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1. INTRODUCTION 

1.1 Overview 

Since a research team at the Bell Telephone Laboratories built the first bipo

lar transistor and developed the theory of semiconductor physics in the late lOlOs. 

.semiconductor devices have formed the foundation of modern electronics. The t he

oretical foundation for the p-n junction diode and the transistor was established by 

Shockley in his 1949 paper [1]. Van Roosbioeck had formulated a system of basic 

semiconductor device equations which is the most commonly used in numerical device 

simulations [2]. These basic semiconductor device equations are a coupled system of 

nonlinear second order partial differential equations. They describe the distributions 

of electrostatic potential and carrier concentration and current flow within semicon

ductor devices. 

Prior to semiconductor device simulation using computer-aided design, the anal

yses of semiconductor devices were based on the regional approximation methods to 

ol)tain closed-form approximate analytical solutions [3] [4]. Although this regional 

approach allows for simplifying the model and getting rapid analysis, it is understood 

that this approach is not suitable when a unified device model is desired, especially in 

modeling of sub-micron VLSI. And the traditional experimental approach is expen

sive for developing new complex integrated circuits. Therefore, numerical siiinilation 
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l'or semicoatlucfcor devices was introduced. 

The first work in semiconductor modeling using a numerical method instead 

of the regional analytical method was proposed by Gummel. In his 1961 paper [O], 

Gummel successfully demonstrated a numerical method in simulating the one-dimensional 

steady state transistor. This method was applied to the p-n junction by De Mari [6] [7] 

and to the silicon Read diode by Scharfetter and Gummel [8]. It was further developed 

in two-dimensions by Slotboom [9] and others. Regarding the historical ilevelopment 

of numerical device modeling, see the books by Selberherr [10] and Snowden [11]. 

The basic interest in this dissertation is numerical simulation of one-dimensional 

steady state thyristors. A thyristor is a semiconductor device with four layer p-n-|)-n 

structure, used to control the switching of dc and ac power. Traditional analysis for 

thyristors is with reference to the two bipolar transistors analogy for a thyristor [I]. 

In this two-transistor analogy, the collector of each transistor is connected to the base 

of the complementary transistor. This is shown in Figure 1.1. 

Numerical computation for thyristors is quite difficult because they have multiple 

steady solutions under certain biasing conditions. The snap-back phenomenon in the 

current-voltage characteristic of thyristors has caused computational prol)lems. To 

o\'ercome the snap-back and multi-solution problems, we have applied the arc-length 

continuation method. We successfully obtain the current-voltage characteristic of 

thyristors by this method. 

This dissertation is organized as follows. In Chapter 1, the basic semiconduc

tor device ecpiations are introduced. Then we explain briefly the concepts of singular 

perturbation analysis and numerical methods for solving these equations. The second 

chapter is devoted to the review of the analyses of existence and uniqueness, regional 
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Figure 1.1: Two transistors analogy 

approximation and singular perturbation for the semiconductor equations. Chapter 

3 discusses the discretization of the semiconductor equations and mesh general ion. 

In Chapter 4, we investigate numerical schemes for solving the discrete semiconduc

tor efjuations and the implementation of various linear system solvers. In the final 

chapter, we present some computational results on the diode and thyristor from our 

semiconductor simulator. 

1.2 Basic semiconductor device equations 

In order to analyze the semiconductor device characteristics, we require a suit-

al)le mathematical model describing electrical and physical jjrocesses. The basic 

semiconductor device equations are the commonly adopted model for numerical sim

ulations. They are the Poisson equation, two continuity equations and two current 

equations. To simulate the behavior of a semiconductor device, the basic semicon-
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duc tor device equations have to be solved for the electrostatic potential i/', electron 

concentration n and hole concentration p. 

The electrostatic potential V' is determined by the Poisson equation: 

v20 = -£ (1.1) 

where e is the material permittivity and p is the space charge density. The space 

charge density p can be expressed as p = q[p — n + C(;r)), where q is the elementary 

charge. The unknowns n and p are charge densities for electrons and holes, respec

tively. The function C is called the doping concentration or the do|)ing profile, which 

is explained in Section 1.3: 

From the conservation of charge, the electron and hole densities can be found l)y 

the continuity equations: 

•^ =-( V • Jji — çTÎ), (1.2) 

^ = -l(V.yp + gA), (1.3) 

where ./» is electron the current density and Jp is the hole current density. Tlie 

function R is the net recombination-generation rate. It accounts for a numljer of 

physical processes that result in the creation or annihilation of electron-hole pairs. 

In our device simulator, the total rate R is the sum of Shockley-Read-Ilall and Auger 

recombination rates and impact ionization generation rate which are explained in 

Section 1.3. 

^ = ̂ SRH ^AU ^11- (l- U 

If an electric field E is applied to the semiconductor sample, the carriers will 

drift in the electric field. This transport of carriers produces a current called the 
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drift current. The influence of the concentration gradient V;i, V/> causes a diffusion 

carrier flow called the diffusion current. Therefore, the models of current densities of 

electron and hole and total current densities are given by the drift-diffusion equations; 

Jn = q(DnVn - /.innE), (1.5) 

Jp = -qiDpVp + t-ippE), ( 1 .G) 

J = Jn + Jp, (i.T) 

where and /(p are the mobilities of holes and electrons, Dn and Dp are diffusion 

constants of electrons and holes which are explained in the Section 1.3. The electric 

field E is, a,s usual, given by 

E — —VV'. ( f .8) 

Mobilities and diffusion constants are often taken to be connected by the Einstein 

relations: 

Dii = ̂ nUX' ( 1.^)) 

Dp = fipUj'. (i.lU) 

Here Uj^, called the thermal voltage, is defined by 

KT 

where k is Boltzmann's constant and T is the absolute temperature. Under the 

Einstein relations, the current equations can be rewritten in the well known form: 

Jii = (1.12) 

Jp = -qHpiUj'Vp + pE). ( 1,13) 
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Now we summarize the equations forming the basic semiconductor device equa

tions for the quantities Vs p and n. 

=  p  { n  —  p  —  C { x ) ) ,  (1.14) 

(1.15) 

(1.16)  

(1.17) 

(1.18) 

(I.IU) 

Jn = (lPn{Uj<Vn - nE), 

Jp = -qHpiUrpVp + pE), 

J = Jn + Jp-

The bounded domain € il"^(N = 1, 2, 3) of the basic semiconductor eciuations 

Is the physical extent of the actual device. The boundary conditions for the basic 

semiconductor equations under Ohmic contacts are derived from the following three 

])hysical requirements which are explained in the next section: 

2 pn = 7?.^, (1.20) 

n — p — C = 0, (1.21 ) 

= V'6; + To, (1.22) 

where ?7is called the intrinsic carrier density and V'o is the externally applied voltage. 

The so-called built-in voltage i'H is defined by 

C "t" 
V'b; = f 

'hij 
1.23) 
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1.3 Physical basis 

A solid-state material can be classified as a conductor, semiconductor or insula

tor. This classification is based on the ability of the material to produce free tliarge 

carriers since the movement of carriers constitutes a current flow. The intrinsic semi

conductor is just a solid material containing fewer charge carriers than a conductor 

but more than an insulator. The intrinsic carrier density n,;(i.e. the number of elec

trons or holes per cubic centimeter) can be determined by the theory of energy band 

and density of states in quantum mechanics [10]; 

ni = \/NcNv exp , ( i-21) 

where k = 1.38066 x JoulelK is Boltzmann's constant and T is the absolute 

temperature. The quantities Nc and Ny are the effective densities of states in the 

conduction and valence band, respectively. At room temperature(300A'), Nc is 2.8 x 

10^'^C77?~'^ and Nv is 1.04 x 10^^C77i~"^ for silicon. The value of the bandgap Eg 

is 1.12ey at room temperature. If we substitute the quantities Nc, Nv, Eg and 

K into the equation (1.24), at room temperature, then the intrinsic density ??,• is 

1.45 x 10^®/c7?f^ for silicon. 

To make a useful semiconductor device, certain impurities are added to the semi

conductor in very carefully controlled amounts. This process is called doping. The 

concentration of added impurities, or doping concentration essentially determines 

the device function. When a semiconductor is doped with impurit ies, the impurities 

create two types of extrinsic semiconductor. One, with an excess of electrons, is 

called n-type and impurities are called donors. The other with an excess of holes is 

called p-type and impurities are called acceptors. The doping profile is the difference 
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of the donor density and the acceptor density. The semiconductor containing both 

p-type and n-type regions forms a p-n junction. 

Tlie density of electrons and holes will keep a dynamic balance between the 

generation and recombination rates under a thermal equilibrium condition. An im

portant relationship between electron density n and hole density p is the mass action 

law [4]. 

2 
np — n-i 

This mass action law always holds for both intrinsic and extrinsic semiconductors 

at thermal equilibrium. The electron and hole densities in thermal equilibrium are 

given by [10] 

n = iiiexpl—), (1.25) 

— 

?' = »?:exp(-^). (1.26) 

Most semiconductor devices operate under non-equilibrium conditions(i.e. n p  ̂  n j ^ )  

by such means as electrical or optical excitation. Whenever the thermal equilibrium 

condition(i.e. np = nj^) is disturbed certain physical processes act to restore it. 

These processes are performed by carrier recombination and generation. Several 

physical mechanisms describe the recombination-generation phenomenon [10]. Three 

types of recombination-generation rates are considered in our semiconductor device 

simulator: Shockley-Read-Hall, Auger and impact ionization. An indirect recom

bination process dominates in materials such as germanium and silicon [1]. This 

process may be treated by the well-known Shockley-Read-Hall expression " 

is expressed as 
9 ni) — n 

^SRH = 

np — nj 

+ '""(P + "/) 



9 

where is the intrinsic density, vn and Tj) are the life times of electrons and holes, 

respectively. Auger recombination describes the process of three particle transitions. 

This means that the recombination of an electron and hole releases energy, exciting a 

third carrier to some higher energy. The Auger recombination is significant on high 

power devices. It is expressed as 

^AU = ("P - + C'nn), 

where Cp and C'n are the Auger capture coefficients for holes and electrons, resjiec-

tively. When the electric fields are high enough, the carriers gain enough kinetic 

energy to break valence bonds, generating electron-hole pairs. These generated pairs 

accelerate in the high electric fields and collide with the atoms in the crystal lattice 

generating other electron-hole pairs. This is called the avalanche or impact iojiization 

process. This impact ionization process is treated by the impact ionization rate /?//. 

It is expressed as 

^11 = —-(«n I Jn I +o:p I Jp I), 

where an and ap are impact ionization coefficients of electrons and holes, respectively. 

They are strongly dependent on electric field components in the direction of current 

flow. Commonly used models(see [10]) are as follows: 

a„ = Q$f exp(-|^), (i.27) 

oip = ot^ exp ( 1.28) 

At room temperature, is is 2x10®Efi is l.GGxlO^M '«//.s/c??». 

and E^i is 2 x lO^Vo/i^/c??) for silicon. When an electric field E is applied to (lie 
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sciniconiluctor sample, the electrons drift with mean velocity vn proportional to the 

field. The proportionally factor /.tn is called the electron mobilitj'. That is, 

vn — —li-nE, (1.29) 

where the negative sign means the electrons drift against the direction of the electric 

field. The acceleration in the direction of the electric field E is —qEfw*i^ where 

is the effective electron mass. Let tn be the electron relaxation time which is the 

average time between electron collisions in the crystal lattices; then by ec|uating tlie 

momentum(/o/'ce x time) we have 

= —fhiE. (1.30) 
77Jjj 

Thus, 

(1-31 ) 
lUji 

By similar argument, we can express the hole mobility ftp: 

(1.32) 
nip 

where ni*, is the effective hole mass. These carrier mobilities are complicated functions 

because of the relaxation times between the collisions. The relaxation times are 

determined l)y the various scattering mechanisms. 

A semiconductor contact which has a negligible resistance regardless of the po

larity of the externally applied voltage is called an Ohmic contact. Usually. Ilie 

zero-space-charge condition(i.e. n — p — C'(x) = 0) is assumed to liold at Ohmic 

contacts. Nonzero space charge in a highly doped semiconductor contact causes an 

extremely high electric field, resulting in a breakdown condition at the contact. 'I'he 
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Uierinal-eqiiilibiiuni conclition(i.e. np = ???) is also assumed to hold at Oliiiiic con

tacts. This means that the excess carriers vanish immediately. The zero-space-charge 

c o n d i t i o n ( i . e .  n  —  p  —  C { x )  =  0 )  a n d  t h e r m a l - e q u i l i b r i u m  c o i i d i t i o n ( i . e .  n p  =  n j )  

determine the boundary conditions for n and p at Ohmic contacts. 

The boundary conditions for V' are derived as follows. At thermal equilibrium 

without externally applied voltage, the built-in voltage can be derived by substituting 

equations (1.25), (1.26) into n — p — C'(;i') = 0. That is, 

exp ( ) - C = 0. (1.33) 

Thus, 

C 4 -  \ J 4 -  4 ? ? ?  
Hi = 

2"î 
( I . : M )  

Therefore, the boundary conditions for V' under the applied voltage Vo is given by 

V' = 0/,,; + Vo at Ohmic contacts. 

1.4 Scaled form of the equations 

The dependent variables in the semiconductor device equations: electrostatic 

potential Vn electron density ??, and hole density j), are naturally chosen from the 

physical view point. However, some works in device modeling use different sets of 

dependent variables instead of (il',7i,p) for analytical and computational purposes. 

One set of variables which is used in some computational works is the eiertiostatic 

potential electron quasi-Fermi level tpn aiid hole quasi-Fermi level ^pp. These 

quasi-Fermi levels are defined by 

V>n = '/' — ' (1.3.3) 
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yp = V' + Uj' lu ( i .3G) 

Mathematically, these state variables Vp) G are related in a one-to-one 

way to the set (i/\ ??,p) G R X (0, oo)^. The range of values of y,; and is smaller 

but the equations become more non-linear. Another set of variables (0, », i'), which 

is most used in analytical works, is directly derived from the quasi-Fermi levels set 

These are defined by 

The equations for these variables (%/',«, u) are more linear and self-adjoint but the 

range of values of » and v is too large to use in practical computations. Kurata used 

the electric field E instead of electrostatic potential V' in his current-control type 

computation for thyristors [12]. The choice of variables {E,n, p) simplifies equations 

but encounters the problem of numerical divergence. The state variables are 

used in our numerical computations. 

The variables in the basic semiconductor device equations have greatly different 

magnitudes in different space regions. Therefore, the variables and equations must be 

scaled to oI>tain dimensionless equations. The scaling based on singular perturbation 

analysis [1.3] is summarized as follows. 

1. The scaling factor for length is the maximal diameter of the device domain. 

2. The scaling factor for all potentials is the thermal voltage Uf. 

3. The scaling factor for all densities is the maximum doping profile C. 

(1 .37)  

(1.38) 
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4. The scaling factor for mobilities is a reference carrier mobility. 

After scaling, the device equations in one-dimensional steady state under Oliniic 

contacts take the form: 

9 lb 
A"—-Tj-= (?î. —/) — C*(a;)), (1.39) 

dx^ 
dJn 

dx 
= R{x,4>,n,2}), 

d.h 

d n  f / Y ' .  
•hi = /(?) ( M-r-), 

dx dx 
- , r//> d,jh ^ 

(1.40) 

(1.41) 

(1 .12)  

(1.13) 

The bounded doman [—1,1] is the scaled domain. The parameter A is given by 

A (1.14) 
I I 

where I is the scaling factor for length and Co is the scaling factor for density. Ajg 

the so-called Del)ye length, so A is called the nornied Debye length. It is very small; 

typically, its order of magnitude is IQ—'^-lO"'^. The scaled boundary conditions at 

Ohmic contacts are as follows: 

V'(±l) = %(j:l) + I'oil' 

»7(±1) = 1 ( C . { ± 1 )  -f \/C'2(±i) +  4 6 4 j  ,  

;;(±1) = - ̂ -C'(±l) + \/C'^(±l) + 46*^^ , 

where 1/7,y, the scaled built-in voltage, is given by 

(1.13) 

(1.46) 

( L I T )  

'%(;'") = In 
C'k) + \/(r'^(T) + 4g^' 

26^ 
(1.48) 
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The symbol is the so-called scaled intrinsic density defined by 

(1.49) 

1.5 Mathematical analysis 

A review of mathematical analyses for the l)asic semiconductor device equa

tions in steady state is considered in this section. We will be concerned with three 

aspects of the basic equations: the existence and uniqueness of solutions, the singular-

perturbation character, and the properties of solutions. This analytical knowledge is 

essentia] for successful numerical computation. 

The scaled system of the basic semiconductor device equations in steady state 

ha.s a small parameter multiplying the second derivative in the Poisson equation. 

This makes the boundary value problem singularly perturbed and causes the solutions 

to exhibit layer-type behavior. The so-called reduced equations are derived by setting 

A = 0, i.e. n — p — C(;r) = 0. This is called the charge-neutral approximation in the 

physics literature. These reduced equations with the reduced solutions ij\ f?, p. .70, 

Jp are written in one-dimensional scaled form as 

0 = n  —  p  —  C ( x )  (1.50) 

(1.51) 

(J.5;]) 

f / f/i/', 
(1.51) 



C ( x )  =  

15 

for ;i' 6 [—1,1]. To simplify the analysis we consider a diode and assume the scaled 

doping profile C(x) to be piecewise constant: 

C p  -1 < .T < X j ,  

Cn xj < .r < 1, 

where the point xj where C changes sign is called the p-n junction. These reduced 

equations are compatible with the boundary conditions under Ohmic contact since 

n —p — C'(;r) = 0. Therefore, the solution of the basic device equations under Ohmic 

contact has only a junction layer at the junction xj where C(x) is discontinuous, 'i'his 

means that the solution varies slowly in the region far away from the junction, and 

rapidly inside the junction layer. A junction correction term added to the reduced 

solution is required to make the approximation for the full equations. Markowich 

applied singular perturbation theory to construct the approximation in the form [J 3]: 

(/'(.T, A) ~ ïix) + V'( '' ^ ^ ) ( 1.55) 

where is the reduced solution and 0 is a correction term which decays exponentially 
X — Xj 

to zero as (—j-^) —y oo, i.e. x far away from junctions. He has proved that this 

asymptotic expression is valid under zero bias, i.e., the recombination-generation 

term R = 0, and the full system has a unique solution at thermal equilibrium. This 

result can be stated as the following theorem. 

Theorem 1.1 Let the mobilities fin, ftp be constant, and the doping projile C(x) 

be pieceiinse constant. Then the one-dimensional steady state basic seniicondiirtor 

device equation has a unique solution V'e tinder zero-bias and 

||V'e( : f 'i A) —  '/'/«(''O —  ' / ' ( — j ^^)||oo =  0 ( X )  ( 1.50) 

where '/'/,/(;!') is the built-in potential. 
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There is at this time no proof of existence of solutions for the basic semiconductor 

device equations without any restrictions. A general proof about the uniqueness of 

solutions for arbitrary applied voltage can not be expected. In fact, semiconductor 

device physicists tell us that certain devices have multiple steady states for certain 

biasing conditions. For example, the four-layer p-n-p-n tliyristors can have three 

states. 

1.6 Numerical methods 

The usual procedure of the numerical methods in solving differential equations 

contains three steps. First, the domain of the differential eciuations lias to be parti

tioned into subdomains to generate the mesh points at which the solutions are com

puted. Secondly, the differential equations are discretized by suitable discretization 

schemes yielding a system of algebraic equations. Finally, these algebraic equations 

are solved by some numerical method to obtain the approximate solutions at the mesh 

points. This introductory chapter only describes the discretization scheme and the 

methods for solving the discrete equations for our problem. The details of numerical 

analysis — accuracy, convergence and efficiency — will be discussed in Chapters 3 

and 4. 

The mesh generation is based on the solution character and the idea of equidis-

tributing the local truncation error. Since the solution varies strongly in the junction 

layers but slowly in the region far from junctions, more mesh points are required near 

the junctions. This means that the usual uniform mesh is not appropriate. To achie\ e 

a specified accuracy with as few mesh points as possible, we first set up a coarse mesh 

refined at the junctions, and then refine the mesh further by equidistributiug the local 



17 

triuicatiou error to achieve the specified accuracy. 

The finite difference and the finite element approaches are two basic numerical 

schemes to discretize the differential equations. In our semiconductor device simula

tion programs, the so-called box method [14] of the finite difference scheme is used 

for discretization of the semiconductor device equations. The box method is very 

suitable for equations in divergence form. To explain this method, a two dimensional 

Poisson's equation 

d i v ( V f )  =  r  ( 1.57) 

is discussed for simplicity. By the divergence theorem, equation ( 1.57) can be re])laced 

i>y 

lf-yf<l'='llg'-<lA (I/XS) 

where B is the box region containing a mesh point Pq and C is its boundary curve 

(see Figure 1.2). The right-hand side of equation (1.58) is approximated by 

I  J b  ^  7 ' ( P Q ) a r e a ( B )  (1.59) 

and the left-hand side of equation (1.58) is approximated by 

f 
/,, v/<is « 5: 1V/(A/,=| Q j j ^ i  -  %  | .  ( i . o o )  

i=i 

In equation (1.60) V f { A I j ) n  can be approximated by the central difference, 

(1.61) 

Using the above approximation, the discretization of Poisson's equation (1.57) leads 

to the five-point formula 

Z Z ^ ( 1.02) 
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Figure 1.2; Box scheme 

This box method can also be applied to the continuity equation and yields the 

Scharfetter-Gummel discretization [8] for carefully dealing with the current relations 

l)y exponential fitting. 

The basic semiconductor device equations are a nonlinear system of dilfereui ial 

equations, so the discretization of these equations is also a nonlinear system of differ

ence equations. For convenience, the following symbolical notation is used to denote 

the nonlinear system of discrete equations. By substituting the current relations into 

the continuity equations, we write the discrete equations symbolically as 

F { z )  =  

^ /0(-) ^ 

./•»(-) = 0 (l.O:}) 

wiiere z = the state variables of the discrete semiconductor equations 
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at mesh points. The discrete Poisson equation is /0, and f n ,  f p  are tiie discrete 

continuity equations for electrons and holes, respectively. 

Now to solve this nonlinear system of difference equations, the most frequently 

used algorithms are iterative methods. Two basic iterative methods are used in 

semiconductor device simulations. A nonlinear Gauss-Seidel procedure( the decoupled 

algorithm) first proposed by Gummel, is called the Gummel method [5]. The Newton 

iteration is the so-called the coupled algorithm. 

The idea of the original Gummel's method is to solve the electron and hole 

continuity equations for 7? and with V' held fixed, and then solve Poisson's equation 

for electrostatic potential »/', using only one step of Newton's method. The nonlinear 

Gauss-Seidel iteration converges well for small applied voltage, but slowly for the 

high-current situations. Computer times in each iteration are saved in this method 

because only one equation in the full system is solved on each step. 

Newton's method, on the other hand, converges quadratically from a good initial 

approximation but each iteration is expensive, because it requires computing the 

.Jacobian and solving a full system simultaneously. The trade-offs between these two 

methods have to be considered. One way is to use Gummel's method first to get a 

good initial guess for Newton's method and then switch to Newton's method. 

1.7 Computation of current-voltage charcteristics in the 

one-dimensional thyristor model 

The major goal in this paper is to compute the current-voltage characteristics 

for the one-dimensional static thyristor (see Figure 1.3). There are three different 

current states in a thyristor under certain biases. From a mathematical point of 
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Figure 1.3: Current-voltage characteristics of a tliyristor 
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view, this means that the static basic semiconductor device equations for a tliyristor 

have nonunicjue solutions. This multi-solution characteristic creates difficulties for 

numerical computation. To overcome this problem, we use the pseudo arc-length 

continuation method [15]. Newton's method and GummePs method can be treated 

as basic tools for this continuation method. 

With the notation of (1.63), the discrete system of the boundary value problem 

is 

T") = 0 (l.Gl) 

where F  : x R  —*  R ^ ,  and V  6 /?, the applied voltage on a contact, is the 

natural parameter in this system. 

The solution path P = {(z, V )  |  F(z, V )  = 0} of equation (1.64) nuist be com

puted to get the current-voltage curve(see Figure 1.3). There is a way for solving 

this problem just by Newton's method. However, Newton's method fails to converge 

when a poor initial guess is given. The natural continuation method is introduced to 

overcome this problem. The natural continuation method uses a previous known so

lution and the tangent vector to F to construct the initial guess for Newton's method. 

This algorithm is written as follows. 

Algorithm 1 (Natural Contiuation) 1. Start at a knoivn solution ( -y ,  Vy)  on 

the solution path. 

2. Compute tangent vector zv by Fzzv = —Fv. 

3. Predict an initial approximation by = zo -(- (r^ — Vo)zv. 

Use as an initial approximation for Newton's step Fz( —z'~ ̂  ) = — F( z'~ ̂ . Tj ). 
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5. Use the solution (z^, from step 4 as new (zo, Vo) and go to step 1. 

Tills natural continuation procedure works well for sufficiently small step size ( I — 

I o) but needs some modification for dealing with multi-solution problems. A curve 

with multiple solutions will usually have turning points. The .Jacobian F- is singular 

at the turning points. To pass these turning points, the so-called jjseudo arc-length 

continuation method is applied for snap-back problems. The pseudo arc-length con

tinuation method uses an approximate arc-length parameter 5 instead of ( he "natu

ral" parameter V. By adding an arc-length equation, the system is expressed as an 

augmented system. 

A ( z ,  V',s) = 

\ 

= 0 (1.05) 
|i(s)||^+ I i'(a) 1^ -1 ̂  

where i and V are derivatives of z and V with respect to the arc-length ])aranipter 

s. Keller [23] has shown that this augmented system A{2, V,s) = 0 is nonsingular at 

turning points, even when the subsystem F(z[s), V'(5)) = 0 is singular. This leads to 

the pseudo arc-length continuation algorithm. 

Algorithm 2 (Pseudo Arc-Length Continuation) 1. Start at a known solu

t i o n  ( r ( 5 o ) ,  V ( s o ) )  =  ( z o ,  l  o ) .  

2. Compuie the tangent vector (i(3o)i '•'(•So)) = Vo) hy solving 

FzZo -|- VoFy = 0 

l|io||-+ I I'i |2= 1 

3. Predict an initial approximation by 

=  Z o  +  ( 5 2  -  S o ) Z o  



= Vo 4" (5| — so)\'o 

4. Use as an initial approximation in Newton's method for solving the 

augmented system V, s) = 0. 

5. Use the solution Iq) from step 4 new [zo, V'o), go to step 1. 

Ill our seniiconductor simulation programs, we successfully pass the turning point at 

the holding voltage and obtain the current-voltage characteristic by this algorithm. 
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2. ANALYTICAL INVESTIGATIONS OF THE CHARACTER OF 

SOLUTIONS 

This chapter provides a survey of some existing analytical results about the na

ture of solutions of the steady state semiconductor equations. We review some result s 

about existence and uniciueness of solutions. We next present the regional approxi

mation for a p — n junction which is a basic unit in studying semiconductor devices. 

The chapter closes with a discussion of singular perturbation analysis which yields 

insight into the qualitative and quantitative structure of solutions. The knowledge 

of these characteristics of solutions is essential for successful numerical computation. 

2.1 Existence and uniqueness of solutions 

So far, the proofs of existence of solutions for the basic semiconductor device 

equations have not Ijeen achieved without restrictions. These restrictions are due 

basically to the recombination-generation rate and the carrier mobilities. The exis

tence proof under the assumptions of constant mobilities and bounded recombination-

generation rate has been given by Mock [28]. Seidman [17] has obtained similar 

results for the S hoc k ley- Read- II al I recombination-generation rate. .Jerome [18] has 

an existence analysis for considering Shockley-Read-Hall and Auger recombination-

generation rate and its discrete analogue. Similar results have been obtained by 



25 

Markovvicli [13]. 

If we use the state variables (V', «, «) and insert the current relations into the 

continuity equations, the one-dimensional steady state basic semiconductor device 

equations under Ohmic contacts take the form; 

-  C ( x )  (2 .1 )  
dx^ 

=  R ( x , 4 \ z i , v )  (2.2) 
ax ax 

''^'-j—) = ^(••I'l i/'i'') (2.3) 
( I x  '  a x  

for X 6 [—1,1], The scaled boundary conditions at Ohmic contacts are; 

V'(±l)  =  V'6i(±l) + (2.4) 

«(±1) = (2.5) 

f ( ± l )  =  e ^'o( (2.0) 

where Vy,/ is the scaled built-in voltage. 

The basic ideas of Jerome and Markowicli for proving existence of solutions 

use the Gummel decoupling algorithm and the Schauder fixed point theorem. The 

Gummel decoupling algorithm is as follows. 

Algorithm 3 (Gummel Decoupling Algorithm) Starting xoith a given pnir(ii.v) 

(»o,Co), repeat the following steps: 

1. Solve Poisson equation : 
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for X E [—1,1], with boundary condition 

V'(±i) = V'6?:(±i) + yo±i 

for 

2. Solve the electron continuity equation: 

= R{x,4'f.,ui.,yvf.._i) 

for X € [—1,1], with boundary condition 

î«;^(±l) = e " ^''o(:kl) 

for 

3. Solve the hole continuity equation 

for X e [—1,1], with boundary condition 

i'^.(±l) = j:l) 

for Vf... 

until accuracy is achieved. 

The fixed point operator T is then constructed by 

T { u k _ i , v j . _ ^ )  = 

A solution ( f/', », I') = ( '/'(», t;), w, t') of the basic device equations is I lien a fixed point 

of the operator T'. 

T { u , v )  =  ( u , v ) .  
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The techniques of this proof of existence are much more complex and difficult than the 

concept of fixed point argument. We state existence results in the one-diinensional 

case here without proofs. Details and proofs can be found in [18] [13]. 

To state the existence theorems, we need the assumptions: 

(Al) the doping profile C E 1,1], denoting 

C A.r = ess sup C* (;!•); 
-l<;i:<l 

(/12) the mobilities are constant, 

(.43) the Shockley-Read-Hall and Auger recombination-generation rates satisfy 

R = — 1), 

Theorem 2.1 Let fhe assumption (Al) hold and let (u,v) G 1,1])^ salisfij 

0 < i'ln < 0 < i'm ^ v{x) < a.e. in [—1,1]. Then the Poisson 

C m  = ^ss inf C { x ) ,  
-\<x<l 

with 

P { x , 4 \ u , v )  > 0. 

equation (2.1), (2.4) has a unique weak solution 4' 6 //^[—1,1] fl £°°[—1,1], which 

satisfies the estimate: 

min min(V'(- l ) , ' / ' ( l ) ) i  I"  
Cm + yC'm + 

< i/'(x) 

/ 

< max max(i/'(-l),0(l)). In 

\ 

Cj]/ -I- ^C^^ + 4S'iumi>j\/ 
a.e. in [ — 1 . 1 ] .  

26'^um 
. / 
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Theorem 2.2 Let the assumptions (Al), {A2) and (A3) hold. Suppose thai the 

boundary data satisfies < V. Then the system of the basic semiconductor 

equations (2.1), ( 2.2), (2.3), (2.4), (2.5), ( 2.6) has a weak solution {ij\u,v) € 

(//^[—1,1] n 1,1])^, tvhich satisfies the estimate: 

e ~ ^  < u { x ) < e ^ '  a . e .  i n  [—1,1] 

<  v [ x ) < e }  a . e .  i n  [—1,1 ]  

Cm + \/Cm + 
mil l  mi l l  ( i / ' ( - l ) ,  0(1)) ,  1" 

26^ 

< max ma.x(i/'(-l),i/'(l))i I" 
CM + \jc\j + 

26:^ 

- y j < '/'(;'•) 

\ 

+ v I.e. in [—1,1 ] .  

The above existence theoiem does not yield any assertion on uniqueness oi" so

lutions for the semiconductor equations. Mock [19] has shown that there exists a 

unique solution for small external applied voltage Vq. But in general, for arbitrary 

a|)])lied voltage the solution is not unique. 

In fact, the four layer p-n-p-n thyristor has three steady state solutions un

der certain biasing. Rubinstein [20] has constructed three solution branches of the 

reduced ec[uations obtained by setting = 0 in the basic semiconductor device 

equations for a p-n-p-n thyristor with piecewise constant doping profile. He used the 

Newton-Kantorovich theorem to prove the existence of the multiple solutions under 

the assumptions of constant and equal carrier mobilitites and zero recombination-

generation rate. Steinruck [21] used the singular perturbation approach and bifur

cation theory to determine the structure of the current voltage characteristic for 

a thyristor with piecewise constant doping profile, lie allows the recombinai ion-

generation to be the Auger or the Shockley-Read-Hall model in his ,S'-shape current 
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voltage structure. Ward et al. in their recent paper [22] constructed the nuilti-

))le steady state solutions for a multijunction semiconductor device with Shockley-

Read-Hall recombination rate using a combination of asymptotic and numerical tech

niques. 

2.2 The p-n diode at thermal equilibrium 

If all external potentials applied to contacts of a device are zero at a given 

temperature, then the device is in thermal equilibrium. Device physics [4] tells us 

that, at thermal equilibrium, the drift current due to the electric field cancels the 

diffusion current due to the concentration gradient. Therefore, the electron current 

./», the hole current Jp, and the recombination-generation rate R vanish within the 

device. 

Now we consider the current equations using the state variables ( i/', n , v )  at ther

mal equilibrium, 

J„ = ixnfié''^ = 0 
ax 

J p  = = 0 

for X € [—1,1], with boundary conditions at Ohmic contact: 

h ( ± 1 )  =  i ' ( ± l )  =  1 .  

The solutions for these two l)oundary value problems are u = r = 1. This implies 

that there is no need to solve the full set of the basic semiconductor e(|uations. We 

need solve only the Poisson equation to obtain the so-called equilibrium potential 

'/' = '/v.- Then, the solution set ()/'e,l,l) = (»/',«,{') constitutes a solution of the 

basic semiconductor equations in thermal equilibrium. 
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At thermal equilibrium, Poisson's equation reduces to 

- C(;r) 
d x ^  

for X € [—1,1], with Ohmic contact boundary conditions: 

Note that the boundary values are just the built-in voltages The regional 

approximation method for solving this problem works Ijy separating the domain into 

three regions. It is illustrated in Figure 2.1 for the doping profile in an abrupt 

junction. 

On physical grounds, charge neutrality (i.e., — 6'(;c) = 0 ) is 

assumed in the two bulk regions. The free carrier densities n and p are assumed to 

be zero in the depletion region, and the electric field E = —^ vanishes at the end 

points a'p, xn of the depletion region. 

Under these physical assumptions, the Poisson equation has the regional approx

imation solution (see [4] for calculation) at thermal equilibrium; 

V'(;i') = V'(-l) = %(-!), for -1 < < --vp, 

V'(.r) = ^'(1) = i'ij(l), for Xn < < 1, 

=  % ( - l )  +  ,  f o r  - x j )  <  X  <  X j ,  

V'(.r) = J l i x n )  - for xj < x < x,,-

To make a C'^[—1,1] solution, the junction width it' = X p  + x n  is determined to l)e 

((' = A/2V'(1) - V'(-i).-. \ 
C  n  +  t p  \  

(- ' n + ( p 

C'„C /, ' 
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Figure 2.1: An abrupt junction 
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This regional solution profile exhibits the junction layer character. This means that 

the electrostatic potential i/' varies strongly in the thin layer of width 0(A). but slowly 

in the large regions far from the junction. 

2.3 Singular perturbation analysis 

In the preceding section we have considered the regional approximation method 

for p-n diodes. This analysis shows that the electrostatic potential varies greatly 

in the thin junction layer at thermal equilibrium. The order of magnitude of this 

layer is (9(A). We suspect that the concentrations of electrons and holes have similar 

layer-type behavior at arbitrary biasing. The system of the scaled basic semicon

ductor equations is a singularly perturbed boundary value problem. In this section 

we summarize the singular perturbation approach of Markowich [24] to analyze the 

structure of solutions. This information about solution structure can be used to as

sess the discretization of the equations, design of the mesh and selection of iterative 

schemes. 

To simplify the analysis, the mobilities /(», //p are assumed to be constant and 

the scaled doping profile C has a jump discontinuity at junction that is 

lim C{x)^ lim C(;i'). 

x—*x'j' .r—•.tJ' 

At first, we try to solve the singularly perturbed semiconductor equations by a regular 

expansion in A. 
oo 

0(;r, A) ~ (/'(;»•) + Y. 
?"=! 

oo 
n(;r, A) ~ n ( x )  + ^ A,-f?,;(;r), 

7 = 1 
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p { x , X )  ~  p { x )  +  
;=1 

00 

~  J n { x )  +  X j J n j i ' i ' ) ,  
i=l 
oo 

J j } ( x , X )  ~  ^  X l J p j { x ) .  
?'=! 

Inserting these expansions into the equations and neglecting (9(A) terms, we obtain 

tile so-called reduced equations. 

0  =  n  —  p  —  C i x ) ,  (2.7) 

d J j l  R ,  7  _  
=  R i x , 4 ' , n , p ) ,  (2.8) 

d J n  -  -
=  - R i x , 4 \ 7 i , p ) ,  

f dn _ di} 
Jn = /'??(-; "-T—), 

dx dx 

(2.9) 

(2.10) 

(2.11) 

These reduced equations are called the charge-neutral approximation in device physics 

since space ciiarge n — p — C(x) = 0. 

The reduced solutions ï\n,p are discontinuous since C has a jump discontinuity 

at junction xj. They must be supplemented by the junction correction terms to make 

a continuous approximation for the full semiconductor equations. After the junction 

correction terms are included, we have the asymptotic expansion; 

/(:r, A) ~ f i x )  4 f(^-^) + • • •, (2.12) 

where / = (i/', n,p, Jn, Jp)^ and the dots denote a power series in A starting wit h tlie 

0(A) terms. The junction correction terms n, p, Jp, Jp are defined for a = — 

Th(?y are supjjosed to decay exponentially to zero as c —» oo. 
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Now we insert tlie expansion (2.12) into the full basic semiconductor e((uations 

and consider the leading terms in A. Evaluating the eqnations close to the junct ion 

Xj for cr > 0, we have right layer equations: 

-T^ = n-p, (2.1.3) 
dcr^ 

^ = (n + ;l(.ry+))^, (2.11) 

^ = + (2.15) 

-7^ = 0, (2.10) 
da 

< f J p  

da 
^ = 0, (2.17; 

with 

f( x j ± ) =  lim /(;!•). 
•' a-—f;rj± 

For a < 0, replacing n ( x j + ) ,  p ( x j + )  by n ( x j - ) ,  p ( x j - ) ,  we obtain the left layer 

problem: 
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We want the approximation 

+ (2.23) 

of the full semiconductor equations to satisfy the matching condition, that is, 

lim /(.T,A) = Y n n  ( f i x )  +  / ( — - ^ ) )  =  f ( a - ) .  
A—•Oi A—>0± A 

This means that the asymptotic approximation /(;r, A) (2.23) approaches the reduced 

solutions when A is close to zero. The layer equations therefore have the asymptotic 

boundary conditions: 

V'(±oo) = 7!.(±oo) = ;3(±oo) = Jj7,(±oo) = Jp(i:oo) = 0. (2.24) 

These asymptotic boundary conditions assure that the junction correction terms de

cay to zero as the variable cr approaches infinity. 

By requiring continuity of the approximation (2.23), the layer equations also 

have the interface conditions: 

t{xj+) + V'(0+) = iixj-) + i/'(0-), (2.25) 

n i x j  +  )  +  0(0+) = n i x j - )  +  n ( O - ) ,  (2.2G) 

p ( x j + )  + j3(0+) = p ( x j - )  + p(O-), (2.27) 

+  •Âî.(0+) =  J l l { x j  —  )  + J;; (0—), (2.28) 

+  J p ( 0 + )  =  J p ( x j  —  )  + Jp(0—), (2.2!.)) 

i/'(0+) = i/'(0-). (2.30) 

From the equations (2.16), (2.17), (2.21), (2.22) and the asymptotic boundary 

conditions (2.24), we have 
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This means that electron and hole current densities have no junction layers, integrat

ing the equations (2.14), (2.1.5), (2.19), (2.20) and using the asymptotic boundary 

conditions (2.24), we obtain the carrier density correction terms îî(<t), ;5(cr) in terms 

of as follows: 

/?((t) = 7?(.Tj+)(e^'(''^) — 1), for <7 > 0, (2.31 ) 

p { ( x )  = i)(xj+)(e~^'(^) — 1), for a > 0, (2.32) 

7i{a) = — — 1), for <7 < 0, (2.3.'i) 

p{cr) = —)(e"^'('^) — 1), for a < 0. (2.34) 

The internal layer problem is derived by inserting the above equations (2.31)— 

(2.34) into equation (2.13). 

with asym])totic boundary conditions 

V'(ioo) = 0, (2.37) 

and the interface conditions 

V'(:i'_y + ) + V'(0+) = ïia-j-) + V'(O-), (2.38) 

V'(0+) = V'(O-). (2.3!)) 

Markowich [24] showed the intenal layer problem has a unique exponentially 

decaying solution V'- The order derivatives satisfy 

dcr^ 
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where > 0 only depend on i .  The carrier density correction terms p  also 

decay exponentially as a —» ±00. 

The equations (2.31)— (2.34) and the equations (2.25) — (2.27) give tiie interface 

conditions for the reduced carrier densities: 

mj+) = (2.-KI) 

P U j + )  . (2.111 

In physics language, (2.40), (2.41) represent the continuity of quasi-Fermi levels. The 

carrier densities have the layer jumps which depend exponentially on the voltage drop 

accross the junction. Since the electron and hole current densities have no junction 

layer (i.e. Ju = Jp = 0, we have the interface conditions of current densities for 

reduced equations: 

Jn(.rj + ) = Jn(a-j-), (2.12) 

Jpi'i'j-'c) = Jpixj — ). (2.13) 

Recent work of Ward, Reynal and Odeh [22] indicates that these conditions do 

not hold universally. The reduced equations (2.7)— (2.11) and the interface con

ditions (2.40)— (2.43) and the same boundary conditions as the full equations con

stitute the reduced boundary value problem. 

In the same paper [24], Markowich showed that the reduced problem has a weak 

solution (0, ?1,/;) which approximates the solution of the full equations ui> to 0(A) 

outside the layer region, and the width of layer is 0(A|lnA|). He also showed that 

the asymptotic expansion (2.12) is valid at thermal equilibrium and satisfies 

||j/'(;r. A) - i/'(;r) - </•(—^)||oo = 0(A). 
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3. DISCRETIZATION AND MESH DESIGNING 

In this chapter we shall derive the discretization of the basic semiconductor 

device equations for executing the numerical computations. We use a finite difference 

scheme to transform the continuous semiconductor equations into discrete forms In 

which the solutions are approximated at a finite number of mesh points. This finite 

difference discretization is based on the box method as discussed in chapter 1. 

Designing the mesh plays a important role in the steady state semiconductor sim

ulation program to achieve a specified accuracy with as few mesh points as possible. 

The normal uniform mesh is unsuitable for the discretization of the basic semicon

ductor equations because of the layer-type solutions, by the singular perturbation 

analysis. Our mesh construction is based on the solution character, and on the idea 

of equidistributing the local truncation error. 

3.1 Discretization of the basic semiconductor device equations 

In order to execute the numerical computation, the basic semiconductor device 

expiations are solved in the discrete form in which the unknown variables are defined 

at mesh points. To denote the mesh points, we let hj be the size of the interval 
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ill Uie non-uniform mesh and we use the following notations: 

X j =  X j h j ,  = 0,1, • • •, 

1  ~  ̂ 4 "  ' i - j - j - i  ) i  J  —  0 , 1 ,  •  •  • ,  N, 

X  .  I —  T j ( x  j  - | -  X  j — 2 ), j — 1,2, • • •, N -f-1, 
V — Y  "  

x. j  —  7(;i-. , 1 + ;!•. 1 ), j = 1,2, • • •, iV. 
- j+^ 

Here, a-g and correspond to the end points ;rQ = —1 and ;«'yv-fl ~ The 

point X : is the midpoint of the two midpoints x . i and x . i . The maximum mesh 

size h is defined l)y 

h  = max h ; .  
0 < j < N  J  

For the evaluation of functions at mesh points , we use the following notations: 

/ ( • • I - ; )  = / ; ,  / ( a ' • ,  1  )  = / • ,  1  '  / ( « ' ' ' •  i )  =  / .  1 ,  f ( ^ ' j )  =  h -
•> •' J 

3.1.1 Discretization of Poisson equation 

Now we discretize the Poisson equation of the semiconductor problem. The 

scaled form is 
O (fill' 

=  n  -  p  -  C ( x ) .  (3.1) 
dx^ 

Integrating the Poisson equation (3.1) over the interval [;r . ^ . ;r . j], we have 

,2 , 
a2 f i- É ^ d x ^  [  n - p - C ( x ) d x .  (3.2) 
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By api)lyiiig the one-cliniensoual box method, equation (3.2) can be approximated 

as: 

- ̂9 - C))-

We evaluate (^). i and (4^). i by central differences, that is, 
7 + 7  7 — 7  

Substituting these approximations (3.4), (3,5) into (3.3), we obtain the standard three 

point formula for discretization of the Poisson equation: 

The space charge n { x ) — i ) { x )  —  C { - . i ' )  is approximated by the midpoint of the midpoint s 

scheme [25]. 

3.1.2 Discretization of continuity equations 

Now we construct the discretization of the continuity equations. We deal only 

with the continuity equation for electrons: 

—7^ = (3.7) 
dx 

with electron current density; 

,  ,  ( I n  f / i / ' ,  ,  ,  ̂  ̂  
Jn = fhi(-, n—). (3.b) 

dx dx 

The treatment of the continuity equation for holes is similar. 
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By applying the box method, as in the Poisson equation, to the electron coni i-

nuity equation, we obtain 

[ J n ,  i - J n .  1 I  «  +  h j ) R : .  (:J.U) 

The evaluation of Jn 1 and Jn 1 is interesting and has to be treated very care-
i+7 j—2 

fully. As a simple illustration, we consider the straightforward central difference 

scheme as applied in the Poisson equation. The discrete form for electron current 

equation (3.8) by the central difference scheme is 

This scheme is not regarded as a good choice for evaluating Jn 1 , since it requires 

a very fine mesh for computing accurately the electrostatic potential V'-

To simply explain the reason, consider the thermal equilibrium condition, i.e. 

Jn = 0. The discretization (3.10) of the electron current equation for Jn = 0 yields 

"'j+i - "'J==jjtpwVi' 

where 11 = at thermal equilibrium. This shows that the variation of the elec

trostatic potential j/.' must be small on each mesh interval, that is, 

nijx I V'j+i - V7 |< l-

This condition requires a very small mesh-size inside the junction layer since the 

electrostatic potential varies greatly in the thin layer as we know from the singular 

perturl)ation analysis. Therefore, in jjractical numerical computation, this scheme is 

not feasible for discretizing the current equations. 
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lu Older to have suitable evaluations of J n  ,  i and ./» , , we may siniplily 

the electron current equation by using the state variables (V', w, r): 

J n  =  . (3.11) 
a x  

The electron mobility / . i n  at the midpoint x  .  i can be evaluated by the average, i.e. 

We approximate the derivative of the unknown function u by the difference quotient: 

d u  ( " / + 1 - " / )  

d x  h j  

One way to approximate at ^ is 

but this approximation will yield the same problem as the straightforward difference 

scheme. Mock [28] claims that this approximation (3.12) will lead to inaccuracies. 

An alternative estimation for e'^' at x . j can be given by calculating the average 

~V'  
of the weighted function ). Let us consider the integration of this weighted 

function over the interval [u:j, ;rj | : 

"'V "fi 0 j +1 

/ = (3.13) 

"'i -'V 

By employing the mean value theorem in the integral on the left hand side of t he 

above equation (3.13), we have 

f eV'ÈZf a = ). (3.14) 
J  d x  J  d x  

•'"i •'j 



43 

with ( e 

If we take ̂  to be the midpoint x  .  i, we obtain the approximation for (c'^') | : 

wliere 5(;r) is the Bernoulli function defined by 

The equation (3.15) is proposed by Bank et al. [26] for approximating e'^' at the 

midpoint. Substituting the expression (3.15) into (3.11), we obtain the electron 

current density Jn at ;i:. | : 

J n .  i = < 5 V .  
; + 7  J + ^  " j  

The analogous evaluation for J n  at x  .  ^ is 
J - 1  

J n .  i = < 5 V .  \  ^  •  
J - h  J - h  • '  ' ' / - I  

(3.17) 
J - ^  " j -

Thus, for the variables (^', w, r), the discretization of the electron continuity 

equation can be obtained by inserting the expressions (3.16), (3.17) into (3.9). This 

discretization of the electron continuity equation is 

f,n. ,e^JB(4'j- V',-l) %  ^  \ - ^ i  =  0 .  ( : ) . i 8 )  
J-i ''i-i J 
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The discretization using variables (0,;?,;;) is easily obtained by setting n  =  

that is, 

I t j - l  +  h j  

^<•n. 1 
J ~ 7 .  

. 1 

+ - B.J = 0. (.'{.ID) 

The above discrete equation (3.19) was suggested first by Scharfetter and Guainiel [8] 

motivated by physical consideration. It is therefore called the Scharfetter-Gumniel 

scheme. 

An alternative derivation for the Scharfetter-Gummel discretization is that the 

electron current e(iuation may be regard as determining the distribution of electron 

d e n s i t y  n  o v e r  a  m e s h  i n t e r v a l  W e  a s s u m e  t h a t  t h e  e l e c t r i c  f i e l d  E  =  —  

electron mobility and current density Jn are constant within the mesh interval 

Now we solve the electron current equation 

d n  f / ? / '  
(.'3.20 ) 

over with the boundary condition 

n { x j )  =  H j ,  n ( x j ^ i )  =  )  

This first order differential equation can i)e exactly solved in the explicit form: 
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+ 
1 _ eV'(.iO-Vv 

' n^-+l (3.22) 

for X e 

The electrostatic potential V' is assumed to be a piecewise linear function between 

the mesh points. Thus 

V'/o-i - V'; 
V'(;i-) - i / ' j  =  ( x  -  X j  (3.23) 

for X 6 [;rj, Substituting (3.23) into (3.22), we obtain the so-called exponential 

fitting for electron density n :  

n ( x )  = (1 -  g j { x - , 4 ' ) ) n j  +  g j ( x ; r l ^ ) n j ^ i  (3.21) 

for ;(• G [iry,;rj^2], where the growth function fifj(;v; V') is defined l)y 

for X e 

Therefore, we can evaluate the electron density n  and the derivat ive 4^ at x  ,  .  

and ;r from the expression (3.24) of the electron density n. Substituting these 

evaluations into the electron current equation (3.8) with central difference for the 

derivative of electrostatic potential Vn we have the evaluation for electron current 

d e n s i t v  J n  a t  ; r  .  i  a n d  x  .  i  :  

>1.^ 
1 = —- V'j)"j+1 - B(4j - )nj} (3.2G) 

""j-4, 
l = /,. • - '/y_i)"_/ - - i/'j)vj_[] (3.27) 
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We again obtain the Scliarfetter-Gummel discretization of the electron contiiniily 

ec|uation by inserting the expressions (3.26), (3.27) into (3.9). A completely analogous 

discussion holds for the hole continuity equation. 

We now summarize the discrete equations as follows. 

The discrete Poisson equation /^,. is: 

- ("J - P j  - C - ^ )  = 0, 

The discrete electron continuity equation fuj is: 

f n :  =  
J  h j _ i + h j  

+ —^^B(V'j+i - V'i)"j+i 

The discrete hole continuity equation fpj is: 

2 

(3.28) 

R j  = 0. (3.2U) 

f P i  =  
J  h j _ i + h j  

f/'p 1 

• / I p j  
" 2  

1 '
 1 1  

- V'j) I'j 

+1 
+ 1^ , " -P(0j - '/V + 1 )/';•+1 - = 0. (3.30) 
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The discrete electron current equation Jnj is: 

(:U1) 

The discrete hole current equation Jpj is: 

(:3.:{2) 

3.2 Analysis for the discretizations 

The Scharfetter-Guniinel discretization method is an exponentially fitted scheme 

for the current equations. In this subsection we estimate the local truncation error 

and study the convergence of the discretization scheme. 

We first consider the Poisson equation in terms of the differential operator: 

with f ( x )  =  n { i v ) — p { x )  —  C ( x )  and satisfying the Dirichlet boundary conditions. 

The corresponding difference operator of the three point discretization scheme is 

written as: 

I = a2 = /(;r), -1 < a- < 1, 
dx" 

(.3.3:3) 

T j  l i j _ i  
=  . / ) ,  J  = 1,2,... 

(3.:34) 

with = *&( —1), ^yv+1 — ^(1) And f j  =  n j  —  p j  —  C j .  

The local truncation error îj[V'] is defined by 

T j [V'] = ) - L t l ' ( x j ) ,  i = 1,2, • • •, N .  (3.:3.3) 
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Thus, the local truncation error estimates the amount by which the solution of the 

differential equation fail to satisfy the discretization of the differential equation. By 

simple calculation and Taylor's expansion up to the fourth term, we obtain 

2y[V'] = A- - /»;•+!) + -^(hj - hjhj^i + ^ 

4+^')-i 
+0 , . 

h j  +  h j _ l  

This shows that the standard three point discretization scheme is consistent with 

order 1. This means that 

, I = 0 { l i )  
1<J<N •' 

holds for a non-uniform mesh. For a uniform or almost uniform mesh, that is 

h j  =  / ( j - i f l  +  0 { h j _ i  ) ) ,  

the local truncation error can be improved to second order accuracy. That is 

I T;[V'] I = O ( h ^ ) .  

We now consider the global error estimation. Let the global error 

e j  =  j ,  j  =  , N .  

Then we have 

L f j C j  =  L j j 4 > [ x j )  -  L i l i x j )  =  T j [ i l ' ] ,  j  =  1.2, • • •, yV. (3..'{7) 

This system of differential equations (-3.-37) can be shown to be stable in the maximum 

norm. This means that there exist a constant h [27] such that 

II ll< A'. (.3.:JS) 
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The three point, clifFereuce scheme for the iioii-uiiiforiii mesh is then convergent be

cause of the stability and consistency of this scheme. From (3.37), (3.38), the global 

error satisfies 

The Scharfetter-Gummel discretization method is an expouentialy fitted scheme 

for the continuity equations. The exponential factor 

- i' j )  -> 1 a s  V'j+i V'j-

The electrostatic potential varies slowly in the regions far away from the junc

tion by singular perturbation analysis. Therefore, this scheme is close to the three 

point scheme in those regions. Some exponentially fitted methods have been proven 

to be uniformly convergent for boundary layer problems by Doolan, Miller and 

Schilders [28]. The Scharfetter-Gummel scheme is not completely understood from 

mathematical analysis; although it has been used well for around twenty years in 

numerical semiconductor device computation. 

We use the same notations T j [ J n ] ,  [??] as in the Poisson equation to denote 

the local truncation errors of the Scharfetter-Gummel discretization for the electron 

continuity equation and the current equation, respectively. Taylor's expansion gives 

T j [ J n ]  =  ^ ( / y  -  h j ^ i )  +  j ^ i h j  -  h j h j + i  +  h j _ i )  

/d + Aj_, 
+01 / .  .  /  I 

h j  +  h j _ i  

for the electron continuity equation and 

= '"-f + o("j) 
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for the electron current equation, provided V 'j-j-l is close to i/'j- Thus, this scheme 

yields first order accuracy and we expect the convergence rate 0{h) if it is stable. The 

global error estimates have been investigated [13] by solving directly the combined 

current and continuity equations and their discretization assuming the recombination-

generation rate = 0. The combined current continuity equations with /{ = 0 are: 

dJn{ x )  

div 
= 0, 

Jn =  (3.42) 
dx d:v  

for — 1 < ;i' < 1, with boundary conditions ?:( —1) = jiq and ?;(!) = "yv+i' 

Integrating (3.42) and substituting the boundary conditions, we obtain the exact 

solution: 

;7(;r) = eV'(:i-)-'/'(-l)„Q + F d t  (3.13) 
J — I  H n \ t )  

The solution of the corresponding difference equations from the Scharfetter-Gumniel 

method is 

Note that if the integrals are approximated by the sums, then the discrete solu

tion (3.45), (3.46) has the same structure as the continuous solution (3.43), (3.11). 



51 

For the given continuous functions 0, /<?j , the bound 

(3.17) 

holds for a constant Thus, we obtains the global error estimates: 

(3.18) 

for an arbitary mesh. The constant K only depends on 0. This result shows that the 

Scharfetter-Gummel discretization is uniformly convergent for zero recombination-

generation rate. 

Cîhoosing a suitable mesh is essential in numerical computation for problems 

whose solutions change rapidly within some narrow regions. The solutions of the 

basic semiconductor device equations exhibit this junction layer character, as the 

singular perturbation analysis shows. This suggests using a coarse mesh outside the 

layer and a fine one near the junctions. Our mesh generation is then based on this 

solution character and the idea of equidistributing the local truncation error. 

In our simulator, we first compute the zero bias (i.e., thermal equilibrium) so

lution before calculating the solution for nonzero-bias voltage. The current densities 

.7j), Jp vanish identically at thermal equilibrium. Therefore, we need only sol\c the 

Poisson equation instead of the full set of the equations. As an initial approximation 

for the iterative solution of the discrete Poisson equation, we can use the solution 

derived from the assumption of zero space charge, i.e., i/' = 2sinh~^ 
0 -

3.3 Mesh designing 
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As an illustration for constructing the initial mesh, we consider a symmetric p-n 

junction diode with the junction position at xj = 0 and the boundary at xq = — I. 

= 1' The initial mesh is designed as follows: 

"''j'-j-l ~ 4" ) J ~ 1) • • • ) 

I ' j  =  ) J  =  1» 2, , J - 2, 

h j  =  2/jj_j, j  =  J  +  2 ,  J  + 3, ' " 1-^-

We set the minimun mesh size h near the junction with the order of magnitude of 

the junction layer. That is 

h = hj_2 = hj_i = h J = hj^i = A. 

The above initial mesh is consistent with the solution character and the initial 

guess for the discrete Poisson equation, since it is a coarse mesh refined near the 

junction. This initial mesh has many fewer mesh points than the uniform mesh. 

To achieve the minimum mesh size /?. = A = 10~'^, for example, the uniform mesh 

requires about 2x10'^ mesh points, but the above initial mesh only needs % 

23. 

Having an initial mesh and initial guess for the solution, we solve the Poisson 

equation by Newton's method to get the approximate solution on the initial mesli. 

Then new mesh points are inserted wherever the estimates of the local truncation 

error exceed a prescribed accuracy. This is the idea of equidistributing the local 

truncation error. We solve the Poisson equation to get a new solution and eciuidis-

tribute the local truncation error again if necessary. The final mesh is constructed 

by repeating the above mesh-refinment step until achieving a specified accuracy or 

the total number of mesh points exceeds a prescribed maximum number. 
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4. NUMERICAL SCHEMES IN SEMICONDUCTOR DEVICE 

SIMULATION 

111 this chapter we present the central ideas in our numerical methods for solving 

the system of discrete semiconductor device equations. The discrete formulation has 

been discussed in the preceding chapter. The discretization procedure leads to a large 

nonlinear algebraic system since the semiconductor equations are a nonlinear system 

of dilTerential equations. 

In general, iterative methods must be used for solving the nonlinear algel)raic 

system. Two basic iterative methods are widely used in semiconductor device sim

ulation. The first approach is the nonlinear block Gauss-Seidel method which is a 

decoupled iteration originally used l)y Gummel. The second basic approach is the 

coupled Newton method which has the advantage of locally quadratic convergence. 

When we use Newton's method we must find an initial approximation that is 

close enough to the solution. The natural continuation method is introduced to 

overcome this problem. This method is an elegant approach for finding a good initial 

approximation based on the concept of a homotopy. 

The multi-solution characteristic of a thyristor creates numerical computation 

difficulties for the natural continuation method. Such a solution curve has turning 

]>oints. To pass the turning points, we use the pseudo arc-length continuation met hod. 
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At each iterative step, linearizing the algebraic system leads to a large linear 

system to be solved. The coefficient matrix of this linear system is sparse, i.e. contains 

mostly zero entries, because of the discretization. For solving the large sparse linear 

system, it is worth while to use some special techniques which avoid storing and 

calculating with the zero elements. 

4.1 Iterative methods 

In this section we discuss the two basic iterative schemes, Gummel's method and 

Newton's method, used in our device simulator. For notational simplicity, we will 

write the nonlinear system of discrete semiconductor equations as 

F ( z )  =  f n { = )  

\ /M:) / 

= 0 (1.1) 

where 

T  T  z  =  { 4 \ n , p )  =  ( V ' l i V ' g , "  •  ( " l - - )  

is the vector of variables of the discrete equations at mesh points. The difference oper

ator = (/0j,/02' ' • • the discretization (3.28) of the Poisson equation. 

The difference operators /„ = (/?;^, /ng, fnj^ )^ and fp = {fp^, /pg ' ' ' ' ' fpj\r ) ^ 

are the discretizations (3.29), (3.30) of the combined current relation and continuity 

efjuation for electrons and holes. 

The nonlinear algebraic system (4.1) can be solved by the nonlinear Clauss-

Seidel process. Let = (4'^\n^,p^')^ be the solution of the A-"' iterative step and 

= (i/'^,»^,/J^)^ be given. The nonlinear Gauss-Seidel iteration for solving the 



system (4.1) is the following: 

Solve /^,( (^\a^%p^')^ ) = 0 f o r  0 =  0^"+^; 

S o l v e  / ? ? . (  ( ' / ' ^ " " ^ ^ i )  =  0  f o r  n  =  n ^ ' ^ ^ ;  

Solve fj)( ,p)^ ) = 0 for p = ^ ; 

A" = 0,1, • • •. 

This iteration has the advantage that only one equation is solved on each step. Its 

disavantage is that the convergence can be rather slow for high currents. 

In the original version of Gummel's method, the mobilities and recombination-

generation rate were evaluated using the previous iterative values and the quasi-Fernii 

level variables ii^^Pui^p) were used instead of variables (rl\n,p). The electron and 

hole cont inuity equations are then linear and can be directly solved. The discrete 

Poisson equation = 0 for the variables (tp,ifin,^p) iu the step nonlinear 

Gauss-Seidel procedure is 

step of Newton's method is performed on this equation (4.3). For variables (;/', »./>), 

the equation (4.3) is easily tranformed into 

since 11 = and p = ê^e^P In Gummel's original algorithm, just one 
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The other way to solve the Poisson equation in this Gauss-Seidel procedure is to solve 

the linear equation 

It is preferable to solve (4.4) rather than (4.5) fairly accurately even though (1.5) is 

more easily solved. 

Gumniel's method was widely used in early device simulation because It decou

ples the full system. Kerkhoven [31] showed that the Gummel method unconditionally 

generates iterates that are successively closer to the solution while the distance to the 

solution is sufficiently large. However, it is now well known that this method may fail 

to converge for high currents, or when the recombination-generation rate |)lays an 

important role. Our results show that it converges rapidly for the first few iterative 

steps, even from a poor initial guess, but slows down close to the solution. 

Since the Gummel niethod(decoupled algorithm) does not always converge rapidly, 

we use Newton's method. That is, let be given, and for each k = 0,1,2, • • • solve 

It is well known that Newton's method is quadratically convergent from a good 

initial guess if the Frechet derivative is nonsingular. The most important result about 

(4.5) 

dz 

for the Newton correction where ^ is the Frechet derivative(.Jacobian matrix) 

of F\ set 

= z -t- a . 
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Newton's method is due to Kantorovich. Using the contraction mapping theorem, he 

|)roved the convergence of Newton's method without assuming that a solution exists. 

We state the Newton-Kantorovicli theorem here without proofs. A proof can be 

found in [30]. 

Theorem 4.1 Neioton-Kantorovich: Let F : be continuously differ-

entiable. For some 6 R^, and a neighborhood N(z^,r) of , let F satisfy: 

d F ( ^ Q \  :  ( a )  i s  n o n s i n g u l a r  l u i t h  

d F .^0 

d z  
(z") 

- I I  
<A 

( b )  

3'.'' 
- 1  

F(zO) <;/; 

M 

d F  d F  I I  n  
•^(«) - <7||«-i'||i for u,vÇ:N{z^\r) 

If a = ^ and r > (1 — \/l — 2 a ) f f 3 - ) '  t h e n  t h e  s e q u e n c e  z ^ '  p r o d u c e d  b y  N e w t o n ' s  

method: 

^Ar+1 _ .A: 
1 - 1  

d z  
F [ z ^ ) ,  A; = 0,1,2, 

is well defined and converges to a root z* of F{z) = 0. // o < ^ t h e n  z *  i s  I h r  

unique root of F(z) = 0 ?» the closure of a neighborhood iV(z®,7'^) of z^, where 

= minf?', (1 — yjl — 2a)//3f} and 

- =*|| < (2a)^^-, A: = 0,1,2, 
cv 
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Two problems need be considered in the application of Newton's method for 

practical numerical computation: overshooting, and the choice of initial iterate. The 

Newton correction s^' may overestimate the length of the step which should have 

been taken. This is called overshoot. To illustrate this problem, we use the Newlon 

method to solve the realistic problem: 

F ( u )  =  6*^0" - = 0. 

The solution of this example is u = —1. Using = —1.2 as the initial guess, in the 

first step Newton method, we obtain = 73.3. It is farther away from the solution 

than the initial guess. We can not continue to compute the next Newton correction 

because of exponential overflow. 

The damped Newton method is introduced to overcome the overshooting prob

lem. That is, for given s®, at each iteration k step, solve 

•= - F ( z ^ ) ,  

for the Newton correction The solution sequence } is generated by setting 

+ A' = 0,1,. .. 

The damping parameter is chosen to make the Newton correction decrease the 

residual. In device simulation, the damped Newton method can be used to solve 

Poisson's equation with quasi-Fermi level variables. We have not encountered the 

overshooting problem in our device simulation experience while using the variables 

The Newton method can fail to converge if started from a bad initial guess. 

In the device problem, we can use Gummel's method to pro\ ide an initial guess 
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which is in the region of convergence of Newton's method. Then only a few Newton 

iterations must be performed to achieve an accurate solution. One needs a good 

criterion for switching from the Gurnmel method to the Newton method. We employ 

the continuation method to provide an initial guess. The applied external voltage 

is taken as the continuation parameter. We start with the solution at zero bias and 

then calculate the tangent vector to predict an initial approximation for a non-zero 

bias, say, the applied voltage Fj. Having the solution at the voltage V|, we can 

repeat the continuation method to provide the initial approximation for the voltage 

V'2 = V'\+A V''for sufficiently small AK. We use successfully this continuation method 

in calculating the current-voltage curve of the p-n diode. Finding a reasonable initial 

guess directly for a specified set of applied external voltages is not achieved so far as 

we know. 

4.2 Continuation method 

In this we discuss the continuation method for calculating the current-voltage 

characteristic. The solution z = (4',n,p)'^ of the discrete steady state semiconductor 

equations (4.1), can be regarded as a function z = z{V) of V for an applied external 

voltage K € ( V'~, K"'"). It may be a multivalued function of V if there are multiple 

steady solutions. The current density J = Jn + Jp depends on the solution vector 

that is, J = J(z, V). Therefore, the nonlinear system (4.1) of discrete equations can 

be regarded as parameterized system F : x R —> R'̂ ^̂  

F ( z , V )  =  

/ \ 
./'(/,(z, K) 

f n { = , V )  

f p ( ^ M  ,  

= 0 (4.(5) 
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with the natural parameter V  E R .  

In order to get the current-voltage { J  —  V )  curve, we must compute the solution 

path r = {(z, F) = 0}. At a desired bias V = we can apply Newton's 

method to solve the system (4.6). As discussed in the preceding section, it is difficult 

to find an initial approximation close to the solution. 

Let (zQ(TQ), I'g) be a root of F { z { V ) ,  V )  —  0 and ^^[z{V q)) be nonsingular with 

bounded inverse, i.e., ^Ç(z(Vo))j jj < /3. For notational simplicity, we write 

~ j  =  r ( l y )  f o r  t h e  s o l u t i o n  o f  ^ ( ^ ( l ' ) ,  V )  =  0  a t  F  =  V j .  I f  F ( z , V )  a j i d  ^ ( z , V )  

are continuous on iV(zQ,7']^) x iV'(Vo,»'2), where A'^(sQ,rj) is a neighborhood of -q 

and N(Vq,V2) is a neighborhood of I'g, then the implicit function theorem implies 

the existence of a unique solution branch z = z(y) in the neighborhood iV( Vq, '"2) of 

^b-

We will construct an approximation z® to the solution z(V]) of F(z, I j) = 0 

using the solution zg. From the implicit function theorem we have 

^(':(1''), I"") = 0, V  £  N { \ ' Q , r 2 ) -  (1.7) 

By differentiating (4.7) with respect to V  and the chain rule, we get 

^ ( z , V O z ( F )  +  ̂ ( z , I / )  =  0 ,  ( - 1 . 8 )  

here, z(K) denotes the derivative of z ( v )  with respect to V .  Evaluating (4.8) at 

(zQ, Iq), we have the tangent vector 

-b = :( ̂ b ) = - •jrf-o.'o) 
•  ̂  ( I F  

^(-Qi^b) (!•") 

Then, we take the initial approximation z^ for zj = z(V'[) by Euler predictor as 

zf = zo + AVbzb (1.10) 
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here, I j = Vg + Al g G b,)'2) small enough AVg. The error is given hy 

For calculating the solution ) of F(z, ) = 0, we use as the initial gusee 

for Newton iteration: 

Suppose that 

=zf 

f t - " )  

- 1  

(4.12) 

- 1  
<  / 3  and •') < 7, then the sequence 0-l> 

generated by the Newton method (4.12) converges to the solution (z^, T) ) for suffi

ciently small AVq. In order to apply the Newton-Kantorovicli theorem, we need the 

condition 

34' 
- 1  

F(zg) <,/. 

Since Nf^(z, V) < 7 ,  we have 

l|F(.-f ) - F(.-o) - ̂ (ro)AI-oioll < ÎIAI'b'oll--

From (4.9), (4.13) and F ( z q )  = 0, we obtain the estimate 

)|| < |AVb|||^(zo)ll + ̂ |AVb|2||^(.-o)ll^-

(4.1.3) 

(4.14) 

Therefore, 

- 1  

<  i s  f|AVb!ll^(-o)ll + = '/• 

(1.15) 

For sufficiently small Al'bi we can require q = < 7, and r  >  /-q = (1 — 

\/l — 2a)fj3f such that the neighborhood iV(zl^,7') C iV(cQ,7'|). Tlien the conver

gence follows from the Newton-Kantorovich theorem. 
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We now compute the sokition path F = { ( 2 ,  V')|F(s, V) = 0, V  €  

starting with giving solution (zg, I-q) by the natural continuation procedure as follows: 

begin starting with an solution (z,, 1/;). 

predictor calculating the initial approximation by Euler prediction (4.10). 

corrector computing the solution Newton method 

/ /T'  ̂
k  =  0 , L , . . - .  (U(l) .f+1 = 4  

end If = Vl|., then stop; else replace {zj,Vj) by ^ r+l ) go htyin 

step. 

If each subsequence produced by the Newton correction (4.20) con

verges to the solution (z^, V',;), then we have the discrete solution path. 

Some devices have multiple solutions for certain bias. For example, the four-

layer structure device p-n-p-n thyristor has three steady state solutions. A curve 

containing multiple solutions will have singular points where the Jacobian ^ is nut 

invertible. The natural continuation procedure will break down at singular points. 

For example, at a turning point(simple limit point) the Euler predictor step may have 

AVj for which no nearby solution exists, and the Newton correction will generally fail 

to converge. This leads us to modify the natural continuation method to overcome 

the turning point problem. 

We define the regular points and turning points mathematically. 

1 .  Regular Point: 

The solution point (zq, V q) of F(z, V " )  =  0  is called a regulov poi i i f  if the 

.lacobian ^(zg. Tg) is nonsingular. 
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2. Turning point: 

The solution point (^q, Vq) of F { z ,  V) = 0 is called a t x i r n i n g  p o i n t  if 

(a) Iq) singular, 

(c) dim N = codim R Vq)) = 1. 

Here, N  denotes the null space and R  denotes the range. 

The pseudo arc-length continuation method is introduced for passing the turning 

points. In the pseudo arc-length continuation method, we reparametrize the solution 

(z, V) by a pseudo arc-length ijarameter s instead of the natural parameter V. The 

discrete nonlinear system (4.6) can be parametrized by pseudo arc-length .s as follows: 

F { z ( s ) , V ( s ) )  =  

with an unit arc-length equation 

/»(z(a),y(3)) 

|i(.s)||-^4- I l/(.s) |2 -1 = 0, 

= 0 (1.17; 

(1.18) 

where i and V  are derivatives of z and V with respect to the pseudo arc-length 

p a r a m e t e r  s .  T o  c o m p u t e  t h e  s o l u t i o n  p a t h  F  =  { ( z ,  y ) | F ( z ,  F )  =  0 ^ 6  j  

and pass the turning point , the pseudo arc-length continuation method solves the 

augmented system 

/ \ 
G'(c, V, .f) = 

F { z { s ) , V { s ) )  

I  - 1  

= 0 (4.1!)) 
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instead of just solving F(z, F) = 0. 

The pseudo arc-length continuation procedure starts with a given solution point 

(-O'^b) = as follows: 

begin starting with an solution (z,, = (r(5j), V'(5j)). 

tangent vector compute the tangent vector = (i(.Sj;), K(.?j;)). Differentiat

ing (4.27) with respect to 5 as in the natural continuation method and using 

the chain rule, we have 

+ ̂ (4;, H:)K' = o, ( J.20) 

Solving equations (4.20), (4.18), we get the tangent vector: 

—  S i  1  

1 
V j  =  ±. 

niiTT k I M + i  

here gj satisfies 

(IF dF 
^ ?:)• (-^ 22) 

predictor calculating the initial approximation by Euler prediction along 

the tangent for a step size — sf 

~j'+l ~ 

Vf^l = Vj + AsiVj. (4.23) 

corrector computing the solution (Z;_|.j, 1 ) by Newton method. Since the arc-

length equation (4.18) is not suited for computation purposes, we approximate 

this equation by a linearization: 

A^(c(.?), V'(.'î),.!') =< i/,^(f) -> + 1''(V'(.3) - V/) - { . 9 - s j ) = 0  (4.21) 
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A geometrical interpretation for equation (4.24) is that this is a hyperplane 

p e r p e n d i c u l a r  t o  t h e  t a n g e n t  v e c t o r  ( i , - ,  V j )  a t  a  d i s t a n c e  | 5  —  f r o m  ( r y ,  V j ) .  

This hyperplane intersects the solution curve T if and the curvature of 

r are small enough. We now solve the augmented system 

/ 

G ( z ,  V , 5 )  =  = 0 

\ 
#(z(a),y(a),a) 

for (z^;_|_^, by Newton's method with initial guess (4,23) 

- 1  

(4.25) 

J 
:4.2G) 

Here, d G  
d ( z , v )  is the Jacobian matrix: 

d O  

d ( z , v )  
If W 
d N  O N  
d z  U V  

(4.27) 

Keller has shown that ^ is nonsingular at the regular points and simple 

limit points. Therefore, there is no computation problem for solving (4.26). 

That is, this method can pass turning points. 

d If = 6i_|_, then stop; else replace [zj^Vj) by (Z;_|.%, ) and go to ht<jiu 

step. 

4.3 Implementation and conditioning 

In this section we discuss the implementation details in our device simulator. 

• first solve the Poisson equation by Newton's method at thermal equilibrium, i.e. 
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zero bias. For the p-ii diode, we use the natural continuation method for computing 

the solutions with nonzero biases starting with the thermal equilibrium solution. 

For the p-n-p-n thyristor, we use the pseudo arc-length continuation method lor 

computing the solution path. The two iterative schemes, Gummel's method and 

Newton's method are the basic tools in the continuation algorithm. 

The most time-consuming part of the iterative methods for solving the discrete 

semiconductor equations is calculating the Jacobian and computing the solutions of 

the linear system resulting from the linearization. To maintain quadratic convergence, 

the .Jacobian is evaluated exactly by computing the derivatives with respect to ?!, /> 

in our computer codes. The coefficient matrix of the linear system, i.e. the .Jacobian 

matrix, is sparse because of the discretization. Some sparse direct methods are used 

since they give us an exact solution of the sparse linear system if it is well conditioned. 

We now turn to compute the solution of the Poisson equation at thermal equilib

rium by using Newton's method. The linearization of the discrete Poisson equation 

at each Newton's iterative step in matrix-vector notation is 

A s  = 6, (4.28) 

where A  is the .Jacobian matrix, 3  is the correction vector and b  is the residual vector 

of the Poisson equation. The Jacobian matrix A = [(ijj) is a tridiagonal matrix with 

elements 

a :  :  = 2^^ .{ 1+1 + ̂ 2^'/'/+<ç2^-VV}, 

2A-
=  " i - U j  =  

Matrix /l is a diagonally dominant and positive definite tridiagonal matrix. Therefore, 

we can use Linpack dgtsl or dptsl directly solving the system (4.28). 



67 

For Gvimmel's method, the coefficient matrices of the discrete electron and hole 

continuity equations and the Jacobian of the Poisson equation at non-zero biases are 

also tridiagonal matrices. We still use Linpack dgtsl to solve these equations. 

Using Newton's method for solving the coupled system, we must rearrange the 

order of the eciuations and the variables to get band matrix form. The unknowns are 

arranged as 

T» rp 

with 

and the discrete equations are numbered as 

with 

' /" ?: ' fpi ) • 

Under this ordering, the .Jacobian matrix A = ^ of the coupled system lakes the 

following form; 

^1 

h D2 U2 0 

A = (1.2!)) 

0 ^yv-1 f^iV-1 
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Li = 

^4; ^fjy; '  

p/?>/ 
^VV-1 ^"î-l OyJ;'-! 

9fpi 9fpi ^fpi 

. C'%'_1 . 

% % ^ • 
#»/ 

A: = ^/??/ dfiij  
cfn- Up: 

(4: = 

• % ^A/,. ^/y.-

Ô'V'z+l ^"i+l 

p/»/ p/??,; 

^'/V+i c^"*+i ^m:+i 

(i.;30) 

(1.31) 

(4.32) 

^fpi ^^fpi ^fpi 
. #/+! #"/+! . 

Tlie Jacobiau matrix A (4.29) is in a block tricUagonal form or can l>e regarded 

a,s a band matrix. Therefore, at each Newton's iterative step the linear system /l.i = /> 

can be solved by a block tridiagonal solver or a band system solver. 

The linearized equations for the thyristor are ill-conditioned along the low-

current branch but for the diode are well-conditioned under Ohmic contacts. We 

decompose the domain to three overlapping subdomains each containing one junc-
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lion. Then each subclomain behaves like a diode. Under this domain decomposition, 

the Jacobian matrix A is separated into three overlapping subniatrices /42, /Iy as 

follows: 

^2 ^2 0 

lo = 

^1 = 
^31 

^0^-1 

^Vi+i + l (vi+i 

^J2 n 

V3-1 —1 ^0'} —1 

D 
h 

(4.31) 
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('A 

LkM 0 

/I3 = (4.35) 

0 ^iV-1 ^N-\ f^jV-1 

Ln D jY 

Each subniatrix is block tridiagoiial. Therefore, we can use the block Gauss-Seiilel 

method to solve the linear system /la = b. 

For the pseudo arc-length continuation method, we will illustrate the determina

tion of the direction of the tangent vector, the selection of step size and the solution 

of the linear system (4.26) in the Newton correction step. 

In the tangent vector step (4.20), (4.21), (4.22), the choice of the sign is de

termined by the direction of the solution path. If we have computed two previous 

solutions (^;_|, the" the choice depends on the inner product 

The positive inner product Oj > 0 implies that one travels in the direction from 

In the predictor step (4.23), we must keep the step size A.?,- small enough thai, 

the initial guess (4.23) is in the convergence range of Newton's method. It requires 

=< H -  =?:-! > i 

(~/_l, V/-!) to (z;, 1/;). 
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to estimate the curvature of the solution path and the convergence radius for sophis

ticated step size control. Bank and Mittelmann [32] propose a strategy for step size 

selection in continuation procedures with damped Newton's method. 

We choose the step size ba.sed on the residuals at Newton correction steps. At 

first we use a trial step size Asj = — 3Q to perform the first few Newton iterations. 

If the residuals decrese quadratically then we multiply the trial step size l>y two, 

else by one-half. The above procedure is repeated until a suitable first step size is 

achieved. For all other step sizes Asj = — Sj, the previous step size is taken (o 

he the trial step size, i.e., As,; = for the Newton iteration. If the residuals do 

not decrease on the first few steps then we multiply the step size by one-half; else we 

accept the step size. 

In the correction step (4.26), we must solve the linear system 

• OF dF • ' r 
W W Sz r 

dN dN 
. . 

N . W IJV .  . . 
N 

At regular points this linear system (4.36) can be solved by block Gaussian elimina

tion: 

(1) Solve 

OF OF 

and 

dF OF 

(2) Set 

(3) Set 

•?- = !/ + w. 
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Only (wo linear systems with coefTicient matrix must be solved. This matrix 

, the,se 

by a block tridiagonal solver or band solver. 

f)  fT 
•jpr is a block tridiagonal matrix. Therefore, these two linear systems ran be solved 



5. RESULTS AND CONCLUSION 

5.1 Computation results 

111 lliis section we present some conii)utational results. In order to deiiioiislrale 

I lie numerical melliods discussed in the preceding chapters, we illustrate I he condil ion 

nimii)er and convergence rates. A one dimensional p-n diode and a p-n-p-n tiiyrislor 

are simulated to higliliglit the structure of solutions. The main result is the ciirreiil-

voll age characteristic of the thyristor obtained hy the pseudo arc-lengt h coiit iiiiiat ion 

met hod. 

The length of the domain for both of the models is I = ^yOfint. Constant muliilities 

/';/ = l )UO cii)~/I'olf — sec, fip = 480 an~/volt — sec en\d intrinsic carrier density n,- = 

I .')X 11)"^ cii) ^ are adopted for silicon at room temperature [4]. Both models include 

SHII. Auger and impact ionization recombination-generation rates. The symmet rical 

alnupt junction doping profile C'(.r) for the diode is used as follows; 

-10^" -1 < r < 0. 
n..-) = 

10^' cm—^ 0 < .r < 1. 

1 his yields ,\- % 10" ' and 6~ % 10~~. The condition numbei- of I he .lacobiaii for 

I his diode model is lo'^ measured by using LIN PACK routine dgbco. It has six 

sif>,nilicant digits for double precision with sixteen significant digits. 

I he coinergence rates of Ciummel's method and Newton's method at applied 
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coiilact voltage V" = 1.5 colts are illustrated in Figure 5.1. Observe that Cuminel'.s 

method con\'erges rapidly for the first iterative steps but slows down close the solu

tion. Newton's method shows quadratic convergence. 

The forward bias scaled current-voltage characteristic of the diode is demon

strated in Figure 5.2. where the voltage V" is expressed in units of the thermal \ oil age 

I' f = 0.02G volts. The current is very small at voltage less than the cut-in voltage 

% 28. Figure 5.3 shows the characteristic for reverse bias. The small saturation 

current is about 10"^ and the breakdown voltage is about 800. The junction layer 

widt hs in the diode for various applied voltages are shown in Figure 5.1. This shows 

that the widths decrease as applied contact voltage increases. 

The doping profile C'(.v) for the thyristor model is as follows; 

C(;r) = 

-10^", -1 < ;r < -0.4, 

10^-^, -0.4 < < 0.6, 

0.6 < < 0.9, 

10^^. 0.9<;v<l. 

This do|)ing profile is close to reality in a practical physical model and yields (he 

parameters % 10"^ and 6~ % 10"^. 

Figure 5.5 illustrates the three steady state current-voltage characteristic of 

thyristor. This curve is obtained l)y solving the full set of semiconductor ecpia-

t ions with realistic physical parameters by using the pseudo arc-length continuation 

met hod. We start with the thermal equilibrium .solution and I hen take a larger slcj) 

size to jump directly to the on-state high current solutions. From an on-state solu

tion. the pseudo arc-length continuation procedure walks backward and u.ses small 

enough step size A.s % 10~- to pass the turning point(holding voltage % 0.3 volts).  



Kiirata [12] uses the p-i-n diode doping profile to reach a high current on-state. 

Then he switches to the p-n-p-n thyristor doping profile at a certain jiigh current. 

Tliereal'ter. he decreases the voltage gradually and gets empirically the holding cur

rent through a number of computations. 

The condition number of the Jacobian for the thyristor in the high current on-

state has the same order of magnitude as that for the diode. Therefore, the high 

current solutions can be gotten directly by using a band solver or block tridiagonal 

solver at each Newton iterative step. However, the condition number of the Jacobian 

is 10"^ at the low current blocking-state, making no significant digits. The condition 

number of the .lacobiau for each subdomain containing only one junction reduces to 

Jo"^. 'J'hat is. the submatrix containing only one junction of the .jacobian is well-

conditioned. This motivates use of the block Gauss-Seidel method as discu.ssed in 

( 'hapter 1. In Figure 5.5, the blocking-state low currents are obtained by this met hod 

at each Newton iterative step. 

The electric fields of the thyristor for various applied voltages in the block

ing state is shown in Figure 5.6. The middle junction layer spreads as the applied 

voltage increses. This Early effect [4] describing the effect on the curient of le-

\erse biased spreading junction layer prevents current saturation. Rubinstein [20] 

and Steinruck [21]. using the zero space charge approximation, found current satu

ration. In another paper [29], Steinruck rescaled the potential with A" to construct 

the ,S'-shape characteristics. Ward et al. [22] incorporated the Earhj t ff<rl into the 

reduced problem and showed how this layer spreading pre\ents current saturation. 

The electrostatic potential distribution for the blocking state and the unstable 

state at positive applied voltages comparing with thermal equilibrium are illustrated 
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in Figures 5.7 and 5.8. Figure 5.8 shows that the middle junction is reverse biased and 

the others are forward biased. At on-state, Figure 5.9 shows that the three junction 

are nil forward biased. These phenomena have been explained in device physics [1]. 

The unstable state shows the same biasing as the blocking state. 

The electron current density Ju and hole current density Jp distributions are 

demonstrated in Figures 5.10, 5.11 and 5.12 for the three steady states. Figure 5.10 

shows the current densities are smooth in the on-state. In the unstable stale. Fig

ure 5.11 shows the current densities have no jump at the middle junction. Figure 5.12 

shows t he current densities have junction layers for each junction in the blocking stal e. 

Rubinstein [20] and Steinruck [21] contructed steady state solutions for the reduced 

ecjuations using the condition [Jn]xj = 0 and [Jp]xj = 0, here xj denotes the junc

tion. The Figures show that continuity conditions only hold in the on-state. Recent 

work of Ward et al. [22] indicates that these conditions are not valid for all regions 

of the current-voltage curve and suggest solving the full set of equations. 

5.2 Conclusion 

A one-dimensional thyristor is simulated using the pseudo arc-length continua

tion method. It is interesting and difficult work because of the multiple solutions and 

ill-conditioned .Jacobiau of the model. Traditionally, the device development is based 

on experiment. However, the numerical simulations offer great benefits in shortened 

development time and lower development cost. 

By singular perturbation analysis the solution exhibits junction layers. We use 

a special non-uniform mesh to save computer memory and calculation. It is ellicicnl 

for solutions with junction layers. The Scharffetter-Gummel discretization scheme 



( i 

is used to get Uie discrete equation. Three linear .solvers are applied lor solving the 

sparse linear system and overcoming the ill-conditioning at each iterative step. The 

current-voltage characteristics are obtained by the pseudo arc-length continuation 

method. 

We get a non-monotone current-voltage characteristic for the thyristor wit h long 

carrier lifetimes in the blocking-state in a very small voltage interval illustrated iii 

Figure 5.13. For short carrier lifetimes, it is monotone increasing. This phenomenon 

has not been reported in any paper so far as we know. Possibly, it is the effect of 

rounding error. However. Ward et al. [22] indicate that the solution is complicated 

for small current density J <C 0(1). This requires further investigation. 

The coimection between the unstable-state and blocking state is not achieved. 

It. is due to the overflow and extreme ill-conditioning. We need to study this problem 

further. 
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Figure 5.1: Speed of convergence 
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Figure 5.2: Current-voltage characteristic of a diode at forward bias 



1.0 

O
 

CN 1 

— 

J 

O
 

m
 — 

o
 

CO 1 

-11.0 
-

-14.0 

1 
1 1 1 1 1 

-840 -676 -512 -348 -184 -20 
V 

Figure 5.3: Current-A'oltage characteristic of a diode at reverse bias 
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Figure 5.7; Electrostatic potential at blocking state 



Potential 

Figure 5.8: Electrostatic potential at unstable state 



Potential 
24-

\ 23-

22-

fv 21-

19-

18-

1 1 1 • - — 4— 
-1 -0.5 0.5 ^ 

1 
1 

Figure 5.9: Electrostatic potential at on-state 



ST 

Jn, Jp 
2.25 

Jn 

1.75 

1.25 

Figuie 3.10: Current densities at on-state 



Jp 

Jn 

-1 - 0 . 5  

Figure 5.11: 

Jn 

Jp 

0 . 5  

ur rrent densities at unstable state 



89 

Jn 10 
Jn 10 

10 

10 
10 

10 
10 

Jn 

- 0 . 5  

Figure 3.12: Current densities at blocking state 



Figure 5.13: Non-monotone current-voltage characteristic 
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