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Production Risk and the Estimation ofEx-ante Cost Functions

Abstract

Costfunction estimation underproduction uncertainty is problematic becausethe relevant cost is
conditional on unobservable expectedoutput. If input demand functions are also stochastic, then
one has a nonlinear errors-in-variables model and standard estimation procedures typically fail to
achieve consistency. Butbyexploiting the full implications of theexpected profit maximization
hypothesis that gives rise to ex-ante costfunctions, thispaper shows that it is possible to
effectively remove the errors-in-variables problem, such that consistent estimation of the
parameters of thecost function of interest is possible. AMonte Carlo experiment illustrates the
advantagesof the proposed procedure as well as the pitfalls of other existing estimators.

Key words: Cost function, duality, expected profit maximization, nonlinear errors-in-variables,
stochastic production.

1. Introduction

Following the pioneering work of Shephard (1953), Diewert (1971) and McFadden

(1978), the cost function approach has proven very useful and popular in applied production

studies. Insofar as the hypothesis of cost minimization is correct, estimating a cost function is

usually deemed preferable to estimating a primal specification of the technology because, by

using input prices instead of input quantities on the right-hand side of estimating equations, one

removes a potential source of simultaneous equation bias. Specifically, in the cost function

framework input choices are modeled as a function of input prices and the output level. But, as

emphasized in the recent article by Pope and Just (1996), a problem then arises when the ,

productiontechnology is inherently stochastic. Sucha case is very important in agricultural and

environmental production models, where climatic and pestfactors outside of the producer's

control affect realized output in a nontrivial fashion. When producers make their input choices

prior to the resolution ofthis production uncertainty, then thestandard costfunction specification

(which is conditional on realized output level) is notrelevant. In this setting one should instead



study input choices conditional on the expected output level, i.e., estimate the structure of the
"ex-ante" cost function.

Estimating ex-ante cost functions turns out to be problematic because the expected output

level that isrelevant for the cost minimization problem is not observable. Pope and Just (1996)

propose asolution that estimates the expected output level jointly with the cost function model,

and they argue that their approach yields consistent estimation ofthe parameters ofthe cost

function. In this paper we show that such aconsistency property in fact does not hold for their

ex-ante procedure. Essentially, the approach in question boils down to using input quantities as

right-hand-side variables to estimate the expected output level. Hence, insofar as input choices

do not hold deterministically (at least as faras the econometrician is concerned), measurement

error problems and/or simultaneous equation problems will continue to affect the model, and the

resulting estimates are typically inconsistent.

Thecruxof thematter is that, in theex-ante costmodel, thereare really twodistinct

sources oferrors; the primal error due tothe stochastic production function, and input demand

errors. The joint presence ofthese sources oferrors is crucial. As shown in this paper, in general

the presence ofthese two types oferrors implies that the ex-ante cost model that one obtains

belongs tothe class ofnonlinear errors-in-variables models (Y. Amemiya 1985; Hsiao 1989).

Unlike in simultaneous equations models, where the relation of interest is specified to hold

between observable variables, in an errors-in-variables model one has a relation between

unobservable variables. If the errors-in-variables model were linear, then one could exploit a

useful equivalence between linear errors-in-variables models and linear simultaneous equations

models and obtain consistent estimation procedures. Fuller (1987) provides an extensive analysis

of linear errors-in-variables models. But in fact the ex-ante cost function model is inherently

nonlinear. As noted by Y. Amemiya (1985), a nonlinearerrors-in-variablesmodels is not



isomorphic toa simultaneous equations model, and for such nonlinear errors-in-variables models

it is notoriously verydifficult to obtain estimators thatare consistent in the usual sense.

In thispaper we provide a careful characterization of theex-ante cost function problem

and detail the conditions that give rise to a nonlinearerrors-in-variablesproblem. In such a

setting, theex-ante procedure implemented byPope and Just (1996) isbound to lead to

inconsistent estimates. Appeals to procedures thatwork in a simultaneous equations setting,such

as three-stage least squaresusing instrumental variables, are also unlikelyto produce consistent

estimates. But for the stochastic productionsetting of interest here, however, we are able to

derive a procedure that in fact yields consistentestimators. The procedure exploits the economic

context that makes it interesting to estimate the ex-ante cost function, namely, expected profit

maximization. By appealing to behavioral implications of expected profit maximization, we are

able to effectively remove the errors-in-variables problem from the model. Because of its

simplicity, we believe that this approach is of considerable interest for a number of applications.

Our claims about the inconsistency of existing estimators of the ex-ante cost function, and the

consistency ofour proposed procedure that exploits the implications of expected profit

maximization, are illustrated by means ofa Monte Carlo experiment. Related implications for

modeling the dual structure of stochastic production are discussed.

2. The problem

The problem is that of estimating the parametersof the cost function corresponding to a

stochastic production function. Of course, under production uncertainty it is not obvious that

there existsa cost function that is "dual" to the production function. But following Pope and Just

(1996), consider the ex-ante costfunction thatarises naturally in the context of expected profit

maximization (a standard representation of theproducer optimization problem underthe

assumption of riskneutrality). Specifically, let thestochastic production function begiven by



y =G(x, ^o)»where y is realized output, x is the vector ofinputs, f is a random term in

production and 6^ is the vector ofall parameters appearing inthe production function. The

producer's expected profitmaximization problem iswritten as:

•E pG{x,e\OQ)—wx^ (0

where p is output price, w denotes the input price vector and E is themathematical

expectation operator (which is here defined over the distribution of the random variable s ).

Nowdefinethe expected outputfunction as g(x; 6)^ E G(x, s\ O^) , where 9 is the vectorof

all relevantparameters. As madeexplicitby our notation, in general 6 includes parameters of

the distribution of the random variable €. Then the expected profit maximization problem can

be equivalently expressed in terms of two distinct problems. First, the producer cho.oses the

optimal input vector to produce a given level of expected output, that is (s)he solves:

y<g(x;0)] (2)

max

X

mm

X

wx

where y denotes a given expected output level. Let x* = h(yyW;0) denote the solution to

problem(2). Then the ex-ante cost function is defined as C(J7, w;0) = w'h(yy w;0) . Given the

optimal input choices summarized by C(p, w;0), the second step is for the producer to choose

the optimal level of expected output thatmaximizes expected profit, that is to solve: ^

m^ {py - Ciy, w; 0)}. (3)
y

1 Sufficient conditions for aunique solution to this maximization problem require the ex-ante
cost function C{y,w;0) to bestrictly convex in p, which in turns requires the expected output
function g(x;0) to be strictly concave in x. These curvature properties are assumed here.



Because C(y, w; 0) here describes the relevant cost minimization behavior, it isoften of

considerable interest to estimate itsparameters. Unfortunately, is conditional on

expected (orplanned) output^,which is not observable, and hence direct estimation ofthe ex-

antecost function is not feasible. As Popeand Just (1996) correctly note, previous applications

with datathat likely weregenerated bya stochastic process (such as agricultural production data)

have simply ignored the problem. That is, researchers have routinely estimated C{^y,\\'\0),

where y is the observed (ex-post or realized) output, when in fact theyshould have been

estimating C{y,w\0). This approach, which is here labeled as the "standard" approach,

essentially uses observed output y as the proxy for the unobserved expected output y . But

because y "measures" the true variable y onlywith error, naive (least-square) type estimators

that ignore this problem lead to inconsistent estimates.

To overcome the inconsistency of the standard cost function approach when production

is stochastic, Pope and Just (1996) propose an alternative and original estimation procedure

which entails estimating y simultaneously with the ex-ante cost function. First, recall that '\fy

were observable the parameters 0 could be estimated efficiently by fitting the system ofn input

demand functions h{y^ w\ 9), which by Shephard*s lemma are related to the ex-ante cost

function by h{y^ w; 0)s VJ^[y^w; 0). But because y is not observable, Pope and Just (1996,

p. 238) propose to replace it by the output level which is part of the solution to the problem:

max y-AC(y,w;&)~wxj. (4)
y,Z,w

Denote such a solution by y^ = fi{x\ G). But then, under standard regularity conditions, by

duality theory it must be that 6) s g(A:; 0) [see,for example, theorem 5.5 in Jehle andReny



(1998)] 2 Hence, this method boils down to estimating the set ofinput demand equations with^

replaced by the expected output function g(;c; 6). Although this point was perhaps not

emphasized enough, itwas certainly articulated explicitly by Pope and Just (1996) (e.g., in the

first unnumbered equation atpage 240). With such a substitution, and in our notation, the input

demand equations are written as:

x=h{g{x;ff),w\e)-\-e " (5)

where e is the error vector of input demands.

In estimating theex-ante cost model. Pope and Just (1996) address two problems. First,

asthey emphasize, popular functional forms for the ex-ante cost function C(^, w\ &) (such as the

translog) donotadmit a close-form solution forthe underlying production function [i.e., an

explicit solution forthe problem in(4)]. In such a case, the method thatthey propose can be

useful because it provides a procedure that constructs g(x; |9) numerically as part of the

estimation algorithm. Of course, this observation should not obscure the basic point that, in their

approach, gCx; 6) (whether analytically or numerically) is being used for the, unobserved

expectedoutput level y . A second problem is that not all parameters are estimable by using the

input demand equations in (5). Intuitively, this is due to the fact that with (5) one is trying to

estimate a cost function without observing output, which means that equations (5) define a

simultaneousequation system that is not identified. To overcome this problem Pope and Just

(1996, p. 240) suggest adding an equationto the estimatingsystem. In our notation, one would

2Regularity conditions include that g{x\6) be quasi-concave in x, which is guaranteed by the
assumed curvature conditions for expected profitmaximization [i.e., g{x\6) is concave].



then estimate a system of «+1 equations given by the n input demand equations in (5) plus the

production function equation, that is:^

y = g(x;0) + u (6)

where u is an error term induced by the random variable e (i.e., u = y —E G{Xi€\$)\).

If theexpected production function is such that the pararneter vector 6 is identified in

equation (6), thenthe system of equations (5)-(6) canbeused to estimate this parameter vector.

But although joint estimation of equations (5)-(6) is in principle possible, it is now apparentthat

there is still a majorunresolved issue in this setting. Specifically, the system oin +1 equations in

(5)-(6) entails that the (stochastic) vector of input quantities x appears on the right-hand side of

all equations. This simultaneity feature was not accounted for in Pope and Just (1996).

Consequently their proposed estimation procedure, which from now onward we label the "naive

ex-ante" approach, is unlikely to yield consistentestimates. Recognizing that simultaneous

equation bias might be a problem has led Pope and Just (1998) to implement, in a related setting,

a three-stage least squares estimation procedure that uses instrumental variables (IV). But we

will argue in the following section that such "IV ex-ante" approach is also unlikely to yield

consistent estimates because, for reasonable specifications of the stochastic nature of input

demands, the simultaneous equations representation of (5)-(6) is not the appropriate one. Rather,

when both production and input demands are stochastic, the model that is obtained gives rise to

an errors-in-variables problem. Because the model is also inherently nonlinear, estimation

techniques that yield consistentestimators for simultaneous equation models do not typically

work here (Amemiya 1985;Hsiao 1989).

^ Again, ifthe form ofg(.) that is consistent with the parameterization ofC(.) is not known,
then g(.) can be retrieved numerically.



3. Stochastic input demsDds and the errors-in-variables problem

It is clear at this point that the stochastic nature of input demands plays a crucial role in

the properties ofthe ex-ante estimators discussed in section 2. To gain more insights into this

problem itisnecessary tobe precise about the source ofthese error terms. Here we analyze in

detail what McElroy (1987) has called the "additive generalized error model" (AGEM). which

provides an attractive and coherent explanation for stochastic input demands. Specifically, in the

AGEM model producers are assumed tominimize cost conditional on a production function

which, in our setting, can be written as g(x-e;0), where the vector e is parametrically known

to producers but unobservable to theeconometrician. Hence, optimal input choices are written

as;

x = h(y,w;0)+e '• (7)

with total productioncosts C = w x given by:

C = Ciy.w;0) + w-e . (8)

Because the vector e is not observable, the determinist input demand setting at the producer level

translates naturally into an internally consistent stochastic input demand setting for the purpose of

estimation (McElroy 1987).

Although clearly appealing from an economic point of view, the AGEM rationalization

for stochastic input demands, in conjunction with the assumed stochastic production structure,

turns out to create a problem for the ex-ante cost function model. Specifically, although one can

find the expected output function g(.;^ dual to the cost function being used [by solving (4),

say], the argument of this function that is relevant for the purpose of computing expected output

y cannot be observed. In other words, if we define x sx-e, then the system of input demands

and production function implied by the AGEM model is:

x =h(g{x;0),w;0) +e (9)



y=g(x,0) +u (10)

where g(x,0) =y . Clearly, the system ofequations (9) and (10) cannot be estimated directly

because jc isnot observed. Indeed, the problem here iscompletely analogous to the one that we
I ^

have set out to solve [i.e., estimating C[y, when y is not observed]. Thus, with stochastic

input demand and stochastic production, the estimating equations for the ex-ante cost model

belong to the class ofnonlinear errors-in-variables models. As mentioned earlier, such models

are conceptually distinct from simultaneous equation models, and the estimators that apply to the

latter do not typically work for the former [Y.Amemiya(1985)].

It should beemphasized thatthejointpresence of error terms inthe input demand

equations and inthe production equation iscrucial to giving rise to the errors-in-variables

problem. Specifically, if production were not stochastic (w = 0), then y = y and tlie errors-in-

variables problem disappears. Similarly, if input demands were nonstochastic, thenx = x ^and

again the model could be rid ofthe errors-in-variables problem.^ Finally, we should note that

theAGEM specification per se is not crucial inorder to obtain an errors-in-variables model.

Other internally consistent rationalizations for the stochastic termsof inputdemands, suchas the

assumptionthat agents make optimizationerrors,would yield an errors-in-variables problem as

well when stochastic input demands are combined with a stochastic output.

4. A "full information" solution

Existing econometric results on the consistency of estimators for the nonlinear errors-in-

variables problem are rather discouraging for the purpose'of estimating the parameters of our ex-

4 Ofcourse, if e s 0 the system of n input demands would have tohold deterministically,
whereas if ms 0 then the output equation would need to hold deterministically. Because such
cases are patently not interesting from an empirical point of view, they can safely be ignored
here.
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ante cost function. The standard instrumental variable approach that applies to nonlinear

simultaneous equations models fails to achieve consistency in the usual sense. Y. Amemiya

(1985) has investigated the use ofan alternative notion ofasymptotic convergence that applies

whenerrorvariances (of the unobservable variable) are smalland sample sizes are large. But

such anasymptotic theory may notapply to typical econometric problems, where one cannot

expect replicated experiments as the sample size increases. Hausman, Newey, Ichimura and

Powell (1991) andHausman, Newey and Powell (1996) also obtain a consistent estimator for a

class of nonlinear errors-in-variablesmodelswhen there is a single repeated observation on the

unobservedregressor. But for the purpose of estimatingex-ante cost functions, such repeated

observationson expected output are usually not available (especiallywhen estimation relies on

time series data).

Fortunately, an alternative procedureto estimate the ex-ante cost function suggests itself

in the context of the economic problem where the ex-ante cost function is relevant. Specifically,

recall that interest in the ex-ante cost function C(7, w;0) is motivated here by the assumption

that producers solve the expected profit maximization problem in equation (1). Because this

expected profit maximization problem can equivalently be written as (3), then from the optimality

condition ofproblem (3) one finds the solution y' = s(p,w;0), where the parametric structure

of the ex-ante supply function s{p, w;0) is implied by the structure of the ex-ante cost function

C(ytW;0). This optimal expected production level dependson the (exogenously given) output

price p. If such an output price is observable(as it is usually the case) then p provides the

obvious "instrument"for the unobserved expected output, and the function s{p,w\0) provides

the correct nonlinear mapping for this instrument. Thus, in this setting one can estimate the

parameters of the cost function by fitting the system of n input demand equations:

x=h[s{p,w\ff),w,6)-\-e . (11)
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Ifso desired, the system ofinput demand functions in (11) can be supplemented by the

expected output function equation, that is:

y = s{p,w,0)-\-u

Note, however, that here equation (12) is not necessary in order to identify all the parameters of

the model. Unlike the ex-ante input demand system in (5), the system in (11) allows for the

estimation ofall parameters (again, this is made possible by the presence ofthe output price p).

The approach that we have suggested, based on the expected profit maximization

problem actually solved by the producer, will yield consistent estimates ofthe parameters ofthe

underlying technology because iteffectively removes the errors-in-variables problem. It bears

repeating that our proposed approach does not require additional assumptions, relative tothose

inherent in the setting being analyzed. Specifically, thehypothesis of expected profit

maximization is already made to motivate interest inthe ex-ante cost function; and, given that,

the shape ofthe ex-ante supply function j(/7, isfully determined by the cost function

C{y,w;6) via the optimality conditions for problem (3). Although this alternative route to

estimate the ex-ante cost function is reasonablystraightforward, for many functional forms

specifications of C(y, w\0) onewillnotbeableto solve explicitly for the ex-ante supply

function s{p,w^ff). In such a case one could numerically retrieve 5(/7,w,^), from a given

specification for C{y,w;0), as partof theestimation routine [in a manner similar to that

implemented by Pope and Just (1996) for their procedure].

5. A Monte Carlo illustration: the generalized CES model

To illustrate the properties of the alternativeestimators for the ex-ante cost function, we

have constructed a Monte Carlo experiment that carefully represents all the features of the

problem being analyzed. For this purpose, we work with a cost function that admits,a close form
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solution for the dual production function. Hence, we can avoid the complications ofretrieving

this function numerically as part ofthe estimation routine, a computational task that featured

prominently in Pope and Just (1996) but which is really peripheral to the main issue analyzed

here. Specifically, we consider a generalized constant elasticity ofsubstitution (CES) cost

function that allows for decreasing returns to scale (such that itcan be consistent with the

expected profit maximization problem that has been used to motivate the ex-ante cost function).

5.1 Experiment desi^

TheAGEMspecification of this CES cost function iswrittenas:

1
N-

C = y Y.oCiwY" +X!w,e, (13)
\/=i

M ^

where a,>0 (Vi), a>^, \ P>\. The restriction^a, =1ensures
(=1 '=1

that the cost function is homogeneous of degree one in inputprices. The parametercj is the

constant Allen-Uzawa elasticity of substitution between inputs. Finally, /? is a parameter that

controls the curvature of the cost function in y, andthe condition /? > 1 ensuresthat the cost

function is (strictly) convex in y, From Shephard's lemma, input demands consistent with this

cost function are:

r « \-JL U-<T
Xj = ayw^ +e,. i = . (14)

V-!r=l J

Consistent with the AGEM specification, the termse, are parametrically known to the

producers but are treated as random variables by the econometrician. Hence, the parameters

vector to beestimated is 9 s (aj o) . Forthis particular cost function it is verified thatthe

(expected) production function [i.e., the solution.to problem (4)] can be derived explicitly as:



g-i

a
\"( ~iJ

1=]

g{x-e;0)= ^ar-(x,-e,)

13

(15)

Hence, equation (15) here can be used to implement the ex-ante methods discussed earlier.
•?-

Ifproducers maximize expected profit, then they will choose the level ofexpected output

such that the ex-ante marginal cost equals output price, i.e., they will choose the level ofexpected

output s{p,w;0):

] 1
/ / „ \I jj \^-i I "

s{p,w,9)= —
\

1-CT
Ui w

/

fi)

Hence, thesupply function in(16) here can beused to implement ourproposed method based on

expected profit maximization.

Now the Monte Carlo experiment proceedsas follows.

A. First, we choose thenumber of inputs to befour (i.e., n = 4), and we set thetruevalues of

the parameters as follows:

a,=0.\ , ^2=0.2 , a,=03 , ^4=0.4 , /3=12 , a- = 0.5 .

B. Next,we choosethe design matrixof exogenous variables (the vectorsof expected outputy

and of input prices w), which isthen held fixed throughout. Here we use an initial sample of

25 observations taken from a recentapplication using agricultural data (see the Appendix for

more details). All variables are normalized to equal unity at their sample mean.

C. For each replication j = 1,..., , we construct a pseudo sample of optimal inputquantities

by using equations (14), with the vector e generated as iV(0,n). Similarly, for each

replicationwe construct a pseudo sample of stochasticoutput as y = y + Uy where the

random term u isgenerated as A^(0,^^) . The standard deviation ofeach random variable

(16)
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was set to 10 %ofthe corresponding mean.^ Thus, for the output stochastic term we set

(p .= 0.1. For the covariance matrix of the terms we consider three cases: one with

independent input demand errors (t^o)' with such errors being negatively correlated

(n,) and one with these input errors being positively correlated (Uj). Specifically, the

three covariance matrices for the vector e that we consider are:

a =

(D\^ PiO}^^CO,,
PiCO^^CO^^ 0)22 Pi^22^Z3 Pi^22^4A

P,^U^33 A^22^33 ^33 Pi<^3i<^AA
.2

Pi^22^4A P,^33^44 ^44

For all cases we set = 0.01, 0)22 = 0.02, (2)33 = 0.03 and = 0.04. For Qq we set

Pq= 0, for Q, weset p^ = -0.3 and for Qj P2 ~ •

D. Foreach covariance structure, wegenerate 2,000 pseudo-random samples of observations

(i.e., A'̂ =2,000) using 1,000 random draws and its 1,000 antithetic counterparts.^ For each

s^ple, five models are estimated:

(i) Thetruemodel consisting of four input equations in (14). The results from this

model provide a useful benchmarkfor evaluatingthe feasible estimators.

(ii) Thestandard model, which is the same as the truemodel butwithy replacing y .

(iii) The naiveex-anteprocedure suggested byPope and Just (1996), consisting of five

equations [four inputequations andthe outputequation with the structureof

equations (5)-(6)], that is:

7= 0,1,2 .

5 Given thenormalizations chosen fortheexogenous variables, themean of is approximately
equal to a, and the mean of y is equal to one.

6 For each draw we checked the regularity conditions (x, - e,) >0, which turned out to be
always satisfied.
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o

f" 1 CT-1 (ff-l) ( " \
=

) k*=1 J

f" '
a

y = + u

\A:=1

\~a

+ 6i 7 (17)

(18)

(iv) The IVex-ante procedure suggested byPope and Just(1998), which estimates

equations (17) and (18) bynonlinear three-stage least squares using a set of

instrumental variables (which includes output price p )J

(v) The newapproach proposed in this paper, which usesthe ex-antesupply function

s{p,w\6) mofthe unobserved expected output y .8 Because this approach

relies on the implications of expectedprofit maximization, it is labeled

" max E n Hence, here we fit the following system of four input demand

equations plus the output equation:

r

\f^/

y =
P

VA;=I /

1-<T
k'^k

VA=1 y

(l-(T) 0-/})
/ = ,4 (19)

+ u . (20)

7 We rely on four primitive instrumental variables: three input prices (deflated by the fourth
input price) and the output price (deflated by the fourth input price). We use the four primitive
variables plus their squares and cross-products, which together with the constant yields a total of
15 instruments that are used in the IV procedure.

8 Consistent with the assumption ofexpected profit maximization under stochastic production,
the price series used in the Monte Carlo experiment was generated as p = Cp(y,w; 0), where

is readilyobtained from theCEScost function specification in the text.Note that
this output price series is used byboth the IVex-^te approach and byourproposed procedure.
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5.2 Estimation

Each ofthe alternatives entails estimating asystem ofM equations using T observations.^

Thus, for each alternative the model can be written as K=/(Z, ^)+v,where Yis the TM x1

stacked vector ofthe left-hand-side variables, /(.) is anonlinear (vector valued) function, Z is

the (stacked) TM xKmatrix ofall right-hand-side variables, 9 isthe vector ofall parameters to-

be estimated and v is the TM x 1 stacked residualvector. The error terms are assumed to be

contemporaneously correlated but serially independent, that is, E vv' =T ^ /y, where is

the My.M contemporaneous covariance matrix and Ij isthe identity matrix oforder T. For

fourof themodels considered (true, standard, naive ex-ante and our newprocedure) the system

of interest is treated as a standard nonlinear seemingly unrelated regression model. Iterated

minimumdistance estimation is used (which converges to the maximum likelihood estimator).

Specifically, at each iteration stagethe vectorof parameters is found by minimizing:

(y-/(z,60)'(^-' ®/,)(r-/(z,0))

where ^ is the current estimate of the contemporaneous covariance matrix, which is updated at

each iteration step until convergence. For the IV estimator, on the other hand, at each iteration

the vector of parameters is found by minimizing:

(r- /(z,0))' (t"' <s>{w(w'wy' fF'))(y- /(z, 0))

where W is the T x ^ matrix of all instrumental variables, and again the estimate of the

contemporaneous covariance matrix 4^ is updated at each iteration step until convergence.

9Note thatthe first twomethods entail M = 4, whereas for the last three methodsM = 5 .

Thus, this yields what is usually referred to as the nonlinear three-stage least squares
estimator (e.g., T. Amemiya 1985). Asmentioned earlier, here ^ = 15.
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5.3 Results

The results are summarized inTables 1to4. Table 1reports the average percent bias for

each parameter, for each estimation method and for all three covariance structures considered. ^̂

1 ^
Average percent bias is computed as: —

V y

X100,where Oj is the estimated

parameter in the j'* replication. All five methods do areasonable good job at estimating the

mean parameters a,. Also, the new model that we are proposing, based on the expected profit

maximization, isessentially unbiased and performs aswell asthe (uiifeasible) true model. It is

clear, ontheother hand, that both the standard and the ex-ante procedures yield estimates that are

affected by considerable bias. Specifically, the standard model gives very poor estimates ofthe

scale parameter P (asexpected, because this is the parameters attached to the unobserved output

level). The naive ex-ante model does a better job than the standard model at estimating thisscale

parameter, although theestimated P isaffected by considerable bias inthis case aswell.

Furthermore, this ex-ante model provides a much more biased estimator for the elasticity of

substitution cr (forexample, for thecase of uncorrelated e,, the naive ex-ante estimate of cr has

an average bias of 31%,whereas the standard model's bias is less than 1%). The IV ex-ante

procedure performs better thanthe naive ex-ante approach, although estimates are still affected

by considerable bias.^^ As expected, changing the correlation structure ofthe e, does not affect

the performance of the truemodel nor that of ourproposed model. It does not affect the

performanceof the standard model either, which is intuitivelysensible (because for the standard

n

^1 Because = only threeparameters need to beestimated.
/=]

The performance of the IV estimator could be improved by the bias adjustment method
proposed by Y. Amemiya (1990). But such a computationally-intensive method still does not
lead to consistency, and in our context is bound to be inferior to the procedure we are proposing.
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model it is the random term u embodied in y, not the random vector e, that leads to

inconsistency). But changing the correlation structure ofthe e, does affect the performance of

the naive ex-ante model; with positively correlated e,- the bias in the scale parameter gets larger

and the bias inthe elasticity ofsubstitution gets smaller, whereas theopposite holds true for

negatively correlated .

The conclusions based onthe average percent bias ofTable 1aresupported bythe

average percent root mean square errors (RMSE) reported in Table 2. The entries ofthis table

are computed as
1 ^
-s , andthus account for the samplingvarianceof each

estimator (in addition to the bias). From Table 2 it isclear that the performance ofourproposed

model is comparable to that of the truemodel, whereas both the standard model and the ex-ante

procedure yield estimates thMare far less precise.

Table 3 reports the average ^, over all replications, for each equation ineach

estimation method. Specifically, the B? for each equation is defined asthe square of the

correlation coefficient between observed and fitted left-hand-side variable. This table provides an

ex-post check on the signal-to-noise ratio thatwehave implemented in ourMonte Carlo

experiment. Note that the "fit" of the variousmodels is quite similar to that ofmany empirical

applications. In particular, in somesenseourexperiment has beenconservative in that the

magnitude of the production error that we have used is relatively large comparedwith the

magnitude of the input demand errors (thus, our set-up is somewhat slanted in favor of both ex-

ante procedures relative to the standard procedure).

Finally, Table 4 illustrates the finite-sample properties of the five estimators considered

as the sample size increases. Specifically, to get an idea of the asymptotic convergence of the

various estimators we allow the sample size to increase from 25 to 400 (each time we double the
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design matrix, such that the exogenous variables are multiple repeats of those reported in the
Appendix). For the true model and our proposed model it is clear that the small-sample bias
converges to zero as the sample size is increased. On the other hand, for the standard model and

for both ex-ante procedures, the bias does not seem to be influenced by the increasing sample

size. In particular, it is quite clear that the naive ex-ante procedure proposed by Pope and Just

(1996) leads to inconsistent parameter estimates. Indeed, the naive ex-ante procedure arguably

produces worse results than the standard approach. Ofcourse, the ranking ofthese two

inconsistent estimators likeiy depends on the magnitude ofthe randoniness ofthe production

function relative to the randomness of the input demand functions (recall that the errors-in-

variables problem isdueto u inthestandard model, whereas it is dueto e in thenaive ex-ante

model).

6. Further discussion

The results of ourMonte Carlo experiment provide a compelling example of the

deleterious consequences of ignoring production risk when estimating a cost function. Indeed,

these results are a bitmore general, inthat it isnot even necessary topostulate production risk (in

addition to input demand errors) inorder to obtain an errors-in-variables cost function model.

Theabove setting would in fact be unchanged if no production riskwere present, but the error

term u arose in amanner similar to the e,: i.e., from an AGEM rationalization. Inother words,

onecould postulate that the profit-maximizing agents have a production function written as

y = g(x -e;0) + u, where the terms e and u areknown to theproducer butunobservable to

the econometrician. Defining J? = ^ - M, the relevant cost function for this case is alsowritten as

C{y^w;0), where y is not observed by the econometrician. Hence, estimation of a "standard"
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cost function, conditional on observed output, is a problematic task for awider (and realistic)

class ofproblems thanthatof production uncertainty.

But regardless ofthe source ofthe production error u, the approach that we have

suggested, based on the expected profit maximization problem actually solved by producers,

yields consistent estimates ofthe parameters ofthe underlying technology. As mentioned earlier,

apractical problem may be posed by the fact that for many flexible specifications ofC(y, w; 0)

one cannot solve explicitly for the ex-ante supply function s{p,Wf0). Insuch a case one could

numerically retrieve s{p,w,0) as part ofthe estimation routine. Alternatively, and perhaps

more tothe point, one can recognize that, in this context, it is better tospecify and estimate an

expected profit function rather than anex-ante cost function. Specifically, if the solution to

problem (1) is written as Ii{p,w\9), then under standard assumptions this expecte'd profit

function exists and is continuous, linearly homogeneous andconvexin (/?,w). This expected

profit function iscompletely analogous to the standard profit function that obtains under

conditions of certainty [as analyzed, for example, by Lau(1976)]. Hence, byHotelling lemma

we obtain s{p,w;O) =Up{p,w,;0) and h(s(p,w;0\w;6) =-V„n(p,w;0). Thus, instead

of specifying anex-ante cost function C(y, w; 0), under production uncertainty the analysis can

proceed by specifying the parametric structure ofn(p, w; 0), from which one can derive a

coherent set of output supply and input demandequations that can be used in estimation.

To illustrate, one could adopt Lau's (1974) normalizedquadratic specification for

n(p, w; 0). In such a case, assuming an AGEM structure for the stochastic terms ofinput

demands and an additive productionerror (and possiblyan AGEM specification for the error in

expected supply functions, in addition to this production risk), the system of ex-ante input

demands and output supply could be written as:
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X, =-61,+ ' ' =1'-'"
>1

^00//')+" •
;=1 y=i

Thus, under production uncertainty, one can specify and estimate acoherent set ofoutput supply

and input demand equations ifagents actually maximize expected profits. Because this route

essentially removes the errors-in-variables problem, estimation ofthis set ofequations produces

consistent estimates of all theunderlying parameters thatare identified. Indeed, byduality

theory, all the relevant information about the ex-ante cost function C{y^ w; 9) can be retrieved

from the expected profitfunction (provided the latter exists).

The method thatwehave proposed to estimate theex-ante cost function model crucially

depends onthe hypothesis that the expected profit maximization problem in(1) applies. But how

should one estimate theparameters ofthe ex-ante cost function C{y,w; 0) if such ahexpected

profit maximi^tion problem does not apply? It is important to emphasize, at thisjuncture, that

the cost function C{y,w,0) is of interest precisely because of theexpected profit maximization

problem thatproducers are assumed to face. Theframework thatwe have considered could be

extendedsomewhat and still allow for the ex-antecost function C(y, w;0) to play a meaningful

role. For example, we could allow for both output price and production to be stochastic, under

some suitable restrictions (e.g., multiplicativeproductionrisk). The method that we have

proposed to estimate C(y, w;0) could beadapted to this broader setting. Butmore generally,

when price and production risk are unrestricted and decisionmakers may be risk averse, the

relevant "cost function" may need to be defined otherwise (Chambers and Quiggin 1998), and the

cost function C(yfW;0) may not be ofmuch interest anyway.
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7. Conclusion

The presence ofproduction risk means that the likely object ofinterest in production

studies is the ex-ante cost function, as noted by Pope and Just (1996). But when one recognizes

that input demand equations (in addition to the production function) are also genuinely stochastic,

the naive ex-ante procedure is unlikely to improve over the standard estimation procedure

because itdoes not solve the fundamental problem that arises in this context: i.e., that the ex-ante

cost model inevitably leads to anonlinear errors-in-variables problem. It is notoriously difficult

to obtain consistent estimators for this class of models. For the particular case of an ex-ante cost

function that naturally arises inthe context ofthe expected profit maximization hypothesis,

however, we have shown that it ispossible to achieve consistent estimation for the parameters of
\

the ex-ante cost function. Specifically, by exploiting the full implications ofthe expected profit

maximization hypothesis one can effectively remove the errors-in-variables problem. The results

ofa carefully spiictured Monte Carlo experiment provide support for our claim about the

properties ofvarious estimation procedures. Inparticular, our proposed procedure toestimate the

ex-ante costfunction yields estimates of the underlying technological parameters that are

equivalent to those of the (unfeasible) truemodel.
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Table 1. Average percentbias in estimated parameters

True model

p
c

Standard

"2

«3

<j

NaiVe ex-ante

P
<y

IV ex-ante

0^3

p
G

max£[n
a,

«2
^3

p
<7

Covariance structure for the e, 's

Zero Negative Positive
correlation correlation correlation

-0.0099 -0.0053 -0.0076

-0.0059 -0.0022 -0.0038

0.0026 0.0023 0.0014

-0.0044 -0.0008 -0.0106

0.0217 0.0152 0.0133

-0.0707 -0.0333 -0.0967

0.3036 0.3294 0.2829

-0.0900 -0.0944 -0.0892

•28.1709 -28.0437 -28.2886

-0.2483 -0.2961 -0.1942

-0.9651 -1.2241 -0.6876

-0.3532 -0.4397 -0.2513

0.9321 1.2031 0.6587

10:0514 3.9848 15.8727

31.5560 39.5238 22.9752

-0.6934 -0.7120 -0.6318

-0.1624 -0.2754 -0.0575

0.2658 0.3369 0.1881

6.3656 2.9518 9.7748

18.8045 23.6668 13.5399

0.0001 0.0054 -o.doii

0.0004 0.0019 -0.0004

0.0039 -0.0003 0.0030

0.0023 0.0005 0.0036

-0.0932 -0.0273 -0.0714
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Table 2. Percent RMSE in estimated parameters

True model

or,

p
G

Standard

p
<7

Naive ex-ante

ai

p
<T

IV ex-ante

p
a

max^fn

^3

P
a

Covariance structure for the 's

Zero Negative Positive
correlation correlation correlation

1.9789 1.6518 1.7121

1.8872 2.0389 1.5723

1.6508 1.8927 1.3787

5.7451 1.8892 7.8247

12.5260 8.8782 11.0176

2.0570 2.3233 1.7462

1.9383 2.2543 1.6151

1.6710 1.8842 1.4034

29.9088 29.3855 30.4255

13.7342 15.3372 11.7556

2.5069 2.9191 2.0513

2.2654 2.6728 . 1.8754

2.2115 2.5664 1.7860

21.3586 16.5466 26.4365

34.3807 42.1902 25.8993

2.5643 2.8354 2.2131

2.1008 2.4242 1.7613

1.8463 , 2.0761 1.5461

18.2406 15.4823 21.0803

24.3597 28.9177 19.4645

1.9967 1.9478 1.6973

1.6915 1.2049 1.4824

1.5558 1.2857 1.3435

0.1681 0.0676 0.2095

11.7455 7.8556 10.8120
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Tables. Average R? ofestimated equations

True model

eqn

X2 eqn

X3 eqn

X4 eqn

Standard

Xj eqn

X2 eqn

X4 eqn

Naive ex-ante

Xj eqn

Xj eqn

^3 eqn
X4 eqn

y eqn

IV ex-ante

x^ eqn

X2 eqn

X3 eqn

X4 eqn

y eqn

max£[n
jCj eqn

X2 eqn

X4 eqn

y eqn

Covariance structure for the 's

Zero Negative Positive
correlation correlation correlation

0.81

0.87

0.77

0.81

0.61

0.74

0.53

0.60

0.77

0.88

0.83

0.89

0.68

0.78

0.88

0.84^

0.90

0.68

0.81

0.87

0.77

0.81

0.73

0.81

0.87

0.77

0.81

0.61

0.74

0.53

0.60

0.71

0.85

0.79

0.86

0.71

0.72

0.85

0.79

0.87

0.71

0.81

0.87

0.77

0,81

0.73

0.81

0.87

0.77

0.81

0.61

0.74

0.53

0.60

0.84

0.92

0.88

0.92

0.64

0.85

0.92

0.88

0.93

0.65

0.81

0.87

0.77

0.81

0.73
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Table 4. Average percent bias inestimated parameters and sample size

T=25 r=50 7=100 7=200 r=400

True Model

a. -0.0099 -0.0053 -0.0023 -0.0011 -0.0005
i

a. -0.0059 -0.0016 * -0.0008 -0.0004 -0.0002
A

0.0026 0.0012 0,0006 0.0003 0.0001

P -0.0044' -0.0022 -0.0008 0.0001 -0.0004

a , 0.0217 0.0111 ' 0.0033 0.0030 0.0005

Standard

a, -0.0707 -0.0703 -0.0707 -0.0660 -0.0705

^2 0.3036 0.3069 0.3083 0.3093 0.3110

^3 -0.0900 -0.0945 -0.0933 -0.0929 -0.0990

P -28.1709 -28.9322 -29.1527 -29.3885 -29.3740

<7 -0.2483 -0.4271 -0.4931 -0.5191 -0.5075

Naive ex-ante

or, -0.9651 -0.9892 -0.9677 -0.9684 -0.9620

-0.3532 -0.3887 ' -0.4137 -0.4115 -0.4098

0.9321 0.9380 0.9489 0.9363 , 0.9295

P 10.0514 8.8001 8.2177 8.0898 7.9065

G 31.5560 32.5978 33.0348 33.3495 33.3922

IV ex-ante

a, -0.6934 -0.5602 -0.5107 -0.4869 -0.4622

-0.1624 -0.0887 -0.0673 -0.0515 -0.0400

0.2658 0.2351 0.2427 0.2314 0.2196

P 6.3656 3.3162 1.8069 1.0691 0.6704

<j , 18.8045 18.5404 17.8961 17.5097 17.2222

maxjE^[n
a, 0.0001 -0.0005 0.0001 0.0003 0.0000

0.0004 0.0008 0.0005 0.0005 0.0000

^3 0.0039 0:0009 0.0003 0.0001 0.0001

p 0.0023 0:0012 0.0005 0.0003 0.0001

(7 -0.0932 -0.0276 -0.0172 -0.0088 -0.0041
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Appendix

Ball et al. (1997) report adetailed data set pertaining to the U.S. agricultural sector for the period

1949-1994. To implement our Monte Carlo experiment we take four input price series from their

data: labor (Wj), materials (W2), energy (Wj) and capital (w^). The aggregation ofinput

prices in these four categories has been very common in the applied literature [leading to the so-

called "KLEM"models; see BemdtandWood (1975) for an early example]. Variables

and are reported directly by Ball et al. (1997), whereas Wj had tobe computed from the three

non-energy intermediate input price series that they report. We did so by using Fisher's ideal

index formula (with mean values over the entire period asthe base). The expected output series

y was generated as the fitted series of a linear regression of the quantity index for crop outputs,

, as reported byBall et al. (1997), onthe following variables: price of crops (lagged one period),

price of livestock (lagged one period), price of the four inputs as described above (labor,

materials, energyand capital)and a time trend. Whereas the computations just described were

carried out for the entireperiodreported, for the purpose of ourMonteCarlo experiment we

utilize only the last 25 observations. Finally, the five data series that we utilize were scaled to

equal one at the meanof the periodthat we use (i.e., for the period 1970-1994). The data so

obtained, and used in the Monte Carlo experiment, are reported in Table Al.
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Table A1. Data used in the Monte Carlo experiment

3^ ^2 ^4

0.7587 0.4076 0.4549 0.3260 0.4446

0.7656 0.4137 . . 0.4769 • 0.3397 0.4093

0.7739 0.4291 0.4985 0.3410 , 0.4176

0.7450 0.4987 0.6769 0.3709 0.4384

0.8026 0.5475 0.8178 0.5463 0.4042

0.8779 0.5838 0.8364 0.5755 0.3460

0.8660 . 0.6495 0.8506 0.6225 0.5161

0.8997 0.7116 0.8493 0.6764 0.6261

0.9094 0.7715 0.8532 0.7145 0.6713

0.9349 0.8364 0.9401 0.9270 0.8419

0.9584 0.8820 1.0281 1.2636 1.1237

0.9854 0.8903 1.0919 1.4455 1.4533

1.0766 1.0416 1.0791 1.4508 1.6860

1.0014 - 0.9196 1.1315 1.4095 1.6439

1.0863 • 0.9969 1.1519 1.3832 1.8139

1.1295 1.1571 1.0834 1.3698 1.4502

1.1026 1.1394 1.0380 1.2592 1.2138

1.1055 1.0964 ' 1.0693 1.1339 1.3617

1.0135 1.0547 1.2200 1.1423 1.2031

1.1447 1.3850 1.2874 1.1936 1.1098

1.1899 1.6175 1.2802 1.3550 1.1115

1.1932 1.6027 1.2831 1.3232 1.1237

1.1965 1.6334 1.2936 1.2816 1.2083

1.2147 1.8553 1.3301 1.2958 1.0642

1.2684 1.8786 , 1.3777 1.2534 1.3174


