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Abstract. We give a constructive proof of the Carathéodory Theorem by

means of the concept of a modulus of local connectivity and the extremal
distance of the separating curves of an annulus.

1. Introduction

The goal of this paper is to give a new proof of the Carathéodory Theorem which
states that if D is a Jordan domain, and if φ is a conformal map of D onto the unit
disk, then φ extends to a homeomorphism of D with the closed unit disk (see e.g. [4]
and [5]). This proof has a feature which appears to be new in that for each ζ ∈ ∂D
it explicitly constructs a δ for each ε when proving the existence of limz→ζ φ(z).
Furthermore, a closed form expression for δ in terms of ε and ζ is obtained. Such
expressions are potentially useful when estimating error in numerical computations.
The proof also makes two seemingly new connections. First, we construct δ from
ε by means of a modulus of local connectivity for the boundary of D. Roughly
speaking, this is a function that predicts how close two boundary points must be in
order to connect them with a small arc that is included in the boundary. Second,
the proof constructs an upper bound on |φ(z) − φ(ζ)| from the extremal distance
of the separating curves of an annulus.

The paper is organized as follows. Section 2 covers background material. Sec-
tion 3 states the main ideas of the proof. Sections 4 and 5 deal with topological
preliminaries. Our estimates are proven in Section 6 and Section 7 completes the
proof.

2. Background

Let N denote the set of non-negative integers.
When A is an annulus with inner radius r and outer radius R, let

λ(A) =
2π

log(R/r)
.

λ(A) is the extremal length of the family of separating curves of A; see e.g. [3].
When X, Y , and Z are subsets of the plane, we say that X separates Y from Z

if Y and Z are included in distinct connected components of C − X. In the case
where Y = {p}, we say that X separates p from Z. In the case where Y = {p} and
Z = {q} we say that X separates p from q.

A topological space is locally connected if it has a basis of open connected sets.
By the Hahn-Mazurkiewicz Theorem, every curve is locally connected; see e.g.
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Section 3-5 of [6]. Suppose X is a compact and connected metric space. Then, X
is locally connected if and only if it is uniformly locally arcwise connected. This
means that for every ε > 0, there is a δ > 0 so that whenever p, q ∈ X and
0 < d(p, q) < δ, X includes an arc from p to q whose diameter is smaller than ε
(although its length may be infinite); again, see Section 3-5 of [6]. Accordingly,
we define a modulus of local connectivity for a metric space X to be a function
f : N → N so that whenever p, q ∈ X and 0 < d(p, q) ≤ 2−f(k), X includes an arc
from p to q whose diameter is smaller than 2−k. Thus, a metric space is uniformly
locally arcwise connected if and only if it has a modulus of local connectivity, and a
metric space that is compact and connected is locally connected if and only if it has
a modulus of local connectivity. Note that if f is a modulus of local connectivity,
then limk→∞ f(k) = ∞. In addition, if a metric space has a modulus of local
connectivity, then it has a modulus of local connectivity that is increasing.

Moduli of local connectivity originated in the adaptation of local connectivity
properties to the setting of theoretical computer science in [1] and [2]. Computa-
tional connections between moduli of local connectivity and boundary extensions
of conformal maps are made in [7]. Here, we attempt to show that this notion may
be useful in more traditional mathematical settings.

3. Outline of the proof

We first observe the following which is proven in Section 4.

Theorem 3.1. If ζ0 is a boundary point of a simply connected Jordan domain D,
then for every r > 0, ζ0 is a boundary point of exactly one connected component of
Dr(ζ0) ∩D.

Suppose ζ0 is a boundary point of a simply connected Jordan domain D. In light
of Theorem 3.1, when r > 0 we let C(D; ζ0, r) denote the connected component of
Dr(ζ0) ∩D whose boundary contains ζ0. Suppose φ is a conformal map of D onto
the unit disk. The fundamental strategy of the proof is to bound the diameter of
φ[C(D; ζ0, r)]. To do so, we first construct an upper bound on the diameter of φ[C]
where C is a connected component of Dr(ζ)∩D for some point ζ in the complement
of D. Namely, in Section 6 we prove the following.

Theorem 3.2. Let φ be a conformal map of a domain D onto the unit disk. Suppose
A is an annulus so that A separates its center from φ[Dr(0)] where r ≥

√
πλ(A).

Suppose C is a connected component of the points of D that are interior to the

inner circle of A. Then, the diameter of φ[C] is at most
√
l2 + 4πλ(A) where

l = 1 +
√
r2 − πλ(A).

Note that Theorem 3.2 applies to non-Jordan domains.
With Theorem 3.2 in hand, some basic calculations, which we perform in Section

6, lead us to the following.

Theorem 3.3. Suppose φ is a conformal map of a Jordan domain D onto the
unit disk. Let ζ0 be a boundary point of D, and let ε > 0. Then, the diameter of
φ[C(D; ζ0, r0)] is smaller than ε whenever r0 is a positive number that is smaller
than

(3.1) sup
0<l<ε

(
exp

(
8π2

l2 − ε2

)
min

{
|ζ0 − φ−1(w)| : |w| ≤

√
(1− l)2 +

ε2 − l2
4

})
.
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When 0 < ε < 1 and l = ε
2 ,

7

16
< (1− l)2 +

ε2 − l2

4
< 1.

Thus, (3.1) is positive when 0 < ε < 1. In other words, for all sufficiently small
ε > 0, there is a positive number r0 that is smaller than (3.1).

So, suppose φ is a conformal map of a Jordan domain D onto the unit disk. We
use Theorem 3.3 to form an extension of φ to D as follows. Let ζ0 be a boundary
point of D. Note that C(D; ζ0, r

′) ⊆ C(D; ζ0, r) when 0 < r′ < r. It follows from
Theorem 3.3 that there is exactly one point in⋂

r>0

φ[C(D; ζ0, r)].

We define this point to be φ(ζ0).
Our next goal is to show that this extension of φ is continuous. That is,

limz→ζ φ(z) = φ(ζ) whenever ζ is a boundary point of D. This is accomplished by
showing that z ∈ C(D; ζ, r) whenever z ∈ D is sufficiently close to ζ. This is where
be begin to use moduli of local connectivity. Namely, in Section 4 we prove the
following.

Theorem 3.4. Suppose g is a modulus of local connectivity for a Jordan curve σ.
Suppose D is an open disk whose boundary separates two points of σ. Suppose z0

and ζ0 are points so that ζ0 ∈ σ ∩ D, z0 ∈ D − σ, and |z0 − ζ0| < 2−g(k) where
2−k + 2−g(k) ≤ max{d(ζ0, ∂D), d(z0, ∂D)}. Then, ζ0 is a boundary point of the
connected component of z0 in D − σ.

Theorem 3.4 was previously proven by means of the Carathéodory Theorem in
[8]. We give another proof here with a few extra topological steps so as to avoid
circular reasoning.

We then obtain the following form of the Carathéodory Theorem from Theorems
3.3 and Theorem 3.4.

Theorem 3.5. Suppose φ is a conformal map of a Jordan domain D onto the unit
disk. Let ζ0 be a boundary point of D. Then, limz→ζ0 φ(z) = φ(ζ0). Furthermore,
if g is a modulus of local connectivity for the boundary of D, then for each ε > 0,
|φ(z0) − φ(ζ0)| < ε whenever z0 is a point in D so that |z0 − ζ0| < 2−g(k) and k
is a non-negative integer so that 2−k + 2−g(k) is smaller than (3.1). Finally, the
extension of φ to D is a homeomorphism of D with the closed unit disk.

The proof of Theorem 3.5 is given in Section 7.
Suppose φ, D, g, ζ0 are as in Theorem 3.5. Without loss of generality suppose

g is increasing. Thus 2−k + 2−g(k) ≤ 2−k+1. Let 0 < ε < 1. We define a positive
number δ(ζ0, ε) so that |φ(z)− φ(ζ0)| < ε when |z − z0| < δ(ζ0, ε). Let:

k(ζ0, ε) = 2−
⌊

sup
0<l<ε

(
8π2

l2 − ε2
+

min

{
log |ζ0 − φ−1(w)| : |w| ≤

√
(1− l)2 +

ε2 − l2
4

})⌋
δ(ζ0, ε) = 2−k(ζ0,ε) + 2−g(k(ζ0,ε))

(Here, bxc denotes the largest integer that is not larger than x.) Thus, by Theorem
3.5, |φ(z)− φ(ζ0)| < ε whenever z ∈ D and |z − ζ0| < δ(ζ0, ε).
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4. Proofs of Theorems 3.1 and 3.4

Theorem 3.4 is used to prove Theorem 3.1. The proof of Theorem 3.4 is based
on the following lemma and theorem.

Lemma 4.1. Let D be a Jordan domain. Let α be a crosscut of D, and let γ1, γ2

be the subarcs of the boundary of D that join the endpoints of α. Then, the interior
of γ1 ∪ α is one side of α, and the interior of γ2 ∪ α is the other side of α.

Proof. Let Uj denote the interior of α ∪ γj . Choose a point p in α ∩D. There is a
positive number δ so that Dδ(p) ⊆ D. Since p is a boundary point of Uj , Uj∩Dδ(p)
is non-empty. So, let qj ∈ Uj ∩Dδ(p), and let Dj be the side of α that contains qj .

We show that Uj = Dj . Uj is a connected subset of D−α that contains a point
of Dj (namely qj). So, Uj ⊆ Dj . On the other hand, Dj is a connected subset of
C− (γj ∪ α) that contains a point of Uj . So, Dj ⊆ Uj .
D1 6= D2 since ∂D1 6= ∂D2. Thus, U1 and U2 are the two sides of α. �

Theorem 4.2. Let D be an open disk, and let σ be a Jordan curve. Suppose the
boundary of D separates two points of σ. Let C be a connected component of D−σ.
Then, C is the interior of a Jordan curve. Furthermore, if p is a boundary point of
C that also lies in D, then p lies on σ and the boundary of C includes the connected
component of p in D ∩ σ.

Proof. Since C 6= D, the boundary of C contains a point of σ; let p denote such a
point.

Since the boundary of D separates two points of σ, if G is a connected component
of D ∩ σ, then G is a crosscut of D.

Let E denote the connected component of p in σ ∩ D. Since C is a connected
subset of D−E, there is a side of E that includes C; let E− denote this side, and let
E+ denote the other side. By Lemma 4.1, each of these sides is a Jordan domain.
Again, since the boundary of D separates two points of σ, if G is a connected
component of σ ∩ E−, then G is a crosscut of E−.

We aim to show that the boundary of C is a Jordan curve which includes E.
To this end, we construct an arc F so that E ∪ F is a Jordan curve whose interior
is C. F will be a union of subarcs of σ and connected subsets of the boundary
of D. To define these subarcs of σ, we define a partial ordering of the connected
components of σ∩E−. Namely, when G1, G2 are connected components of σ∩E−,
write G1 ≺ G2 if G2 is between G1 and E; that is if E and G1 lie in opposite sides
of G2.

Since σ is locally connected, it follows that there is no increasing chain G1 ≺
G2 ≺ G3 ≺ . . .. It then follows that if G1 is a connected component of σ ∩ E−,
then there is a �-maximal component of σ ∩ E−, G, so that G1 � G.

We now define F . Let F ′ = ∂E− ∩ ∂D. Thus, E ∪ F ′ = ∂E−. Let M denote
the set of all �-maximal components of σ ∩ E−. For each G ∈ M, let λG be the
subarc of F ′ that joins the endpoints of G. Let F be formed by removing each λG
from F ′ and replacing it with G.

Thus, F is an arc that joins the endpoints of E and that contains no other points
of E. Let J = E ∪ F . Then, J is a Jordan curve. We show that C is the interior
of J . Note that since J ⊆ E−, E− includes the interior of J .
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When G ∈ M, let G+ be the side of G that includes E (when G is viewed as a
crosscut of D rather than E−), and let G− denote the other side. The rest of the
proof revolves around the following four claims.

(1) For each G ∈M, the exterior of J includes G−.
(2) The interior of J includes

⋂
G∈MG+ ∩ E−.

(3) For each G ∈M, G+ includes C.
(4) The interior of J contains no point of σ.

Claims (2) and (3) together imply that the interior of J includes C. Claim (1)
will be used to prove (4). Claim (4) shows that the interior of J is included in a
connected component of D − σ which then must be C.

We begin by proving (1). Let p′ ∈ G−. Let z0 ∈ C − D. Thus, z0 is exterior
to J since J ⊆ D. We construct an arc from p′ to z0 that contains no point of J .
Let q ∈ λG −G. By Lemma 4.1, G− is the interior of G ∪ λG. So, there is an arc
σ1 from p′ to q so that σ′ ∩ ∂G− = {q}. There is an arc σ2 from q to z0 so that
σ2 ∩ ∂D = {q}. Thus, σ1 ∪ σ2 is an arc from p′ to z0 that contains no point of J .
Thus, p′ is exterior to J for every p′ ∈ G−.

We now prove (2). Suppose p0 ∈ E− belongs to G+ for every G ∈M. By way of
contradiction, suppose p0 is exterior to J . Again, let z0 ∈ C−D. Thus, the exterior
of J includes an arc from p0 to z0; let α denote such an arc. By examination of
cases, α cannot cross the boundary of D at any boundary point of E−. So, it must
do so at a boundary point of E+. But, this entails that α crosses E which it does
not since J includes E. This is a contradiction, and so p0 is interior to J .

Next, we prove (3). Let G ∈ M. Since σ is locally connected, and since p ∈ E,
there is a positive number δ so that Dδ(p) contains no point of any connected
component of σ ∩ E−. However, this disk must contain a point of C, p′. So, [p′, p]
contains a point of E but no point of G. Hence, p′ ∈ G+. Since C is a connected
subset of D −G, C ⊆ G+.

Finally, we prove (4). By way of contradiction, suppose p′ is a point on σ that is
interior to J . As noted above, E− includes the interior of J . So, p′ ∈ σ ∩ E−. Let
G1 be the connected component of p′ in σ∩E−. Let G be a �-maximal component
of σ∩E− so that G1 � G. Since p′ is interior to J , and since J includes G, p′ 6∈ G.
So, G1 ≺ G. This means that G1 ⊆ G−. By (1), p′ is exterior to J- a contradiction.
So, the interior of J contains no point of σ.

By the remarks after (4), C is the interior of J and the proof is complete. �

Proof of Theorem 3.4. Let C be the connected component of z0 in D − σ. Let
l = [z0, ζ0]. Let z1 be the point in l ∩ σ that is closest to z0. Thus, z1 ∈ ∂C. Since
|z1 − ζ0| < 2−g(k), σ contains an arc from z1 to ζ0 whose diameter is smaller than
2−k; call this arc σ1.

We claim that D includes σ1. For, let q ∈ σ1. It follows that

max{|q − z0|, |q − ζ0|} < 2−k + 2−g(k).

Since 2−k + 2−g(k) ≤ max{d(ζ0, ∂D), d(z0, ∂D)}, it follows that q ∈ D.
Since σ1 ⊆ D, ζ0 belongs to the connected component of z1 in D ∩ σ. So, by

Theorem 4.2, ζ0 is a boundary point of C since z1 is. �

Proof of Theorem 3.1. Without loss of generality, suppose Dr(ζ0) does not include
D. Let J denote the boundary of D. It follows that ∂Dr(ζ0) separates two points
of J .
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It follows from Theorem 3.4 that ζ0 is a boundary point of at least one connected
component of Dr(ζ0)− J . We now show it is a boundary point of exactly two such
components. Let E be the connected component of ζ0 in Dr(ζ0) ∩ J . Thus, as
noted in the proof of Theorem 4.2, E is a crosscut of Dr(ζ0). If C is a connected
component of Dr(ζ0)− J , and if ζ0 is a boundary point of C, then exactly one side
of E includes C. By the proof of Theorem 3.1, if C is a connected component of
Dr(ζ0)−J , then the side of E that includes C completely determines the boundary
of C. Thus, ζ0 is a boundary point of exactly two connected components of D− J ;
one for each side of E.

So, let C1, C2 denote the two connected components of Dr(ζ0)−J whose bound-
aries contain ζ0. Each of these components is a connected subset of C−J . So each
is either included in the interior of J or in the exterior of J . Since there are points
of the interior and exterior of J that are arbitrarily close to ζ0, it follows from
Theorem 3.4 that one of these components is included in the interior of J and one
is included in the exterior of J . Suppose C1 is included in the interior of J ; that is,
D ⊇ C1.

Let p ∈ C1, and let U be the connected component of p in D ∩ Dr(ζ0). We
show that U = C1. Since C1 is a connected subset of D ∩Dr(ζ0) that contains p,
C1 ⊆ U . Since U is a connected subset of Dr(ζ0) − J that contains p, U ⊆ C1.
This completes the proof of the theorem. �

5. Preliminaries to proof of Theorem 3.2: polar separations

Definition 5.1. Let A be an annulus, and let Ω be an open subset of A. A polar
separation of the boundary of Ω is a pair of disjoint sets (E,F ) so that whenever
C is an intermediate circle of A, there is a connected component of C ∩ Ω whose
boundary contains a point of E and a point of F .

Our goal in this section is to prove the following.

Theorem 5.2. Let A be an annulus, and let D be a simply connected Jordan
domain. Suppose that A separates two boundary points of D, and let γ1 and γ2 be
the subarcs of the boundary of D that join these points. Then, (γ1 ∩ A, γ2 ∩ A) is
a polar separation of the boundary of D ∩ A.

Our proof of Theorem 5.2 is based on the following lemma.

Lemma 5.3. Let C be a circle, and let D be a simply connected Jordan domain.
Suppose C separates two boundary points of D. Then, there is a connected com-
ponent of C ∩D whose boundary hits both subarcs of the boundary of D that join
these two boundary points of D.

Proof. Let p be a boundary point of D that is exterior to C, and let q be a boundary
point of D that is interior to C.

Let γ1, γ2 denote the subarcs of the boundary of D that join p and q. Let α be
a crosscut of D so that α ∩C consists of a single point; label this point p′. Let Dj

denote the interior of α ∪ γj . By Lemma 4.1, D1 and D2 are the sides of α.
Now, for each j ∈ {1, 2}, we construct a point qj in C ∩ Dj so that p′ is a

boundary point of the connected component of qj in C∩Dj . Since D is open, there
is a positive number δ so that Dδ(p

′) ⊆ D. Let C ′ = C ∩ Dδ(p
′). Thus, C ′ is a

subarc of C. Let q ∈ C ′ − {p′}. Then, q 6∈ α since C ∩ α = {p′}. So, q ∈ D1 ∪D2.
Without loss of generality, suppose q ∈ D1. Relabel q as q1. Let q2 be a point of C ′
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so that p′ is between q1 and q2 on C ′. Again, q2 ∈ D1∪D2. Since D1 is the interior
of a Jordan curve, and since the subarc of C ′ from q1 to q2 crosses the boundary
of D1 exactly once, q2 6∈ D1. So, q2 ∈ D2.

Let Ej denote the connected component of qj in C ∩Dj . By construction, p′ is a
boundary point of Ej . So, the other endpoint of Ej must be in γj since C∩α = {p′}.
Set E = E1 ∪E2. Thus, E is a connected component of C ∩D. One endpoint of E
belongs to γ1, and the other belongs to γ2. This proves the lemma. �

Proof of Theorem 5.2. By assumption, A separates two boundary points of D. One
of these points is interior to the inner circle of A, and the other is exterior to the
outer circle of A. Let p denote a point that is exterior to the outer circle of A, and
let q denote a point that is interior to the inner circle of A.

Let C be an intermediate circle of A. Then, p is exterior to C and q is interior
to C. So, by Lemma 5.3, there is a connected component of C ∩D so that one of
its endpoints lies on γ1 and the other lies on γ2. Thus, (γ1 ∩ A, γ2 ∩ A) is a polar
separation of the boundary of D ∩ A. �

6. Proof of Theorems 3.2 and 3.3

When X,Y ⊆ C, let dinf(X,Y ) denote the infimum of |z − w| as z ranges over
all points of X and w ranges over all points of Y .

The proof of the following is essentially the same as the proof of Lemma 4.1 of
[7] which is a standard length-area argument.

Lemma 6.1. Let A be an annulus, and let Ω be an open subset of A. Suppose
(E,F ) is a polar separation of the boundary of Ω. Then,

λ(A) ≥ sup
φ

dinf(φ[E], φ[F ])2

Area(φ[Ω])

where φ ranges over all maps that are conformal on a neighborhood of Ω.

Proof of Theorem 3.2. Note that r < 1 since C is non-empty.
We begin by constructing a rectangle R as follows. Let z0 be any point of φ[C].

Choose m, l0 so that l0 > l, m >
√
πλ(A), and (1− l0)2 +m2 < (1− l)2 + πλ(A).

Since r2 = (1− l)2 +πλ(A), z is exterior to the outer circle of A whenever |φ(z)| ≤√
(1− l0)2 +m2. Let:

ν1 =
z0

|z0|
(1− l0 +mi)

ν2 =
z0

|z0|
(1− l0 −mi)

Thus, the radius [0, z0/|z0|] is a perpendicular bisector of the line segment [ν1, ν2].
The midpoint of [ν1, ν2] is (1− l0)z0/|z0|, and the length of [ν1, ν2] is 2m. Let:

ν3 =
z0

|z0|
(1 +mi)

ν4 =
z0

|z0|
(1−mi)

Thus, the line segment [ν3, ν4] is perpendicular to the radius [0, z0/|z0|]. Further-
more, the length of this segment is 2m and its midpoint is z0/|z0|.
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Let R be the open rectangle whose vertices are ν1, ν2, ν3, and ν4. That is, R is
the interior of [ν1, ν3] ∪ [ν3, ν4] ∪ [ν4, ν2] ∪ [ν2, ν1].

Note that the diameter of R is
√
l20 + 4m2. Also, the diameter of R approaches√

l2 + 4πλ(A) as (l0,m)→ (l,
√
πλ(A)). It thus suffices to show that φ[C] ⊆ R.

We claim that it suffices to show that φ[C] contains no boundary point of R.
For, since φ−1(z0) is interior to the outer circle of A, the modulus of z0 is larger

than
√

(1− l0)2 +m2 which is larger than l − l0. This implies that z0 ∈ R. Since
R contains at least one point of φ[C], namely z0, and since φ[C] is connected, it
suffices to show that φ[C] contains no boundary point of R.

Since [ν3, ν4] contains no point of the unit disk, it contains no point of φ[C].

By construction, |ν1| = |ν2| =
√

(1− l0)2 +m2. Thus, |z| ≤
√

(1− l0)2 +m2

whenever z ∈ [ν1, ν2]. It follows from what has been observed about l0 and m
that [ν1, ν2] contains no point of φ[C]. So, it suffices to show that [ν1, ν3] ∪ [ν4, ν2]
contains no point of φ[C].

Let us begin by showing that [ν1, ν3] contains no point of φ[C]. By way of
contradiction, suppose otherwise. In order to obtain a contradiction, we construct
a Jordan curve J so that A separates two points of J as follows. Let z1 be a point
of φ[C] that belongs to [ν1, ν3]. Thus, by what has just been observed, z1 6= ν1. Let
σ0 be the pre-image of φ on [ν1, 0]. Let σ′1 be the pre-image of φ on [ν1, z1]. Let
σ′3 be the pre-image of φ on [0, z0]. Since C is connected, it includes an arc from
φ−1(z1) to φ−1(z0); label this arc σ′2. Let w1 be the first point on σ′1 that belongs
to σ′2. Let w2 be the first point on σ′3 that belongs to σ′2. Let σ1 be the subarc of
σ′1 from φ−1(ν1) to w1, and let σ3 be the subarc of σ′3 from w2 to φ−1(0). Let σ2

be the subarc of σ′2 from w1 to w2. Let J = σ0 ∪ σ1 ∪ σ2 ∪ σ3. Thus, J is a Jordan
curve. By construction, A separates two points of J .

Let D′ denote the interior of J . Let Ω = D′ ∩ A. Let E = σ1 ∩ A, and let
F = σ3 ∩A. We claim that (E,F ) is a polar separation of the boundary of Ω. For,
let p = φ−1(ν1), and let q = w1 (where w1 is as in the construction of J). Thus,
p is exterior to the outer circle of A. Since q ∈ C, q is interior to the inner circle
of A. Let γ1 = σ1, and let γ2 = σ2 ∪ σ3 ∪ σ0. Therefore, γ1, γ2 are the subarcs of
the boundary of D′ that join p and q. So, by Theorem 5.2, (γ1 ∩ A, γ2 ∩ A) is a
polar separation of the boundary of Ω. Since σ0 is the pre-image of φ on [ν1, 0], σ0

contains no point of A. Since σ2 ⊆ C, σ2 contains no point of A. Thus, E = γ1∩A,
and F = γ2 ∩ A. Hence, (E,F ) is a polar separation of the boundary of Ω.

By construction, dinf(φ[E], φ[F ]) = m. So, by Lemma 6.1, the area of φ[Ω] is at
least as large as

m2λ(A)−1 > π.

This is impossible since the unit disk includes φ[Ω]. Thus, [ν1, ν3] contains no point
of φ[C].

By similar reasoning, [ν4, ν2] contains no point of φ[C]. Thus, φ[C] ⊆ R, and
the theorem is proven. �

Proof of Theorem 3.3. Suppose r0 is a positive number that is smaller than (3.1).
We begin by defining an annulus A as follows. Choose l so that 0 < l < ε and so
that

r0 < exp

(
8π2

l2 − ε2

)
min

{
|ζ0 − φ−1(w)| : |w| ≤

√
(1− l)2 +

ε2 − l2
4

}
.
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There is a positive number r1 so that

r1 < min

{
|ζ0 − φ−1(w)| : |w| ≤

√
(1− l)2 +

1

4
(ε2 − l2)

}
and so that

r0 < exp

(
8π2

l2 − ε2

)
r1.

Since l < ε, r0 < r1. So, define A to be the annulus whose center is ζ0, whose outer
radius is r1, and whose inner radius is r0.

We now show that the diameter of φ[C(D; ζ0, r0)] is smaller than ε. First, note

that πλ(A) < (ε2 − l2)/4. Set r =
√

(l − 1)2 + πλ(A). Then, A, r, and l satisfy
the hypotheses of Theorem 3.2. By Theorem 3.2, the diameter of φ[C(D; ζ0, r0)] is
at most √

l2 + 4πλ(A).

We have

l2 + 4πλ(A) = l2 +
8π2

log(r1/r0)

< l2 + ε2 − l2 = ε2.

Thus, the diameter of φ[C(D; ζ0, r0)] is smaller than ε. �

7. Proof of the Carathéodory Theorem

We now conclude with the proof of Theorem 3.5. Set r0 = 2−k + 2−g(k). By
Theorem 3.4, z0 ∈ C(D; ζ0, r0). By Theorem 3.3, |φ(z0) − φ(ζ0)| < ε. Thus,
limz→ζ0 φ(z) = φ(ζ0).

We now show that this extension of φ is injective. It suffices to show that
φ(ζ0) 6= φ(ζ1) whenever ζ0 and ζ1 are distinct boundary points of D. By way of
contradiction, suppose φ(ζ0) = φ(ζ1). Let p = φ(ζ0).

We construct a Jordan curve σ as follows. Let α be a crosscut of D that joins
ζ0 and ζ1. Thus, φ[α] is a Jordan curve that contains no unimodular point other
than p. Let σ = φ[α].

We now construct an annulus A that separates two points of σ. Choose a positive
number R so that R < max{|z−p| : z ∈ σ}. Choose another positive number r so
that r < R. Let A be the annulus whose center is p, whose inner radius is r, and
whose outer radius is R. By the choice of R, there is a point q ∈ σ that is exterior
to the outer circle of A. Let γ1 and γ2 be the subarcs of σ that join p and q. Let
E = γ1 ∩A, and let F = γ2 ∩A. Finally, let Ω = A∩D (where D is the unit disk).
Then, by Theorem 5.2, (E,F ) is a polar separation of the boundary of Ω. Now,
as r → 0+, λ(A) → 0. However, by the choice of R, dinf(E,F ) is bounded away
from 0 as r → 0+. Thus, by Lemma 6.1, Area(φ−1[Ω]) → ∞ as r → 0+. Since
φ−1[Ω] ⊆ D, this is a contradiction. Thus, φ(ζ0) 6= φ(ζ1).

Finally, we show that this extension of φ is surjective. Let ζ be a point on
the unit circle. It follows from the Balzano-Weirstrauss Theorem that there is a
boundary point of D, ζ1, so that ζ1 ∈ {φ−1(rζ) : 0 < r < 1}. Thus, φ(ζ1) = ζ by
the continuity of φ.
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