70-13,623

PREVENDER, Thomas Stephen, 1940-
LATTICE DYNAMICS OF YZn.

Ilowa State University, Ph.D., 1969
Engineering, metallurgy

University Microfilms, Inc., Ann Arbor, Michigan

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED



LATTICE DYNAMICS OF YZn
by

Thomas Stephen Prevender

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Metallurgy

Approved:

Signature was redacted for privacy.

In Charge Yf Major Work

Signature was redacted for privacy.

Head of Major Department

Signature was redacted for privacy.

Dean df Graduate Colleee

Iowa State University
of Science and Technology
_ Ames, Iowa

1969



il

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. SAMPLE DESCRIPTION 4
III. LATTICE DYNAMICS OF THE CsCl STRUCTURE IN THE

HARMONIC APPROXIMATION 10

IV, INELASTIC NEUTRON SCATTERING 21
V. X-RAY DIFFRACTION 51
VI. VELOCITIES OF SOUND 75
VII. CALCULATIONS AND SUMMARY 81
VIII. LIIERATURE CITED 99
IX. ACK&bWLEDGMENTS 102
X. APPENDIX A 103
XI. APPENDIX B 106
XII. APPENDIX C 108
XIII. APPENDIX D 112
XIV. APPENDIX E 116

XV. APPENDIX F 121



I. INTRODUCTION

Within recent years there has been an increasing effort to use
inelastic neutron scattering to study the lattice dynamics of alloys (1).
Much of this work has involved disordered binary alloys in which a contin-
uous range of solubility exists between the elements. A study of dis-
ordered alloys can yield information such as the frequency distribution
function and the concentration dependence of the phonon dispersion curves.
However the current state of the lattice dynamics of disordered alloys
does not include a model that relates the dispersion curves to the inter-
atomic force constants. An advantage of ordered vs. disordered alloys is
that for a perfectly ordered alloy it is possible to derive explicit
expressions for the dispersion curves in terms of the interatomic force
constants., With the use of such expressions it is possible to perform a
least-squares analysis of the measured dispersion curves to obtain a set
of best-fit interatomic force constants. Once the force constants have
been found it is possible to calculate a number of experimentally measur~
able quantities. To the author's knowledge the only ordered alloy that
has been studied by the use of inelastic neutron scattering is R-brass (2).

This thesis describes a series of experiments and calculations
involving the ordered alloy YZn. The purpose of this work was to better
understand the lattice dynamics of binary alloys and also to test the
effectiveness of simple models in predicting lattice dynamical properties.
The primary experiment was a determination of the phonon dispersion curves

of YZn along the directions (0 0 z), (¢ ¢ 0), (£ ¢ ) and (% t). The

£ Jo—

three velocities of sound in the (1 1 0) direction were also measured to

find the limiting values of the slopes of the acoustic branches of the



dispersion curves.

With the aid of a non-linear least-squares computer program (3)
attempts were made to find force constant models that could represent the
measured dispersion curves. The model that was finally adopted was a gen-
eral sixth neighbor model that utilized twenty- four force comstants. In
terms of this model the frequency distribution function, lattice specific
heat, Debye temperature and Debye~Waller factors were calculated.

Since one of the objectives of this work was to test the effective-
ness of simple force constant models, it was decided to investigate how
well a model based only on the measured elastic constants would fare. To
this end, the elastic constant values were used to determine the two
parameters involved in a first nearest neighbor model. The frequency
distribution function, lattice specific heat, Debye temperature and Debye-
Waller parameters were calculated using this model and the results com-—
pared with both experiment and the sixth neighbor model.

Two additional experiments were performed on YZn. The first was an
x-ray diffractometer experiment designed to measure both the degree of
order possessed by the sample and the sum of the Debye-Waller factors for
Y and Zn. The second experiment involved monitoring the differential
magnetic susceptibility over the temperature range of 1.2 to 22°K. This
second experiment was undertaken because some features of the dispersion
curves suggested that YZn might be a superconductor. However, it was
found that for temperatures greater than 1.2°K, YZn was not supercon-
ducting.

In the foilowing sections will be found a description of the YZn

single crystal that was used in the experiments, a discussion of the



lattice dynamics of the CsCl structure, descriptions of the experimental

procedures together with a discussion of the results and calculations.



IT. SAMPLE DESCRIPTION
There were several reasons why YZn was chosen for study. First of
all it has the CsCl structure which offers a very high degree of symmetry
(4,5).Second, both Y and Zn have very good neutron scattering properties

as summarized in Table 1.

Table 1, Physical properties of Y and Zn

Atomic mass Y Zn
(amu) 88.91 65.38

Thermal neutron
cross sections (g)

Coherent scattering (barns) 7.60 = 0.06 4.1 0.1
Incoherent scattering (barns) 0.05 + 0.03 -
Absorption (barmns) 1.28 * 0.02 1.10 + 0.04

Third, since 3-brass also has the CsCl structure a comparison with that
experiment (2) is possible. Finally, and perhaps of greatest practical
importance, the phase diagram (7) of YZn shown in Fig. 1 indicated the
possibility of growing a suitably large single crystal.

In Table 2 are listed the impurity levels (in ppm by weight) of the Y
and Zn components, The Y was supplied by Mr. John Croat through the coop-
eration of Dr. F., H., Spedding. The Zn was purchased from Cominco American

Inc., Spokane, Washington and was stated to be 99.9997% Zn.
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Table 2. Major impurities of Y and Zn in ppm by weéight

H= 13 Ca < 20 Sm < 200

c= 30 Ti < 30 Gd < 100

N = 47 Cr < 40 Tb < 200

Y 0 =755 Fe = 34 Dy < 100

F =118 Cu < 70 Ho < 60

Mg < 30 Ta < 400 Er < 50

Si < 80 Nd < 200 Yb < 100
Zn Ccd = .2 Fe = .2 - Mg < 1
Cu = .2 Pb = 1.0 Si < 5

Preparation of the sample involved three stages. First, equal atomic
percentages of Y and Zn were carefully weighed (53.6255 * 0.0001 gm. Y and
39,4335 = 0,0001 gm. Zn) and then sealed in a pointed one inch diameter Ta
crucible. The sealing was done in a vacuum of approximately 5x10 ° mm. Hg
with an electron beam welder. After sealing, the Ta crucible was itself
sealed inside a stainless steel cylinder. In order to homogenize the
sample it was then rocked for two hours in a rocking furnace at a temper-
ature of at least 1135°C. Upon cooling to room temperature the Ta crucible
was removed from the stainless steel and installed in a Bridgman furnace
where it was protected by vacuum. A schematic diagram of the Bridgman fur-
nace is shown in Fig. 2. The furnace, of original design, was meant to
maximize the temperature gradient at the solid-liquid interface, and also

to provide a variable rate of descent of the sample through the maximum
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Fig. 2. Schematic Diagram of the Bridgman furnace



temperature gradient region. Temperature gradients of at least 200°C/in.
were attained by quite effective insulation of the hot top part of the
furnace from the relatively cool bottom. This thermal insulation was
achieved with a system of radiation shields, the use of stainless steel
support rods for the furnace core and, to a large extent, the vacuum of
approximately 1x107® mm. Hg that existed inside the furnace. Vertical
speeds of the sample were continuously variable from 0.08 in./hr.to 2
in./hr. through use of a Bodine NSH-12RC electric motor with a Minarik
SH-14 speed control. Temperature control was accomplished by using a West
stepless temperature controller whose sensing element was attached directly
to the furnace heating element. The sample temperature (or rather a tem-
perature no greater than the coolest part of the sample) was indicated by
a thermocouple located at the top of the Ta sample support tube.

The sample growing technique began with the sample raised above the
maximum temperature gradient region. Before the sample was lowered the
vacuum was allowed to equilibrate at approximately 1x107° mm. Hg while
the sample temperature thermocouple reached 1113°C. The sample was low-
ered at 0.08 in./hr. for forty five hours at which time the sample thermo-
couple indicated 435°C. Upon removal frcm tﬂe Ta crucible the sample was
etched and inspected for grain boundaries. Upon finding no grain bound-
aries the sample was then x-rayed with the use of Laue back-reflection
techniques which revealed it to be a single crystal. Subsequent chemical
analysisa to determine the composition of the sample indicated it was made

e e o i - e e e S

&, - - . .
B. Lauerman, Ames Laboratory, Ames, Iowa. Chemical analysis.
Private commwication. 1969.



up of 57.71 # 0.2 wt. Z Y and 42.09 * 0.04 wt. %Z Zn. This is to be
compared with the equiatomic percent objective which would have given
57.63 wt, Z Y and 42.37 wt. Z Zn. Perhaps a more meaningful indication
of the sample composition may be found by calculating the ratio of the wt.
percents since this procedure eliminates the effect of impurities. The

value of this ratio for the experimentally determined wt. percents was

42.09 * 0.04 - o.729 + 0.004
57.71 + 0.2

For the case of equal atomic percents the ratio was

42.37
57.63

= 0.735

Therefore it seems that the sample was indeed very close to the desired
composition. This conclusion was further substantiated by the value
obtained for the long-~range order parameter which will be discussed in

Section V.
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LATTICE DYNAMICS OF THE CsCl STRUCTURE IN THE

III,
HARMONIC APPROXIMATION
rigorous discussions of the Born Von
The treat-

There are several (8, 9, 10)
available in the literature.

Karman theory of lattice dynamics
the nature of a review of the general

ment given here is meant to be of
CsCl case.

theory with specialization to the
If one considers a crystal to be composed of Nc unit cells each con-

taining S atoms and if the origin of a coordinate system is chosen to be
one of the atoms, then the equilibrium position of the origin of the 1-th
unit cell is given by

a +4a. (3.1)

R(2) = 2a + 2
11 2 2 33

Similarly, the position of the s-th atom in a unit cell relative to the
Therefore, the equilibrium position

origin of the cell is given by R(s).

of the s-~th atom in the f-th unit cell is
(3.2)

R(2,8) = R(&) + R(s).
As a result of thermal fluctuations each atom may be considered to

have a time dependent displacement from its equilibrium position given by

The total kinetic energy of the crystal due to these thermal

u(2,s).
(3.3)

fluctuations is

T=4x M&WU,s).
2 4ssa

a
where MS is the mass of the s-th kind of atom and ua(ﬂ,s) is the a-th

Cartesian component of u(%,s).
The total potential energy ¢ of the crystal is assumed to be a



i1

function of the instantaneous positions of the atoms, If a Taylor's
expansion is performed on ¢ in terms of the atomic displacements u(%,s)

the result is

o= 0+ 0,(%,8) u (2,s) +
ot Eee o (%s8) u (2,s)

1 1 ' . 1ot
zzl,s,aéaézl ss') ua(z,s) uB(R s').

3.4
2,s!8 ( )

Since the lattice dynamics are to be considered in the harmonic
approximation terms of order greater than two are dropped in the expan-

sion. The @a and L) appearing in the expansion are defined as

39
QQ(Z,S) = w (3.538)

0

220 |
aua(ﬁ,s)aus(llSl)l .

¢a8(z,s) = (3.5b)

where the subscript o means that the expressions are to be evaluated in
the equilibrium configuration. From Eq. (3.5a) it is seen that ¢u(2,s)
is just the negative of the a-th component of the force on the atom at
(2,s). Since this force is evaluated at equilibrium it is zero and hence
the lianear terms in the expansion vanish.
Qus(ﬂliss') is the force in the a-th direction on the atom at R(%,s)
due to a unit displacement in the 3 direction of the atom at R(&'s').
The éas(ls,l's') are commonly referred to as interatomic force constants.
There are three useful restrictions that may be applied to the ¢a8

without speciaiizing to a particular lattice. The first of these results
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because the choice of origin in an infinite crystal is completely arbitrary.
Therefore ¢a8(22',ss') does not depend on £ and &' individually but only
on the difference £ - &'. The second condition results from a considera-
tion of the effect of a tramslation of all the atoms in the crystal by the
vector t. As a result of the translation the potential energy of the crys-
tal becomes
b=0+4+ Lo (1-2',ss') t t
0 24 5,a% o« B (3.6)
Lt,s',B

But since ¢ depends only on the relative positions of the atoms which do

not change as a result of the translation t, then it follows that

z ¢a8(2-2',ss') =0 (3.7)

The third condition follows from a consideration of the behavior of the
force on an atom when the lattice undergoes a rigid tramslation t. The

force on the atoms at (£,s) is given by

Fa(l.s) =~ - 53 (3.8)

—F——= £ ¢ (2~2',ss’
3ug (L, 5) a{ttisss) ¢

2',838 8

Since Fa(l,s) must be independent of the translation t then it must be

£

true that

— ' ' =
l'?s' Gy (2-tiss’) = 0 (3.9)

The Hawiltonian for the crystal can be written as
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1 2 1 t '
H=9¢ + = z M 84(L,s) + - z ® _(L',ss')
0 L.s,a s« 2 L,8,0 af
24,818
1 1
ua(l,s) uB(E .s') . (3.10)

The equations of motion for the atom atig(z,s) are then

= - I

L',s',B

. . __=oH
Msua(l,s) =3

d;ni,s) (L8',ss") uB(R',s') . (3.11)

¢
aB
In order to find the atomic displacements one must solve the 3N
coupled equations of motion where N is the number of atoms in the crys-
tal. Since the Hamiltomian Eq. (3,10) is a sum of two quadratic forms
it is possible to find a principal axis transformation which simultan-

eously diagonalizes both parts, Such a transformation is

u, (£,8) -/——I\-l—ﬁ X e (g,38) Q(g.i) 19 R(1,8) piut | (3.12)

s Q»J

This transiormation represents the time dependent displacement
ua(l,s) as being composed qf a sum of elementary excitations (phonons).
The phonons are thought of as plane waves of wave vector g and circular
frequency wj(g), Associated with any q there are in general 3S values
of ijS> and a corresponding set of 3S polarization vectors, the
e(q,j,s), that specify the direction of vibration of an atom due to the
phonon (q,3). -
Combination of Eqs.(3.11) and (3.12) yields

w'e {g,js) = I r bgg(e-i',ss')

‘ . 1 2‘ 1 o e e
B,s /ﬂ;Mso
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eiﬂ-LB(zv,s') - B(K,S)] eB(ﬂij') . (3.13)

Dyp(g.ss') may be defined as

Dyg(g.ss’) = i' —~§§§~| (»',ss') ela-[R(z',s") = R(I] | (3.14)
where for simplicity # is taken to be zero. The matrix D, of which
Daﬁ(g,ss') is an element, is known as the dynamical matrix. Eq. (3.14)
may be looked at as a Fourier series expansion of DQB(gjss') where the
@aB(MSMS,)"% are just the Fourier coefficlents.

Eq. (3.13) may be rewritten as

I (Dyg(g.ss') - w6, g6551) ep(g,js') = 0 . (3.15)
B.s'

Eq. (3.15) will have a non-trivial solution if
det | D o(g.s8") - wigpbegr | = 0. (3.16)

In the case of the CsCl lattice there are two atoms per unit cell
with Bo = (0 0 0) and El =(111) ao/2. Because of the fact that there
are two atoms per unit cell the dynamical matrix will be a (6x6) matrix.
The six eigenvalues mzj(g) of ﬁ(g,ss') are the squares of the circular
frequencies of the phonons associated with the direction g in reciprocal
space,

If Eq. (3.13) is rewritten in the form

wai(Q) ey(g,is) = ' Dyg(g-s'd) eg(g,s'3) . (3.17)

B,s
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it may be seen that for each of the wzj(g) there will be an associated
eigenvector ea(g,s,j). The eigenvectors may be chosen to satisfy the
orthonormality and closure relatioms.

%* 3 5 1 = .
sfa ex(qg,sj) e _(g,s3") ij, . (3.18a)

aséss. . (3.18b)

L e*(q,s'j) e (q,8)) =8¢
;g F @

There are many properties (4, 9, 11) of ﬁ(ss',ﬂ), its eigenvectors
and eigenvalues that may be deduced on quite general grounds by consid-
ering only the symmetry of the lattice. For instance, it may be shown
that in the CsCl case 5(33‘3) is a real symmetric matrix. This implies
that the wzj(g) are real and so wj(g) is either real or purely imaginary.
But from Eq. (3.12) an imaginary wj(g) would result in an exponentially
increasing or decreasing atomic coordinate. Since this would result in
an unstable lattice we have that wj(g) is real and hence wzj(g) is pos-
itive. However the condition that wzj(g) be positive implies that the
principal minors of D be positive.

To see how ﬁ(ss',g) is obtained the force on an atom at R(2,s) may

be considered as due to the displacement of an atom at R(R',s').

¢11 ¢12 ¢13

F = ' '
F(2,9) LA u(d',s'"). (3.19)

¢
31 32 33
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or, in matrix notation
F(2,s) = ¢(2s,8's') u(L's') . (3.20)

Note that the elements of 5(25,2'5') (referred to as a force constant
matrix) are just the ¢a8(25,2's') defined in Eq. (3.5b). From Eq. (3.5b)
it may be seen that ¢(s,4's') is symmetric. A particular o(2s,2's")

can be further simplified by considering the effect on it of the symmetry
operators that transform R(2's') ~ R(&s) into itself. In general, if U
is a symmetry operation of the crystal that transforms an R(Z's') into

itself the associated & becomes
Uoul=yg. (3.21)

For example, consider the CsCl case. A nearest neighbor of an
origin atom has coordinates of the form (1 1 1) a0/2 where a, is the
lattice parameter. The vector R(2',s') - R(%,s) in this case is just
(111) a0/2. The general form of the dynamical matrix relating these

two atoms is
¢ )
11 12 13

o = ¢ ¢ ¢ . (3.22)
111 12 22 23

¢
13 23 33

A symmetry operation that transforms R(L's') into itself is a reflection

in the plane x=y. For this operation
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0 1 0
U= 1 0 0 (3.23)
0 0 1
Combination of Eqs. (3.18), (3.19) and (3.20) yields
9 ) ¢
11 12 23
111 12 11 23 (3'24)
¢ ¢ o
23 23 33

Another symmetry operation that transforms R(2',s) into itself is a 120°

rotation about the (1 1 1) direction; for this operation

0 0 1
U= 1 0 0 .
(3.25)
0 1 0

If the U of Eq. (3.25) is applied to the ¢1110f Eq. (3.24) it may be

1

shown that @1 has simplified to
i

R T
11 12 12
o = 6 6 ¢ . (3.26)
11l 12 il 12
¢
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There are seven other atoms that along with the one at R(1 1 1) ao/2
comprise the set of first neighbor atoms. The force constant matrices for
the other atoms in the set may be found by tramsforming &111 by the
appropriate symmetry operations. For example, the operation that takes

R(111) to R(1 1 1) is S where

SR(111)=~R(1.11L. (3.27)
and é is
1 0 0
S = 0 1 0 (3.28)
0 0 1
In this case
6 =S¢ 5 ¢ (3.29)

111 111

or, if the operations indicated in Eq. (3.29) are performed @111 becomes

¢ll ¢12 - 12
. _ . (3.30)
¢111 ¢12 ¢11 ¢12
o =0 -
12 12 il

Similarly., one may find the &'S corresponding to the other atoms in the
set. From a knowledge of the @'s for the different neighbor sets (see
Appendix A) one can construct ﬁ(ss',g) as indicated in Eq. (3.14).

The matrix ﬁ(ss',g) is of the form
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Y-Y l Y - In

Zn - Y l Zn - In (3.31)

where each quadrant is a 3x3 matrix representing the various types of
atom—atom interactions: (see Appendix B for a list of the elements of
b(ss‘,g). If q is taken to be along a high symmetry direction it is
possible to considerably simplify the form of b(ss',g). Let 500, repre-
sent any of the quadrants of ﬁ(ss',g) then if U is an operator that

transforms g into itself,

Dggr = U Dggr UTH . (3.32)

co!

For example, if ¢ lies along the direction (0,0,1), 5(85',3) becomes

p00 0 0 po! 0 0
11 11
0 po0o 0 0 po1l 0
11 11
0 0 poo0 0 0 po!
33 33
ﬁ(ss',g) =
pO0! 0 0 pl! 0 0
11 11
0 po! 0 0 pll 0
11 11
0 0 po! 0 0 pll
33 33 (3.33)

Similarly D(ss',q) simplifies for a g along (1 1 1), (1 1 0) and

t). This simplification of D allows for the solution of Eq. (3.14)
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yielding explicit expressions for wzj(g). The expressions for wzj(g)
along the four symmetry directions for a sixth neighbor model are
listed in Appendix C. 1In the next section it will be shown how the
experimental wj(g) values are used to find the interatomic force con-

stants.,
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IV. INELASTIC NEUTRON SCATTERING

In the last section it was shown, within the harmonic approximation,
how it was possible to derive expressions for vj(g). Here a discussion
will be given of how inelastic neutron scattering was used for the exper-
imental measurements of vj(g). When a beam of monoenergetic neutrons is
scattered by a crystalline sample, the incident neutrons may be scattered
by elastic coherent, elastic incoherent, inelastic coherent or inelastic
incoherent scattering processes. Since it is the interaction of neutrons
with phonons that is of interest, elastic scattering will be disregarded.
The discussion will be further restricted to a consideration of coherent
scattering and will dismiss incoherent scattering as a source of back-
ground on which the coherent scattering is superimposed. Further, only
one-phonon scattering will be considered as being significant. Multi-
phonon scattering does not produce sharp peaks as in the one-phonon case
and multi-phonon scattering will be treated as another source of back-
ground.

Several derivations (12, 13, 14) of the one-phonon inelastic coherent
neutron scattering cross section have appeared in the literature. The

expression for the cross section which results from these derivations is
coh
2
d o =Nk 5 1
dQdE bk, a4, Y3 (g)

{8@+ g~ 8-u @) @+ D
N . bS
FHQ-g -1 8wt e (9) a} | xS
e /7,

Vs gre_(g,3) et X8 |7 (4.1)
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This particular form of the cross section was derived with ua(i,s)

defined as in Eq.

The symbols in Eq.

N

hw

n(q,3)

J)U‘

dE

(3.12).

(4.1) have the following meanings:

the number of unit cells in the sample

wave vector of the scattered neutron

wave vector of the incident neutron

the frequency of a phonon with polarization j

and wave vector g

momentum transfer vector

reciprocal lattice vector

energy change of the incident neutron

occupation number for the phonon state specified
by (q,3)

the average neutron scattering length for the atom
at site Bs in the unit cell

the Debye~Waller parameter for the atom at Bs
where 2WS = <(Q* ES)2>

the polarization vector for the atom at Es due to
a phonon with wave vector Sj

mass of the atom at Es

the ratio of the flux of neutrons scattered by one-
phonon processes to the flux of incident neutrons
solid angle region into which neutrons may be scattered
energy interval in which the scattered neutron

energy lies
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From Eq. (4.1) it may be seen that to have a non-zero value for the
cross section two conditions imposed by the two sets of delta functions

must be satisfied. The first condition is that

9550~5=115- (4.2)

which is an expression of conservation of momentum. The second condition

is that

%%(Eg - 5?) T hw = ¢ hvj(g) . (4.3)
which expresses the requirement of conservation of energy. In these
equations the (#) refer to neutron energy (ég?i) processes., In deriving
Eq. (4.1) it was assumed that only harmonic interactions existed between
the atoms in the solid. 1If anharmonic forces are allowed, the delta
functions involving w in Eq., (4.1) should be replaced by fuanctions that
are approximately Lorentzian in character (1, 15, 16). In addition to

the problem of anharmonicity broadening the & functions in Eq. (4.1) there
are instrumental effects (14) that, by themselves, give approximately
Gaussian line shapes.

In the remainder of this section it will be shown how the experimens
tally adjustable variables in Eq. (4.1) were chosen so as to maximize the
scattering cross section,

A triple~axis neutron spectrometer located at the Ames Lab Research
Reactor was used to observe one-phonon scattering processes. A schematic
diagram of this instrument is shown in Fig. 3. The angles shown in Fig. 3

have the following significance:
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8 is the Bragg angle for elastic scattering of a neutron

of wave vector.§0.
ZBSC is the scattering angle for a neutron whose wave vector

was initially Eo and finally k.

6pN 1s the Bragg angle for elastic scattering of a neutron
of wave vector k.

gt 1s an angle that denotes the degree of rotation of the
samp.e table from some arbitrary origin.

A detailed description of the spectrometer may be found elsewhere

(17, 18) so only a brief account will be given here. Essentially the

spectrometer consists of three parts: the monochromator, sample table

and analyzer.

Located in the center of the monochromator drum is a Zn single
crystal. The function of this crystal is to select a narrow energy band
of neutrons from the Maxwellian distribution incident on the crystal and
scatter them into the sample. During the course of an experiment the
monochromator is stationary and hence, Eb is fixed in magnitude. However,
the sample which is mounted on a support passing through the vertical
axis of the sample table, can rotate with the table. Rotation of the sam~
ple about an axis perpendicular to the plane of scattering can be seen tg
be equivalent to rotating Eb in the reciprocal space of the crystal.
Neutrons scattered from the sample may be momentum—analyzed by noting the
orientation and position of the Zn analyzer crystal.

Prior to the use of the spectrometer to detect phonons a careful
alignment of tlie sample in the neutron beam was necessary. A preliminary

alignment of the sample on its goniometer had been accomplished by the use
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Fig. 3. Schematic diagram of the ALRR triple axis spectrometer
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of Laue back-reflection techniques. In the case of YZn the lattice
parameter was not accurately known prior to the neutron diffraction
experiment and consequently had to be determined while the sample was on
the spectrometer. Alignment was accomplished by the following procedure.

First a set of four reflection (e.g. the {0 0 2}) lying in the plane
of the spectrometer were chosen for the alignment procedure. Then ZGAN
was set for elastic scattering. Next an assumed value of the lattice
parameter was chosen so that a iirst approximation to ZeSC could be made.
The sample table and goniometer were then adjusted until a maximum in
the intensity of scattered neutrons was observed. At this point it was
necessary to make a scan of intensity vs. eST' A typical scan of GST is
shown in Fig. 4. The mean value of the curve that resulted from this
scan was used to determine a new value of 6__. With the new 0 a 26

ST ST sC
scan was made to find the new ZGSC angle., The above procedure proceeded
through several iterations until SST and ZeSC converged to their final
values, Then the axes of the goniometer on which the sample was mounted
were adjusted to further maximize the Bragg reflected intensity. These
axes were adjusted by trying to roughly equalize the intensities of the
four reference reflectionms.

There were two reasons for trying to equalize these four reflections.
First, since the sample was practically transparent to the neutron beam
the center of scattering and the center of mass were approximately coinci-
dent. Therefore, equalization of the four reflections would tend to
locate the center of the sample in the center of the beam. Second, the

equalization of the four reflections insured that the four {0 0 2} direc-

tions lay in the plane of scattering.
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The above alignment procedure was repeated several times during the
course of the neutron scattering experiments. This was necessary because
two sample orientations and also two values of ko were used. The two
orientations were respectively tne (1 1 0) and (0 0 1) planes parallel
to the plane of scattering. These two orientations were chosen because
this made possible the observation of all eighteen branches of the dis-
persion curves for the four important symmetry directioms. In addition,
through the appropriate alignment of the YZn sample on its goniometer,
the two orientations (1 1 0) and (0 0 1) could be interchanged by adjust-
ing only one arc of the goniometer. Two different neutron wavelengths,

A = 1.265A° and A = 1.6169A°, were employed for ko. Most of the phonons
were obgerved with the smaller wavelength but some of the low frequency
phonons were obtained with the larger value of A.

Perhaps the most successful method for the determination of disper-
sion curves has been the "constant Q" technique (19) which is illustrated
by the reciprocal space diagram of Fig. 5. As the name implies, the
experiment is done at a fixed value of Q. However, at the chosen Q the
energy transfer hw is varied by changing the magnitude of k, while Eb
remains constant. If, as the energy transfer is varied, it becomes equal
to one of the phonon energies corresponding to a phonon of wave vector q
then the cross section of Eq. (4.1) becomes non-zero. As mentioned pre-
viously. the expected delta function in intemnsity predicted by Eq. (4.1)
actually turns out to be more representative of a Gaussian function. In
Fig. 6 is shown the result of the attempt to observe the TIA type phonon
characterized in Fig. 5.

An inspection of Eq. (4.1) reveals that there are a very large number
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of ways to satisfy the delta functions involving q and vj(g). The question
of how to choose the experimentally adjustable parameters was approached
by a consideration of the effect of each parameter individually on the
cross section.
1. ko

The values of ko that were used in the experiment were selected by
considering several competing effects. As stated previously, the energy
spectrum of neutrons incident on the monochromater has an approximately
Maxwellian distribution peaked at an energy corresponding to T = 50°C.
Therefore, in order to maximize the intensity of scattered neutrons ko
should correspond to T = 50°C. However, as will be shown later, one
would like ko to be quite large so that distant reciprocal lattice points
may be reached. On the other hand, the 1/ko term in Eq. (4.1) makes one
want a small ko. Another very important reason for choosing ko as small
as possible was to minimize the resolution function (14, 20). In the
final analysis more than one ko was found to be necessary.
2k

k was not really chosen but rather was determined by the choice of
other parameters, e.g., go, Q and hw,

The effect of the choice of T on the cross seckion was extremely

important for the following reasons.

The inelastic structure factor defined as

. by -W . . it ¢« Rgy? L. 4
I:Vﬁ.esg e, (g,3) e’ " =s| (4.4)

s
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appears as a factor in the inelastic coherent cross section for one
phonon scattering. For g along symmetry directions the polarization vectors
gs(g,j) are either parallel (longitudinal modes) or perpendicular (trans-
verse modes) to q. This fact allows for the arrangement of experimental
conditions so as to maximize Q T e for one polarization while simultan-
eously minimizing it for another, However, the situation is complicated
somewhat by the q dependence of the polarization vectors. That is, while
both & and e remain either parallel or perpendicular to q their relative
values change subject to the constraint imposed by Eq. (3.18).

To illustrate the behavior of the structure factor one may consider

the case where w0 = WI; then, Eq. (4.4) becomes

=2

~ . . L2
SQq - e (@) e T T (4.5)

Q2 e—2Q2<(.P. ¢ Q)2> by
S

A

From Eq. (4.5) it may be seen that there is a very strong Q (and
hence 1) dependence of the structure factor. Since the Debye-Waller fac-
tors are relatively slowly varying, Eq. (4.5) indicates almost a Q?
dependence of the structure factor. It is for this reason that omne
chooses Q to be large.

Another feature of the structure factor may be brought out if one

defines the functioms
(g,3) —23 Q 0(9 i)
a(q, = e e .
Mo

b
ﬁ Q - gl(_q,j) . (4.6)

b(g,j)

Then Eq. (4.5) becomes
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2,-20%<(@ * Q)

25
Q (a(g,3) * blgq,iN? . 4.7)

the (z) refer to (33" values of 1. Eq. (4.7) illustrates the dependence
of the structure factor on whether T is even or odd. That is, if the
structure factor for a particular polarization is large at an even recip-
rocal lattice point, then it will be small at an odd point.

In additior to the 1 dependence there is also a strong ¢ dependence
of the structure factor. To illustrate the q dependence, Eq. (4.4) may be
simplified by the neglect of the relatively slowly varying Debye-Waller
factors, the choice 17 = (0 O O)and the substitution for Q of a unit vec-

tor (Q) either parallel or perpendicular to g. The normalized inelastic

structure factor may then be defined as
| F [ yory ™ i 7;5— Q- e @1 % (4.8)
s
In Figs. 7 and 8 are shown graphs of iFJz NORM for the four symmetry
directions, The iFlzNORM curves were calculated (21) with the use of a
sixth neighbor force constant model. The behavior of the structure fac-
tor curves is quite similar to that found for B-brass (2).

There is yet another consideration that influences the choice of T
to be used to observe a phonon, and that is the employment of proper
focusing conditions (14, 20, 22, 23). Focusing effects arise because of
the imperfect collimation and finite mosaic spreads of the crystals used
in a triple axis spectrometer, Because of these two factors the observed

shape of a phonon peak is a function of the geometrical arrangement of the

spectrometer arms, In the focused condition a phonon peak will tend to be
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somewhat narrower and higher than in the defocused state, It turns out
that for energy loss processes the focused condition for transverse
phonons may be attained with g in a clockwise sense from a reciprocal
lattice point,

Once it was decided where (i.e. which value of Q) and how (energy
loss or gain) to try to observe a phonon it was necessary to program the
spectrometer tc do the constant Q experiment. This involved instructing
an on-line SDS 910 computer to calculate and punch on paper tape the
instrument angles and counting procedure. The tape was then read by a
Friden Tapereader and the information transmitted to the spectrometer.

A monitor counter (UF3 fission counter) that detected the neutrons
incident on the sample served as a means of normalizing the fluctuations
in reactor power, That is, the BF3 detector counted scattered neutrons
for the time it took a preset number of incident neutrons to pass through
the monitor counter, To eliminate spurious electrical signals that
might give incorrect values for the intensity of scattered neutrons the

counting was repeated for four repetitioms.

4. Energy gain or loss

The option of doing an energy gain vs. energy loss experiment was
almost always decided in favor of the latter, Primarily this was due to
the better energy resolution of energy loss experiments. 1In addition,
the phonon occupation numbers, n, n + 1 for energy gain and loss respec-
tively, made energy loss the better choice. The few times that energy
gain was used were because the longer ''reach' afforded by k > ko enabled

some optical phonons to be observed.
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Data Analysis:

The raw data consisted of sets of scattered neutron intensities vs.
energy transfer values for specified values of Q. Since the phonon freq-
uencies were taken to be the mean values of the phonon peaks in the inten-
sity vs, V curves it was necessary to find these mean values. Two methods
were used; the first was to simply draw a smooth curve through the experi-
mental points and decide from the shape of the curve and the background
what the phonon frequency was. The second method employed a computer pro-
gram written by Mr. T.0. Brun (24) in which the phonon peak and the varying
background were fitted to a sum of Gaussian functions of adjustable magni-
tude and position. The errors assigned to the phonons were determined by
taking account of such factors as their intensity, the variation of the
background around the phonon peak and the agreement between determinations
of the same phonon using different values of 1. A list of the phonons
retained for fitting may be found in Table 3. 1In addition to the 108 pho-
nons that were determined by the use of neutron diffraction, the three
phonons associated with the measured velocities of sound (Section VI) in
the [1 1 O] direction are also listed in Table 3., These three phonons were

also used in the non-~linear least squares force constant program,
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Table 3. Phonon frequencies and estimated errors (units of 1012Hz.)
of normal modes at 295°K

z v dv v
LA [0 0 ] TO [0 0 z]
0.150 1.61 .03 .050 4,54
0.200 2.08 .04 .150 4. 46
0.250 2.43 .04 .250 4.33
0.300 2.64 .04 .350 4.07
0.350 2.93 .06 450 3.73
0.400 3.04 .05 .500 3.48
0.450 3.15 .06 LA [¢ ¢ 0]
0.500 3.20 .04 .010 0.18
Lo [0 0 ¢] .200 3.24
0.150 4.48 .05 . 304 3.12
0.250 4,38 .03 .354 2.68
0.300 4,29 .03 .400 2.16
0.400 4.30 .06 .450 1.96
0.500 4.28 .10 .500 1.86
TA [0 0 ¢] LO [z ¢ 0]
0.250 1.92 .04 .080 4.44
0.300 2.30 .02 .160 4.20
0.350 2.61 .04 .250 3.99
0.400 2.92 .03 . 300 4.25
0.450 3.19 .03 . 350 4.58
0.500 3.48 .05 425 4.98
.500 5.27

.06

.03

.05

.05

.05

.05

.01

.05

.03

.03

.04

.03

.05

.03

.03

.08

.04

.04

.04
.05
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Table 3. Continued
[ v o v v

').'lA [z ¢ 0] 0.400 1.86 .03

0.010 0.11 0.01 0.450 1.75 .08

0.148 1.58 0.03 TZO fc ¢ 0]

0.198 1.99 0.03 0.0 4.48 .07

0.248 2.28 0.03 0.102 4.51 .05

0.298 2.29 0.03 0.202 4.60 .10

0.347 2.29 0.03 0.302 4.80 .10

0.398 2.17 0.03 0.402 4 .87 .05

0.447 1.96 0.03 LA [g ¢ ¢]

0.500 1.82 0.03 0.098 2.08 .03
TIO [t ¢ 0] 0.123 2.55 .03

0.050 4.47 0.03 0.148 2.95 .03

0.150 4,27 0.03 0.250 2.79 .08

0.250 3.96 0.04 0.300 2.58 .05

0.350 3.81 0.06 0.350 2.65 .05

0.425 3.71 0.06 0.400 2.89 .05

0.500 3.78 0.05 0.450 3.17 .05
T A e 0] 0.500 3.31 .07

0.305 0.04 0.01

0.206 1.34 0.04

0.250 l.61 0.04

G.300 1.80 0.04

0.350 1.85 0.04
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Table 3. Continued
4 v 4 v év
Lo [z ¢ ¢] TO [z ¢ ¢l
0.000 4.48 0.05 0.000 4.69 0.03
0.050 4,48 0.05 0.100 4.63 0.03
0.100 4,24 0.05 0.200 4.62 0.05
0.150 3.98 0.03 0.300 4,74 0.04
0.250 3.97 0.06 0.400 4. 86 0.05
0.300 4.37 0.07 0.500 4.90 0.05
0.350 4.69 0.08 A I3 3 ¢
0.400 4.76 0.06 0.100 1.90 0.08
0.450 4.74 0.05 0.200 2.25 0.05
TA [t ¢ ¢] 0.300 2.75 0.05
0.100 1.09 .03 0.400 3.20 0.04
0.150 1.64 0.03 0 [% % ¢l
0.200 2,12 0.04 0.200 5.04 0.08
0.250 2.63 0.04 0.300 5.00 0.05
0.300 3.04 0.07 0.400 4.85 0.05
0.350 3.20 0.05 AA [% % z]
0.400 3.25 0.05 0.100 2.40 0.07
0.450 3.33 0.06 0.300 3.65 0.10
0.500 3.37 0.07 0.400 3.40 0.10
AO [% 5 ¢l
0.100 3.75 0.15
0.400 4.60 0.10
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Analysis of the dispersion curves in terms of force constant models
began with attempts to determine the range of the interatomic forces. For
all the measured dispersion curves, with the exception of the AA, AO

11
branches in the [5 5 ¢] direction, the following relation holds;

I‘Iot 1‘
2

. N
{w?(q,3) + wi(q,3)} = L A_ cos 2mnz . (4.9)
A 0 _n B
n=0

In the above equation, the subscripts A,0 refer to the acoustic and optic
branches respectively. The variable ¢ is defined as

¢ = q/q max . (4.10)
For the AA and AQ branches (which correspond to independent vibrations

of the Y and Zn species) the equation analagous to Eq. (4.9) is

MoMp N
5 YA,0 " n:o An cos 2mng . (4.11)

The Fourier coefficients in these two equations may be thought of (25)

as interplanar force constants acting between planes normal to gq. For

the CsCl structure the Al- . .AV represent the interplanar force constants
N

between planes of like atoms. The contribution of the force constants

acting between planes of unlike atoms is contained in Ao. A list of the

An may be found in Appendix D.

The Fourier analysis involved finding the minimum number of coeffi-
cients needec to adequately describe a pair of branches of the dispersion
curves, The lowest neighbor set number appearing in the highest Fourier
coefficient gave the range of the force interactions. From such an anal-

ysis it became obvious that the dispersion curves could be fit fairly well
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by a fifth neighbor model for all branches except AA and AO in the (é é z)
direction. But for these two branches a sixth neighbor modél was found to
be necessary.

The computer program that was used to find the Fourier coefficients

was a least squares program that minimized the function

2 : 2 : _ 2 . 2 .
O oprrc(t) + VacousTictd)) (vprrc{) * Vacoustic(i))
5 OBSERVED

i
+ [v(i) 6v(i)]?

[v(i) 6v(i)]? ACOUSTIC

OPTIC
(4.12)
A list of the Fourier coefficients and their estimated uncertainties is

contained in Table 4.

Table 4. Coefficients of Fourier analysis

Dispersion A SA
Curve(s) (107dy/cm) (1084y/cm)
LA, LO [0 0 ¢] A = .46659 sA = .00288
0 0
A1 = ~.07474 GAl = ,00449
A = -.00589 §A = .00373
2 2
TA, TO [0 0 ¢] A = 42669 5A = .00049
A1 = -,03377 §A1 = ,00074
A = .00062 SA = .00073



Table 4. Continued
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Dispersion An SAn
Curve(s) 7 c
(187dy/cm) (10°dy/cm)
LA, LO [¢ ¢ 0] AO = ,50226 6A0 = ,00700
A = -,08793 SA = .00845
1 1
A = -.02063 A = .01023
2 2
TA, TO [¢ ¢ 0] A = 37836 §A = .00082
1 1 0 0
A = .02317 A = ,00117
i - 1
A = -,01770 §A = .001l1
2 2
TA, TO [z ¢ 0] A = ,46572 A = .00662
2 2 0 0
A1 = -,09010 6A1 = ,00884
A = .01287 §A = .,00860
2 2
LA, 10 [¢ ¢ ] A0 = ,50153 GAG = ,00612
A1 = ~,10209 A = .00779
L
A = .02425 §A = .00911
2 2
A = -.02980 A = .00828
3 3
TA, T0 [¢ ¢ ¢] A0 = .54245 éAO = .00233
A = -,13943 A = ,00325
1 1
A = -.00567 S§A = ,00346
2 z
A = .00578 A = .00356
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Table 4. Continued

Dispersion A 6An
Curve(s) n 6
(107dy/cm) (10°dy/cm)
11
A w0 [5 5 ¢l AO = .61351 6AO = ,00335
A = -.03612 GAl = ,00414
1
A = 01464 §4 = ,00431
2 2
11
A {3 5 ] A = 43341 6A0 = ,00008
0
A = -.00157 éA1 = ,00009
1
A = -,00128 SA = .00011
2 2

A non-linear least-squares computer program (3) was developed to fit
the twenty-four atomic force constants that appear in a sixth neighbor model.
The general form of this program was suggested by Boyter and McMurry (26).
The program finds a set of force constants by minimizing the variance ratio

defined as

N
, - v 2
variance ratio = ———E;—a- (vi(e) v1(9) (4.13)
Ny - N 2 :
D P (5v;(0))
i=1
where
ND = number of data points
NP = number of adjustable parameters
v;{e) = calculated value of the i-th data point
vi(O) = observed value of the i-th data point

o
<
s
~
[=)
~
il

error in the value of the i-th data point



45

Table 5 contains a list of the best--fit force constants for both the
fifth and sixth neighbor models along with the variance ratios for the two
models. The force constant notation that is used in Table 5 is that of
Squires (27) and Gilat and Dolling (2). An explanation of the notation
may be found in Appendix A. Figs. 9 through 12 show the experimental data
for the symmetry directions along with the dispersion curves calculated
using the sixth neighbor model. In addition, the experimental velocities
of sound which will be discussed in Section VI are also represented in
Figs. 9 through 12. A discussion of some features of the dispersion curves
will be presented in Section VII.

Table 5. Interatomic force constants (units of dy/em) for fifth and sixth
neighbor force constant models

5th 6th 5th 6th
Neighbor Neighbor Neighbor Neighbor
a; 5788 6199 ’;‘ -1134 - 600
1
gl 6723 6271 ol 645 96
1 1
a2 5242 615 att - 36 5
10 2
o’ 6244 8829 gY 0 20
11 1
a? -1042 -1261 gh - 244 143
20 0
a2 1719 2214 o® 546 1471
21 10
0> -1366 ~-1249 o’ 620 - 168
L 11
ad - 271 - 479 - B> 1223 11
11 i0
al 2641 1243 o 450 1236
30 11
uld -1409 - 202 ab 5538
31 10
B3 430 - 851 b -2631
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5th 6th
Neighbor Neighbor
ab - 723
20
ab 520
21

Variance Ratio 5th neighbor model

Variance Ratio 6th neighbor model

it

6.83

2

.24
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V. X-RAY DIFFRACTION

In this section an x~ray diffraction experiment, and its interpreta-
tion, will be considered. The purpose of the experiment was to investigate
the validity of an assumption that was made in Section III concerning the
derivation of the vj(g) relations for YZn. This assumption was that the
neutron diffraction sample was perfectly ordered. 1In order to investigate
the validity of this assumption a method of plotting the x--ray diffraction
results was devised that explicitly displays the degree of order possessed
by the sample. 1In addition, the method provides an approximate value for
the sum of the Debye-Waller factors of Y and Zn.

This section consists of three parts. The first part is a discussion
of the experimental aspects of the x-ray diffraction experiment. The
second part consists of a derivation of the method of interpretation of
the x-ray data, The third part is a discussion of the effect of tempera-
ture diffuse scattering on the results of the experiment.

1. Experimental considerations

The experiment that was chosen for this investigation was a measure-
ment of the integrated intensities of a series of {0 0 %} Bragg reflectioms.
The YZn samplie which was employed in the experiment was spark-cut from the
neutron diffraction sample so that its face was perpendicular to a (0 0 1)
direction. After spark-cutting, the face of the sample was lightly mechan-
icailly polished and then electropolished to remove any cold-worked material
present.

A General LElectric XRD-6 single crystal orienter (SCO) was the instru-
ment on which the experiment was performed, The instrument was operated in

the 0-26 scan mode. A schematic diagram of the experimental arraneement is



shown in Fig. 13. Ag radiation was employed using a 2.5 millimeter thick
g-filter of Pd. The source collimator was a 0.40 MR and the detector col-
limator was a 0.2° HR. Because of the large size of the sample (approxi-
mately 3 cm? surface area) some modifications to the SCO were made to
accommodate a special goniometer that held tie sample. The integrated
intensities were found with the use of a step~scan technique where the step
increment was 0.02°. A typical scan is shown in Fig. 14. A straight-line
background was drawn under the peaks and the integrated intensities were
found by summing the differences between the observed peaks and their
associated backgrounds.

As shown in Fig. 14 there were actually two peaks associated with
each reflection. These were, of course, due to the Kal and Ka2 components
of the Ag radiation. Because there were two peaks there was some ambiguity
in the choice of the 26 value to associate with a given reflection. This
problem was resolved in the following way.

The 26 values corresponding to the positions of the peaks for the
Kal and Ka2 wavelengths were defined to be 26I and ZOII respectively. Since

the Ku component of radiation was twice as intense as the Ka , the follow-
1 2

ing method was used to find 26 .
AVERAGE

1
26 = - . .
AV, 3[2(291) + 26111 (5.1)

Similarly. the average value of A was
L,
Ay, = E(ZAI + AII) . (5.2)

These average values were then used to find the Lorentz polarization

factors and the values of (sin O/A)z. A summary of the experimental data
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is contained in Table 6. The quantity KE 0 that is listed in Table 6

’

will be defined in the next part of this section.

Table 6. Data of x-ray diffractometer experiment

EsfleCtion IOBS ivg. sin?g K
(Counts/10 sec.) 22 E,0
002 14,183,880 9.03 0.0783 0.114
003 141,700 13.61 0.1761 7.39
004 2,007,310 18.29 0.3132 0.164
005 63,690 23.09 0.4890 5.00
006 330,780 28.08 0.7043 0.195
007 12,540 33.30 0.9584 4,88
008 50,100 38.86 1.2517 0.175
009 2,258 44,89 1.5282 3.36
0010 8,775 51.64 1.9550 0.125
0012 1,125 70.19 2.8143 0.114

2. Interpretation of x-ray experiment

Before the results of the particular experiment involving YZn are
considered, perhaps a brief review of some x-ray scattering theory is in
order, The results of this review will be used later in this section when
a derivation of the scheme that was used to interpret the x-ray experiment
will be given,

By analogy with the neutron scattering case the wave vectors of the

incident anu scattered x-rays are taken to be k and k, respectively,
L =



where ko = 2m/A. Because it is possible for an incident x-ray to create
or destroy phonons, the magnitudes of k and ko are not exactly the same.
However, since the energy of an x-ray photon is approximately 10“ev com-
pared to phonon energies of approximately 1072%ev it is an extremely gocd

approximation to take ko = k. The scattering vector Q will be defined

as
Q=k, -k . (5.3)

For the case of a static lattice it can be shown (9, 28) that the

differential scattering cross section is

& =y, | : e @8 s - 0 (5.4)
where

N = number of unit cells

Vz = volume of Brillouin Zone

T = reciprocal lattice vector

¢ = the ratio of scattered x-ray flux to the incident flux

dt = the solid angle region into which x-rays may be scattered

R, =a unit cell vector

The fs in the preceding equation are the complex scattering factors of

the form
f =f +f +1if . (5.5)

fs is the normal scattering factor and fs and fS are the real and
0 1 2

imaginary components of the anomalous dispersion corrections. The unit
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of intensity in this equation is that associated with the scattering by
a single electron under the same conditions; this unit is

4 (1 + cos?26) . (5.6)

e
rim2ct 2

Here e and m are, respectively, the charge and mass of the electron, c

is the velocity of light, r is the distance from the electron to the
point of observation and 20 is the scattering angle. The effect of ther-
mal vibrations may be taken into account by the addition of a time-depen-

dent displacement_gs(t) to R,. As in Eq. (3.12) ug is defined as

ig-(R, + R :
z gsj(ﬂ) Q(g,3) o1 (Ry + Ry) elwt 5

q,]

u =
=s

It may be shown (9, 28, 29) that with the addition of gs(t) to Bs the

differential scattering cross section then becomes

do do do
—_—— = — + . + . LI
dq (dQ)O (dQ)l (5.8)

The first term in this series is the Bragg scattering term

d - 10°*Re, 2
(E%) = N2Vz Iz £, e Ys e;g ES[ 6(Q ~ 1 . (5.9)
s

The e 'S terms are the Debye-Waller factors. LA is defined as

. 2
= s 6
Wy = 8n2 <ug> _i%__ . (5.10)

where <ui>is the mean square displacement of a type s lattice point in

a direction perpendicular to the reflecting planes. The second term,

corresponding to one-phonon processes. 1is
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. hvj (q) )
cot . - . ool
doy <y :>_- TZKE T |y p o Vs [Qeg(q,0)] oML7Es)
W] @ s 5 T o

s (5.11)
It might be pointed out that Eq. (5.11) is the x-ray analog of the one-
phonon neutron scattering cross section that results from an energy
integration of Eq. (4.1). 1In fact, the term

3
“«

. -w )e ) i1 R_
| £ e s 10veg(q. 300 ol &g |, (5.12)
s Vv
MS

might be thought of as the structure factor for inelastic one-phonon
x-ray scattering. There are higher order terms in Eq. (5.8) correspon-
ding to 2, 3, 4 etc. phonon processes, but they will be neglected here.
The x-ray scattering caused by 1, 2 etc. phonon processes is referred to
as temperature diffuse scattering (TIDS).

An inspection of Eq. (5.11) shows that, although the cme-phcnon
scattering occurs at all values of g in the Brillouin Zomne, the largest
effects occur near the reciprocal lattice points. The reason for this
behavior is that the acoustic mode frequencies approach zero at these
points. Consequently, if one tries to measure the integrated intensity
of a Bragg peak he will really be measuring the intensity of the Bragg
peak plus the intensity due to temperature diffuse scattering. Recently,
several papers (30, 31, 32) have appeared in which the observation of
scattering due to phonon processes is discussed. These papers show that
the effects of the TDS are not negligible for higher order scattering
(i.e. large Q). 1In the experiment considered here, TDS corrections were

not made for reasons that will be presented later.



For the YZn experiment, it may be secn from Ig. (5.6) and Lq. (5.9)

that the observed intensity of Bragg scattered x-rays is proportional to

[ Lf_ e e — [ (1 + cos? 28) . (5.13)

Actually the intensity is also proportional to two other factors. One

is the Lorentz factor, which, for the geometry of this experiment is

equal to (sin 26)_1 (33). The other term is the absorption factor which
was a constant for the YZn experiment (33). 1If all these factors are com-
bined, the resulting expression for the observed intensity of Bragg scat-

tered x-rays is

2 .1 + cos’ 20, 5.14
I =G lF o2 (tcos’ 20, (5.14)
OBS. ' E’Ol sin 28
C is a proportionality constant and FF 0 represents the structure factors
for the cases of even and odd values of 7 respectively. F and F are
- E o
defined (for the CsCl structure) (33) as,
= Vo v (5.15)
FE (fo e + f1 e 1) .
-W -Ww
= O ~ (5-16)
FO (fo e f] e 1) S .
S is the long~range order parameter that is defined as
g = Xa " Xa . (5.17)

and, where
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o]
I

A = fraction of A atoms on A sites

X
A

]

fraction of A atoms in the alloy

From the definition of S it may be seen that when there is perfect order

i.e. when RA = 1, then § = 1. When there is only a random arrangement

of A atoms on A sites RA = XA, and § = 0.
The tLerm (}_i;EggLEP) in Eq. (5.14) is known as the Lorentz Polari-
sin 20

zation factor and will be referred to here as LP.
To summarize the development up to this point, an expression for the
observed integrated intensity of Bragg scattered x-rays has been developed.

This equation,

Toss.

(- 2
= C IF; ol (5.18)

forms the starting point of a derivation of a method for displaying the
x-ray data of the YZn experiment. The result of this derivation will be

an equation expressing the value of the function

I

in aBs. — (5.19)
T° :
(LP) |1fge™= =S|

in terms of the long-range order parameter, the mean square displacements
of Y and Zn and (sin G/A)z. The derivation begins with the expansion of

the right hand side of ILq. (5.18).

!

(w,=w,) .
¢l 17%0

C ""ZWO P —Zwl } S?

N DA AP S 4 kY
k.0 C{,foI e + ![1; c K] 2Re(f0f1’)e

(5.20)
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The (x) refer to (gggn) reflections. It may be noted that S* is con-
tained as a factor for both even and odd reflections in Eq. (5.20). In
order to write Eq. (5.20) in this form the following convention was
adopted. For even reflections the symbol S is to be interpreted as 1:
for odd reflections, the symbol S is defined as the long-range order pa-
rameter of Lg. (5.17). The reason for this possibly confusing notation

is to eliminate the writing of unnecessary equations, and also, to allow

the treatment of the even and odd cases in a unified manner. If e—2wo
is factored from Eq. (5.20) the result is
i y N p : | o =2(wy-wg)
L11~E)Oid=L{]fO}’-+ IfI}’-e 1o
1 2Re(f £ *xye” (VITW0) )Mo g2 (5.21)
01

It will turn out to be of advantage to expand the exponentials involving
(w1 - wO) in a Taylor series and keep only the leading terms. The just-
ification for keeping only the leading term may be seen bty considering

what (w1 - wo) is. By definition, (Eq. (5.10))

W - W = 87T2(<U2 > - <p? >)§_1.I}.2_0_ . (5.22)
i 0 12 02 X

The subscript z on the u? indicates a mean square displacement normal

to the {0 U &: planes. For cubic materials <u?> is isotropic, and so
the projection of -u~ along a [0 0 &] direction is <u?~/3. The rea-
son that only the first term in the expansion of (w - w ) need be

1 0

retained is that. experimentally (34). the values of <u®> for metals at

room temperature are found to lie in the range (0.01 - 0.1)(A°) . In
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~addition, it has also been found that for crystals composed of more than
one kind of atom, the differences in their <u”: values is small at room
temperature (34). In any event, since (w1 - wo) is proportional to
(sin 8/1)2 there will be a range of (sin 6/A)2 for which the approxima-
tion is wvalid.

If the expansion of the exponentials is carried out, Eq. (5.18)

yields

T

OBS 1 Lo 1o ,

22 = C{[|f {2 + {f |2 & 2Re(f f *)]
LP | 0" | 1i 0 i

2

- @ - w) L2 12 r 2me(e £ 013 8% (5.23)

In order to put Eq. (5.23) in a more useful form, both sides of the

equation will be divided by the quantity

iT*Rg;2 |
=s|° = ;fOJZ + {fliz + 2Re(f0f1*) . (5.24)

|Zf e
s
In this case Eq. (5.23) becomes

I
0BS

={l-(w -w)
, i1*R L 0
LP|2f e — —3|2

-2w

21E71% £ 2Re(ff %) o
c . (5.25)

[ 1} s?e

But

2:f 2 1 2Re(f £ %) = ‘1f e'i'Rg)
. S

q 1

i (VAR 0 1 (5.26)
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Therefore, the right hand side of Eq. (5.25) may be expressed as

£q1%2 = |£,]? -2w
1- o -w) - ol 1] s2e S0¢ (5.27)
|2f elr'Rs |2
s
It is convenient to make the definition
ifoiz - {fllz
= K (5.28)

£ |2+ |f |2 ¢ *
N | 1I 2Re(fof1)

where, as usual, the E,O refers to even and odd reflections respectively,
It may be noted that a table of values of KE,O for the YZn experiment are
contained in Table 6.

The values of KE,O in Table 6 were calculated with the use of normal
scattering factors (35) and anomalous dispersion corrections (36) which
were computed on the basis of relativistic Dirac-Slater wave functions.

In addition, the K were calculated with the assumption that an

Sy
Y atom was at the position (0 O O)aO/Z and a Zn atom at the position
(11 l)a0/2. This assumption, of course, is arbitrary. If the opposite
convention had been used the values of KE,O in Table 6 would have to be
replaced by their negatives.

The x-ray data will be plotted in the form of the natural logarithm

of the left hand side of Eq. (5.25) vs. (sin 6/A)2. The logarithm of the

For the range where (w1 - wo)-(l - K ) is small, the &n in
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Eq. (5.29) may be expanded in a Taylor expansion. If the logarithm is

expanded, and Eq. (5.27) simplified, the right hand side becomes

_ - - _ 1 _
[(wO w1)+(wo wl) KE,O] 2[(w0 w])

(1-1<E O)]2+2£nS+ILnC ) (5.30)

In order to explicitly bring out the (sin 6/A)2 dependence, the quan-

tity B, will be defined as
1

YA
2
B, =58T7 «y2> = w, (A2 ) . (5.31)
sin<6

With this definition, the final -result of this derivation may be written

as

I .
on 0BS =-[(B +B)+ (B -B)K_ _)5inZg
0 1 0 i E,O A2

—
(LP) | £ Sel-T— S5 |2

21 - - 2 (sinégy2
2[(BD Bl)(l KEO)] (8in€6y2 4 20n S + &n C

32

’

(5.32)
Eq. (5.32) is the expression that will be used to interpret the experi-

mental data of the YZn experiment.

The qualitative behavior of Eq. (5.32) may be easily seen if it is

written in the form
y = mx + nx® + b (5.33)

where
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Loss

«
it

)
=]

it R
(LP)]ZfSell—Sl2

3
L}

-[B +B)~- (B ~-B)K ]
0 1 1 0" E,O

n=-3[(B -B)1L-K )]
0 1 0

b

b=22&n S+ C
s 2
sin<H6
X = (——;:T—) . (5.34)

Two important features are illustrated by Eq. (5.34). First, for
small values of (sin 6/A)2 the slope of y(x) is determined by m. Since
K and KO have very different magnitudes (Table 6) m will also be quite
different for even and odd reflections. This fact will allow for the
identification of the species possessing the larger Bi' The second point
is that the difference in the y(0) values for the odd and even curves will
identify the wvalue of the long-range order parameter.

There are two cases to consider; the first is BO > Bl, and the second
is B0 < Bl. The qualitative behavior of y(x) for both of these cases is

illustrated in Fig. 15. If B > B then, since KO > K_, the initial slope
0 1

E’

of the curve of odd reflections will be greater (more negative) than the

slope of the even curve. Alternatively, if B < B , the initial slope of
0 1

the odd curve will be smaller (less negative) than the slope of the even

curve. Also. at x = 0, the difference of the intercepts of the even and

odd curves is just twice the logarithm of the long-range order parameter.
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Therefore, within the framework of the approximations that have been made
in this derivation, it seems that a plot of the type shown in Fig. 15
will yield not only the value of the long-range order parameter, but will
also identify the species possessing the larger Debye-Waller factor.

Fig. 16 is a plot of the YZn data treated in the above manner. Two
facts appear to be obvious from an inspection of Fig. 16. First, Bl
seems to be larger than BO. Second, the curves representing the even
and odd numbered reflections appear to have a common intercept. This
second point required further investigation since it seemed possible that
instead of the two curves having a common intercept, the situation might

have been as shown in Fig. 17. That is, (o) might have been consid-

YobD
erably less than yEVEN(o) which would have indicated that the long-range

order parameter was less than one.

To investigate this possibility, the functiony (x) -y DD(o) was
D 0)

oD
plotted for a series of values of (B - B ). y x) -y (o) is given
1 0 0DD 0DD
by
X) - o) = - B +B - (B - B )K ]Jx
Yopp () = Yo (@) %= [(B +B) = (B = B)K]

- %[(BO - B - k)P (5.35)

The quantity (B0 + Bl) that was needed for these graphs was obtained
from a measurement of the slope of the even curve and the assumption
that the nx? term was negligible for x < 1. Since KE z 0.2, this assump-
tion seemed to be warranted. From a measurement of the sdope of the even

curve it was found that
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[(B +B) - (B - B )X ]=1.45%0.05 . (5.36)
0 1 1 0 E

Or, since KE z 0.2 and, in all likelihood, (B1 - Bo) < 0.5 it follows

that
0 (B -B )X 0.1 . (5.37)
1 0 E
Therefore, it is possible to put the following limits on (B0 + Bl).
1.40 ¢ (B + B ) 5 1.60 (5.38)
0 1

With the approximate value of (B + B ) from Eq. (5.38) a series
0 1
of y (x) - vy (o) curves were plotted. Since B and B were not
ODD 0DD P 0 .
known, several sets of B0 and B1 values were chosen (consistent with

Eq. (5.38)) and a series of yODD(x) ~ yODD(o) curves were plotted. The

maximum value of yODD(x) -y D(o) from among the curves that were

(0)))
plotted was 0.12. Since the ordinate of the (0 0 3) reflection, y(0 O 3),

must be less than or at most equal to the maximum value of yODD(x), it

follows that

yODD(o) 2 y(O03)~-0.12 . (5.39)

From Fig. 16 it may be seen that y(0 0 3) - 0.12 differs from the
intercept of the even curve by approximately 0.03. Therefore, twice the
logarithm of the long-range order parameter can at most be 0.03 or, con-
sequently, the long-range order parameter is indeed very close to 1.,0.

3. Temperature diffuse scattering effects

At the beginning of this chapter, mention was made of TDS and its

effect on measured integrated intensities. Also, it was stated that no
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corrections for TDS were made to the YZn data. There were two main
reasons for not trying to correct the measured integrated intensities for
TDS effects. First, the analysis given above to determine the long-range

order parameter by plotting the function

I
OBS
2n . (5.40)

iteRg 2
(Lp) |Zf e’ =S|

Vs, (§%§Q>2 was dependent on only the reflections up to (0 0 6). Since
the TDS increases with the reflection number the errors introduced by
using only these lower order reflections were assumed to be small. Second,
there seemed to be no realistic way of assessing the magnitude of the TDS
effects for the experiment described here. This is so because a monochro-
matic well-collimated x-ray beam was not used for the experiment.

In the case of a monochromatic, well-collimated incident beam, it is
possible to calculate the first order TDS by performing the sum indicated
in Eq. (5.11) over the effective volume in reciprocal space (31, 32, 37).
By VYeffective volume in reciprocal space" is meant the locus of points
defined by the Q vectors that not only satisfy Eq. (4.2) amd Eq. (4.3)
but also have associated sin 6 values that correspond to the 26 of the
x-ray detector. However, for the experiment described herxe the effective
volume received a spectrum of wavelengths of unknown distribution, thus
making the integration impossible,

However, it is possible to investigate in a qualitative way what
effect the inclusion of TDS might have. Here only one-phonon scattering,
which is expected to be the largest part of the TDS will be comsidered.

From Eq. (5.11) it may be seen that the integrated intensity due to one-
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phonon scattering will be of the form

(hv.ggg B
I(l) = NQ2 I coth\ 2kT l T fe ]
. s S
e
it Rg 2
ei (g,3) e~ | d3q . (5.41)
s

where the integral is over the effective volume of reciprocal space. It
is true that the effective volume is a function of the reflection number,
but the largest contribution to the integral comes from the very small ¢
region which is common to each reflection. Therefore the integral will be
taken to be a constant. The ratio of the TDS intensity to the Bragg inten-

sity is then (Appendix E)

I )
E__Lll.= a'Q2 = a Ei%EQ . (5.42)
BRAGG

where a is presumably much less than one. By definition

Toss = srace * ltps |, (5.43)
or

I =1 1+ in20 . 5.44

oBs ~ 'race ! T 2 2530 (5.44)
Since a is very small it is a good approximation to take

4 5in?6
= Y .
Los = sracc & * ' (5.43)

If Eq. (5.34) is rewritten to include the TDS term, it then becomes
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y =m'x + nx2 + b (5.46)
where

m' = - [(B0 + Bl) - (B1 - BO) KE,O - a] . (5.47)

As before, m' = 1.45 + 0.05. If Eq. (5.30) is rewritten to include a,

then,
1,40+a g (B +B ) g 1.60+a (5.48)
0 1

that is, the effect of a is to increase the value of (B0 + Bl) over its
uncorrected value. This result is consistent with those of Buyers and
Smith (38) and Nilsson (39) who also found that taking account of TDS
increased their apparent Bi values.

The primary reason for doing the x-ray experiment described above
was to determine the wvalue of the long-range order parameter. However,
as a by-product, the experiment also yielded the approximate value of
(B0 + Bl). It was decided to try to calculate B0 and B1 from first prin-
ciples and compare them with the experimental result. The calculation,
which utilized a result of Maradudin, Montroll and Weiss (9) consisted of

evaluating the expression

hv; (q)
2 .
wl> = b 3 (@) coth —o— (5.49)
2Ng D35 ()

In this situation <u§s> is the mean square displacement of an S-th type
atom in the o—~th direction. The polarization vectors and eigenfrequencies

were calculated using the twenty-four force constant model described in
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Section III. Because of the symmetry of the CsCl structure the sum in
Eq. (5.49) which is over all phonon wave vectors in the Brillouin Zone
can be reduced to a sum over vectors in the irreducible 1/48 Brillouin
Zone. When the calculation was performed for 4960 wave vectors in the

irreducible zone it yielded

<u? > = ,0311 (A°)
0z
<u?z> = ,0301 (A°) (5.50)
or
B, = B = .819 (A°)
B, = Bl = .793 (A°) . (5.51)

It is interesting to note that the calculated value of (BO + Bﬁ)
1
is in good agreement with the experimental result. However, the rela-
tive magnitudes of BO and B1 are in disagreement. The source of this
disagreement is not known but may be due to anharmonic effects which

were neglected in deriving Eq. (5.49).
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VI. VELOCITIES OF SOUND

One of the experiments which was a part of this thesis was the
measurement of the velocities of sound waves in YZn. There were four
reasons for doing this experiment. First, a measurement of the velocities
of sound (together with a knowledge of the lattice parameter) made pos—
sible a calculation of the elastic constants of YZn. This calculation is
discussed below. Second, from a knowledge of the elastic constants it is
possible to calculate a value for the Debye temperature at 0°K, The
calculated value of OD(0°K) is presented below. The third objective was
to find the limiting values (as g - 0) of the slopes of the acoustic
branches of the dispersion curves. The reason for finding these slopes
was to refine the fifth and sixth neighbor force constant models that
were discussed in Section IV, That is, the measured velocities of sound
were treated in such a way (which is discussed below) that they were able
to be used in the non-linear least-squares fitting program of Section IV.
The inclusion of the velocities of sound data in the fitting program
insured that the fifth and sixth neighbor force constant models accurately
described the important small q region of the dispersion curves. The
fourth reason for measuring the velocities of sound was that a simple,
first neighbor, force constant model'was devised that used the measured
velocities of sound. It is to be emphasized that this mddel (which will
be referred to as the elastic constant model) is completely independent of
any other experimental measurements. The derivation of the elastic
constant model will be given in this section. Several lattice properties
were calculated on the basis of the elastic constant model. They will be

discussed in Section VII.
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Three independent velocities of sound were determined by measuring
transit times of pulses of ultrasonic waves along a [1 1 0] direction in
a sample of known dimension. Specifically, the pulse superposition tech-
nique (40, 41, 42), was used to measure the transit times. This technique
consists of exciting a quartz transducer to oscillate at its resonant
frequency (approximately 10 MHZ) for a time t1 after which it is passive
for a time t2 > tl. The excitation of the transducer produces a pulse
which transverses the sample, is reflected at the opposite face and returns
to the transducer at a time t3. During t3 other pulses are emitted by the
transducer with frequency 1/t2. If tz is adjusted so that t2 = nt3, where
n is an integer, then resonance will exist in the sense that echoes from
successive pulses will arrive at the transducer at the same time. If the
applied voltage to the transducer is switched off for a time, the echoes
incident on the transducer will produce a signal that may be amplified
and displayed on an oscilloscope screen. In fact, t:2 is found by observ-
ing the oscilloscope screen and maximizing the amplitude of the echoes.

The ultrasonic measurements were made on a sample which was cut from
the same crystal that was used in the neutron diffraction experiment. The
crystal was spark-cut to have two parallel faces normal to a [1 1 0] direc-
tion. After spark-cutting, the sample was mechanically polished to provide
a suitable surface for bonding to the transducer. Two types of bonding
agents were employed, Nonaq stopcock grease and Salol (phenyl salicycate),
for the longitudinal and transverse polarizations respectively.

The transit times at room temperature were (in . seconds) T; = 6.626

+0.03, T = 10.376 * 0.04, T = 14.493 1 0,06. The subscripts L, 1 and 2
1 2

refer to atom vibrations in the [1 1 0], [0 O 1] and [1 1 0] directions
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respectively, Values of the velocities of sound were found by dividing
twice the sample thickness (2.9890 cm) by the transit times. With the

use of the relations (43)

2 _ 1
pve = 2 (C + C + 2C )
L 27, 12 by
pv2 = C
1 L
ov2=L%¢¢ -c¢c ) . (6.1)
2 2 11 12

where p is the density, the elastic constants were found to be (in units
of 101 dynes/cm?) C11 = 9,154, C12 = 4.378 and Cuu = 4.658. Numerical
evaluation of the density was based on a value of a0 = 3,573 A° for the
lattice parameter.

From a knowledge of the velocities of sound it is possible to calcu-
late a value for the Debye temperature at 0°K. This calculation involved
the use of the extensive tables of Overton and Schuch (44). From these
tables it was found that GD(O°K) = 291.1°K.

The velocities of sound were also used to refine the fifth and sixth
neighbor force constant models mentioned in Section IV. It was necessary
to use the velocities of sound because, as may be seen from Figs. 9 - 12
there were no measured phonons below a frequency of 1.0 THZ.

The reason that lower frequency phonons were not measured by inelastic
neutron scattering was that the energy resolution of the triple axis
spectrometer made 1t impossible to do so. That is, attempts to observe
low frequency phonons were hampered by the effects of the elastic Bragg
peaks centered at the reciprocal lattice points. However, the low temp-

erature lattice properties of a material are strongly dependent on this
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low frequency portion of the dispersion curves. Therefore, in order to

be able to make a meaningful calculation of the low temperature specific
heat and Debye temperature, it was necessary to determineAthe slopes of
the dispersion curves in the limit g -~ 0. In the limit ¢ - 0 the slope

of an acoustic branch of a dispersion curve is proportional to the cor-
responding velocity of sound. The mathematical statement of the linearity

of the vj(g) relations for small q is

vy = vjq/Zn . (6.2)

In Eq. (6.2) the quantity vj is the velocity associated with a phonon of
frequency vj(g) and polarization index j. If Eq. (6.2) is written in
terms of the dimensionless variabler(which was defined in Eq. (4.10))

the equation becomes, for g in the [1 1 0] direction

/T v;

ap

vj(c) = . (6.3)

The above equation was used to calculate vj(g = 0.005) for the three
polarizations. These three values of vj(g) were then used as input data
for the non-linear least-squares computer program of Section IV.

One final use was made of the velocities of sound. As stated previ-~
ously one of the objectives of this thesis was to test the effectiveness
of simple, easily obtained force constant models in predicting lattice
dynamical properties. A common experiment for which a large quantity of
results exist in the literature is the measurement of the velocities of
sound. It was decided to devise a force constant model for YZn based

entirely on the measured velocities of sound.
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Since the velocities of sound experiment yields three independent
velocities, the force constant model derived from these velocities could
have no more than three parameters. For the CsCl structure a general
first neighbor model contains two interatomic force constants; a general
second neighbor model contains six. Therefore, the model that was chosen
to describe YZn was a first neighbor model. This model will be referred
to as the elastic constant model.

The two force constants that are involved in a first neighbor model
were found by first linearizing the three acoustic vj(;) relations for
the [1 1 0] direction (see Appendix F) in the limit ¢ - O, and then lin-
early least-squares fitting these three expressions to find the two force
constants. The linear least-squares fitting was done because the two
force constants were over-determined by the three velocities of sound.

If the linearized expressions in Appendix F are simplified to include

only the first neighbor force constants the expressions become

L2
EJZ M, + M)

1 1
4(&1 + Bl)

\)?

— _ 1

22 (Mo + Ml) = 4a

\)2

2 1 1

I

But from Eq. (6.3)

2 2
Vi 2

2 anl .
& 0 (6.5)
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Therefore, the three equations become

v2
L 1 1

— My + M) = +8

2a; 1 1

v2
1 1

- (MO + Ml) = o

2aO 1

v2

M o+ M) = o) - gl (6.6)
2ag 0 1 1 1 ’

The best~fit values of the two parameters were found to be ai = 8075,
8l = 3980,
1
In the next section a number of lattice properties that were calcu-
lated on the basis of the elastic constant model will be discussed and
compared with experiments and similar calculations for the fifth and sixth

neighbor models.
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VII. CALCULATIONS AND SUMMARY
In the previous sections the theory and experiments concerning some
lattice properties of YZn have been described. Here, the results of a
series of calculations of additional properties will be presented.

1. Phonon dispersion curves

Two distinct force constant models have been used to calculate the
phonon dispersion curves of YZn. They were the sixth neighbor and the
elastic constant models. The sixth neighbor model was explained in
Section IV and the dispersion curves appropriate to that model are shown
in Figs. 9 - 12. 1In Section VI the elastic constant model was derived
and it was stated that a number of lattice properties were calculated on
the basis of this model. The first of these properties that will be
discussed are the phonon dispersion curves. In Fig. 18 are shown the
dispersion curves that were calculated from the elastic constant model.

A comparison of the experimentally determined dispersion curves with those
of the elastic constant model suggests the following conclusions. The
qualitative aspects of the dispersion curves are reproduced quite well by
the simple model. However, for frequencies greater than 1.5 THZ the
quantitative agreement is not very good. In particular, the optical
branches predicted by the model are quite different from those that were
found experimentally. A consequence of the simplicity of the elastic con-
stant model is that it introduces degeneracies into the dispersion curves.
An example of this degeneracy is the fact that the longitudinal and trans-
verse branches of the dispersion curves for the [0 0 ¢] direction are

degenerate for this model.



V IN THZ

T T 1
u (r12t]
70
~_flo e
a LA
30 LA TiA C . B n .
JA LATA
20} s - . = . .
1ot - - - - - .
I i ] | | S | L | 1 | I 1 L1
Ol Q2 03 04 05 01 02 03 04 05 05 04 03 02 01 0l 02 03 04 05
REDUCED WAVE VECTOR COORDINATE ([
Fig. 18. Dispersion curves calculated from the elastic constant model

8



83

2. Frequency distribution function

The frequency distribution function g(v) was calculated with the use
of the extrapolation method that was originated by Raubenheimer and Gilat
(45, 46). This method involves the diagonalization of the dynamical
matrix on an evenly spaced mesh of points in the irreducible section of
the Brillouin Zone. The eigenfrequencies for any point inside the cube
surrounding a mesh point are fovnd by linear extrapolation. For a partic-
ular cube, the number of phonons having a frequency between v and v + &v
is found by calculating the volume between the two corresponding constant
frequency planes. The frequency distribution for the solid is obtained
by summing the contributions from all the cubes in the irreducible zone.
In order to use the computer program of Raubenheimer and Gilat it was
necessary to modify it to include sixth neighbor interactioms.

In Fig. 19 is shown the frequency distribution function that was
calculated at 5167 points in the irreducible zone of YZn using the twenty
four force constant model described in Section 1IV.

All of the Van Hove singularities (47) that were expected from the
measured dispersion curves appear in g(v) and are listed below.

a. Zone boundary T A(0.5, 0.5, 0)
2

b. T2A branch at ¢ ~ 0.36
c. TlA branch at ¢ = 0.31
d. LA(z ¢ ) branch at ¢ = 0.31
e. LA(¢z ¢ ¢) branch at ¢ = 0.19

f. Zone boundary TA(0,0,0.5)
g. Zone boundary T10[0.5,0.5,0]

h. LO[¢ ¢ O] branch at ¢ ~ 0.24
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i. Zone boundary LO[O, O, 0.5]

j. Origin

k. Zone boundary LO, TO[D0.5, 0.5, 0.5]
1. Zone boundary LO, T?O[O.S, 0.5, 0]

Fig. 20 shows a plot of g(v) for the first neighbor elastic constant
model that was described in the previous section. The primary reason for
presenting tnis figure is to contrast it with Fig. 19. However, as will
presently be shown, these very differeant g(v) functions predict very
similar specific heat curves. The Van Hove singularities for the first
neighbor model are also identified below.

a. Zone boundary LA, TZA[O.S, 0.5, 0]
b. LA branciu [g ¢ 0] ¢ = 0.37

c. Zone boundary, all acoustic modes
d. Zone boundary, all

e. LO[zzcz]l g = 0.37

f. Zone boundary LO, TZO[.S, .5, 0]
g. Origin

3. Specific heat

The specific heat at constant volume was calculated from the

expression
(El.\i)z ll\)/kT
C,(T) = 6k | KT e “g(W)dy
0 hv 2
(e ¥T 1) (7.1)

Fig. 21 shows a plot of CV(T) for both the elastic constant and sixth

neighbor models. The similarity of the two CV(T) curves that were obtained
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from the very different g(v) functions provides an indication of the
insensitivity of CV(T) to the g(v) that is used.

3. Debye temperature

The Debye temperatures that were calculated on the basis of the
elastic constant and sixth neighbor models are shown plotted in Fig. 22.
The calculation of the Debye temperatures involved the use of a computer
program (24) that fitted the calculated specific heat of Eq. (7.1) to

the function

—dx (7.2)

At 0°K the calculated Debye temperatures for the first and sixth neighbor
models were, respectively, 273.0 and 290.6 °K. It may be recalled that
the value of GD(O°K) that was calculated from the velocities of sound was
291.1°K.

An interesting feature of Fig. 22 is that, although the low tempera-
ture behavior of SD(T) is quite different for the two models, for tempera-
tures greater than 100°K, OD(T) is essentially the same for botin. A
temperature of 100°K corresponds to a frequency of only 2.08x10'2 Hz
whicih is well below the large peaks in the g(v) functionms.

4. Mean pquare displacements

In Section V, mention was made of the calculated values of the mean
square displacements of the Y and Zn atoms. A feature of the mean square
displacement calculation that was not mentioned in Section V was that it

was possible to separate the mean square displacement of an atom into its
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acoustic and optic contributions. That is, since the mean square dis-
placements are caused by both acoustic and optic phonons, it is possible
to perform this sum for each type of phonon individually. In the case of
the elastic constant model there is a definite gap between the acoustic
and optic branches of the dispersion curves. This can easily be seen by
an inspection of Fig. 19. For the sixth neighbor model, however, there is
no gap between the acoustic and optic branches but rather g(v) becomes very
small at about v = 3.55x10'2 Hz. The lack of a gap for the sixth neighbor
model has the effect of introducing a small error into the calculation of
the relative magnitudes of the acoustic and optic contributions to <ul>,
However, the sum of the two contributions is independent of the absence of
a gap.

A series of calculations of the mean square displacements of Y and Zn
were made with the use of the sixth neighbor model. The calculations were

performed for diSferent numbers of points in the irreducible zone. Table 7

contains the results of these calculations.



Table 7. Mean square displacements of Y and Zn in units of 1018 cm

91

2

the (0 0 1) direction using the sixth neighbor model

in

# of points

in reduced <u? > <yl > <u? >
zone Y ACOUSTIC y OPTIC Y TOTAL
35 0.603 0.062 0.665
84 0.696 0.070 0.767
220 0.781 0.078 0.859
680 0.857 0.085 0.942
1540 0.899 0.089 0.988
2925 0.925 0.092 1.017
4960 0.944 0.093 1.037
<w? > <«w? > < >
Zn . ACOUSTIC Zn  OPTIC Zn  TOTAL
35 0.403 0.241 0.644
84 0.467 0.276 0.743
220 0.524 0.307 0.832
680 0.577 0.335 0.913
1540 0.606 0.351 0.957
2925 0.624 0.361 0.985
4960 0.636 0.367 1.004
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Two features of this table seem to be significant. First, the
relative magnitudes of the acoustic and optic contributions to the mean
square displacemént are quite different for Y and Zn. While (to the
authot's knowledge) there is no basis for predicting these quantities, it

does seem reasonable that

2 2
Uy’ oPTIC < “YZn”OPTIC (7.3)

from a consideration of atomic masses. Second, the rate of convergence
of the calculated displacements was rather slow. This fact seems to add
doubt as to the validity of the Debye-Waller Factor calculations of
Buyers and Smith (38). In their paper, Buyers and Smith attempted to
calculate the mean square displacements of Na and Cl for only 1000 points
in the entire Brillouin Zone. Using 1000 points for the entire Brillouin
Zone in the case of the CsCl structure would result in only about twenty
points in the irreducible zone. As can be seen from Table 7 this would
have resulted in mean square displacements that were much too small.

Mean square displacements were also calculated using the elastic
constant model. For a mesh of 4960 points in the reduced zone the results

were (in units of 10718 cm?)

2 - 2 -
“Yy”acoustrc - 0-837 <uz,>acoustic = 0-°39
< 2 = ‘ 2 =

UY>OPTIC 0-091 <uZn>0PTIC 0-393
<wu?> = 0.928 <u? > = 0.932
Y~ TOTAL Zn TOTAL
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It is interesting that the same qualitative behavior of the acoustic
and optic components is exhibited even by this simple model, although the
magnitudes of the displacements are about 107% smaller than were found with
the sixth neighbor model. The same slow convergence of the displacements
with respect to mesh size was also observed for this simple model.

D. Elastic constants

Altnough the elastic constants of YZn were measured as described in
Section VI, an attempt was also made to calculate them using a sixth
neighbor model. The force constants for this model were obtained from
the non-linear least-squares fitting program of Section IV. Input data
for the program consisted of the 108 phonon frequencies and wave vectors
listed in Table 3. The variance ratio for this set of data was 2.22. 1In
order to express the elastic constants in terms of the force constants it
was necessary to solve Eqs. (6.1) and (E. 9, 10, 11) for the elastic con-

stants. The results were

(@]
n

‘l;{aal +a2 + a2 + 202 +2a% + 83 + 803 + 4ad + 4ad
2a, 1

11 10 11 20 21 10 11 30 31

+ 220" + 44a" + 120° 4+ 1205 4+ 4ab 4+ 40® + 8ab® + 8ub }
1 2 10 11 10 11 20 21

1. ,
C_=i+-2a! + 48! - a? -0o? - 203 - 203 - 223 - 243 + 433
12 1 1 20 21 10 11 30 31 30
+ 483 - 2a% - 200" + 4B8Y% + 248% - 45 - 4u® + 88°
31 1 2 1 2 10 11 10
+ 885 - 4ab - 4a®

11 20 21
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C =_L {4al +48L + a2 +0a2 +a2 + a2 + 6a3 + 6a3 + 203
Lt 2a0 1 1 10 11 20 21 10 11 30

+ 203 + 483+ 483 + 200" + 240" + 4B% + 248" + 8a®
31 30 31 1 2 1 2 10

+ 8u5 + 885 + 88! + 4a® + 4a® 4 4ab + 40b ) (7.4)
11 10 11 10 11 20 21

Upon substituting the force constants and evaluating these expressions

the elastic constants were found to be (in units of 10!! dy/cm):

C =9.83
11
C = 4.255
12
C = 4.665
Ly
This is to be compared with the measured values of C = 9.154, C L= 4.378

and Cuu = 4,658. It is felt that the calculated and measured values of
the elastic constants are in fairly good agreement considering that no
phonons were measured below v = 1.0x1012 Hz.

6. Restoring force

In the previous sections, three force constant models have been con-
sidered. They were the elastic constant, fifth neighbor and sixth neighbor
models. These three models were found to have a common characteristic that
was thought to be of some interest and so will be discussed here. This
characteristic follows from a consideration of the restoring force experi-
enced by an atom when it is displaced from its equilibrium position. From

Eq. (3.11) tihe general expression for the force on the S$-th atom in the
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L-th unit cell is

Fo= -, I,

22| ) ) |l
sQ 2 »S )8 ¢(18( S8 )UB(Q S ) (7‘5)

The restoring force dn the (%,s) atom that results from its displacement
a distance t is the same as the force the atom experiences when the sur-—
rounding lattice is displaced by -t. Of course, within the framework of
a given force constant model, the lattice surrounding an atom is repre-
sented by only those neighboring atoms that are treated in the model.

Therefore the force on the (&,s) atom cCue to a displacement x is

8y00) (7.6)

1

sx p',s',8 a

L2 1ol -
F z ¢ B(QQ »ss') (1 658

For a sixth neighbor model the force is

Fé = 2{4(al + o + 2a") + (@2 + 22% ) + 20203 + a3 )
X 1 1 2 g 20 ig 30
+ 4a® + (a® + 2a° ) (7.7)
1o 10 20

The index s has been replaced by ¢ in Eq. (7.7) to be consistent with
the force constant notation of Appendix A. As before, o = 0; 1 corres-
ponds to an Y or Zn atom, respectively.

The calculated values of F and F for the three force constant

0x 1x
models are listed in Table 8.



Table 8. F and F for three force constant models

0x 1X
Elastic Fifth Sixth
Constant Neighbor Neighbor
Model Model Model
F 64,600 61,208 61,558
0x
le 64,600 67,408 67,788
(F +F ) 129,200 128,616 129,346
0x 1x

There are several interesting features of this table. First F  and
0x

F  have very similar respective values for both the fifth and sixth neigh-
1x

bor models. This fact is particularly remarkable in view of the rather
different values of the individual force constants.appropriate to the two
models. That is, even though the individual interatomic force constants
are very different for the fifth and sixth neighbor models (Table 5) the
particular linear combination of interatomic force constants of Eq. (7.6)
is essentially constant.

The fact that Fox = le for the elastic constant model is a conse-
quence of tne simplicity of the model which requires the forces on each
atom to be the same.

The relative values of FOx and F are consistent with the mean

1x

square displacement calculations. For the elastic constant model F = F
0x 1x

and the mean square displacements were also essentially the same. For the

sixth neignbor model F < F and, consistent with this fact, it was shown
0x 1x

earlier in this section that <u§> > <u§ >,
n
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Pernaps the most unexpected result of these calculations was the
fact that (Fox + le) was quite constant for the three models. A
theoretical reason for this result was sought for but was not found.

Une additional observation concerning force constants may be
made from a consideration of Eq. (7.7). It is possible, from Eq. (7.7) to
make a quantitative estimate of the importance of the first neighbor inter-
actions in determining the force on an atom. For example, in the sixth
neighbor model, the contribution of the €first neighbor term to FO is

X
approximately 807% of the total. The contribution of the first neighbor
term to F’x is approximately 73%. Therefore it would seem that even
i

though some of the force constants associated with distant neighbors are
quite large (eg. a?o = 5538 dyne/cm) the linear combinations of Eq. (7.7)
are dominated by the first neighbor interaction.
Z;' Summary

A review of the results of the experiments that were performed on
YZn suggests the following conclusions. The neutron diffraction and veloc-
ities of sound experiments indicated that a sixth neighbor model employ-
ing twenty-four force constants was needed to satisfactorily describe the
prnionon dispersion curves. However, the large magnitude of the sixth neigh-
bor force constants coupled with a Fourier analysis of the sums of the
squares of the phonon frequencies along symmetry directions indicated even
longer range forces were present. It was thought that these long-range
forces that were needed within the framework of the Born von Karman theory,

might indicate that YZn was a superconductor. The experiment chosen to

test this nypothesis was a measurement of the differential magnetic suscep-
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tibility as a function of temperature. This experiment demonstrated
that there was no evidence of a superconducting transition in tests to
temppratures as low as 1.2°K.

In the Born von Karman theory derivation of the v.(g) expressions

J

it was assumed that the sample was perfectly ordered in the CsCl structure.
This assumption was verified by a measurement of the long-range order
parameter S by means of an x-ray diffraction experiment. In addition, this
experiment provided an approximate value for the sum of the Debye-Waller
parameters of Y and Zn.

he question of the efficaciousness of the elastic constant model in
describing the lattice properties of YZn has been considered and has led
to the following conclusions. The lattice spedifiic heat is described very

well and 6_{T) and the mean square displacements fairly well by this simple

i
model. Qualitative features of the dispersion curves are contained in this
model but quantitative features, especially for the optical branches are in
some disagreement with the experiment. However, it will be recalled that
this model is based only on the three measured velocities of sound, that is
the two parameters ai and Bi were fit to a linearized version of a general
first neighbor model. In light of the crudeness of the model it seems to
do a rather good job of predicting lattice properties.

Finally, an expression for the restoring force on an atom that is dis-
placed from equilibrium was derived. This expression indicated that even

for a general sixth neighbor force constant model the first neighbor inter-

actions accounted for approximately 75% of the calculated restoring force.



10.

11.

12.

13.

14.

15.

16.

18.

99

VIII. LITERATURE CITED

G. Dolling and A.D.B. Woods, in Thermal Neutron Scattering, edited by
P.A. Egelstaff (Academic Press, New York, 1965). p. 201.

G. Gilat and G. Dolling, Phys. Rev. 138, A1053 (1965).

T.S. Prevender, U.S. Atomic Energy Commission Rept. 1S-2185, Iowa
State University, Ames, Iowa Institute for Atomic Research (1969).

J.L. Warren, Rev. Mod. Phys. 40, 38 (1968).

N.F.M. Henry and K. Lonsdale, International Tables for X-ray Crystal-
lography, Vol. 1. (Kynoch Press, Birmingham, England, 1952).

D.J. Hughes and R.B. Schwartz, Neutron Cross Sections, 2nd Ed.
BNL-325 (U.S. Gov. Printing Office, Washington, 1958).

P. Chiotti, J.T. Mason and K.J. Gill, Trans. Met. Soc. AIME, 221,
573 (1961).

M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, Oxford, England, 1954).

A.A. Maradudin, E.W. Montroll and G.H. Weiss, Theory of Lattice
Dynamics in the Harmonic Approximation (Academic Press,
New York, 1963).

J.M. Ziman, Electrons and Phonons, (Oxford University Press,
Oxford, England, 1960).

A.A. Maradudin and S.H. Vosko, Rev. Mod. Phys. 40, 1 (1968).
L. Van Hove, Phys. Rev. 95, 249 (1954).

W.M. Lomer and G.G. Low, in Thermal Neutron Scattering, edited by
P.A. Egelstaff (Academic Press, New York, 1965), p. 1.

B.N. Brockhouse, in Phonons in Perfect Lattices and in Lattices
with Point Imperfections, edited by R.W.H. Stevenson
(Plenum Press, New York, 1966).

A.A. Maradudin and A.E. Fein, Phys. Rev. 128, 2589 (1962).
R.A. Cowley, Advanc. Phys. 12, 421 (1963).

S.K. Sinha, T.0. Brun, L.D. Muhlestein and J Sakurai, Phys. Rev.
(To be published).

N. Wakabayashi, Latticz Dynamics of Scandium. Unpublished Ph.D.
thesis. Ames, lowa, lLibrary, Iowa State University of Science
and Technology. (1969).



19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

100
B.N. Brockhouse, Bull. Amer. Phys. Scc. II, 5, 462 (1960).
M.J. Cooper and R. Nathans, Acta Cryst. 23, 357 (1967).

T.S5. Prevender, U.S. Atomic Energy Commission Rept. 1S5-2186, Iowa
State University, Ames, Iowa Institute for Atomic Research (1969).

M.F. Collins, Brit. J. Appl. Phys. 14, 805 (1963).

G. Peckham, U.K. Atomic Energy Authority Research Group Rept.
AERE-R4380, Atomic Energy Research Establishment, Harwell,
Berkshire, England. (1964).

T.0. Brun and S.K. Sinha, unpublished computer program. Ames, lowa,
Ames Laboratory Solid State Physics Group XV, Iowa State University
of Science and Technology. (1969).

A.J.E. Foreman and W.M. Lomer, Proc. Phys. Soc. B70, 1143 (1957).

J.K. Boyter and H.L. McMurry, U.S. Atomic Energy Commission
Research and Development Rept., IN-1148, Idaho Nuclear Corporation,
Idaho Falls, Idaho. (1967).

G.L. Squires, in Inelastic Scattering of Neutrons in Solids and
Liquids, (International Atomic Energy Agency, Vienna, 1963),
Vol. II, p. 125.

W. Cochran, in Phonons in Perfect Lattices and in Lattices with
Point Imperfections, edited by R.W.H. Stevenson (Plenum Press,
New York, 1966).

R.W. James, The Optical Principles of the Diffraction of X-Rays
(Cornell University Press, lthaca, New York, 1962).

W.M. Lomer, Proc. Phys. Soc. 89, 135 (1966).
J.E. Eldridge and W.M. Lomer, Proc. Phys. Soc. 91, 459 (1967).
W.J.L. Buyers and T. Smith, Phys. Rev. 150, 758 (1966).

B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley
Publishing Company, Inc., Reading, Mass., 1956).

K. Lonsdale, Acta Cryst. 1, 142 (1948).

D.T. Cromer and J.T. Waber, Acta Cryst. 18, 104 (1965).

D.T. Cromer, Acta Cryst. 18, 17 (1965).

K.D. Rouse and M.J. Cooper, U.K. Atomic Energy Authority Research

Group rept. AERE-R5725, Atomic Energy Research Establishment,
Harwell, Berkshire, England. (1968).



38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

101
W.J.L. Buyers and T. Smith, Phys. Chem. Solids 25, 483 (1964).
N. Nilsson, Arkiv £8r Fysik 12, 247 (1957).
H.J. McSkimin, J. Acoust. Soc. Am. 33, 12 (1961).
H.J. McSkimin and P. Andreatch, J. Acoust. Soc. Am. 34, 609 (1962).
H.J. McSkimin, J. Acoust. Soc. Am. 37, 864 (1965).

C. Kittel, Introduction to Solid State Physics (John Wiley and Sonmns,
New York, 1966).

W.C. Overton and A.F. Schuch, U.S. Atomic Energy Commission Rept.
LA-3615-MS, Los Alamos Scientific Laboratory, Los Alamos,
New Mexico. (1966).

G. Gilat and L.J. Raubenheimer, Phys. Rev. 144, 390 (1966).

L.J. Raubenheimer and G. Gilat, U.S. Atomic Energy Commission Rept.
ORNL~-TM-1425, Oak Ridge National Laboratory, Oak Ridge,

Tennessee. (1966).

L. Van Hove, Phys. Rev. 89, 1189 (1952).



102

IX. ACKNOWLEDGMENTS

I would like to thank my major professor, Dr. J.F. Smith, for
initially suggesting the general topic of this thesis and for his con-
tinued interest. I particularly wish to thank Drs. S.K. Sinha and N.
Wakabayashi for their invaluable assistance and many helpful discussions
concerning the experimental and theoretical aspects of neutron diffrac-
tion. I am indebted to Messrs. J. Crenshaw and T.0. Brun for their
cooperation with respect to some of the computer programs that were used
in this thesis. I would like to express my gratitude to Messrs. D.
Bailey, J. Ostenson and B. Cullen for their assistance with the x-ray
diffraction, magnetic susceptibility and velocities of sound experiments
respectively.

Last, but by no means least, I would like to thank my wife, not only
for typing this thesis, but also for her continued encouragment and under-

standing during my long years of graduate study.



103

X. APPENDIX A

In this appendix the force constant matrices relating the force on
an origin atom due to the displacement of another atom will be presented.
The atoms surrounding the origin may be divided into neighbor sets where
the common characteristic of the atoms in the set is their distance from
the origin. A particular neighbor set is identified by the index n. An
atom in a set is further specified by an index p. For the CsCl structure
the origin atom may be one of two possible types and it is labeled by the
index o. In the case of YZn o = 0; 1 corresponded to a Y or Zn atom
respectively at the origin. The notation used here is essentially that
of Squires (27) and Gilat and Dolling (2).

The force on an origin atom of type o due to the displacement of the
p—th atom in the n~th neighbor set is given by

FP - ¢P uP
no no no

where the égo are listed below. The force constant matrices may represent
any of three types of interactions; namely, Y-Y, Zn-Zn or Y-Zn. For the
case of Y-Zn interactions the index o will be dropped. The force constant
matrices listed below are in their simplest form; i.e., all symmetry oper-—
ations appropriate to the particular interaction have been utilized to

simplify the form of the matrix.
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Table 9. Force constant matrices for the CsCl structure

Neighbor it Force
R(2,s) Set Of Atoms Constant
# In Set Matrix

(1.1,1) a /2 1 8 ol gl gl
¢} ] 1 1
Bl Gl Bl
] 1 1
gl 61 ol
] 1 1
(2,0,0) a /2 2 6 a? 0 0
o 1g
0 a? 0
20
0 0 a?
20
(2,2,0) a_/2 3 12 al g3 0
[o} 1o 30
B3 al 0
30 10
0 0 w3
_ 30
(3,1,1) a /2 4 24 at B B
o] 1 . 2
BQ aL& B'—+
2 2 1
g4 g4 ol
2 1 2



Table 9. Continued

Neighbor # Force
R(4,s) Set Of Atoms Constant
# In Set Matrix
(2.2,2) a /2 5 8 w? g BS -
0 1o lo 1o
3° e E
lo 1o lo
85 85 cx5
1g 1o io
(4,0,0) a /2 6 6 b 0 0
o 10
0 ab 0
20
0 0 a®




Here
are in gen
this numbe
four gener
1 2 or 3

and i - 1
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XI. APPENDIX B

the elements of the dynamical matrix are listed. Although there
eral thirty six elements, the fact that B is symmetric reduces
r to twenty one. These twenty one elements can be reduced to the
al types listed below. In the following equations 1 can equal

if 1 +1 or i + 2 exceeds 3 it is to be interpreted as i - 2

respectively. The dimensionless variable ¢ is defined as

C = g_—_r'*
Sax
p°° = l—-{B(a1 + a* + 2a") + 202 (1 - cos 2nr.) + 2a? (2 -
11 Mo 1 1 2 10 1 20
cos 2mg - cos 2mg. )+ 43 [2 - cos 2mz (cos 27C
i+ i+ 2 10 i i
+ cos 2uig. )] + 4ad (1 - cos 27z, cos 2my )+
i+2 30 i+ i+ 2
8a° (1 - cos 2wz, cos 27C cos 27z ) + 2a® (1 -
10 1 i+ 1 i+ 2 lo
cos 4%y.) + 20® (2 - cos 47C - cos 4mL 3}
1 20 i<+ 1 i+ 2
D?? #.l~{483 sin 277, sin 27z + 88> sin 27g
ii + 1 Mo 30 i i+ 1 10 i
sin 27¢ cos 27C }
i+4+1 i+ 2
qu' = - 8 {al cOs TL_ cOsTL cOoSs T + acos 3ng cos TwL
11 4 MM, 1 i i +1 i+2 1 i i+1
cos T + a' cosaL (cos 3ng cos 7L +
i+ 2 2 i i+ 1 i+ 2

cos g cos 3mg )}
i+1 i+ 2



v 8
p7°

{81 sin 7
ii + 1 '/MOMI C

sin 7g cos 3mg
+ 1 i

1

+ sin mg, sin 3ng
i
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sin wg
i

+ B“(sin 3ng
2 2 i

cos g |

i

+ 1

cos 7L

+ 2

)3

1

i+ 2

sin ©g
i

+ B" sin we
1 i

cos TG,
1 i
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XII. APPENDIX C

The following is a list of w%(g) for a sixth neighbor model with g
along the symmetry directions [0 O ], [z ¢ ¢], [z ¢ 0] and [; é z]. For

all but the AA and AQ modes which are listed last w?(g) is givenm by
J

1
MMuw2? =MA +MA = {[MA - MA 2+ 44 MA 2}
01 ] 01 10 0 1 10 01
Values of A and A for the various branches of the dispersion curves are
o

listed below.

2T
A, g=1[00 C]EB

1. LA, LO modes

a. A_=4(al + o + 2a%) + (6% + 4ad + 40> ) (1 - cos 2mE)
g 1 1 2 1o 10 10

+ a® (1 - cos 47r)
lo

b. A= (4&1 + 8a") cos mr + 4a? cos 37¢
2

2. TA, TO modes

a. A. = 4ol + o + 2a") + (@2 + 2a3 + 223 + 4ad )
° 1 1 2 20 10 30 10

(1 -~ cos 2nz) + a® (1 - cos 4nz)
20

b. A= 4{a! + a? + a*)cos g + 4a' cos 37C
1 2 2

2m
B. g=1I[czilyy
i. LA, LO

a. Ay = 4dal + o + 20%) + (@2 + 20?7 + 305 - 287 )
1 1 2 10 20 10 1o
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(1 - cos 2wg) + (2&?0 +

+ 283 + b 4 24 )
30 3

o] 10 20

(1 - cos 4mng) + (a5 4+ 28° ) (1 - cos 67C)
10 10

b. A= (3ol - 281 + o + 2&" + 28% - 48%) cosmg + (al + 28!
1 1 1 2 1 2 1 1

+ 2a" + 4ot - 48“) cos 31z + (o + 2o + 282 + 484) cos 57¢
2 1 1 2

1 2
2. TA, TO

a. A = 4(al + o + 2a"%) + (@l + 20 + 3u> + B> )
o ] 1 2 lg 2g lo 10
(1 - cos 2mz) + (203 + o3 - ¢3 + 4 + 205)
ic 30 30 1G 20

(1 - cos 4mg) + (a® -85 ) (1 - cos 6n7)

10 10

b, A= (3a! + 8! + o' + 2a"% - B* + 28%) cosmni + (a! - 8!
1 1 1 2 1 2 1 1

+ 200 + 4a; + 23?) cos 3mg + (ot + 20 - S? - 28) cos 5m¢

27
C. g=1[¢ r;OIaO

1. 1A, LO modes

a. A =4l +a* + 20%) + (a2 + 02 + 223 + 203)
o 1 1 2 1o 20 10 30
(1 - cos 2mz) + (a3 + 83 + 2% + 28° + af + af )
1o 30 10 1o 10 20
(1 - cos 4uz)

b, A= 2(a! - 8! + %= ") + 2¢a! + gl + o + 2a% + B* - 26%)
1 1 2 1 1 1 1 2 1 2

cos 2nz+ 2(a* + o' + 28%) cos 4me
1 2 2



110

2, TA, T O modes
1 1

a. A= 4(al + " + 20") + (202 + 4a? ) (1 - cos 2my)
Y 1 1 2 20 lo

+ (a3 + 205 4+ 2a® ) (1 - cos 4wy)
30 10 20

b, A= 2(a! + o) +2(a! + o + 2a%) cos 2nz + 4a cos 4ng
1 1 1 1 2 2

3, T A, T O modes
2

2
a. Ay =4l + ot + 20") + (¢? + a2 + 203 + 203 )
1 1 2 1o 20 1o 30

(1 - cos 2mg) + (a3 - 23 +20% - 28° + b +0b)

1o 30 1o 10 10 20

(1 - cos 4mz)

b, A= 2! + 8t +a* + 8% + 2 (a! -8} + o + 2a% - B
1 1 2 1 1 1 1 2 1

+ 28%) cos 2nrz + 2(a" + o - 28Y%) cos 4mz
2 1 2 2
2m

D. = (1 7"
q (Z'T C)ao

1. mA, 70 modes

a. A_ = 220! + 2a% + 4o + a? + 203 + a? + 2a3 )
1 1 2

o ig {5} 20 30
+ (02 - 2a% - 203 + 405 ) (1 - cos 2mz) + af
20 lo 3o 10 20

(1 - cos 4mg)

b, A= 4(28; - Bi) cos Wy ~ AB? cos 3m¢

p 12T
E. 9= (@305
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AO

M2 = 8@l +a% + 2¢% + 02 +2a3 ) + 2(a? - 4ad 4+ 4ad )
1 1 1 2 21 11 11 11 11

(1 - cos 27mL) + 2a?1(1 cos 4TC)

AA

M2 = 8(al +a" +2a% + 0 + 203 ) + 2% - 4ad + 4a’)
0 1 1 2 20 10 10 10 10

(1 - cos 27z) + 2a® (1 cos &47mg)
10



112

XIII. APPENDIX D

Here the values of the Fourier coefficients discussed in Section IV
are listed. The An were derived for force constant models up to and
including a general twenty—four force constant sixth neighbor model.

A. q= [0 0 ¢] 2n/a0 LA, LO

A =4@l + 0%+ 2a")M + M) + M (0?2 +4ad + 4a® +ab)
o 1 1 2 0 1 0 11 11 11 11
+ M (e? +4ad + 4o +0b)
1 10 10 10 10
A =-M (0?2 + 403 + 4o’ ) - M (02 + 4a3 + 4ad)
1 0 11 11 11 1 10 10 10
A =-Mab -Mab
2 0 11 1 10

B g=1[00¢)2r/a  TA, TO

A =4M +M)(al + o +2a*) +M (@2 + 223 + 203 + 4a° +a® )
0 0 1 1 1 2 0 21 11 31 11 21
+ M (a2 + 2a3 + 203 + 4a® + ab )
1 20 10 30 10 20
A =-M (a? + 203 + 223 +4a5) - M (@2 + 2u3 + 203 + 4ad)
1 0 21 11 31 11 1 20 10 30 10
A =-Mab - Mab
2 0 21 1 20

C. g=1I[cc¢¢] 2n/a LA, LO
0

A =4M +M)! +o + 24 +M (@¢? + 22 + 203 + a3
0 0 1 1 1 2 0 11 21 Il 31

+ 283 + 4a® + ab® + 248 )
31 11 11 21

+ M (a? + 222 + 223 + a3 + 283 + 405 + 0 +20%)
1 10 20 10 30 31 10 10 20
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A =-M(c? + 22?2 + 305 - 2R3 ) - M (02 + 202 + 30°
1 0 11 21 11 11 1 10 20 10
- 28°)
10
A =-M (203 +0a3 +283 4% 4205 )~ M (207 + o
2 0 11 3] 31 11 21 110 30
+ 283 + ab 4+ 20°%)
30 10 20
A =-M(a> +28%) -M (a® +28%)
3 0 11 11 1 10 10

D. gq= [z ¢ g] 2n/a TA,TO
0

A =4M +M)! +a* +2a%) +M (@@ + 202 + 203 + a3
0 0 1 ! ) 2 0 11 21 11 31
+ 4ad - 83 + 05 + 205 )
11 3] 11 21
+M (@2 + 202 + 203 + a3 -pg3 + 4ad
1 10 20 10 30 30 10
+ a® + 2% )
10 20
A = - M (a2 + 202 +3a> +8°) - M (a2 + 2¢2 + 305 + 2%)
1 0 11 21 11 11 110 20 10 i0
A =-M (23 +a3 -83 + o8 + 20°
2 0 11 31 31 11 21
~ M (2% + ad =33 4+ o + 206 )
1 10 30 30 10 20
A e

- (@ -B>) -M (a® - B8>)
1] 11 11 1 10 10

E. q= [z ¢ 0] 2n/a LA, 1O
0

A =4M +M)! +a* +2a%) +M (0?2 + 0?2 + 323 + 243
0 0 1 1 1 2 0 11 21 11 31

+ 83 4+ 2a° +28° +a® +0b )+ M (a2 +0?
31 11 11 11 21 110 20
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+ 303+ 20} 483+ 200 4 285+ af +a?)

30 30 10 10 20
A = - M (a2 + 02 + 203 + 203 y - M (a2 + 02 + 203 + 203 )
1 0 11 21 11 31 1 10 20 10 30

>
"

- M (3 +83 + 20° + 2B% +a® +aP )
0 11 31 11 11 11 21

- M (@3 +83 +20° +28% +ab +ab)
1 10 30 10 10 10 20

F, q=[¢ ¢z 0] 21r/a0 TIA, T10

A =4M + M) (a! +a"* + 2a%) + M (202 + 403 + o + 2a°
0 0 1 1 1 2 0 21 11 31 11
+ 228 ) + M (202 + 403 + o + 205 + 245 )
21 1 20 10 30 10 20
A =-M (2a2 + 403 ) - M (2a° + 403 )
1 0 21 11 1 20 10
A =-M (a3 +2a° + 20 ) - M (@3 + 20° +2a%)
2 0 31 11 21 1 30 10 20

G. g= [z ¢ 0] 2n/a TA, TO
0 2 2

A =4M +M) (ol +a% + 2a%) + M (¢2 + a2 + 3a3 + 203
0 0 1 1 1 2 0 11 21 11 31

- 83 + 205 - 285 4+ 4% 40 )+ M (02 + a2
11 21 1 10

31 11 11 20
+ 303 + 203 - B3 + 205 4+ ab + b - 28% )
10 30 30 10 10 20 10
A =-M (@2 + a2 + 23 +2a3)-M (@2 + a? + 223 + 203)
1 0 11 21 11 31 1 10 20 10 30
A =-M (03 - B3 +2u5 - 28 +ab +ab)
2 0 il 31 11 11 11 21

- M (@3 - 83 +2a° - 2B 4+ ab 4+ ab)
1 10 30 10 10 10 20
11
H, g = [5 5 ¢l Zn/aO A, 70

A =4M + M)l + o+ 20") + M (202 + 302 + 203 4 248
0 0 1" 1 2 0 11 21 11 3}
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+ 4a> + 0 ) + M (202 + 302 + 223 + 203
11 21 1 10 20 10 30

+ 4a® + ab)
10 20

A =-M (@2 =203 -2a3 +40°) -M (a2 - 203 - 2a3
1 0 21 11 31 11 1 20 10 30
A =-Moab - Mab
2 0 21 1 20

11
I. g=1[z5¢cl2m/a Ao

]

Mo(lmI + 4ot + 8aY + 402 + a2 + 403 + 4aS + b )
) 11

0 1 2 21 11 11 11
A =-M(a? - 403 + 4a>)
1 o 11 11 11
A = - MQG
2 0 11
J. g-= [% % t] 2n/a AA
A =M (4al! + ba" + 8a" + 40?2 + o + 4a3 + 4o + b )
0 1 1 1 2 20 10 10 10 10
A =-M (a2 - ba3 + 4e3)
1 1 10 10 10
A =-Mqu

+ 4a® )
10
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XIV. APPENDIX E

In Section IV the statement was made that the ratio of the integrated
intensity due to one-phonon scattering to the integrated Bragg intensity
was a constant. The basis for that statement will be presented here. From
Egq. (5.11) it may be seen that the ratio of the integrated intensity due to

the phonons with wave vector g to the integrated Bragg intensity is

1;(q) .
A z L1 cornhvild)
Ig 2Ip j wj(g) 2kT
—w iT*R 2
L fe 5 Q- e (g.0) e (E.1)
MS

It is possible to separate the sum on j into an acoustic and an optic

contribution, i.e.

Il(_q) _ [11(3)]AC. N [Il(‘g‘>]OP,

IB IB IB . (E.2)

The acoustic contribution may be written as

[T, Q?Nh

$ [w tanh ™/oxr]7}

I 21
B B Jac.
-w -w
foe 0 903 + fle 1613 2
I;@z; :ﬁ;; . (E.3)

where the approximation

Q=(,q,7v+aq)= 0,00 . (E.4)
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has been made. In Eq. (E.3) the (%) refer to (gggn) reflections.

From Eq. (5.7) the atomic displacements caused by a phonon of wave

vector g and polarization j are

(g,3) = géﬁgilz-eiﬂf(gi t Rg) lut Q(g.d) . (E.5)

&c

The ratio of the z components of the displacements of the two atoms in

a unit cell is

eq3/ My

u03/u33 i e1s/ M

eTidR (E.6)

For very small q the displacements of adjacent atoms are essentially

identical for acoustic modes. Therefore, for very small q

e e
03//ﬁ = 13//§ = EBj(g) . (E.7)

0 1

With the use of Eq. (E.7) .szgilLﬁg; becomes
B

[11(Q)]pc - T°NR - e 2
- == ¢ o tann/2k7]t B2 a0+ £ 1T,
B B Jac, 330 !
(E.8)
Since
~We iT°*R 2
I = Se’— =S :
srace = | & fse e (E.9)
Eq. (FE8) may also be written as
I (Q 12Nh
1L AC 4. [w tanh hv/opry=1 g2, (E.10)
1 2 -“AC 33

B
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Therefore, the ratio of the integrated one~phonon acoustic TDS to the

integrated Bragg intensity is

I 2 hy, (7!

( 1)AC. L [w,(_q) tanh——\—)J—ﬂ—] E2 dq . (E.11)
I 2 . j 2kT 3j )
B Jac.

Since 1 = 47 Ei%_g, Eq. (E.1l) may be expressed as

(1 )AC i 2
1 . = a‘51n GI . (E.12)
I A

B

For the optic modes, at small g

u03 603//% M
1
03 = = 1 (E.13)
U, e13/:’M1 MO
Therefore,
1 ()] by, (@]
LI Vv,
1 47 op = 1Nh I [w,(g)tanh __J_EE_]
I 2 Jop J 2kT
B
2 -Wg - M -w, 2
®a fpe VoY £ e 1
M M
0 1
g _wo + f _wllz
e +
| 0 1 € . (E.14)

The ratio of the integrated one-phonca TDS to the integrated Bragg

intensity is therefore
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(1] 12Nh hv (q) "}
10P. . I [w.(q) tamh —dol] o2
1 Jop, 2kT 03
B 2 M,

lf -wo - (MO) £ -wllz
e —— e
! 0 + Ml 1
d3q
2

™y (E.15)

-wg
[f e t fe
0 1

Eq. (E.15) indicates that the ratio of the integrated optical one-

phonon TDS to the integrated Bragg intensity is not a constant but

indeed is much larger at the odd lattice points than the even; and, in

addition, is a function of El%_g. However, since at small q the fre-

quency of the optic phonons _is. so much greater than the acoustic phonons

hv-Qg)]_l

the factor [wj(g) tanh makes the integrated optic one-phomnon
TDS negligible compared to the acoustic. Therefore, it is a good approx—

imation to take

. 2
= a(Sin 6)

) . (E.16)

El
Ip
Several times in this appendix the small q limit of quantities has
been used. The justification for considering only the small q limit is
that the observed integrated intensities were measured over a 26 range
that corresponded to a small q range. For example, in the case of the
(G 0 6) reflection the region over which the integrated intemsity for the
Kal peak was measured was 2626= 0,6°, The 8¢ that this 86 corresponds

to is
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a
|sc| = ;3 cot 6 66 = 0.03 (E.17)

Therefore, the small q limit is justified.
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XV. APPENDIX F

Here it will be shown how the linearized vj(g) relations were derived
by working through the example of the TlA[l 1 0] branch. In addition, the
expressions for the LA [1 1 0] and TZA [1 1 0] cases will be given. These
vj(c) relations are appropriate to force constant models up to and includ-
ing a general sixth neighbor model.

From the results of Appendix C it may be shown that

MM w?2 =4M +M)(al +a'+ 2a%) + M [(202 + 4a3)
0 11 0 1 1 1 2 0 21 11

(1 - cos 2mg) + (a3 + 20° + 2a® )(1 - cos 4mz)]
31 11 21

+ M [£2a? + 423 )1 - cos 277) + (a3 + 2a° + 2a° )
1 20 10 30 10 20

(L - cos 4mg)] - {[M - M) 4(al + o + 2a%)
0 1 1 1 2

+ M [(202 + 4a3 )1 - cos 2nz) + (a3 + 205 + 2ab )
0 21 11 31 11 21

(1 - cos 4rz)] - M [(2a2 + 4a3 )(1 - cos 2mg)
1 20 10

+ (a3 + 205 + 24° Y(1 - cos 4Wc)]]2
30 10 20

+ MMM [-4(al + ot + 2a%) + (2ol + 2a% + 4a®)
01 1 1 2 1 1 2
i 2 l/2
(1 - cos 2nz) + 4at(l - cos 4mr)]4} (F.1)
2

For small x
1 - cos x ~ x2/2 (F.2)
If this approximation is made and used to simplify Eq. (F.l1l), the

result is the following.
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MMw2=(M +M)A+4r22(MB+MC) - {[(M -M) A
0 ¥ 1 0 1 0 0 0 1

) 2 1/2
+ M B~-MC) 4n2¢2]° + 4M M [-A + D 47272]}
¢ 1 01
(F.3)
where
A= 4@l + a" + 2a")
1 1 2
B=o0a? + 223 + 223 + 40> + 4ab
21 11 31 11 21
C=0a2 + 23 + 203 4+ 40® + 4ab
20 10 30 10 20
D =al! + o + 10a" . (F.4)
1 1 2
The square root term becomes, for small g,
{(M - M )2A2 + 812z2(MM - M)A (MB-MC) +4MM
0 1 0 1 0 1 01
(A2 - 8n?g2ap]3' /2 | (F.5)

Eq. (F.5) may be simplified to yield

{M + M )2A2 + 8n2zA{(M - M)Y(MB-MC) - 4M M D]}llz.
0 1 0 1 0 1 01

(F.6)
If the expansion
(a+ x)1/2 & al/2 4+ x j2al/2 + . .+ | (F.7)
is used, the square root becomes
M +M)A+547%C% (M -M)MB-MC) - &M M D)
0 M + M) 1 0 1 01
0 1 (F.8)

So then Eq. (F.3) can be simplified to yield
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M0M1“2
=MB+MC-[(M - MYMB~-MC)
1 0 1 0 1

- 4MMDI/(M +M) . (F.9)
01 0 1

After some manipulation the following relationship results.

2
v
1 M +M) = 2(@a! + 0?2 + a2 + 203 + 203 + 203
2 0 1 1 20 21 30 31 10

+ 203+ 20" + 200" + 40® + 40> 4 4a® + 4ab )

11 1 2 10 11 20 21
(F.10)
Similarly for the T A branch the linearized expression is
2
v2
2 M + M) =4el -4l + 02 + g2 + g2 + g2 + 63
g2 0 1 1 1 10 11 20 21 10
+ 603 + 2a3 + 203 - 43 - 4B3  + 20q% + 249
11 30 31 30 31 1 2
- 4% - 248" + 8u®> + 8a% =~ 885 - 88° + 4ab
1 2 10 11 10 11 10
+ 408 + 4a® + 4ob (F.11)

11 20 21

For the LA branch the linearized expression may be found to be

N

V
M +M)=t4al +48) + a2 + 02 +a? +a? + 603 + 6a3
0o 1 1 100 11 20 21 10 11

ﬁdb

+ 203 + 203 + 483 + 4p3 4 200" + 240" + 48}
30 31 30 31 1 2 1

+ 248% + 8a° + 8a° + 885 + 885 + 4a® + 4ab
2 10 11 10 11 10 11

+ 40 + 4a® (F.12)
20 21



