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GENERAL ABSTRACT 

 

This dissertation is devoted to the study of environmental valuation with three 

independent topics. The first topic investigates the consistency of consumer preferences over 

time and revealed versus stated preference data. This study draws on data from the Iowa Lakes 

Project, which provides information on recreational usage patterns over several years and for 

approximately 130 lakes, along with detailed information on the water quality for each lake. This 

allows examination of the extent of convergence in how individuals respond to changing site 

characteristics. In addition, because of the nature of the data, this study was able to investigate 

the consistency of consumer preferences over time and between actual versus anticipated 

visitation patterns. The second topic examines how housing prices were impacted by this 

unexpected event, while controlling for pre-existing flood risk (as captured by 100- and 500-year 

floodplains). Both difference-in-differences (DID) and triple differences (DDD) techniques are 

used to isolate the impact of the 2008 flood. The results show prices for houses within the 100-

year floodplain were discounted prior to the flood and no significant changes occurred in prices 

for those houses inundated by the 2008 flood. However, the results find a significant rebounding 

in post-flood prices in areas not actually inundated by the flood. On the other hand, the prices of 

properties in both the 500-year floodplains and outside the floodplains were not significantly 

discounted before the flood. There was a significant decrease in price after the flood, if the area 

was inundated. These findings imply as new information on flooding occurs, the housing market 

updates the risk perception for properties, as indicated by a change in housing prices. Finally, the 

third topic analyzes state dependence in recreational demand using panel data on lake visitation 

patterns from the Iowa Lakes Project. When calculating the welfare effect of an environmental 



xi 

policy, the estimation can be misleading—either by ignoring state dependence or by dealing with 

state dependence incorrectly. To avoid this problem, this topic adopts the approach proposed by 

Wooldridge. This approach starts with a single site case and then extends the analysis to a 

multiple site setting. For the single site case, a dynamic random effect (RE) logit model is 

utilized. In the multiple site setting, a RE two-step nesting structure model is used, capturing 

state dependence in terms of overall trip taking, although not in terms of the specific sites 

selected. For both the single and multiple site cases, a RE Poisson model is also estimated as an 

alternative approach to compare the results and as a robustness check. Also, a Monte Carlo 

simulation exercise is used to show the biases that can arise either from neglecting state 

dependence entirely or from treating it incorrectly. 
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CHAPTER 1. CONVERGENT VALIDITY AND TIME CONSISTENCY OF 
PREFERENCES: EVIDENCE FROM THE IOWA LAKES RECREATION DEMAND 

  

1.1. Introduction 

The task of valuing environmental amenities is hampered by the lack of direct markets 

for such goods. To fill this void, researchers have turned to a variety of revealed preference (RP) 

and stated preference (SP) methods to infer the values of interest.1 For example, recreation 

demand models are often used to estimate the value of both sites as a whole and their individual 

attributes (e.g., water quality) by modeling individual visitation patterns as a function of travel 

cost and site characteristics. The logic is that individuals reveal information about the value they 

place on an environmental amenity by incurring travel cost to reach sites where the amenity is 

found. One practical problem with this approach is that there may be little variation among the 

available sites in the amenity of interest, making it difficult to tease out its marginal value to 

consumers. Stated preference techniques can help alleviate this problem. In particular, contingent 

behavior (CB) surveys ask individuals how they might shift their visitation patterns in response 

to changes in site access, travel cost, or individual site attributes. This provides not only the 

variation needed to identify the marginal impact of a particular amenity, but, as noted by von 

Haefen and Phaneuf (2008), also avoids potential omitted variables’ bias through the random 

assignment of survey scenarios. 

The potential problem with combining stated and revealed preference data sources is that 

they may not be driven by the same data generating process. For example, one might be 

concerned that respondents to a contingent behavior survey have an incentive to overstate their 

additional trips to a site improved under a proposed policy scenario. By doing so, the respondent 

1 See, Freeman, Herriges, and Kling (2014) for an overview of this literature. 
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encourages policymakers to adopt the change, creating the option for future use of the improved 

site, and, depending upon how the policy is paid, incurring little or no direct costs.2 Problems can 

also emerge when the data sources differ in a temporal dimension. For example, anticipated trips 

for the coming year, even without changing conditions, can differ significantly from actual trips 

because respondents are overly optimistic about their future recreational activities (much like one 

might overstate future trips to the gym). Even comparisons in actual behavior over time may be 

problematic, as preferences evolve or are impacted by changes over time in unobservable 

individual or site attributes. 

There have been a number of papers in the literature examining the convergent validity of 

valuations based on actual versus contingent behavior responses (e.g., Azevedo et al. (2003), 

Grijalva et al. (2002), Loomis and Richardson (2006)). However, most of these studies are based 

upon a single site and focus on consumer response to changes in either travel cost or site access. 

The purpose of this chapter is to examine the convergent validity of nonmarket valuations (and 

the underlying preference parameters) along several dimensions, drawing on a unique database 

from the Iowa Lakes Project. The Iowa Lakes Project is a multi-year panel study of the usage 

patterns of Iowa households with regards to the 132 primary recreational lakes in the state. Of 

particular interest for this chapter are the data sets collected in 2004 and 2005 surveys. In 2004, 

households were asked to report: 

• Actual single-day trips to each lake in 2004 (AT04); 

• Expected single-day trips to each lake in 2005 under current water quality conditions 

(ET05); and 

2 This problem is analogous to the difficulty associated with valuing private, good using contingent valuation 
techniques (See, e.g., Carson and Hanemann (2005)). 
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• Expected single-day trips to each lake in 2005 contingent on water quality 

improvements to a subset of the lakes (CB05). 

In 2005, these same households were ask to report on their actual single day trips to each 

of the 132 lakes (AT05). The four data sets allow for a total of six pair-wise convergent validity 

tests, including convergence between actual and contingent behavior responses (AT05 vs. 

CB05), convergence between actual and expected trips under fixed water quality conditions 

(AT05 vs. ET05), convergence between expected trip responses with and without water quality 

improvements (CB05 vs. ET05), and convergence between actual trips in differing years (AT04 

vs. AT05).3 For each pairwise comparison, convergence was examined along three dimensions: 

• Convergence in individual parameters (such as the marginal utility of income); 

• Joint convergence in the parameter estimates; and 

• Convergence in the implied welfare measures for a series of policy scenarios.  

The remainder of this chapter is organized into five additional sections. Section 1.2 

briefly reviews the existing literature examining convergent validity in nonmarket valuation. 

Section 1.3 describes the repeated nested logit model use in the convergent validity tests and the 

estimation strategy used. Section 1.4 describes the Iowa Lake survey in greater detail and 

provides summary statistics for the various data sources. Section 1.5 provides the estimated 

models and the pairwise convergent validity comparisons. The chapter finishes with a summary 

and conclusions in Section 1.6. 

 

 

3 Comparisons are also possible between AT04 vs. CB05 and between AT04 vs. ET05, although these comparisons 
compound changes in years and some other factors. 
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1.2. Literature Review 

Extensive literature has emerged over the past two decades, both in terms of combining 

state and revealed preferences (See, e.g., Cameron (1992) and Whitehead et al. (2008)) and in 

testing for the convergent validity of the two data sources (e.g., Carson et al. (1996) and Carson 

and Hanemann (2005)). While much of this literature has focused on contingent valuation as the 

source of the stated preference data, there are a number of studies drawing on contingent 

behavior data. Adamowicz et al. (1994), for example, combine revealed preference on visitation 

patterns to 24 recreational sites and stated preferences elicited through a choice experiment. They 

find that the fundamental preferences in both cases are similar, and that combining the revealed 

and stated preferences yields benefits in estimation. They conclude that the multicollinearity 

among quality attributes, which often plagues revealed preference data sources, can be 

ameliorated through a well-designed stated preference survey. 

Englin and Cameron (1996) combine observed behavior and contingent behavior 

responses to an increased travel cost to estimate the demand for recreational angling. Like 

Adamowicz et al. (1994), they conclude that contingent behavior data can be a valuable 

supplement to observed data. Grijalva et al. (2002) test the validity of contingent behavior trip 

for three different levels of recreational site access: data before and after a policy to restrict 

climbing access and hypothetical changes in site access. They suggest that CB data can be a 

useful supplement to RP when policy proposals are historically unobservable. Loomis and 

Richardson (2006) investigate Rocky Mountain National Park visitation behavior from climate 

change to compare observed behavior and intended behavior. They also do not find any 

statistical difference between RP and CB. 



5 

Though the above literature supports the consistency between revealed and stated 

preference data, other studies reject convergent validity. Adamowicz et al. (1997), for example, 

test consistency between observed and CB data in their moose hunting demand study and, at 

least for some modeling configurations, reject convergent validity. von Haefen and Phaneuf 

(2008), using the same data source and a mixed logit framework, also reject consistency between 

the implied RP and SP preferences. Azevedo et al. (2003) combine revealed preferences and 

state preferences under hypothetical higher trip costs using data from the Iowa wetlands survey. 

They test the hypotheses of consistency between the RP and SP with four different levels of 

travel cost and find that all hypotheses are rejected. Whitehead et al. (2010) consider the 

consistency in the context of trips to beaches in southern North Carolina. They construct three 

models: a Kuhn-Tucker (KT) model, a single equation count data model of RP-SP trips and a 

count data demand system. Their results are mixed. Their KT and RP-SP models are convergent 

valid in trip prediction, while they are convergent invalid in terms of implied welfare effects. In 

addition, their count system model is convergent invalid with both KT and RP-SP models. 

One of the limitations with most studies combining RP and CB data is that the actual trips 

data lack significant variation in the underlying site characteristics, either because it is not there 

or it is not observed, making it difficult to isolate the impact that these characteristics have on the 

revealed preference trips. Indeed, this is one of the primary arguments for combining RP and SP 

data. The problem, of course, is that convergent validity tests in this setting are essentially 

limited to testing convergence in the implied marginal utility of income and unable to test for 

convergence in the marginal willingness to pay for site attributes. One exception is Jeon and 

Herriges (2010), who draw on a portion of the Iowa Lakes data employed in this study. 

Specifically, they compare lake recreation trip prediction, based on existing variation in water 
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quality with SP trips following a hypothetical improvement in water quality. Jeon and Herriges 

reject convergent validity of the two data sets. The marginal utility associated with a hypothetical 

higher water quality index is predicted two-thirds as great as that from actual water quality index 

level. This study extends the work by Jeon and Herriges in a number of directions. First, Jeon 

and Herriges (2010) rely on strong distributional assumptions to allow for correlations among the 

various data sources; whereas, in the current study, a more flexible bootstrap approach is 

employed. Second, Jeon and Herriges do not control for potentially omitted site characteristics 

variables in their analysis; whereas, this study does through the use of alternative specific 

constants. Third, Jeon and Herriges, unlike the current study, do not examine the consistency of 

preferences over time through the comparison of actual trips patterns between 2004 and 2005. 

 

1.3. Model 

The modeling framework employed in this study is the repeated nested logit (RNL) 

model developed by Morey et al. (1993). The RNL model is based on the assumption that, over 

the course of a season, an individual faces a series of choice occasions ( )1, ,t T=  . On each 

choice occasion, the individual decides among 1J +  alternatives, where 0j =  denotes the 

alternative of staying at home and 1, ,j J=   denotes the choice of visiting one of the J 

recreational sites in the choice set. The current application uses 52T = , which can be interpreted 

as allowing for one choice occasion weekly for the year. For data source v (v = AT04, AT05, 

CB05, and ET05), the utility that individual i receives from choosing alternative j on choice 

occasion t is assumed to take the form: 
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   , (1) 

where ivZ  denotes characteristics of individual i, ijvTC  denotes the cost of visiting site j (which 

does not vary by choice occasion), jvX  denotes observed attributes of site j (e.g., water quality), 

jvξ  denotes attributes of site j not observed by the analyst (but assumed to be observed by the 

individual), ijtvε  denotes idiosyncratic factors (again assumed to observe by the individual but 

not by the analyst), and 

 jv v jv v jvXδ α β ξ= + +    . (2) 

The jvδ  represent alternative specific constants for site j in data source v, capturing both 

observed and unobserved site characteristics. The error vector, ( )0 , ,i tv i tv iJtvε ε ε ′=


 , is assumed 

drawn from a Generalized Extreme Value (GEV) distribution nesting together alternatives 

1, ,j J=  , and is independently and identically distributed across individuals and choice 

occasions. As is standard in random utility models, it is assumed that the individual chooses the 

alternative that maximizes its utility on each choice occasion, with 

 ( )1ijtv ijtv iktvI U U k j= > ∀ ≠    . (3) 

Given the above specification, the probability that individual i chooses alternative j 

during choice occasion t has a convenient closed form given by 
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where (0,1vθ ∈   is often referred to as the dissimilarity coefficient. The smaller vθ  becomes 

more correlated, as the ijtvε  across the trip alternatives and the better substitutes (i.e., more 

similar) the trip alternatives become. Conversely, the larger vθ  becomes, the more dissimilar the 

trip alternatives. If 1vθ = , the model reduces to a simple logit model for each choice occasion. 

The overall contribution of an individual to the likelihood function becomes 

 
0 1
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   . (5) 

The corresponding log-likelihood function for the data source, v, becomes 

 
1

ln
N

v i v
i

LL P
=

=∑


   . (6) 

As suggested by Murdock (2006), the parameters of the model are estimated in two 

stages. During the first stage, the parameters ( ), , andv jv v vγ δ θ τ  are estimated. The second stage 

involves an ordinary least squares (OLS) regression model that uses the estimated ASCs ( )jδ  as 

the dependent variables to estimate the parameter of site attributes and the constant in Eq. (2) 

 ( )i.e., andv vα β . If the omitted site-specific variables, ( )jvξ , are potentially correlated with the 

observed site characteristics, ( )i.e., jvX , then instrumental variables techniques may be needed 

at this stage. 
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1.4. Estimation 

 

1.4.1. Data 

The main data source for the current study is the lake trip survey data from the Iowa 

Lakes Project. The Iowa Lakes Project is a panel study from 2002 to 2005 and 2009, supported 

by the Iowa Department of Natural Resources (IDNR) and the US EPA. The primary objectives 

of the project are to better understand the visitation pattern of Iowa residents to the primary lakes 

in the state and the implications this visitation pattern has in understanding the value Iowans 

place in lake water quality. Among five-year surveys, this study focuses on surveys for 2004 and 

2005. As noted above, these surveys yield four distinct data sets regarding actual and 

hypothetical site visitation patterns, including 

• Actual single-day trips to each lake in 2004 (AT04); 

• Expected single-day trips to each lake in 2005 under current water quality conditions 

(ET05); 

• Expected single-day trips to each lake in 2005 contingent on water quality 

improvements to a subset of the lakes (CB05);4 and 

• Actual single-day trips to each lake in 2005 (AT05).  

The first three data sets were elicited in the 2004 survey, while AT05 was elicited in the 2005 

survey. 

4 Specifically, the contingent behavior question asked survey respondents how their visitation pattern would change 
if all lakes in the state were improved to “swimmable”, an improvement for 52 of the primary lakes in the state 
relative to 2004 conditions. 
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The four data sets allow for a total of six pair-wise convergent validity tests, including 

convergence between actual and contingent behavior responses (AT05 vs. CB05), convergence 

between actual and expected trips under fixed water quality conditions (AT05 vs. ET05), 

convergence between expected trip responses with and without water quality improvements 

(CB05 vs. ET05), and convergence between actual trips in differing years (AT04 vs. AT05). 

Comparisons are also possible between AT04 vs. CB05 and between AT04 vs. ET05, although 

these comparisons compound changes in years and some other factors. 

While the Iowa Lakes Project covers the 131 primary lakes in the state, this study focuses 

on the top 100 most visited lakes. This is achieved for two reasons. First and foremost, as 

described below, bootstrapped samples are used to obtain standard errors and allow for 

correlations across the four data sources. For rarely visited sites, these samples may have no one 

visiting them, making estimation of the site's corresponding alternative specific constant 

impossible. Second, given the large number of bootstrapped samples employed, limiting the 

number of sites helps to reduce the overall time required to complete the estimation task. In each 

survey, respondents are asked which lakes in Iowa they visit and how often. The visit consists of 

two different styles of trips—single-day trip and overnight trip. The analysis below focuses on 

single-day trips. In 2004, the average number of single-day trips to the 100 lakes is 5.89, while 

the average number to 131 lakes is 6.02. So, the top 100 most visited lakes account for most of 

the lake trip demand in Iowa, covering about 98% of Iowa lake trips.   

In addition to trip data, the survey also included questions about respondents' 

demographic characteristics, such as age, gender, education level, household size, and income 

level. As for socio-demographic characteristics, among each survey's demographic questions, 

four characteristics—age, gender, education and household size—are selected for use. For 
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education, the categories are simplified to use a dummy variable in the model. If the education 

level is equal to or higher than college graduate, then the dummy is one otherwise zero. 

The data from the Iowa Lake Valuation Project also includes six available site attributes 

(i.e., the jvX ’s): (1) lake size (acres), (2) boat ramp dummy, (3) wake restrictions dummy, (4) 

handicap facilities dummy, (5) state park dummy, and (6) water quality index (on a scale from 1 

to 10, with 7 being “swimmable”). In addition, three physical and chemical characteristics of the 

lakes are site characteristics: (1) secchi transparency, (2) total phosphorus, and (3) total nitrogen. 

Hence, the analysis in this study considers the effect of water quality on trip choice with two 

different methods. The first method includes jvX , the site characteristics (including the water 

quality index), while the second method replaces the water quality index with the three chemical 

and physical attributes stated previously. Table 1.1 shows the summary statistics for the lake 

attributes as well as socio-demographic characteristics and trips. 

The total number of respondents, who returned and completed the 2004 and 2005 

surveys, are 4,242 and 3,993, respectively. Among the total responses, this study excludes 

respondents who included irrelevant answers, including no answer, but also individuals who 

visited any lake more than 52 times. The concern with including respondents who answered 

greater than 52 visits is that these respondents consist predominantly of households who live in 

close proximity to a certain lake. In this case, they could be residents who pass a lake on their 

commute to work or walking/biking along it. These kinds of demands for lakes are not under the 

guidelines for this study. After this first reduction, the numbers for the remaining respondents are 

4,119 (AT04), 3,828 (AT05), 4,054 (ET05), and 4,084 (CB05). 
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There is a second reduction of the sample. Among the respondents, only those, who are in 

common in all four cases, are included. This is because the main objectives of this study are to 

test whether the recreation demand from the stated preference (including contingent survey) is 

different from the demand from the revealed preference, whether the demands from different 

levels of stated preferences in the same survey are the same, and whether the recreation demands 

from the revealed preferences in consecutive years are the same . The remaining sample size is 

2,425 after the second reduction. In addition, there are some mismatching data and outliers 

related with gender and size of household. For these miscellaneous reasons, 81 persons are 

additionally dropped from the sample, leaving this study with a final sample size of 2,344. 

For travel cost, this study basically follows the formula below: 

( )1 '
3

Travel cost round trip distance fuel cost round trip time respondent s hourly wage= ⋅ + ⋅ . 

Including Abidoye et al. (2012), many articles use this formula. In this study, PC Miler 

was used to compute the trip distance and time. CPI adjusted gasoline prices (dollars/gallon) 

divided by average fuel efficiency of U.S. light duty vehicles (miles/gallon) are used as a proxy 

for fuel cost (dollars/mile).5 For hourly wage, the survey responses to total household's annual 

income are used. In every income category, median annual income is selected, then divided by 

2,000, and finally adjusted with CPI to obtain an hourly wage.6 

 

 

 

5 Each source comes from U.S. Energy Information Administration (Midwest all grades all formulations retail 
gasoline prices), The Research and Innovative Technology Administration in the U.S. Department of Transportation 
(average fuel efficiency of U.S. light duty vehicles), Bureau of Labor Statistics in U.S. Department of Labor (annual 
CPI and average hourly earnings), respectively. 
6 This number comes from a 40-hour work week with two weeks of vacation annually. 
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1.4.2. Consistency Test 

For the test of consistency, this study approaches all comparisons—both from a 

parametric point of view and from the view of social welfare. For the welfare estimation level, 

this study examines whether there is any difference in willingness to pay (WTP) or compensating 

variation (CV) for a specific policy between any two cases. At the parameter level, this study 

checks whether parameters estimated from any two of four cases are the same with each other by 

a parameter ratio comparison as well as by direct comparison. Most of the welfare estimation 

comes from the WTP, a ratio of a certain parameter to the coefficient of travel cost, such as Eq. 

(9) below. In this sense, parameter ratio comparison means the comparison of two data sets in 

terms of possible WTPs. Therefore, on one hand, parameter ratio comparison is a parameter-

level test, but on the other hand, it is a welfare-estimation-level test. As a part of parameter-level 

comparison, this study also tests whether various sets of parameters estimated from each case are 

consistent with each other. 

All of these consistency tests are executed with the bootstrapping technique. 

Bootstrapping individually makes it possible to control for correlations in trip data over time and 

across data types without additional assumptions regarding the specific structure of the 

correlation. Two-stage estimation is also adopted in the bootstrapping. Based on Eqs. (1) and (2), 

we can construct a bootstrapping model in the following manner. 

Instead of the original sample, generate a new sample by N times random drawing with 

replacement from the entire sample. Then, by using Eq. (1), a set of estimates ( 
b

γ , 
b
jδ , and 

b
τ ) 

is estimated in every bootstrapping repetition.7 This is the first stage of bootstrapping here. 

7 Superscript b denotes b-th repetition. 
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Hence, we can obtain j number of ASC estimates  ( )1. ., , ,
b b

Ji e δ δ  in every first stage of 

bootstrapping. For the second stage estimation, this study proceeds another random sampling 

with the ASCs estimated in the first stage, 
b
jδ , and generates a new ASCs bundle by J times 

random drawing with replacement from the ASC estimates. Then, by using this new ASCs 

bundle as a dependent variable, the classical OLS approach provides a set of estimated 

parameters for site characteristics ( 
b

α  and 
b

β ) in Eq. (2). This completes the second stage of 

bootstrapping. 

The double bootstrapping algorithm used here can be summarized as follows. 

Step 1: Draw a number randomly N times from the range [1, N (=2,344)] with 

replacement. 

Step 2: Set a new data set, which consists of the information of the respondents 

corresponding to the number drawn from Step 1, for all four cases—AT04, AT05, ET05, 

and CB05. (So, the new data set has all the same respondents across all cases.) 

Step 3: Calculate the RNL. (This is the first stage of bootstrapping estimation.) 

Step 4: Draw a number randomly J times from the range [1, J (=100)] with replacement. 

Step 5: Set a new data set consisting of attribute information of the lakes corresponding 

to the number drawn from Step 4, for all the cases. (So, the new data set has all the same 

lakes across the four cases.) 

Step 6: Use only ASCs corresponding to the number drawn from Step 4 as dependent 

variables to calculate the OLS for the newly chosen lakes, among the estimated ASCs in 

Step 3. (This is the second stage of bootstrapping estimation.) 

Step 7: Repeat Step 1 through Step 6 as many as B (=500) times. 
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Step 8: Calculate means and standard errors of estimated parameters for each case, 

separately. (There will be B number of estimates bundles. Therefore, a researcher can 

calculate mean and standard error for each estimate whose sample size is B.) 

Step 9: Calculate the difference of the estimated parameters between any two of the new 

four data sets to obtain means, standard errors, and the corresponding variance-

covariance matrix. 

 

From this bootstrapping process, one can test the null hypothesis—each parameter in any 

two cases is the same with each other. If the parameters of travel cost in the cases for AT04 and 

CB05 ( 04ATτ , 05CBτ ) are taken as an example, then the null hypothesis is 0 04 05: 0AT CBH τ τ− = . 

We know the mean for ( 04 05AT CBτ τ− ) and its standard error. Therefore, we can verify whether 

the difference is statistically, significantly different from zero or not. 

Furthermore, one can test joint consistency between two cases. We have the mean for all 

the differences and the variance-covariance matrix. Hence, we can calculate the Wald statistic 

for any specific group of parameters. For instance, if we denote all the parameters as estimated in 

AT04 and CB05 cases as vectors, 04ATβ , 05CBβ , respectively, then the null hypothesis of joint 

consistency will be 0 04 05: 0AT CBH β β− =  and the Wald statistic will be like Eq. (7). 

 [ ] ( ) [ ]1
04 05 04 05 04 05 04 05. .T

AT CB AT CB AT CB AT CBW Est Asy Varβ β β β β β
−

− = − − −    . (7) 

For the final step of the consistency test, the consistency in welfare estimation between 

any two cases is also investigated. Among various policies, two types of policies will be 

discussed here. First, this study compares the WTP for improving water quality by one unit in the 

index. Because the contingent trip data (CB05) are assuming hypothetically higher water quality, 
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it seems natural to make a scenario for water quality improvement. The average individual's 

additional WTP for improving water quality of a specific lake is a change in travel cost of the 

lake that will offset one unit of change in the water quality index. Hence, the utility will be the 

same before and after the change mathematically. The concept of the WTP for improving water 

quality can be expressed as  

 ( ) ( )( ) ( )1 , ; , ;ij j ij j j ij j ij j jU WQI TC WTP X WQI U WQI TC X WQI+ + − = −    , (8) 

where jWQI  is the water quality index level of site j, ijTC  is travel cost that individual i needs to 

go to trip site j, and jX  is observable attributes of site j. j jX WQI−  signifies all site attributes, 

except for water quality index, are assumed fixed. Then, based on the utility function of Eq. (1) 

described in Section 1.3, the WTP can be defined as the parameter for water quality index ( WQIβ ) 

over the negative travel cost parameter (τ ). 

 WQIWTP
β
τ

= −    . (9) 

Thus, one can calculate all WTPs for the four cases and the difference between any two of them 

by using Eq. (9) in every bootstrapping repetition. The corresponding means and standard errors 

are also obtained after all repetitions. 

Second, this study also compares the average welfare estimation for the scenario that one 

of the 100 lakes—Big Creek Lake—is no longer accessible. In the nested logit model, the 

average compensating variation (CV) associated with this scenario has the well-known explicit 

formula as:8 

8 Big Creek Lake is the 16th largest lake in Iowa. It was selected arbitrarily. 
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{ } { }where  1, 2, ,100 , 2,3, ,100J J ′= =  . 

In Eq. (10), N signifies the total number of individuals (2,344), J is the set of whole 

alternatives, except for staying at home option (when j = 0), J' is the set of all the other 

alternatives, excluding alternative 1, which signifies Big Creek Lake. The last process to 

compare the average CVs is the bootstrapping technique explained above. In every bootstrapping 

repetition, one can obtain the simulated individual CVs and the average CV for the four cases. 

Hence, in b-th repetition, one can obtain the difference in the average CV between any two of the 

four cases. In the end, with B (=500) times repetition, one can calculate the means and standard 

errors of the CVs from the four cases and the difference in the average CV between any two of 

these. 

 

1.5. Results 

Table 1.2 shows the results of the first stage estimation of four cases in standard logit and 

RNL models. The signs of parameters for all individual characteristics mean that the older 

people tend to stay at home, while males and more educated persons are more willing to go on 

trips instead of staying at home, and that people are more inclined to go on trip as their family 

becomes larger. Although all the socio-demographic variables are statistically significant, except 
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for education level in CB05, education level of all the cases and household size of CB05 are 

insignificant in the bootstrapping technique (Table 1.5). 

The estimated coefficients of site characteristics, the estimates from the second stage, are 

shown in Tables 1.3 and 1.4. They are derived by the standard OLS regression formulas. The 

estimates in Table 1.3 are obtained when water quality index, as a representative for lakes' water 

quality, is inserted into the model, while those in Table 1.4 are the results when, instead of water 

quality index, the three factors—secchi depth, total phosphorus, and total nitrogen—are 

considered in the model. Four of the parameters in the model with water quality index—constant 

term, log of lake size, wake restriction dummy, and state park dummy—are statistically 

significant in all the cases. They are also significant in the bootstrapping process. The water 

quality index is only significant for the ET05 case. Similarly, these four water quality index 

parameters are also significant in the bootstrapping as well as in the basic model with the three 

water quality factors. On the other hand, in the model with the three water quality factors, secchi 

depth is also significantly positive both in the basic model and in bootstrapping. The handicap 

facilities dummy is significant in some cases, only when the simple logit model is applied. 

Compared to the standard errors that come from the Hessian of maximum likelihood 

function and calculated from the variance-covariance matrix in the second stage OLS procedure, 

standard errors obtained from bootstrapping (500 repetitions) results in different significance 

levels. Tables 1.5 and 1.6 show the means and standard errors of the primary parameters derived 

by the first stage bootstrapping and by the second stage bootstrapping, respectively. All standard 

errors of estimated parameters are larger when bootstrapping is applied. It is natural that the 

bootstrapping procedure has larger variances because it does not make use of any special 

assumptions and restrictions. 
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As for the consistency tests, first, the results of the test on single parameter equality are 

shown in Tables 1.7, 1.8, and 1.9. During the first stage, the number of parameters that are 

significantly different between these two cases is the smallest when the combinations are AT04-

ET05, AT04-CB05, and ET05-CB05 (Table 1.7). In the three combinations, the null hypothesis 

for parameter equality is rejected only for age. Meanwhile, other combinations have significant 

differences in travel cost, an important parameter to estimate welfare effect, and the dissimilarity 

coefficient, which determines the nesting structure with a 99% significance level. The three 

cases—AT04, ET05, CB05—come from the same 2004 survey. Hence, from this point of view, 

the preferences are more closely similar, no matter what they are (whether they are RP or SP), if 

they are from the survey conducted during the same time.  

In the second stage with water quality index, the pair of AT04-AT05 is the only 

combination with no difference in every parameter. However, when excluding the constant term, 

all the combinations have no significant difference in all parameters (Table 1.8). Similarly, in the 

case of the model with three attributes on water quality, when excluding the constant term, all the 

combinations have no significant difference in all parameters with a 95% significance level 

(Table 1.9). On the whole, if both stages are considered together, then two kinds of consistency 

can be supported. One is that ET05 and CB05 are convergent valid with each other; the other is 

that RP (AT04-AT05) is relatively consistent over time. Besides age, most of the parameter 

ratios are statistically indifferent between any two data sets with a 95% significance level in the 

parameter ratio comparison in Tables 1.10, 1.11, and 1.12. Especially, there is no difference in 

all the parameter ratios during the second stage, even with a 90% significance level. With respect 

to parameter ratio comparison, the combination of AT05 and ET05 shows the biggest difference, 

while the pair of AT04-AT05 do the least. 
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Next, the results of the test on joint parameter equality tell that the pair of AT04-AT05 

have the most highly, equal joint parameters (Table 1.13). This shows that the respondents have 

chosen to trip during two consecutive years under mostly similar preferences in their minds from 

the jointly parametric point of view. Meanwhile, this also signifies that the stated preferences, 

including simple anticipation and contingent behavior expectations, are relatively inconsistent 

with revealed preferences. Especially, the two kinds of SP (simple expectation and intended 

behavior under a certain hypothetical condition) have jointly different parameters from 

corresponding actual data (posterior data) and even from actual data recorded for the same 

survey. Furthermore, there also exits differences in joint parameters between the two SP data sets 

(ET05, CB05). This implies that the respondents answered to different levels of contingent 

questions with different preference structures, even if the questions about stated preferences are 

asked in the same survey. Hence, the results of joint parameter equality test support time 

consistency in RP, especially in terms of the second stage estimation, while those of single 

parameter equality support convergent validity in the same survey. 

Third, the estimated WTPs for improving water quality are not statistically different in all 

four cases. Tables 1.14 and 1.15 show the estimated WTP all four cases and the difference in the 

WTP between any two of the four cases. Table 1.14 tells that respondents are willing to pay from 

-$1.94 to $0.83 to improve water quality by one unit of the index in one of the lakes. However, 

all the WTPs are statistically insignificant. Interestingly, the null hypothesis that the WTPs are 

the same cannot be rejected in all the pairs, even though the cases have different preference 

structures and have different parameters for travel cost.9 However, this WTP consists of one 

9 The scenario that secchi depth is improved by one meter is also applied. In this case, the WTP ranges from $3.22 to 
$4.38 for the improvement (Table 1.18). However, this chapter cannot find any significant difference in the WTP 
between any two of four cases (Table 1.19). It is the same result with the case of water quality index improvement. 
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parameter from the first stage (travel cost) and one parameter from the second stage (water 

quality index). And, the coefficient of water quality index is insignificant in every case. Hence, 

the results of welfare estimation for the second scenario are more meaningful in the sense that it 

is calculated only with an estimation during the first stage. 

As for the second scenario, the welfare estimation for one lake shut down case shows 

quite different results. The CVs range from $0.09 to $0.12 in Table 1.16. Especially, Table 1.17 

shows that all differences in the CV between AT04 and ET05 data sets, and between AT04 and 

CB05 data sets are significantly different from zero within the 95% significant level. In the sense 

of the second welfare analysis, RP data set (AT04) is inconsistent with both the two SP data 

(ET05, CB05) conducted at the same time. These results conflict with the convergent validity 

from the single parameter equality test, but support time consistency of RP from the same test.10  

 

1.6. Conclusions 

The convergent validity test of CB data is the issue many researchers study because the 

data usually contain the range beyond historically observed levels and the results are still not 

quite clear. Some studies support that the CB data model is convergent valid; others show 

convergent invalidity cases. The time consistency of individual preference structures is another 

issue in the sense that it is the basis of using multiple times' survey data as a panel. This study 

tests these two kinds of consistencies with various pairs of RP and SP data, both from the 

parametric point of view and from the view of social welfare. Among the results, inconsistency 

10 For the same scenario, it was also applied to Saylorville Lake, the most visited lake in Iowa. The CVs range from 
$0.14 to $0.22 (Table 1.20). Likewise, all the differences in the CV between AT04 and ET05 data sets, and between 
AT04 and CB05 data sets are significantly different from zero within a 99% significant level (Table 1.21). The 
results also conflict with the convergent validity from single parameter equality test and support time consistency 
between the two RP data sets. 
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between CB data and RP data that comes from the same survey, that is, structural discordance 

between AT04 and CB05 reconfirms the results by Jeon and Herriges (2010). 

Results are summarized as follows:  

(1) People show a consistent preference structure from trips actually taken in consecutive 

years Iowa lake survey data. The pair of the two RP data sets (AT04-AT05) shows the 

results support time consistency in every test. This shows that people actually choose to 

go on single-day trips in a coherent manner over years in contrast to convergent invalidity 

of CB data.  

(2) In some tests, respondents show different recreation demands when they face 

different levels of contingent questions on intended trips, even in the same questionnaire. 

This is another convergent invalidity between two different SP data sets. But, in other 

test, they do not show. In addition, on the average, people are less likely to go on trips 

with a hypothetically higher water quality assumption than intended trips under the status 

quo.  

(3) Convergent validity for either contingent behavior or simple stated preference fails 

many tests. We could obtain consistent WTP even though convergent invalidity in 

preference structures exists in terms of single parametric or joint parametric equality. 

 

This study has some limitations in the data. First, AT05 data are not post-policy data, but 

simply data posterior to the 2004 survey. That is, it is not data collected after the water quality 

improvement policy. So, in this sense, AT04 - ET05 - AT05 data sets are a good corresponding 

data sequence. Therefore, the data sets are more suitable for comparing the differences between 

RP and SP (anticipation without any hypothetical condition) data. For a rich test of convergent 
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validity, post-policy data corresponding to AT04 - CB05 data sequence are needed. Also, more 

refined data can provide a better estimation. For example, in this study, the average fuel cost for 

Midwestern states’ average fuel efficiency, U.S. light duty vehicles are used for calculating 

travel cost. If the cost is refined to the individual level or county level, it should draw a more 

precise estimation. 
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Table 1.1. Summary statistics of survey data (100 most visited lakes) 
  Mean SD Maximum Minimum 

2004 actual single-day tripsa 5.889 8.488 52 0 

2005 actual single-day tripsa 6.123 9.061 52 0 

2005 expected single-day tripsa 7.807 10.104 52 0 

2005 CB single-day tripsa 6.685 10.107 52 0 

Age 53.448(54.430)b 14.901(15.068)b 82.5(82.5)b 8.6(8.6)b  

Genderc  0.675(0.675)b 0.469(0.469)b 1(1)b 0(0)b 

Educationd  0.393(0.401)b 0.489(0.490)b 1(1)b 0(0)b 

Household size 2.507(2.500)b 1.329(1.290)b 10(10)b 0(0)b 

Log of lake size(acre) 2.248 0.703 4.279 1.114 

Boat ramp dummy 0.92 0.273 1 0 

Wake restrictions dummy 0.65 0.479 1 0 

Handicap facilities dummy 0.45 0.5 1 0 

State park dummy 0.45 0.5 1 0 

Water quality index 6.710(7.370)e 1.305(0.562)e 9(9)e 3(7)e 

Secchi depth 1.257(1.368)e 0.862(0.768)e 6.086(6.086)e 0.303(0.304)e 

Total phosphorus 115.39(90.07)e 68.23(29.85)e 409.40(207.15)e 38.14(38.14)e 

Total nitrogen 2.812(2.495)e 2.790(1.792)e 13.664(11.570)e 0.686(0.686)e 

Travel cost 
85.833 58.091 705.864 0.316 

(85.162)b (55.952)b (585.555)b (0.061)b 
a: Trips for 100 lakes 
b: The number in parentheses means value for 2005 year while the number outside of parenthesis means that for  
    2004. 
c: Male equals to one and female, zero. 
d: College graduation or higher level of education equals to one, otherwise zero. 
e: For water quality index, the number in parentheses denotes hypothetical level in CB survey. 
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Table 1.2. First stage's estimated parameters with standard logit model and with repeated nested 
logit model (for 100 most visited lakes) 

  Standard Logit Repeated Nested Logit 

  AT04 AT05 ET05 CB05 AT04 AT05 ET05 CB05 

Age 
0.014*** 0.012*** 0.016*** 0.021*** 0.010*** 0.008*** 0.013*** 0.018*** 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Gender 
-0.707*** -0.739*** -0.743*** -0.706*** -0.453*** -0.539*** -0.480*** -0.449*** 

(0.021) (0.021) (0.019) (0.020) (0.021) (0.021) (0.019) (0.020) 

Education 
-0.201*** -0.141*** -0.215*** -0.286*** 0.075*** 0.076*** 0.059*** -0.008 

(0.020) (0.020) (0.018) (0.019) (0.020) (0.020) (0.018) (0.018) 

Household  -0.118*** -0.102*** -0.126*** -0.107*** -0.058*** -0.056*** -0.063*** -0.042*** 

Size (0.007) (0.008) (0.007) (0.007) (0.008) (0.008) (0.007) (0.007) 

Travel  -0.059*** -0.066*** -0.057*** -0.058*** -0.020*** -0.028*** -0.018*** -0.017*** 

Cost (0.000)  (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) 

θ N.A. 
0.286*** 0.375*** 0.269*** 0.264*** 

(0.009) (0.010) (0.008) (0.009) 
Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
 
 
 
 
 
Table 1.3. Second stage's OLS estimation results with water quality index (for 100 most visited 
lakes) 

  Standard Logit Repeated Nested Logit 

  AT04 AT05 ET05 CB05 AT04 AT05 ET05 CB05 

Constant(α) 
-6.743*** -6.331*** -6.446*** -4.969*** -3.165*** -3.525*** -2.729*** -2.197*** 
(0.370) (0.354) (0.339) (0.739) (0.114) (0.141) (0.100) (0.207) 

Log of  0.793*** 0.743*** 0.757*** 0.752*** 0.262*** 0.322*** 0.238*** 0.231*** 
Lake size (0.082) (0.078) (0.075) (0.079) (0.025) (0.031) (0.022) (0.022) 

Boat ramp 
-0.079 -0.047 -0.108 -0.180 0.011 0.014 0.004 -0.021 
(0.203) (0.195) (0.186) (0.195) (0.063) (0.078) (0.055) (0.055) 

Wake  0.447*** 0.467*** 0.372*** 0.326*** 0.155*** 0.205*** 0.124*** 0.115*** 
Restrictions  (0.116) (0.111) (0.106) (0.110) (0.036) (0.044) (0.031) (0.031) 
Handicap  0.169 0.233** 0.198* 0.173 0.021 0.054 0.023 0.015 
Facilities (0.115) (0.110) (0.105) (0.110) (0.035) (0.044) (0.031) (0.031) 

State park  
0.311*** 0.285*** 0.344*** 0.396*** 0.089** 0.099** 0.090*** 0.105*** 
(0.115) (0.110) (0.106) (0.111) (0.035) (0.044) (0.031) (0.031) 

Water  0.051 0.035 0.076** -0.105 0.007 0.005 0.014 -0.033 
Quality index (0.041) (0.039) (0.038) (0.091) (0.013) (0.016) (0.011) (0.026) 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively.
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Table 1.4. Second stage's OLS estimation results with three attributes on water quality (for 100 
most visited lakes) 

  Standard Logit Repeated Nested Logit 
  AT04 AT05 ET05 CB05 AT04 AT05 ET05 CB05 

Constant(α) 
-6.843*** -6.497*** -6.327*** -6.157*** -3.277*** -3.674*** -2.773*** -2.587*** 
(0.283) (0.275) (0.259) (0.356) (0.086) (0.108) (0.075) (0.098) 

Log of  0.815*** 0.764*** 0.780*** 0.760*** 0.269*** 0.331*** 0.245*** 0.233*** 
Lake size (0.078) (0.076) (0.072) (0.077) (0.024) (0.030) (0.021) (0.021) 

Boat ramp 
-0.039 -0.032 -0.058 -0.096 0.019 0.017 0.016 0.006 
(0.195) (0.190) (0.178) (0.193) (0.059) (0.075) (0.051) (0.053) 

Wake  0.400*** 0.416*** 0.328*** 0.317*** 0.141*** 0.184*** 0.111*** 0.113*** 
Restrictions (0.112) (0.109) (0.102) (0.114) (0.034) (0.043) (0.030) (0.031) 
Handicap  0.166 0.228** 0.198** 0.180* 0.02 0.051 0.023 0.017 
Facilities (0.109) (0.107) (0.100) (0.109) (0.033) (0.042) (0.029) (0.030) 

State park  
0.285** 0.277** 0.310*** 0.351*** 0.083** 0.098** 0.082*** 0.091*** 
(0.111) (0.108) (0.102) (0.111) (0.034) (0.043) (0.029) (0.030) 

Secchi 0.244*** 0.205*** 0.233*** 0.189** 0.081*** 0.088*** 0.076*** 0.062*** 
depth (0.071) (0.069) (0.064) (0.082) (0.021) (0.027) (0.019) (0.023) 
Total 0.001 0.001 0.000 0.001 0.000 0.001* 0.000 0.000 
Phosphorus (0.001) (0.001) (0.001) (0.002) (0.000) (0.000) (0.000) (0.001) 
Total 0.001 -0.006 0.004 0.006 -0.001 -0.004 0.000 0.006 
Nitrogen (0.018) (0.018) (0.017) (0.028) (0.006) (0.007) (0.005) (0.008) 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
 
 
 
Table 1.5. Repeated nested logit estimates in the first stage using bootstrapping (for 100 most 
visited lakes, B=500) 

  AT04 AT05 ET05 CB05 

Age 
0.011*** 0.009*** 0.013*** 0.018*** 

(0.002) (0.003) (0.002) (0.003) 

Gender 
-0.455*** -0.542*** -0.484*** -0.454*** 

(0.077) (0.080) (0.074) (0.087) 

Education 
0.074 0.075 0.060 -0.009 

(0.070) (0.074) (0.066) (0.073) 

Household size 
-0.057** -0.056** -0.062*** -0.040 

(0.029) (0.026) (0.023) (0.027) 

Travel cost 
-0.020*** -0.028*** -0.018*** -0.018*** 

(0.003) (0.003) (0.002) (0.002) 

θ 
0.288*** 0.378*** 0.271*** 0.265*** 

(0.033) (0.034) (0.030) (0.034) 
Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
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Table 1.6. OLS estimates in the second stage using bootstrapping (for 100 most visited lakes, 
B=500) 

  With water quality index With three attributes on water quality 
  AT04 AT05 ET05 CB05 AT04 AT05 ET05 CB05 

Constant(α) 
-3.176*** -3.560*** -2.747*** -2.192*** -3.301*** -3.705*** -2.793*** -2.577*** 
(0.291) (0.299) (0.263) (0.367) (0.293) (0.289) (0.247) (0.259) 

Log of  0.268*** 0.331*** 0.243*** 0.236*** 0.277*** 0.339*** 0.251*** 0.236*** 
Lake size (0.044) (0.055) (0.038) (0.042) (0.044) (0.054) (0.037) (0.040) 

Boat ramp 
0.007 0.011 0.005 -0.025 0.016 0.013 0.020 0.001 

(0.093) (0.126) (0.083) (0.074) (0.100) (0.137) (0.086) (0.076) 
Wake  0.151*** 0.207*** 0.125*** 0.109*** 0.136*** 0.185*** 0.111*** 0.112*** 
Restrictions (0.048) (0.062) (0.040) (0.042) (0.046) (0.062) (0.038) (0.043) 
Handicap  0.024 0.060 0.026 0.015 0.023 0.061 0.027 0.020 
Facilities (0.045) (0.059) (0.038) (0.043) (0.043) (0.055) (0.035) (0.040) 

State park  
0.091** 0.099* 0.089** 0.106*** 0.085** 0.097* 0.080** 0.089** 
(0.043) (0.055) (0.038) (0.039) (0.042) (0.055) (0.036) (0.039) 

Water  0.006 0.005 0.015 -0.034 N.A. Quality index (0.015) (0.020) (0.014) (0.036) 
Secchi N.A. 

0.083*** 0.089** 0.078*** 0.061* 
depth (0.030) (0.040) (0.027) (0.033) 
Total N.A. 

0.000 0.001 0.000 0.000 
Phosphorus (0.000) (0.000) (0.000) (0.001) 
Total N.A. 

-0.001 -0.005 0.000 0.006 
Nitrogen (0.008) (0.010) (0.007) (0.011) 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
 
 
 
 
 
 
Table 1.7. Results of parameter equality test for the first stage estimation 

  AT04-AT05 AT04-ET05 AT04-CB05 AT05-ET05 AT05-CB05 ET05-CB05 

Age 0.002 -0.002** -0.008*** -0.004* -0.010*** -0.005*** 
(0.002) (0.001) (0.002) (0.002) (0.003) (0.002) 

Gender 0.086 0.029 -0.001 -0.058 -0.088 -0.030 
(0.064) (0.040) (0.061) (0.064) (0.080) (0.052) 

Education -0.001 0.015 0.083 0.016 0.084 0.068 
(0.068) (0.036) (0.057) (0.068) (0.074) (0.046) 

Household  -0.002 0.005 -0.017 0.006 -0.016 -0.022 
Size (0.027) (0.017) (0.022) (0.024) (0.026) (0.017) 
Travel  0.008*** -0.002 -0.002 -0.010*** -0.010*** 0.000 
Cost (0.003) (0.002) (0.002) (0.003) (0.003) (0.002) 

θ -0.090*** 0.017 0.023 0.107*** 0.113*** 0.006 
(0.032) (0.018) (0.027) (0.032) (0.037) (0.020) 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
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Table 1.8. Results of parameter equality test for the second stage estimation with water quality 
index 

  AT04-AT05 AT04-ET05 AT04-CB05 AT05-ET05 AT05-CB05 ET05-CB05 

Constant(α) 
0.384 -0.429* -0.984*** -0.813** -1.368*** -0.555* 

(0.336) (0.233) (0.376) (0.319) (0.407) (0.332) 
Log of  -0.063 0.025 0.032 0.088 0.096 0.007 
Lake size (0.062) (0.043) (0.046) (0.058) (0.061) (0.043) 

Boat ramp 
-0.004 0.003 0.033 0.006 0.037 0.030 
(0.141) (0.109) (0.107) (0.142) (0.145) (0.098) 

Wake  -0.056 0.026 0.041 0.083 0.098 0.015 
Restrictions  (0.073) (0.053) (0.057) (0.067) (0.070) (0.051) 
Handicap  -0.036 -0.002 0.009 0.034 0.046 0.011 
Facilities (0.073) (0.055) (0.059) (0.066) (0.070) (0.052) 

State park  
-0.008 0.002 -0.015 0.010 -0.006 -0.016 
(0.067) (0.053) (0.053) (0.060) (0.063) (0.048) 

Water  0.001 -0.009 0.040 -0.009 0.039 0.048 
Quality index (0.025) (0.019) (0.038) (0.022) (0.040) (0.037) 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
 
 
 
 
 
 
Table 1.9. Results of parameter equality test for the second stage estimation with three attributes 
on water quality 

  AT04-AT05 AT04-ET05 AT04-CB05 AT05-ET05 AT05-CB05 ET05-CB05 

Constant(α) 
0.404 -0.508** -0.724*** -0.912*** -1.128*** -0.216 

(0.317) (0.223) (0.258) (0.311) (0.317) (0.215) 
Log of  -0.062 0.026 0.041 0.088 0.103* 0.015 
Lake size (0.063) (0.042) (0.046) (0.058) (0.059) (0.040) 

Boat ramp 
0.003 -0.004 0.015 -0.007 0.012 0.019 

(0.156) (0.116) (0.114) (0.155) (0.157) (0.104) 
Wake  -0.049 0.025 0.024 0.074 0.073 -0.001 
Restrictions  (0.072) (0.050) (0.057) (0.067) (0.071) (0.051) 
Handicap  -0.038 -0.004 0.003 0.034 0.041 0.007 
Facilities (0.069) (0.051) (0.056) (0.060) (0.065) (0.047) 

State park  
-0.012 0.004 -0.005 0.016 0.007 -0.009 
(0.066) (0.051) (0.051) (0.059) (0.062) (0.047) 

Secchi -0.007 0.005 0.022 0.012 0.029 0.017 
depth (0.046) (0.037) (0.042) (0.046) (0.050) (0.040) 
Total 0.000 0.000 0.000 0.000 0.000 0.000 
Phosphorus (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) 
Total 0.004 -0.001 -0.007 -0.004 -0.011 -0.007 
Nitrogen (0.013) (0.010) (0.013) (0.012) (0.014) (0.012) 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
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Table 1.10. Results of parameter ratio comparison in the first stage estimation (ratio of given 
parameter to travel cost coefficient) 

  AT04-AT05 AT04-ET05 AT04-CB05 AT05-ET05 AT05-CB05 ET05-CB05 

Age -0.237* 0.180** 0.507*** 0.417*** 0.744*** 0.327** 
(0.132) (0.081) (0.157) (0.136) (0.196) (0.142) 

Gender 3.880 -4.069 -2.805 -7.949* -6.685 1.264 
(3.990) (2.810) (4.312) (4.063) (5.132) (3.547) 

Education -1.126 -0.410 -4.294 0.716 -3.168 -3.883 
(3.271) (2.138) (3.299) (3.383) (3.787) (2.778) 

Household  0.888 -0.610 0.598 -1.498 -0.289 1.209 
Size (1.231) (0.809) (1.170) (1.141) (1.363) (0.981) 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
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Table 1.11. Results of parameter ratio comparison in the second stage estimation with water 
quality index (ratio of given parameter to travel cost coefficient) 

  AT04-AT05 AT04-ET05 AT04-CB05 AT05-ET05 AT05-CB05 ET05-CB05 
Log of  -1.755 0.050 -0.189 1.805 1.566 -0.239 
Lake size (2.225) (2.079) (2.112) (2.062) (2.224) (2.109) 

Boat ramp 
0.042 -0.110 -1.784 -0.152 -1.825 -1.674 

(5.811) (5.801) (5.632) (6.044) (6.042) (5.541) 
Wake  -0.272 -0.648 -1.437 -0.376 -1.166 -0.789 
Restrictions  (2.903) (2.691) (2.958) (2.677) (2.818) (2.823) 
Handicap  0.947 0.228 -0.408 -0.720 -1.356 -0.636 
Facilities (3.091) (2.949) (3.207) (2.811) (3.136) (2.943) 

State park  
-1.072 0.371 1.384 1.443 2.456 1.013 
(2.866) (2.783) (2.734) (2.554) (2.728) (2.654) 

Water  -0.118 0.512 -2.252 0.631 -2.134 -2.765 
Quality index (1.019) (1.011) (2.123) (0.958) (2.111) (2.106) 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
 
 
 
 
 
 
 
 
 
Table 1.12. Results of parameter ratio comparison in the second stage estimation with three 
attributes on water quality (ratio of given parameter to travel cost coefficient) 

  AT04-AT05 AT04-ET05 AT04-CB05 AT05-ET05 AT05-CB05 ET05-CB05 
Log of  -1.924 0.055 -0.615 1.979 1.310 -0.669 
Lake size (2.218) (2.018) (1.995) (2.030) (2.056) (1.959) 

Boat ramp 
-0.345 0.280 -0.699 0.625 -0.354 -0.978 
(6.398) (6.153) (6.019) (6.522) (6.456) (5.829) 

Wake  -0.309 -0.656 -0.538 -0.347 -0.229 0.118 
Restrictions  (2.840) (2.583) (2.937) (2.620) (2.924) (2.837) 
Handicap  1.015 0.322 -0.039 -0.694 -1.054 -0.360 
Facilities (2.896) (2.701) (3.049) (2.570) (2.938) (2.688) 

State park  
-0.827 0.207 0.788 1.034 1.615 0.581 
(2.775) (2.648) (2.666) (2.469) (2.656) (2.580) 

Secchi -0.991 0.173 -0.727 1.164 0.264 -0.900 
depth (1.852) (1.918) (2.234) (1.923) (2.247) (2.268) 
Total 0.003 -0.008 -0.011 -0.011 -0.013 -0.003 
Phosphorus (0.023) (0.023) (0.048) (0.022) (0.047) (0.047) 
Total -0.125 0.029 0.406 0.155 0.532 0.377 
Nitrogen (0.522) (0.517) (0.706) (0.517) (0.686) (0.687) 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
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Table 1.13. Results of Wald test for the joint equality of parameters 
  AT04-AT05 AT04-ET05 AT04-CB05 AT05-ET05 AT05-CB05 ET05-CB05 
1st stage  13.887 12.630 25.034 28.451 42.397 17.889 
parameters ** ** *** *** *** *** 
1st stage 98.047 100.536 103.220 107.281 115.409 80.339 
only ASCs - - - - - - 
1st stage par. 126.085 758.954 194.598 267.722 166.713 166.267 
with ASCs * *** *** *** *** *** 

(Second stage estimation with water quality index) 
2nd stage 2.599 16.060 16.268 13.371 18.859 3.998 
parameters - ** ** * *** - 
2nd stage par. 1.911 0.937 1.806 4.107 4.637 2.080 
without  - - - - - - 
full stages 16.090 158.370 49.687 78.538 52.378 46.021 
parameters - *** *** *** *** *** 

(Second stage estimation with three attributes on water quality) 
2nd stage 2.765 16.266 15.024 13.609 18.168 2.416 
parameters - * * - ** - 
2nd stage par. 2.061 0.893 1.334 4.515 4.852 0.739 
without  - - - - - - 
full stages 16.730 168.314 49.386 83.548 51.515 46.178 
parameters - *** *** *** *** *** 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
 
 
Table 1.14. Results of Wald test for the joint equality of parameter ratios  

  AT04-AT05 AT04-ET05 AT04-CB05 AT05-ET05 AT05-CB05 ET05-CB05 
1st stage  6.475 10.577 16.096 17.030 20.901 10.645 
parameters - ** *** *** *** ** 
1st stage 155.519 218.548 196.152 193.221 187.582 210.401 
only ASCs *** *** *** *** *** *** 
1st stage par. 163.405 234.481 212.113 198.858 197.056 214.801 
with ASCs *** *** *** *** *** *** 

(Second stage estimation with water quality index) 
2nd stage 4.061 2.094 3.898 2.776 3.201 2.738 
parameters - - - - - - 
2nd stage par. 0.945 0.510 1.668 1.674 3.093 2.225 
without  - - - - - - 
full stages 6.992 10.903 17.777 17.759 23.141 12.861 
parameters - - * * ** - 

(Second stage estimation with three attributes on water quality) 
2nd stage 4.794 2.210 2.904 4.341 2.010 1.204 
parameters - - - - - - 
2nd stage par. 1.854 0.548 0.648 3.246 1.810 0.706 
without  - - - - - - 
full stages 7.950 10.857 16.991 19.390 22.490 11.932 
parameters - - - * ** - 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
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Table 1.15. Average additional WTP for improving water quality by 1 unit of index (unit: dollar) 
  AT04 AT05 ET05 CB05 

WTP 
0.314 0.195 0.826 -1.939 

(0.778) (0.720) (0.762) (2.058) 
Note: The numbers in parentheses are standard errors. 
 
 
 
 
 
Table 1.16. WTP (for water quality) consistency test between any two of four cases 

Difference b/t Mean Standard Error Significant Level 
AT04 vs AT05 0.118 (1.019) - 
AT04 vs ET05 -0.512 (1.011) - 
AT04 vs CB05 2.252 (2.123) - 
AT05 vs ET05 -0.631 (0.958) - 
AT05 vs CB05 2.134 (2.111) - 
ET05 vs CB05 2.765 (2.106) - 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
 
 
 
 
 
Table 1.17. Average CV for the case Big Creek Lake is no longer accessible (unit: dollar) 

  AT04 AT05 ET05 CB05 

WTP 
0.090*** 0.096*** 0.122*** 0.115*** 
(0.014) (0.012) (0.018) (0.019) 

Note 1: The numbers in parentheses are standard errors. 
Note 2: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
 
 
 
 
 
Table 1.18. CV (for Big Creek Lake shut down case) consistency test between any two of four 
cases 

Difference b/t Mean Standard Error Significant Level 
AT04 vs AT05 -0.006 (0.013) - 
AT04 vs ET05 -0.032 (0.009) *** 
AT04 vs CB05 -0.025 (0.015) ** 
AT05 vs ET05 -0.026 (0.016) - 
AT05 vs CB05 -0.019 (0.019) - 
ET05 vs CB05 0.007 (0.013) - 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
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Table 1.19. Average additional WTP for improving secchi depth by 1 meter (unit: dollar) 
  AT04 AT05 ET05 CB05 

WTP 
4.210*** 3.219** 4.383*** 3.483* 
(1.469) (1.434) (1.444) (1.845) 

Note 1: The numbers in parentheses are standard errors. 
Note 2: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
 
 
 
 
 
Table 1.20. WTP (for secchi depth) consistency test between any two of four cases 

Difference b/t Mean Standard Error Significant Level 
AT04 vs AT05 0.991 (1.852) - 
AT04 vs ET05 -0.173 (1.918) - 
AT04 vs CB05 0.727 (2.234) - 
AT05 vs ET05 -1.164 (1.923) - 
AT05 vs CB05 -0.264 (2.247) - 
ET05 vs CB05 0.900 (2.268) - 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
 
 
 
 
 
Table 1.21. Average CV for the case Saylorville Lake is no longer accessible (unit: dollar) 
  AT04 AT05 ET05 CB05 

WTP 
0.141*** 0.166*** 0.182*** 0.218*** 
(0.021) (0.019) (0.026) (0.034) 

Note 1: The numbers in parentheses are standard errors. 
Note 2: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
 
 
 
 
 
Table 1.22. CV (for Saylorville Lake shut down case) consistency test between any two of four 
cases 

Difference b/t Mean Standard Error Significant Level 
AT04 vs AT05 -0.025 (0.019) - 
AT04 vs ET05 -0.041 (0.013) *** 
AT04 vs CB05 -0.077 (0.024) *** 
AT05 vs ET05 -0.016 (0.022) - 
AT05 vs CB05 -0.052 (0.030) * 
ET05 vs CB05 -0.036 (0.020) * 

Note: *, ** and *** are used to denote significance at the 10%, 5% and 1% levels, respectively. 
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CHAPTER 2.  EVIDENCE OF UPDATING RISK PERCEPTION: 2008 GREAT FLOOD 
EFFECTS ON PROPERTY VALUES IN IOWA’S MAIN CITIES 

 

2.1. Introduction 

In 2008, one of the most severe flooding events in Iowa history, sometimes referred to as 

“Iowa’s Katrina,” occurred between June 8 and July 1. This event continued on the Upper 

Mississippi River in the southeastern area of Iowa for several days. The Iowa floods of 2008 

caused the greatest damage to the Iowa River and Cedar River watersheds among any natural 

disasters in the state’s recorded history. The most destructive damage from this catastrophe was 

reported in Cedar Rapids and Iowa City, Iowa. About ten square miles of the downtown area in 

Cedar Rapids were flooded, 14% of the city. The Cedar River crested at 31.12 feet, the highest 

level in Cedar Rapids’ history, with the previous record 20 feet. In Iowa City, the arts campus of 

the University of Iowa was mostly destroyed. There were more than 6 million sandbags filled in 

Johnson County, more than were filled during Hurricane Katrina and breaking a national 

record.11 The Des Moines basin was also affected by the floods. The Des Moines River crested at 

31.57 feet on June 13th. Des Moines city officials issued voluntary and mandatory evacuations to 

the residents of around 270 homes on June 14th.12 Hicks and Burton (2008) estimated 

agricultural losses from these floods at about $2.7 billion, revenue losses at more than $20 

million, and anticipated total infrastructure damages at about $159 million for Iowa. Although 

the impact of the 1993 floods were greater for the nation as a whole, the floods of 2008 had a 

greater impact for Iowa. Based on estimated financial public assistance, the floods and tornadoes 

11 Higgins, Tim, and Mason Kerns. 2008. “Iowa City sending a gift: 250,000 extra sandbags.” Des Moines Register, 
June 18, 2008. 
12 Des Moines is the capital and most populous city in the state of Iowa. 
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of 2008 in Iowa are regarded as the sixth largest Federal Emergency Management Agency 

(FEMA) disaster declaration. 

This study basically begins with two questions. First, “Do housing prices reflect ex ante 

and/or ex post information on flood risk?” Second, “How can we extract the pure, perceived 

flood risk discount from the entire flood effects, including property stigmatization?” With this 

motivation, this study seeks to estimate the pure impact of the floods on property prices. In 

particular, we examine the variation in property value of certain areas before and after the floods 

to isolate the impact of updated perceived risk and/or increment of stigmatization that results 

from the floods.  

There are a number of studies that deal with the effects of flooding on property values. 

However, most of these analyses rely on cross-sectional data and focus their attention on coastal 

flooding that results from hurricanes. Inland floods are rarely studied. Moreover, those studies 

that do employ inter-temporal data focus on the difference in prices between before and after a 

specific disaster. They pay little attention to spatial characteristics of the location. This research 

studies the effects of flooding by comparing property values not only before and after the flood, 

but by also taking into account various differences in risk exposure for the different floodplains. 

The analysis then goes one step further by investigating how realized flooding (i.e., whether a 

property was actually inundated by the 2008 flood) alters the changes patterns of housing prices 

over time. To capture these effects, this study uses a classical hedonic property price model with 

both difference-in-differences and triple differences techniques. 

The remainder of this chapter consists of seven sections. The next section summarizes 

previous studies of how disasters impact residential property values. Section 2.3 develops a 

theoretical framework used to characterize how floods potentially impact housing prices. Section 
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2.4 describes the primary data sources, while Section 2.5 outlines the basic empirical model. The 

results are shown in Section 2.6. In Section 2.7, a parallel application for the Cedar Rapids area 

is introduced. Finally, summary and concluding remarks are provided in Section 2.8.  

 

2.2. Literature Review 

A number of studies investigate the effect of both natural and man-made disasters on 

residential property values. These disasters include the nuclear accident of 1979 at Three-Mile 

Island (Nelson 1981), the 1988 explosion of a chemical plant in Henderson, Nevada (Carroll et 

al. 1996), the 1999 pipeline explosion in Bellingham (Hansen et al. 2006), Loma Prieta 

earthquake of 1989 in the San Francisco Bay area (Beron et al. 1997), coastal flood hazards due 

to hurricanes (MacDonald et al. 1990; Bin and Polasky 2004; Hallstrom and Smith 2005), the 

inland floods of 1979 in Texas (Skantz and Strickland 1987) and 1993 on the Missouri and 

Mississippi rivers (Kousky 2010). 

While many papers investigate the effects of flood risk on property values, by and large 

they rely on cross-sectional data. Only a few papers compare property values inside the 

floodplains with those outside the floodplains. Skantz and Strickland (1987) look into inland 

flood risks by using the 1979 floods in Texas. They do not find any significant drop in property 

prices after the floods. However, they do find a decline in prices stemming from an increase in 

insurance costs a year later. They use 133 properties, including 33 flooded homes. Bin and 

Polansky (2004) examine the effect of Hurricane Floyd by using difference in a difference (DID) 

approach. They find that the differential in the price between properties inside and outside the 

floodplain in Pitt County, North Carolina, increased after the hurricane. Hallstrom and Smith 
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(2005) and Carbone et al. (2006) employ a repeat-sales model, together with DID’s, to estimate 

the new risk information conveyed by Hurricane Andrew to homeowners in a county directly hit 

(Dade County, Florida) versus a county that experienced a near-miss (Lee County, Florida). 

They find that the flood effect is noticeably consistent for both counties. After Hurricane 

Andrew, property prices in both counties declined by around 20%. 

Kousky (2010) investigates whether a severe flood causes homeowners to update their 

assessment of flood risk for the property. For her analysis, Kousky targets the floods of 1993, 

one of the worst floods on record for the United States. She uses a hedonic property model to 

estimate the price differences between residential properties within and outside of the floodplain 

in St. Louis County, Missouri over the years 1979-2006. Then, Kousky captures the flood effect 

in the price differences by utilizing DID method. She finds before the flood, there was no 

significant discount for properties in the 500-year floodplains relative to properties outside the 

floodplain. However, properties in the 100-year floodplains were discounted 3.2 to 3.9%. For the 

period after the flood, Kousky finds property prices in the 100-year floodplains did not change 

significantly, while those in the 500-year floodplains decreased by between 2 and 5%. Under the 

National Flood Insurance Program (NFIP), home buyers are supposed to be informed of the 

flood risks before purchasing property within 100-year floodplains, but not the 500-year 

floodplains. In this sense, Kousky concludes that homeowners are likely to pay for a reduction in 

the probability of a disaster and that the risk information from NFIP actually influences 

homeowners. 

This study begins with an approach similar to Kousky’s (2010), but takes the analysis one 

step further by considering the role of actual flood inundation on changing home prices. This is 

the main difference from any existing studies, including Kousky’s (2010). Even with the same 



40 

flood, shifts in property values will be potentially sensitive to the realized flooding patterns, 

which can differ significantly from historical flood plain maps. Limited in access to actual 

damage data, this study uses geographic data on inundation as a proxy on direct damage. To 

estimate the effect, this research considers the actual, inundated area as the treatment group and 

non-inundated area as the corresponding control group. Then, by using differences techniques, 

we can extract the pure effects of inundation for each level of the flood risk area (that is, 100-

year floodplains, 500-year floodplains, and non-flood plain areas).13 This enables researchers to 

investigate how differently people update their risk assessment with direct, experienced events 

compared to the assessment with indirectly experienced events. 

 

2.3. Theoretical Framework 

This section draws and expands on the models developed in Palmquist (2005) and 

Kousky (2010). In this section, this study shows how information on flood risk can affect the 

price of properties using a hedonic property model. From the hedonic property models, the prices 

for property can be expressed as a function of the property’s attributes, such as neighborhood 

characteristics, locational characteristics, structural characteristics, and an interesting 

environmental variable. In this study, as an environmental variable of interest, a consumer’s 

subjectively assessed probability of flood is utilized. 

Consumers maximize their expected utility subject to their budget constraints. Given r is the 

subjectively perceived probability for a flood, which represents individual assessment of disaster 

risk; z is a Hicksian composite good; X is property attributes vector; m is income; and P(∙) is the 

13 Section 2.5 will provide more detail for this technique. 
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hedonic property price function, the basic consumer’s property choice decision model can be 

summarized as 14 

 
( ) ( ) ( ), 1 ,

. . ( , )
F F NF NFMax EU rU z X r U z X

s t m z P X r
= + −

= +
   , (11) 

where subscripts F and NF denote the cases of flood and no flood, respectively. The numeraire z 

can be expressed as NFz m P= −  when no flood occurs, Fz m P L= − −  in the case of flood, 

where L is the losses from the flood. From the implicit function theorem, the implicit price of 

risk can be expressed as such: 

 
( )

0
1

F NF

NFF

F NF

U UP
UUr r r

z z

−∂
= <

∂∂∂ + −
∂ ∂
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From Eq. (12), it is shown that the property price is determined at the lower level as flood risk 

increases.   

Now, we can utilize the same modeling structure to incorporate the role of information 

for flood risk. This information includes both statistical flood frequency of a residence (as 

revealed in historical floodplain maps) and an actual flood event. It can influence both the 

perceived probability of a flood event and the anticipated losses. For example, the perceived 

probability of flood risk and losses from a flood may be altered when a severe flood occurs. The 

direction of effect can be either negative or positive. If a residence is unexpectedly inundated 

from the point of view of ex ante information, then the new information will increase the 

perceived flood risk of the residence. Alternatively, if a residence is known as a high-risk area, 

14 This chapter assumes that consumers buy only one house to live in. This is one of basic assumptions in hedonic 
property models (See Palmquist 2005). 
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but is not inundated during an actual flood, this new information will change the consumer’s 

perceived risk to the lower level.  

Updating the subjective probability of disaster risk and losses from a disaster, according 

to the disaster risk information, can be expressed in the following manner. Let the subjective 

probability, r, and losses, L, be functions of the information (I). Then, the expected utility 

function is 

 ( ) ( ) ( ) ( ), 1 ,F F NF NFEU r I U z X r I U z X= + −      , (13) 

where ( ) ( ),Fz m P X r I L I= − −    and ( ),NFz m P X r I= −    . In the same manner as the 

previous explanation, the partial derivative of the hedonic property price with respect to the 

information can be derived as 
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The sign for Eq. (14) relies on the signs of r I∂ ∂  and L I∂ ∂ . Suppose that catastrophic flooding 

occurs and that a residence is unexpectedly inundated with flood losses greater than expected. 

Then, an individual’s subjective probability of flood risk to the residence will increase after 

experiencing the flood, and predicted losses expected from a future flood will also increase. That 

is, 0r I∂ ∂ >  and 0L I∂ ∂ > . In this case, Eq. (14) will be negative. Alternatively, if the actual 

flood does not affect a residence with a high, historical risk of flooding and the actual damage is 

less than expected, then the perceived risk will likely lessen, as will anticipated losses with future 

floods. Hence, in this case, 0r I∂ ∂ <  and 0L I∂ ∂ <  and Eq. (14) will be positive. This shows 
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that the hedonic property price can either increase or decrease after a flood event, according to 

the characteristics of the new flood information.  

 

2.4. Data 

This study uses data for single-family, detached residential properties sold between 2000 through 

2012 in Des Moines, Iowa. The historical transaction data were obtained by a sales query from 

the Polk County assessor’s website (http://web.assess.co.polk.ia.us/cgi-bin/web/tt/infoqry.cgi?tt 

=info/help/help-v2/sales_residential_dm). The website includes actual sales price, sales date, 

address, zip code, and property’s structural attributes, such as land square feet, living area square 

feet, total number of bedrooms, number of baths, age of the house, number of fireplaces, garage 

dummy, and residence type dummy. Especially, for residence type, there are eleven types—‘1 

story’, ‘1.5 story’, ‘2 story’, ‘2 story plus’, ‘1 story unfinished attic’, ‘1 story finished attic’, 

‘split foyer’, ‘split level’, ‘partial construction’, ‘manufactured home’, and ‘other types’.  In 

addition to structural characteristics, the data set also includes neighborhood characteristics, such 

as information on the associated school district. There are five school districts in the data set—

Des Moines, Carlisle, Southeast Polk, Saydel, and Johnston. For sales price, the prices the Polk 

County assessor provides are in current dollars. Using the house price index, the sales prices 

were adjusted during the fourth quarter 2012 dollars.15 Summary statistics for all explanatory 

variables and dependent variable are provided in Table 2.1.  

15 A house price index specific to Des Moines-West Des Moines Core Based Statistical Area (CBSA) was used here. 
This index was obtained from the Federal Housing Finance Agency website (http://www.fhfa.gov/Default.aspx? 
Page= 87). 
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The number of total transactions was 52,889. However, after cleaning the data, 1,091 

transactions are dropped leaving a final sample size of 51,798.16  The annual average number of 

transactions is 3,984. Even in 2008, the year when the floods occurred, the numbers of sales is 

3,182.17 So, the number of housing transactions seems sufficient to derive a statistically 

meaningful estimation of the hedonic price function. For a robustness check, this study uses three 

ways to split the entire period into pre-flood and post-flood periods: (1) Based on the beginning 

date of the flood, (2) dropping all observations during the flooding period, and (3) dropping all 

transactions that occurred within three months before and after the flooding period, i.e., 

transactions from March to September in 2008. The resulting sample sizes are 51,798, 51,185 

and 49,711, respectively.    

For the flood data, this study uses geographic information system (GIS) shape data on 

100-year and 500-year floodplains, and actual inundation during the 2008 floods. The year 

shown in each floodplain denotes statistical frequency of flooding events. So, a 100-year 

floodplain indicates flooding occurs, on average, in the specific area one time during a 100-year 

period. This does not mean there will be no flooding for 100 years, since flooding does occur on 

occasion. Rather, this signifies that the area has one percentage chance experiencing a flood in a 

given year. In this sense, each floodplain implies flood risk. Thus, we can obtain each property’s 

locational characteristics on flood risk by checking its type of floodplain location. That is, 

housing units are geo-located to determine whether or not they are in the 100- and 500-year 

floodplains, as well as the 2008 flood inundated property area. Using ArcGIS shapefiles makes it 

16 Among 1,091 removed observations, houses with no information on certain attributes are 997. Nine of these have 
inappropriate information on certain house attributes. For example, sales year is earlier than year built in some cases. 
The number of houses with zero value in such attributes as land square feet, number of baths, and total number of 
bedrooms is 81. Finally, four are mobile homes, whose type is quite different from that of general residential 
property occupied by a single family. 
17 Table 2.2 shows the number of transactions by year. 
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possible to geocode each property’s address and zip code to identify each location. These 

locational attributes on flood risk are used as dummy variables in the model.  

The Iowa Flood Center (IFC) (See Figure 2.1) provided all GIS data sets on floodplains 

and actual inundation. The 100- and 500-year floodplains are calculated by IFC. Their flood 

plain maps are quite close to, but not exactly the same as, the 100- and 500-year floodplains that 

FEMA provides. Most of previous studies on flood effects used FEMA’s 100- and/or 500-year 

floodplains. Although the floodplains data that FEMA provides are generally considered as 

official data on flood risk, IFC also calculates floodplains in the same manner as FEMA. 

Moreover, IFC has updated the floodplains data more recently for Des Moines than FEMA. 

These two floodplains data are all proxy of true floodplains.  

Finally, when identifying transactions inside 100- or 500-year floodplains, this study 

follows FEMA’s suggestion to apply a 75-meter buffer to floodplain boundary because of the 

flood shapefile’s scale (Kousky 2010). Additionally, a 30-meter buffer is applied to the actual 

inundated areas. As a robustness check in terms of actually flooded areas’ boundaries, this study 

also estimates the hedonic function with various buffers – 75m, 30m, and 3m. Detailed numbers 

for the observations are summarized in Table 2.3. 

 

2.5. Estimation 

This study uses both difference-in-differences (DID) and triple differences (DDD) 

techniques to capture the impact of the floods. The basic treatment group consists of housing 

units in the 100- and 500-year floodplains, while the control group consists of houses outside 

both floodplains. This is the same approach used by Kousky (2010). However, taking the 
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analysis one step further, this research also looks into the effects of actual inundation. For a 

given flood, the impact on any two home values can differ substantially, depending on the actual 

damage. We do not have available information on the actual monetary damage to a housing unit. 

Instead, we use geographic data on inundation as a proxy dummy variable for direct damage. 

Moreover, inundation can be interpreted as fulfillment of flood expectations. In other words, an 

inundation is an actual flooding event, while floodplains are the areas whose flood risk is 

calculated by researchers. Floodplains are a statistically, geographically and topographically, 

calculated concept to show the level of flood risk. On the other hand, an inundation is the 

realization of corresponding risk. Therefore, an inundated floodplain in an extraordinary flood 

can be considered as the fulfillment of risk expectation, i.e., the case where ex ante information 

turns out to be correct. On the other hand, properties in a floodplain, but not-inundated during a 

flood event, may suggest the need to update or adjust ex ante information.  

In estimating this effect, the actual inundated area is considered the treatment group and 

the non-inundated area is the corresponding control group here. Specifically, properties are 

partitioned into three distinct subgroups: (1) those within the 100-year floodplain, (2) those 

within the 500-year floodplain, and (3) those properties outside the 500-year floodplain. We also 

distinguish whether the property was actually inundated during the 2008 floods. This enables us 

to investigate how property values (and their associated risk assessment) change with a directly 

experienced flood event. Because 100- and 500-year floodplains are statistical classifications 

with respect to flood frequency, they are likely to overlap with the area actually damaged by a 

flood, but complete overlap is not a requirement. Figure 2.2 shows an example of this case. So, 

even in the case where two people live in same floodplain area, if one person’s house is 

inundated by a flood, while the other’s house is not, then the effects of the flood could be 
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different, as could be the ex post perceived risk. In addition, information on the 100-year 

floodplains must be provided to potential buyers, while information on 500-year floodplains are 

not provided. From this point of view, this study can provide an additional clue on how 

differently people update their subjective assessment of flood risks, according to not only 

whether they have ex ante information, but also whether their ex ante information is well-

estimated.  

To extract this type of effect, this study adopts a modified DID technique. The dummy 

for actual inundation is subordinate to the dummy for the flood because inundation happens only 

when a flood occurs. Also, to compare ex ante information on flood risk with ex post flooding, 

this research can also focus on the post-flood inundation effect for each level of floodplains and 

in non-flood plain areas rather than on both pre- and post-flood inundation effects.18 The semi-

log function used as a basic functional form here is  
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where i denotes each property, t indexes transaction date, P is price of the property, Zj signifies 

the jth attribute of the property, and 100F and 500F are dummy variables that indicate whether 

the property is within 100- or 500-year floodplains, respectively. DP denotes the post-flood 

dummy variable 1, if t is after the 2008 flood. DA indexes the actual inundation dummy variable 

1, if the location was inundated during the 2008 flood. Therefore, the overall constant, β0, 

18 To investigate post-flood inundation effects on each type of floodplains, all areas are partitioned into six parts 
exclusively – (1) inundated 500-year floodplains, (2) non-inundated 500-year floodplains, (3) inundated 100-year 
floodplains, (4) non-inundated 100-year floodplains, (5) inundated non-flood plain areas, and (6) non-inundated 
non-flood plain areas. This partition reduces one difference between inundation and floodplain. Therefore, this 
approach is a difference-in-differences instead of triple differences. 
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represents the base group, that is, non-floodplain areas before the flood. The coefficients of DP’s 

(α1) mean treatment effects of flood, while the coefficients of DA’s (δ1, δ11, δ12) signify direct 

effects of flood by being inundated in each area—100-year floodplains, 500-year floodplains, 

and non-flood plain areas. On the other hand, α11 and α12 imply the flood effects in non-

inundated 100- and 500-year floodplains. β0, β0 + β11, and β0 + β12, respectively, reflect each 

locational effect for the three kinds of areas (non-flood plain areas, 100-, and 500-year 

floodplains) before the flood. After the flood, there are six kinds of areas—non-

inundated/inundated non-flood plain areas, 100-, and 500-year floodplains. Their locational 

effect will be β0 + α1, β0 + α1 + δ1, β0 + α1 + β11 + α11, β0 + α1 + β11 + δ11, β0 + α1 + β12 + α12, and 

β0 + α1 + β12 + δ12 in this order. Hence, we can estimate the parameter of the pure flood effect on 

inundated 100-year floodplains, δ11, by double differencing as below: 

  ( ) ( )11 P,A&100F P,0 0,100F 0,0y y y yδ = − − −    , (16) 

where the first subscript for y  signifies the event dummy ‘P’, if transactions occurred after the 

flood otherwise zero, and the second subscript for y  means the locational dummy – zero 

signifies the non-flood plain areas, ‘100F’ means 100-year floodplains, and ‘A&100F’ signifies 

actual inundated 100-year floodplains.    

Meanwhile, the DDD technique is utilized as a generalization of DID. The DID model 

assumes no locational effect of the inundated region before the flood. So, relaxing this 

restriction, the inundated areas’ locational trait also needs consideration to extract the flood 

effect. A triple differences technique can examine inundated areas’ geographical effects, which 

means that there could exist a geographical effect of the inundated region even before the flood. 

From the first difference, we can eliminate the group effect between floodplains and non-
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floodplains. Then, second difference will rule out the time effects (i.e., pre- and post-flood) for 

all groups. Finally, the third difference is the difference between inundation area and non-

inundated area, which separates direct damage effects and indirect damage effects. General triple 

differences hedonic models have the following functional form: 
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where the meanings for all the variables are the same with the previous DID model. Then, the 

OLS estimate of α21, the parameters on the triple interaction term that means the pure flood effect 

on inundated 100-year floodplains after the flood can be expressed as  

  ( ) ( ) ( ) ( )21 P,A,100F 1,A,0 P,0,100F P,0,0 0,A,100F 0,A,0 0,0,100F 0,0,0y y y y y y y yα    = − − − − − − −     , (18) 

where the first subscript for y  means the event dummy is ‘P’, if transactions occurred after the 

flood, otherwise zero. The second subscript for y  means the locational dummy for inundation is 

‘A’ is the actual inundated area, otherwise zero. Finally, the third subscript signifies the 

locational dummy for floodplains is ‘100F’, if the area is located in 100-year floodplains, 

otherwise zero. Unlike the DID model, using the DDD model, one can also estimate the pure 

geographical effect of inundated areas, which exists regardless of the 2008 flood, i.e., δ1, δ11, and 

δ12. This is the benefit of using a DDD model instead of using the previous DID model. 

One critical issue on this method is how to distinguish the impact of financial crisis from 

that of the floods in the whole impact because the periods when both events occurred overlap 

each other. The bankruptcy of Lehman Brothers, considered the trigger of the 2008 financial 

crisis, occurred on September 15, while the floods of 2008 began around June 8 and ended about 

July 1, 2008. To solve this problem, this research assumes the effects of the financial crisis are 
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locationally homogeneous in each city. Although the degree of the effects might be different, 

according to the characteristics of the associated locations, both the treatment group and control 

group experienced the financial crisis, that is, the event is a common effect. In this sense, if this 

effect is assumed homogeneous across locations, then it can be eliminated by the DID technique.  

 

2.6. Results 

This section will show the estimation of hedonic price function and test its robustness. 

The basic estimation is calculated on the basis of 51,798 observations without dropping 

observations during the flooding. The floodplains and the actual flooded areas are calculated by 

applying the 75-meter and 30-meter buffers, respectively. The results of estimation are 

summarized in Tables 2.4 and 2.5. Table 2.4 shows the results of the DID model and Table 2.5 

provides the results for the DDD model. In the DID model, 100-year floodplains have a 

significantly negative effect before the flood at the 95% significance level. The price decreased 

by 15.7%. However, after the flood, if the areas were inundated, there is no significant effect, 

while there is a significantly positive effect, if they were inundated during the flood. Overall, the 

flood effect is not significant. Flood effects on the 500-year floodplains are negative, especially 

for the floodplains actually inundated. The price plummeted by 76.9%, which is extremely high 

rate.19 Non-floodplains areas also have a negative effect on inundation, although the scale is not 

as much as the 500-year floodplains. The DDD model shows similar results. All parameters in 

common have the same signs with the DID model, although a couple of the significances are 

different. In addition, there are also locational effects of inundated areas. All locational effects 

19 This extraordinary decrease rate comes mostly from the lowest priced houses. See robust tests, and Tables 2.10 
and 2.11.  
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are negative, except for the 100-year floodplains before the flood. However, they are 

insignificant, which supports the assumption of the DID model.  

As shown in the tables, all parameters related to housing facilities have reasonable signs 

and are statistically significant at the 99% significance level. The sizes of lot, living area, and 

basement have positive effects on house prices, while house age has a negative effect. Garage 

and the numbers of bathrooms, bedrooms, and fireplaces are also positive factors in property 

values. For fixed effects of each year, there is an obviously declining pattern in housing prices 

starting in 2008, likely the result of the financial crisis that began in 2008.20 For structure type 

dummies, the more stories, the higher the price.21 Both partially constructed houses and 

manufactured homes have lower prices than general type houses.22    

In summary, in terms of flood risk, the post-flood dummy is not significant and even 

positive, which means the overall effect of floods is not harmful to property values. However, 

focusing on floodplains and inundated areas, we find some interesting results. First, for 500-year 

floodplains, there was no significant difference before the flood. However, if the area was 

inundated during the flood, the price was discounted significantly after the flood. If not, the price 

was not discounted. One interpretation of this result is that people did not reflect flood risk in 

house price before the flood because the information on 500-year floodplains is not necessarily 

provided to potential purchasers, which means most people might not have the information. 

However, when people experienced the inundation directly, they realized the flood risk and this 

is reflected in the house price thereafter. Next, for 100-year floodplains, there was already a 

significant discount in the price before the flood. If the area was inundated in 2008, there is no 

20 The base year related with year dummies is 2000. 
21 Structure type dummy 1, 2, and 5 mean 1.5-story, 2-story, 2-story plus, respectively. The base structure type is 1-
story. 
22 These types of houses are shown in Structure type dummies 7 and 8. 
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change in price after the flood. However, if the home was not inundated, there is critical 

rebounding in price after the flood. This can also be interpreted from the risk updating point of 

view. The information on 100-year floodplains is mandatorily open to house buyers. Therefore, 

the house market already reflects the risk in price regardless of actual flood. Hence, when floods 

in 2008 occurred, the inundated areas do not need further discounts. However, properties in the 

100-year floodplains not inundated could be reassessed because they turned out less risky than 

the market expected. Finally, for non-flood plain regions, similar with 500-year floodplains, if 

they were inundated in the floods, then there is a significant price discount, but not as much as 

for the 500-year floodplains. However, if the properties were not inundated, then there is no 

change in price. The difference in price discount between 500-year floodplains and non-flood 

plain areas can be explained as the difference in flood risk between 500-year floodplains and the 

non-flood plain areas.  

 

Robustness Tests 

To check the robustness of the results shown in Tables 2.4 and 2.5, this study considered 

these alternative ways of  

1. Dealing with the flood period itself; 

2. Defining the inundation region; and 

3. Handling outliers in terms of transaction prices.  

For the flood period, two more cases were estimated—dropping transactions during the 

flooding (June 8 to July 1, 2008), dropping three months’ transactions before and after the 

flooding (from March to September in 2008). Tables 2.6 and 2.7 provide the resulting parameter 
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estimates. There are no substantive changes to the results from our handling of the flood period 

itself. All the cases show almost the same parameter values and significance. 

For the buffer of inundated areas, two more cases were estimated– 75 and 3m buffers. 

The results are provided in Tables 2.8 and 2.9. The pre-flood effects are almost exactly same 

with one another, while the post-flood effects are not as well-matched as the pre-flood effects. 

Especially, the dummy for 500-year floodplains inundated in 2008 flood has a somewhat 

inconsistent sign. However, most of the values not well-matched are statistically insignificant, 

and all the significant parameters show consistent signs and similar values across the various 

buffers. Thus, the results also show robustness with respect to the definition of the inundation 

region.  

For the cutoff test, this study uses the ratio price to the size of the living area (hereafter 

‘price ratio’). Observations with the lowest 10% price ratio are dropped from the sample. Next, 

this research estimates the hedonic model again using this new sample (sample size is 46,619) 

and compares the new results with original ones. Original results show a price decrease of 76.9% 

(in DID estimation) or 59.1% (in DDD estimation) in post-flood inundated 500-year floodplains, 

which may seem unusually large. Trimming the sample’s outliers, the home prices in the same 

areas decrease by 11.6% (in DID estimation) or even increase slightly by 4.5% (in DDD 

estimation) (See Tables 2.10 and 2.11). Judging from this result, the extreme price discount 

mostly comes from the lowest priced transactions. However, even after removing the fairly low 

priced transactions, a significant price discount in pre-flood 100-year floodplains and price 

rebound in post-flood non-inundated 100-year floodplains are still supported by the test, 

although the size of the effects become smaller. As a result, both price discount in the floodplains 

before the flood and price rebound in non-inundated 100-year floodplains after the flood are 
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robust with respect to trimming the data. Likewise, the test also confirms that unexpected 

inundation (i.e., inundation in the non-floodplain region) has a significantly negative effect. 

 

2.7. Application to Cedar Rapids 

This study also applies the same investigation techniques to Cedar Rapids, the second 

largest city in Iowa. Cedar Rapids is one of the most severely damaged cities during the floods of 

2008. Housing transactions from 2004 to 2012 were utilized and the total number of observations 

is 17,790. The housing transaction data set for this application is purchased from DataQuick, 

while the geographical shape data on floodplains and inundation are obtained from the Iowa 

Flood Center. For comparison of the flood effects between Cedar Rapids and Des Moines, the 

flood effects in Des Moines were re-estimated with the data set exactly corresponding to that of 

Cedar Rapids, i.e., housing transactions from 2004 to 2012 with only house attributes in common 

– number of bathrooms, bedrooms, living area size, lot size, house age, basement size, garage 

dummy, and school district dummies. 

The results are shown in Tables 2.12 and 2.13. For the structural characteristics, the two 

cities have the same signs. Only the coefficient of house age is negative and all the other 

coefficients of structural attributes are positive, which accords with common sense. Year 

dummies in Des Moines show an obvious pattern of significantly fallen in price from 2008 to 

2011 by 31.5%. On the other hand, year dummies in Cedar Rapids show a significant decrease 

only in 2008 and 2011 by 2.7 and 6.4%, respectively. Especially for locational characteristics, 

Cedar Rapids shows distinctively different flood effects from Des Moines. The main features of 

flood effects in Cedar Rapids compared to those in Des Moines are as follows. First, while Des 
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Moines has a price discount in both floodplains, if the areas were inundated during the floods, 

Cedar Rapids shows a positive effect of inundation after the floods. Second, Des Moines shows a 

significant price rebound in the 100-year floodplains after the floods, if the areas were not 

inundated. In contrast, Cedar Rapids shows a significant price discount in the same floodplains 

under the same conditions. Third, price discount in Des Moines’ floodplains before the flood is 

also supported by the results for Cedar Rapids. However, if restricted to non-inundated 100-year 

floodplains before the flood, the price discount is no longer applicable to Cedar Rapids. 

To check for the robustness of the flood effect on house prices in Cedar Rapids, this 

research tests the results sensitivity in terms of three aspects—(1) flood period, (2) definition of 

the inundation region, and (3) price outliers, which are the same as the main estimation for Des 

Moines. The results are summarized in Tables 2.14 through 2.19. With different ways of dealing 

with flood periods, there are neither large nor significant changes in estimation. Likewise, even if 

the inundated areas are defined with different distances, most of the coefficients have no change 

in their signs, although some change their statistical significances. Additionally, a few 

coefficients change their signs notably. In DID estimation, if the buffer of the inundation region 

is extended to 75 from 30m (base buffer), then the coefficient of post-flood inundated 100-year 

floodplains changes from significantly negative to insignificantly positive. Similarly, in DDD 

estimation, both pre-flood inundated 100-year floodplains and post-flood 100-year floodplains 

effects change from significantly negative to insignificantly positive. Post-flood inundated 100-

year floodplains effect changes from insignificantly positive to significantly negative. When the 

buffer for the inundation region is set as 75m, the results change to a similar direction with Des 

Moines. Finally, to manage the outliers in terms of prices, 1,755 observations with the lowest 

10% price/living area ratio were dropped. In this case, the coefficient for post-flood non-
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inundated 100-year floodplains in DID changes from significantly negative to insignificantly 

positive, although most of the coefficients do not change remarkably. Even for the DDD 

estimation, the coefficient values for the post-flood non-inundated floodplains drop dramatically, 

although the signs are unchanged. In this sense, it can be inferred most of the negative effects in 

the post-flood non-inundated floodplains stem from the bottom-level, low priced houses. 

 

2.8. Discussion and Conclusions 

This research investigates how people update their perception of flood risk by tracking 

property prices. The estimation of the hedonic property price model can be mainly divided into 

two parts—pre-flood and post-flood effects. The pre-flood effect is associated with ex ante 

information. That is to say, this is the effect about whether people reflect their ex ante conceptual 

information into the housing market without any direct experience. House buyers are informed 

about only flood risks for the 100-year floodplains. The results show that only the coefficient of 

100-year floodplain dummy has a significantly negative sign. This implies that people reflect 

their flood risks in market price, according to ex ante flood information. 

The post-flood effect is utilized to examine how people update their flood risks, when 

their learning from experience accords with ex ante information or when it does not. Inundation 

dummies in the 500-year floodplains and in non-flood plain areas mean new flood risk 

information because people did not have sufficient information about flood risks in 500-year 

floodplains and non-flood plain areas before the floods. The results show that the coefficients for 

these dummies have a significantly negative sign. This can be interpreted that people update 

flood risk with their direct experiences to reflect the new information into prices. The 
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interpretation of the inundation dummy in the 100-year floodplains is different from those in the 

500-year floodplains and in non-flood plain. People already have flood risk information for 100-

year floodplains before the floods. Therefore, this dummy means the fulfillment of their 

expectations in the real world. It is not surprising information in people’s risk perceptions. The 

results show that the coefficient of the dummy is insignificant, which accords with the 

interpretations.  

Finally, the non-inundation dummy in 100-year floodplains has an interesting 

significance. From ex ante flood information, people can conjecture the 100-year floodplains will 

be inundated first rather than any other areas, if a great flood occurs. However, the non-

inundation dummy in 100-year floodplains means there are some places in 100-year floodplains 

not flooded, even when some regions other than 100-year floodplains are inundated. The results 

show that the coefficient of the dummy is significantly positive. This implies that people revise 

their existing flood information on the basis of their direct experiences to make the market price 

rebound. Moreover, there is one critical advantage in the coefficient of non-inundation dummies 

against that of inundation dummies. The inundation effect includes physical damage or direct 

stigmatization to properties, as well as an increment of perceptual flood risk. However, due to the 

limitation of available data, we cannot identify each subordinate effect. On the other hand, non-

inundated areas do not have direct physical damages to houses from the floods. Therefore, we 

can extract change of perceptual flood risk separately. The coefficient of non-inundation 

dummies can be interpreted as pure change of perceptual flood risk without additional physical 

damage effect. 

In contrast with the results of estimation for Des Moines, Cedar Rapids shows opposite 

results for some flood effects. Cedar Rapids shows a positive inundation effect and negative non-
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inundation effect from the 100-year floodplains after the flood. Also, it does not show any price 

discount for pre-flood non-inundated 100-year floodplains. As mentioned previously, some of 

the lowest priced houses can explain the negative post-flood non-inundation effect in 100-year 

floodplains. There are also some possible scenarios that interpret the results, although the 

available data set cannot demonstrate the justification for the interpretations with certainty. The 

scenery effect is one candidate for no discount effect for pre-flood non-inundated 100-year 

floodplains. If a house located in a non-inundated 100-year floodplains has a beautiful landscape, 

then the scenery has a positive effect on price, which can offset a flood risk discount. However, 

there is no way to distinguish the scenery effect and flood risk effect from the whole price 

change with the existing available data set.  

Remodeling or reconstruction is a scenario for positive inundation effect in floodplains 

after the floods. Suppose that a house in the floodplains was inundated during the flood and 

totally damaged. After this incident, it was remodeled or reconstructed and then sold at a higher 

price. The remodeling effect can surpass the pure negative inundation effect.  

An approach to the supply side is another candidate for the same effect. The 2008 floods 

in Cedar Rapids was a uniquely unexpected catastrophe and many houses were destroyed. In 

turn, the supply of houses significantly decreased in this area. Because of a decrease in the 

supply, the price was pressured to increase. However, this scenario is difficult to apply here. This 

study assumes that the entire city is one market. Therefore, if housing supply decreases, the 

house price should increase, not only in floodplains, but all over the entire city. Hence, this 

scenario cannot explain the increase in price only in the floodplains. Also, this scenario is 

difficult to verify using the hedonic price model because this scenario is about the supply side. 
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Apart from the application to Cedar Rapids, this study has some limitations in data. First 

and above all, as shown in Table 2.3, the number of transactions within the two kinds of 

floodplains is not sufficient. In some cases, the number of observations is less than ten. If there 

are sufficient numbers of observations in the floodplains, then the accuracy of estimation can be 

improved. Second, as mentioned previously, there were no available data on physical damage to 

properties from the flood, which is measured in terms of money. If available, then we can extract 

the physical damage effects from the coefficient of inundation dummies so the pure floor risk 

updating is estimable, even for inundated areas. Finally, as described in Section 2.4, the 

floodplain GIS shapefiles used here are produced by the Iowa Flood Center. They are not exactly 

the same with the floodplain map files from FEMA, although they are quite close to each other. 

Even though this research uses various levels of buffers to check the robustness, if the FEMA 

data that informs house buyers are used in this study, the estimation can be more precise. To 

develop this study further, we can apply other alternative methods, such as matching techniques. 

Also, in 1993, there was another great flood in Iowa. So, if the property transaction data before 

and after 1993 are available, then we can compare these two flood effects and understand them 

more deeply. 
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Figure 2.1. Geographical location of floodplains, flooding areas and observations in Des Moines, 
Iowa 

 
Note: Floodplains and inundated areas are overlapped with each other in the order of the legend. So, if they are 
overlapped, only higher ordered floodplains will show up in the map.
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Figure 2.2. Example of a house which is located in 100-year floodplains but was not actually 
inundated in 2008 flood (southwestern part of Des Moines near the Raccoon river) 
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Table 2.1. Summary statistics (Total sample size: 51,802) 
Variables Mean Max Min S.D. # of 1s 

Log of Price 11.38 15.21 6.87 0.67 n.a. 

D
um

m
ie

s 

Post-Flood 0.27 1 0 0.44 13,947 
Inundated Areas (Inun.) 0.03 1 0 0.18 1,751 
500yr Floodplains (500yr) 0.002 1 0 0.05 106 
100yr Floodplains (100yr) 0.002 1 0 0.05 120 
500yr w/o Inun. 0.002 1 0 0.04 100 
100yr w/o Inun. 0.001 1 0 0.03 59 
Non-flood plains w. Inun. 0.03 1 0 0.18 1,684 
500yr w. Inun. 0.0001 1 0 0.01 6 
100yr w. Inun. 0.001 1 0 0.03 61 
2001yr 0.08 1 0 0.28 4,388 
2002yr 0.09 1 0 0.28 4,524 
2003yr 0.09 1 0 0.29 4,638 
2004yr 0.09 1 0 0.28 4,600 
2005yr 0.10 1 0 0.29 4,923 
2006yr 0.09 1 0 0.29 4,901 
2007yr 0.08 1 0 0.27 4,096 
2008yr 0.06 1 0 0.24 3,182 
2009yr 0.07 1 0 0.25 3,369 
2010yr 0.05 1 0 0.23 2,837 
2011yr 0.05 1 0 0.22 2,688 
2012yr 0.06 1 0 0.24 3,274 
School District 1 0.01 1 0 0.11 622 
School District 2 0.01 1 0 0.12 743 
School District 3 0.0002 1 0 0.02 12 
School District 4 0.01 1 0 0.09 430 
Garage 0.77 1 0 0.42 39,970 
Building Type 1 0.08 1 0 0.27 3,951 
Building Type 2 0.13 1 0 0.33 6,518 
Building Type 3 0.03 1 0 0.16 1,371 
Building Type 4 0.04 1 0 0.19 1,862 
Building Type 5 0.03 1 0 0.17 1,541 
Building Type 6 0.04 1 0 0.20 2,158 
Building Type 7 0.001 1 0 0.03 50 
Building Type 8 0.0006 1 0 0.02 29 
Building Type 9 0.12 1 0 0.32 5,962 
Building Type 10 0.00006 1 0 0.01 3 
Land Sf. 10,855.92 3,092,847 1,584 29,928.83 n.a. 
House Age 63.41 159 1 30.16 n.a. 
Living Area Sf. 1,169.49 7,290 288 469.96 n.a. 
Total bathrooms 1.37 7.5 0.5 0.59 n.a. 
Total bedrooms 2.69 9 1 0.78 n.a. 
Total Fireplaces 0.29 4 0 0.51 n.a. 
Basement Sf. 788.97 4,421 0 352.03 n.a. 
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Table 2.2. Number of transaction by year 
Year # of Transactions Year # of Transactions 

2000 4,378 2007 4,096 
2001 4,388 2008 3,182 
2002 4,524 2009 3,369 
2003 4,638 2010 2,837 
2004 4,600 2011 2,688 
2005 4,923 2012 3,274 
2006 4,901 Average 3,984.5 

 

 

 

 

 

 

 

Table 2.3. Number of observations for actually inundated area with various buffers 
  75m 30m 3m 

500-year floodplain without inundation 38 100 105 
100-year floodplain without inundation 5 59 109 
Non-flood plain area with inundation 10244 1684 161 
500-year floodplain with inundation 68 6 1 
100-year floodplain with inundation 115 61 11 
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Table 2.4. Results of estimation with DID technique 
Variable Estimate Std. Err. |Estimate|/ S.E. 

Constant 10.787 0.014 748.50 
500-year floodplains -0.071 0.053 1.36 
100-year floodplains -0.157 0.050 3.16 
Post-Flood (PF) 0.021 0.017 1.22 
PF*500-year floodplain without inundation -0.036 0.112 0.32 
PF*100-year floodplain without inundation 0.236 0.119 1.98 
PF*non-flood plain area with inundation -0.065 0.021 3.05 
PF*500-year floodplain with inundation -0.769 0.338 2.27 
PF*100-year floodplain with inundation 0.0004 0.157 0.00 
Year 2001 dummy 0.006 0.010 0.59 
Year 2002 dummy 0.005 0.010 0.47 
Year 2003 dummy 0.038 0.010 3.80 
Year 2004 dummy 0.020 0.010 1.99 
Year 2005 dummy 0.009 0.010 0.91 
Year 2006 dummy 0.042 0.010 4.31 
Year 2007 dummy 0.041 0.010 3.95 
Year 2008 dummy -0.031 0.015 2.11 
Year 2009 dummy -0.105 0.020 5.22 
Year 2010 dummy -0.157 0.020 7.73 
Year 2011 dummy -0.273 0.020 13.35 
Year 2012 dummy -0.189 0.020 9.39 
School dummy 1 -0.124 0.020 6.15 
School dummy 2 -0.111 0.019 5.99 
School dummy 3 -0.009 0.136 0.07 
School dummy 4 -0.027 0.023 1.14 
Garage dummy 0.290 0.005 56.30 
Structure type dummy 1 0.033 0.009 3.60 
Structure type dummy 2 0.036 0.009 4.10 
Structure type dummy 3 0.036 0.013 2.65 
Structure type dummy 4 0.040 0.012 3.36 
Structure type dummy 5 0.121 0.015 7.87 
Structure type dummy 6 0.041 0.011 3.84 
Structure type dummy 7 -0.523 0.067 7.78 
Structure type dummy 8 -0.312 0.088 3.53 
Structure type dummy 9 0.058 0.007 7.85 
Structure type dummy 10 2.388 0.273 8.75 
Lot size Sf./106 1.895 0.070 27.08 
House age -0.007 0.0001 77.09 
Living area Sf./104 3.680 0.090 40.81 
Number of bathrooms 0.040 0.005 7.29 
Number of bedrooms 0.013 0.004 3.44 
Number of Fireplaces 0.139 0.005 27.23 
Basement Sf./104 3.221 0.077 41.82 

Note: Bold numbers are significantly different from zero with 95% confidence level. 
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Table 2.5. Results of estimation with DDD technique 
Variable Estimate Std. Err. |Estimate|/ S.E. 

Constant 10.787 0.014 748.35 
100-year floodplains (100yr) -0.204 0.075 2.73 
500-year floodplains (500yr) -0.067 0.054 1.25 
Inundated areas (Inun.) -0.018 0.014 1.26 
100yr*Inun. 0.102 0.101 1.01 
500yr*Inun. -0.076 0.243 0.31 
Post-Flood (PF) 0.020 0.017 1.18 
PF*100yr 0.284 0.132 2.16 
PF*500yr -0.040 0.112 0.36 
PF*Inun. -0.048 0.026 1.87 
PF*100yr*Inun. -0.272 0.211 1.29 
PF*500yr*Inun. -0.591 0.425 1.39 
Year 2001 dummy 0.006 0.010 0.58 
Year 2002 dummy 0.005 0.010 0.46 
Year 2003 dummy 0.038 0.010 3.79 
Year 2004 dummy 0.020 0.010 1.98 
Year 2005 dummy 0.009 0.010 0.91 
Year 2006 dummy 0.042 0.010 4.32 
Year 2007 dummy 0.041 0.010 3.95 
Year 2008 dummy -0.031 0.015 2.10 
Year 2009 dummy -0.105 0.020 5.21 
Year 2010 dummy -0.157 0.020 7.72 
Year 2011 dummy -0.273 0.020 13.34 
Year 2012 dummy -0.189 0.020 9.38 
School dummy 1 -0.125 0.020 6.18 
School dummy 2 -0.112 0.019 6.02 
School dummy 3 -0.010 0.136 0.07 
School dummy 4 -0.027 0.023 1.16 
Garage dummy 0.290 0.005 56.27 
Structure type dummy 1 0.033 0.009 3.56 
Structure type dummy 2 0.036 0.009 4.06 
Structure type dummy 3 0.036 0.013 2.66 
Structure type dummy 4 0.040 0.012 3.35 
Structure type dummy 5 0.121 0.015 7.83 
Structure type dummy 6 0.041 0.011 3.82 
Structure type dummy 7 -0.524 0.067 7.79 
Structure type dummy 8 -0.313 0.088 3.54 
Structure type dummy 9 0.058 0.007 7.81 
Structure type dummy 10 2.405 0.273 8.80 
Lot size Sf./106 1.897 0.070 27.10 
House age -0.007 0.000 77.09 
Living area Sf./104 3.685 0.090 40.81 
Number of bathrooms 0.040 0.005 7.29 
Number of bedrooms 0.013 0.004 3.43 
Number of Fireplaces 0.139 0.005 27.25 
Basement Sf./104 3.220 0.077 41.79 

Note: Bold numbers are significantly different from zero with 95% confidence level. 
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Table 2.6. Robustness test for the treatment of flood period (DID) 

Variable 
No dropping Drop flood period Drop 3 months 
Est. S.E. Est. S.E. Est. S.E. 

500-year floodplains -0.071 0.053 -0.072 0.053 -0.081 0.054 
100-year floodplains -0.157 0.050 -0.157 0.050 -0.158 0.050 
Post-Flood (PF) 0.021 0.017 0.009 0.019 0.015 0.029 
PF*500-year floodplain without inundation -0.036 0.112 -0.062 0.114 -0.051 0.114 
PF*100-year floodplain without inundation 0.236 0.119 0.238 0.119 0.239 0.122 
PF*non-flood plain area with inundation -0.065 0.021 -0.069 0.022 -0.066 0.023 
PF*500-year floodplain with inundation -0.769 0.338 -0.769 0.338 -0.758 0.338 
PF*100-year floodplain with inundation 0.0004 0.157 0.005 0.158 -0.052 0.174 

Note: Bold numbers are significantly different from zero with 95% confidence level. 

 

Table 2.7. Robustness test for the treatment of flood period (DDD) 

Variable 
No dropping Drop flood period Drop 3 months 
Est. S.E. Est. S.E. Est. S.E. 

100-year floodplains (100yr) -0.204 0.075 -0.205 0.075 -0.209 0.076 
500-year floodplains (500yr) -0.067 0.054 -0.068 0.054 -0.077 0.055 
Inundated areas (Inun.) -0.018 0.014 -0.018 0.014 -0.019 0.014 
100yr*Inun. 0.102 0.101 0.102 0.101 0.108 0.102 
500yr*Inun. -0.076 0.243 -0.076 0.243 -0.063 0.243 
Post-Flood (PF) 0.020 0.017 0.009 0.019 0.015 0.029 
PF*100yr 0.284 0.132 0.285 0.132 0.290 0.135 
PF*500yr -0.040 0.112 -0.066 0.114 -0.054 0.115 
PF*Inun. -0.048 0.026 -0.051 0.026 -0.047 0.027 
PF*100yr*Inun. -0.272 0.211 -0.265 0.212 -0.333 0.226 
PF*500yr*Inun. -0.591 0.425 -0.562 0.426 -0.577 0.426 

Note: Bold numbers are significantly different from zero with 95% confidence level. 

 

Table 2.8. Robustness test for area buffer (DID) 

Variable 
75m buffer 30m buffer (Base) 3m buffer 

Est. S.E. Est. S.E. Est. S.E. 
500-year floodplains -0.072 0.053 -0.071 0.053 -0.071 0.053 
100-year floodplains -0.157 0.050 -0.157 0.050 -0.156 0.050 
Post-Flood (PF) 0.028 0.017 0.021 0.017 0.019 0.017 
PF*500-year floodplain without inundation 0.075 0.166 -0.036 0.112 -0.093 0.108 
PF*100-year floodplain without inundation 0.292 0.338 0.236 0.119 0.148 0.105 
PF*non-flood plain area with inundation -0.047 0.010 -0.065 0.021 -0.137 0.065 
PF*500-year floodplain with inundation -0.201 0.129 -0.769 0.338 0.235 0.277 
PF*100-year floodplain with inundation 0.137 0.104 0.000 0.157 

Note 1: Bold numbers are significantly different from zero with 95% confidence level. 
Note 2: For 3m-buffer, the number of observations for “PF*500-year floodplain with inundation” is zero. So, for 
these two buffers, I merge both 500-year, and 100-year floodplains into floodplains.  
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Table 2.9. Robustness test for area buffer (DDD) 

Variable 
75m buffer 30m buffer (Base) 3m buffer 

Est. S.E. Est. S.E. Est. S.E. 
100-year floodplains (100yr) -0.426 0.273 -0.204 0.075 -0.159 0.052 
500-year floodplains (500yr) -0.099 0.088 -0.067 0.054 -0.067 0.053 
Inundated areas (Inun.) -0.019 0.006 -0.018 0.014 -0.013 0.046 
100yr*Inun. 0.293 0.278 0.102 0.101 0.036 0.181 
500yr*Inun. 0.056 0.110 -0.076 0.243 -0.359 0.478 
Post-Flood (PF) 0.024 0.017 0.020 0.017 0.019 0.017 
PF*100yr 0.559 0.431 0.284 0.132 0.150 0.106 
PF*500yr 0.102 0.180 -0.040 0.112 -0.097 0.108 
PF*Inun. -0.029 0.012 -0.048 0.026 -0.124 0.079 
PF*100yr*Inun. -0.398 0.444 -0.272 0.211 0.188 0.346 
PF*500yr*Inun. -0.284 0.225 -0.591 0.425 

Note 1: Bold numbers are significantly different from zero with 95% confidence level. 
Note 2: For 3m-buffer, the number of observations for “PF*500-year floodplain with inundation” is zero. So, for 
these two buffers, I merge both 500-year, and 100-year floodplains into floodplains.  
 

Table 2.10. Robustness test for price ratio cutoff (DID) 

Variable Estimate Std. Err. |Estimate| 
/ Std. Err. 

Estimate 
(Base) 

500-year floodplains -0.014 0.033 0.430 -0.071 
100-year floodplains -0.089 0.031 2.829 -0.157 
Post-Flood (PF) 0.013 0.011 1.178 0.021 
PF*500-year floodplain without inundation 0.025 0.071 0.346 -0.036 
PF*100-year floodplain without inundation 0.067 0.075 0.898 0.236 
PF*non-flood plain area with inundation -0.037 0.014 2.598 -0.065 
PF*500-year floodplain with inundation -0.116 0.289 0.403 -0.769 
PF*100-year floodplain with inundation 0.127 0.106 1.191 0.000 

Note: Bold numbers are significantly different from zero with 95% confidence level. 
 

Table 2.11. Robustness test for price ratio cutoff (DDD) 

Variable Estimate Std. Err. |Estimate| 
/ Std. Err. 

Estimate 
(Base) 

100-year floodplains (100yr) -0.056 0.047 1.193 -0.204 
500-year floodplains (500yr) -0.008 0.034 0.245 -0.067 
Inundated areas (Inun.) -0.001 0.009 0.132 -0.018 
100yr*Inun. -0.059 0.064 0.934 0.102 
500yr*Inun. -0.149 0.169 0.877 -0.076 
Post-Flood (PF) 0.013 0.011 1.178 0.020 
PF*100yr 0.034 0.082 0.413 0.284 
PF*500yr 0.019 0.071 0.261 -0.040 
PF*Inun. -0.036 0.017 2.145 -0.048 
PF*100yr*Inun. 0.156 0.138 1.130 -0.272 
PF*500yr*Inun. 0.045 0.339 0.133 -0.591 

Note: Bold numbers are significantly different from zero with 95% confidence level. 
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Table 2.12. Estimation of Cedar Rapids’ hedonic price model (DID) 

Variable Estimate Std. Err. |Estimate| 
/ S.E. 

Estimate 
(Des Moines) 

Constant 11.139 0.021 538.934 10.699 
500-year floodplains -0.062 0.018 -3.522 -0.047 
100-year floodplains -0.080 0.021 -3.786 -0.204 
Post-Flood (PF) -0.001 0.017 -0.068 0.024 
PF*500-year floodplain without inundation -0.153 0.025 -6.194 -0.030 
PF*100-year floodplain without inundation -0.130 0.045 -2.880 0.279 
PF*non-flood plain area with inundation 0.007 0.017 0.429 -0.066 
PF*500-year floodplain with inundation -0.060 0.036 -1.654 -0.801 
PF*100-year floodplain with inundation -0.161 0.025 -6.462 0.088 
Year 2005 dummy -0.013 0.014 -0.906 -0.013 
Year 2006 dummy -0.026 0.014 -1.835 0.019 
Year 2007 dummy -0.027 0.014 -1.918 0.017 
Year 2008 dummy -0.054 0.018 -3.027 -0.057 
Year 2009 dummy -0.046 0.022 -2.065 -0.134 
Year 2010 dummy 0.019 0.022 0.866 -0.185 
Year 2011 dummy -0.044 0.022 -1.955 -0.298 
Year 2012 dummy 0.026 0.022 1.137 -0.217 
Garage dummy 0.147 0.008 19.496 0.322 
Lot size Sf./106 0.285 0.349 0.815 1.956 
House age -0.006 0.000 -45.731 -0.007 
Living area Sf./104 3.025 0.074 40.612 4.681 
Number of bathrooms 0.038 0.006 6.619 0.061 
Number of bedrooms 0.037 0.004 8.942 0.010 
Basement Sf./104 2.290 0.084 27.288 3.314 
School dummy 1 0.0003 0.012 0.024 -0.132 
School dummy 2 -0.020 0.012 -1.770 -0.125 
School dummy 3 n.a. -0.062 
School dummy 4 0.012 

Note: Bold numbers are significantly different from zero with 95% confidence level. 
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Table 2.13. Estimation of Cedar Rapids’ hedonic price model (DDD) 

Variable Estimate Std. Err. |Estimate| 
/ S.E. 

Estimate 
(Des Moines) 

Constant 11.139 0.021 538.964 10.699 
500-year floodplains (500yr) -0.054 0.020 -2.680 -0.046 
100-year floodplains (100yr) 0.042 0.052 0.798 -0.309 
Inundated areas (Inun.) 0.003 0.016 0.204 -0.017 
500yr*Inun. -0.036 0.041 -0.869 -0.028 
100yr*Inun. -0.148 0.059 -2.513 0.245 
Post-Flood (PF) -0.001 0.017 -0.079 0.023 
PF*500yr -0.162 0.027 -6.088 -0.032 
PF*100yr -0.252 0.066 -3.841 0.385 
PF*Inun. 0.004 0.023 0.175 -0.049 
PF*500yr*Inun. 0.121 0.057 2.111 -0.677 
PF*100yr*Inun. 0.108 0.074 1.467 -0.370 
Year 2005 dummy -0.013 0.014 -0.918 -0.013 
Year 2006 dummy -0.026 0.014 -1.854 0.019 
Year 2007 dummy -0.027 0.014 -1.914 0.017 
Year 2008 dummy -0.054 0.018 -3.008 -0.056 
Year 2009 dummy -0.046 0.022 -2.049 -0.133 
Year 2010 dummy 0.020 0.022 0.878 -0.184 
Year 2011 dummy -0.044 0.022 -1.942 -0.298 
Year 2012 dummy 0.026 0.022 1.151 -0.217 
Garage dummy 0.147 0.008 19.488 0.322 
Lot size Sf./106 0.284 0.349 0.813 1.956 
House age -0.006 0.000 -45.718 -0.007 
Living area Sf./104 3.023 0.075 40.492 4.683 
Number of bathrooms 0.037 0.006 6.547 0.061 
Number of bedrooms 0.037 0.004 8.970 0.010 
Basement Sf./104 2.288 0.084 27.250 3.315 
School dummy 1 0.0006 0.012 0.055 -0.134 
School dummy 2 -0.020 0.012 -1.763 -0.125 
School dummy 3 n.a. -0.062 
School dummy 4 0.012 

Note: Bold numbers are significantly different from zero with 95% confidence level. 
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Table 2.14. Robustness test for the treatment of flood period in Cedar Rapids (DID) 

Variable 
No dropping Drop flood period Drop 3 months 

Est. S.E. Est. S.E. Est. S.E. 

500-year floodplains -0.062 0.018 -0.062 0.018 -0.064 0.018 
100-year floodplains -0.080 0.021 -0.081 0.021 -0.074 0.022 
Post-Flood (PF) -0.001 0.017 -0.007 0.018 -0.001 0.031 
PF*500-year floodplain without inundation -0.153 0.025 -0.155 0.025 -0.138 0.025 
PF*100-year floodplain without inundation -0.130 0.045 -0.129 0.045 -0.125 0.046 
PF*non-flood plain area with inundation 0.007 0.017 0.007 0.017 0.009 0.018 
PF*500-year floodplain with inundation -0.060 0.036 -0.060 0.037 -0.042 0.037 
PF*100-year floodplain with inundation -0.161 0.025 -0.161 0.025 -0.137 0.025 

Note: Bold numbers are significantly different from zero with 95% confidence level. 

 

 

 

 

Table 2.15. Robustness test for the treatment of flood period in Cedar Rapids (DDD) 

Variable 
No dropping Drop flood period Drop 3 months 

Est. S.E. Est. S.E. Est. S.E. 

500-year floodplains (500yr) -0.054 0.020 -0.054 0.020 -0.055 0.021 
100-year floodplains (100yr) 0.042 0.052 0.042 0.052 0.036 0.052 
Inundated areas (Inun.) 0.003 0.016 0.004 0.017 0.009 0.017 
500yr*Inun. -0.036 0.041 -0.036 0.041 -0.043 0.042 
100yr*Inun. -0.148 0.059 -0.148 0.059 -0.140 0.059 
Post-Flood (PF) -0.001 0.017 -0.007 0.018 -0.001 0.031 
PF*500yr -0.162 0.027 -0.163 0.027 -0.148 0.027 
PF*100yr -0.252 0.066 -0.252 0.066 -0.236 0.066 
PF*Inun. 0.004 0.023 0.004 0.024 0.001 0.024 
PF*500yr*Inun. 0.121 0.057 0.123 0.057 0.129 0.058 
PF*100yr*Inun. 0.108 0.074 0.109 0.074 0.118 0.075 

Note: Bold numbers are significantly different from zero with 95% confidence level. 
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Table 2.16. Robustness test for area buffer in Cedar Rapids (DID) 
Variable 75m 30m (Base) 3m 

500-year floodplains -0.062 -0.062 -0.062 
100-year floodplains -0.081 -0.080 -0.080 
Post-Flood (PF) -0.002 -0.001 0.000 
PF*500-year floodplain without inundation -0.195 -0.153 -0.138 
PF*100-year floodplain without inundation 0.254 -0.130 -0.236 
PF*non-flood plain area with inundation 0.005 0.007 0.071 
PF*500-year floodplain with inundation -0.102 -0.060 0.078 
PF*100-year floodplain with inundation -0.160 -0.161 -0.099 

Note: Bold numbers are significantly different from zero with 95% confidence level. 

 

 

 

 

 

Table 2.17. Robustness test for area buffer in Cedar Rapids (DDD) 
Variable 75m 30m (Base) 3m 

500-year floodplains (500yr) -0.015 -0.054 -0.063 
100-year floodplains (100yr) -0.144 0.042 -0.082 
Inundated areas (Inun.) 0.021 0.003 0.034 
500yr*Inun. -0.080 -0.036 0.019 
100yr*Inun. 0.049 -0.148 -0.030 
Post-Flood (PF) 0.004 -0.001 0.000 
PF*500yr -0.242 -0.162 -0.136 
PF*100yr 0.317 -0.252 -0.234 
PF*Inun. -0.015 0.004 0.037 
PF*500yr*Inun. 0.168 0.121 0.126 
PF*100yr*Inun. -0.468 0.108 0.095 

Note: Bold numbers are significantly different from zero with 95% confidence level. 
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Table 2.18. Robustness test for price ratio cutoff in Cedar Rapids (DID) 
Variable Estimate t-value Estimate (Base) 

500-year floodplains -0.072 -6.630 -0.062 
100-year floodplains -0.035 -2.720 -0.080 
Post-Flood (PF) 0.023 2.300 -0.001 
PF*500-year floodplain without inundation -0.001 -0.040 -0.153 
PF*100-year floodplain without inundation 0.026 0.940 -0.130 
PF*non-flood plain area with inundation 0.013 1.330 0.007 
PF*500-year floodplain with inundation 0.020 0.880 -0.060 
PF*100-year floodplain with inundation -0.003 -0.180 -0.161 

Note: Bold numbers are significantly different from zero with 95% confidence level. 

 
 
 
 
 
 
 
 
Table 2.19. Robustness test for price ratio cutoff in Cedar Rapids (DDD) 

Variable Estimate t-value Estimate (Base) 

500-year floodplains (500yr) -0.066 -5.410 -0.054 
100-year floodplains (100yr) 0.077 2.370 0.042 
Inundated areas (Inun.) 0.026 2.850 0.003 
500yr*Inun. -0.047 -1.820 -0.036 
100yr*Inun. -0.157 -4.340 -0.148 
Post-Flood (PF) 0.024 2.500 -0.001 
PF*500yr -0.007 -0.440 -0.162 
PF*100yr -0.086 -2.110 -0.252 
PF*Inun. -0.013 -1.010 0.004 
PF*500yr*Inun. 0.054 1.520 0.121 
PF*100yr*Inun. 0.114 2.500 0.108 

Note: Bold numbers are significantly different from zero with 95% confidence level. 
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CHAPTER 3. IS CHOICE BEHAVIOR IN RECREATION DEMAND HABIT-FORMING 
OR VARIETY-SEEKING? 

 

3.1. Introduction 

There is extensive literature studying habit formation and variety seeking in the context 

of labor markets and food demand. However, state-dependent behavior has rarely been 

investigated in modeling recreation demand.23 Yet, individuals may choose to enjoy a particular 

recreation site repeatedly on the basis of their experiences, instead of trying to find new sites. 

Once they obtain information regarding a given recreation site—such as its scenery, congestion, 

and facilities—through an initial visit, they may make use of this information to decide if the site 

is their favorite place and visit it repeatedly. Alternatively, some individuals may want to enjoy a 

variety of recreational sites. In this case, people may choose a different site for each choice 

occasion. Understanding the extent of either type of behavior is important from a policy 

perspective because it impacts both the estimated value of existing sites and the ability of policy-

makers to induce changes in behavior. For example, if habit formation is strong, it may be 

difficult to induce individuals to change their visitation patterns in response to an environmental 

policy. This study examines whether there is state dependence in recreation demand and, if so, 

what form it takes. If there is positive state dependence, then recreational trips can be considered 

a habit-forming good. On the other hand, recreational trips can also be thought of as a variety-

seeking good, if there is a negative state dependence.  

Methodologically, the major concern when dealing with state dependence models is the 

so-called “initial conditions problem.” The initial conditions problem arises because any lagged 

23 Hereafter, the word ‘state dependence’ is used as a concept that includes both habit-forming property and variety-
seeking property. 
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dependent variable included in a model to capture state dependence is likely correlated with 

unobserved individual characteristics also impacting current decisions; i.e., the lagged dependent 

variables are likely to be endogenous. Treating these lagged variables as exogenous variables can 

lead to significant bias and a mis-characterization of state dependence.  

The objective of this study is to examine the role of state dependence in recreation 

demand using panel data from the Iowa Lakes Project. For a solution of initial conditions 

problems, this research employs the two dominant approaches found in the literature. One is 

Heckman’s (1981b) approximation and the other is Wooldridge’s (2005) solution. This study 

begins with a single site case and extends the analysis to a multiple site setting. For the single 

site case, a dynamic random effect (RE) logit model is used. In the multiple site setting, a RE 

two-step nesting structure model is used, capturing state dependence in terms of overall trip 

taking, although not in terms of the specific sites selected. For both the single and multiple site 

cases, a RE Poisson model is also estimated as an alternative approach to compare the results and 

as a robustness check. Finally, a Monte Carlo simulation exercise is also used to show the biases 

that can arise either from neglecting state dependence entirely or from treating it incorrectly. 

The remainder of this study is divided into six additional sections. Section 3.2 provides a 

brief review of the literature. Section 3.3 describes the basic initial conditions problem and the 

solutions proposed by Heckman (1981b) and Wooldridge (2005). The specific models employed 

in the analysis are provided in Section 3.4, followed by a description of the Iowa Lakes data used 

in the empirical analysis in Section 3.5. Section 3.6 presents results, while Section 3.7 concludes 

the investigation. 

 

 



77 

3.2. Literature Review 

The concept of state dependence traces to Pollak (1970). He explains that consumption of 

a good is habit-forming, if present preferences depend on past consumption. Thus, habit 

formation means that past consumption strengthens the tendency to consume the same good over 

time. On the other hand, if past consumption affects current and future consumptions oppositely, 

then the consumption of that good is variety-seeking.  

The field, which has most actively studied state dependence, is food or drug 

consumption. These studies have been conducted with various models and data sets. The most 

commonly used models are dynamic versions of the linear expenditure system, the translog 

model, the almost ideal demand system, and recently—discrete choice models. Most of the 

empirical studies in food consumption find evidence of habit formation. However, some of the 

study results do not support habit formation (Alessie and Kapteyn 1991; Meghir and Weber 

1996; Dynan 2000) or only obtained mixed results (Pollak and Wales 1969; Edgerton et al. 1996; 

Holt and Goodwin 1997).  

Representatively, Thunstrӧm (2010) estimates the strength of state dependence associated 

with breakfast cereal consumption and its heterogeneity across households by using a mixed 

multinomial logit model with a detailed micro-level dataset. She shows that breakfast cereal 

consumption is generally highly habitual. Thunstrӧm also finds that some households can be 

characterized as variety-seeking, that the strength of habit persistence is similar across income 

and educational groups. It seems to be weaker for households with several adults and children 

compared with one-adult households. 
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State dependence has also been actively studied in the labor market literature. Heckman 

(1981a) points out the importance of distinguishing true state dependence by taking some studies 

on the labor market as examples. He also suggests his approximation to solve the initial 

condition problem in the extension of labor market analysis (Heckman 1981b).24 Recently, 

Oguzoglu (2010) examines whether a work limiting disability influences employment decisions 

by using the Household, Income, and Labor Dynamics in Australia (HILDA) Survey and finds 

strong state dependence in employment choices. He also shows that the full effect of a disability 

shock may be more severe than its initial impact on current employment outcomes, especially for 

low skilled individuals, because of the persistent nature of employment behavior by using 

simulations.  

Haan (2010) estimates an inter-temporal discrete choice model of female labor supply to 

capture the effects of state dependence on the labor supply behavior in terms of both labor 

market participation (extensive margin) and working hours (intensive margin) on the basis of 

panel data from the German Socio Economic Panel (SOEP). His results show that state 

dependence has a significantly positive impact on labor market participation and a lower, but, in 

general, still significant impact on working hours. Haan also used his model to investigate the 

short- and long-run labor supply effects of a fundamental reform of the German income tax 

system and show that the labor supply responses are significantly higher in the long-run than in 

the short run. 

Around the same time, Prowse (2012) also examines a similar topic to Haan’s, again 

supporting the notion of state dependence in labor market decisions. He investigates state 

dependencies in women’s labor supply behaviors using a dynamic multinomial mixed logit 

24 His study will be introduced in more detail in Section 3.3. 
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model with the British Household Panel Survey (BHPS). Prowse shows that significant state 

dependence is present in both full-time and part-time employment, and that state dependencies 

are overestimated, if persistent unobservables are ignored, and underestimated, if an overly 

restrictive form of persistence is imposed. 

On the other hand, for recreation demand, only a small number of studies on habit 

formation have been conducted. Adamowicz (1994) seems the first who investigates whether 

there is any state dependence—either habit-forming or variety-seeking patterns—in recreation 

demand. He models recreational site choice decisions that contain previous experiences with the 

site as a characteristic or attribute. Adamowicz uses a rational dynamic model as well as one 

static model and naïve models. Based on the comparison of dynamic and static models, 

Adamowicz suggests dynamic elements influence recreational choice. He also shows that either 

a naïve or rational model with previous consumption as an attribute improves over the static 

model and that this effect can be a significant factor in welfare analysis. 

Although Haab (2003) does not use the word ‘habit formation’ or ‘variety-seeking 

pattern,’ he also studies state dependence in recreation demand with the concept of temporal 

dependence. Haab shows a single-site demand model that allows for temporal correlation 

between choice occasions, but can be estimated on seasonal summaries of behavior data. He uses 

five models, such as Poisson, zero inflated Poisson, negative binomial, first-order binary 

Markov, and zero inflated binary Markov with the concept of first-order Markov chain to 

strongly support the temporally correlated model. 

Swait et al. (2004) study the effect of temporal dependence on welfare measures. They 

take note of the fact that static, cross-sectional discrete choice models will be biased if the 

underlying preference includes temporal dependence. They apply the discrete choice model that 
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includes consideration of prior behaviors and past attribute perceptions to the case of recreational 

fishing site choice and participation, comparing with the static version. They find that their time-

series model provides a richer behavioral characterization of site choice and that significant 

differences exist between cross-section and time-series welfare measures. 

Smith (2005) uses a mixed logit model combined with a state dependence 

parameterization to distinguish state dependence from heterogeneity in repeated decisions. He 

studies fishing location choices of commercial sea urchin divers in California and finds that true 

state dependence is an important determinant of location choice. Smith avoids initial value 

problems by using the data whose periods start with the very beginning year when divers in 

northern California started to enter the region to catch sea urchins. Using this type of data, he can 

assume the initial values to be exogenous. 

 

3.3. Econometric Methodology 

For the estimation, this study uses the maximum likelihood estimation (MLE) technique. 

This section will cover the MLE process this research follows and also explain how to deal with 

initial condition problems by introducing Heckman (1981b) and Wooldridge (2005). We begin 

with an introduction of the initial condition problem with the binary choice model. Then, both 

Heckman and Wooldridge’s methods will be introduced.   

 

3.3.1. Initial Condition Problem 

Consider a typical, repeated logit structure in the recreational demand model for a single 

site. An individual’s contribution to the likelihood function is given by: 
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( )0 1, , , | ,YL f N N N Z TC=        ,                                                                                      (19) 

where Ny is number of trips in year, y (for 0, ,y Y=  ), Z is individual characteristics, and TC is 

travel cost. On the other hand, the probability function is  

( ) ( ) ( )1 2 Y 0 1
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y y y
y y t

f N N N N Z TC f N N Z TC e eα α−
= = =

 = = + ∏ ∏∏   ,   (20) 

where t is each occasion whose total number is T in a year, Ity is an index function one, if the 

individual chooses to go on a trip on occasion t in year y. VG is a representative utility for going 

on a trip and the year subscript is equal to zero when the year is the initial year.25 For the 

representative utility for going on a trip, specify it as 1GV N TCδ β τ α−= + + + . α is an 

unobservable individual random effect. The main issue to be solved is how to extract Eq. (19) by 

using Eq. (20). 

When a model includes a lagged dependent variable as one of explanatory variables, the 

initial condition problem becomes essential because the lagged variable is fundamentally 

endogenous, which means it depends on the unobserved heterogeneity—individual random 

effect term (α) in this study. If researchers deal with N0 as exogenous variables, then 

( )0 0 | , ,f N Z TC α  can be set as 1. In this case, Eq. (20) can be used directly to build the 

likelihood function for year, y, as: 

25 The specification is explained in detail in Section 3.4.1. 
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This is the case for the strict exogeneity assumption. However, this assumption is 

unlikely to hold in most settings and may result in seriously biased and inconsistent parameter 

estimates, if the initial observations are determined by the evolution of observed and unobserved 

characteristics in the past. In most empirical studies, researchers cannot verify that their initial 

observations are exogenous because the initial values are also a part of individuals’ historically 

entangled decision processes.26 Thus, as a rule, a naïve model with the exogeneity assumption 

yields biased estimation.  

One possible method to deal with this problem is to use a fixed effect model. A fixed 

effect model treats every unobservable individual effect as a parameter to be estimated. The 

parameter can avoid restricting the distribution of unobservable individual effects because the 

conditional distribution of unobserved individual effects does not play a role in the estimation. 

However, it faces the incidental parameters problem, which leads to a severely biased estimation. 

This is particularly the case for panel data in which the number of time periods is small. 

26 One exception exists when the initial value is the actual starting value, i.e., if a researcher has a trip for a certain 
site data set from the period when the site first opened. In this setting, there is no initial value problem because the 
initial value is really exogenous (See Smith (2005)). 
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To solve the initial condition problem when exogeneity cannot be assumed. Two 

approaches have emerged, proposed by Heckman (1981b) and Wooldridge (2005). They will be 

discussed next. 

 

3.3.2. Heckman’s Approach 

At the time, Heckman (1981a) highlighted a problem in the standard approach to measure 

state dependence. He emphasized the identification of the effects of two different factors in a 

choice occasion—heterogeneity and state dependence. Heckman also distinguished the two 

different concepts to estimate state dependence correctly. According to Heckman, true state 

dependence arises when preferences, prices, or constraints relevant to future choices are altered, 

as a consequence of experiencing an event. On the other hand, spurious state dependence 

emerges when individuals may differ in certain unmeasured variables that influence their 

probability of experiencing the event, but are not influenced by the experience of the event itself. 

Improper treatment of unmeasured variables can give rise to a conditional relationship between 

future and past experiences like true state dependence, if these variables are correlated over time. 

The habit-forming property in a good is related with structural dependence. Hence, if a 

researcher fails to distinguish true state dependence from spurious state dependence, the resulting 

parameter estimates will be biased. 

To solve this problem, Heckman suggests approximating the distribution of the initial 

observed values conditional on unobserved individual heterogeneity and available pre-sample 

information, that is, available strictly exogenous explanatory variables. This is the method to 

determine the density of  given ( ),Z TC . The likelihood function consists of 
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conditional density functions of choosing the number of trips in a year and conditional density 

function of the initial value—the number of trips in the initial year. If researchers specify 

( )0 | , ,f N Z TC α , then  

( ) ( ) ( )0 1 1 0 0, , , | , , , , | , , , | , ,Y Yf N N N Z TC f N N N Z TC f N Z TCα α α= ⋅  . 

Next, if the density function ( )| ,g Z TCα  is specified, then the density that researchers want to 

obtain can be calculated by integration. 

 
( ) ( ) ( )

( ) ( ) ( )
0 1 0 1

1 0 0

, , , | , , , , | , , | ,

, , | , , , | , , | ,

Y Y

Y

f N N N Z TC f N N N Z TC g Z TC d

f N N N Z TC f N Z TC g Z TC d

α α α

α α α α

=

= ⋅

∫
∫

 



 , (21) 

where ( )| ,g Z TCα  is the density function of an individual random effect given observed 

individual characteristics and travel cost. 

Researchers know the density function ( )1 0, , | , , ,Yf N N N Z TC α  from the property of 

the logit model and also assume ( )| ,g Z TCα , when they set up the basic model. The key, 

missing component is the density function ( )0 | , ,f N Z TC α . Once this is specified, researchers 

can form the appropriate likelihood function and obtain consistent parameter estimates. For this 

specification, Heckman suggests the utility in period 0 as an approximation to be a linear 

combination of pre-sample variables, individual random effect term, and disturbance term.  

In this study, the concept he suggests can be summarized as follows. The utility, when an 

individual chooses to take a trip on occasion t in initial year, is27  

0 0 0 0 0 0 0it i it i i itU V Xε δ γ θ α ε= + = + + +   , 

27 So far, this research omits subscript i for simple notation in this section. However, from now on, this chapter will 
use subscript i to calculate full maximum likelihood functions. 
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where Xi is strongly exogenous variables, iα  is normally distributed random effect term with 

mean zero and variance 2
ασ , and 0itε  is a disturbance term that follows i.i.d. Type I extreme 

value. 

The corresponding conditional density function in initial year is  

( ) ( ) 0
0 0

0 ,0 | 1
i

i i
NV V

i i if N e eα  = +    . 

The corresponding likelihood function for the entire time period is  

( ){ } ( ){ } ( )0
0 0

1

1 1
iyi

iy iyi i

Y NN V VV V
i i i

y

L e e e e g dα α
=

 
= + + 

 
∏∫   . 

The final log likelihood function for all individuals is 

( ){ } ( ){ } ( )0
0 0

1 1

ln 1 1
iyi

iy iyi i

YN NN V VV V
i i

i y

LL e e e e g dα α
= =

  
= + +  

   
∑ ∏∫   .    (22) 

 

3.3.3. Wooldridge’s Approach 

Rather than specifying conditional distribution of initial values, Wooldridge (2005) 

suggests that researchers specify an auxiliary distribution of the unobserved individual effects 

conditioned on the initial values and time invariant exogenous variables that may include mean 

values of explanatory variables. That is, Wooldridge suggests specifying ( ),0| , ,i i i ih Z TC Nα . 

With this specification, researchers can use the density, ( ),1 , ,0, , | , ,i i i Y i iy iyf N N N Z TC , because 

they already have the density 

( ),1 , ,0, , | , , ,i i i Y i iy iy if N N N Z TC α . 
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Now, if we apply Wooldridge’s approach to the model in this study, then the individual 

random effect term is decomposed as 

( ) ( ) ( )2
0 1 ,0 2 3 1 1, ~ 0, , Z , , Z , , ,i i i i i i i i iY i i iYN Z TC N Z TC TC TCψα ξ ξ ξ ξ ψ ψ σ= + + + + = = 

  , 

where ψi is an exogenous individual random effect, meaning this term is uncorrelated with the 

initial observation, Ni,0. Zi is time-variant individual characteristics and TCi is travel cost during 

the entire period. 

The likelihood function, when individual i chooses to go on a trip in the whole time period, is 

( ){ } ( )
1

1
iy

iy iy
Y NV V

i i i
y

L e e g dψ ψ
=

 
= + 

 
∏∫

  , 

where 

 ( )
, 1

2
, 1 0 1 ,1 2 3 , ~ 0,

iy y i y iy iy i

y i y iy iy i i i i i

V N Z TC

N Z TC N Z TC N ψ

δ β γ τ α

δ β γ τ ξ ξ ξ ξ ψ ψ σ
−

−

= + + + +

= + + + + + + + +   .   

The resulting log likelihood function can be then be expressed as 

( ) ( ) ( )

( ){ } ( )

, , 1 ,0
1 1

1 1

ln | , , , | , ,

ln 1
iy

iy iy

YN

i i y i y iy iy i i i i i i i
i y

YN NV V
i i

i y

LL f N N Z TC h Z TC N g d

e e g d

α α ψ ψ

ψ ψ

∞

−−∞
= =

= =

  
=   

   
  

= +  
   

∑ ∏∫

∑ ∏∫
   .                   (23) 

 This approach not only enables researchers to avoid the initial condition problem, but it is 

also much simpler and easier to use, compared to Heckman’s method. Wooldridge’s method can 

be implemented using existing computer packages for various random effect models by adding 

initial values and time-variant explanatory variables over the entire period as a set of covariates 
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for each year. For this reason, Wooldridge’s approach has become more common relative to 

Heckman’s approach.  

 

3.4. Model 

This study uses dynamic discrete choice models with a repeated mixed logit (RXL) 

structure. A repeated binary mixed logit model for a single site choice is adopted as the first step. 

Then, a nesting structure model is introduced to make use of the binary mixed logit in the case of 

multiple alternatives. Also, this study follows Wooldridge’s method to avoid the initial condition 

problem. As mentioned in Section 3.3, Wooldridge’s method provides tractable likelihoods the 

same as the standard random-effect models. Especially in this study, the two-step nested logit 

model is adopted, whose second stage estimation has the same structure as Wooldridge’s binary 

choice model. As a result, we can extend Wooldridge’s binary choice examples to choices from 

multiple options.  

 

3.4.1. Model 1 – Binary Choice Model 

As the first step, consider a binary choice model, based on the random utility 

maximization (RUM) hypothesis. Suppose that there is only one recreation site and that 

individuals need to choose between two options on a given choice occasion—take a trip to the 

site or not. The RUM specification assumes that an individual will choose the option that yields 

the greatest utility, thus revealing which option provides a higher utility. If we denote the utility 

from going on a trip by UG and the utility from choosing not to go on a trip by UN, then the 
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probability (PG) that the individual chooses to take a trip on a certain occasion is 

[ ]ProbG G NP U U= > .  

The utility in RUM models can be interpreted as a function that consists of a 

representative part (V) and a stochastic part (ε). Then, we can re-express the probability PG in the 

following manner: 

N N N

G G G

U V
U

U V
ε
ε

+ 
= =  + 

, 

[ ] [ ] [ ]Prob Prob ProbG G N G G N N N G G NP U U V V V Vε ε ε ε= > = + > + = < + −   . 

In the estimation, by assuming that the stochastic part follows a Type I extreme value 

distribution, the logit models yield the closed form probabilities as follows: 

G

G N

V

G V V
eP

e e
=

+
 , 1

N

G N

V

N G V V
eP P

e e
= − =

+
  . 

Also, by specifying the function with observed individual and/or site attributes, researchers can 

estimate the representative utility (V) with observed choice data using the closed form for the 

probabilities. This study uses the binary choice model by adding lagged dependent variables 

(previous choice) to the representative utility function to examine the effect of state dependence. 

Thus, the representative utility functions are expressed as 1,N GV Z V N TCγ δ β τ α−= = + + + , 

where Z is socio-demographic attributes not related with any travelling site and almost time-

invariant, TC is travel cost, N-1 is the total number of trips in the previous year, δ is a constant, 

and α is the unobserved individual random effect. Following Wooldridge’s method, this α will 

consist of the initial value, time-variant explanatory variables—travel cost here—for all years 

and exogenous random effect term. Hence, the final version of the utility function when 
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individual i chooses to go on a trip or not to go on occasion t in year y will be for 

1, , ,  1, , ,  1, ,i I y Y t T= = =   , 

 
, 1,

ityN iyN ityN iy ityN

ityG iyG ityG i y G iy i ityG

U V Z
U

U V N TC
ε γ ε

ε δ β τ α ε−

= + = +
=  = + = + + + +

   , (24) 

where ( ) ( )2
1 ,0, 2 1, ~ 0, , , ,i i G i i i i i iYN TC N TC TC TCψα ξ ξ ψ ψ σ= + + =     . 

 

3.4.2. Model 2 – Nesting Structure Model 

Now, as the next step, this study also considers a nesting structure model using a lagged 

variable of the total number of choosing the no-trip option. The nesting structure is described as  

 
0 0, 1 0 0 0i ty i y iy i i ty i y i ty

ijty j ijy ijty ijy ijty

U N Z V
U TC V

Vary across nests Vary within nests

β γ α ε ε

δ τ ε ε
−= + + + = +

= + + = +    , 

where Ni0,y-1 is the total number for choosing no-trip option in y year, Ziy is socio-demographic 

attributes, δj is the alternative specific constant for site j, and TCijy is travel cost of j-th site in y 

year. 

In a participation decision, the full process of choice decision consists of two stages. The 

first stage is the site selection decision (i.e., the probability of which site to visit conditional on 

taking a trip). Hence, this second step is exactly the same as the classical conditional logit site 

selection model. The second stage decision is whether to go on a trip or not. The choice frame 

for the second stage is the same for typical binary choice models, which means that individuals 

choose between the no-trip option and the going-trip nest.  

Formally, let  
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 0 0 1 0,y 1 0

1 0

i y i yt y i iy i i yt
ijyt

ijy ijyt jy y ijy i yt

V N Z
U

V TC
ε δ β γ α ε

ε δ δ τ ε
−+ = − + + + +

=  + = − + +
  , (25) 

where ( )2
1 0,0 2 , ~ 0,i i i i iN IV Nα ξ ξ ψ ψ σ= + +  and IV is the inclusive value. The inclusive value 

is the expected utility of taking a trip from the analyst’s perspective. It is defined as the log-sum 

of the exponential fitted representative utility for going on a trip to a lake.  Subtract 1yδ  from all 

utilities and divide all Vs by the dissimilarity coefficient, λ. Then, the inclusive values (IV) for 

each year will be 

 

( ) ( )1
1

ln exp , , ,
J

ijyiy i i iY
j

IV V IV IV IV
=

 
= = 

 
∑    , (26) 

 where V  is a fitted value of V  and   jyijy y ijyV TCτ= ∆ +  , where  jy jy λ∆ = ∆ , y yτ τ λ= , 

1jy jy yδ δ∆ = − , and 1 0y∆ = .  

Then, the probability that an agent i chooses to go on a trip in the second stage is  

  

and the probability to choose site, j, conditional on ‘trip’ nest is 

 
( )
( )|Trip

exp

exp

ijy

ijty
iy

V
P

IV
=    . (27) 

The probability of taking a trip to site j (Pijty) is 
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Now, the probability that an individual decides not to go on a trip in the second stage is  

( )
( ) ( )

( )
( ) ( )

1 0,y 1 0,y 1
,

1 0,y 1 0,y 1 1
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y i iy i i iy i

ity No trip
y i iy i iy i iy i y iy

N Z N Z
Q

N Z IV N Z IV

δ β γ α β γ α

δ β γ α λ β γ α δ λ
− −

−
− −

− + + + + +
= =

− + + + + + + + +

 . 

So, the probability of no trip (P0) is 

 

[ ] [ ]

( )
( ) ( )

( )

0

0

0 0 | , ,

1

1 0,y 1

1 0,y 1

0,y 1

0,y 1

Pr Pr |

exp

exp exp

exp

exp

i y

i y ijy

i ty i ty No trip ity No trip ity No trip

V

J
V V

j

y i iy i

y i iy i iy

i iy i

i

P No Trip Choosing no trip No Trip P Q Q

e

e e

N Z

N Z IV

N Z

N

λ
λ

δ β γ α

δ β γ α λ

β γ α

β γ

− − −

=

−

−

−

−

= ⋅ − = ⋅ =

=
 

+  
 

− + + +
=

− + + + +

+ +
=

+

∑

( ) ( )1expiy i y iyZ IVα δ λ+ + +

   . (29) 

During the second stage, the main time-variant explanatory variable will be inclusive 

values. One advantage to using inclusive values as a time-variant explanatory variable is that the 

values include not only a variation of travel cost, but also a variation of the site specific attribute 

for each year, i.e., annual alternative specific constant. For this reason, inclusive values are more 

time-variant than travel cost. Therefore, this will help estimating more accurately. Hence, 
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multiple site models can be simplified to a binary choice model by using nests. The only 

difference between this second stage of Model 2 and Model 1 is the lagged dependent variables 

for no-trip option are used here, while lagged dependent variables for going-trip option are used 

in the first model. Hence, in the nesting structure model, the coefficient of state dependence, β , 

is about the effects of how often an individual stays at home.28  

Based on the probabilities explained previously, this study estimates all parameters by 

using a two-step process. During the first stage, the site choice probabilities are estimated, 

including yτ ,  jy∆ . In turn, these can be utilized to construct fitted values for the inclusive 

values. During the second stage, simulated maximum likelihood estimation techniques are used 

to estimate the participation parameters, β , γ , 1ξ , 2ξ , σ , 1yδ , λ . 

 

3.4.3. Exponential Model – RE Poisson 

This research also uses a random effect (RE) Poisson model to compare the results from 

the first and the second models. The lake visitation pattern naturally fits within the Poisson 

modeling framework, with the number of visitations consisting of nonnegative integers. There 

are many zeros over all occasions. As shown in Table 3.1 for the Iowa Lakes Project, the average 

numbers of trips in a year is around six. The larger the number of trips, the rarer in the data. So, 

exponential distributions can be a good approximation of lake visitation patterns. Although 

Poisson distribution has a strong property of equal-dispersion, we can loosen this trait by mixing 

28 Here, I only allow for state dependence in terms of how often an individual stays at home or equivalently in terms 
of overall trip taking behavior, not for state dependence with respect to which specific sites are visited. This level of 
state dependence would be good for further research. 
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a random effect term. Suppose that individual i’s total number of trips in year y ( )iyN  

conditional on ( ),y 1 0, , , , ,i i i i iN N Z TC α−   has a Poisson distribution with mean 

 ( ) ( ),y 1 0 , 1| , , , , , expiy i i i i i i i y iy iyE N N N Z TC g N Z TCα α δ β γ τ− −
 = + + +    , (30) 

where iα  is the individual RE. Applying Wooldridge’s approach here, the RE term will be 

( )0 1 2expi i i ig N TCα ψ ξ ξ= +   , where ψi is an unobserved exogenous heterogeneity. The 

function g allows the lagged dependent variable to appear in a flexible way. This study defines 

the function either as ( ) ( ) ( ){ }, 1 , 1 , 10 ,i y i y i yg N I N M I M N− − −= < ≤ < , where I is an index 

function and M is the mean for trip numbers or the lagged variable. For the multiple site case, 

travel cost iyTC  is weighted travel cost calculated by the following Eq. (31) : 

 

|Trip
1

J

ijyiy ijy
j

TC P TC
=

= ⋅∑    , (31) 

where  |TripijyP  is the fitted value of probability to go jth site conditional on ‘trip’ nest.  

STATA provides two different distributions for ψi – Gamma distribution with mean one 

and variance, ν, and Normal distribution with mean zero and variance 2
νσ . If the RE term comes 

from the Gamma distribution, then the entire unobserved term will be similar with a negative 

binomial distribution, which has overdispersion attributes. If the normally distributed RE term is 

imposed, the equal-dispersion property can be relaxed by adding panel-level variance.   

 

3.5. Data 

This study uses the Iowa lakes trip survey data from 2002 to 2005 as part of the Iowa 

Lake Valuation Project. The Iowa Lake Valuation Project is a panel study from 2002 to 2005 and 
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2009, supported by the IDNR and the US EPA. The primary goal of the project was to gather 

information regarding the visitation patterns of Iowa residents to the primary recreational lakes 

in the state of Iowa. The data from the Iowa Lake Valuation Project also provide site attributes, 

such as lake size, boat ramp dummy, wake restrictions dummy, handicap facilities dummy, state 

park dummy, water quality index, etc.  The survey also includes questions about respondents' 

demographic information, such as age, gender, education level, household size, and their income 

level.  

Among these demographic characteristics, five—age, age squared, gender, education, and 

household size—are selected for this study. For education, the categories are simplified to use a 

dummy variable in the model. If the education level is equal to or higher than college graduate, 

then the dummy is one, otherwise zero. Basic statistics are summarized in Table 3.1. 

The total numbers of respondents who returned and completed the surveys are 4,254, 

5,277, 4,242 and 3,993, respectively, for years 2002, 2003, 2004, and 2005. Among them, this 

research excludes (1) respondents who failed to provide trip data and (2) individuals whose 

number of trips to any lake is more than 52. The concern with including respondents, who 

answered more than 52 visits, is these consist predominantly of households who live in close 

proximity to a certain lake. In this case, they could be residents who pass a lake on their 

commute to work or take a walk or bike along it. These kinds of demands for lakes are quite 

different from this study’s focus. Finally, this research selects only common respondents to all 

surveys from 2002 to 2005 to use a balanced panel for convenience. As a result, the final 

remaining sample size is 1,287, who responded annually to the survey. 

Travel cost (TC) are computed as follows: 
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 ( )1 '
3

Travel cost round trip distance fuel cost round trip time respondent s hourly wage= ⋅ + ⋅   . 

In this study, PC Miler was used to compute the trip distance and time. CPI adjusted gasoline 

prices (dollars/gallon) divided by average fuel efficiency of U.S. light duty vehicles 

(miles/gallon) for use as a proxy for fuel cost (dollars/mile).29 For hourly wage, the survey 

responses to household's annual income are used. In every income category, median annual 

income is selected and divided by 2,000 to yield a wage rate. Finally, the wage rates are adjusted 

using the CPI for a common year.30 

 

3.6. Estimation 

 

3.6.1. Monte Carlo Simulation 

Before the estimation on empirical recreation demand, a simulation exercise is used to 

illustrate the initial condition problem in a dynamic discrete choice setting. Specifically,a 

pseudo-data set is generated and compiles four kinds of models with the data—(1)static model, 

(2) naïve dynamic model, (3) Heckman’s model, and (4) Wooldridge’s model. A static model 

refers to a repeated mixed logit without lagged variables, while a naïve model refers to a 

dynamic repeated mixed logit assuming strictly exogenous initial values. Heckman’s model and 

Wooldridge’s model employ Heckman’s approximation and Wooldridge’s method, respectively. 

29 Each source comes from U.S. Energy Information Administration (Midwest all grades all formulations retail 
gasoline prices), The Research and Innovative Technology Administration in the U.S. Department of Transportation 
(average fuel efficiency of U.S. light duty vehicles), Bureau of Labor Statistics in U.S. Department of Labor (annual 
CPI and average hourly earnings), respectively. 
30 The number 2,000 comes from a 40-hour work week with two weeks of vacation annually.31 Denote the initial 
year by zero (subscript y = 0). So, the observable periods are when y = 0, 1, 2, 3, including the initial year. In this 
sense, the last year observable is when Y = 3. On the other hand, denote unobservable periods by negative number 
(y = -1, -2, … , -19). Thus, the year when the site opened is when y = -19 and the total number of years is 23. 
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To generate a simple pseudo-data set, suppose that: 

1. only one individual attribute is observable;  

2. only one recreation site exists (J = 1); 

3.  the size of the panel sample is one thousand (N = 1,000); 

4.  the number of occasions in a year is fifty-two (T = 52); 

5.  the panel period over which we observe both individual attributes and travel cost 

is three years (Y = 3) (four year if initial year is included); and  

6. the total period is twenty three years (that is, the site opened nineteen years before 

the initial observable year).31  

The individual attribute and travel cost are assumed drawn from a uniform 

distribution while unobserved individual heterogeneity is assumed to be drawn from 

a normal distribution. Specifically, ~ (0,1)iyZ iid Uniform  and 0.5 39.5iy iyP π= + ⋅ , 

where ~ (0,1)iy iid Uniformπ  and ( )2~ 0,1.5i iid Nα . The number of an 

individual’s trips in the starting year (i.e., y = -19) is assumed drawn from a binomial 

distribution with the probability of a trip on each of 52 choice occasions is 0.08. 

After the starting year, the decision rule for every occasion follows the probability of 

mixed logit with the following utility function.  

 0 0

1 1 , 1 1

i ty i ty
ijty

i y i ty i y iy iy i i ty
U

V N Z P
ε ε

ε δ β γ τ α ε−

 
= = + + + + + + 

  , (32) 

where 0 1,i ty i ty Type I extreme valueε ε   for 1, , , 1, , , 1, ,i N t T y Y= = =   .  

31 Denote the initial year by zero (subscript y = 0). So, the observable periods are when y = 0, 1, 2, 3, including the 
initial year. In this sense, the last year observable is when Y = 3. On the other hand, denote unobservable periods by 
negative number (y = -1, -2, … , -19). Thus, the year when the site opened is when y = -19 and the total number of 
years is 23. 

                                                 



97 

With the pseudo-data set described above, we obtain a set of parameter estimates. Finally, 

by repeating the generation of the pseudo-data set and estimating the associated parameters, we 

can obtain the average and the standard error of parameter estimates. This research completes 

this Monte Carlo simulation with 500 repetitions. 

The results of the simulation show that a static model provides seriously-biased 

estimates, except for the coefficient of the individual specific characteristics, Ziy.  Although the 

estimated coefficient of individual attributes is within two-standard error significance interval, 

the estimates for all four models have large variances compared to the size of the estimates. Also, 

the results show that the naïve model overestimates the state dependence, when habit-forming 

behaviors exist (Table 3.2). On the other hand, the state dependence tends to be underestimated 

in the naïve model, when variety-seeking behaviors exist, although the estimate is not 

significantly different from the true parameter using a 95% confidence level (Table 3.3). Both 

Heckman and Wooldridge’s methods provide parameter estimates close to the true parameters. 

 

3.6.2. Single Site Model 

This study’s Model 1 introduces a method to estimate the state dependence effect is the 

binary dynamic discrete choice model, including only one lake in the choice set. Saylorville 

Lake, the most visited lake in Iowa, is used first as an example of the binary dynamic discrete 

choice model. Then, single site models are presented for (1) the three most visited lakes, (2) 

three mid-range lakes in terms of visitation, and (3) the three least visited lakes in the state. This 

is completed to determine whether there is any noticeable pattern in parameter estimates across 

the usage pattern groups.  
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For the Saylorville Lake case, recreational demand is examined using four models—(1) 

dynamic mixed logit suggested by Wooldridge, (2)  naïve dynamic mixed logit, which assumes 

that initial values are exogenous, (3) static mixed logit that does not consider lagged variables, 

and (4) dynamic RE Poisson suggested by Wooldridge (Table 3.4). For a comparison of the three 

groups (most visited, mid-range, and bottom-range lakes), only Wooldridge’s dynamic mixed 

logit is estimated (Tables 3.5, 3.6, and 3.7).  

From Table 3.4, there is no significant state dependence in recreational demand for 

Saylorville Lake. Although the naïve model shows weak inertia, both Wooldridge’s mixed logit 

and Poisson models show indistinct variety-seeking patterns. No models show any significant 

estimate for lagged variables. However, the coefficient of the initial value is significantly 

positive for both the RE logit and RE Poisson models. All four models consistently show a 

convex relationship in age, and a stronger tendency to go on trip for males and big families.32  

From Tables 3.5, 3.6, and 3.7, this study shows results of estimation for nine lakes. For 

all nine lakes, the lagged dependent variables have a negative effect, although most are 

insignificant. On the other hand, initial value has a significantly positive effect at the 95% 

significance level in all cases. Also, as the number of visitation is smaller, the coefficient of 

initial value tends larger. For travel cost, its effect in each year should be the sum of the 

coefficient of travel cost for the entire period and travel cost for the corresponding year (i.e., one 

among TC 2003, TC 2004, TC 2005). So, the overall effect of travel cost is negative. We can 

also confirm that the estimation becomes less accurate as people visit less by comparing standard 

errors in each group.  

32 For individual characteristics, RE logit models place those terms in the Utility function of ‘no-trip’ option, while 
RE Poisson places them in the function of trip numbers (Refer to Eqs.(24) and (30)). 
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3.6.3. Nesting Structure Model 

The nesting structure model developed in this study focuses on state dependence in terms 

of overall trip taking propensity. We start by estimating a nested logit model that focuses on trips 

to the three most visited lakes first and then extends the number of lakes to the 100 most visited 

lakes. Table 3.8 shows the results of the first stage conditional logit, which comes from Eq. (27). 

All estimates of the first stage are statistically significant at the 95% confidence level. Then, by 

using estimates of the first stage, we can form the inclusive values required for the second stage 

estimates provided in Tables 3.9 and 3.10. In Table 3.9, there are two cases – unconstrained and 

constrained. Without any constraint, the dissimilarity coefficient, λ, is estimated as a negative 

value. However, the dissimilarity coefficient cannot be negative. It should lie in the unit interval 

by definition. For this reason, this research imposes a constraint for dissimilarity, 

( ) ( ){ }exp 1 expλ κ κ= +  , 

where κ is a certain parameter in the constrained case. In either case, the coefficient of lagged 

variables is significantly negative, which means an individual who took many trips in a given 

year is likely to take fewer trips in subsequent years (i.e., chose ‘no-trip’ option more often than 

to go on a trip).33 On the other hand, the coefficient of initial value has the sign opposite of the 

lagged variables. The results for the RE Poisson model in Table 3.10 show the same signs for the 

key parameters (lagged variable, initial value, travel cost, etc.) with the RE logit model in Table 

3.9. However, the interpretation is somewhat different. If the coefficient of lagged variables is 

negative, this implies an agent tends to choose to go on a trip next year not as many as this year. 

33 In this study, we use the ‘no-trip’ option as a representative for any option other than ‘going trip’. It can be 
‘staying home’, but also can be ‘visiting a friend’s home’ or ‘going to the theater’ and so on.  
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However, the coefficient is not significant in this study, while the initial value has a positive 

effect in choosing to go on a trip. Meanwhile, the overdispersion parameter, ν, is significantly 

greater than zero. This means that the RE Poisson model is definitely different from the pooled 

Poisson model.34 

 These results can be also confirmed with the nesting structure model. Tables 3.11 through 

13 are related to 100 lakes. Even if the number of sites is extended from 3 to 100, there is no 

substantial difference between these two cases. Also, in the RE Poisson model, we apply both the 

original number and the more flexible function mentioned in Section 3.4.3 for lagged variables 

and initial values. Tables 3.12 and 3.13 provide the results for each case. They have consistent 

results in terms of sign and significance.  

 

3.7. Discussion and Conclusions 

This study investigates whether there is any state-dependent pattern in recreational 

demand. Especially, this research devises a method to apply Wooldridge’s binary choice model 

to the multiple-choice case by the adopting nesting structure. The main findings from this study 

are summarized as: 

(1) In single site cases, both RE logit and RE Poisson show a negative coefficient for the 

lagged variables and a significantly positive coefficient for the initial value in choosing 

‘trip’ option. 

(2) In the multiple site cases, the RE Poisson model provides a negative coefficient of 

lagged variables and a significantly positive coefficient of initial value, consistent with 

34 Although we do not include the results in this study, we used a normal distribution for the RE term as a robustness 
check. The results are fairly close to the Gamma distribution case. 
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the single site cases. Moreover, the negative effect of lagged variables becomes more 

significant as the number of sites increases. 

(3) In multiple site cases, the RE two-step nested logit shows a significantly negative 

coefficient of lagged variables and a positive coefficient of initial value in choosing ‘no-

trip’ option, which looks opposite the results from the other models. However, this does 

not necessarily mean contradiction because the negative effect in choosing ‘no-trip’ is not 

equivalent to a positive effect in choosing ‘trip’. Rather, this can support a variety-

seeking pattern in the whole recreational choice pool, including both ‘going lakes’ option 

and ‘no-trip’ option. The results of both RE nested logit and RE Poisson can be 

interpreted that people have a variety-seeking tendency in the options for their recreation. 

(4) In all cases, the coefficient of initial value has an opposite sign from the coefficient of 

lagged variables and its scale is much greater than that for the coefficient of lagged 

variables. The initial value is lagged value in the first period. In this sense, the offset 

effect of the initial value in calculating the total effect of lagged variables should be 

considered. 

(5) The lakes visited more often tend to show smaller absolute values both in lagged 

variables and in initial values. 

As these main findings show, all results from this study support a variety-seeking choice 

pattern. However, there are some limitations to this study. First, as mentioned in the main 

findings, to confirm variety-seeking behaviors, we need to verify the total effects taking into 

account the offset effect of the initial value. Second, the data set has only three years of 

observations. To obtain more accurate estimation, a longer time period is desired. Three years 

appear relatively short because Wooldridge’s approach shows a better performance for the panels 
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of longer periods (Akay 2012). In addition, for the multiple sites case, this study only groups all 

going trip options (nesting structure model) or aggregates the sum of trips and travel cost for all 

sites (RE Poisson model). Generalizing the binary RE logit to the multinomial RE logit in 

consideration of correlation among sites is left for a future study.  
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Table 3.1. Summary statistics of the data set 
Variables Mean Std. Dev. Min Max 

Number of trips 6.32 9.18 0 52 
Age 53.19 14.61 9 83 
Gender 0.71 0.45 0 1 
Education 0.74 0.44 0 1 
Household (HH) size 2.59 1.32 0 10 
Travel cost (dollar in 2002) 30.32 10.42 1.83 86.00 
 
 
 
 
 
 
 
 
 
 
Table 3.2. Comparison with estimates of three different dynamic models and those of one static 
model by Monte Carlo simulation when habit-forming behavior exists (with 500 repetitions) 
  True  

Parameter 
Heckman's Wooldridge's 

  Est. Std. err. MSE Est. Std. err. MSE 

ASC -4.5 -4.435 0.180 0.037 -4.409 0.371 0.146 
Lagged variable 0.2 0.188 0.011 0.000 0.189 0.023 0.001 
Individual attribute 0.3 0.295 0.222 0.049 0.288 0.205 0.042 
Travel cost -0.2 -0.198 0.010 0.000 -0.200 0.010 0.000 
Sigma 1.5 1.817 0.192 0.137 1.274 0.405 0.215 
  True  

Parameter 
Naïve Dynamic Static 

  Est. Std. err. MSE Est. Std. err. MSE 

ASC -4.5 -4.325 0.158 0.056 -7.689 0.571 10.495 
Lagged variable 0.2 0.264 0.013 0.004 N.A. 
Individual attribute 0.3 0.311 0.218 0.048 0.193 0.414 0.183 
Travel cost -0.2 -0.211 0.010 0.000 -0.126 0.017 0.006 
Sigma 1.5 1.295 0.195 0.080 6.156 0.655 22.104 
Note: Numbers are bold when they satisfy both conditions that there is no significant difference between true 
parameter and estimated one within two-standard error bound and that the estimates are significantly different 
from zero within two-standard error bound. 

 

 



106 

Table 3.3. Comparison with estimates of three different dynamic models and those of one static 
model by Monte Carlo simulation when variety-seeking behavior exits (with 500 repetitions) 
  True  

Parameter 
Heckman's Wooldridge's 

  Est. Std. err. MSE Est. Std. err. MSE 

ASC -4.5 -4.473 0.189 0.036 -4.505 0.417 0.174 
Lagged variable -0.2 -0.239 0.075 0.007 -0.197 0.061 0.004 
Individual attribute 0.3 0.309 0.241 0.058 0.320 0.252 0.064 
Travel cost -0.2 -0.200 0.012 0.000 -0.202 0.013 0.000 
Sigma 1.5 1.613 0.219 0.061 1.362 0.597 0.376 
  True  

Parameter 
Naïve Dynamic Static 

  Est. Std. err. MSE Est. Std. err. MSE 

ASC -4.5 -4.512 0.187 0.035 -4.477 0.187 0.035 
Lagged variable -0.2 -0.157 0.065 0.006 N.A. 
Individual attribute 0.3 0.315 0.236 0.056 0.322 0.250 0.063 
Travel cost -0.2 -0.203 0.013 0.000 -0.205 0.013 0.000 
Sigma 1.5 1.499 0.517 0.267 1.454 0.410 0.170 
Note: Numbers are bold when they satisfy both conditions that there is no significant difference between true 
parameter and estimated one within two-standard error bound and that the estimates are significantly different 
from zero within two-standard error bound. 

 
 
Table 3.4. Results of binary random effect (RE) Model for Saylorville Lake from 2003 to 2005 
(initial year is 2002) 

Variables 
Dynamic Logit (W) Dynamic Logit (N) Static Logit  Dynamic Poisson (W) 

Est. S.E. Est. S.E. Est. S.E. Est. S.E. 
Constant -8.071 0.761 -7.922 0.793 -7.935 0.804 -2.236 0.679 
Travel cost 0.005 0.004 -0.032 0.003 -0.032 0.003 0.005 0.004 
Lagged trips -0.011 0.010 0.013 0.010 n.a. -0.005 0.009 
Age -0.074 0.028 -0.069 0.029 -0.067 0.029 0.055 0.025 
Age2 0.001 0.0003 0.001 0.0003 0.001 0.0003 -0.001 0.0002 
Gender -0.371 0.203 -0.464 0.228 -0.465 0.232 0.202 0.169 
Education 0.003 0.133 -0.036 0.138 -0.035 0.138 -0.054 0.121 
HH size -0.121 0.046 -0.137 0.047 -0.135 0.047 0.111 0.043 
TC2003 -0.001 0.006 

n.a. n.a. 

0.001 0.006 
TC2004 -0.017 0.007 -0.018 0.006 
TC2005 -0.019 0.007 -0.011 0.006 
Initial value 0.438 0.035 0.415 0.053 
Variation (σ or ν) 2.049 0.111 2.381 0.128 2.451 0.133 4.584 0.466 

Note 1: Numbers are bold when they satisfy both conditions that there is no significant difference between true 
parameter and estimated one within two-standard error bound and that the estimates are significantly different from 
zero within two-standard error bound. 
Note 2: In the first raw of the title, ‘W’ means Wooldridge’s method while ‘N’ represents a naïve dynamic model. 
Note 3: In the ‘Variation’ raw, σ means standard deviation of normally distributed unobserved exogenous 
heterogeneity, ν means overdispersion parameter in a RE Poisson model. 
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Table 3.5. Results of Wooldridge’s single-site dynamic RE logit Model for three most visited 
lakes from 2003 to 2005 (initial year is 2002) 

Variables 
Saylorville Lake (1) Coralville Lake (2) Clear Lake (3) 

Est. S.E. Est. S.E. Est. S.E. 
Constant -7.971 0.793 -6.992 0.911 -6.077 0.817 
Travel cost (TC) 0.005 0.004 -0.007 0.005 -0.002 0.004 
Lagged trips -0.011 0.010 -0.027 0.007 -0.001 0.008 
Age -0.076 -0.028 -0.015 -0.034 0.082 -0.027 
Age2 0.0009 -0.0003 0.0004 -0.0003 -0.0006 -0.0002 
Gender -0.373 -0.205 -0.504 -0.245 -1.072 -0.293 
Education 0.019 -0.132 -0.259 -0.157 -0.235 -0.201 
HH size -0.121 -0.046 0.050 -0.064 0.102 -0.067 
TC 2003 -0.001 0.006 -0.001 0.007 0.006 0.007 
TC 2004 -0.017 0.007 -0.004 0.008 -0.006 0.007 
TC 2005 -0.019 0.007 -0.014 0.007 -0.014 0.008 
Initial value 0.429 0.037 0.412 0.017 0.350 0.019 
σ 2.004 0.125 2.333 0.115 2.981 0.178 

Note 1: Numbers are bold when they satisfy both conditions that there is no significant difference between true 
parameter and estimated one within two-standard error bound and that the estimates are significantly different from 
zero within two-standard error bound. 
Note 2: In the first raw of the title, the number in parentheses means the rank of visitation number among 130 lakes. 
 
 
 
Table 3.6. Results of Wooldridge’s single-site dynamic RE logit Model for three mid-range lakes 
in visitation from 2003 to 2005 (initial year is 2002) 

Variables 
Poll Miller Park Lake (61) Little Wall Lake (62) Lake Miami (63) 

Est. S.E. Est. S.E. Est. S.E. 
Constant -27.934 8.888 -18.224 3.390 -10.741 2.434 
Travel cost (TC) -0.037 0.015 0.003 0.003 -0.039 0.012 
Lagged trips -0.051 0.043 -0.194 0.132 -0.227 0.054 
Age -0.746 -0.342 -0.266 -0.112 0.102 -0.094 
Age2 0.007 -0.003 0.002 -0.001 -0.0004 -0.0009 
Gender -0.056 -1.033 -0.972 -0.564 -1.498 -0.680 
Education -0.005 -0.538 0.144 -0.416 -0.127 -0.562 
HH size 0.194 -0.162 -0.074 -0.170 0.132 -0.211 
TC 2003 -0.030 0.037 -0.067 0.012 0.002 0.015 
TC 2004 -0.024 0.032 0.011 0.009 0.011 0.014 
TC 2005 -0.020 0.032 0.002 0.009 0.021 0.013 
Initial value 0.974 0.160 2.681 0.672 2.591 0.313 
σ 3.833 0.799 2.880 0.367 4.010 0.541 

Note 1: Numbers are bold when they satisfy both conditions that there is no significant difference between true 
parameter and estimated one within two-standard error bound and that the estimates are significantly different from 
zero within two-standard error bound. 
Note 2: In the first raw of the title, the number in parentheses means the rank of visitation number among 130 lakes. 
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Table 3.7. Results of Wooldridge’s single-site dynamic RE logit Model for three bottom-range 
lakes in visitation from 2003 to 2005 (initial year is 2002) 

Variables 
Crawford Creek  

Impoundment (111) 
Mitchell Lake (112) Nine Eagles Lake (112) 

Est. S.E. Est. S.E. Est. S.E. 
Constant -7.144 4.016 -60.154 8106.790 -16.135 5.703 
Travel cost (TC) 0.020 0.022 0.014 0.015 0.034 0.021 
Lagged trips -0.188 0.224 -0.276 0.308 -0.444 0.308 
Age 0.125 -0.126 -0.254 -0.302 -0.203 -0.221 
Age2 -0.001 -0.001 0.003 -0.003 0.002 -0.002 
Gender -2.063 -1.429 -43.011 -8106.735 -0.610 -0.973 
Education -0.249 -1.061 -0.275 -1.194 0.196 -0.790 
HH size -0.258 -0.351 0.019 -0.407 -0.291 -0.219 
TC 2003 -0.088 0.037 -0.046 0.018 -0.031 0.016 
TC 2004 -0.029 0.026 -0.001 0.024 -0.005 0.021 
TC 2005 -0.034 0.026 0.006 0.024 -0.026 0.017 
Initial value 3.197 1.271 0.834 0.300 2.909 1.050 
σ 3.017 0.712 2.363 0.918 3.030 0.713 
Note 1: Numbers are bold when they satisfy both conditions that there is no significant difference between true 
parameter and estimated one within two-standard error bound and that the estimates are significantly different from 
zero within two-standard error bound. 
Note 2: In the first raw of the title, the number in parentheses means the rank of visitation number among 130 lakes. 
 
 
 
 
 
 
Table 3.8. Results of 1st stage conditional logit for three most visited lakes from 2003 to 2005 
(initial year is 2002) 

Variables 
1st-stage  

Estimates Standard Error Est./S.E. 
ASC2_2003 -0.244 0.120 -2.04 
ASC2_2004 -0.537 0.107 -5.04 
ASC2_2005 -0.582 0.124 -4.71 
ASC3_2003 -0.254 0.102 -2.49 
ASC3_2004 -0.574 0.091 -6.31 
ASC3_2005 -0.417 0.102 -4.08 
Travel cost/λ_2003 -0.064 0.002 -28.70 
Travel cost/λ _2004 -0.045 0.002 -27.21 
Travel cost/λ _2005 -0.059 0.002 -27.25 
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Table 3.9. Results of 2nd stage repeated binomial mixed logit for three most visited lakes from 
2003 to 2005 (initial year is 2002) 

Variables 
Unconstrained Constrained 

Est. S.E. Est./S.E. Est. S.E. Est./S.E. 
ASC1_2003 6.341 0.564 11.25 6.844 0.557 12.29 
ASC1_2004 6.201 0.566 10.96 6.700 0.559 12.00 
ASC1_2005 6.247 0.568 11.00 6.756 0.561 12.05 
Lagged variable -0.013 0.004 -2.94 -0.013 0.004 -2.93 
Dissimilarity coef. (λ) -0.029 0.051 -0.58 7.22E-07 3.78E-04 0.002 
Age 0.020 0.017 1.16 0.018 0.017 1.06 
Age2 -1.42E-06 1.56E-04 -0.01 1.27E-05 1.56E-04 0.08 
Gender -0.781 0.153 -5.09 -0.796 0.148 -5.37 
Education -0.132 0.097 -1.36 -0.128 0.097 -1.32 
HH size -0.005 0.034 -0.15 -0.002 0.033 -0.06 
Inclusive value_2003 -0.078 0.096 -0.82 -0.268 0.084 -3.20 
Inclusive value_2004 -0.078 0.139 -0.56 0.204 0.123 1.67 
Inclusive value_2005 -0.403 0.100 -4.03 -0.402 0.097 -4.16 
Initial value 0.223 0.008 28.29 0.235 0.008 28.62 
σ 1.875 0.076 24.64 1.846 0.070 26.46 
Note: ‘Constrained’ means when the constraint, λ=exp(parameter)/[1+exp(parameter)], is assigned in estimation. 
 
 
 
Table 3.10. Results of RE Poisson for pooled data of three most visited lakes from 2003 to 2005 
(initial year is 2002) 

Variables 
RE Poisson 

Estimates Standard Error Est./S.E. 
ASC1_2003 0.594 0.435 1.36 
Year dummy_2004 -0.142 0.040 -3.50 
Year dummy_2005 -0.090 0.039 -2.35 
Lagged variable -0.006 0.004 -1.69 
Weighted travel cost 0.004 0.004 0.98 
Age -0.025 0.015 -1.63 
Age2 1.37E-04 1.42E-04 0.96 
Gender 0.356 0.124 2.87 
Education 0.050 0.087 0.58 
HH size 0.011 0.030 0.35 
Weighted travel cost_2003 -0.003 0.006 -0.54 
Weighted travel cost_2004 -0.005 0.006 -0.83 
Weighted travel cost_2005 -0.014 0.006 -2.28 
Initial value 0.264 0.024 11.01 
ν 3.151 0.208 15.14 

Note: ‘ν’ is the overdispersion parameter from Gamma distribution. From the likelihood-ratio (LR) test of ν = 0, the 
probability of ν = 0 is less than 0.1%. 
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Table 3.11. Results of 2nd stage repeated binomial mixed logit for 100 most visited lakes from 
2003 to 2005 (initial year is 2002) 

Variables 
Unconstrained  Constrained 

Est. S.E. Est./S.E. Est. S.E. Est./S.E. 
ASC1_2003 3.193 0.420 7.60 3.200 0.422 7.58 
ASC1_2004 3.112 0.421 7.40 3.086 0.422 7.31 
ASC1_2005 3.137 0.420 7.46 3.124 0.422 7.40 
Lagged variable -0.018 0.001 -14.04 -0.018 0.001 -14.00 
Dissimilarity coef. (λ) -0.031 0.020 -1.57 2.02E-05 5.19E-04 0.04 
Age 0.042 0.008 5.13 0.039 0.008 4.80 
Age2 -2.46E-04 7.52E-05 -3.27 -2.09E-04 7.54E-05 -2.77 
Gender -0.650 0.112 -5.79 -0.645 0.113 -5.73 
Education -0.046 0.054 -0.86 -0.027 0.054 -0.50 
HH size -0.031 0.017 -1.83 -0.033 0.017 -1.96 
Inclusive value_2003 -0.127 0.078 -1.62 -0.119 0.078 -1.52 
Inclusive value_2004 -0.064 0.080 -0.81 -0.068 0.080 -0.85 
Inclusive value_2005 -0.092 0.079 -1.16 -0.063 0.079 -0.80 
Initial value 0.152 0.006 26.65 0.153 0.006 26.46 
σ 1.683 0.039 42.99 1.689 0.039 42.86 
Note: ‘Constrained’ means when the constraint, λ=exp(κ)/[1+exp(κ)], is assigned in estimation. 
 
 

 

Table 3.12. Results of RE Poisson for pooled data of 100 most visited lakes from 2003 to 2005 
(initial year is 2002) 

Variables 
RE Poisson 

Estimates Standard Error Est./S.E. 
ASC1_2003 2.078 0.232 8.94 
Year dummy_2004 -0.075 0.016 -4.61 
Year dummy_2005 -0.046 0.016 -2.88 
Lagged variable -0.009 0.001 -9.65 
Weighted travel cost 0.0001 0.002 0.04 
Age -0.026 0.007 -3.80 
Age2 1.43E-04 6.40E-05 2.23 
Gender 0.362 0.082 4.40 
Education 0.001 0.045 0.01 
HH size 0.015 0.014 1.08 
Weighted travel cost_2003 -0.012 0.007 -1.85 
Weighted travel cost_2004 0.008 0.007 1.14 
Weighted travel cost_2005 -0.011 0.008 -1.51 
Initial value 0.101 0.005 19.14 
ν 1.623 0.073 22.12 

Note: ‘ν’ is the overdispersion parameter from Gamma distribution. From the likelihood-ratio (LR) test of ν = 0, the 
probability of ν = 0 is less than 0.1%. 
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Table 3.13. Results of RE Poisson with a function (g) of lagged variables for pooled data of 100 
most visited lakes from 2003 to 2005 (initial year is 2002) 

Variables 
RE Poisson 

Estimates Standard Error Est./S.E. 
ASC1_2003 1.727 0.232 7.44 
Year dummy_2004 -0.087 0.016 -5.40 
Year dummy_2005 -0.047 0.016 -2.92 
g1(1) -0.090 0.038 -2.36 
g1(2) -0.225 0.038 -5.86 
Weighted travel cost -0.001 0.002 -0.40 
Age -0.026 0.007 -3.88 
Age2 1.69E-04 6.37E-05 2.66 
Gender 0.368 0.081 4.54 
Education -0.020 0.045 -0.44 
HH size 0.020 0.014 1.42 
Weighted travel cost_2003 -0.010 0.006 -1.53 
Weighted travel cost_2004 0.007 0.007 0.96 
Weighted travel cost_2005 -0.014 0.007 -1.88 
g0(1) 0.930 0.090 10.29 
g0(2) 2.239 0.094 23.80 
ν 1.565 0.073 21.57 

Note: ‘ν’ is the overdispersion parameter from Gamma distribution. From the likelihood-ratio (LR) test of ν = 0, the 
probability of ν = 0 is less than 0.1%. 
 

 

  

 

 


