
U-M-I
MICROFILMED 1994

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quali^ of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from lefr to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly

to order.

University Microfilms International
A Bell & Howell Infornnation Company

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

I

Order Number 9503526

Distribution-independent hierarchical N-body methods

Aluru, Srinivas, Ph.D.

Iowa State University, 1994

U M I
300N.ZeebRd.
Ann Arbor, MI 48106

Distribution-independent hierarchical N-body methods

by

Srinivas Aluru

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Computer Science
Major: Computer Science

Approved:

n Charge of Major Wol'k

Committee:

For the Major Departni^t

Foi>-tlJe Graduate College

Iowa State University
Ames, Iowa

1994

Copyright © Srinivas Aluru, 1994. All rights reserved.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

11

DEDICATION

To my parents

For keenly providing me the

opportunities that they never had

and

my wife Maneesha,

For fighting against all odds to be a part of my life

For her love, patience, inspiration and encouragement

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS viii

ABSTRACT x

CHAPTER X. INTRODUCTION 1

The N-body Problem 1

Early Approaches 2

Hierarchical Methods 4

Appel's Method 4

Barnes-Hut Method 7

Greengard's Method 7

Other Methods 8

A Unified Framework for Hierarchical N-body Methods 9

Outline of the Dissertation 9

CHAPTER 2. ANALYSIS OF GREENGARD AND BARNES-

HUT METHODS 12

The Barnes-Hut and Greengard Methods 12

Analysis of the BH Tree 13

On the Complexity of Greengard's Algorithm 22

On the Complexity of the Barnes-Hut Algorithm 25

I

iv

CHAPTER 3. A DISTRIBUTION-INDEPENDENT DATA STRUC­

TURE FOR THE N-BODY PROBLEM 27

A Modified Data Structure 27

Analysis of the Modified Tree 30

The Barnes-Hut Method Using the Modified Tree 32

Force Calculation 32

Error Estimation 34

Greengard's Method Using the Modified Tree 35

CHAPTER 4. TWO-DIMENSIONAL ALGORITHMS 38

A Lower Bound for the Construction of the Modified Tree 38

Notation 41

Algorithm for Constructing the Modified Tree 43

Range Queries in Two Dimensions 48

A Simple Algorithm 48

Priority Search Trees 53

Creating a Priority Search Tree 56

Setting Up the Data Structure for Range Query 59

Querying 60

CHAPTER 5. THREE-DIMENSIONAL ALGORITHMS 63

Notation 63

Creating the Modified Tree in Three Dimensions 64

Range Queries in Three Dimensions 65

Setting Up the Data Structure for Range Query 66

Querying 67

V

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 69

Conclusions 69

Future Work 70

Optimal Clustering Schemes 70

Designing Faster Algorithms 71

Reducing the Number of Iterations 71

Parallel Algorithms 72

BIBLIOGRAPHY 73

vi

LIST OF FIGURES

1.1 Tlie monopole approximation 5

1.2 An example of force calculation using clusters 6

2.1 The Barnes-Hut physical subdivision of a system of 16 parti­

cles in two dimensions 14

2.2 The Barnes-Hut subdivision of a system of particles positioned

such that a subcell contains the same particles as its parent cell 16

2.3 The BH tree corresponding to the subdivision of Figure 2.2 . 17

2.4 A configuration where two close particles are separated by

cells large enough to contain both 18

2.5 Smallest cells that could possibly contain two particles that

are s apart in two and three dimensions 19

2.6 The configuration minimizing the ratio of the cell length con­

taining all the particles and the smallest interparticle distance

in two dimensions 21

3.1 BH tree for a collection of 5 particles and the corresponding

modified tree 29

vii

4.1 Reduction of the sorting problem to the construction of the

modified tree in two dimensions 39

4.2 A root cell of length D. The big dashed lines are 1-boundaries,

the small dashed lines are 2-boundaries and the dotted lines

are 3-boundaries. 2-boundaries are also d-boundaries and 1-

boundaries are also 2-boundaries and 3-boundaries 42

4.3 A cell of length I and the smallest box b enclosing all the

particles in this cell 45

4.4 A simple data structure for performing range queries in two

dimensions 50

4.5 A Priority Search Tree for 8 points in two dimensions 55

4.6 A range query in two dimensions using priority search trees . 61

viii

ACKNOWLEDGMENTS

I wish to thank my advisors Dr. G.M. Prabhu and Dr. John Gustafson, for tak­

ing personal interest in my professional advancement and for presenting challenging

problems throughout my graduate study. I am thankful to Dr. John Gustafson for

establishing the Scalable Computing Laboratory and providing a wonderful work en­

vironment. He took me as a research assistant so that I could concentrate on research

and provided me the flexibility to work on problems that interest me. It has been a

pleasure to work under such an exemplary researcher. Dr. Prabhu has been both a

mentor and a friend. He has spent significant amount of time in research-related dis­

cussions and through motivation and an unwavering faith in my abilities has helped

me during difficult times. Their role in helping me acquire the skills required to

pursue a life-time research career cannot be overemphasized.

I am thankful to Dr. David Fernandez Baca for expressing keen interest in

my research and for providing valuable suggestions and guidance from time to time.

Thanks to Dr. Shashi Gadia and Dr. Charles Wright for their guidance and their

role as members of my POS committee.

Throughout my stay at Iowa State University, I have been fortunate to receive

guidance and encouragement from several faculty members including Dr. Giora

Slutzki, Dr. Suraj Kothari, Dr. Soma Chaudhuri and Dr. Vasant Honavar. Special

thanks are due to Dr. Giora Slutzki for bringing to my attention and loaning new

books and research articles of interest to me.

I wish to thank the staff and fellow students at the Scalable Computing Lab­

oratory including, but not limited to - Nan Ripley, Joe Metzger, Charles S. Shorb,

Yogesh Agrawal, Rekha Pai, Dr. Thomas L. Marchioro, Venu Padakanti, Quinn

Snell, Dr. Susan X Ying, Sairam, Anthony M. Baker and Steve Heistand for their

assistance, discussions and friendship. A special note of thanks to our secretary Nan

Ripley for her prompt, efficient and useful service.

I wish to express my gratitude to my parents and sisters for their assistance and

encouragement throughout my life and to my wife Maneesha, for enduring me all

these years and for being a valuable source of support.

This research is supported by the Applied Mathematical Sciences program of

the Ames Laboratory which is operated by the U.S. Department of Energy under

contract No. W-7405-ENG-82. The United States Government has assigned the

DOE number IS-T 1643 to this dissertation.

X

ABSTRACT

The N-body problem is to simulate the motion of N particles under the influence

of mutual force fields based on an inverse square law. The problem has applications in

several domains including astrophysics, molecular dynamics, fluid dynamics, radiosity

methods in computer graphics and numerical complex analysis. Research efforts have

focused on reducing the O(iV^) time per iteration required by the naive algorithm of

computing each pairwise interaction. Widely respected among these are the Barnes-

Hut and Greengard methods. Greengard claims his algorithm reduces the complexity

to 0{N) time per iteration.

Throughout this thesis, we concentrate on rigorous, distribution-independent,

worst-case analysis of the N-body methods. We show that Greengard's algorithm is

not 0{N), as claimed. Both Barnes-Hut and Greengard's methods depend on the

same data structure, which we show is distribution-dependent. For the distribution

that results in the smallest running time, we show that Greengard's algorithm is

D,{Nlog'^N) in two dimensions and Q,{Nlog'^N) in three dimensions. Both algorithms

are unbounded for arbitrary distributions.

We have designed a hierarchical data structure whose size depends entirely upon

the number of particles and is independent of the distribution of the particles. We

show that both Greengard's and Barnes-Hut algorithms can be used in conjunction

xi

with this data structure to reduce their complexity. Apart from reducing the com­

plexity of the Barnes-Hut algorithm, the data structure also permits more accurate

error estimation. We present two- and three- dimensional algorithms for creating

the data structure. The multipole method designed using this data structure has a

complexity of 0{N log N) in two dimensions and 0{N log^ N) in three dimensions.

1

CHAPTER 1. INTRODUCTION

The N-body Problem

A large number of physical systems can be studied by simulating the interac­

tions between the particles constituting the system. In a typical system each particle

influences every other particle, often based on an inverse square law such as Newton's

law of gravitation or Coulomb's law of electrostatic interaction. Examples of such

physical systems can be found in astrophysics, plasma physics, molecular dynamics

and fluid dynamics. Since the simulation involves following the trajectories of motion

of N particles, the problem is termed the N-body problem. Apart from traditional

applications in the study of physical systems, some problems in numerical complex

analysis and elliptic partial differential equations can also be solved using this ap­

proach [14]. Applications of the problem are also found in the radiosity method,

which attempts to create images by computing the equilibrium distribution of light

for complex scene geometries [17, 35].

Since no closed form expression is known for the equations of motion for a col­

lection of four or more particles, iterative methods are used to solve the N-body

problem. In each iteration, the force on each particle due to every other particle is

computed using the inverse square force law. This is used to compute the accelera­

tion of the particle, which is presumed to be constant over a small interval of time St.

2

The approximate position and velocity of the particle at the end of the time interval

is calculated using this acceleration. The position of each particle after an arbitrary

length of time is calculated by many iterations of this method. A straightforward

computation of all the pairwise forces requires 0{N'^) work per iteration. The rapid

growth with N effectively limits the number of particles that can be simulated by

this method.

Early Approaches

To facilitate the study of large systems, several approaches have been tried to

reduce the 0{N'^) work per iteration required by the naive algorithm of pairwise force

computation. All the approaches are based on the following principle: In performing

N-body simulations, there is an error introduced in assuming that the accelerations

remain constant during the time intervals corresponding to the iterations. Even if

the exact force on each particle is computed, this force changes during the time

interval of the iteration and the computed force is only an approximation of the force

acting on the particle during the time interval. Therefore, it is sufficient to compute

the approximate force acting on each particle to a high degree of accuracy. This

observation can then be used to reduce the complexity per iteration.

One of the approaches used is to represent the problem in a position-velocity

phase space and to transform the force field using a fast Fourier transform into a

form in which it can be applied in linear time [29, 30]. The time per iteration is now

dominated by the computation of the Fourier transform, which requires 0{N log N)

time. To use this method, the phase space must be discrete - all velocities must be

less than some maximum and all positions must be multiples of some fixed lattice

3

size. Hence, the method is not useful for non-uniform distributions.

Another approach is to use variable time steps depending on the distance between

the particles [1]. Recall that the force on a particle is assumed to be constant over a

small interval of time St. The time interval has to be very small for nearby particles

since the force could change significantly with a small change in the position. A larger

time interval can be chosen to approximate the interaction between faraway particles.

For each particle, the force due to nearby particles is computed every iteration but

the force due to faraway particles is computed using larger time-steps depending on

their distance from the particle. For a non-uniform distribution, the complexity of

the method degenerates to 0{N'^).

Another alternative is to impose a grid on the system of particles [20] and to use

a fast Poisson solver to obtain the potential values at the mesh points. The forces are

then computed from the potential and interpolated to the particle positions. Such

methods are applicable if the potential satisfies Poisson's equation, which is true for

gravitational and electromagnetic interactions. The complexity of these methods is

0{N -f MlogM), where M is the number of mesh points. The number of mesh

points should be proportional to the number of particles, resulting in an asymptotic

complexity of 0{N log N). Unfortunately, the method is useful only for uniform

distributions since the mesh provides limited resolution otherwise. It is possible to

compute the forces due to the nearby particles directly and to compute the forces due

to faraway particles by extrapolating from the mesh points. In highly inhomogeneous

systems, the number of nearby particles may be of the same order as the total number

of particles, resulting in 0{N'^) complexity.

All of the methods discussed above are useful only for relatively uniform distri­

4

butions. Except for some applications in plasma physics, most N-body simulations

involve non-uniform distributions. In such cases, the methods described have the

same worst-case complexity as directly computing all pairwise interactions.

Hierarchical Methods

Recently, a new class of particle simulation methods have emerged to solve the

N-body problem efficiently for arbitrary distributions. These methods are charac­

terized by an organization of the particles into a hierarchy of clusters, starting from

a cluster containing all the particles to clusters containing the individual particles.

These methods are usually referred to as hierarchical methods, or tree methods since

a tree naturally represents a hierarchical organization of clusters. Such a hierarchical

method was first proposed by Appel [4, 5], whose scheme allows for clusters with

arbitrary shapes.

Appel's Method

Appel's method [4, 5] is based on the approximation that a cluster of particles

can be treated as a single particle of equivalent mass located at the center of mass

of the cluster, for the purpose of force calculation with a faraway particle. More

formally, consider two particles mj and m2, each at a distance of no more than [dfl

from their center of mass (see Figure 1.1). The acceleration imparted due to the two

particles at a point situated at a distance [f| from the center of mass is

G m i { f + d r i) G m 2 { r + d r 2)
a = — — 1 —

lf4-<iriP |r4-c?r2|^

5

observer

Figure 1.1; The monopole approximation

Expanding the denominators of the two terms using Taylor series expansion, the

acceleration turns out to be

Since the various Taylor series are all expanded around the center of mass, the first

order terms vanish and the approximation is good to a second order.

Let the radius of a cluster of particles be the largest distance from the center

of mass to any particle in the cluster and let 0 < 0 < 1 be a prespecified accuracy

criterion. Consider two disjoint clusters of particles with radii dr\ and dr2, located

at a distance r from each other. If ^ < 0 and ^ < 0, the acceleration on any

particle in one cluster due to the particles in the other cluster is approximated with

the acceleration at the center of mass of the first cluster resulting from treating

the second cluster as a point mass located at its center of mass. Otherwise, the

cluster with the larger radius is split and the interaction is computed by summ.ing

the interactions of the smaller cluster with each of the subclusters of the larger cluster,

6

Figure 1.2: An example of force calculation using clusters

computed recursively (see Figure 1.2).

In Appel's method, the space is subdivided into a hierarchy of clusters with each

cluster split into two subclusters. The subdivision is naturally represented by a binary

tree. The root of the tree represents a cluster consisting of all the particles and the

leaves represent individual particles. The children of a node represent the subclusters

of the cluster represented by the node. The acceleration calculations are performed

by traversing the tree starting at the root. The accelerations of all particles in a

cluster are computed by computing the accelerations due to interactions within each

of the subclusters and the accelerations due to interactions between the subclusters.

A heuristic is used to update the clusters as the particles move and a k-d tree [5] is

used as the hierarchy of clusters to begin with. Appel estimates the complexity of

his algorithm to be 0(A'^logA'') based on arguments which apply only to a uniform

distribution.

7

Barnes-Hut Method

The Barnes-Hut method [7] is similar to the Appel's method except for two

differences. First, Barnes and Hut use a fixed hierarchical cubical subdivision of the

space. The resulting tree is a quadtree in two dimensions and an octree in three

dimensions, popularly referred to in the literature as the Barnes-Hut (BH) tree.

Adopting a fixed structure for the clusters facilitates the possibility of rigorous error

analysis.

Barnes and Hut do not approximate cluster-to-cluster interactions but approxi­

mate particle-to-cluster interactions only. The Barnes-Hut method consists of travers­

ing the BH tree once for every particle to determine the force on it. The same criterion

as in Appel's method is used to decide if the interaction of the particle with a cluster

should be computed directly or by summing the interactions of the particle with the

subclusters of the cluster, obtained recursively.

Barnes and Hut give arguments to support an 0 { N log N) complexity for their

algorithm. The arguments apply only to uniform distributions. Salmon [31] studies

the Barnes-Hut algorithm in great detail.

Greengard's Method

Greengard's algorithm [14] computes the potential induced on each particle by

the rest of system and obtains the force as a gradient of this potential. Greengard's

method, also knows as the fast multipole method (FMM), uses a series expansion to

describe the potential induced by a cluster of particles at a given position. The series

expansion is called the multipole expansion and it accurately describes the potential

due to the cluster of particles at a given point. A finite number of terms of the series

8

are used depending on the accuracy of the answer required.

Greengard's algorithm uses the same hierarchical subdivision of space as the

Barnes-Hut algorithm. The algorithm is a two-pass procedure on the BH tree. The

first pass is a bottom-up traversal of the BH tree to compute the multipole expansions

at all nodes. The second pass is a top-down traversal of the tree to compute a series

expansion at every node for the potential induced on the cluster represented by the

node due to the rest of the system, termed the local expansion. The local expansions

at the leaf nodes are then evaluated once for each particle. Greengard develops a

detailed mathematical formalism and estimates the complexity of his algorithm to

be 0{N) irrespective of the distribution of the particles.

Other Methods

Most of the literature on hierarchical N-body methods consists of a detailed

study of the three methods described above, new methods with minor variations or

adapting these methods to parallel architectures.

Esselink [12] argues that the complexity of Appel's method is 0 { N) . Salmon

[31] studies the Barnes-Hut algorithm in great detail and incorporates the compu­

tation of multipoles into the Barnes-Hut algorithm. Zhao [39] presents a multipole

algorithm based on cartesian coordinates as opposed to the spherical harmonics used

by Greengard. Katzenelson [23] introduces a formulation of the N-body problem as

a set of recursive equations based on a few elementary functions. His formulation

encompasses both Barnes-Hut and Greengard's algorithms.

9

A Unified Framework for Hierarchical N-body Methods

All the hierarchical N-body methods are based on approximating the interactions

of clusters of particles instead of dealing with the individual particles. There are two

different aspects to consider in such an approach.

1. The determination of the clustering scheme.

2. The method used to approximate the interactions due to a cluster.

The different algorithms can be thought of as different choices exercised in the two

aspects. At one extreme, we have the naive algorithm which performs no clustering.

The resulting method is an 0{N'^) algorithm of computing the exact pairwise inter­

actions. Appel's algorithm uses a clustering scheme based on heuristics while the

Barnes-Hut and Greengard algorithms use a clustering scheme based on fixed cubical

subdivision. The interactions due to a cluster can be written in the form of a Taylor

series. The interactions of a cluster can be approximated by taking either one term of

the Taylor series (the monopole method) or a finite number of terms (the multipole

method). In the monopole method, the desired accuracy is achieved by splitting the

cluster into subclusters recursively until the monopole terms can describe the inter­

action to the required accuracy. The multipole method achieves the same by taking

as many terms as needed.

Outline of the Dissertation

Throughout this thesis, we concentrate on rigorous worst-case analysis of the

complexity of the N-body methods. Even though the hierarchical algorithms are

10

claimed to be efficient for non-uniform distributions, researchers have often used

arguments based on uniform distributions to justify their claims. With the notable

exception of Greengard, most researchers paid little attention to a rigorous worst-case

complexity analysis.

In Chapter 2, we analyze the Greengard and Barnes-Hut methods. Both the

methods are based on a fixed hierarchical cubical subdivision of the space, repre­

sented by the BH tree. We analyze the characteristics of the BH tree to determine

the lower and upper bounds on the size of the tree. The results are used to determine

the complexity of the Greengard and Barnes-Hut methods. We show that Green-

gard's algorithm is not 0{N), as claimed. We prove that Greengard's algorithm is

Q,{N\og^ N) in two dimensions and n(log"* iV) in three dimensions and that the

actual complexity matches this lower bound only for uniform distributions. We also

show that both algorithms are unbounded for arbitrary distributions.

In Chapter 3, we describe a distribution-independent data structure for the N-

body problem. The data structure is presented as a modification to the BH tree

to remove its distribution-dependency. We show that the modified tree has a size

of 0{N) and contains the same information as the BH tree. We prove that the

Barnes-Hut and Greengard's methods can be run on the modified tree. Greengard's

multipole method can be run on the modified tree to obtain the force calculations in

0{N) time.

In Chapter 4, we describe an algorithm to construct the modified tree in two

dimensions. We show a lower bound of fl(A'^log and present an algorithm to

construct the tree in time matching the lower bound. Chapter 5 consists of an

a l g o r i t h m t o c o n s t r u c t t h e m o d i f i e d t r e e i n t h r e e d i m e n s i o n s , r e q u i r i n g 0 { N l o g ^ N)

11

time.

The time per iteration of the N-body problem using the multipole method is

dominated by the time required to create the distribution-independent data structure.

T h e m u l t i p o l e a l g o r i t h m o n t h e n e w d a t a s t r u c t u r e c o m p u t e s t h e f o r c e s i n 0 { N l o g N)

time in two dimensions and in 0(A^log^ N) time in three dimensions irrespective of

the distribution of the particles.

In Chapter 6, we conclude the dissertation and briefly outline some possibilities

for future work.

12

CHAPTER 2. ANALYSIS OF GREENGARD AND BARNES-HUT

METHODS

In this chapter, we analyze the Greengard and Barnes-Hut methods to determine

their worst-case running times for arbitrary distributions. Both algorithms use a

clustering scheme in which the subclusters of a cluster are determined independent

of the location of the particles in the cluster. Since the clusters are to be recursively

subdivided until each cluster contains only one particle, the number of subdivisions

with such a fixed clustering scheme is dependent on the distribution of the particles.

As a result, the running time of these algorithms is sensitive to the distribution of

the particles.

The Barnes-Hut and Greengard Methods

The Greengard and Barnes-Hut methods for computing N-body interactions

consist of two alternating phases, repeated every time step:

1. Computing a hierarchical tree data structure with the leaves representing the

particles and the root of the tree representing the entire system

2. Traversing this data structure to compute the force on each particle to a spec­

ified accuracy.

13

The same tree data structure is used in both the methods, known as the BH tree. In

the Barnes-Hut method, the BH tree is traversed once for every particle according

to the force calculation scheme given by Appel [5]. The Greengard's method is a

tv/o-pass procedure on the BH tree. In the first pass, the tree is traversed bottom-up

to compute the multipole expansions at every node. In the second pass, the tree is

traversed top-down to compute the local expansions. The local expansions are finally

evaluated to compute the approximate force on each particle.

Analysis of the BH Tree

The BH tree is constructed as follows: Begin with a cell (square in two dimensions

and cube in three dimensions) large enough to contain all the particles, called the

root cell. Let d be the number of dimensions. Subdivide this cell into 2^ cells of half

the side length of the original cell. For each of these subcells:

1. If the subcell does not contain any particles, discard it.

2. If the subcell contains exactly one particle, do not subdivide this subcell further.

3. If the subcell contains more than one particle, recursively subdivide this subcell.

This recursive subdivision of the space into cells is naturally represented by a tree,

which is the BH tree. Such a physical subdivision of a system of 16 particles in two

dimensions is shown in Figure 2.1.

A characteristic of the BH tree is that each node in the tree represents a cell of

length exactly half that of its parent cell. This is true irrespective of the number of

particles of the parent cell contained in the child cell. In particular, a child cell may

contain the same particles as its parent cell. As we shall see, this feature makes it

14

Figure 2.1: The Barnes-Hut physical subdivision of a system of 16 particles in two
dimensions

15

impossible to establish a bound on the size of the tree as a function of the number

of particles. For convenience and simplicity, a two-dimensional problem is discussed

but the results carry over to three-dimensional problems as well.

Figure 2.2 shows the Barnes-Hut physical subdivision for a collection of three

particles in two dimensions. The corresponding BH tree is shown in Figure 2.3. In

the example shown, the first subdivision separates particle 1 from particles 2 and 3.

The next three subdivisions performed to separate particles 2 and 3 are not successful

as one of the child cells at every level of the subdivision contains both the particles

and the other three contain none. The recursive subdivision is continued until the

particles 2 and 3 are separated.

From this example, it is intuitively clear that a large number of recursive subdi­

visions may be required to separate particles that are very close to each other. It is

not true that two particles can be separated only when the cell size is small enough

such that a single cell cannot contain both the particles. Figure 2.4 illustrates this

point. The distance between the two particles shown in the figure is much smaller

than the length of the cells separating them. However, they are positioned in such a

way that a single subdivision separates them, even though the size of the child cells

in the subdivision is large enough to contain both the particles. In the worst case,

the recursive subdivision continues until the cell sizes are so small that a single cell

positioned anywhere cannot contain both the particles. Subdivision is never required

beyond this point, but the particles may be separated sooner.

Let N be the number of particles in the system and let s be the smallest inter-

particle distance. We require 5 > 0 to avoid infinite interaction force. Let D be the

length of a cell that can contain all the particles. Clearly, the worst-case path length

16

ff
•

c
2

•

1

Figure 2.2: The Barnes-Hut subdivision of a system of particles positioned such that
a subcell contains the same particles as its parent cell

17

(1,2,3)

{2,3}

{2,3}

{2,3}

{2,3}

Figure 2.3: The BH tree corresponding to the subdivision of Figure 2.2

18

Figure 2.4: A configuration where two close particles are separated by cells large
enough to contain both

of the BH tree is given by the worst-case path needed to separate the two particles

which are closest to each other. The length of the smallest cell that can contain two

particles 5 apart in two dimensions is ^ in three dimensions; see Figure 2.5).

The paths separating the closest particles in a two-dimensional problem may

contain recursive subdivisions until a cell of length smaller than ^ reached. Since

each subdivision halves the length of the cells, the maximum path length is given by

the smallest k for which

p_ _s_
2'= ̂ y/2

I n k = [log 1

In three dimensions,

D

2^- x/3

19

s

Figure 2.5: Smallest cells that could possibly contain two particles that are s apart
in two and three dimensions

fc = riog^i

In either case, the worst-case path length is O(logy). Since the tree has N

leaves, the number of nodes in the tree is bounded by 0{N log ^).

The absence of N in the expression determining the worst-case path length may

seem rather strange. One might be curious to ask if N is related to D and 5 and thus

implicitly determines the worst-case path length. Let us examine the behavior of y

as a function of N. In particular, we shall investigate the upper and lower bounds

f o r — a s a f u n c t i o n o f N .
3

To minimize the ratio y for a fixed N , all the particles should be at a distance of

s from their nearest neighbors. To see why, suppose this is not true. We can reduce

D b y ' m o v i n g - i n ' p a r t i c l e s t h a t a r e f a r t h e r t h a n s f r o m e a c h o t h e r , w h i l e k e e p i n g s

the same. Or, we can increase s by increasing the distance between particles that are

s apart, keeping D unchanged. In either case, j decreases, contradicting minimality.

Furthermore, the particles must be packed as closely as possible. Figure 2.6 shows

20

the configuration minimizing the ratio — for a fixed N in two dimensions. Each

particle has six nearest neighbors, all at a distance s. The particle is at the center of

the hexagon formed by its nearest neighbors. The particles do not fit in a cell smaller

than D X D. Adding the particles column-wise,

, D , . , D , , D , . , , 2 D , . ,
TV = [— -f IJ + [—J + [— + IJ + ... (+ IJ t e r m s)

S S S y / S s

N < -
s

2 D '

s/3s"^
+ -^ + 1

\/3s

- x/3 + V3 j 3 + ^

- > c , V n
s

for some constant ci. Since this is computed using the configuration minimizing

the ratio the worst-case path length (log y) is fl!(log A'^). In three dimensions,

- > C2iV^
s

In either case.

iog- = n(iogiv)
s

Next, let us investigate how large y can be for a fixed N . For any N > 3

particles, j can be made arbitrarily large by reducing the distance between the

closest particles (thus reducing s), or by increasing the spread of the particles (thus

increasing D). Hence, the worst-case path length does not have an upper bound

as a function of the number of particles and is entirely dependent upon the spatial

distribution of the particles. This immediately implies that the size of the BH tree

is unbounded and can be arbitrarily large for a fixed N. Since both Greengard's and

21

A

J"

2

Figure 2.6; The configuration minimizing the ratio of the cell length containing all
the particles and the smallest interparticle distance in two dimensions

22

Barnes-Hut algorithms construct and visit each node in the BH tree at least once,

these algorithms are unbounded for arbitrary distributions.

In practice, the simulations have to be run on a machine with finite precision.

With finite precision, there is a largest expressible number and a smallest expressible

positive number. Once the precision is fixed, y is bounded as a function of this

precision. Greengard assumes the precision to be a constant in analyzing the com­

plexity of his algorithm. The problem with this approach is discussed in detail in the

following section.

On the Complexity of Greengard's Algorithm

Greengard assumes the length D of the cell containing all the particles to be

one. His arguments can be summarized as follows: For a fixed machine precision

e, only certain classes of particle distributions can be modeled, independent of the

algorithm used. In order to make the simulation possible, Greengard requires that

the smallest distance s between any pair of particles be greater than e. Thus, log y

is bounded by p = [log^] = [—loge]. Greengard's algorithm takes the precision

parameter e as input. The force acting on each particle is also computed to the same

precision. It turns out that the first p terms in the multipole and local expansions are

enough to achieve the desired accuracy in force calculation. The algorithm, therefore,

computes p-term multipole and local expansions. Since e is a constant, p is a constant.

Greengard estimates the running time of his algorithm to be N{ap'^ + ̂ P + l) in two

dimensions and N{ap"^++^) in three dimensions, where a, ̂ and 7 are constants.

S i n c e p i s t a k e n t o b e a c o n s t a n t , G r e e n g a r d [1 4] c l a i m s h i s a l g o r i t h m r u n s i n 0 { N)

time in two or three dimensions.

23

If we need a cell of length D to contain all the particles, we can force it to be

one by appropriate scaling. Since this scaling does not change the ratio of the size

of the cell containing all the particles and the smallest distance between any pair of

p a r t i c l e s , w i t h o u t l o s s o f g e n e r a l i t y , l o g y i s b o u n d e d b y p .

The above arguments imply that the height of the tree is bounded by 0 { p) , a

constant. Yet, we know that the height of a tree with N leaves and at most a constant

number of children per node is fi(logiV). How can this disparity be explained?

To further highlight the discrepancy, consider the first step in Greengard's al­

gorithm - the construction of the tree representing the hierarchical subdivision. At

every level of the tree, the nodes containing more than one particle (or more than a

fixed number of particles) are subdivided and particles in each parent box are dis­

tributed among its child boxes. Since each particle is assigned to a box at every level

and there are at most p levels, the work involved is proportional to Np. Since p is a

c o n s t a n t , t h e c o m p l e x i t y i s c o m p u t e d t o b e 0 { N) .

Consider running this algorithm on a uniform distribution. Each child cell con­

tains exactly a fourth of the particles of its parent cell. The resulting tree is a quadtree

with log N levels and the work involved in constructing the tree is easily seen to be

0 { N l o g N) , n o t 0 { N) .

The problem lies in the assumption that the parameters D and s are entirely

dependent on the spatial distribution of the particles and not related to the number

of particles N. We have seen that for any N >3 particles, ^ can be made arbitrarily

large. This validates the argument that for a fixed machine precision, only certain

classes of particle distributions can be modeled, independent of the algorithm used.

In the previous section, we have shown that log ^ has a lower bound of fi(log N) .

Since log y is bounded by p, p is also fi(log N) .

How does this translate to what classes of particle distributions can be mod­

eled with a machine precision e? It is already noted that not all distributions

can be modeled for any given N > 3 because of precision limits. However, un­

less p = [—loge] > clogA'^ (c a constant), no distribution can be modeled for that

N. The very fact that we are able to run an A'^-body problem for a collection of N

particles with precision e implies that p = [—loge] > clog A''. Thus, p cannot be

taken as a constant in the analysis of the running time of the algorithm and Green-

gard's algorithm is not 0{N). Greengard's time complexity is Q,{N\og^ N) in two

dimensions and Cl{N log"* N) in three dimensions. The running time matches the

lower bound only for a uniform distribution. For arbitrary distributions, the running

time is unbounded.

Two different precisions are involved in the simulation of an N-body problem.

The first is the precision used to represent the input: the positions and velocities of

the particles etc.. The second precision is the accuracy to which the force acting on

each particle should be approximated. Greengard's algorithm computes the force to

the same precision as used to represent the input. This results in a lower bound of

fl(log N) for the precision parameter p. The precision used for the force calculation

need not be the same as the precision used to represent the input. With a better

precision to represent the input, a larger number of particles and/or a larger variety

of distributions can be modeled. The precision used to compute the forces should

be related to the duration of the time steps used in the simulation and the accuracy

of the final answer required. In a reasonable simulation, the precision to which the

force on each particle is computed should be of the same order as the change in the

25

force on the particle during the time step. Computing the force to a higher precision

than the change in the force during the time step is not useful.

On the Complexity of the Barnes-Hut Algorithm

Barnes and Hut [7] estimate that the tree construction can be accomplished in

0{N log N) time and that the force on each particle can be computed in 0(log

time. The cost per iteration is thus estimated to be 0{N log N). Their arguments

apply only to a uniform distribution of particles. Unfortunately, running times based

on uniform distributions are often extrapolated to be valid for non-uniform distribu­

tions. It should be noted that several techniques outlined in Chapter 1 are applicable

to uniform distributions and can be used to solve the N-body problem in 0(A'^log A'^)

time per iteration. The hierarchical methods are designed to be efficient for arbitrary

distributions of the particles. It is therefore important to analyze the complexity of

these algorithms for arbitrary distributions.

Salmon [31] studies the Barnes-Hut algorithm in great detail. He shows that the

Barnes-Hut algorithm takes 0{N'^) time for an exponential distribution. However,

this does not represent the worst-case for the Barnes-Hut algorithm. Since the BH

tree is unbounded, the Barnes-Hut algorithm is unbounded for arbitrary distributions.

Clearly, not all particle distributions can be modeled on a given machine due to

precision limits. But, an algorithm whose running time depends upon the distribution

is undesirable. An analogy can be drawn to a sorting algorithm whose running

time depends on the size of the numbers to be sorted. The complexity of a sorting

algorithm is O(nlogn), provided basic operations on the numbers to be sorted (like

comparison, copying) can be accomplished in constant time. The complexity of the

26

algorithm does not remain 0 { n log n) if this assumption is not valid. However, there is

a distinct advantage to having a sorting algorithm in which the number of operations

is independent of the size of the input numbers. Such an algorithm can sort 128-bit

numbers on a machine with 128-bit words with the same speed as it sorts 32-bit

numbers on a 32-bit word machine.

Similarly, it is reasonable to assume that the distribution of the particles is

representable in a given machine but algorithms whose running times depend on the

distribution are undesirable.

27

CHAPTER 3. A DISTRIBUTION-INDEPENDENT DATA

STRUCTURE FOR THE N-BODY PROBLEM

The distribution-dependency of the Barnes-Hut and Greengard's algorithms is

due to the clustering scheme in which the subclusters are fixed relative to the parent

cluster and irrespective of the location of the particles. In this chapter, we describe

a distribution-independent clustering scheme for the N-body problem. The resulting

data structure is presented as a modification to the BH tree to remove its distribution-

dependency. We show that the Barnes-Hut and Greengard's algorithms can be run in

conjunction with this modified tree structure. We prove that the force computations

of the Barnes-Hut and Greengard's algorithms can be accomplished by a traversal

the modified tree. The construction of the modified tree itself is postponed until the

next chapter.

A Modified Data Structure

The BH tree can contain a path on which every node represents the same set of

particles, though each node represents a cell of a different size. Such a path can be

arbitrarily large irrespective of the total number of particles. Each node on the path

represents a cell of exactly half the length of the cell represented by its parent. Our

intent is to rectify this unbounded nature of the BH tree.

28

Let Vi,V2, .--iVk { k > 2) be a maximal path in the BH tree such that each node

of the path represents the same set of particles. The maximality of the path ensures

that Ui's parent has more particles than Ui and no child of Vk has the same particles

as Vk. Since only cells having more than one particle are subdivided, it is imperative

that Vk is not a leaf and has at least two child nodes. If Vk is a leaf, Vk and hence Vi

have exactly one particle. In such a case, vi is not further subdivided and is a leaf,

a contradiction. We can also assume without loss of generality that ui has a parent.

Otherwise, Vi has to be the root of the tree, thus containing all the particles in the

system. By the property of the path vi,v2, ...,Vk, Vk also contains all the particles

in the system. This simply means that our choice of the initial cell is too large for

the system of particles and a cell length of it (this is the cell represented by Vk)

can contain the entire system. In this case, we can safely make the subtree rooted

at Vk to be the BH tree. Therefore, it can be assumed that V\ always has a parent.

F u r t h e r m o r e , V i i s t h e o n l y c h i l d o f u , _ i { I < i < k) .

We define the modified tree as follows: Let V i , V 2 , . . . , V k (k > 2) be any maximal

path in the BH tree as described above. Let vq be the parent of uj. The modified

tree is obtained by deleting the nodes Vi,V2, ...,Vk-i and making Vk the child of Vq.

Since u,- is the only child of u,_i (1 < i < fc), the resulting structure is a tree. The

BH tree for a collection of 5 particles and the corresponding modified tree are shown

in Figure 3.1.

The modified tree is obtained from the BH tree by collapsing paths representing

the same particles using cells of different sizes, into a single node. Nodes in the

BH tree are used to store aggregate information on the collection of particles they

represent. For example, the Barnes-Hut method keeps track of the total mass and

29

{1,2,3,4,5)

{1,2,3} {4,5}

{4,5} {2,3}

{2,3} {4,5}

{2,3}

{2,3}

(a) BH Tree (b) Modified Tree

Figure 3.1: BH tree for a collection of 5 particles and the corresponding modified
tree

30

the center of mass of the collection of particles. Greengard's method computes the

multipole and local expansions of the collection of particles. Since every node on

such a path represents the same particles, they all contain the same information,

perhaps in a different form. Therefore, the modified tree obtained by eliminating

this redundancy should contain the same information as the BH tree and it should

be possible to modify Barnes-Hut and Greengard's algorithms to run on the modified

tree.

For convenience of understanding, the tree is presented as a modification to the

BH tree, obtained by collapsing paths representing the same particles. This should

be taken as a definition of the modified tree rather than as a way of computing the

modified tree. Since the BH tree is unbounded, one should not build the modified

tree by first building the BH tree and deriving the modified tree from it. Algorithms

for creating the modified tree directly in two and three dimensions are discussed in

the following chapters.

Analysis of the Modified Tree

In this section, we show that the size of the modified tree is 0 { N) , irrespective

of the distribution of the particles and the number of dimensions.

Lemma 3.1 Let S{N) be the number of nodes in the modified tree for N •particles.

S { N) < 2 N - l .

Proof: By induction on the number of particles N . If A'^ = 1, the modified tree is

a single node representing a cell containing the particle. 5(1) = 1, clearly satisfying

the lemma.

31

Consider any N > 1 . The root of the modified tree represents all the N particles.

The root has at least 2 and at most 2'^ children (where d is the number of dimensions).

Let k be the number of children of the root node and let Ni be the number of particles

contained in the cell represented by the i"* child. Let S{Ni) be the size of the subtree

rooted at the i"' child. We have

k
S { N) = l + Y ^ S { N i) { 2 < k < 2 ' ^)

1=1

i : m = N
i = l

S { N i) < 2 N i - 1

By induction,

Therefore,

S { N) = l + E l i S i N i)

< l + ELi(2iV.-l)

= 2 N - { k - 1)

< 2 N - I

By the lemma, the size of the tree is bounded by 0 { N) for any dimension d. Since

any tree containing N leaves has at least 0{N) nodes, the modified tree is an optimal

representation of the hierarchical clustering scheme. Since each child contains at least

o n e p a r t i c l e l e s s t h a n i t s p a r e n t , t h e w o r s t - c a s e p a t h l e n g t h i s a l s o b o u n d e d b y 0 { N) .

We now show that the force computation phase of the Barnes-Hut and Green-

gard's algorithms can be accomplished by a traversal of the modified tree instead of

a traversal of the BH tree. It is assumed that the tree is already built.

The Barnes-Hut Method Using the Modified Tree

In the Barnes-Hut method, the BH tree is traversed once for every particle in

the system to approximate the force acting on the particle due to the rest of the

system. The force on any particle P is approximated using the following recursive

calculation: Let / be the length of the cell currently being processed. Let d be the

distance between the particle and the center of mass of the cell under consideration.

If ^ < 0, where 0 < 0 < 1 is a pre-specified accuracy criterion, the cell is treated

as a single particle of equivalent mass located at the center of mass for the purpose

of force calculation. Otherwise, the children of the cell are examined recursively to

compute the force on P. The force on P due to the particles in the cell is obtained by

a vector summation of the forces on P due to the particles in each of the child cells.

The force calculation starts by examining the root cell. This calculation is repeated

once for every particle in the system.

Force Calculation

We show that performing force calculations on the modified tree yields exactly

the same results as the force computations on the BH tree.

Theorem 3.2 Let P be any particle. The approximate force acting on P as computed

by a traversal of the modified tree is the same as the force computed by a traversal of

the corresponding BH tree.

Proof: Consider any maximal path Vi,V2, ...iVk [k > 2) in the BH tree where all

nodes represent the same particles and let Uo be the parent of vi. In the modified

tree, is the child of vq. If vi is never reached (for any such maximal path) in the

33

traversal of the BH tree, the force computation gives the same answer on either tree

because the same nodes are traversed. Therefore, suppose that Vi is reached during

the traversal of the BH tree. Let /(u,) be the length of the cell, cm(u,) be the center

of mass and M(u,) be the total mass of the particles in the cell represented by node

Vi. Note that

M(ui) = M { v2) = ... = M { v k)

cm(ui) = cm{v2) = ... = cm{vk)

l { v i) = 2 1 { v2) = 2'1{v3) = ... = 2'=-U{vk)

Case I: The traversal stopped at some u,- (1 < i < k) in the BH tree.

Since the traversal stopped at u,-,

d { p , c m { v i))

where d { p , cm(v,)) is the distance from P to the center of mass of the cell represented

b y V i a n d 9 i s t h e a c c u r a c y c r i t e r i o n . S i n c e V j i s t h e o n l y c h i l d o f v j - i (1 < i < k) ,

the force contributed by the subtree rooted at vi is the force between P and a mass

of M{vi) located at cm{vi), given by

G m p M { v i)

d { p , c m { v i) y

In traversing the modified tree, ujt is reached instead of ui. Since k > i,

^ 1 K ^ i) ^ Q
d { p , c m { v k)) d { p , c m { v i))

The traversal stops at Vk and the force is computed to be

GmpM{vf.) _ GmpM{vi)

d { p , c m { v k) y d { p , c m { v i) y

34

The force contributed by the subtree rooted at Vk is the same as the force contributed

by the subtree under Vi in the BH tree, as needed.

Case II: The traversal proceeds to the children of Vk in the BH tree.

In this case, the traversal proceeds to the children of Vk in the modified tree also.

The force contributed by the subtree rooted at in the Barnes-Hut tree is the force

contributed by the subtree rooted at Vk, which is the same for both the trees.

Hence, the force computations give the same result on both trees. •

The worst-case time to compute the force on a particle P using the BH tree is

unbounded since the BH tree is unbounded. On the modified tree, this force compu­

tation is bounded by 0{N), the size of the modified tree.

Error Estimation

The error in approximating the force between a particle P and a cluster of

particles by treating the cluster as a single particle of equivalent mass located at

the center of mass is proportional to , where dr is the radius of the cluster

and r is the distance of its center of mass from P. In the Barnes-Hut algorithm,

each cell represents a cluster of particles. If / is the length of the cell containing the

particles, the radius of this cluster of particles is at most l\/d where d is the number

of dimensions. In two or three dimensions, the error introduced by treating the cell

represented by node u,- as a single particle is therefore proportional to

If vi,U25 is a maximal path in the Barnes-Hut tree with every node containing

t h e s a m e p a r t i c l e s a n d t h e B a r n e s - H u t t r e e t r a v e r s a l s t o p p e d a t s o m e V i { 1 < i < k) ,

35

the error made is computed to be proportional to

This is an overestimation of the error because the length of the cell that can contain

{ k > i) . A traversal on the modified tree computes the same force with an error

estimate proportional to

Greengard's fast multipole algorithm is a two-pass procedure on the BH tree.

The first pass is a bottom-up traversal of the tree in which a p-term multipole ex­

pansion is formed at every node of the tree, where p is a precision parameter. The

multipole expansions at the leaves are computed directly. At any internal node, the

multipole expansion is formed by shifting the multipole expansions of the child nodes

to the center of the cell represented by the node and adding them together. In the

second pass, the tree is traversed top-down to compute the local expansions at every

node. The local expansion at a node is formed by shifting the local expansion at

the parent node to its center, shifting the multipole expansions of the well-separated

children of the nearest neighbors of the parent of the node to its center and adding

them together. Finally, the local expansions at every leaf are evaluated to compute

the approximate cumulative force on each particle. For a detailed description of

Greengard's algorithm, see [14].

the particles is taken to be /(u,) whereas the length is in fact bounded by l{vk) =

The error estimate at this node is thus improved by a factor of 2^^''

Greengard's Method Using the Modified Tree

36

Consider a run of Greengard's algorithm on the BH tree containing a path

vi,v2, where each node represents the same particles. Since u,- is the only

child of V i - i { I < i < k) , the multipole expansion at u,_i is formed by shifting the

multipole expansion of Vi to the center of the cell represented by u,_i. The multipole

expansions at these nodes are merely translations of one another. Since Vi,V2,

is a chain, the multipole expansions at these nodes are useful only to compute the

multipole expansion of Ui's parent. However, the contribution by ViS multipole ex­

pansion to the multipole expansion of its parent can be directly obtained by shifting

the multipole expansion of Vk to the center of the cell represented by the parent of

Vi. Thus, computing the multipole expansions at Vi,V2, ..•,Vk-i is unnecessary and

is avoided by the modified tree. A similar argument shows that the correct local

expansions at the leaves can be obtained using the modified tree.

In the multipole algorithm designed to run on the modified tree, the precision

parameter p is a constant since it can be chosen independent of N. In Greengard's

algorithm, p has a lower bound of log A'^. This is because p is also used as an upper

bound on the worst-case path length (log 7) of the BH tree, which has a lower bound

of logA^. Therefore, p cannot be chosen independent of N and is also a function of

the distribution of the particles. In the multipole algorithm on the modified tree,

the precision parameter is merely a function of the desired accuracy of the force

calculations chosen independent of the number and distribution of the particles.

The new algorithm consists of two traversals of the modified tree. Computing

the p-term multipole/local expansion at each node takes constant time per node.

Evaluating a p-term local expansion for every particle also takes constant time. Since

the number of nodes in the modified tree is 0{N), running the multipole algorithm

37

once the modified tree is constructed takes 0 { N) time. This is irrespective of the

distribution of the particles.

The running time of this algorithm depends on the complexity of the tree creation

and the complexity of performing the force calculations. It is already noted that the

force computations can be performed in 0{N) time on the modified tree. In the next

section, we show that the modified tree can be created in 0(A'^logA'^) time in two

dimensions and in 0{N log^ N) time in three dimensions. Thus, the new multipole

algorithm has a complexity of 0(iV log A^) in two dimensions and 0(A'^log^ A^) in

three dimensions.

38

CHAPTER 4. TWO-DIMENSIONAL ALGORITHMS

In this chapter, we discuss algorithms for creating the modified tree in two

dimensions. First, we show that the construction of the tree requires f2(A'^logiV)

time. Then, we present an algorithm with running time matching this lower bound.

A Lower Bound for the Construction of the Modified Tree

We show that constructing the modified tree requires fi(iVlog N) time by reduc­

ing sorting to the construction of the modified tree.

Let xi,x2,..., x n be the input to the sorting problem. Without loss of generality,

assume that a;,- > 0 (1 < i < N). Otherwise, let Xmin = 0:2,..., xa?} and

create a new sequence x[,x2., ...,x'p^ where x'- = .t,- — Xmin- Let yJ,y2'-"i2/N the

output of sorting this sequence. The output of the original sorting problem is y[-t-

2/2 + ̂ mini v'n + Xmin- The extra effort required is linear and does not change

the complexity of sorting since producing the output to the sorting problem takes at

least linear time.

Assume that the input Xi,X2., ...iXn to the sorting problem is non-negative. Po­

sition N particles such that the i"* particle is at location {xi,xf). The points lie on

the parabola y = x"^ to the right side of y-axis. Construct the modified tree for this

collection of N particles (see Figure 4.1). The output of the sorting problem can

39

Figure 4.1: Reduction of the sorting problem to the construction of the modified
tree in two dimensions

40

now be read off from the modified tree as follows: Let c be the cell represented by

a node in the modified tree. Taking the center of this cell to be the origin, we can

label the children of the node as I, II, III or IV according to the quadrant containing

the subcell represented by the child. Let (x,-, xf) be the position of any particle in

the subtree of child III or child IV and let {x\, xf) be the position of any particle in

the subtree of child I or child II. x} < x'^ and hence x,- < x\. Therefore, points in the

subtrees of child III and child IV appear before the points in the subtrees of child

I and child II in sorted order. Any point in the subtree of child II (child III) has a

smaller x coordinate than any point in the subtree of child I (child IV). Thus, the

sorted order can be read off from the modified tree by starting at the root cell and

recursively enumerating the particles in subcells represented by the children labeled

III, IV, II and I in that order.

Constructing the input to the tree construction problem from the input of the

sorting problem requires 0{N) time. The sorted order can be read off from the tree

in 0{N) time since the tree contains 0{N) nodes and each node is traversed exactly

once. Therefore, a lower bound of fl(A'^log A'') for sorting implies the same lower

bound for the construction of the tree.

The lower bound also applies to the construction of the BH tree. The same

reduction can be used but the cost of reading the sorted order from the BH tree

cannot be bound since the the number of nodes in the BH tree is not bounded.

If the BH tree has 0{N log N) or more nodes, the construction of the tree clearly

takes n{N log N) time. Otherwise, a lower bound of Q,{N log N) for sorting implies

the same lower bound for BH tree construction. This should be contrasted with

Greengard's estimation that the BH tree can be constructed in 0{N) time.

41

We now present an algorithm to construct the modified tree in 0 { N log N) time

for a collection of N particles in two dimensions.

Notation

The physical space containing the particles is subdivided into cells. The cells

represent square regions of space in two dimensions. A cell is completely determined

by the length of an edge of the cell and the position of one of the corners of the cell.

Without loss of generality, choose the lower, leftmost corner. Let D be the length

of the root cell. We also use the term cell to refer to the node in the modified tree

representing the cell, for convenience.

Let I be any cell. In order to describe the subcells of this cell, choose the corner

of the cell to be the origin. The cell contains 2^'"' cells of length The cells are

positioned at (0 < i,j < 2*^).

Definition 4.1 A line is called a k-boundary if it contains an edge of a cell of length

I
F-

Any boundary is parallel to one of the axes. A boundary can be specified by the axis

to which it is parallel and the distance of the boundary from the axis. A k-boundary

is at a distance of i-^ (0 < z < 2'*') from the axis parallel to it.

Fact 4.2 Any k-boundary is also a j-boundary for every j > k.

There are 2'"' + l lines parallel to each axis and spaced ^ apart that are k-boundaries.

The intersections of the k-boundaries determine the cells of size Subcells and

boundaries of the root cell are shown in Figure 4.2. Note that the description of the

subcells and the boundaries is relative to the cell.

42

y J l

(O.D) (D.D)

I

2-bouijidary

I
I
I
r
I

l-bou\idary

3-bouifdary

(0,0) {D,0)

Figure 4.2: A root cell of length D. The big dashed lines are 1-boundaries,
the small dashed lines are 2-boundaries and the dotted lines are
Z-boundaries. 2-boundaries are also Z-boundaries and 1-boundaries
are also 2-boundaries and Z-boundaries

43

Algorithm for Constructing the Modified Tree

A simple recursive algorithm for creating the modified tree for a cell c containing

a collection of particles can be informally stated as follows:

BuildTree(c)

1. Find the smallest cell c' contained in c that still contains all the particles con­

tained in cell c.

2. If c contains no particles, return ^ empty tree\

3. If c contains exactly one particle, return the one node tree c.

4. Split the cell c' into 4 subcells.

5. For each subcell sc of c', BuildTree(sc).

6. Return the tree obtained by joining all the trees obtained in the previous step,

with c' as the root of the tree.

BuildTree is initially called with a cell large enough to contain all the particles

in the system. The description of the positions of the particles contained in cell c

is not passed as input to the function BuildTree. Otherwise, calling the function on

each of the subcells would require distributing the particles among the child cells

resulting in 0{N) work at every level of the tree. Since there can be 0{N) levels,

such a distribution itself would require 0{N'^) work.

The input to BuildTree is just a description of the cell c - the length of c and

the position of its lower, leftmost corner. The running time of the algorithm can be

44

computed by the amount of work done at every node of the modified tree, which is

steps 1-4 and 6. Steps 4 and 6 require a constant amount of work at every node of

the modified tree. Determining if the input cell c does not contain any particles or

if it contains exactly one particle can be determined as a byproduct of Step 1, as we

shall see later. Step 1 can be accomplished as follows:

Let I be the length of the cell c passed as input to BuildTree. Any cell smaller

than c but contained in c has length ^ for some A: > 0. By a suitable transformation,

the corner of c is chosen to be the origin. Let b be the smallest rectangle containing

all the particles in c. The rectangle is specified by [xmin,Xmax] x [ymm,2/max], where

Xmin is the smallest x coordinate of all the particles in c etc. The smallest cell in c

containing all the particles of c should also contain the box b.

Fact 4.3 A cell of size p encloses b iff no k-boundary passes through b.

The smallest subcell of c enclosing 6 is of size 2*^1 where k is the smallest integer

such that a k-boundary passes through b (Figure 4.3). To determine this, we can

examine boundaries parallel to each coordinate axis in turn.

Consider boundaries parallel to the y-axis. These can be specified by their

distance from the y-axis. The family of k-boundaries is specified by 0 < z < 2''.

Let k be the smallest integer such that a k-boundary parallel to y-axis passes through

6, i.e. k is the smallest integer such that Xmin < < Xmax for some i.

Lemma 4.4 Exactly one k-boundary passes through b.

Proof: Suppose not. Consider any two consecutive k-boundaries that pass through

b. These are given by z^, (z + 1)^ for some z. Let z' be the even integer among z and

i + 1. Let i" = One of the k-boundaries is specified by z'^ = i"^^- Therefore,

45

(O.l)

(0.0)

(1,1)

(l.O)

Figure 4.3: A cell of length / and the smallest box b enclosing all the particles in
this cell

46

this is also a {k — \)-boundary and a [k — l)-boundary passes through 6, contradicting

the minimality oi k. •

Let j be the smallest integer such that ~ < (Xmax—Xmin), i-e., set j = [logj .

Lemma 4.5 There is at least 1 and at most 2 j -boundaries passing through b.

Proof: Suppose that no j-boundary passes through b. Since the distance between

two consecutive j-boundaries is this would require ^ > (xmax — Xmin), a contra­

diction. Therefore, at least one j-boundary crosses b.

If more then 2 j-boundaries cross b, let i-^, (i + 1)^ and (i + 2)^ be three

consecutive j-6oundaries passing through b. We have i-^ > Xmin and (z+2)^ < Xmax-

Therefore, [xmax - Xmin) > {i + 2)^ -ijj = 2^ = contradicting the minimality

of j. •

The j-boundaries passing through b are specified by hi = ^ and /12 =

jf only One j-boundary passes through b. Otherwise, two j-

boundaries pass through b. Let a be hi — a~ and /12 = hi or (a -h 1)^.

Lemma 4.6 The k-boundary passing through b is either hi or h2.

Proof; Suppose not. Since k < j, by Fact 4.2, the k-boundary passing through b

is also a j-boundary. By Lemma 4.2, hi and /12 are the only j-boundaries passing

through b. Therefore, the k-boundary passing through b must coincide with hi or /t2-

•

It is now easy to find k since the k-boundary passing through b is narrowed down to

either hi or /i2. If /j2 7^ hi, let a' be the even integer among a and a -f-1. Otherwise,

47

let a' be equal to a. It is clear that j — k \s equal to the highest power of 2 that

divides a'. One way to find this is to set j — k = log2(l + {a' © (a' — 1)}) — 1. Since

all the above operations take constant time, the smallest cell contained in c enclosing

the box b can be determined in constant time.

It is already established that the modified tree has 0 { N) nodes. The tree is

created top-down starting at the root. At each node, the particles with the small­

est and the largest coordinates in each dimension {xminiXmaxiVmin and Umax in two

dimensions) are computed to identify the smallest box enclosing all the particles

represented by the node. The smallest cell enclosing this box is computed and the

children of the node determined in constant time. As mentioned before, the particles

are not distr ibuted among the child nodes. Such a distr ibution would result in 0{N'^)

time for tree creation. Distributing the particles to the child nodes is not necessary

provided we can determine the particles with extreme coordinates in the child nodes.

Except for this task, the rest of the computations are done in constant time per node,

for a total of 0{N) time.

Finding the points with extreme coordinates can be translated to a range query

problem, stated as follows: Given N points, set up a data structure to answer queries

of the form 'which point has the smallest x-coordinate among the points that lie in a

given square?' efficiently. The answer to such a query is the point with the smallest

x-coordinate or < none > if no points exist in the given square. Since the modified

tree has 0{N) nodes and we require four such queries per node, the number of queries

i s 0 { N) .

In BuildTree, we also need to determine cases where the cell contains exactly

one particle or none. This can be determined as a byproduct of the computation

48

of the smallest box b containing all the particles in the cell. If Xmin = Xmax and

Umin = Vmaxi the Cell Contains exactly one particle. If the answer to any of the 4

queries is < none >, the cell is empty and can be discarded.

The time for constructing the tree is 0 { N) plus the time to set up data structures

for range querying and the time to perform 0{N) queries. In the next section, we

discuss a solution to the range query problem.

Range Queries in Two Dimensions

In this section, we discuss the problem of setting up a data structure to answer

range queries. The problem we are interested in is formally described as; Given N

points {xi,yi) (1 < z < N), set up a data structure to perform queries of the form

'find the minimum (maximum) a;-coordinate Xmin {^max) of all the points in a given

query rectangle [xo,a:'i] x [j/o,i/J]' efficiently. We first describe a simple solution that

requires 0(A'^log A^) set up time and 0{log^N) time per query. We then describe a

solution based on Priority Search Trees [28] to reduce the query time to 0(log N) per

query.

A Simple Algorithm

Consider the problem of finding a point with the smallest (largest) a;-coordinate

in a given query rectangle [a-'g, a;j] X [2/052/1]- we gather all the points in the range

[t/o,?/j], the y direction becomes irrelevant and the query can be answered by a one-

dimensional query on x on these points. If a data structure is designed such that

these points are available sorted by their .T-coordinate, we can find Xmin {xmax) easily

with a binary search.

49

The data structure is built as follows: Sort the given N points by their y-

coordinates. Build a Balanced Binary Search Tree (BBST) with the points as leaves.

The internal nodes in this BBST do not correspond to any points. They represent the

range of values of y-coordinates of the points in their subtrees. The range assigned

to a node is [y(,?/u] where yi is the smallest y coordinate and ?/„ is the largest y

coordinate of all the points in the subtree rooted at the node. yi and ?/„ correspond

to the leftmost and rightmost leaves of the subtree rooted at the node. If the range

at the left child of a node is [yn, Vui] and the range at its right child is [y(2,J/u2]) the

range assigned to the node is [yn,yu2] (see Figure 4.4).

At every node of the BBST, store a list of all the points in its subtree sorted

by the ^-coordinate. These lists are easily constructed in a bottom-up traversal of

the tree. The sorted list at a node is constructed by merging the sorted lists at its

left and right children. The data structure for a collection of 8 particles is shown in

Figure 4.4.

Sorting the points according to their y-coordinate requires 0(A'^logA'^) time.

The BBST over these points is built in linear time. Creating the sorted lists at every

node requires 0{N) work per level of the tree (since the lists are formed by merging

and the total number of points merged at any level of the tree is N), for a total of

0{N log N) work. In fact, the sorted lists at the nodes represent the intermediate

lists produced during a merge sort of the points. The time and space requirements

f o r b u i l d i n g t h i s d a t a s t r u c t u r e a r e 0 { N l o g N) .

Given a quei-y rectangle [xq, a;'i] x [t/q, y'lli a list of nodes in the BBST are identified

that cover the range [j/o^yl] exactly. The minimum (maximum) ^-coordinate in the

range [xq, Xj] at each of these nodes is identified using binary search. The minimum

50

(41.4,89.1) (79.7,39.4) (13.2,35.8) (15.7,53.6) (21.6,33.5) (34.7,12.3) (57.5,12.7) (97.3,21.9)

[12.3,89.1]

(13.2,35.8) (15.7,53.6) (41.4,89.1) (79.7,39.4)

(21.6,33.5) (34.7,12.3) (57.5,12.7) (97.3,21.9)

[12.3,33.5] [35.8,89.1]

(21.6,33.5) (97.3,21.9) (15.7,53.6) (41.4,89.1)

(34.7,12.3) (57.5,12.7) (79.7,39.4) (13.2,35.8)

[12.3,12.7] [21.9,33.5] [35.8,39.4] [53.6,89.1]

(97.3,21.9) (21.6,33.5) (34.7,12.3) (57.5,12.7) (13.2,35.8) (79.7,39.4) (15.7,53.6) (41.4,89.1)

Figure 4.4: A simple data structure for performing range queries in two dimensions

51

(maximum) of ail the values obtained is x^in (xmax)-

The following algorithm identifies a list of nodes in the BBST that cover the

range [yo,y[].

FindNodes (node)

If [y 'o ,y[] does not contain the range at the node,

If range at left child intersects [y'o-iy'i], FindNodes(leftchild(node)).

If range at right child intersects [yo,yi]i FindNodes(rightchild(node)).

Else add node to the list.

FindNodes is initially called with the root of the BBST. FindNodes traverses a

subtree of the BBST and its running time is proportional to the size of this subtree.

The list of nodes identified by this function exactly cover the range [2/0,2/1] and are

the leaves of the subtree traversed by this function.

Lemma 4.7 The number of nodes in the list formed by FindNodes is at most O(log N)

Proof: We first show that no more than 2 nodes are identified at any level of the

tree. Suppose that this is not true. Let the root be at level 0 and suppose that three

or more nodes are identified at level i {i > 2). The nodes identified at any level are

clearly consecutive. Thus, 3 a node v at level i — \ such that its left child l{v) and its

right child r{v) are both identified by FindNodes. By the description of FindNodes,

[j/o, ?/J] contains the range at l[v) and r{v). Since the range at v is the union of the

ranges at l{v) and r{v), [?/o, Z/J] should contain the range at v also. But then, the

node V is identified by FindNodes and the children of node v are not traversed at all,

contradicting the assumption that l{v) and r{v) are identified.

52

Therefore, function FindNodes identifies at most 2 nodes at any level of the

BEST. Since the number of levels is bounded by C)(log A^), the number of nodes in

the list formed by FindNodes is at most 0(log A'^). •

Lemma 4.8 The running time of FindNodes is 0{\ogN).

Proof: The running time of FindNodes is proportional to the size of the subtree it

visits. By lemma 4.7, this subtree has 0(log N) leaf nodes. The number of nodes in

a binary tree with 0(log A'^) leaf nodes is also 0(logA'^). Thus, the running time of

F i n d N o d e s i s O (l o g N) . •

Function FindNodes identifies a set of 0(log N) nodes that cover exactly all

the points with y-coordinates in the range [yQ,y'^. We can identify the minimum

(maximum) x values in the range [xq, Xj] in the sorted lists at these nodes using a

simple binary search. The minimum (maximum) of all these values gives Xmin i^max)

in the query rectangle [xg, x'J x [y'o,y[]. Since any of these sorted lists contains at

most N points, each binary search takes at most 0(log N) time. Performing 0(log N)

searches requires O(log^ N) time, after which Xmin i^max) can be found by computing

the minimum (maximum) of the results of these searches in (9(Iog N) time. Thus,

t h e q u e r y t i m e i s 0 (l o g ^ N) .

To query for minimum (maximum) y-coordinate (ymax), an analogous data

structure can be designed which is a BBST on the .-c-coordinate with each node

containing the points in its subtree sorted by their y-coordinates.

This scheme can be used recursively to create a data structure for answering

range queries for any dimension d. First, one of the dimensions is chosen and a

balanced binary search tree is built on the points sorted by the chosen dimension.

53

At each node, the data structure for performing {d — l)-dimensional range queries

on the points in the subtree of the node is stored. To answer a query, a set of

nodes in the balanced binary search tree are identified that cover the range along the

dimension using which the balanced binary search tree is built. By Lemma 4.7, the

number of nodes identified is 0{\ogN). The query can be answered by performing

{d — l)-dimensional queries at each of these 0(log N) nodes and taking the minimum

(m a x i m u m) v a l u e o b t a i n e d . T h e q u e r y t i m e i s 0 { l o g ^ N) .

Using this scheme, the modified tree can be built in 0{N \og^ N) time in two

dimensions. This consists of O(A'^logA^) set up time for creating the data struc­

tures to perform the required range queries, 0{N \og^ N) time for 0{N) queries at

0(log^ N) time per query and 0{N) time for rest of the work in function BuildTree.

We next outline a solution based on Priority Search Trees to reduce the query time to

0(log A'^) with the same set up time, to reduce the total complexity to 0(A'^log A'^).

Priority Search Trees

A Priority Search Tree (referred to as PST hereafter) [28] is a data structure for

representing N points in two dimensions such that the following operations can be

implemented efficiently.

• InsertPoint(x,y) : Insert the point {x,y) into the PST.

• DeletePoint(x,y) : Delete the point {x,y) from the PST.

• MinXInRectanglefxQ, x\,y[) : Find the point with the smallest x coordinate in

the rectangle [a:o,a:'i] x (—oo,t/j].

54

• MaxXInRectangle(xQ, x[,y[) : Find the point with the largest x coordinate in

the rectangle [ajf,, x'l] x (—oo,?/^].

• MinYInXrange(x'Q,x[) : Find the point with the smallest y coordinate such

that Xq < X < x[.

• EnumerateRectangle(x'Q,x\,y[) : Enumerate all the points in the rectangle

[a:o,a;'i] X (-oo,7/J].

McCreight [28] presents algorithms to perform all the above operations in 0(log N)

time except for EnumerateRectangle(xQ,x[,y[) which requires time proportional to

the number of points enumerated. For our purposes, we are interested in the op­

erations MinXInRectangle(x'Q,x[,y[) and MaxXInRectangle(x'Q, x[,y[). Notice that

the operations find the minimum (maximum) a; in a rectangle with the bottom edge

fixed at —oo. We need to use the PST's to create a data structure that allows us to

perform queries on bounded rectangles. Also, a PST can be designed such that the

queries can be performed in a rectangle with the top edge fixed at +00.

The PST can best be described as a combination of a binary search tree on x

and a priority queue on y. PST is a tree with each node containing two points p

and q and two boolean variables validP and duplQ. The notation p.x refers to the

.T-coordinate of the point p etc. v.p is used to refer to the point p at node v. Thus,

v.p.x refers to the x-coordinate of point p at node v. The tree should satisfy the

following properties (see Figure 4.5):

1. The tree is a binary search tree based on q.x. Each point appears in the q filed

of exactly one node.

55

p : (13.2,35.8)

q: (15.7,53.6)

diiplQ: false

q: (13.2,35.8)

validP: false

duplQ: true

p: (21.6,33.5)

q: (21.6,33.5)

validP: true

duplQ: false

q: (34.7,12.3)

validP .-false

duplQ: true

p: (34.7,12.3)

q-- (41.4,89.1)

validP: true

duplQ: false

p.- (97.3,21.9)

q: (97.3,21.9)

validP: true

duplQ: false

q: (57.5,12.7)

validP .-false

duplQ: true

p.- (57.5,12.7)

q: (79.7,39.4)

validP: true

duplQ .-false

Figure 4.5: A Priority Search Tree for 8 points in two dimensions

56

2. The p field of each node contains the point with the smallest y coordinate

among the points given by the q fields of the descendants of the node such that

the point is not the one with the smallest y coordinate among the q fields of

the descendants of the parent of the node. The p field is empty if no such node

exists. The field validP indicates if the p field is valid or empty.

3. The field duplQ is true at a node if its q field is used as the p field of one of its

ancestors.

4. The tree is a balanced binary tree (the height of the tree should be 0(log N)).

On a tree satisfying the above properties, the algorithms by McCreight can be used to

perform the described operations in 0(log N) time. To perform queries on rectangles

of the form [xojx'j] x [yQ,+oo), the p fields should be used to store points with the

largest y coordinates.

Creating a Priority Search Tree

A PST can be constructed by repeatedly inserting each point using the operation

InsertPoint(x,y) starting with an empty tree. This would require 0{N log N) time.

However, if the points are already available sorted by their x-coordinate, the PST

can be built in 0{N) time as described below.

First, use the sorted order on x to construct a Balanced Binary Search Tree

(BEST) using the q fields. For any node u, l{v) and r(u) refer to the left and right

child of the node v, respectively. The q field at any node in the BBST represents one

of the input points. Let v be any node in the tree. The binary search tree property

dictates that for any node v' in the left subtree of v, v'.q.x < v.q.x and for any node

57

v' in the right subtree of u, v'.q.x > v.q.x. The BBST can be built in time linear in

the number of points and it satisfies criteria 1 and 4 of the properties of a PST.

It only remains to fill in the appropriate p, validP and duplQ fields at every node

to convert this BBST into a PST. At every node of the BBST, initialize the p field

to be the same as the q field and set validP to true and duplQ to false. Procedure

MakePST converts the subtree rooted at v into a PST. When MakePST is called, it

is assumed that the subtrees rooted at l{v) and r{v) are already PSTs and that the

subtree rooted at v is a BBST based on the x-coordinates of the q fields as described

above.

MakePST(v)

1. Pick the point p' with the smallest ?/-coordinate among u.p, l{v).p and r{y).p.

Since the p field is valid only if validP is true, the p fields of only such nodes

are considered.

2. If validP is false at all three nodes, return.

3. If p' = v.p, return.

4. If p' = l{v).p, v' <— l{v) else v' <— r{v)

5. (a) v.p <— v'.p

(b) v.validP ^ true

(c) v'.validP <— false

(d) If v'.q.y < v'.p.y, v'.duplQ <— true

(e) MakePST(v')

58

When MakePST(v) is called, the p field of v may be borrowed from the p fields

of one of the children of v having the smaller y coordinate. If v' is the child of v from

which the p field is borrowed, the subtree rooted at v' is no longer a PST, but its left

and right subtrees still are. We can recursively adjust the tree rooted at v' to be a

PST. A call to MakePST(v) may involve traversing a path all the way down to the

leaf in the subtree rooted at v. Thus, the running time of MakePST is 0{h) where h

is the height of the subtree rooted at v.

MakePST adjusts the tree to be a PST when the left and right subtrees of the

root are PSTs. To build a PST, we can build PSTs for the left and right subtrees of

the root node and use MakePST to adjust the entire tree to be a PST.

BuildPST(v)

1. BuildPST(l{v))

2. BuildPST(r{v))

3. MakePST(v)

BuildPST is initially called with the root. The work required can be described

by the following recurrence:

nJV) = r (f | i)+r (L^j) + r iogAri

The solution to the above recurrence is 0{N). Thus, the PST can be built in 0{N)

time.

59

Setting Up the Data Structure for Range Query

Sort the points (a;,-,?/,) by increasing y and use this to build a balance binary

search tree on y. This requires 0(iVlogA'^) time. At each node v of the search tree,

store PST(u), where PST(i;) is the priority search tree for all the descendants of

node V. In computing PST(u) we can assume that PST(/{t;)) and PST(r(i;)) are

already computed. Note that PST(u) contains the union of the points in PST(/(u))

and PST(r(u)). By traversing PST(/(?;)), we can get the points in it in sorted order

according to x-coordinate. A similar sorted sequence can be obtained by traversing

PST(r(u)). The two sequence can be merged in linear time to get a sorted order on

X of the points forming PST(u). Using this, we can build PST(i;) in time linear in

the number of points in PST(i;).

Two types of PST's are created depending on if the node at which the PST is

created is the left or right child of its parent. If v is the left child of its parent, PST(?;)

is created such that the PST can be queried on rectangles with top edge at +00. If

V is the right child of its parent, PST(u) is created such that the PST can be queried

on rectangles with bottom edge at —00. No PST need be built at the root of the

tree. The reason for this becomes clear later.

We can build the PST(u) in 0{m) time where m is the number of descendants

of V. There can be at most 2' nodes at level i of the tree each of which may contain

2LiogNJ-«+i nodes. Therefore, the time required to create all the PST's is

LlogWJ

i=l

LlogNJ

1=1

60

Liogivj

< E 2iV
i=l

= 0{N log N)

The data structure can be set up in 0{N log N) time.

Querying

Consider finding the point with the smallest x-coordinate in the query rectangle

X [y'o,y[]- To answer this, search down the binary search tree to reach the

first node v such that the left subtree of v contains and the right subtree of v

contains y[(see Figure 4.6). We say that the rectangle [ajg, Xj] x [j/oiJ/i] straddles

the children of v. Let j/j be the y-coordinate of the point at v. For any point

(a;, y) in the left subtree oi v, y < y'2. For any point {x, xj) in the right subtree of u,

y > y'2. Perform the query MinXInRectangle on [xq, Xj] x [t/g, 00) on PST(/(u)). Since

every point in PST(/(v)) has a y-coordinate no greater than i/j? this is equivalent to

the query MinXInRectangle on the bounded rectangle [x[„Xj] x [2/o)2/2]- Similarly,

perform the query MinXInRectangle on [xq, x'j] x {—oo,y{] in PST(r(v)) which is

equivalent to the query on the bounded rectangle [xq, .t'j] x [y2,y[]- Thus, the query

on rectangle [xq,Xj] x [y'o,y'i] is spHt into two queries on rectangles [xo,Xj] x [2/012/2]

and [xq,x'i] x [2/2)2/1]- The query resulting in a smaller x-value is the answer to the

original query.

Identifying the node v such that the query rectangle straddles the children of

V takes O(logA^) time. The two queries on PST(/(u)) and PST(r(u)) take at most

0(log A'^) time each. Thus, the query time is 0(log A'^).

To create the modified tree in two dimensions, we need to set up the data struc-

61

Ky/> i
I 1 I

R(v)

A

H

V

Lfvj

I
I
I
I
I
I

Figure 4.6: A range query in two dimensions using priority search trees

62

ture for two-dimensional range queries and perform 0 { N) such queries. The total

time required for this is clearly O(A^logiV). The rest of the computations can be

done in constant time per node of the modified tree. Therefore, the modified tree

can be created in 0(iVlog A^) time in two dimensions. Since the multipole method

runs on the modified tree in 0{N) time, we have an N-body algorithm that runs in

0{N log N) time in two dimensions.

63

CHAPTER 5. THREE-DIMENSIONAL ALGORITHMS

We now discuss three-dimensional algorithms for the N-body problem. The algo­

rithm presented in the previous chapter for constructing the modified tree naturally

extends to three and higher dimensions provided we can design algorithms for range

queries.

Notation

In three dimensions, the cells in the modified tree represent cubical regions of

space. For any dimension d, the cells are cubes in d-dimensions. A cell is completely

determined by the length of an edge of the cell and the position of one of the corners

of the cell. Without loss of generality, choose the corner with the smallest value for

each coordinate. Let D be the length of the root cell.

Let I be any cell. We can once again describe the subcells of this cell by choosing

the corner of the cell to be the origin. The cell contains 2'"''' cells of length The

cells are positioned at (0 < i,j,k < 2'') in three dimensions.

Definition 5.1 A plane is called a k-boundary if it contains a surface of a cell of

length

In three dimensions, any boundary is parallel to one of the XY, YZ or Z X planes.

A boundary can be specified by the plane to which it is parallel and the distance of

64

the boundary from the plane. A k-boundary is at a distance of (0 < z < 2*^) from

the plane parallel to it.

Fact 5.2 Any k-boundary is also a j-boundary for every j > k.

There are 2^^ + 1 planes parallel to each of XY, YZ or ZX planes and spaced ^ apart

that are k-boundaries. The intersections of the k-boundaries determine the cells of

size Note that the description of the subcells and the boundaries is relative to

the cell.

In a rf-dimensional problem, the boundaries are hyperplanes of dimension (</ — 1)

and can be described by their distance from the {d — l)-dimensional plane parallel

to these boundaries and passing through the origin. All the properties described in

Chapter 4 are valid for any dimension d.

Creating the Modified Tree in Three Dimensions

The three-dimensional algorithm is quite similar to the two-dimensional version

of constructing the tree except that each cell is now split into 8 subcells. In general,

the algorithm to build the modified tree for any dimension d can be described as;

BuildTree(c)

1. Find the smallest cell c' contained in c that still contains all the particles con­

tained in cell c.

2. If c contains no particles, return ^ empty tree\

3. If c contains exactly one particle, return the one node tree c.

65

4. Split the cell c' into 2^ subcells.

5. For each subcell sc of c', BuildTree(sc).

6. Return the tree obtained by joining all the trees obtained in the previous step,

with c' as the root of the tree.

Once again, step 1 is accomplished by finding the smallest d-dimensional rectan­

gular box containing all the particles in c. The box 6 is a rectangular parallelepiped

in three dimensions, given by [xmin-,Xmax] x [ymin,ymax] x [zmin,Zmax], where a;„,„ is

the smallest x-coordinate of all the particles in the cell c etc.. The smallest subcell

of c enclosing b is of size pW? where k is the smallest integer such that a k-boundary

passes through b. we can once again determine this by examining boundaries parallel

to each coordinate planes in turn. The computation is identical to the two dimen­

sional case except that to find Xmini Vmin and Zmin, we need to perform range queries

in three dimensions.

In general, the running time of BuildTree in d dimensions is 0{Nd) plus the

time required to set up a data structure for (i-dimensional range queries and the time

required for 0{N) such queries.

Range Queries in Three Dimensions

In this section, we discuss the problem of setting up a data structure to answer

range queries in three dimensions. The problem we are interested in is formally de­

scribed as: Given N points (a:,-, t/,-, 2,) (1 < i < N), set up a data structure to perform

queries of the form 'find the point with the minimum (maximum) x-coordinate in the

rectangular parallelepiped given by [a;o,a;'i] x [yoiJ/i] x [zqiz'^'' efficiently. The solu­

66

tion is once again based on Priority Search Trees [28]. The data structure designed

has 0{N log^ N) size and requires 0{N log^ N) time to compute. The queries are

answered in O(log^ N) time per query.

Setting Up the Data Structure for Range Query

In the previous chapter, we have described an algorithm to perform range queries

for a n y a r b i t r a r y d i m e n s i o n d . T h e q u e r y t i m e o f t h e a l g o r i t h m p r e s e n t e d i s 0 (l o g ' ^ N) .

The algorithm recursively reduces a c?-dimensional query to O(log N) queries in

(t/ — 1) dimensions, until all queries are reduced to one-dimensional queries. The

one-dimensional queries are then solved using a simple binary search. The query

time of this algorithm in two dimensions is 0(log^ N). We then presented a solution

using priority search trees to answer two-dimensional queries in 0(log N) time. We

can combine these two algorithms to answer (/-dimensional queries in 0(log''~^ N)

time.

A (/-dimensional query is answered once again by reducing it to 0(log N) queries

in (c?—1) dimensions. The reduction is recursively applied until all queries are reduced

to two dimensions. The data structure using the priority search trees is now used to

directly answer the queries in two dimensions. This reduces the running time by a

f a c t o r o f O (l o g N) .

The data structure for three dimensions is set up as follows: First, sort the points

by increasing 2 and store the points in a balanced binary search tree T. At each node

of V store a structure D{v), which is the two dimensional structure using priority

search trees described in the previous chapter built on the x and y coordinates of the

points in u's subtree. Creating D{v) takes 0(m log m) time where m is the number

67

of nodes in the subtree rooted at v . Let V i , V 2 , ...iVk be the nodes in T at level i . Let

S{vi) be the size of the subtree rooted at u,-. We have

i : s M < N
t=i

The work required in creating all the Z)(u,)'s (1 < z < k) is

< E l i S {v i) \ o g N

= l o g N E U S i v i)

< N h g N

Hence, the two dimensional structures using priority search trees can be con­

structed for all the nodes in a given level of the tree T in 0(A'^log A'^) time. Since

there are at most [log N1 levels in the tree, the time required for creating the entire

d a t a s t r u c t u r e i s 0 { N l o g ^ N) . T h e s p a c e r e q u i r e d i s a l s o 0 (N l o g ^ N) .

Querying

Given a query q = [xq, a;^] x [j/q, y [] x [z'oi first determine a set V of 0{\og N)

nodes with the property that for each v EV, the interval [z'q, z'^ spans u's subtree but

not the subtree of v's parent. This step can be accomplished in logarithmic time using

algorithm FindNodes (Lemma4.7). At each node v G V, the z direction now becomes

redundant and the problem can be solved by querying D{v) with [a;o,x'i] x [?/o, J/i]

and taking the minimum y returned from these queries. Time required is clearly

OOog^AT).

To create the modified tree in three dimensions, we need to set up the data

structure for three dimensional range queries and perform 0{N) such queries. The

68

total time required for this is clearly 0 { N log^ A'^). The rest of the computations can

be done in constant time per node of the modified tree. Therefore, the modified tree

can be created in 0{N log^ N) time in two dimensions. Since the multipole method

runs on the modified tree in 0{N) time, we have an N-body algorithm that runs in

0{N log^ N) time in three dimensions.

69

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Conclusions

The study of physical systems by particle simulation is becoming increasingly

important in scientific computing. The traditional solutions based on grid methods

are appropriate only for uniform distributions. A new class of algorithms known

as hierarchical N-body methods have emerged to address the problem of efficiently

performing particle simulations for non-uniform distributions. Unfortunately, most of

these algorithms are analyzed for uniform distributions and the results are expected

to be valid for non-uniform distributions.

In this thesis, we have presented a rigorous worst-case analysis of some of the

popular hierarchical N-body algorithms along with proofs that the running times

of these algorithms are not valid for arbitrary distributions. We have presented a

distribution-independent hierarchical clustering scheme and have presented monopole

and multipole methods based on this scheme. The multipole method based on our

scheme runs in O(A^logA^) time in two dimensions and 0{N \og^ N) time in three

dimensions irrespective of the distribution. A key feature of our algorithm is that its

running time is purely a function of the number of particles. In contrast, the existing

algorithms have running times that depend on the positions of the particles and the

precision of the machine.

70

Future Work

Optimal Clustering Schemes

All the hierarchical N-body algorithms depend on clustering of the particles into

a hierarchical structure and approximating the particle-cluster and/or cluster-cluster

interactions instead of computing interactions between the individual particles. The

amount of work required in the force calculation stage clearly depends upon the

way the particles are clustered. Except for the initial paper on hierarchical N-body

methods by Appel [5], all the other algorithms rely on a fixed cubical subdivision

of the space into cells, irrespective of the location of the particles. Appel allows for

arbitrarily shaped clusters modified across iterations using heuristics. It is interesting

to study the problem of generating optimal clustering mechanisms, where optimal is

defined as the clustering scheme resulting in the least amount of work in the force

calculation stage.

It should be noted that performing force calculations without any clustering

requires 0{N^) time. If clustering were performed to reduce the work in force cal­

culation, the clustering algorithm is useful only if it has approximately the same

complexity as the force calculation using the clustering. Due to this, generating an

optimal clustering scheme may not be useful. However, it may be possible to update

the optimal clustering from one iteration to another efficiently. Even otherwise, an

optimal clustering scheme will be useful in radiosity applications, where the particles

represent polygonal patches in the scene and hence do not move. Thus, the 'bodies'

do not move between iterations and the same clustering can be used throughout.

71

Designing Faster Algorithms

The N-body problem has an obvious lower bound of 0 { N) to compute all pair-

wise interactions. In light of the proof that Greengard's and other multipole related

methods are not 0{N), the fastest distribution independent algorithm has a com­

plexity of 0{N log N) in two dimensions and 0{N log^ N) in three dimensions. This

complexity is mainly due to the hierarchical tree creation. However, it may be pos­

sible to update the tree in linear time across iterations. The hope for the possibility

of such an algorithm stems from the fact that the particles are guaranteed to move

only by a small distance in each iteration. A linear time algorithm for updating the

tree results in an algorithm with complexity matching the lower bound.

Reducing the Number of Iterations

Most of the research on N-body methods is concentrated on reducing the

complexity per iteration of the naive algorithm. The particle simulation continues

by computing the updated position of the particles over a short time interval 6t

and repeating the force computations. The common approach is to use the same

global time increment St for all pairs of particles in the system. When two particles

come very close to each other, extremely small time increments are necessary due

to the resulting high acceleration. Given a large system of particles over varying

length scales, it is highly probable that such close particles exist, resulting in a large

number of iterations. Using variable time increments based on the distance between

interacting particles/clusters is a viable alternative. The scheme has been suggested

by Appel, but it is yet to be formally analyzed and integrated into the more popular

algorithms.

72

Parallel Algorithms

The N-body problem poses a formidable challenge for parallel computation. The

properties of the problem including highly non-uniform and dynamic distribution and

the necessity for global data in computing interactions make it difficult to parallelize.

Some researchers including Warren and Salmon [37, 38], Singh [32] have worked in

this area but optimal algorithms still elude discovery.

73

BIBLIOGRAPHY

[1] S.J. Aarseth, J. Richard Gott III and E.L. Turner, N-body simulations of galaxy

clustering; I. Initial conditions and galaxy collapse times, Astrophys. J., 228

(1979) 664-683.

[2] S. Aluru, G.M. Prabhu and J. Gustafson, Truly distribution-independent algo­

rithms for the N-body problem, Proc. Supercomputing '94 (1994), to appear.

[3] C.R. Anderson, An implementation of the fast multipole method without mul-

tipoles, SIAM J. Sci. Stat. Comp., 13 (1992) 923-947.

[4] A.W. Appel, An investigation of galaxy clustering using an asymptotically fast

N-body algorithm, Undergraduate thesis, Princeton Univ., Princeton, NJ, April

1981.

[5] A.W. Appel, An efficient program for many-body simulation, SIAM J. Sci. Stat.

Comp., 6(1985) 85-103.

[6] J. Barnes, A modified tree code: Don't laugh; It runs, J. Comp. Phys., 87 (1990)

161-170.

[7] J. Barnes and P. Hut, A hierarchical 0 { N \ o g N) force-calculation algorithm,

Nature, 324 (1986) 446-449.

74

[8] J. Barnes and P. Hut, Error analysis of a tree code, Astrophys. J. (Suppl.) 70

(1989) 389-417.

[9] S. Bhatt, M. Chen, C.Y. Len and P. Liu, Abstractions for parallel N-body sim­

ulations, Tech. Rep. DCS/TR-895, Yale University, New Haven, CT, 1992.

[10] J. Carrier, L. Greengard and V. Rokhlin, A fast adaptive multipole algorithm

for particle simulations, SIAM J. Sci. Stat. Comp., 9 (1988) 669-686.

[11] T. Chan, Hierarchical algorithms and architectures for parallel scientific com­

puting, Proc. ACM Conf. on Supercomputing (1990) 125-134.

[12] K. Esselink, The order of Appel's algorithm. Info. Proc. Letters, 41 (1992) 141-

147.

[13] D.P. Fullagar, P.J. Quinn, C.J. Grillmair, J.K. Salmon and M.S. Warren, N-

body methods on MIMD supercomputers: Astrophysics on the Intel Touchstone

Delta, Proc. Fifth Australian Supercomputing Conference (1992) 234-241.

[14] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems,

MIT Press, Cambridge, MA, 1988.

[15] L. Greengard and W. Gropp. Parallel Processing for Scientific Computing, Chap:

A Parallel Version of the Fast Multipole Method, SIAM, 1987, 213-222.

[16] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comp.

Phys., 73 (1987) 325-348.

[17] P. Hanrahan, D. Salzman and L. Aupperle, A rapid hierarchical radiosity algo­

rithm, Proc. Computer Graphics '91 (1991) 197-206.

75

[18] L. Hernquist, Performance characteristics of tree codes, Astrophys. J. (Suppl.)

64 (1987) 715-734.

[19] L. Hernquist, Vectorization of tree traversals, J. Comp. Phys., 57(1990) 137-147.

[20] R.W. Hockney and J.W. Eastwood, Computer simulation using particles,

McGraw-Hill, New York, 1981.

[21] R. Janardan, Personal Communication.

[22] J.G. Jernigen and D.H. Porter, A tree code with logarithmic reduction of force

terms, hierarchical regularization of all variables and explicit accuracy controls,

Astrophys. J. (Suppl.), 71 (1989) 871-893.

[23] J. Katzenelson, Computational structure of the N-body problem, SIAM. J. Sci.

Stat. Comp., 10 (1989) 787-915.

[24] J. Makino, Comparison of two different tree algorithms, J. Comp. Phys., 88

(1990) 393-408.

[25] J. Makino, Vectorization of a treecode, J. Comp. Phys., 87 (1990) 148-160.

[26] J. Makino and P. Hut, Performance analysis of direct N-body simulations, /Is-

trophys. J. (Suppl.), 68 (1988) 833-856.

[27] J. Makino and P. Hut, Gravitational N-body algorithms: A comparison between

supercomputers and a highly parallel computer, Computer Physics Reports, 9

(1989) 199-246.

[28] E.M. Mc Creight, Priority Search Trees, SIAM J. Comp. (1985) 257-268.

76

[29] R.H. Miller and K.H. Prendergast, Stellar dynamics in a discrete phase space,

Astrophys. J., 151 (1968) 699-709.

[30] R.H. Miller, K.H. Prendergast and W.J. Quirk, Numerical experiments on spiral

structure, Astrophys. J., 161 (1970) 903-916.

[31] J.K. Salmon, Parallel hierarchical N-body methods, Ph.D. thesis, California In­

stitute of Technology, 1991.

[32] J.P. Singh, Parallel hierarchical N-body methods and their implications for mul­

tiprocessors, Ph.D. thesis, Stanford University, Stanford, CA, 1993.

[33] J.P. Singh, J.L. Hennessy and A. Gupta, Scaling parallel programs for multipro­

cessors; methodology and examples, IEEE Computer (1993) 42-50.

[34] J.P. Singh, C. Holt, T. Totsuka, A. Gupta and J.L. Hennesy, Load balancing

and data locality in hierarchical N-body methods, J. Parallel Distrib. Comput.,

to appear.

[35] B.E. Smits, J.K. Arvo and D.H. Salesin, An importance-driven radiosity algo­

rithm, Proc. Computer Graphics '92 (1992) 273-282.

[36] M.S. Warren and J.K. Salmon, A parallel treecode for gravitational N-body

simulations with up to 20 million particles. Bull. Amer. Astro. Soc., S3 (1991)

1345-1363.

[37] M.S. Warren and J.K. Salmon, Astrophysical N-body simulations using hierar­

chical tree data structures, Proc. Supercomputing '92 (1992) 570-576.

77

[38] M.S. Warren and J.K. Salmon, A parallel hashed oct-tree N-body algorithm,

Proc. Supercomputing '93 (1993) 1-12.

[39] F. Zhao, A n 0 { N) a l g o r i t h m f o r t h r e e - d i m e n s i o n a l N - b o d y s i m u l a t i o n s , M.S.

Thesis, Massachusetts Institute of Technology, Boston, MA, 1987.

[40] F. Zhao and L. Johnsson, The parallel multipole method on the connection

machine, SIAM. J. Sci. Stat. Comp., 12 (1991) 1420-1437.

