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ABSTRACT 

THE complexity of gravity separator mechanics 
precludes the use of a deterministic model for 

particle movement on a gravity separator. Particle 
movement is examined as a stochastic process; a 
distance-transition Markov probability model for 
particle movement is proposed. A linear programming 
method for estimation of the Markov model parameters 
is explained. 

INTRODUCTION AND OBJECTIVE 

The density separation principle has been used in the 
mineral-processing and seed-conditioning industries for 
many years. In the seed-conditioning industry, the 
process is known as gravity separation, but in other 
applications such as mineral processing, it is often 
referred to as **dry tabling," **jigging,'' or "gravity 
concentration." In the seed industry, gravity separators 
are used to clean grains such as corn, wheat, and 
soybean. Misra (1983) used a gravity separator to remove 
shrivelled black nightshade berries from soybeans. The 
gravity separator has also been used to improve the 
viability of seed lots by removing damaged or otherwise 
substandard seed (Misra 1982). 

The gravity separation principle is based upon the 
segregation phenomena characteristic of pneumatically 
fluidized beds of particles. Vibration and gravity table 
geometry are employed to segregate particles having 
similar density or size. Deck slope, vibration, and 
upward airflow combine to produce the differential 
movement of light and heavy particles (Fig. 1). 

The particle mixture is fed onto the gravity table deck 
near the lower left-hand corner (Fig. 2). Air is forced up 
through the perforated deck and through the particle 
mixture. Vibration agitates the particles, and the lighter 
or smaller particles, supported by a rising air current, 
move to the top of the particle mixture and float on its 
surface. After Rowe et al. (1972), the smaller or less 
dense particle fraction hereinafter will be referred to as 
"flotsam", and the larger or denser particle fraction will 
be referred to as "jetsam." The jetsam remains in 
contact with the deck surface and is transported up the 
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Fig. 1—View of gravity table declc and particle bed cross section. Net 
particle flow is perpendicular to the page. 

cross-slope by the deck vibration. The flotsam, floating 
in a fluidized condition, flows down the cross-slope. The 
elevation of the deck shown in Fig. 2 (Oliver 
Manufacturing Co., Inc., 1980) increases from the 
bottom of the figure to the top (y direction). The 
elevation of the deck decreases from the left to right (x 
direction). Thus, the lower right-hand corner is the 
lowest point on the gravity table deck and is the location 
where the flotsam concentrate. 

A better understanding of gravity separator 
phenomena would aid in machine design and operation. 
To understand the process by which particles are 
separated and to use this knowledge to predict gravity 
separator performance, it is necessary to develop a model 
that describes movement of individual particles on the 
gravity table deck. However, dimensional analysis yields 
as many as eight classes of dimensionless parameters 
that influence particle separation (Balascio, 1985). 

Developing a deterministic model for particle 
movement based on the equations of motion is infeasible 
because thousands of particles occupy the gravity table 
deck. Each particle can move in three directions, and 
this movement is influenced by adjacent particles. 

Fig. 2—Ideal operation of a gravity separator. 
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Hence, the equations of motion would need to be solved 
as a system having thousands of degrees of freedom. 
Merely specifying the initial conditions would be a 
formidable task. 

In view of the difficulties associated with the use of a 
deterministic model of particle movement, a stochastic 
model is an alternative. The objective of the research 
reported in this paper is to develop a stochastic model to 
describe the movement of particles through a gravity 
separator. 

DEVELOPMENT OF A STOCHASTIC MODEL OF 
PARTICLE MOVEMENT 

Observation of gravity separation processes indicates 
that a particle's previous movement has very little 
influence on its subsequent movement. For example, 
during the separation operation, a light particle may 
randomly sink to the bottom and be carried up the slope, 
and in the next instant, the same particle may float to the 
surface and slide down the slope. A particle's movement 
is, however, strongly influenced by its location on the 
deck. 

This suggests the use of a Markov probability model 
(Parzen, 1960). Particle movement that is governed by a 
Markov process is independent of previous movement; it 
is a function of the particle's present location. For the 
purposes of modeling particle movement, the states of a 
markov process can be thought of as being associated 
with particle positions. Movements between the states 
(positions) are known as transitions. Transition 
probabilities are the probabilities of certain movements 
(transitions) occurring during a specified interval known 
as a transition period. 

There are two fundamentally different ways of 
defining a transition period. They are: time transition 
and distance transition. 

Time-Transition Markov Model 
Fan and Chang (1979) proposed a stochastic model for 

the mixing of large particles in gas-fluidized beds. They 
developed a nonstationary random walk model to 
describe particle mixing and segregation. Random walk 
models belong to the general class of Markov models. 

The use of Fan and Chang's model requires that the 
gravity table deck (Fig. 2) be divided into nonintersecting 
regions (Fig. 3). These regions correspond to states in a 
Markov chain. In general, each particle on the deck 

STATE 1 

STATE 2 

STATE 3 

STATE 4 

STATE 5 

STATE 6 

could have its movement controlled by its own unique 
Markov process. For practical purposes, however, it will 
be assumed that the movements of all particles belonging 
to the same class of particles (e.g., flotsam or jetsam) are 
governed by the same Markov process. The system is 
defined as the gravity table deck, the particle mixture 
flowing on the deck, and the specific particle whose 
movement is being studied. The system is in state j if the 
particle occupies the area of the deck associated with 
state j . 

If we confine our study to the steady-state operation of 
the gravity table, the stationary Markov model is 
appropriate. For a uniform mixture of particles fed at a 
constant rate, the time-averaged concentrations of 
particle fractions in various regions on the deck would be 
expected to change only with position and not with time. 
With the gravity table deck divided into a number of 
sections or '* states" as is shown in the simplified 
rectangular deck in Fig. 3, each class of particle in the 
mixture would have associated with it a transition matrix 
for some specified time-transition period AT. A natural 
choice for the transition period might be some integer 
multiple of the deck vibration period. The transition 
matrix for a specific particle type is composed of the 
state-to-state transition probabilities for transition 
periods of length AT. 

For example, suppose the particle mixtures were 
composed of jetsam and flotsam particles. The transition 
matrix for the light flotsam particles on the deck in Fig. 3 
would be, say: 

^11 ^12 ^13 ^14 ^15 ^16 

^21 ^22 ^23 ^24 ^25 ^26 

P = 
^31 ^32 ^33 ^34 ^35 ^36 

P4I P42 P43 ^44 P45 ^46 

P5I ^52 P53 P54 P55 ^56 

^61 ^62 ^63 ^64 ^65 ^66 

DIRECTION OF PARTICLE FLOW 

Fig. 3—Rectangular deck with six states. 

Pjj is the probability that a flotsam particle located in 
state i would move to state j during the transition period 
T. For example, P̂ ^ is the probability that a particle 
located in state 6 would remain in state 6. P21 is the 
probability that a flotsam particle located in state 2 
would move to state 1 during the span of one transition 
period. Clearly, for any i, we must have: 

6 
Z P i j ^ l . O 

i.e., the row sum must equal 1. 
There are, however, a number of problems associated 

with the time-transition model. The most important 
difficulty is to collect data on movement of individual 
particles. Particles tend to stratify in layers; it is likely 
that an individual particle would not be visible for a 
portion of its journey. See Balascio (1985) for a more 
detailed discussion of the shortcomings of a time-
transition model. 
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Fig. 4—Distance-transition scheme for a rectangular gravity separator 
deck. 

Distance-Transition Markov Model 
A way to circumvent the problems of the time-

transition model is to adopt an alternate definition of 
transition period. A convenient approach is to consider 
transitions based upon position or movement in the 
longitudinal direction. Observation of the deck in 
operation indicates that movement in the x-direction is 
basically uniform across the width. All particles on the 
rectangular portion of the deck appear to move toward 
the output end at roughly the same x-velocity. Thus, we 
let longitudinal distance, x, become a '*psuedo'' time 
dimension. 

Consider the rectangular portion of a gravity table 
deck shown in Fig. 4. The deck width is divided into 
discrete sections which corresponds to states. In this 
example, four states states divide the deck. The particle 
mixture is fed on the left at time step (position step) 1 
and traverses the deck through a series of time (position) 
transition periods until it leaves on the right at the final 
transition period, which in Fig. 4 is period 8. Thus, the 
length of the deck is divided into 8 discrete sections so 
that x-position may be thought of as a discrete time 
variable. That is, one transition period corresponds to 
the movement of one discrete step in the x-direction. 

For a stationary process, a single 4 by 4 transition 
probability matrix describes the particle movement: 
P = [Pij];i,j = 1 ,2 ,3 ,4 . 

For example, P32 is the probability that a particle in 
state 3 will move to state 2 after moving forward one 
transition period in the x-direction (from say transition 
period t = 3 to transition period t = 4). Again, it is 
obvious that the row sums of matrix P must equal 1, i.e., 

4 

Using X as a transition variable has had two notable 
effects upon the model. First, it is possible to use fewer 
states; fewer states will reduce the number of transition 
probabilities which need to be computed. Second, since 
position on the deck changes with each transition period, 
it is possible that if conditions on the deck change greatly 
with x-position, we may have sacrificed the stationary 
property of the time-transition model which was 
discussed ealier. That is, the transition matrix may 
change from one transition period to the next. It is much 
preferable to use a stationary model; the introduction of 
nonstationarity greatly greatly complicates the analysis. 

For simplicity, we will confine our study to the 
movement of particles on the rectangular portion of the 
gravity table deck. Since we will not be able to collect 
individual particle data or "micro data,'' it will be 
necessary to collect so-called aggregate data or "macro 

data." Aggregate date are in the form of particle 
distributions by states within the transition periods. 
These, particle distributions change with transition 
period. We have noted that x-velocities of particles are 
approximately equal across the width of the gravity 
table. With x-velocities for particles nearly uniform 
across the deck width, it is easy to relate the particle 
distributions in the various transition periods to one 
another by use of the Markov transition probability 
matrix. Uniform x-velocity is not a necessity, however, 
Balascio (1985) discusses the case of nonuniform 
x-velocity. 

Let W be the quantity of particles of a specific type in a 
lot which is passed through a gravity separator. All 
particles in the lot pass over the deck shown in Fig. 4. Let 
yi(t) be the true fraction of particles from the population 
of size W which pass through state i in transition period 
t. Then, if r is the number of states, we have for all 
transition periods t: 

S yi(t) = 1.0. 
i = 1 

If Wi(t) is the number of particles which pass through 
state i in transition period t, then yi(t) = Wi(t)/W. We 
cannot measure the [yi(t)] directly because we do not 
have data for the entire population of particles which 
pass through the gravity separator. By using the uniform 
x-velocity assumption, however, we can estimate the true 
fractions [yi(t)] with the aggregate data [/i(t)] which are 
determined from samples of the larger population. That 
is, for the particles of the specific class we are studying, 
the [yi(t)] are the fractions of those particles by state in 
transition period t. These fractions are determined from 
a sample of size w(t) from the larger population of size 
W. Thus, with yi(t) the estimate of yi(t) we have 

Yi (t) = 7i(t) = Wi(t)/w(t) [1] 

Here, Wi(t) is the portion of the sample from state i; and 

w(t) = 2 w-(t) 
i=l 

After Lee et al. (1977), we relate the fractions [yj(t+1)] 
to the fracfions [yi(t)] with the following equation: 

.[2] y.( t+l )= 2 Pijyi(t) + uj(t+l) 
i= 1 

Here, Uj(t+1) is a random component with zero mean. It 
is emphasized that the Markov process is still defined for 
the movement of individual particles. The state of the 
system is defined by the position of the particle whose 
movement is being considered. 

We have no data on individual particle movements, 
but substitution of our estimates of [yi(t)], [yi(t)], into 
equation [2], yields equation [3]. Equation [3] is the 
means by which we relate our aggregate data composed 
of particle distributions within the transition periods to 
the transition probability matrix, P, which defines the 
assumed Markov process. 

7.( t+l)= 2 Pij7i(t) + Uj(t+1) 
J i = l ' 

.[3] 
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For a nonstationary model, Pjj becomes a function of 
transition period t so that equation [3] is modified: 

•[4] Tj(t+1)= S Pij(t)7i(t)+uj(t+l) 
i = 1 

If r is the number of states and T + 1 is the number of 
transition periods, the stationary model will have r̂  
unknowns whereas the nonstationary model has r^T 
unknowns. For each of T transition periods, r equations 
of the form given by equation [3] can be written. For 
each transition probability matrix, r equations can be 
written by requiring that the row sums equal 1. Thus, the 
stationary model is determinate if T + 1 = r and 
overdeterminate if T + 1 is greater than r. The 
nonstationary model has a total of 2rT equations. Unless 
certain assumptions are made, the nonstationary model 
is always indeterminate if r is greater than 2. 

A typical approach is to assume that the variable 
transition probabilities are linearly dependent upon 
parameters which vary with the transition variable (Lee 
etal. , 1977; Telser, 1963). 

k = 1 
[5] 

Here, m is the number of so-called '^external variables" 
to which the probabilities are related. Note that with m 
= 0, we have the stationary case. The P^ are the entries 
of the stationary matrix, P, which has all the required 
properties of a transition probability matrix. That is, all 
its entries are nonnegative and the row sums equal 1. The 
dp are coefficients which are to be determined, and the 
Zk(t) are the external variables. An additional set of 
constraints on the d^ requires that: 

2 5ijk = 0 
j = l 

for all i and k. This ensures that the row sums of Pij(t) 
will always equal 1 regardless of the values of Z^Ct). Note 
also, that for the range of values of Z^Ct), the dp should 
be determined under the condition that for all t, the 
entries of P(t) are nonnegative. With the use of equation 
[5], the number of unknowns for the nonstationary 
model has been reduced to (mH-l)r2. Thus, with T + 1 
number of transition periods, it can be shown that the 
nonstationary model specified by equation [5] is 
determinate for T = ( r - l ) (m+l) and overdeterminate 
for T greater than ( r - l ) (m+l) . 

Note that in choosing the variables Zi,(t), we are not 
concerned with variables that do not change with 
x-position (transition period t) such as slope and 
vibration rate. For the gravity table, some possible 
candidates for the variables ẑ Ct) would include local 
deck geometry parameters, local superficial air velocity, 
settled bed depth, static air pressure, or even some 
parameter quantifying the distribution of particles in a 
particular transition period. It should be emphasized 
that it is extremely desirable to limit the number of 
parameters, m, to a few as possible (preferably 1 or 2). 
From a statistical standpoint, the estimates of the Pjj and 
dp become more reliable as the system becomes more 
overdetermined. Unfortunately, we are limited by the 
number of transition periods that are available, so m 

must be held small. In practice, we will be able to make 
better use of the number of transition periods we have by 
eliminating some of the unknowns. With a 4-state 
system, for example, if transitions are allowed only 
between adjacent states (a physically justifiable 
assumption), then the number of unknowns for a 
stationary model such as that which appears in Fig. 4 is 
reduced from 16 to 10 (P13, P^, P24, P31, ^4u and P42 
equal zero). 

Estimation of Transition Probabilities from Aggregate 
Data 

It is more difficult to estimate transition probabilities 
from aggregate (macro) data than from individual 
particle data or "micro data." Micro data are records of 
individual particle positions as a function of time. The 
problem of estimating transition probabilities from 
aggregate data has most often been discussed with 
regard to management and market analysis applications. 
Telser (1963) used aggregate data to estimate transition 
probabilities for a Markov process which he postulated 
to govern the distribution of market shares for three 
brands of cigarettes. Ezzati (1974) used a similar 
approach to forecast market shares of home-heating 
units. 

There are a number of methods for the estimation of 
the transition probabilities involved. The initial 
formulation of the aggregate data problem is always the 
same, however. For simplicity, consider the stationary 
case from which it is possible to generalize to the 
nonstationary model. The data are related to the 
transition probabilities using equation [3]. An 
unrestricted least squares estimator can be developed by 
using the method of Lagrange multipliers with the 
traditional error sum of squares as the objective 
function. 

The minimization is subject to the constraints that the 
row sums of the transition probability matrix P must 
equal 1 (Lee et al., 1977; Lee et al., 1965). The primary 
difficulty with this approach is that is is not possible to 
include the nonnegativity constraints on the entries of 
matrix P. Thus, it is possible to obtain "infeasible" 
solutions—solutions for which some entries, P^, of 
matrix P (which are probabilities) may be negative or 
have absolute values greater than 1. 

If the nonnegativity constraints are included, the 
objective function is still specified as the error sum of 
squares then the estimation of the Py becomes a classic 
quadratic programming problem. That is, the objective 
function is quadratic; and the constraints are all linear. 
See Boot (1964), Hadley (1964), or Sposito (1975) for 
discussions of the quadratic programming problem. 
Ezzati (1974) uses a maximum likelihood estimator 
proposed by Lee et al. (1965) which also results in a 
quadratic programming problem. Theil and Rey (1966) 
discuss the application of quadratic programming of 
Telser's data (1963). Judge and Takayama (1966) discuss 
different forms of the quadratic estimator and work with 
Telser's data as an example. Balascio (1985) discusses 
the Lagrange multiplier and quadratic programming 
approaches as they relate to this research. 

A disadvantage of the quadratic programming method 
is that it is rather complicated. Use of the method to 
calculate estimates of transition probabilities requires a 
considerable amount of manipulation to arrange the 

Vol. 30(6):November-December, 1987 1837 



data in a form which is compatible with that required by 
the available quadratic programming software. 

There is no reason that an alternative objective function 
cannot be used, however. Lee et al. (1977) stated that 
there is no basis for preference of a least squares 
objective function over a minimum absolute deviation 
(MAD) function. The function, MAD, is defined as: 

T+1 r 
MAD= X I l7 . ( t ) -7 : ( t ) | [6] 

t = 2 j = 1 ' 

Let the estimate of proportion yj(t+l) be given by: 

7j(t+l)= S PijTi(t) 
i = 1 

We can now define upj(t) - umj(t) = yj(t) - yj(t) with 
upj(t) and umj(t) strictly nonnegative. We rewrite 
equation [6] as: 

T+1 
.[7] MAD= S S [up.(t) + um.{t)] 

t = 2 j = l 

We now formulate the optimization problem as follows: 
Minimize: 

T+1 r 
MAD= 2 E [up-(t) + um:(t)] 

t = 2 j = l 

subject to: 

upj(t)-umj(t)+ E 7i(t-l)Pij=7j(t) 
i = 1 

for all j and t > 1. We also have the row sums of P equal 
to 1 for all i: 

2 Pij = l. 
j = l 

Naturally, we require that F^ be nonnegative for all i 
and j . Expressed in this manner, the estimation of Pjj is a 
linear programming problem. For the nonstationary 
problem, the objective function, MAD, remains the 
same, but the constraints are rewritten to include the 
parameters 6,^ of equation [5] and the variable transition 
probability matrix P(t). We define 6-^^ = 6p,^ - 6m^^ and 
include the row sum constraints on the dŷ : 

E (Spijk-5mijk)-0 
j = l 

for all i and k. We use the equality constraints: 

PijW-Pik- ^ ZkW(5Pijk-5myk) = 0 
^ k= 1 ^ 

to define Pij(t). There are of course, the required 
nonnegativity constraints on the activities, Pij(t), Py, dpyj,, 
dmjjk, upj(t), and umj(t) for all i, j , k, and t. 

The greatest disadvantage of this approach is the large 

number of parameters of ^^activities'' which need to be 
estimated. For the nonstationary case, this number can 
reach the thousands quickly. Even so, the linear 
programming algorithms used to solve these problems 
are extremely efficient and computation costs are 
minimal even for nonstationary problems. Because of the 
simplicity of formulation, and the familiarity of 
literature concerning linear programming, the linear 
programming approach was chosen for this research. In 
addition, linear programming software was readily 
available and quite useable. The MPSX linear 
programming package available on Iowa State 
University's IBM computer was used for the 
computations. See Appendix A of Sposito (1975) for an 
explanation of the MPSX linear programming features 
and format. A Fortran computer program was written by 
Balascio (1985) to organize the data into proper input 
format for use by the MPSX software. 

SUMMARY 

Fan and Chang's time-transition random walk model 
(1929) was used as a starting point for the development 
of a time-transition Markov model to describe the steady 
state operation of a gravity separator. A number of 
serious problems were noted with the use of a time-
transition model. 

A distance-transition Markov model was proposed 
which overcomes these difficulties. The model is 
simplified considerably if longitudinal x-velocity is 
uniform across the width. It can then be assumed that a 
sample of particle distributions across the width for a 
particular transition period is an estimate of the true 
distribution of all particles which flow through that 
transition period. It should be emphasized that each 
particle type in the mixture has associated with it a 
transition probability matrix of its own. The differences 
among these transition probability matrices are 
responsible for the different movement of particles and 
the resultant separation phenomena. 

Use of stationary and nonstationary Markov models 
was discussed, and methods of estimating the 
parameters in these models from the aggregate '*macro" 
data were examined. It was decided that a linear 
programming approach is most suitable for the 
estimation probabilities associated with the Markov 
processes which describe the differential movement of 
various particle classes as they move through a gravity 
separator. 

This is the first of two papers which examine the 
separation phenomenon in gravity table operation. In 
this paper, the theoretical model of particle movement 
has been developed and presented. In the second paper, 
the theoretical model is corroborated with 
experimentally obtained data for soybeans. 
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