter 5 to make and -App 

correspond to single species thermal conductivity and self-

diffusion matrices. For this interpretation they should be 

insensitive to the isotopic differences. A detailed ex

amination of the elements of -App for the four CO mixtures 

does indeed reveal a variance of less than 1%. The situa

tion for-A PC however, is slightly more complex. In gen

eral we find that the variance is less than 3%, however, 

the elements corresponding to the coupling of the first 

and third and the second and third basis set terms in Equa-

< Â  C — • —». m ̂  1 ••• 1 Co/ f 1 •» 4" 11 O O  ̂
*X • V GLt Jf W V <w-k  ̂g — 

element corresponding to the coupling of the first and 
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fourth basis set terms varies over an order of magnitude. 

These terms which are sensitive to isotopic variations are 

simply the elements corresponding to angular momentum de

pendent basis functions. This sensitivity does not affect 

our binary diffusion calculations since the crucial element 

for these calculations is . All the off-diagonal 

elements of-Â p prove to be small compared to this element. 

We are now prepared to use the perturbation expres

sions of Equation 5.26 and 5.27 to address the problems we 

have outlined previously. Our first application is the 

study of the thermal diffusive phenomenon itself, which we 

approach by examining the isotopic mixtures of CO in field-

free space. For this case the coefficient of the trans

verse effect ( of Equation 8.7) is identically zero and 

the coefficients of the parallel ( 6,, ) and perpendicular 

(tj) effects are equal, thus yielding dJ as a single scalar 

coefficient times the isotropic tensor . In Chapter 7 

we dealt with the effect of the macroscopic and potential 

parameters on thermal diffusion. We now use the perturba

tion expressions to examine the kinematic parameters. 

Each species in the mixture originally has three inde

pendent kinematic variables: the masses of atoms 1 and 2 
I 

and the internuclear distance. The masses are, of course, 

determined by the species under consideration and we assume 

that the internuclear distance is fixed by spectroscopic 
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data and is the same for all isotopic species. Conse

quently, a binary mixture will have four independent 

kinematic variables which are subject to isotopic variation. 

The formulation of the perturbation expressions in 

Chapter 5 is based on the perturbation of the isotopic dif

ferences about the limit of a simple gas of "average" 

molecules. The utility of this approach lies in the in-

sensitivity we have already noted in the -A-j-r 

matrices. One possible choice of the average molecule is 

a mole fraction average of the masses of like atoms between 

the two species, that is, 

I 

and (8.9) 

m a, = Xat J +• Xfi a 

where and are the masses of the atoms 1 and 2, re

spectively, in the diatomic species y ( et or ̂  ) with mole 

fraction , and m, and are the average masses of atoms 

1 and 2. The four indpendent variables can be taken to be 

the average masses m, and the difference in the total 

mass, 4M, where 

4 M = (M*, t a.) - (. I + (8.10) 

and the difference in the mass distribution. 
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) . 8.11) 

We can e:q>and each of the elenents contained in Equa

tions 5.25 and 5.27 as a power series in 4i1 and With 

this expansion we find that the elements are effectively 

linear in the total mass difference but that we must retain 

terms through second order in to obtain the convergence 

to within 2%. Furthermore we find that the contributions 

from and are of roughly the same order of mag

nitude and are approximately 1% of the linear mass distri

bution contribution. Due to the nonlinearity in &tn, we 

choose to calculate the thermal diffusion coefficient as 

additive contributions from the mass difference and the 
I 

moment of inertia difference, as illustrated in the fol

lowing manner. 

The first two rows in Table 11 give the values of 4M 

and ùifn. for the mixtures (in units of the mass of species 

/3, as calculated from Equations 8.10 and 8.11. 

The row label "mass" implies that the given thermal dif

fusion coefficient is calculated for the case where the 

mass distribution of each of the two species of interest 

is fixed at the average molecule value and the total mass 

of each species is set to its exact value. The row label 

"mass distribution" implies a similar calculation for the 

case that the total masses of the two species are equal to 
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the average molecule total mass, but the molecular mass 

distributions are exact. The row labeled sum is simply 

the sum of the previously two entries and the row labeled 

exact contains the result of the perturbation calculation 

using the actual molecular parameters. 

First, we note that the sum of the separate effects 

con̂ ares to the exact effect to within a fraction of a per

cent. As previously mentioned, we conclude from this that 

the effects due to and are not coupled in the lower 

perturbation orders. Next we note that as assumed in 

Chapter 7, the contribution due to the total mass difference 

is very nearly linear. This results from the fact that 

the percent variation of the mass is small. However, as 

has already been noted the contribution due to the mass 

distribution difference is not linear. This can be seen 

to arise from the fact that the difference in the mass 

distribution between the two species is of the order of the 

molecular mass distributions themselves. 

As mentioned previously, the quantities »., m a., 4 m , 

and àm form a set of independent parameters. However, the 

mass distribution difference àin is not a physically mean

ingful parameter, and thus we choose to view the mass 

distribution in terms of two other parameters, the moment 

of inertia 
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r - r • 
> " Lf^ri J ® 

(8.12) 

and the load, 

e .  < « • " )  

which is the distance of the center of mass from the geo

metric center of the bond. In both expressions is the 

intemuclear distance and is fixed. 

By splitting the mass distribution difference into 

contributions from the load difference and moment of 

inertia difference, we obtain the results as shown in 

T a b l e  1 2 .  T h e  q u a n t i t i e s  ̂  T  =  ) / a n d  

are unitless numbers with the masses 

expressed again in terms of the mass of species /3 and the 

distances expressed in units of the intemuclear distance, 

Te . The row labeled moment of inertia gives the thermal 

diffusion coefficient calculated with the total masses and 

loads of each of the two species in the mixture set to the 

total mass and load of the average molecule respectively 

and the moments of inertia given by their exact values. The 

load row results from a similar calculation where only the 

load differs between the molecules. The mass distribution 

row is calculated as in Table lie 

We see again the sum of the moment of inertia and the 
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loaë effects give the mass distribution value to within a 

fraction of a percent. This implies lack of coupling be

tween the contributions from 41 and and also that the 

contributions from the total mass difference, load dif

ference, and moment of inertia difference add separately 

to give the total thermal diffusive effect. We further 

note that the contribution due to the moment of inertia 

difference is nearly linear and thus the nonlinearity has 

been isolated tq the contribution from the load difference, 

A positive value of oj implies that the d̂ species 

migrates down the temperature gradient and concentrates 

at the cooler end of the system. Throughout this work we 

have written the mixtures in the form For example, 

for the mixture corresponds to 
12 16 

species 9t and c* o corresponds to species /S, Prom Table 

11 we see that for all cases the heavy species migrates to 

the cold side. Table 12 shows that, other things being 

equal, the species with the largest moment of inertia mi

grates do\m the tanperature gradient as does the species 

with the smallest load. 

It is difficult to explain these thermal diffusive 

results in detail with a simple mechanistic picture, but 

the general idea is as follows» Single mean free path 

q̂̂ ljinents estq̂ îsh that there is a rlux or Lhannal ensrgy 

ĵ ŷ l̂ â t̂̂ onâ  c|n<̂  Rotational) down the temperature gradient. 
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The thermal conductivity coefficient is proportional to 

both the average molecular velocity and the mean free path. 

For an equimolar, isotopic mixture the lighter species 

gives the largest contribution to thermal conductivity 

because the average molecular speed is greater for the 

lighter species. However, the effective mean free path 

associated with the heavier species slightly larger than 

for the lighter species. This larger effective mean free 

path results from the fact that in a collision between the 

two different species, the velocity of the heavier com

ponent is slightly more persistent. 

The existence of an energy flux down the temperature 

gradient tends also to give rise to a mass flux down the 

gradient. However, since there is no net mass flux (rel

ative to the streaming velocity), the species that actually 

moves down the gradient is the one for which thermal flux 

and mass flux are most strongly coupled. This is the 

species which is the least dynamically affected during a 

collision between unlike molecules. If there is only a 

mass difference between the molecules, there is a coupling 

of mass flux with the flux of both translational and rota

tional energy and the heavier molecule has the most per

sistent velocity and consequently moves to the cold end. 

If there is only a mcncnt of inertia difference between 

molecules, a coupling only exists between the mass flux 
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and the rotational energy flux. The molecule with the 

largest moment of inertia is the least collisionally af

fected and moves down the tonperature gradient. For the 

case when there is only a load difference between mole

cules there is again a coupling only between the mass 

flux and the rotational energy flux. The molecule with 

the smallest load is least affected by collision and hence 

moves down the temperature gradient. It should be noted 

that these arguments basically apply only to impulsive 

interactions. Attractive molecular interactions can, in 

fact, lead to an inversion in the direction of separation 

at lower temperatures. 

These conclusions are supported by the perturbation 

analysis. All of the calculations we report in Tables 11 

and 12 are for the full basis set to second order in 63,. 

We find, however, that for the field-free case the thermal 

diffusion coefficient can be obtained to within about lO'A 

of the "exact" coefficient if we consider only the -̂ pocu) 

element of -^oo* •^oTt/a^ a nd orcis) a nd  ̂ «pT ( '  

»-̂ TTcaa> / and elements injv̂ .̂ Since these 

particular elements of -A tt and -App are insensitive to iso-

topic variations, the integrals which are important in the 

calculations of the thermal diffusion coefficient are 

-ùeru-a) ôHdotos) • -"CGC slsTisnts, in tiim.- contain 

collision integrals which couple the mass flux trial 
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function w with the translational energy flux function 

and the rotational energy flux function 

respectively, for an type collision. In fact, the 

elementt, a) is essentially the difference between the 

collision integral coupling and for thecxth 

species and the collision integral coupling the same trial 

functions for the fith species. Similarly, pre 13) is the 

difference between the collision integrals coupling w and 

tLU--n-*) for the xth and /8th species. Both -̂ pTna) 

-ôoTLti) are nonzero for the case when there is a mass dif

ference between the speciesi, but only -Sortis) is nonzero 

when there is only a difference in moment of inertia or 

load. The sign of the matrix elements -̂ oroa) and 

ultimately determines which species concentrates at the 

cold end, and this sign difference can be predicted from a 

consideration of which species is most dynamically affected 

in collision. 

There is no field effect in our calculations unless 

we include trial terms which are anisotropic in the angular 

momentum. As previously discussed, for our purposes we 

need only include the anisotropic term w [ Since this 

term is of little consequence in ,the field-free case the 

analysis just completed sheds little light on what happens 

in the field. The inclusion of this term increases the 

complexity of the analytic e?q)ressions to such an extent 
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that we make no attaint to explain the field effect in 

physical terms. We examine instead the three distinct 

types of field contributions (as seen from Equation 5.30 

and the discussion in Chapter 5) and the additivity of 

each contribution. 

As is seen in Equation 4.5, the external field induces 

three separate coefficients Xi, , and In the per

turbation expressions the field effect is contained en

tirely in the five second order contributions to thermal 

diffusion, tô . Each of these five contribu

tions contain the three field coefficients b„l̂ ) , bj,(̂ ) , 

and btrl}), as indicated in Equation 8.7. The thermal con

ductive type contributions and 'flpia)) have the 

same field dependence, that is 6^0)= , i - ii , J- , 

or tr . Similarly the self-diffusion type contributions 

and have the same field dependence, that 

is = b̂ ls") . Furthermore we find that all coefficients 

except are only sensitive to about 2% over the range 

of the isotopic CO mixtures. This last observation is the 

basis for our association of these field terms with the 

simple gas thermal conductivity and self-diffusion, 

respectively. 

In this work we will anphasize only calculations for 

the parallel ccripcnsnt, . ana simply note that the 

perpendicular and transverse components exhibit analogous 
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behavior. In Table 13 we display the three distinct field 

contributions to the thermal diffusion coefficient ùdJH . 

Except for the mixture the thermal conductive 

type contribution is the dominant factor. An inspection of 

the two terms 'Ap and which ccxî rise the thermal 

conductive contribution reveals that they are of the same 

sign and add for all mixtures except In 

this exceptional case the two terms are nearly equal but 

opposite in sign. As we shall later see this results from 

12 18 the fact that C O has both a larger moment of inertia 

12 16 
and a larger load than does C O. 

To examine these field contributions more thoroughly, 

we test their additivity in the kinematic parameters. We 

find that the thermal conductive contribution does exhibit 

additivity with respect to mass, moment of inertia, and 

load, whereas the diffusion and hybrid field contributions 

do not. This is shown in Table 14 for the mixture 

The form of the e:sq)ressions in Equation 5.27 

again indicate the source of this behavior. Our previous 

investigation of the isotopic sensitivity of the elements 

in -App indicated that -ùvont) (and, 

of course, the corresponding transpose elements) are in 

fact dependent on isotopic variations. The terms which 

contain the thermal conductivity type field contribution 

('ApCO and '*%(*>) depend upon the self-diffusion elanents 
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only through D̂ , which is effectively insensitive to the 

isotopic variations. On the other hand, the hybrid field 

dependence and self-diffusion field dependence 

( a n d  i f )  )  c o n t a i n  a  s u m  o f  p r o d u c t s  o f e l e 

ments, and those products which are sensitive to the iso

topic variations are not negligible and may even dominate. 

Thus only the thermal diffusive type terms exhibit additiv-

ity. The additivity can now be used to examine the small-
I 

ness of the thecal conductive contribution in the mixture 

12 18 12 16 C O- C O. The sign inversion we noted earlier occurs 

for 'Ag iz) , and more specifically, for the contribution 

to 'Ap U) due to the difference in the loads. The sign 
! 

change due to load contribution is expected since this is 

the only CO mixture where the x-species has the largest 

load. However, the fact that the thermal conductive con

tributions nearly cancel in this case appears to be a 

fortuitous consequence of the particular kinematic param

eters of this mixture. 

We now wish to utilize these separations we have ob

tained for the field effect to investigate the anomalies 

which appeared in the parameter studies of Chapter 7. 

Examination of the inversion points of Figure 4 with the 

perturbation e:qpressions of Equation 5.27 yields the type 

of results which are illustrated in Figure 8 for the par

allel cmnponent. We see that the inversion in the sign of 
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ùdJ„ corresponds to a cancellation of the self-diffusion 

and thermal conductive type field contributions, each of 

vfliich is much larger than the hybrid field contribution. 

It is important to note that both the self-diffusion and 

thermal conductive pieces eadiibit the usual field satura

tion effect; it is their sum which yields the anomalous 

behavior. This same type of behavior is exhibited for the 

perpendicular and transverse components, except that for 

the transverse component we see a cancelling effect on the 

thermal conductive and diffusive maximum "huinps" rather 

than in the saturation value, as shown in Figure 9. 

The perturbation study of single species thermal con

ductivity (32) shows that the ratio to second 

order in the nonsphericity expansion is equal to 3/2 in 

saturation, which agrees with the prediction of Knaap and 

Beenakker (45). A similar perturbation study on the self-

diffusion field terms yields the same ratio. Since our 

thermal conductive type field terms (1 and 2 of Equation 

5.27) and self-diffusion type field terms (4 and 5) con

tain exactly this same field dependence, our thermal dif

fusion field results also show this same 3/2 saturation 

ratio when the hybrid field term is negligible. This ef

fect can be seen in Table 9 of the last chapter. 

As a further application of our perturbation eaqpres-

sions we would like to be able to use them to predict the 
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field effect on thermal diffusion from experimentally ob

tained data for other effects with minimum reliance on any 

particular collision model. Since field effects are dif

ficult to measure experimentally, this would be a useful 

result. To make these characterizations we would use the 

available experimental data to parameterize the collision 

integrals (or collections of collision integrals) and field 

terms needed to evaluate Equation 5.27. As in our potential 

parameter fitting, we have available experimental data for 

thermal conductivity in both field and field-free space and 

field-free thermal diffusion. 

As discussed previously, the b̂ 's of Equation 8.7 are 

insensitive to isotopic variations. This insensitivity 

in combination with the thermal conductivity field data 

allows us to determine the field dependence 

for those mixtures where the thermal con

ductive type field terms dominate. From Equation 5.27 we 

see that we now need to determine the field-free factor 

which multiplies this field term. The field-free factor 

is identical to the second order €% perturbation in field-

free space (that is, and when ? = o ) so to 

find this factor from experimental data we must separate 

the zero and second order effects. This separation can in 

principle be obtained by urging the field-free fhermal dif

fusion data to parameterize the collision model. If this 
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parameterization is sufficiently accurate, we can then use 

the model to separate the zero order contribution frcan the 

total effect. Our rigid model is inadequate for these pur

poses since we cannot accommodate for the fact that the 

rigid spherical limit gives the dominant contribution for 

mixtures in which the species differ in total mass. These 

separations and the resulting characterization of the 

thermal diffusion field effect thus require a model with a 

more realistic spherical limit than that of our rigid 

models. Some preliminary considerations of this matter 

are the subject of the next chapter. 



Table 11. Additivity of oX for the separate contributions in the total mass 
difference (am) and mass distribution difference (aw). The quanti
ties 4M andiûm are esroressed in units of mo. The units of oj are 
g/cm sec. «>=(2.17)R=1.143, S=-.027, X̂ =.5, T=300 

Mixture 

14cl6o__12cl8o 

.0716 

-.0716 

1.0236x10"̂  

.2236x10"̂  

1.2472x10"® 

1.2492x10""® 

mass 

mass 
distribution 

sum 

cixact 

0 

-.1336 

0 

.2738x10 

.2733x10 

.2738x10 

-6 

-6 

-6 

.0358 

,0358 

.5163x10 

.1267x10 

.6430x10 

.6438x10 

-6 

-6 

-6 

-6 

.0716 

.0716 

1.0126x10"® 

-.0337x10"® 

.9789x10"® 

.9780x10"® 



Table 12. Additivity of oj for the separate contributions in the load (a*) and 
moment of inertia (ùl) differences. is expressed in units of 
mpr̂  and &Ù. is in units of mgr̂ . The units of oj are g/cm sec. 
<or>=(2.l7) R=1.143, S=-.027, X = . 5 ,  T=300 

a 

Mixture 

14cl6o_12cl8o 13cl6o_12cl6o 12̂ ,18q__12̂ ,16O  14̂ 100̂ 12̂ 160 

A 1  

A i  

moment of 
inertia 

load 

sum 

mass 
distribution 

.0089 

-.0668 

.0598x10 

.2130x10 

.2728x10 

.2738x10 

-6 

-6 

-6 

-6 

.0113 

.0198 

.0705x10 

,0560x10 

.1265x10 

,1267x10 

-6 

-6 

-6 

-6 

.0123 

.0286 

.0811x10 

-.1148x10 

-.0337x10 

-.0337x10 

-6 

-6 

-6 

-6 

.0218 

-.0382 

.1313x10 

.0915x10 

.2228x10 

.2236x10 

-6 

-6  

-6 

-6 
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g 
Table 13. Values of ̂  oj",, xlO for the three types of field 

contributions (see text). Units of AoZu are 
g/on sec. <<r>=(2.17) R=1.143, S=-.027/ 
X̂ =.5, T=300 

• Magnetic Field Contributions 

-.0116 -1.7939 .0030 -1.8025 

13cl6o_12cl6o .0036 -.9051 .0007 -.9008 

12cl8o_12cl6d .0290 .0518 -.0163 .0645 

14cl6o_12cl*0 .0098 -1.6126 .0032 -1.5986 

Table 14. Additivity of ̂  oJ« xlÔ  for the three types of 
contribution to the field effect for the mixture 
14c16O_12C16O, <f>=(2.17)̂ À̂ , R=1.143, 
S=-.027, X̂ =.5/ T=300 

Magnetic Field Contributions 
Â2(4)+̂ A2(5) Â̂ (1)+̂ Â (2) Â̂ (3) 

mass -.2443 — 2.645 .1267 

load .1016 - 6.174 -.0260 

moment of 
inertia .2261 - 7.021 -.0493 

sum .0833 -15.840 .0514 

.09324 -Ib.iib .0316 
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Figure 8, Field-induced effects on the thermal conductive (1 and 2), self-

diffusion (4 and 5)/ and hybrid (3) type contributions to the par 
allel con̂ nent of the thermal diffusion coefficient. = 

(;,) . The units of ôJ/, are g/cm sec., mĝ =30, inp=28, 
<«r>̂ =<<r>p=(2.0)2Tr̂ 2̂  R̂ = 1.091, Rp=l.l, X̂ =.5, S(j=Sp=0 
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CHAPTER 9. À PROPOSAL FOR IMPROVED MODEL CALCULATIONS 

Throughout this work our calculations have been limited 

by the failure of the rigid sphere limit of our rigid el

lipsoid models to form an adequate basis for computation of 

the dominant spherical part of the desired collision inte

grals. We now suggest a scheme to remedy this situation. 

Since these topics will be the subject of future research 

work/ we present here only a very brief outline of the con

cepts involved and hopefully the spirit of future work. 

We first consider briefly the dynamics of a rigid col

lision. From the laws of mechanics we have 

where and are the linear and angular mcanenta of 

molecule i, is the vector from the center of mass of 

body L to the point of collisional contact, and and 

N; are the force and torque, respectively, on molecule 

i. To calculate the collisional change resulting from the 

impulsive interaction we simply integrate Equations 9.1 

and 9.2 over the infinitesimal time interval of the col

lision to obtain 

(9.1) 

and 

(9.2) 
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and (9.3) 

A LI ^ ( S, x£, ) / <  J  i - ( ia, ̂  } 

where i, is the outward directed unit normal to the surface 

of body I at the point of collisional contact. The quan

tity K is found from conservation of energy to be given by 

Here /a. is the reduced mass, ̂  is the relative velocity of 

the points of contact (Equation 2.16), and I; is the 

inertial tensor of molecule i  .  

The dynamical results of Equation 9.3 can be compactly 

written (44) in terms of a multidimensional vector 

Î , -e-, (9.5) 

where -a, and are the reduced angular momenta and 

w, is the reduced center of mass and 

Y= is the reduced relative momentum. 

Here w; and m* are the reduced linear momentum and the 

mass of particle i and >u. = . We find that 

(VaA.T)'̂  jl • ̂  « D  ̂ and 

(•n -?') " i S • ? (9-6) 



144 

where ^ } S-, , S%) and o - iïTTfTTÏ', For linear mole

cules -(.*>•/I,)̂ (î,ï t,) and «.»= £-«4/1̂ )̂ (1̂ XXj) . Frcan 

energy conservation it follows that 

 ̂ (9.7) 

and frcxn Equation 9.6 it can he shown that 

A. A . 
' 3 

and (9.8) 

- K - n  «r, » . 

Thus the result of a collision is simply to change the sign 

of the component of g along which in a geometric sense 

corresponds to an improper rotation of % in the multi

dimensional space. 

For the special case of rigid spheres we need only 

consider the reduced relative velocity Ï and the surface 
A 

normal/ A , at the point of contact. This unit vector is 

given by t- , where the primed quantities 

denote precollisional and unprimed denote postcollisional 

relative velocities. Clearly, X , and 

# and the collision serves only to change 

the sign of the relative velocity ccairponent in the direction 

of ft z The general rigid collision results are thus simply 

a multidimensional generalization of a rigid sphere 
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collision in three dimensions. 

For a spherical, soft, purely repulsive potential, 

we can replace every collision by a dynamically equivalent 

rigid interaction. The unit vector X of the equivalent 

collision is along the apse vector (that is, along y-y' ) 

and the diameters of the equivalent rigid spheres are now, 

of course, functions of f. 

For a soft, nonspherical interaction an analogous re

sult in the multidimensional space of ̂  can be obtained. 

We define a unit vector (a generalized apse vector) by 

n = ^-'n'/Ci n-'li'l) (9.9) 

which is the nonspherical analog of 1. As an immediate 

consequence of this definition, we have that 

i '  c  Ê  - - «n'V 

= -jI (9.10) 

. 

Furthermore the unit vector 6̂  can be written in the form 

e„ = ti/o) ( 0 , , (9.11) 

where 4 is a unit vector along jr-Jr' and i + These 

results âjcre zûjaiïâxxy î nê sôiûê ôâ CûOûê i.or Tx̂ j-u. j.— 

cal bodies. However, they differ from the true rigid case 
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in that the shapes of the equivalent interacting rigid 

bodies (and in particular, g., and now depend upon the 

components of 5. 

The collision integral for any interaction model can 

now be written in the general form 

(9.12) 

where is a normalization constant, f and f are 

basis functions of the e:q>ansion of the distortion, Jc is 

the orientation vector of molecule Z, and Z is a generalized 

cross section. The differences in the collision models are 

manifested in the variable dependence of Z, that is, 

for rigid models (in particular, JL is a con

stant for rigid spheres) and for spherical soft 

potentials, whereas in the general case 1̂,̂ ) . 

Equation 9.12 is, 01 course, an exact result and 

amounts to nothing more than a particular choice of inte

gration variables to evaluate the general collision inte

gral of Equation 4.18. The purpose of the foregoing dis

cussion was merely to provide a rationale for this par

ticular choice of variables in terms of a corgarison with 

the rigid interaction model. To proceed we need an expres

sion for JL which we propose to choose in such a way as to 
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yield exact results in the limiting cases of a rigid inter

action model and for a soft, spherical potential. 

One possible method of approach arises from further 

consideration of the rigid body collision integrals as 

given in reference (44). The collision dynamics may be 

simply expressed in a rotated frame by introducing an 

orthogonal transformation matrix S defined such that 

B. —  ̂ (9.13) 

where é is the generalized momentum vector expressed in a 

coordinate frame that has &̂  as its nth unit vector. From 

the previous discussion it is seen that S is only a function 

of X/ / and In the rotated frame# all fm-i) com

ponents of £ normal to are constants of the motion and 

(the component of g along é̂ ) simply changes sign upon 

collision. The collision integrals then become 

t> (9-14) 

where 

z&r.s. = jje i 6*) (%'-%) If'. (9.15) 

Here <(r>£ is the average cross sectional area of a molecule 

C and -ir*. = ) is the value of A for 

rigid spheres. The tensors u and Y are polyads in the n 
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dimensional vector space formed from a and v £>s, respec

tively, and the basis functions , written as a tensor in 

the multidimensional space, has the form u where 

is a projection operator (see reference (44) for de

tails) . The primes denote precollision variables while 

the unprimes denote postcollision variables. 

We see by comparison of Equations 9.12 and 9.14 that 

the valuation of 4 r.s, < B , V ) is equivalent to performing 

the momentum integrations of the collision integral. This 

momentum integration is particularly simple since the only 

change upon collision is a change in the sign of the com

ponent along Cn. Thus to perform the momentum integra

tion we simply use the fact that £ = £,+<„€„ and 

where 5, is the projection of £ on the subspace normal to 

From Equation 9.15 it is evident that this momentum 

integral is independent of the shape of the rigid convex 

model. The shape dependence is instead, contained in D, 

the cross section4, and the projection operators Ŝ . and 

Thus the tensor is exactly the same for 

nonspherical molecules as it is for rigid spheres. 

To generalize the model, we simply replace xir.s, () 

for the rigid sphere interaction by the appropriate cor

responding quantity for a spherical soft potential and let 

the remaining quantities ̂  , â g , , ahu û retain their 

rigid convex body form. The collision integrals obtained 
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in this approximate manner will be exact in the limit of 

spherical/ soft collisions and in the limit of nonspherical 

rigid body interactions. 

The principles involved in this alteration of the 

collision integrals are reasonably straightforward but 

the algebraic details are rather tedious. Thus the actual 

calculations are left as a future project. 
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APPENDIX 

We first wish to prove the commutation relationship in 
} 

Equation 6.19, namely 

Hi"' . (A.1) 

From the definitions in Equations 6.15 and 6.17, we have as 

in Equation 6.18, 

C«r', Hy"'] = - (t ). (A.2) 

The identity element can always be expressed in terms 

of ccxnbinations of S , the 3-dimensional second rank unit 

tensor, which e3q)licitly is 

= f = U. (A.3) 

By definition, the symbol (where the subscript n is 

usually implied) in Equation A.2 indicates the sum of 

terms obtained by crossing the unit vector t (or ̂  orX) 

into each of the n right (or left) hand indices of x'"*. 

The only terms of Equation A.2 which survive this summation 

of cross products are those terms which correspond to cross

ing both indices of a (J which bridges the two sets of 

indices, that is, one index is a member of the left n 

indices and one index is a member of the right n indices. 

We prove the above crossing properties by considering 
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a single U of the an rank tensor. If both indices of the 

U lie in either the left n or right n indices, the crossing 

operation will give a term with 

ÎJU - t  xu -t (ijçj =  o  (A.4) 

imbedded in the remaining n-a indices of the left or right 

set. Hence to get a contribution the U must bridge the 

two sets of indices. Now consider the crossing into only 

one index of a bridging U. The commutation definition in 

Equation A.2 must necessarily give in sum the combination 

Î XU - ux C = o (A.5) 

imbedded in a bridging manner in the resulting tensor. 

Thus bridging U's with only one index crossed will not 

contribute. Finally, for a taridging U with both indices 

crossed we have from the commutation definition that the 

tensor 

lxux}-JxUxl=lxiJ'Uxi (A.6) 

will be imbedded in the resulting tensor. It follows im

mediately that 

€Z f  £ ' " ' r  Î  =  X  . (A.7) 

From Equation A.2 and 6.15, this can be written as 

riT'.t,"] '(A-8) 
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and our proof is con̂ leted. 

Next, we wish to prove the relationship given in Equa

tion 6.25, that is, 

(A.9) 

By definitions in Equations 6.21 and 5.15 we have that 

+ f r'®" «r (A.io) 

can be written in either the form 

( H= - Z S'-̂ 'Z *)= - IZ (A. 11) 

or 

= - Z ie*" X ZX'"') - - LsllZ s'-"̂  (A.12) 
- ~ — 

where 6 t̂  , or i . From Equation A.12 we see that the 

first n and last n indices of (P"*)̂  are traceless and 

symmetric. Hence, since (h'-"')̂  is isotropic, it must be 

proportional to X'"'. Let us now examine a single term of 

£ in Equation A. 11 which contains all bridging (J ' s. 

We first note that a term in with all bridging U's 

can only come from terms with all bridging U's. For the 

term under consideration there are a total of n* combinations 

of crossing into n bridging U's. Of these combinations, 

n have crosses into the same U, \̂ ich results in an bridging 



157 

U's each with a factor of -1. The ronaining ncn-i) com

binations have crosses into different U's and give rise 

to ncn-i) bridging U's each with a factor of -1. Hence 

the crossing operation in effect multiplies each term of 

bridging U's by a factor of -ntn-j) - an or - ncm-i) and thus 

(ff"")"- = ncnf-nS'-''̂  (A. 13) 

Finally we extend this last proof to the direct 

product tensor . From the definitions in Equa

tions 6.26 and 6.15 we have 

ïïl"" ' -À Ci Hp, f"yr»> f f'"] (A. 14) 

or 

» -i. a (£"'/£">) =  ̂ (A-15) 

By expressing the identity element for the direct product 

representation in terms of the identity elements for the 

irreducible representations, we have that 

(A. 16) 

= - Î! 

or 
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[s>P^tJ Z (A. 17) 

These relations are established in a manner similar to 

Equations A. 11 and A. 12. From Equation A. 17 we see that 

ĵ g g linear combination of the identity elements 

The last line of Equation A. 15 makes use of the 

fact that the crossing operation does not transfer the 

identity element of an irreducible representation out of 

that representation. 

If we now determine the number of bridging U's in 

each we can apply the arguments of Equation A. 13 

to obtain the proportionality factor for each irreducible 

representation identity element in the linear combination. 

Consider as an example the irreducible representation of 

weight fp-%1. If we assume for discussion purposes that 

and consider a tensor in the direct product 

basis where f'' is a traceless and symmetric tensor of 

weight p and T is a similar tensor of weight ̂ , then 

is a basis function for the irreducible repre

sentation of weight Ip-fI. Thus the number of bridging 

U's in the identity element for this irreducible repre

sentation is Cp-, and the proportionality constant is 

then (p'f) CCf'fj + ij . A similar argument holds for every 

weight representation contained in the direct product 

basis, and thus we have that 
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t f"") '. Z #</") rl"" , (A.18) 

which establishes the desired relation. 


