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ABSTRACT 

The N-body problem is to simulate the motion of N particles under the influence 

of mutual force fields based on an inverse square law. The problem has applications in 

several domains including astrophysics, molecular dynamics, fluid dynamics, radiosity 

methods in computer graphics and numerical complex analysis. Research efforts have 

focused on reducing the O(iV^) time per iteration required by the naive algorithm of 

computing each pairwise interaction. Widely respected among these are the Barnes-

Hut and Greengard methods. Greengard claims his algorithm reduces the complexity 

to 0{N) time per iteration. 

Throughout this thesis, we concentrate on rigorous, distribution-independent, 

worst-case analysis of the N-body methods. We show that Greengard's algorithm is 

not 0{N), as claimed. Both Barnes-Hut and Greengard's methods depend on the 

same data structure, which we show is distribution-dependent. For the distribution 

that results in the smallest running time, we show that Greengard's algorithm is 

D,{Nlog'^N) in two dimensions and Q,{Nlog'^N) in three dimensions. Both algorithms 

are unbounded for arbitrary distributions. 

We have designed a hierarchical data structure whose size depends entirely upon 

the number of particles and is independent of the distribution of the particles. We 

show that both Greengard's and Barnes-Hut algorithms can be used in conjunction 
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with this data structure to reduce their complexity. Apart from reducing the com­

plexity of the Barnes-Hut algorithm, the data structure also permits more accurate 

error estimation. We present two- and three- dimensional algorithms for creating 

the data structure. The multipole method designed using this data structure has a 

complexity of 0{N log N) in two dimensions and 0{N log^ N) in three dimensions. 



1 

CHAPTER 1. INTRODUCTION 

The N-body Problem 

A large number of physical systems can be studied by simulating the interac­

tions between the particles constituting the system. In a typical system each particle 

influences every other particle, often based on an inverse square law such as Newton's 

law of gravitation or Coulomb's law of electrostatic interaction. Examples of such 

physical systems can be found in astrophysics, plasma physics, molecular dynamics 

and fluid dynamics. Since the simulation involves following the trajectories of motion 

of N particles, the problem is termed the N-body problem. Apart from traditional 

applications in the study of physical systems, some problems in numerical complex 

analysis and elliptic partial differential equations can also be solved using this ap­

proach [14]. Applications of the problem are also found in the radiosity method, 

which attempts to create images by computing the equilibrium distribution of light 

for complex scene geometries [17, 35]. 

Since no closed form expression is known for the equations of motion for a col­

lection of four or more particles, iterative methods are used to solve the N-body 

problem. In each iteration, the force on each particle due to every other particle is 

computed using the inverse square force law. This is used to compute the accelera­

tion of the particle, which is presumed to be constant over a small interval of time St. 
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The approximate position and velocity of the particle at the end of the time interval 

is calculated using this acceleration. The position of each particle after an arbitrary 

length of time is calculated by many iterations of this method. A straightforward 

computation of all the pairwise forces requires 0{N'^) work per iteration. The rapid 

growth with N effectively limits the number of particles that can be simulated by 

this method. 

Early Approaches 

To facilitate the study of large systems, several approaches have been tried to 

reduce the 0{N'^) work per iteration required by the naive algorithm of pairwise force 

computation. All the approaches are based on the following principle: In performing 

N-body simulations, there is an error introduced in assuming that the accelerations 

remain constant during the time intervals corresponding to the iterations. Even if 

the exact force on each particle is computed, this force changes during the time 

interval of the iteration and the computed force is only an approximation of the force 

acting on the particle during the time interval. Therefore, it is sufficient to compute 

the approximate force acting on each particle to a high degree of accuracy. This 

observation can then be used to reduce the complexity per iteration. 

One of the approaches used is to represent the problem in a position-velocity 

phase space and to transform the force field using a fast Fourier transform into a 

form in which it can be applied in linear time [29, 30]. The time per iteration is now 

dominated by the computation of the Fourier transform, which requires 0{N log N) 

time. To use this method, the phase space must be discrete - all velocities must be 

less than some maximum and all positions must be multiples of some fixed lattice 
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size. Hence, the method is not useful for non-uniform distributions. 

Another approach is to use variable time steps depending on the distance between 

the particles [1]. Recall that the force on a particle is assumed to be constant over a 

small interval of time St. The time interval has to be very small for nearby particles 

since the force could change significantly with a small change in the position. A larger 

time interval can be chosen to approximate the interaction between faraway particles. 

For each particle, the force due to nearby particles is computed every iteration but 

the force due to faraway particles is computed using larger time-steps depending on 

their distance from the particle. For a non-uniform distribution, the complexity of 

the method degenerates to 0{N'^). 

Another alternative is to impose a grid on the system of particles [20] and to use 

a fast Poisson solver to obtain the potential values at the mesh points. The forces are 

then computed from the potential and interpolated to the particle positions. Such 

methods are applicable if the potential satisfies Poisson's equation, which is true for 

gravitational and electromagnetic interactions. The complexity of these methods is 

0{N -f MlogM), where M is the number of mesh points. The number of mesh 

points should be proportional to the number of particles, resulting in an asymptotic 

complexity of 0{N log N). Unfortunately, the method is useful only for uniform 

distributions since the mesh provides limited resolution otherwise. It is possible to 

compute the forces due to the nearby particles directly and to compute the forces due 

to faraway particles by extrapolating from the mesh points. In highly inhomogeneous 

systems, the number of nearby particles may be of the same order as the total number 

of particles, resulting in 0{N'^) complexity. 

All of the methods discussed above are useful only for relatively uniform distri­
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butions. Except for some applications in plasma physics, most N-body simulations 

involve non-uniform distributions. In such cases, the methods described have the 

same worst-case complexity as directly computing all pairwise interactions. 

Hierarchical Methods 

Recently, a new class of particle simulation methods have emerged to solve the 

N-body problem efficiently for arbitrary distributions. These methods are charac­

terized by an organization of the particles into a hierarchy of clusters, starting from 

a cluster containing all the particles to clusters containing the individual particles. 

These methods are usually referred to as hierarchical methods, or tree methods since 

a tree naturally represents a hierarchical organization of clusters. Such a hierarchical 

method was first proposed by Appel [4, 5], whose scheme allows for clusters with 

arbitrary shapes. 

Appel's Method 

Appel's method [4, 5] is based on the approximation that a cluster of particles 

can be treated as a single particle of equivalent mass located at the center of mass 

of the cluster, for the purpose of force calculation with a faraway particle. More 

formally, consider two particles mj and m2, each at a distance of no more than [dfl 

from their center of mass (see Figure 1.1). The acceleration imparted due to the two 

particles at a point situated at a distance [f| from the center of mass is 

G m i { f + d r i )  G m 2 { r  +  d r 2 )  
a = — — 1 — 

lf4-<iriP |r4-c?r2|^ 
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observer 

Figure 1.1; The monopole approximation 

Expanding the denominators of the two terms using Taylor series expansion, the 

acceleration turns out to be 

Since the various Taylor series are all expanded around the center of mass, the first 

order terms vanish and the approximation is good to a second order. 

Let the radius of a cluster of particles be the largest distance from the center 

of mass to any particle in the cluster and let 0 < 0 < 1 be a prespecified accuracy 

criterion. Consider two disjoint clusters of particles with radii dr\ and dr2, located 

at a distance r from each other. If ^ < 0 and ^ < 0, the acceleration on any 

particle in one cluster due to the particles in the other cluster is approximated with 

the acceleration at the center of mass of the first cluster resulting from treating 

the second cluster as a point mass located at its center of mass. Otherwise, the 

cluster with the larger radius is split and the interaction is computed by summ.ing 

the interactions of the smaller cluster with each of the subclusters of the larger cluster, 
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Figure 1.2: An example of force calculation using clusters 

computed recursively (see Figure 1.2). 

In Appel's method, the space is subdivided into a hierarchy of clusters with each 

cluster split into two subclusters. The subdivision is naturally represented by a binary 

tree. The root of the tree represents a cluster consisting of all the particles and the 

leaves represent individual particles. The children of a node represent the subclusters 

of the cluster represented by the node. The acceleration calculations are performed 

by traversing the tree starting at the root. The accelerations of all particles in a 

cluster are computed by computing the accelerations due to interactions within each 

of the subclusters and the accelerations due to interactions between the subclusters. 

A heuristic is used to update the clusters as the particles move and a k-d tree [5] is 

used as the hierarchy of clusters to begin with. Appel estimates the complexity of 

his algorithm to be 0(A'^logA'') based on arguments which apply only to a uniform 

distribution. 
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Barnes-Hut Method 

The Barnes-Hut method [7] is similar to the Appel's method except for two 

differences. First, Barnes and Hut use a fixed hierarchical cubical subdivision of the 

space. The resulting tree is a quadtree in two dimensions and an octree in three 

dimensions, popularly referred to in the literature as the Barnes-Hut (BH) tree. 

Adopting a fixed structure for the clusters facilitates the possibility of rigorous error 

analysis. 

Barnes and Hut do not approximate cluster-to-cluster interactions but approxi­

mate particle-to-cluster interactions only. The Barnes-Hut method consists of travers­

ing the BH tree once for every particle to determine the force on it. The same criterion 

as in Appel's method is used to decide if the interaction of the particle with a cluster 

should be computed directly or by summing the interactions of the particle with the 

subclusters of the cluster, obtained recursively. 

Barnes and Hut give arguments to support an 0 { N  log N )  complexity for their 

algorithm. The arguments apply only to uniform distributions. Salmon [31] studies 

the Barnes-Hut algorithm in great detail. 

Greengard's Method 

Greengard's algorithm [14] computes the potential induced on each particle by 

the rest of system and obtains the force as a gradient of this potential. Greengard's 

method, also knows as the fast multipole method (FMM), uses a series expansion to 

describe the potential induced by a cluster of particles at a given position. The series 

expansion is called the multipole expansion and it accurately describes the potential 

due to the cluster of particles at a given point. A finite number of terms of the series 
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are used depending on the accuracy of the answer required. 

Greengard's algorithm uses the same hierarchical subdivision of space as the 

Barnes-Hut algorithm. The algorithm is a two-pass procedure on the BH tree. The 

first pass is a bottom-up traversal of the BH tree to compute the multipole expansions 

at all nodes. The second pass is a top-down traversal of the tree to compute a series 

expansion at every node for the potential induced on the cluster represented by the 

node due to the rest of the system, termed the local expansion. The local expansions 

at the leaf nodes are then evaluated once for each particle. Greengard develops a 

detailed mathematical formalism and estimates the complexity of his algorithm to 

be 0{N) irrespective of the distribution of the particles. 

Other Methods 

Most of the literature on hierarchical N-body methods consists of a detailed 

study of the three methods described above, new methods with minor variations or 

adapting these methods to parallel architectures. 

Esselink [12] argues that the complexity of Appel's method is 0 { N ) .  Salmon 

[31] studies the Barnes-Hut algorithm in great detail and incorporates the compu­

tation of multipoles into the Barnes-Hut algorithm. Zhao [39] presents a multipole 

algorithm based on cartesian coordinates as opposed to the spherical harmonics used 

by Greengard. Katzenelson [23] introduces a formulation of the N-body problem as 

a set of recursive equations based on a few elementary functions. His formulation 

encompasses both Barnes-Hut and Greengard's algorithms. 
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A Unified Framework for Hierarchical N-body Methods 

All the hierarchical N-body methods are based on approximating the interactions 

of clusters of particles instead of dealing with the individual particles. There are two 

different aspects to consider in such an approach. 

1. The determination of the clustering scheme. 

2. The method used to approximate the interactions due to a cluster. 

The different algorithms can be thought of as different choices exercised in the two 

aspects. At one extreme, we have the naive algorithm which performs no clustering. 

The resulting method is an 0{N'^) algorithm of computing the exact pairwise inter­

actions. Appel's algorithm uses a clustering scheme based on heuristics while the 

Barnes-Hut and Greengard algorithms use a clustering scheme based on fixed cubical 

subdivision. The interactions due to a cluster can be written in the form of a Taylor 

series. The interactions of a cluster can be approximated by taking either one term of 

the Taylor series (the monopole method) or a finite number of terms (the multipole 

method). In the monopole method, the desired accuracy is achieved by splitting the 

cluster into subclusters recursively until the monopole terms can describe the inter­

action to the required accuracy. The multipole method achieves the same by taking 

as many terms as needed. 

Outline of the Dissertation 

Throughout this thesis, we concentrate on rigorous worst-case analysis of the 

complexity of the N-body methods. Even though the hierarchical algorithms are 
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claimed to be efficient for non-uniform distributions, researchers have often used 

arguments based on uniform distributions to justify their claims. With the notable 

exception of Greengard, most researchers paid little attention to a rigorous worst-case 

complexity analysis. 

In Chapter 2, we analyze the Greengard and Barnes-Hut methods. Both the 

methods are based on a fixed hierarchical cubical subdivision of the space, repre­

sented by the BH tree. We analyze the characteristics of the BH tree to determine 

the lower and upper bounds on the size of the tree. The results are used to determine 

the complexity of the Greengard and Barnes-Hut methods. We show that Green-

gard's algorithm is not 0{N), as claimed. We prove that Greengard's algorithm is 

Q,{N\og^ N) in two dimensions and n(log"* iV) in three dimensions and that the 

actual complexity matches this lower bound only for uniform distributions. We also 

show that both algorithms are unbounded for arbitrary distributions. 

In Chapter 3, we describe a distribution-independent data structure for the N-

body problem. The data structure is presented as a modification to the BH tree 

to remove its distribution-dependency. We show that the modified tree has a size 

of 0{N) and contains the same information as the BH tree. We prove that the 

Barnes-Hut and Greengard's methods can be run on the modified tree. Greengard's 

multipole method can be run on the modified tree to obtain the force calculations in 

0{N) time. 

In Chapter 4, we describe an algorithm to construct the modified tree in two 

dimensions. We show a lower bound of fl(A'^log and present an algorithm to 

construct the tree in time matching the lower bound. Chapter 5 consists of an 

a l g o r i t h m  t o  c o n s t r u c t  t h e  m o d i f i e d  t r e e  i n  t h r e e  d i m e n s i o n s ,  r e q u i r i n g  0 { N  l o g ^  N )  
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time. 

The time per iteration of the N-body problem using the multipole method is 

dominated by the time required to create the distribution-independent data structure. 

T h e  m u l t i p o l e  a l g o r i t h m  o n  t h e  n e w  d a t a  s t r u c t u r e  c o m p u t e s  t h e  f o r c e s  i n  0 { N  l o g  N )  

time in two dimensions and in 0(A^log^ N) time in three dimensions irrespective of 

the distribution of the particles. 

In Chapter 6, we conclude the dissertation and briefly outline some possibilities 

for future work. 
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CHAPTER 2. ANALYSIS OF GREENGARD AND BARNES-HUT 

METHODS 

In this chapter, we analyze the Greengard and Barnes-Hut methods to determine 

their worst-case running times for arbitrary distributions. Both algorithms use a 

clustering scheme in which the subclusters of a cluster are determined independent 

of the location of the particles in the cluster. Since the clusters are to be recursively 

subdivided until each cluster contains only one particle, the number of subdivisions 

with such a fixed clustering scheme is dependent on the distribution of the particles. 

As a result, the running time of these algorithms is sensitive to the distribution of 

the particles. 

The Barnes-Hut and Greengard Methods 

The Greengard and Barnes-Hut methods for computing N-body interactions 

consist of two alternating phases, repeated every time step: 

1. Computing a hierarchical tree data structure with the leaves representing the 

particles and the root of the tree representing the entire system 

2. Traversing this data structure to compute the force on each particle to a spec­

ified accuracy. 
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The same tree data structure is used in both the methods, known as the BH tree. In 

the Barnes-Hut method, the BH tree is traversed once for every particle according 

to the force calculation scheme given by Appel [5]. The Greengard's method is a 

tv/o-pass procedure on the BH tree. In the first pass, the tree is traversed bottom-up 

to compute the multipole expansions at every node. In the second pass, the tree is 

traversed top-down to compute the local expansions. The local expansions are finally 

evaluated to compute the approximate force on each particle. 

Analysis of the BH Tree 

The BH tree is constructed as follows: Begin with a cell (square in two dimensions 

and cube in three dimensions) large enough to contain all the particles, called the 

root cell. Let d be the number of dimensions. Subdivide this cell into 2^ cells of half 

the side length of the original cell. For each of these subcells: 

1. If the subcell does not contain any particles, discard it. 

2. If the subcell contains exactly one particle, do not subdivide this subcell further. 

3. If the subcell contains more than one particle, recursively subdivide this subcell. 

This recursive subdivision of the space into cells is naturally represented by a tree, 

which is the BH tree. Such a physical subdivision of a system of 16 particles in two 

dimensions is shown in Figure 2.1. 

A characteristic of the BH tree is that each node in the tree represents a cell of 

length exactly half that of its parent cell. This is true irrespective of the number of 

particles of the parent cell contained in the child cell. In particular, a child cell may 

contain the same particles as its parent cell. As we shall see, this feature makes it 
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Figure 2.1: The Barnes-Hut physical subdivision of a system of 16 particles in two 
dimensions 
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impossible to establish a bound on the size of the tree as a function of the number 

of particles. For convenience and simplicity, a two-dimensional problem is discussed 

but the results carry over to three-dimensional problems as well. 

Figure 2.2 shows the Barnes-Hut physical subdivision for a collection of three 

particles in two dimensions. The corresponding BH tree is shown in Figure 2.3. In 

the example shown, the first subdivision separates particle 1 from particles 2 and 3. 

The next three subdivisions performed to separate particles 2 and 3 are not successful 

as one of the child cells at every level of the subdivision contains both the particles 

and the other three contain none. The recursive subdivision is continued until the 

particles 2 and 3 are separated. 

From this example, it is intuitively clear that a large number of recursive subdi­

visions may be required to separate particles that are very close to each other. It is 

not true that two particles can be separated only when the cell size is small enough 

such that a single cell cannot contain both the particles. Figure 2.4 illustrates this 

point. The distance between the two particles shown in the figure is much smaller 

than the length of the cells separating them. However, they are positioned in such a 

way that a single subdivision separates them, even though the size of the child cells 

in the subdivision is large enough to contain both the particles. In the worst case, 

the recursive subdivision continues until the cell sizes are so small that a single cell 

positioned anywhere cannot contain both the particles. Subdivision is never required 

beyond this point, but the particles may be separated sooner. 

Let N  be the number of particles in the system and let s  be the smallest inter-

particle distance. We require 5 > 0 to avoid infinite interaction force. Let D be the 

length of a cell that can contain all the particles. Clearly, the worst-case path length 
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Figure 2.2: The Barnes-Hut subdivision of a system of particles positioned such that 
a subcell contains the same particles as its parent cell 
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(1,2,3) 

{2,3} 

{2,3} 

{2,3} 

{2,3} 

Figure 2.3: The BH tree corresponding to the subdivision of Figure 2.2 
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Figure 2.4: A configuration where two close particles are separated by cells large 
enough to contain both 

of the BH tree is given by the worst-case path needed to separate the two particles 

which are closest to each other. The length of the smallest cell that can contain two 

particles 5 apart in two dimensions is ^ in three dimensions; see Figure 2.5). 

The paths separating the closest particles in a two-dimensional problem may 

contain recursive subdivisions until a cell of length smaller than ^ reached. Since 

each subdivision halves the length of the cells, the maximum path length is given by 

the smallest k for which 

p_ _s_ 
2'=  ̂ y/2 

I n k  = [log 1 

In three dimensions, 

D  

2^- x/3 
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s  

Figure 2.5: Smallest cells that could possibly contain two particles that are s  apart 
in two and three dimensions 

fc = riog^i 

In either case, the worst-case path length is O(logy). Since the tree has N  

leaves, the number of nodes in the tree is bounded by 0{N log ^). 

The absence of N  in the expression determining the worst-case path length may 

seem rather strange. One might be curious to ask if N is related to D and 5 and thus 

implicitly determines the worst-case path length. Let us examine the behavior of y 

as a function of N. In particular, we shall investigate the upper and lower bounds 

f o r  —  a s  a  f u n c t i o n  o f  N .  
3 

To minimize the ratio y for a fixed N ,  all the particles should be at a distance of 

s from their nearest neighbors. To see why, suppose this is not true. We can reduce 

D  b y  ' m o v i n g - i n '  p a r t i c l e s  t h a t  a r e  f a r t h e r  t h a n  s  f r o m  e a c h  o t h e r ,  w h i l e  k e e p i n g  s  

the same. Or, we can increase s by increasing the distance between particles that are 

s apart, keeping D unchanged. In either case, j decreases, contradicting minimality. 

Furthermore, the particles must be packed as closely as possible. Figure 2.6 shows 



20 

the configuration minimizing the ratio — for a fixed N  in two dimensions. Each 

particle has six nearest neighbors, all at a distance s. The particle is at the center of 

the hexagon formed by its nearest neighbors. The particles do not fit in a cell smaller 

than D X D. Adding the particles column-wise, 

, D  , .  , D ,  , D  , .  , ,  2 D  , .  ,  
TV = [— -f IJ + [—J + [— + IJ + ... (+ IJ t e r m s )  

S S S y / S s  

N  < -
s  

2 D  '  

s/3s"^ 
+ -^ + 1 

\/3s 

- x/3 + V3 j 3 + ^ 

- > c , V n  
s  

for some constant ci. Since this is computed using the configuration minimizing 

the ratio the worst-case path length (log y) is fl!(log A'^). In three dimensions, 

- > C2iV^ 
s  

In either case. 

iog- = n(iogiv) 
s  

Next, let us investigate how large y can be for a fixed N .  For any N  >  3  

particles, j can be made arbitrarily large by reducing the distance between the 

closest particles (thus reducing s), or by increasing the spread of the particles (thus 

increasing D). Hence, the worst-case path length does not have an upper bound 

as a function of the number of particles and is entirely dependent upon the spatial 

distribution of the particles. This immediately implies that the size of the BH tree 

is unbounded and can be arbitrarily large for a fixed N. Since both Greengard's and 
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J" 
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Figure 2.6; The configuration minimizing the ratio of the cell length containing all 
the particles and the smallest interparticle distance in two dimensions 
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Barnes-Hut algorithms construct and visit each node in the BH tree at least once, 

these algorithms are unbounded for arbitrary distributions. 

In practice, the simulations have to be run on a machine with finite precision. 

With finite precision, there is a largest expressible number and a smallest expressible 

positive number. Once the precision is fixed, y is bounded as a function of this 

precision. Greengard assumes the precision to be a constant in analyzing the com­

plexity of his algorithm. The problem with this approach is discussed in detail in the 

following section. 

On the Complexity of Greengard's Algorithm 

Greengard assumes the length D  of the cell containing all the particles to be 

one. His arguments can be summarized as follows: For a fixed machine precision 

e, only certain classes of particle distributions can be modeled, independent of the 

algorithm used. In order to make the simulation possible, Greengard requires that 

the smallest distance s between any pair of particles be greater than e. Thus, log y 

is bounded by p = [log^] = [—loge]. Greengard's algorithm takes the precision 

parameter e as input. The force acting on each particle is also computed to the same 

precision. It turns out that the first p terms in the multipole and local expansions are 

enough to achieve the desired accuracy in force calculation. The algorithm, therefore, 

computes p-term multipole and local expansions. Since e is a constant, p is a constant. 

Greengard estimates the running time of his algorithm to be N{ap'^ + ̂ P + l) in two 

dimensions and N{ap"^++^) in three dimensions, where a, ̂  and 7 are constants. 

S i n c e  p  i s  t a k e n  t o  b e  a  c o n s t a n t ,  G r e e n g a r d  [ 1 4 ]  c l a i m s  h i s  a l g o r i t h m  r u n s  i n  0 { N )  

time in two or three dimensions. 
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If we need a cell of length D  to contain all the particles, we can force it to be 

one by appropriate scaling. Since this scaling does not change the ratio of the size 

of the cell containing all the particles and the smallest distance between any pair of 

p a r t i c l e s ,  w i t h o u t  l o s s  o f  g e n e r a l i t y ,  l o g  y  i s  b o u n d e d  b y  p .  

The above arguments imply that the height of the tree is bounded by 0 { p ) ,  a 

constant. Yet, we know that the height of a tree with N leaves and at most a constant 

number of children per node is fi(logiV). How can this disparity be explained? 

To further highlight the discrepancy, consider the first step in Greengard's al­

gorithm - the construction of the tree representing the hierarchical subdivision. At 

every level of the tree, the nodes containing more than one particle (or more than a 

fixed number of particles) are subdivided and particles in each parent box are dis­

tributed among its child boxes. Since each particle is assigned to a box at every level 

and there are at most p levels, the work involved is proportional to Np. Since p is a 

c o n s t a n t ,  t h e  c o m p l e x i t y  i s  c o m p u t e d  t o  b e  0 { N ) .  

Consider running this algorithm on a uniform distribution. Each child cell con­

tains exactly a fourth of the particles of its parent cell. The resulting tree is a quadtree 

with log N levels and the work involved in constructing the tree is easily seen to be 

0 { N  l o g  N ) ,  n o t  0 { N ) .  

The problem lies in the assumption that the parameters D  and s  are entirely 

dependent on the spatial distribution of the particles and not related to the number 

of particles N. We have seen that for any N >3 particles, ^ can be made arbitrarily 

large. This validates the argument that for a fixed machine precision, only certain 

classes of particle distributions can be modeled, independent of the algorithm used. 

In the previous section, we have shown that log ^ has a lower bound of fi(log N ) .  



Since log y is bounded by p, p  is also fi(log N ) .  

How does this translate to what classes of particle distributions can be mod­

eled with a machine precision e? It is already noted that not all distributions 

can be modeled for any given N > 3 because of precision limits. However, un­

less p = [—loge] > clogA'^ (c a constant), no distribution can be modeled for that 

N. The very fact that we are able to run an A'^-body problem for a collection of N 

particles with precision e implies that p = [—loge] > clog A''. Thus, p cannot be 

taken as a constant in the analysis of the running time of the algorithm and Green-

gard's algorithm is not 0{N). Greengard's time complexity is Q,{N\og^ N) in two 

dimensions and Cl{N log"* N) in three dimensions. The running time matches the 

lower bound only for a uniform distribution. For arbitrary distributions, the running 

time is unbounded. 

Two different precisions are involved in the simulation of an N-body problem. 

The first is the precision used to represent the input: the positions and velocities of 

the particles etc.. The second precision is the accuracy to which the force acting on 

each particle should be approximated. Greengard's algorithm computes the force to 

the same precision as used to represent the input. This results in a lower bound of 

fl(log N) for the precision parameter p. The precision used for the force calculation 

need not be the same as the precision used to represent the input. With a better 

precision to represent the input, a larger number of particles and/or a larger variety 

of distributions can be modeled. The precision used to compute the forces should 

be related to the duration of the time steps used in the simulation and the accuracy 

of the final answer required. In a reasonable simulation, the precision to which the 

force on each particle is computed should be of the same order as the change in the 
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force on the particle during the time step. Computing the force to a higher precision 

than the change in the force during the time step is not useful. 

On the Complexity of the Barnes-Hut Algorithm 

Barnes and Hut [7] estimate that the tree construction can be accomplished in 

0{N log N) time and that the force on each particle can be computed in 0(log 

time. The cost per iteration is thus estimated to be 0{N log N). Their arguments 

apply only to a uniform distribution of particles. Unfortunately, running times based 

on uniform distributions are often extrapolated to be valid for non-uniform distribu­

tions. It should be noted that several techniques outlined in Chapter 1 are applicable 

to uniform distributions and can be used to solve the N-body problem in 0(A'^log A'^) 

time per iteration. The hierarchical methods are designed to be efficient for arbitrary 

distributions of the particles. It is therefore important to analyze the complexity of 

these algorithms for arbitrary distributions. 

Salmon [31] studies the Barnes-Hut algorithm in great detail. He shows that the 

Barnes-Hut algorithm takes 0{N'^) time for an exponential distribution. However, 

this does not represent the worst-case for the Barnes-Hut algorithm. Since the BH 

tree is unbounded, the Barnes-Hut algorithm is unbounded for arbitrary distributions. 

Clearly, not all particle distributions can be modeled on a given machine due to 

precision limits. But, an algorithm whose running time depends upon the distribution 

is undesirable. An analogy can be drawn to a sorting algorithm whose running 

time depends on the size of the numbers to be sorted. The complexity of a sorting 

algorithm is O(nlogn), provided basic operations on the numbers to be sorted (like 

comparison, copying) can be accomplished in constant time. The complexity of the 
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algorithm does not remain 0 { n  log n) if this assumption is not valid. However, there is 

a distinct advantage to having a sorting algorithm in which the number of operations 

is independent of the size of the input numbers. Such an algorithm can sort 128-bit 

numbers on a machine with 128-bit words with the same speed as it sorts 32-bit 

numbers on a 32-bit word machine. 

Similarly, it is reasonable to assume that the distribution of the particles is 

representable in a given machine but algorithms whose running times depend on the 

distribution are undesirable. 
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CHAPTER 3. A DISTRIBUTION-INDEPENDENT DATA 

STRUCTURE FOR THE N-BODY PROBLEM 

The distribution-dependency of the Barnes-Hut and Greengard's algorithms is 

due to the clustering scheme in which the subclusters are fixed relative to the parent 

cluster and irrespective of the location of the particles. In this chapter, we describe 

a distribution-independent clustering scheme for the N-body problem. The resulting 

data structure is presented as a modification to the BH tree to remove its distribution-

dependency. We show that the Barnes-Hut and Greengard's algorithms can be run in 

conjunction with this modified tree structure. We prove that the force computations 

of the Barnes-Hut and Greengard's algorithms can be accomplished by a traversal 

the modified tree. The construction of the modified tree itself is postponed until the 

next chapter. 

A Modified Data Structure 

The BH tree can contain a path on which every node represents the same set of 

particles, though each node represents a cell of a different size. Such a path can be 

arbitrarily large irrespective of the total number of particles. Each node on the path 

represents a cell of exactly half the length of the cell represented by its parent. Our 

intent is to rectify this unbounded nature of the BH tree. 
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Let Vi,V2, .--iVk { k  > 2) be a maximal path in the BH tree such that each node 

of the path represents the same set of particles. The maximality of the path ensures 

that Ui's parent has more particles than Ui and no child of Vk has the same particles 

as Vk. Since only cells having more than one particle are subdivided, it is imperative 

that Vk is not a leaf and has at least two child nodes. If Vk is a leaf, Vk and hence Vi 

have exactly one particle. In such a case, vi is not further subdivided and is a leaf, 

a contradiction. We can also assume without loss of generality that ui has a parent. 

Otherwise, Vi has to be the root of the tree, thus containing all the particles in the 

system. By the property of the path vi,v2, ...,Vk, Vk also contains all the particles 

in the system. This simply means that our choice of the initial cell is too large for 

the system of particles and a cell length of it (this is the cell represented by Vk) 

can contain the entire system. In this case, we can safely make the subtree rooted 

at Vk to be the BH tree. Therefore, it can be assumed that V\ always has a parent. 

F u r t h e r m o r e ,  V i  i s  t h e  o n l y  c h i l d  o f  u , _ i  { I  <  i  <  k ) .  

We define the modified tree as follows: Let V i , V 2 ,  . . . , V k  ( k  >  2) be any maximal 

path in the BH tree as described above. Let vq be the parent of uj. The modified 

tree is obtained by deleting the nodes Vi,V2, ...,Vk-i and making Vk the child of Vq. 

Since u,- is the only child of u,_i (1 < i < fc), the resulting structure is a tree. The 

BH tree for a collection of 5 particles and the corresponding modified tree are shown 

in Figure 3.1. 

The modified tree is obtained from the BH tree by collapsing paths representing 

the same particles using cells of different sizes, into a single node. Nodes in the 

BH tree are used to store aggregate information on the collection of particles they 

represent. For example, the Barnes-Hut method keeps track of the total mass and 
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{1,2,3,4,5) 

{1,2,3} {4,5} 

{4,5} {2,3} 

{2,3} {4,5} 

{2,3} 

{2,3} 

(a) BH Tree (b) Modified Tree 

Figure 3.1: BH tree for a collection of 5 particles and the corresponding modified 
tree 
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the center of mass of the collection of particles. Greengard's method computes the 

multipole and local expansions of the collection of particles. Since every node on 

such a path represents the same particles, they all contain the same information, 

perhaps in a different form. Therefore, the modified tree obtained by eliminating 

this redundancy should contain the same information as the BH tree and it should 

be possible to modify Barnes-Hut and Greengard's algorithms to run on the modified 

tree. 

For convenience of understanding, the tree is presented as a modification to the 

BH tree, obtained by collapsing paths representing the same particles. This should 

be taken as a definition of the modified tree rather than as a way of computing the 

modified tree. Since the BH tree is unbounded, one should not build the modified 

tree by first building the BH tree and deriving the modified tree from it. Algorithms 

for creating the modified tree directly in two and three dimensions are discussed in 

the following chapters. 

Analysis of the Modified Tree 

In this section, we show that the size of the modified tree is 0 { N ) ,  irrespective 

of the distribution of the particles and the number of dimensions. 

Lemma 3.1 Let S{N) be the number of nodes in the modified tree for N •particles. 

S { N )  < 2 N - l .  

Proof: By induction on the number of particles N .  If A'^ = 1, the modified tree is 

a single node representing a cell containing the particle. 5(1) = 1, clearly satisfying 

the lemma. 
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Consider any N  >  1 .  The root of the modified tree represents all the N  particles. 

The root has at least 2 and at most 2'^ children (where d is the number of dimensions). 

Let k be the number of children of the root node and let Ni be the number of particles 

contained in the cell represented by the i"* child. Let S{Ni) be the size of the subtree 

rooted at the i"' child. We have 

k 
S { N )  =  l  +  Y ^  S { N i )  { 2 < k <  2 ' ^ )  

1=1 

i : m = N  
i = l  

S { N i )  <  2 N i  -  1 

By induction, 

Therefore, 

S { N )  =  l  +  E l i S i N i )  

< l + ELi(2iV.-l) 

=  2 N  -  { k  -  1) 

<  2 N  - I  

By the lemma, the size of the tree is bounded by 0 { N )  for any dimension d. Since 

any tree containing N leaves has at least 0{N) nodes, the modified tree is an optimal 

representation of the hierarchical clustering scheme. Since each child contains at least 

o n e  p a r t i c l e  l e s s  t h a n  i t s  p a r e n t ,  t h e  w o r s t - c a s e  p a t h  l e n g t h  i s  a l s o  b o u n d e d  b y  0 { N ) .  

We now show that the force computation phase of the Barnes-Hut and Green-

gard's algorithms can be accomplished by a traversal of the modified tree instead of 

a traversal of the BH tree. It is assumed that the tree is already built. 



The Barnes-Hut Method Using the Modified Tree 

In the Barnes-Hut method, the BH tree is traversed once for every particle in 

the system to approximate the force acting on the particle due to the rest of the 

system. The force on any particle P is approximated using the following recursive 

calculation: Let / be the length of the cell currently being processed. Let d be the 

distance between the particle and the center of mass of the cell under consideration. 

If ^ < 0, where 0 < 0 < 1 is a pre-specified accuracy criterion, the cell is treated 

as a single particle of equivalent mass located at the center of mass for the purpose 

of force calculation. Otherwise, the children of the cell are examined recursively to 

compute the force on P. The force on P due to the particles in the cell is obtained by 

a vector summation of the forces on P due to the particles in each of the child cells. 

The force calculation starts by examining the root cell. This calculation is repeated 

once for every particle in the system. 

Force Calculation 

We show that performing force calculations on the modified tree yields exactly 

the same results as the force computations on the BH tree. 

Theorem 3.2 Let P be any particle. The approximate force acting on P as computed 

by a traversal of the modified tree is the same as the force computed by a traversal of 

the corresponding BH tree. 

Proof: Consider any maximal path Vi,V2, ...iVk [k > 2) in the BH tree where all 

nodes represent the same particles and let Uo be the parent of vi. In the modified 

tree, is the child of vq. If vi is never reached (for any such maximal path) in the 



33 

traversal of the BH tree, the force computation gives the same answer on either tree 

because the same nodes are traversed. Therefore, suppose that Vi is reached during 

the traversal of the BH tree. Let /(u,) be the length of the cell, cm(u,) be the center 

of mass and M(u,) be the total mass of the particles in the cell represented by node 

Vi. Note that 

M(ui) = M { v2 )  = ... = M { v k )  

cm(ui) = cm{v2) = ... = cm{vk) 

l { v i )  =  2 1 { v2) = 2'1{v3) = ... = 2'=-U{vk) 

Case I: The traversal stopped at some u,- (1 < i < k) in the BH tree. 

Since the traversal stopped at u,-, 

d { p , c m { v i ) )  

where d { p ,  cm(v,)) is the distance from P  to the center of mass of the cell represented 

b y  V i  a n d  9  i s  t h e  a c c u r a c y  c r i t e r i o n .  S i n c e  V j  i s  t h e  o n l y  c h i l d  o f  v j - i  ( 1  <  i  <  k ) ,  

the force contributed by the subtree rooted at vi is the force between P and a mass 

of M{vi) located at cm{vi), given by 

G m p M { v i )  

d { p , c m { v i ) y  

In traversing the modified tree, ujt is reached instead of ui. Since k > i, 

^  1 K ^ i )  ^  Q  
d { p , c m { v k ) )  d { p , c m { v i ) )  

The traversal stops at Vk and the force is computed to be 

GmpM{vf.) _ GmpM{vi) 

d { p , c m { v k ) y  d { p , c m { v i ) y  
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The force contributed by the subtree rooted at Vk is the same as the force contributed 

by the subtree under Vi in the BH tree, as needed. 

Case II: The traversal proceeds to the children of Vk in the BH tree. 

In this case, the traversal proceeds to the children of Vk in the modified tree also. 

The force contributed by the subtree rooted at in the Barnes-Hut tree is the force 

contributed by the subtree rooted at Vk, which is the same for both the trees. 

Hence, the force computations give the same result on both trees. • 

The worst-case time to compute the force on a particle P using the BH tree is 

unbounded since the BH tree is unbounded. On the modified tree, this force compu­

tation is bounded by 0{N), the size of the modified tree. 

Error Estimation 

The error in approximating the force between a particle P and a cluster of 

particles by treating the cluster as a single particle of equivalent mass located at 

the center of mass is proportional to , where dr is the radius of the cluster 

and r is the distance of its center of mass from P. In the Barnes-Hut algorithm, 

each cell represents a cluster of particles. If / is the length of the cell containing the 

particles, the radius of this cluster of particles is at most l\/d where d is the number 

of dimensions. In two or three dimensions, the error introduced by treating the cell 

represented by node u,- as a single particle is therefore proportional to 

If vi,U25 is a maximal path in the Barnes-Hut tree with every node containing 

t h e  s a m e  p a r t i c l e s  a n d  t h e  B a r n e s - H u t  t r e e  t r a v e r s a l  s t o p p e d  a t  s o m e  V i  { 1  <  i  <  k ) ,  
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the error made is computed to be proportional to 

This is an overestimation of the error because the length of the cell that can contain 

{ k  >  i ) .  A traversal on the modified tree computes the same force with an error 

estimate proportional to 

Greengard's fast multipole algorithm is a two-pass procedure on the BH tree. 

The first pass is a bottom-up traversal of the tree in which a p-term multipole ex­

pansion is formed at every node of the tree, where p is a precision parameter. The 

multipole expansions at the leaves are computed directly. At any internal node, the 

multipole expansion is formed by shifting the multipole expansions of the child nodes 

to the center of the cell represented by the node and adding them together. In the 

second pass, the tree is traversed top-down to compute the local expansions at every 

node. The local expansion at a node is formed by shifting the local expansion at 

the parent node to its center, shifting the multipole expansions of the well-separated 

children of the nearest neighbors of the parent of the node to its center and adding 

them together. Finally, the local expansions at every leaf are evaluated to compute 

the approximate cumulative force on each particle. For a detailed description of 

Greengard's algorithm, see [14]. 

the particles is taken to be /(u,) whereas the length is in fact bounded by l{vk) = 

The error estimate at this node is thus improved by a factor of 2^^'' 

Greengard's Method Using the Modified Tree 
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Consider a run of Greengard's algorithm on the BH tree containing a path 

vi,v2, where each node represents the same particles. Since u,- is the only 

child of V i - i  { I  <  i  <  k ) ,  the multipole expansion at u,_i is formed by shifting the 

multipole expansion of Vi to the center of the cell represented by u,_i. The multipole 

expansions at these nodes are merely translations of one another. Since Vi,V2, 

is a chain, the multipole expansions at these nodes are useful only to compute the 

multipole expansion of Ui's parent. However, the contribution by ViS multipole ex­

pansion to the multipole expansion of its parent can be directly obtained by shifting 

the multipole expansion of Vk to the center of the cell represented by the parent of 

Vi. Thus, computing the multipole expansions at Vi,V2, ..•,Vk-i is unnecessary and 

is avoided by the modified tree. A similar argument shows that the correct local 

expansions at the leaves can be obtained using the modified tree. 

In the multipole algorithm designed to run on the modified tree, the precision 

parameter p is a constant since it can be chosen independent of N. In Greengard's 

algorithm, p has a lower bound of log A'^. This is because p is also used as an upper 

bound on the worst-case path length (log 7) of the BH tree, which has a lower bound 

of logA^. Therefore, p cannot be chosen independent of N and is also a function of 

the distribution of the particles. In the multipole algorithm on the modified tree, 

the precision parameter is merely a function of the desired accuracy of the force 

calculations chosen independent of the number and distribution of the particles. 

The new algorithm consists of two traversals of the modified tree. Computing 

the p-term multipole/local expansion at each node takes constant time per node. 

Evaluating a p-term local expansion for every particle also takes constant time. Since 

the number of nodes in the modified tree is 0{N), running the multipole algorithm 
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once the modified tree is constructed takes 0 { N )  time. This is irrespective of the 

distribution of the particles. 

The running time of this algorithm depends on the complexity of the tree creation 

and the complexity of performing the force calculations. It is already noted that the 

force computations can be performed in 0{N) time on the modified tree. In the next 

section, we show that the modified tree can be created in 0(A'^logA'^) time in two 

dimensions and in 0{N log^ N) time in three dimensions. Thus, the new multipole 

algorithm has a complexity of 0(iV log A^) in two dimensions and 0(A'^log^ A^) in 

three dimensions. 
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CHAPTER 4. TWO-DIMENSIONAL ALGORITHMS 

In this chapter, we discuss algorithms for creating the modified tree in two 

dimensions. First, we show that the construction of the tree requires f2(A'^logiV) 

time. Then, we present an algorithm with running time matching this lower bound. 

A Lower Bound for the Construction of the Modified Tree 

We show that constructing the modified tree requires fi(iVlog N )  time by reduc­

ing sorting to the construction of the modified tree. 

Let xi,x2,..., x n  be the input to the sorting problem. Without loss of generality, 

assume that a;,- > 0 (1 < i < N). Otherwise, let Xmin = 0:2,..., xa?} and 

create a new sequence x[,x2., ...,x'p^ where x'- = .t,- — Xmin- Let yJ,y2'-"i2/N the 

output of sorting this sequence. The output of the original sorting problem is y[ -t-

2/2 + ̂ mini v'n + Xmin- The extra effort required is linear and does not change 

the complexity of sorting since producing the output to the sorting problem takes at 

least linear time. 

Assume that the input Xi,X2., ...iXn  to the sorting problem is non-negative. Po­

sition N particles such that the i"* particle is at location {xi,xf). The points lie on 

the parabola y = x"^ to the right side of y-axis. Construct the modified tree for this 

collection of N particles (see Figure 4.1). The output of the sorting problem can 
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Figure 4.1: Reduction of the sorting problem to the construction of the modified 
tree in two dimensions 
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now be read off from the modified tree as follows: Let c be the cell represented by 

a node in the modified tree. Taking the center of this cell to be the origin, we can 

label the children of the node as I, II, III or IV according to the quadrant containing 

the subcell represented by the child. Let (x,-, xf) be the position of any particle in 

the subtree of child III or child IV and let {x\, xf) be the position of any particle in 

the subtree of child I or child II. x} < x'^ and hence x,- < x\. Therefore, points in the 

subtrees of child III and child IV appear before the points in the subtrees of child 

I and child II in sorted order. Any point in the subtree of child II (child III) has a 

smaller x coordinate than any point in the subtree of child I (child IV). Thus, the 

sorted order can be read off from the modified tree by starting at the root cell and 

recursively enumerating the particles in subcells represented by the children labeled 

III, IV, II and I in that order. 

Constructing the input to the tree construction problem from the input of the 

sorting problem requires 0{N) time. The sorted order can be read off from the tree 

in 0{N) time since the tree contains 0{N) nodes and each node is traversed exactly 

once. Therefore, a lower bound of fl(A'^log A'') for sorting implies the same lower 

bound for the construction of the tree. 

The lower bound also applies to the construction of the BH tree. The same 

reduction can be used but the cost of reading the sorted order from the BH tree 

cannot be bound since the the number of nodes in the BH tree is not bounded. 

If the BH tree has 0{N log N) or more nodes, the construction of the tree clearly 

takes n{N log N) time. Otherwise, a lower bound of Q,{N log N) for sorting implies 

the same lower bound for BH tree construction. This should be contrasted with 

Greengard's estimation that the BH tree can be constructed in 0{N) time. 
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We now present an algorithm to construct the modified tree in 0 { N  log N )  time 

for a collection of N particles in two dimensions. 

Notation 

The physical space containing the particles is subdivided into cells. The cells 

represent square regions of space in two dimensions. A cell is completely determined 

by the length of an edge of the cell and the position of one of the corners of the cell. 

Without loss of generality, choose the lower, leftmost corner. Let D be the length 

of the root cell. We also use the term cell to refer to the node in the modified tree 

representing the cell, for convenience. 

Let I be any cell. In order to describe the subcells of this cell, choose the corner 

of the cell to be the origin. The cell contains 2^'"' cells of length The cells are 

positioned at (0 < i,j < 2*^). 

Definition 4.1 A line is called a k-boundary if it contains an edge of a cell of length 

I 
F-

Any boundary is parallel to one of the axes. A boundary can be specified by the axis 

to which it is parallel and the distance of the boundary from the axis. A k-boundary 

is at a distance of i-^ (0 < z < 2'*') from the axis parallel to it. 

Fact 4.2 Any k-boundary is also a j-boundary for every j > k. 

There are 2'"' + l lines parallel to each axis and spaced ^ apart that are k-boundaries. 

The intersections of the k-boundaries determine the cells of size Subcells and 

boundaries of the root cell are shown in Figure 4.2. Note that the description of the 

subcells and the boundaries is relative to the cell. 
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2-bouijidary 
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r 
I 

l-bou\idary 

3-bouifdary 

(0,0) {D,0) 

Figure 4.2: A root cell of length D. The big dashed lines are 1-boundaries, 
the small dashed lines are 2-boundaries and the dotted lines are 
Z-boundaries. 2-boundaries are also Z-boundaries and 1-boundaries 
are also 2-boundaries and Z-boundaries 
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Algorithm for Constructing the Modified Tree 

A simple recursive algorithm for creating the modified tree for a cell c containing 

a collection of particles can be informally stated as follows: 

BuildTree(c) 

1. Find the smallest cell c' contained in c that still contains all the particles con­

tained in cell c. 

2. If c contains no particles, return ^ empty tree\ 

3. If c contains exactly one particle, return the one node tree c. 

4. Split the cell c' into 4 subcells. 

5. For each subcell sc of c', BuildTree(sc). 

6. Return the tree obtained by joining all the trees obtained in the previous step, 

with c' as the root of the tree. 

BuildTree is initially called with a cell large enough to contain all the particles 

in the system. The description of the positions of the particles contained in cell c 

is not passed as input to the function BuildTree. Otherwise, calling the function on 

each of the subcells would require distributing the particles among the child cells 

resulting in 0{N) work at every level of the tree. Since there can be 0{N) levels, 

such a distribution itself would require 0{N'^) work. 

The input to BuildTree is just a description of the cell c - the length of c and 

the position of its lower, leftmost corner. The running time of the algorithm can be 
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computed by the amount of work done at every node of the modified tree, which is 

steps 1-4 and 6. Steps 4 and 6 require a constant amount of work at every node of 

the modified tree. Determining if the input cell c does not contain any particles or 

if it contains exactly one particle can be determined as a byproduct of Step 1, as we 

shall see later. Step 1 can be accomplished as follows: 

Let I be the length of the cell c passed as input to BuildTree. Any cell smaller 

than c but contained in c has length ^ for some A: > 0. By a suitable transformation, 

the corner of c is chosen to be the origin. Let b be the smallest rectangle containing 

all the particles in c. The rectangle is specified by [xmin,Xmax] x [ymm,2/max], where 

Xmin is the smallest x coordinate of all the particles in c etc. The smallest cell in c 

containing all the particles of c should also contain the box b. 

Fact 4.3 A cell of size p encloses b iff no k-boundary passes through b. 

The smallest subcell of c enclosing 6 is of size 2*^1 where k is the smallest integer 

such that a k-boundary passes through b (Figure 4.3). To determine this, we can 

examine boundaries parallel to each coordinate axis in turn. 

Consider boundaries parallel to the y-axis. These can be specified by their 

distance from the y-axis. The family of k-boundaries is specified by 0 < z < 2''. 

Let k be the smallest integer such that a k-boundary parallel to y-axis passes through 

6, i.e. k is the smallest integer such that Xmin < < Xmax for some i. 

Lemma 4.4 Exactly one k-boundary passes through b. 

Proof: Suppose not. Consider any two consecutive k-boundaries that pass through 

b. These are given by z^, (z + 1)^ for some z. Let z' be the even integer among z and 

i + 1. Let i" = One of the k-boundaries is specified by z'^ = i"^^- Therefore, 
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(O.l )  

(0.0) 

(1,1) 

(l.O) 

Figure 4.3: A cell of length / and the smallest box b enclosing all the particles in 
this cell 
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this is also a {k — \)-boundary and a [k — l)-boundary passes through 6, contradicting 

the minimality oi k. • 

Let j be the smallest integer such that ~ < (Xmax—Xmin), i-e., set j = [logj . 

Lemma 4.5 There is at least 1 and at most 2 j -boundaries passing through b. 

Proof: Suppose that no j-boundary passes through b. Since the distance between 

two consecutive j-boundaries is this would require ^ > (xmax — Xmin), a contra­

diction. Therefore, at least one j-boundary crosses b. 

If more then 2 j-boundaries cross b, let i-^, (i + 1)^ and (i + 2)^ be three 

consecutive j-6oundaries passing through b. We have i-^ > Xmin and (z+2)^ < Xmax-

Therefore, [xmax - Xmin) > {i + 2)^ -ijj = 2^ = contradicting the minimality 

of j. • 

The j-boundaries passing through b are specified by hi = ^ and /12 = 

jf only One j-boundary passes through b. Otherwise, two j-

boundaries pass through b. Let a be hi — a~ and /12 = hi or (a -h 1)^. 

Lemma 4.6 The k-boundary passing through b is either hi or h2. 

Proof; Suppose not. Since k < j, by Fact 4.2, the k-boundary passing through b 

is also a j-boundary. By Lemma 4.2, hi and /12 are the only j-boundaries passing 

through b. Therefore, the k-boundary passing through b must coincide with hi or /t2-

• 

It is now easy to find k since the k-boundary passing through b is narrowed down to 

either hi or /i2. If /j2 7^ hi, let a' be the even integer among a and a -f-1. Otherwise, 
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let a' be equal to a. It is clear that j — k \s equal to the highest power of 2 that 

divides a'. One way to find this is to set j — k = log2(l + {a' © (a' — 1)}) — 1. Since 

all the above operations take constant time, the smallest cell contained in c enclosing 

the box b can be determined in constant time. 

It is already established that the modified tree has 0 { N )  nodes. The tree is 

created top-down starting at the root. At each node, the particles with the small­

est and the largest coordinates in each dimension {xminiXmaxiVmin and Umax in two 

dimensions) are computed to identify the smallest box enclosing all the particles 

represented by the node. The smallest cell enclosing this box is computed and the 

children of the node determined in constant time. As mentioned before, the particles 

are not  distr ibuted among the child nodes.  Such a  distr ibution would result  in 0{N'^) 

time for tree creation. Distributing the particles to the child nodes is not necessary 

provided we can determine the particles with extreme coordinates in the child nodes. 

Except for this task, the rest of the computations are done in constant time per node, 

for a total of 0{N) time. 

Finding the points with extreme coordinates can be translated to a range query 

problem, stated as follows: Given N points, set up a data structure to answer queries 

of the form 'which point has the smallest x-coordinate among the points that lie in a 

given square?' efficiently. The answer to such a query is the point with the smallest 

x-coordinate or < none > if no points exist in the given square. Since the modified 

tree has 0{N) nodes and we require four such queries per node, the number of queries 

i s  0 { N ) .  

In BuildTree, we also need to determine cases where the cell contains exactly 

one particle or none. This can be determined as a byproduct of the computation 
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of the smallest box b containing all the particles in the cell. If Xmin = Xmax and 

Umin = Vmaxi the Cell Contains exactly one particle. If the answer to any of the 4 

queries is < none >, the cell is empty and can be discarded. 

The time for constructing the tree is 0 { N )  plus the time to set up data structures 

for range querying and the time to perform 0{N) queries. In the next section, we 

discuss a solution to the range query problem. 

Range Queries in Two Dimensions 

In this section, we discuss the problem of setting up a data structure to answer 

range queries. The problem we are interested in is formally described as; Given N 

points {xi,yi) (1 < z < N), set up a data structure to perform queries of the form 

'find the minimum (maximum) a;-coordinate Xmin {^max) of all the points in a given 

query rectangle [xo,a:'i] x [j/o,i/J]' efficiently. We first describe a simple solution that 

requires 0(A'^log A^) set up time and 0{log^N) time per query. We then describe a 

solution based on Priority Search Trees [28] to reduce the query time to 0(log N) per 

query. 

A Simple Algorithm 

Consider the problem of finding a point with the smallest (largest) a;-coordinate 

in a given query rectangle [a-'g, a;j] X [2/052/1]- we gather all the points in the range 

[t/o,?/j], the y direction becomes irrelevant and the query can be answered by a one-

dimensional query on x on these points. If a data structure is designed such that 

these points are available sorted by their .T-coordinate, we can find Xmin {xmax) easily 

with a binary search. 



49 

The data structure is built as follows: Sort the given N points by their y-

coordinates. Build a Balanced Binary Search Tree (BBST) with the points as leaves. 

The internal nodes in this BBST do not correspond to any points. They represent the 

range of values of y-coordinates of the points in their subtrees. The range assigned 

to a node is [y(,?/u] where yi is the smallest y coordinate and ?/„ is the largest y 

coordinate of all the points in the subtree rooted at the node. yi and ?/„ correspond 

to the leftmost and rightmost leaves of the subtree rooted at the node. If the range 

at the left child of a node is [yn, Vui] and the range at its right child is [y(2,J/u2]) the 

range assigned to the node is [yn,yu2] (see Figure 4.4). 

At every node of the BBST, store a list of all the points in its subtree sorted 

by the ^-coordinate. These lists are easily constructed in a bottom-up traversal of 

the tree. The sorted list at a node is constructed by merging the sorted lists at its 

left and right children. The data structure for a collection of 8 particles is shown in 

Figure 4.4. 

Sorting the points according to their y-coordinate requires 0(A'^logA'^) time. 

The BBST over these points is built in linear time. Creating the sorted lists at every 

node requires 0{N) work per level of the tree (since the lists are formed by merging 

and the total number of points merged at any level of the tree is N), for a total of 

0{N log N) work. In fact, the sorted lists at the nodes represent the intermediate 

lists produced during a merge sort of the points. The time and space requirements 

f o r  b u i l d i n g  t h i s  d a t a  s t r u c t u r e  a r e  0 { N  l o g  N ) .  

Given a quei-y rectangle [xq, a;'i] x [t/q, y'lli a list of nodes in the BBST are identified 

that cover the range [j/o^yl] exactly. The minimum (maximum) ^-coordinate in the 

range [xq, Xj] at each of these nodes is identified using binary search. The minimum 
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(41.4,89.1) (79.7,39.4) (13.2,35.8) (15.7,53.6) (21.6,33.5) (34.7,12.3) (57.5,12.7) (97.3,21.9) 

[12.3,89.1] 

(13.2,35.8) (15.7,53.6) (41.4,89.1) (79.7,39.4) 

(21.6,33.5) (34.7,12.3) (57.5,12.7) (97.3,21.9) 

[12.3,33.5] [35.8,89.1] 

(21.6,33.5) (97.3,21.9) (15.7,53.6) (41.4,89.1) 

(34.7,12.3) (57.5,12.7) (79.7,39.4) (13.2,35.8) 

[12.3,12.7] [21.9,33.5] [35.8,39.4] [53.6,89.1] 

(97.3,21.9) (21.6,33.5) (34.7,12.3) (57.5,12.7) (13.2,35.8) (79.7,39.4) (15.7,53.6) (41.4,89.1) 

Figure 4.4: A simple data structure for performing range queries in two dimensions 
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(maximum) of ail the values obtained is x^in (xmax)-

The following algorithm identifies a list of nodes in the BBST that cover the 

range [yo,y[]. 

FindNodes (node) 

If [y 'o ,y[]  does not contain the range at the node, 

If range at left child intersects [y'o-iy'i], FindNodes(leftchild(node)). 

If range at right child intersects [yo,yi]i FindNodes(rightchild(node)). 

Else add node to the list. 

FindNodes is initially called with the root of the BBST. FindNodes traverses a 

subtree of the BBST and its running time is proportional to the size of this subtree. 

The list of nodes identified by this function exactly cover the range [2/0,2/1] and are 

the leaves of the subtree traversed by this function. 

Lemma 4.7 The number of nodes in the list formed by FindNodes is at most O(log N) 

Proof: We first show that no more than 2 nodes are identified at any level of the 

tree. Suppose that this is not true. Let the root be at level 0 and suppose that three 

or more nodes are identified at level i {i > 2). The nodes identified at any level are 

clearly consecutive. Thus, 3 a node v at level i — \ such that its left child l{v) and its 

right child r{v) are both identified by FindNodes. By the description of FindNodes, 

[j/o, ?/J] contains the range at l[v) and r{v). Since the range at v is the union of the 

ranges at l{v) and r{v), [?/o, Z/J] should contain the range at v also. But then, the 

node V is identified by FindNodes and the children of node v are not traversed at all, 

contradicting the assumption that l{v) and r{v) are identified. 
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Therefore, function FindNodes identifies at most 2 nodes at any level of the 

BEST. Since the number of levels is bounded by C)(log A^), the number of nodes in 

the list formed by FindNodes is at most 0(log A'^). • 

Lemma 4.8 The running time of FindNodes is 0{\ogN). 

Proof: The running time of FindNodes is proportional to the size of the subtree it 

visits. By lemma 4.7, this subtree has 0(log N) leaf nodes. The number of nodes in 

a binary tree with 0(log A'^) leaf nodes is also 0(logA'^). Thus, the running time of 

F i n d N o d e s  i s  O ( l o g  N ) .  •  

Function FindNodes identifies a set of 0(log N) nodes that cover exactly all 

the points with y-coordinates in the range [yQ,y'^. We can identify the minimum 

(maximum) x values in the range [xq, Xj] in the sorted lists at these nodes using a 

simple binary search. The minimum (maximum) of all these values gives Xmin i^max) 

in the query rectangle [xg, x'J x [y'o,y[]. Since any of these sorted lists contains at 

most N points, each binary search takes at most 0(log N) time. Performing 0(log N) 

searches requires O(log^ N) time, after which Xmin i^max) can be found by computing 

the minimum (maximum) of the results of these searches in (9(Iog N) time. Thus, 

t h e  q u e r y  t i m e  i s  0 ( l o g ^  N ) .  

To query for minimum (maximum) y-coordinate (ymax), an analogous data 

structure can be designed which is a BBST on the .-c-coordinate with each node 

containing the points in its subtree sorted by their y-coordinates. 

This scheme can be used recursively to create a data structure for answering 

range queries for any dimension d. First, one of the dimensions is chosen and a 

balanced binary search tree is built on the points sorted by the chosen dimension. 
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At each node, the data structure for performing {d — l)-dimensional range queries 

on the points in the subtree of the node is stored. To answer a query, a set of 

nodes in the balanced binary search tree are identified that cover the range along the 

dimension using which the balanced binary search tree is built. By Lemma 4.7, the 

number of nodes identified is 0{\ogN). The query can be answered by performing 

{d — l)-dimensional queries at each of these 0(log N) nodes and taking the minimum 

( m a x i m u m )  v a l u e  o b t a i n e d .  T h e  q u e r y  t i m e  i s  0 { l o g ^  N ) .  

Using this scheme, the modified tree can be built in 0{N \og^ N) time in two 

dimensions. This consists of O(A'^logA^) set up time for creating the data struc­

tures to perform the required range queries, 0{N \og^ N) time for 0{N) queries at 

0(log^ N) time per query and 0{N) time for rest of the work in function BuildTree. 

We next outline a solution based on Priority Search Trees to reduce the query time to 

0(log A'^) with the same set up time, to reduce the total complexity to 0(A'^log A'^). 

Priority Search Trees 

A Priority Search Tree (referred to as PST hereafter) [28] is a data structure for 

representing N points in two dimensions such that the following operations can be 

implemented efficiently. 

• InsertPoint(x,y) : Insert the point {x,y) into the PST. 

• DeletePoint(x,y) : Delete the point {x,y) from the PST. 

• MinXInRectanglefxQ, x\,y[) : Find the point with the smallest x  coordinate in 

the rectangle [a:o,a:'i] x (—oo,t/j]. 
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• MaxXInRectangle(xQ, x[,y[) : Find the point with the largest x coordinate in 

the rectangle [ajf,, x'l] x (—oo,?/^]. 

• MinYInXrange(x'Q,x[) : Find the point with the smallest y coordinate such 

that Xq < X < x[. 

• EnumerateRectangle(x'Q,x\,y[) : Enumerate all the points in the rectangle 

[a:o,a;'i] X (-oo,7/J]. 

McCreight [28] presents algorithms to perform all the above operations in 0(log N )  

time except for EnumerateRectangle(xQ,x[,y[) which requires time proportional to 

the number of points enumerated. For our purposes, we are interested in the op­

erations MinXInRectangle(x'Q,x[,y[) and MaxXInRectangle(x'Q, x[,y[). Notice that 

the operations find the minimum (maximum) a; in a rectangle with the bottom edge 

fixed at —oo. We need to use the PST's to create a data structure that allows us to 

perform queries on bounded rectangles. Also, a PST can be designed such that the 

queries can be performed in a rectangle with the top edge fixed at +00. 

The PST can best be described as a combination of a binary search tree on x 

and a priority queue on y. PST is a tree with each node containing two points p 

and q and two boolean variables validP and duplQ. The notation p.x refers to the 

.T-coordinate of the point p etc. v.p is used to refer to the point p at node v. Thus, 

v.p.x refers to the x-coordinate of point p at node v. The tree should satisfy the 

following properties (see Figure 4.5): 

1. The tree is a binary search tree based on q.x. Each point appears in the q filed 

of exactly one node. 
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p :  (13.2,35.8) 

q: (15.7,53.6) 

diiplQ: false 

q: (13.2,35.8) 

validP: false 

duplQ: true 

p: (21.6,33.5) 

q: (21.6,33.5) 

validP: true 

duplQ: false 

q: (34.7,12.3) 

validP .-false 

duplQ: true 

p: (34.7,12.3) 

q-- (41.4,89.1) 

validP: true 

duplQ: false 

p.- (97.3,21.9) 

q: (97.3,21.9) 

validP: true 

duplQ: false 

q: (57.5,12.7) 

validP .-false 

duplQ: true 

p.- (57.5,12.7) 

q: (79.7,39.4) 

validP: true 

duplQ .-false 

Figure 4.5: A Priority Search Tree for 8 points in two dimensions 
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2. The p field of each node contains the point with the smallest y coordinate 

among the points given by the q fields of the descendants of the node such that 

the point is not the one with the smallest y coordinate among the q fields of 

the descendants of the parent of the node. The p field is empty if no such node 

exists. The field validP indicates if the p field is valid or empty. 

3. The field duplQ is true at a node if its q field is used as the p field of one of its 

ancestors. 

4. The tree is a balanced binary tree (the height of the tree should be 0(log N)). 

On a tree satisfying the above properties, the algorithms by McCreight can be used to 

perform the described operations in 0(log N) time. To perform queries on rectangles 

of the form [xojx'j] x [yQ,+oo), the p fields should be used to store points with the 

largest y coordinates. 

Creating a Priority Search Tree 

A PST can be constructed by repeatedly inserting each point using the operation 

InsertPoint(x,y) starting with an empty tree. This would require 0{N log N) time. 

However, if the points are already available sorted by their x-coordinate, the PST 

can be built in 0{N) time as described below. 

First, use the sorted order on x to construct a Balanced Binary Search Tree 

(BEST) using the q fields. For any node u, l{v) and r(u) refer to the left and right 

child of the node v, respectively. The q field at any node in the BBST represents one 

of the input points. Let v be any node in the tree. The binary search tree property 

dictates that for any node v' in the left subtree of v, v'.q.x < v.q.x and for any node 
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v' in the right subtree of u, v'.q.x > v.q.x. The BBST can be built in time linear in 

the number of points and it satisfies criteria 1 and 4 of the properties of a PST. 

It only remains to fill in the appropriate p, validP and duplQ fields at every node 

to convert this BBST into a PST. At every node of the BBST, initialize the p field 

to be the same as the q field and set validP to true and duplQ to false. Procedure 

MakePST converts the subtree rooted at v into a PST. When MakePST is called, it 

is assumed that the subtrees rooted at l{v) and r{v) are already PSTs and that the 

subtree rooted at v is a BBST based on the x-coordinates of the q fields as described 

above. 

MakePST(v) 

1. Pick the point p' with the smallest ?/-coordinate among u.p, l{v).p and r{y).p. 

Since the p field is valid only if validP is true, the p fields of only such nodes 

are considered. 

2. If validP is false at all three nodes, return. 

3. If p' = v.p, return. 

4. If p' = l{v).p, v' <— l{v) else v' <— r{v) 

5. (a) v.p <— v'.p 

(b) v.validP ^ true 

(c) v'.validP <— false 

(d) If v'.q.y < v'.p.y, v'.duplQ <— true 

(e) MakePST(v') 
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When MakePST(v) is called, the p field of v may be borrowed from the p fields 

of one of the children of v having the smaller y coordinate. If v' is the child of v from 

which the p field is borrowed, the subtree rooted at v' is no longer a PST, but its left 

and right subtrees still are. We can recursively adjust the tree rooted at v' to be a 

PST. A call to MakePST(v) may involve traversing a path all the way down to the 

leaf in the subtree rooted at v. Thus, the running time of MakePST is 0{h) where h 

is the height of the subtree rooted at v. 

MakePST adjusts the tree to be a PST when the left and right subtrees of the 

root are PSTs. To build a PST, we can build PSTs for the left and right subtrees of 

the root node and use MakePST to adjust the entire tree to be a PST. 

BuildPST(v) 

1. BuildPST(l{v)) 

2. BuildPST(r{v)) 

3. MakePST(v) 

BuildPST is initially called with the root. The work required can be described 

by the following recurrence: 

nJV)  =  r ( f | i )+r (L^j )  +  r iogAri  

The solution to the above recurrence is 0{N). Thus, the PST can be built in 0{N) 

time. 
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Setting Up the Data Structure for Range Query 

Sort the points (a;,-,?/,) by increasing y and use this to build a balance binary 

search tree on y. This requires 0(iVlogA'^) time. At each node v of the search tree, 

store PST(u), where PST(i;) is the priority search tree for all the descendants of 

node V. In computing PST(u) we can assume that PST(/{t;)) and PST(r(i;)) are 

already computed. Note that PST(u) contains the union of the points in PST(/(u)) 

and PST(r(u)). By traversing PST(/(?;)), we can get the points in it in sorted order 

according to x-coordinate. A similar sorted sequence can be obtained by traversing 

PST(r(u)). The two sequence can be merged in linear time to get a sorted order on 

X of the points forming PST(u). Using this, we can build PST(i;) in time linear in 

the number of points in PST(i;). 

Two types of PST's are created depending on if the node at which the PST is 

created is the left or right child of its parent. If v is the left child of its parent, PST(?;) 

is created such that the PST can be queried on rectangles with top edge at +00. If 

V is the right child of its parent, PST(u) is created such that the PST can be queried 

on rectangles with bottom edge at —00. No PST need be built at the root of the 

tree. The reason for this becomes clear later. 

We can build the PST(u) in 0{m) time where m is the number of descendants 

of V. There can be at most 2' nodes at level i of the tree each of which may contain 

2LiogNJ-«+i nodes. Therefore, the time required to create all the PST's is 

LlogWJ 

i=l 

LlogNJ 

1=1 
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Liogivj 

< E 2iV 
i=l 

= 0{N log N) 

The data structure can be set up in 0{N log N) time. 

Querying 

Consider finding the point with the smallest x-coordinate in the query rectangle 

X [y'o,y[]- To answer this, search down the binary search tree to reach the 

first node v such that the left subtree of v contains and the right subtree of v 

contains y[ (see Figure 4.6). We say that the rectangle [ajg, Xj] x [j/oiJ/i] straddles 

the children of v. Let j/j be the y-coordinate of the point at v. For any point 

(a;, y) in the left subtree oi v, y < y'2. For any point {x, xj) in the right subtree of u, 

y > y'2. Perform the query MinXInRectangle on [xq, Xj] x [t/g, 00) on PST(/(u)). Since 

every point in PST(/(v)) has a y-coordinate no greater than i/j? this is equivalent to 

the query MinXInRectangle on the bounded rectangle [x[„Xj] x [2/o)2/2]- Similarly, 

perform the query MinXInRectangle on [xq, x'j] x {—oo,y{] in PST(r(v)) which is 

equivalent to the query on the bounded rectangle [xq, .t'j] x [y2,y[]- Thus, the query 

on rectangle [xq,Xj] x [y'o,y'i] is spHt into two queries on rectangles [xo,Xj] x [2/012/2] 

and [xq,x'i] x [2/2)2/1]- The query resulting in a smaller x-value is the answer to the 

original query. 

Identifying the node v such that the query rectangle straddles the children of 

V takes O(logA^) time. The two queries on PST(/(u)) and PST(r(u)) take at most 

0(log A'^) time each. Thus, the query time is 0(log A'^). 

To create the modified tree in two dimensions, we need to set up the data struc-
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Figure 4.6: A range query in two dimensions using priority search trees 
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ture for two-dimensional range queries and perform 0 { N )  such queries. The total 

time required for this is clearly O(A^logiV). The rest of the computations can be 

done in constant time per node of the modified tree. Therefore, the modified tree 

can be created in 0(iVlog A^) time in two dimensions. Since the multipole method 

runs on the modified tree in 0{N) time, we have an N-body algorithm that runs in 

0{N log N) time in two dimensions. 



63 

CHAPTER 5. THREE-DIMENSIONAL ALGORITHMS 

We now discuss three-dimensional algorithms for the N-body problem. The algo­

rithm presented in the previous chapter for constructing the modified tree naturally 

extends to three and higher dimensions provided we can design algorithms for range 

queries. 

Notation 

In three dimensions, the cells in the modified tree represent cubical regions of 

space. For any dimension d, the cells are cubes in d-dimensions. A cell is completely 

determined by the length of an edge of the cell and the position of one of the corners 

of the cell. Without loss of generality, choose the corner with the smallest value for 

each coordinate. Let D be the length of the root cell. 

Let I be any cell. We can once again describe the subcells of this cell by choosing 

the corner of the cell to be the origin. The cell contains 2'"''' cells of length The 

cells are positioned at (0 < i,j,k < 2'') in three dimensions. 

Definition 5.1 A plane is called a k-boundary if it contains a surface of a cell of 

length 

In three dimensions, any boundary is parallel to one of the XY, YZ or Z X  planes. 

A boundary can be specified by the plane to which it is parallel and the distance of 
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the boundary from the plane. A k-boundary is at a distance of (0 < z < 2*^) from 

the plane parallel to it. 

Fact 5.2 Any k-boundary is also a j-boundary for every j > k. 

There are 2^^ + 1 planes parallel to each of XY, YZ or ZX planes and spaced ^ apart 

that are k-boundaries. The intersections of the k-boundaries determine the cells of 

size Note that the description of the subcells and the boundaries is relative to 

the cell. 

In a rf-dimensional problem, the boundaries are hyperplanes of dimension (</ — 1) 

and can be described by their distance from the {d — l)-dimensional plane parallel 

to these boundaries and passing through the origin. All the properties described in 

Chapter 4 are valid for any dimension d. 

Creating the Modified Tree in Three Dimensions 

The three-dimensional algorithm is quite similar to the two-dimensional version 

of constructing the tree except that each cell is now split into 8 subcells. In general, 

the algorithm to build the modified tree for any dimension d can be described as; 

BuildTree(c) 

1. Find the smallest cell c' contained in c that still contains all the particles con­

tained in cell c. 

2. If c contains no particles, return ^ empty tree\ 

3. If c contains exactly one particle, return the one node tree c. 
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4. Split the cell c' into 2^ subcells. 

5. For each subcell sc of c', BuildTree(sc). 

6. Return the tree obtained by joining all the trees obtained in the previous step, 

with c' as the root of the tree. 

Once again, step 1 is accomplished by finding the smallest d-dimensional rectan­

gular box containing all the particles in c. The box 6 is a rectangular parallelepiped 

in three dimensions, given by [xmin-,Xmax] x [ymin,ymax] x [zmin,Zmax], where a;„,„ is 

the smallest x-coordinate of all the particles in the cell c etc.. The smallest subcell 

of c enclosing b is of size pW? where k is the smallest integer such that a k-boundary 

passes through b. we can once again determine this by examining boundaries parallel 

to each coordinate planes in turn. The computation is identical to the two dimen­

sional case except that to find Xmini Vmin and Zmin, we need to perform range queries 

in three dimensions. 

In general, the running time of BuildTree in d dimensions is 0{Nd) plus the 

time required to set up a data structure for (i-dimensional range queries and the time 

required for 0{N) such queries. 

Range Queries in Three Dimensions 

In this section, we discuss the problem of setting up a data structure to answer 

range queries in three dimensions. The problem we are interested in is formally de­

scribed as: Given N points (a:,-, t/,-, 2,) (1 < i < N), set up a data structure to perform 

queries of the form 'find the point with the minimum (maximum) x-coordinate in the 

rectangular parallelepiped given by [a;o,a;'i] x [yoiJ/i] x [zqiz'^'' efficiently. The solu­
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tion is once again based on Priority Search Trees [28]. The data structure designed 

has 0{N log^ N) size and requires 0{N log^ N) time to compute. The queries are 

answered in O(log^ N) time per query. 

Setting Up the Data Structure for Range Query 

In the previous chapter, we have described an algorithm to perform range queries 

for  a n y  a r b i t r a r y  d i m e n s i o n  d .  T h e  q u e r y  t i m e  o f  t h e  a l g o r i t h m  p r e s e n t e d  i s  0 ( l o g ' ^  N ) .  

The algorithm recursively reduces a c?-dimensional query to O(log N) queries in 

(t/ — 1) dimensions, until all queries are reduced to one-dimensional queries. The 

one-dimensional queries are then solved using a simple binary search. The query 

time of this algorithm in two dimensions is 0(log^ N). We then presented a solution 

using priority search trees to answer two-dimensional queries in 0(log N) time. We 

can combine these two algorithms to answer (/-dimensional queries in 0(log''~^ N) 

time. 

A (/-dimensional query is answered once again by reducing it to 0(log N) queries 

in (c?—1) dimensions. The reduction is recursively applied until all queries are reduced 

to two dimensions. The data structure using the priority search trees is now used to 

directly answer the queries in two dimensions. This reduces the running time by a 

f a c t o r  o f  O ( l o g  N ) .  

The data structure for three dimensions is set up as follows: First, sort the points 

by increasing 2 and store the points in a balanced binary search tree T. At each node 

of V store a structure D{v), which is the two dimensional structure using priority 

search trees described in the previous chapter built on the x and y coordinates of the 

points in u's subtree. Creating D{v) takes 0(m log m) time where m is the number 
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of nodes in the subtree rooted at v .  Let V i , V 2 ,  ...iVk be the nodes in T  at level i .  Let 

S{vi) be the size of the subtree rooted at u,-. We have 

i : s M < N  
t=i 

The work required in creating all the Z)(u,)'s (1 < z < k) is 

<  E l i S {v i ) \ o g N  

=  l o g N E U S i v i )  

<  N h g N  

Hence, the two dimensional structures using priority search trees can be con­

structed for all the nodes in a given level of the tree T in 0(A'^log A'^) time. Since 

there are at most [log N1 levels in the tree, the time required for creating the entire 

d a t a  s t r u c t u r e  i s  0 { N l o g ^  N ) .  T h e  s p a c e  r e q u i r e d  i s  a l s o  0 ( N l o g ^  N ) .  

Querying 

Given a query q = [xq, a;^] x [j/q, y [ ]  x [z'oi first determine a set V of 0{\og N) 

nodes with the property that for each v EV, the interval [z'q, z'^ spans u's subtree but 

not the subtree of v's parent. This step can be accomplished in logarithmic time using 

algorithm FindNodes (Lemma4.7). At each node v G V, the z direction now becomes 

redundant and the problem can be solved by querying D{v) with [a;o,x'i] x [?/o, J/i] 

and taking the minimum y returned from these queries. Time required is clearly 

OOog^AT). 

To create the modified tree in three dimensions, we need to set up the data 

structure for three dimensional range queries and perform 0{N) such queries. The 
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total time required for this is clearly 0 { N  log^ A'^). The rest of the computations can 

be done in constant time per node of the modified tree. Therefore, the modified tree 

can be created in 0{N log^ N) time in two dimensions. Since the multipole method 

runs on the modified tree in 0{N) time, we have an N-body algorithm that runs in 

0{N log^ N) time in three dimensions. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

Conclusions 

The study of physical systems by particle simulation is becoming increasingly 

important in scientific computing. The traditional solutions based on grid methods 

are appropriate only for uniform distributions. A new class of algorithms known 

as hierarchical N-body methods have emerged to address the problem of efficiently 

performing particle simulations for non-uniform distributions. Unfortunately, most of 

these algorithms are analyzed for uniform distributions and the results are expected 

to be valid for non-uniform distributions. 

In this thesis, we have presented a rigorous worst-case analysis of some of the 

popular hierarchical N-body algorithms along with proofs that the running times 

of these algorithms are not valid for arbitrary distributions. We have presented a 

distribution-independent hierarchical clustering scheme and have presented monopole 

and multipole methods based on this scheme. The multipole method based on our 

scheme runs in O(A^logA^) time in two dimensions and 0{N \og^ N) time in three 

dimensions irrespective of the distribution. A key feature of our algorithm is that its 

running time is purely a function of the number of particles. In contrast, the existing 

algorithms have running times that depend on the positions of the particles and the 

precision of the machine. 
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Future Work 

Optimal Clustering Schemes 

All the hierarchical N-body algorithms depend on clustering of the particles into 

a hierarchical structure and approximating the particle-cluster and/or cluster-cluster 

interactions instead of computing interactions between the individual particles. The 

amount of work required in the force calculation stage clearly depends upon the 

way the particles are clustered. Except for the initial paper on hierarchical N-body 

methods by Appel [5], all the other algorithms rely on a fixed cubical subdivision 

of the space into cells, irrespective of the location of the particles. Appel allows for 

arbitrarily shaped clusters modified across iterations using heuristics. It is interesting 

to study the problem of generating optimal clustering mechanisms, where optimal is 

defined as the clustering scheme resulting in the least amount of work in the force 

calculation stage. 

It should be noted that performing force calculations without any clustering 

requires 0{N^) time. If clustering were performed to reduce the work in force cal­

culation, the clustering algorithm is useful only if it has approximately the same 

complexity as the force calculation using the clustering. Due to this, generating an 

optimal clustering scheme may not be useful. However, it may be possible to update 

the optimal clustering from one iteration to another efficiently. Even otherwise, an 

optimal clustering scheme will be useful in radiosity applications, where the particles 

represent polygonal patches in the scene and hence do not move. Thus, the 'bodies' 

do not move between iterations and the same clustering can be used throughout. 
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Designing Faster Algorithms 

The N-body problem has an obvious lower bound of 0 { N )  to compute all pair-

wise interactions. In light of the proof that Greengard's and other multipole related 

methods are not 0{N), the fastest distribution independent algorithm has a com­

plexity of 0{N log N) in two dimensions and 0{N log^ N) in three dimensions. This 

complexity is mainly due to the hierarchical tree creation. However, it may be pos­

sible to update the tree in linear time across iterations. The hope for the possibility 

of such an algorithm stems from the fact that the particles are guaranteed to move 

only by a small distance in each iteration. A linear time algorithm for updating the 

tree results in an algorithm with complexity matching the lower bound. 

Reducing the Number of Iterations 

Most of the research on N-body methods is concentrated on reducing the 

complexity per iteration of the naive algorithm. The particle simulation continues 

by computing the updated position of the particles over a short time interval 6t 

and repeating the force computations. The common approach is to use the same 

global time increment St for all pairs of particles in the system. When two particles 

come very close to each other, extremely small time increments are necessary due 

to the resulting high acceleration. Given a large system of particles over varying 

length scales, it is highly probable that such close particles exist, resulting in a large 

number of iterations. Using variable time increments based on the distance between 

interacting particles/clusters is a viable alternative. The scheme has been suggested 

by Appel, but it is yet to be formally analyzed and integrated into the more popular 

algorithms. 
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Parallel Algorithms 

The N-body problem poses a formidable challenge for parallel computation. The 

properties of the problem including highly non-uniform and dynamic distribution and 

the necessity for global data in computing interactions make it difficult to parallelize. 

Some researchers including Warren and Salmon [37, 38], Singh [32] have worked in 

this area but optimal algorithms still elude discovery. 
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