Grain Yield, Phosphorus Removal, and Soil Phosphorus Long-Term Trends as Affected by Fertilization and Placement Methods in Corn-Soybean Rotations

Antonio P. Mallarino, professor Department of Agronomy David Rueber, farm superintendent

Introduction

An experiment was initiated in 1994 to study phosphorus (P) fertilization rates and placement methods for corn and soybean managed with no-till or chisel-plow tillage. We measured grain yields from all plots, soil-test values for selected plots, and until 2005 nutrient removal with harvested grain for selected no-till plots. In this report we summarize long-term trends (1994 until 2005) for grain yield, P removal, and soiltest P for plots managed with no-tillage.

Corn and soybean were grown each year by alternating crops between identical adjacent trials. The predominant soil was Webster, and tested Low in P (11, 9, and 10 ppm Bray-1 P in the 0-3, 3-6, and 0-6 in. depths, respectively). Crops were planted 30 in. apart, and the no-till planter had Yetter fertilizer attachments. Grain yield and P removal were measured from three of several P-rate treatments broadcast in the fall or planter-banded in spring (2 in. below and 2 in. beside the seeds). The selected P rates were a zero (control), 28, and 56 lb P2O5/acre/year (0-46-0 fertilizer). Soil was sampled from plots of the control and the 56-lb broadcast rate and was analyzed with Bray-1, Olsen, and Mehlich-3 methods. We show Bray-1 averages for the 0-6 in. depth because, although soil P was stratified in recent years, long-term trends were similar for the three methods and both sampling depths.

Summary Results

Long-term soil P trends. Figure 1 shows that soil P of non-fertilized plots decreased slowly over time by about 0.5 ppm/year on average. Soil P for the 56-lb rate varied greatly from year

to year but on average was increased by 2.2 ppm/year. This is reasonable because this rate was greater than the measured P removal with harvest (45 lb P_2O_5 /acre/year on average).

Long-term trends of grain yield and P removal. Grain yield, P concentration, and P removal trends over time are shown in Figure 2 for corn and Figure 3 for soybean. Small yield differences in the first five years were not statistically significant. Responses to P became larger thereafter as soil P of control plots decreased slowly into the Very Low class. The high P rate increased yield (statistically) over the low rate in two recent years. The placement methods differed only for soybean in one year, when the high band P rate increased yield over the high broadcast rate by 1.5 bushels/acre. However, smaller differences in favor of one or the other method in other years determined no average placement differences over time. The average responses to P over the control were 10 and 13 bushels/acre of soybeans and 36 and 47 bushels/acre of corn for the low and high rates, respectively.

Results in figures 2 and 3 show that the increasing grain P removal response over time was larger than for grain yield or P concentration. This was because it reflected smaller effects on these two measurements. There was a strong linear correlation between grain P removal and yield level for both crops but no relationship between grain P concentration and yield level (not shown). The large impact of yield level on P removal was due to the stronger effects of yield level variation than grain P concentration variation. The average grain P concentrations observed for well-fertilized corn and soybean (0.33 and 0.73 lb P_2O_5 /bu, respectively) were slightly lower than average values assumed in Iowa (0.375 and 0.8 lb P_2O_5 /bu, respectively, ISU extension publication Pm-1688). However, the assumed average values were within the observed range of values for both crops.

Conclusions

The results confirmed previous Iowa research results in showing that crop response to P fertilization is probable in low-testing soils and that the P placement method usually does not affect corn and soybean yield response to P fertilizer. The results also showed that good measures of yield are very important for estimating P removal over time.

Acknowledgements

This work was funded, in part, by soybean checkoff funds from the Iowa Soybean Association.

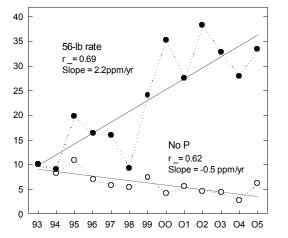


Figure 1. Soil-test P trends over time for rates of 0 and 56 lb P₂O₅/acre/year.

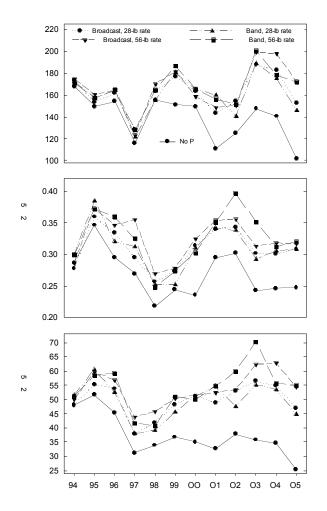


Figure 2. Trends over time for corn grain yield, grain P concentration, and P removal as affected by P rates and placement methods.

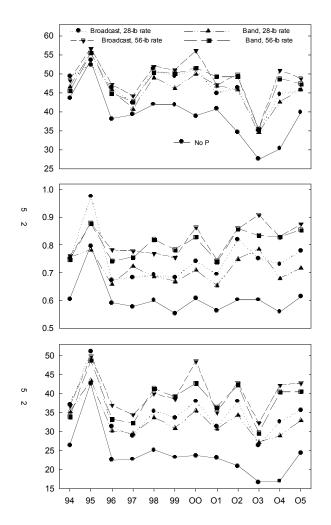


Figure 3. Trends over time for soybean grain yield, grain P concentration, and P removal as affected by P rates and placement methods.