
ELASTIC WAVE SCATTERING FROM ROUGH SURFACES AND CRACKS 

S. Ayter and B.A. Auld 

Edward L. Ginzton Laboratory 
Stanford University 
Stanford, CA 94305 

INTRODUCTION 

The scattering from rough surfaces and cracks in the high fre
quency regime is analyzed via a scattering formula based on the 
reciprocity.relation. Scattering from the smooth cracks is investi
gated first .to rederive the "flash point" concept by Fourier trans
form methods. Based on this analysis, an inversion procedure is 
proposed for obtaining the characteristic function of the crack, 
which, for the case of rough cracks, gives information about the 
roughness as well as the dimensions and shape of the crack. The 
theory is applicable to both 2-D and 3-D scattering problems, as 
well as surface wave scattering from surface breaking cracks. 
Elastodynamic ray theory predicts that scattering from cracks can 
be described in terms of discrete source points on the contour of 
the crack. 1 These points are generally called the "flash points", 
and their positions depend on the transmitter and receiver loca
tions as well as the crack shape. For instance, for 2-D scattering 
problems, (or for deep surface breaking cracks under surface wave 
excitation), the two edges of the crack act as the flash points. 
The theoretical derivation for bulk cracks involves application of 
the Kirchhoff approximation for the total fields in the representa
tion theorem, converting the surface integral into a line integral 
via "integration by parts," and alP lying the method of stationary 
phase to obtain the flash points. In this study we use a scatter
ing formula based on the reciprocity relation,2,3 with the Kirchhoff 
approximation and dedu~e the flash points by Fourier transform 
methods. 

For the case of smooth cracks, both methods yield the same 
result. In the first method, because of the nature of the integrand, 
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the second term in the "integration by parts" step vanishes, and 
the first term, after some manipulations gives the flash points. 
However, for rough cracks, the second term no longer vanishes, and 
the effect of the roughness appears mainly there. Owing to the 
complicated nature of this second term, one cannot readily conclude 
about the general nature of the rough surface scattering. In our 
case, the method for the smooth cracks can be extended to the rough 
crack scattering without much difficulty, and the effects can be 
analyzed via simple Fourier transform relations. 

SCATTERING FORMULA AND ITS APPLICATION TO SCATTERING FROM CRACKS 

A scattering formula due to Auld,2 and Kin0 3 is used to calcu
late the scattering coefficient. This formula has various advan
tages over the representation theorem. First of all, it gives the 
transducer-to-transducer scattering coefficient in terms of the 
transducer terminal voltages, which are the actual measured 
quantities in an experiment. Secondly, instead of the Green's 
function, it uses the actual transducer's far field which are 
essentially plane waves at the flaw. This is especially important 
when the Green's function is either unknown or very difficult to 
calculate. Thirdly, due to its relative simplicity, the mathemati
cal steps are more tractable, and this allows more physical insight in
to the problem. Finally, the formulation is not restricted by the 
transducer types, or the excitation methods so long as the field 
pattern due to the excitation can be estimated. 

The formula expresses the change in the scattering coefficient, 
of21 ' due to the presence of the crack as, 

1 

4(P P )1/2 
1 2 f. 

F (1) 

where subscripts 1 and 2 indicate the particle velocity and stress 
field distributions excited by transducers 1 and 2 respectively, 
which are driven by input powers PI and P2 ' and the prime 
denotes the presence of the crack. The cracK surface is designated 
by S ,with the normal pointing towards the flaw being uF (see 
Fig. 1). One should note that the integral in Eq. (1) is a closed 
surface integral, including both faces of the crack. 

=, A 

For open cracks..!. Tl' n = 0 on the front and back surfaces. 
For closed cracks, T1 • n is continuous across the crack, Then 
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Fig. 1. Definitions of the terms used in the scattering formula. 

Eq. (1) can be rewritten as 

1 

/ or 21 f:,V' • T . n dS (2) 
4(P P )1/2 1 2 

1 2 front 
face 

where f:,V{ is the jump in the particle velocity distribution across 
the crack. 

Preliminary Considerations and Assumptions 

The general scattering geometry is outlined in Fig. 2. It is 
assumed that the crack lies in the x-y plane and is in the far field 
of the transducers. Since the crack width of interest, 2c, is in 
the order of several wavelengths, in the vicinity of the crack, the 
unperturbed fields can be approximated by plane waves, but the ampli-
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Fig. 2. General scattering geometry. In 2-D kT and kR are in 
the x-z plane, but in e-D they are not necessarily so. 

tudes must be corrected for the diffraction effects, The unRer- + 
turbed fields are therefore characterized by A(w) ~zp[j(wt-kO·k ·r)] 
where a = T ,or R corresponding to transmitter and receiver a 
respectively, kO = w/V is the wavenumber, and k is the unit 
vector in the propagation direction. The A(w) fgctor summarizes 
the effect of diffraction, 

{ ~ A(w) "" w 

for 2-D 

(3) 

for 3-D 

In all cases, by the term scattering data, we mean the variation of 
the scattering coefficient in frequency, with the transmitter and 
receiver positions fixed, It is also assumed that in the 2-D case, 
the propagation vectors ~ and kR are in the x-z plane, but in 
the 3-D case they are not necessarily so, A further assumption is 
that the crack location is known, i.e., the transducers are arranged 
50 that the crack is near the center of their main lobes. 



ELASTIC WAVE SCATTERING FROM ROUGH SURFACES/CRACKS 615 

For the perturbed field distributions, we use the Kirchhoff 
approximation, namely, taking for the fields on the front surface 
those that would be present if the crack were a specular reflector, 
and on the back face assuming the fields to be zero. Then, for fixed 
transducer positions, Eq. (2) reduces to 

of21 "" I (4) 

front 
face 

We next introduce y(x,y) , the characteristic function of the 
crack, 

(x,y) on crack face; 

y(x,y) = (5) 

elsewhere 

This reduces Eq. (4) to 

loofoo -j k it :i: 
or21 "" A2y(x,y) e 0 s dx dy (6) 

_00 -00 

~ A 1\ -+-
where k = (kT + kR) , and the direction of k will be referred 
to as+th~ "scan direction~. Note that for backsscattering (kT = kR) , 
and ks is parallel to kT • 

SCATTERING FROM SMOOTH CRACKS 

2-D Case 

For the two-dimensional case, or deep surface breaking cracks, 
the characteristic function is a function only of x Using Eq. (3), 
the counterpart of Eq. (6) for the 2-D case is found to be 

00 ~ A 

-jk k • x x 
e 0 s dx (7) cSr 21 (W) "" W I y(x) 

-00 

From k w/V and the definition 
o 

(8) 
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where V is the phase velocity of the wave of illumination, one 
readily sees that 

where 

or 21 (00) - oo§'{Y(T)} 

Y(T) ( 
VT ) 

Y ~ A 

k x 
s 

and sr{ • } is the Fourier transform operation from the T 
into the 00 domain. Using the time differentiation property 
Fourier transformation,4 Eq. (9) can be expressed as, 

(9) 

(10) 

domain 
of 

or 21 (00) - :¥ f ;T Y(T) I (11) 

Equation (11) states that (d/dT)Y(T) and or 21 (oo) are Fourier 
transform pairs. Therefore, in the time domain with pulse operation 
two pulses of opposite phase are observed at the receiving transducer, 
with a time difference (see Fig. 3) 

-7- " 2c k • x/V 
s 

(12) 

corresponding to the time delay between the rays that hit the edges 
of the crack and return to the receiver. Therefore, the signal 
appears as if it is coming from the edges (flash points). Figure 3 
schematically illustrates the argument. 

3-D Case 

For the three-dimensional case, Eq. (6) can be interpreted in 
terms of the two-dimensional Fourier transform of the characteristic 
function y(x,y) from the x-y domain into the k ,k domain, where 

x y 

k 
x 

k 
y 

!E. (k ) 
V s 

... 
• x 

!E. (k) " V s • y 

and 
(13) 

Since the transducer positio~s are fixed, the compone~ts o~ the pro
jection of the scan vector k on the crack plane, k • x and 
t . yare fixed quantities. s Therefore, as the frequgncy changes, 
tRe scattering coefficient scans the Fourier domain along the line 

k 
y 

k s • Y k 

k . x x 
s 

(14) 
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Fig. 3. Scattering mechanism for the 2-D case. The same argument 
applies to the Rayleigh wave scattering from deep surface 
breaking cracks. 

Rotating the coordinates in the x-y plane via the coordinate 
transformation 

T [(k • x)x + (k y)y]/V s s 
+ ~ (k A 

(15) 
u [-(k • y) + • x)y]/V s s 

one can rewrite Eq. (6) as, 



618 S. AYTER AND B. A. AULD 

where 

..r(" u) (
V V 

-+ A -+ A 

Y --(k . x , - k . yU) , --
Ik 12 s s Ik 12 

s s 

Defining y(,) as the integral of ..r("u) along the direction 
normal to the scan direction, i.e., 

co f .r.(" u)du 
-co 

one can interpret Eq. (16) as 

(16) 

(17) 

(18) 

(19) 

The procedure is outlined schematically in Fig. 4. The limits of 
y(,) are defined at the points where the tangent line to the con
tour of y("u) is in the u direction, and the slope of y(,) is 
discontinuous at those points. As a result, the second derivative 
shows a corresponding impulsive behavior. As in the 2-D case, these 
are the flash points time domain because of Eq. (19). 

INVERSION SCHEME 

The flash points are basically the result of the diffraction 
mechanism. Therefore if one takes the effect of diffraction from 
the scattering data, one can obtain directly the characteristic 
function of the crack. In mathematical form, 

2-D case 

(20) 

3-D case 

This inversion procedure gives the crack dimensions, as well as the 
information about the crack shape for the 3-D case. For instance, 
with a single measurement it is possible to determine both dimen
sions of the crack, provided that the crack orientation is known 
(see Fig. 4). 
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Fig. 4. Scattering mechanism for the 3-D case. 
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Tne weakness of the procedure lies in the fact that the Fourier 
inversion mechanism requires the data over the whole w-domain. When 
the data is bandlimited, sharp variations in the actual character
istic function will cause oscillations in the inverted data (Gibbs 
phenomenon).4 However, this problem is equipment related, and with 
wider band transducers its effect can be reduced. 

The inherent problem of the inversion method is that it is valid 
only in the high frequency regime. Therefore, even if the transducer 
can excite low frequencies efficiently, the data at low frequencies 
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may not agree with the theoretical expectations, hence one may have 
to reject that data, or analyze it via low frequency theories. 

ROUGH CRACKS 

Relevance to Fracture Mechanics 

As a crack grows under cyclic loading, it exhibits different 
roughness characteristics in different growth regimes. A typical 
plot of growth rate vs effective stress intensity is shown in 
Fig. 5. In Regime I, the crack growth is via non-continuum mecha
nisms, and mainly affected by the microstructure. For this reason, 
face roughening is the dominant character. In Regime II, the micro
structure has little influence on crack growth and the crack propa
gates in continuum. In this regime, the crack tip is continuously 
blunted and reshaped. Therefore, although the crack faces are 
smoother, the crack tip grows irregularly.5 

., 
U 
>-
u 
"-
E 
E 

z 
't:> 
"-
0 
." 

REGIME I REGIME II REGIME m 
10-2r----------.--------~,_--------, 

10-3 

10-4 

THRESHOLD 

t.Ko 

10-~~------~~--------------------~ 

LOG t.K 

Fig. 5. Crack growth rate, da/dN, as a function of the stress 
intensity range, AK. 
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The stress intensity factor of a rough crack differs from that 
for a smooth crack due to tip irregularities, non-flatness of the 
surface, and branching of the crack. 6 For this reason, the dimen
sions of a crack, without any knowledge of its roughness character
istics, are not sufficient to predict failure. 

Another aspect of the rough crack problem is crack closure, due 
to either the surface roughness or the oxide debris formed inside the 
crack during growth. When the crack is closed at certain spots, it 
will affect the growth rate of the crack because of the reduction of 
the effective stress intensity range (see Fig. 6). Hence, being able 
to determine the closure points is as important as the roughness 
information itself. 

Modeling of Rough Cracks 

To model the roughness, we first used the perturbation analysis 
first used by Brekhovskikh to calculate the Rayleigh wave attenuation 
due to surface roughness. 7 This analysis involves representing the 
boundary condition on a stress-free rough surface as an equivalent 
boundary condition on a smooth surface. With this method, it has 

K(V 
mm 

K 
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N 
K ro 
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CLOSURE CLOSURE CLOSURE 

6Keff=Kmax-Kmin 6Keff=Kmax-KCI 6Keff=Kmax-KCI 

Fig. 6. Crack closure and its effect on the stress intensity range. 
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been found that8 the contribution of the rough surface alone, 
(or) will be proportional to 

r 

(or) - -jk (kT + kR) ~(x,y) r 0 z 

where ~(x,y) is the roughness function. 

(21) 

The second method considered is an extension of Kirchhoff 
boundary conditions to the rough surfaces, described in the litera
ture as "the tangent plane approximation".9 In this case one takes 
the total field as the sum of incident wave plus the specularly 
reflected waves from the local tangent plane to the rough surface. 
When the transducer angles are around normal incidence with respect 
to the rough surface, mode coupling is negligible provided that the 
roughness amplitude is less than - 0.2 wavelengths. The results of 
scalar diffraction theory will then apply and one finds, 

() -jk (kT+kR) ~(x,y) 
or - or 0 e 0 z 

~ or(o) [1 - jko (kT + kR) z~(x,y) + ... ] (22) 

in agreement with the results of perturbation analysis. 

The perturbation analysis is valid for roughness amplitudes 
1~(x,Y)1 «1 and for its slope max 

a = x,y • 

The tangent plane method is also valid for small variations in 
slopes, but can tolerate larger roughness amplitudes. Another 
approach being considered is to model the roughness as a superposi
tion of small, known geometry, scatterers with a random distribution. 
In this case, each scatterer is small compared to the wavelength, 
hence the field disturbances around each scatterer can be visualized 
via quasi-static field theory. This kind of model permits faster 
variations for the roughness function since the disturbance due to 
each scatterer is tightly localized, and the adjacent scatterers do 
not interact to first order. With this kind of model, the result 
is also the same as that given by Eq. (22). 

With the above models for an open crack, the characteristic 
function for a rough crack can be seen to be of the form 

y(x,y) 
-jk k .z~(x,y) 

o S 
e 

-+- " ~ y(x,y) [1 - jk k -zt(x,y) + ... ] 
o s 
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If the crack is closed at certain spots, the characteristic 
function will show a jump at the closure point. For instance, if 
the faces contact rigidly, i.e., iV{ = 0 , then Yr = 0 at those 
points. 

INVERSION OF ROUGH CRACKS 

Unlike the smooth crack case, the characteristic function of 
rough cracks is frequency dependent, and in general the Fourier 

-+ h 

inversion algorithm does not apply. However when k • z r;(x,y) «1 , 
the characteristic function can be approximated as, s 

Y (x,y,w) 
r 

-+ h 

~ y(x,y) - jwy(x,y) k • z r;(x,y)/V 
s 

The inversion algorithm then gives the sum of the smooth crack 
characteristic function, and the roughness contribution, which is 
proportional to the derivative of the roughness function, i.e., 

for the 2-D case, and 

it h 

• Z 
+ s 

v 

for the 3-D case. Hence, for the 3-D case one measures the roughness 
function in the scan direction. 

In the flash point representation of scattering from a rough 
crack, the second (2-D case) and third (3-D case) derivatives of the 
roughness function are superimposed on the regular flash points. 
Hence, any sharp variations in the roughness function will appear as 
secondary flash points in the scattering data. 
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