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ABSTRACT

We calculate effective Hamiltonians and effective electroweak operators with the Okubo-Lee-

Suzuki formalism for two-nucleon systems. Working within a harmonic oscillator basis, first without

and then with a confining harmonic oscillator trap, we demonstrate the effects of renormalization

on observables calculated for truncated basis spaces. We illustrate the renormalization effects

for the root-mean-square point-proton radius, electric quadrupole moment, magnetic dipole mo-

ment, Gamow-Teller transition and neutrinoless double-beta decay operator using nucleon-nucleon

interactions from chiral effective field theory. Renormalization effects tend to be larger in the

weaker traps and smaller basis spaces suggesting applications to heavier nuclei with transitions

dominated by weakly-bound nucleons would be subject to more significant renormalization effects

within achievable basis spaces.

We also develop an ab initio, non-perturbative, time-dependent basis function method to solve

the nuclear structure and scattering problems in a unified manner. We apply this method to a test

problem: the Coulomb excitation of a trapped deuteron by an impinging heavy ion. The states

of the deuteron system are obtained by the ab initio nuclear structure calculation implementing

a realistic inter-nucleon interaction with a weak external trap to localize the center of mass and

to discretize the continuum. The evolution of the internal state of the deuteron system is directly

solved using the equation of motion for the scattering. We analyze the excitation mechanism of the

deuteron system by investigating its internal transition probabilities and observables as functions

of the exposure time and the incident speed. In this investigation, the dynamics of the Coulomb

excitation are revealed by the time evolution of the system’s internal charge distribution.

Finally, we present the first application of the Basis Light-Front Quantization method to a simple

chiral model of the nucleon-pion system as a relativistic bound state for the physical proton. The

light-front mass-squared matrix of the nucleon-pion system is obtained within a truncated basis.



xii

The mass and the corresponding light-front wave function (LFWF) of the proton are computed by

numerical diagonalization of the resulting mass-squared matrix. With the boost invariant LFWF,

we evaluate the proton’s parton distribution function and Dirac form factor. An improved model,

adopting phenomenological corrections for quark contributions, is implemented to calculate the

proton’s Dirac form factor. The resulting Dirac form factor agrees well with the experimental data

below the squared transverse momentum transfer of 0.20 GeV2.
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CHAPTER 1. OVERVIEW

An important topic in nuclear physics is to develop a basic understanding of nuclear structure,

reactions and nucleonic dynamics from the fundamental theory, Quantum Chromodynamics (QCD).

Progress in this direction would, on the one hand, help answer fundamental questions such as [1]

• How do protons and neutrons make stable nuclei and rare isotopes? Where are the limits?

• What are the heaviest nuclei that can exist?

• What is the origin of simple patterns observed in complex nuclei?

• How do we describe fission, fusion, and other nuclear reactions?

• How did the elements from iron to uranium originate?

• What is the equation of state of nucleonic matter?

On the other hand, efforts in seeking such a bottom-up understanding in nuclear physics will

illuminate, and in turn be fertilized by, other pursuits such as the quest for nature’s fundamental

symmetries and other disciplines such as the life sciences, material sciences, energy, security, etc

[1].

Ab initio (i.e., from first principle) approaches provide pathways to address the challenges and

opportunities listed above. In this thesis, we present our efforts in developing ab initio, non-

perturbative methods to study nuclear structure, reaction, and nucleonic dynamics. As shown

in Fig. 1.1, our works focus on achieving benchmark tests of ab initio methods (which are po-

sitioned between “development” and “next step” in Fig. 1.1) within two main perspectives: 1)

non-relativistic structure and reaction theories/techniques that are based on the nuclear interac-

tion; and 2) relativistic structure theory/method that is based on the chiral Lagrangian.
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Figure 1.1: The scope of the thesis (see details in the text).

In applying the fully microscopic approaches to study heavier nuclei with the multi-nucleon

interactions and coupling to the continuum included, the computing power is still too demand-

ing even for the Exascale supercomputers (defined as having capabilities for 1018 floating-point

operations per second (flops)). As one of our efforts in the non-relativistic perspective, we work

on developing the renormalization scheme in the nuclear structure theories in order to reduce the

computational burden for large-scale ab initio calculations (see the extensive introduction in Sec.

2.1). In particular, we develop the effective interaction and, consistently, the effective operators for

additional observables and test the renormalization effects by studying numerically solvable two-

nucleon systems. In the next step, this theory/technique will be adopted to study the observables

of light nuclei such as 6He as a major step towards applications in heavier nuclei.

We also develop an ab initio method that treats non-relativistic nuclear structure and reactions

in a unified manner (see the extensive introduction in Sec. 3.1). We introduce the time-dependent

Basis Function (tBF) method that retains the full, non-perturbative quantum coherence of the

scattering over all potentially relevant intermediate states necessary for accurate descriptions of
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dynamical multi-step scattering processes. We demonstrate the utility of the tBF method via a

model problem, i.e., the Coulomb excitation of a trapped deuteron by an impinging heavy ion,

where we analyze, in detail, the dynamics of the deuteron system during scattering. In the next

step, we plan to further develop this method to treat general reaction problems for light and,

eventually, heavier nuclei.

Within the relativistic perspective, we introduce a framework to study the nuclear structure and

dynamics via an ab initio, non-perturbative approach (see the extensive introduction in Sec. 4.1).

In particular, we develop a method to treat a chiral model (Lagrangian) of the nucleon-pion system

via the Basis Light-Front Quantization (BLFQ) approach. As a test problem, we apply this method

to investigate the properties (structure and dynamics) of the physical proton, which is treated as

the relativistic bound state of the nucleon-pion system described by the chiral Lagrangian. In the

future, we will further develop this method to study the structure and dynamics of more complex

nuclei.

The arrangement of this thesis is the following. In Chapter 2.1, we present the development

and tests of the effective interactions and operators based on our recently published works [2, 3]. In

Chapter 3, we show our work in developing and testing the framework of the time-dependent basis

function method based on our works [4, 5]. In Chapter 4, we show the development and applications

of the Basis Light-Front Quantization approach for the dynamical nucleon-pion system based on

our works [6, 7]. We offer conclusions and outlooks in Chapter 5. The necessary mathematical

details are in the Appendices for completeness.



4

CHAPTER 2. EFFECTIVE INTERACTIONS AND OPERATORS

2.1 Introduction

The ab initio nuclear theory establishes the link between the properties of atomic nuclei and

the inter-nucleon interactions [8, 9]. Investigations along this line offer promising vistas into a wide

range of complex nuclear phenomena as well as into the fundamental symmetries of nature [9].

Groundbreaking progress of the ab initio nuclear theory has been made after Yukawa first

proposed the microscopic theory of the nuclear interaction based on the idea of boson exchange.

Theoretically, various theories of the nuclear potentials/interactions have been proposed, such as the

standard, accurate meson-exchange nuclear potentials (e.g., the Argonne V18 [10], INOY [11] and

CD-Bonn 2000 [12]) and the realistic/phenomenological nuclear potentials (e.g., JISP16 [13] and

Daejeon16 [14]). These potentials enable the construction of the nuclear many-body Hamiltonians.

Several many-body techniques have also been developed, including: 1) the exact methods, such

as Greens Function Monte Carlo approach [15, 16, 17, 18], no-core shell model (NCSM) approach

[19, 20, 9], the coupled cluster approach [21], the lattice-simulation approach with nucleons, using

effective field theory (EFT) [22]; and 2) the approximate methods, such as the interacting shell

model [23, 24]. These techniques enable solving the resulting nuclear many-body Hamiltonians

(equivalently, the many-body Schrödinger equation). In addition, there are also advances that

facilitate (or promise to facilitate) the computation/storage/extrapolation of large tensors that

encode the quantum many-body problem, such as the supercomputing techniques (see, e.g., [9, 3]

and references therein), the deep learning techniques (see, e.g., [25]) and, most recently, the quantum

computing techniques [26].

There are several key problems, among others, in the ab initio nuclear theory.
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1. The link between the nuclear interactions and the fundamental theory (QCD) is not firmly

established. Building this link will provide insight into the role QCD plays in nuclear structure

and reactions.

2. The ab initio calculations based on many of these potentials do not utilize consistent operators

for all observables and, hence, do not establish the predictive power. While many known

experimental data can be well reproduced, extrapolations to unknown region of the Segrè

chart will likely be unreliable.

3. The “hard core” problem plagues many nuclear potentials. Physically, this problem results

from strong repulsion at small separations between physical nucleons. Mathematically, this

problem results in strong correlations between high- and low-momentum components in the

nuclear wave function, which requires a high-resolution description of the nuclear system up

to very high-momentum scale.1 In practical terms, sophisticated many-body methods such

as the Hamiltonian eigenvalue methods in very large basis spaces are required.

4. The required computing power typically scales exponentially or factorially with the number

of nucleons for high-precision results with current exact many-body methods. Even for the

approximate many-body methods, such scaling is polynomial. As a result, the ab initio

calculations are still limited to light- and/or medium-mass nuclei [27].

In order to treat these problems, two conceptual revolutions were introduced. First, the EFT is

proposed to model the nuclear interactions. This work was pioneered by Weinberg and collaborators

[28, 29, 30, 31] and the theory is known today as the chiral EFT. The chiral EFT provides a

direct link between the nuclear interaction and the underlying theory, QCD. Due to the systematic

expansion and power counting scheme in the chiral EFT, the error of the truncation in the chiral

expansion can be quantified. In particular, the neglected higher-order terms in the chiral Lagrangian

are expected to contribute at a level that can be estimated, which facilitates the error estimation

and guarantees the predictive power of the resulting ab initio calculations. In addition, the chiral

1Since many nuclear structure observables are of low-momentum scale, the high-momentum physics in the nuclear
interactions with the high-resolution description can be avoided.
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EFT offers flexibility in modeling the short-range part of the nuclear interaction due to its implicit

and systematic treatment of the high-momentum degrees of freedom: the high-momentum physics

is captured at each scale by the renormalization procedures.2

The second revolution is the further processing of nuclear interactions to derive effective inter-

nucleon interactions with lower resolution and momentum scale that enable faster convergence of the

ab initio calculation with respect to increasing basis size. Such methods include the renormalization

group methods [32] and the similarity transformation methods [33, 34, 35, 36], among others. The

underlying ideas of these methods are similar: since any unitary transformation of the nuclear

Hamiltonian leaves its spectrum unchanged, it is thus desirable to design a unitary transformation

to drive the Hamiltonian towards a certain form (e.g., diagonal or block-diagonalized form), wherein

the coupling between the high- and low-momentum physics can be weakened/removed. As a result,

the convergence in ab initio many-body calculation is further improved so that a desired accuracy

is achieved within a practical basis dimension3.

In this chapter, we present our work in deriving effective interactions (or, equivalently, effective

Hamiltonians) from the chiral interactions [37, 38, 39, 40, 41, 42, 43] by the Okubo-Lee-Suzuki

(OLS) similarity transformation method [33, 34, 35, 36]. The application of such effective interac-

tions would reduce the computational burden while preserving the fidelity of the underlying theory

of the nuclear interaction. Our focus is also on deriving the consistent effective electroweak op-

erators. Thus, we aim to advance precision studies of electroweak properties (e.g., neutrinoless

double-beta (0ν2β) decay) of nuclei. We note that electroweak properties have become of great

interest as a complement to major advances underway in experimental nuclear physics. By consis-

tent, we mean that the effective electroweak operators are evaluated in the same formalism as the

chiral interactions employed in the Hamiltonians.

2The chiral nuclear potential is obtained from the chiral Lagrangian by solving a non-perturbative Lippmann-
Schwinger equation, in which process a regulating function with a (momentum) cutoff is usually introduced in order
to regulate the loop divergences. This cutoff determines the corresponding scale of the nuclear potential and hence
the limit of its applicability.

3Note there is, however, a price to pay for such transformation. Since the unitary transformation is to be performed
in the many-body Hilbert space, many-body operators (e.g., for the nuclear interaction and observables) are induced.
These induced terms are only retained up to some convenient level, leading to an approximation that requires further
testing.
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We provide demonstration cases using two-nucleon systems for the present purposes. Such

systems are numerically solvable in a large three dimensional harmonic oscillator (3DHO) basis

space, while providing high precision results for comparison with approximate results. This enables

us to map out 1) the effects arising from the correlations governed by different interactions; 2) the

effects due to basis-space truncation and the effects linked with the length scale of the environment

(c.f., the mean field in the nuclei), the trap.

We study the renormalization effects (conversely, the truncation effects) on each electroweak

operator for each chiral interaction, each basis space and each confining HO trap. This is achieved

by comparing matrix elements of these effective interactions and operators with those from a

truncated treatment of the original interactions and operators. Our work offers guidance to more

realistic ab initio calculations of the nuclear properties in larger nuclei as in the case of the NCSM

[44, 45, 46, 9, 19, 20], and to the ab initio valence space effective interactions as well [47].

This chapter is mainly based on the published papers [2, 3]. Except for part of the above

introduction material and Sec. 2.2.3, this chapter is essentially the published paper [2]. It is

organized in the following way. We begin with the theory in Sec. 2.2, where we discuss the

Hamiltonian formalism of the many-body system, the truncation technique and the construction of

the effective Hamiltonian and operators. We present the results and the corresponding discussion

in Sec. 2.3.

2.2 Theory

2.2.1 Many-body systems

We seek to solve a Hermitian Hamiltonian H eigenvalue problem expressed in a suitable basis

and, once the eigenvectors are obtained, to evaluate matrix elements of additional observables

O. For nuclear physics applications, such as the NCSM, the resulting matrix for H is infinite

dimensional. With truncation, the matrix of H becomes numerically tractable, allowing the study

of results as a function of the finite basis parameters in order to estimate the converged results and

their uncertainties. For the NCSM, we express H in terms of the relative kinetic energy operator
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Trel acting between all pairs of nucleons in the A-nucleon system and an interaction term V that

may include multinucleon interactions as

H =Trel + V . (2.1)

By adopting a complete basis of Slater determinants, |Φj〉 for A nucleons, developed from a

chosen single-particle basis, we express the complete space problem as a matrix eigenvalue prob-

lem. That is, the eigenvalues Ek and eigenstates |Ψk〉, expanded in our complete basis of Slater

determinants, obey the equations

H|Ψk〉 =Ek|Ψk〉 , (2.2)

|Ψk〉 =
∑
j

Akj |Φj〉 , (2.3)

where Akj denotes the expansion coefficient.

The selection of the complete single-particle basis is flexible but we will follow a popular choice

and adopt the 3DHO due to its well-studied analytical properties that facilitate numerical appli-

cations and the retention of the underlying symmetries of H [9]. We present some useful/relevant

properties of the 3DHO basis, along with the formalism of the one-body operators, in Appendix A.

We take the neutron and proton mass M̃N to be the same (938.92 MeV, their average measured

mass), so that the only length scale in the HO single-particle basis can be expressed in terms of

the HO energy (or basis parameter) ~Ω as

b̃ =

√
~

M̃NΩ
. (2.4)

2.2.2 Finite matrix truncation approach

In practical applications, it is advantageous to define the many-body truncation with Nmax, the

maximum of the total HO quanta in the retained Slater determinants above the minimum total

HO quanta for the A nucleons [45]. A quantum of the HO single-particle state is twice the radial

quantum number n plus the orbital quantum number l. That minimum total HO quanta for the

A nucleons also depends on the number of neutrons N and protons Z that comprise the system.

Zero is the minimum total HO quanta for the two-nucleon systems addressed in this work.
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We define the P -space (or “model space”) as the basis space retained by this Nmax truncation.

The infinite dimensional space beyond this Nmax truncation is called the Q-space. For a sufficiently

large Nmax, some observables are seen to converge in very light nuclei for interactions which do

not couple strongly to high-momentum states and when computational resources are sufficient. For

example, using a chiral N2LO NN interaction [37, 38], the ground-state energy of 6Li has been

calculated [39, 40, 41] in a sequence of HO basis spaces. With extrapolation to the complete basis,

the result is −31.0(2) MeV [41]. Here, the parenthesis specifies the uncertainty as 200 keV in the

extrapolation. The basis space truncation for the largest finite basis employed in the extrapolation

is Nmax = 18. At Nmax = 18 and ~Ω = 28 MeV the ground-state energy, which is also a variational

upper bound of the exact result, is already−29.928 MeV, i.e., about 1.1 MeV above the extrapolated

result. For comparison, the experimental ground-state energy is −31.995 MeV [48].

However, other observables, such as the root-mean-square (r.m.s.) point-proton radius and elec-

tric quadrupole transitions, converge poorly up through Nmax = 18 [49]. For long-range observables

such as the r.m.s. point-proton radius, the theoretical results are insufficiently converged to provide

directly a meaningful comparison with experiment. For example, with extrapolations, the r.m.s.

point-proton radius for 6Li has significant uncertainties [49].

For all these reasons, it may be advantageous to soften the interactions and to promote im-

proved convergence of the eigenvalue problem. As we explain in the next section, this softening,

or renormalization of the interaction also necessitates renormalizing the operators corresponding

to these other observables. That is, we need to consistently derive the effective operators for all

observables in the chosen model space.

2.2.3 Effective Hamiltonian and operators

Once the complete basis space and the P -space are defined, we can address the development

of an effective Hamiltonian Heff for the P -space that formally retains a subset of the eigenvalues

of the complete space. We adopt the OLS formalism in this work, which we briefly outline here.4

4In order to gain additional insights we present an alternative approach to the OLS formalism in Appendix B.
More details can be found in Ref. [9] and the references therein.
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The formal structure of the OLS approach is visualized by first considering H in the complete basis

space and defining the unitary transformation U that diagonalizes H to produce the Hamiltonians

spectrum. In the matrix representation, the diagonalization is

Hdiag = UHU † =



E1 0 · · · 0

0 E2 · · · 0

· · · · · · · · · · · ·

0 0 · · · Emax


, (2.5)

where the subscript “max” denotes the dimension of the full model space. The unitary matrix U

can be constructed by the eigenfunctions of H as

U =



a1,1 a1,2 · · · a1,max

a2,1 a2,2 · · · a2,max

· · · · · · · · · · · ·

amax,1 amax,2 · · · amax,max


, (2.6)

where, for example, a1,2 means the amplitude of the 2nd component of the 1st energy eigenfunction.

The full model space can be divided into the P -space of the dimension dP and the comple-

mentary Q-space of the dimension dQ. We define our P -space to accommodate the lowest set of

eigenvalues of the original Hamiltonian though other choices are feasible, such as retaining states

whose eigenvectors have the largest probabilities of P -space configurations. The projection operator

for each subspace can be constructed from the eigenvectors of the H such that

HP
diag = PHdiagP =



E1 0 · · · 0

0 E2 · · · 0

· · · · · · · · · · · ·

0 0 0 EdP


(2.7)
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and

HQ
diag = QHdiagQ =



EdP+1 0 · · · 0

0 EdP+2 · · · 0

· · · · · · · · · · · ·

0 0 0 Emax


. (2.8)

Making use of the projection operators, U can be partitioned as

U =

PUP PUQ

QUP QUQ

 , (2.9)

where, for clarity, UP is defined as 5

UP ≡ PUP =



a1,1 a1,2 · · · a1,dP

a2,1 a2,2 · · · a2,dP

· · · · · · · · · · · ·

adP ,1 adP ,2 · · · adP ,dP


. (2.10)

With the metric of UP , a unitary transformation can be obtained as

ŨP ≡ PŨPP =
UP√
UP †UP

, (2.11)

with ŨP ŨP † = 1. Note that the so-constructed transformation is identical to the unitary OLS

transformation in Refs. [33, 34, 35], via which the effective Hamiltonian Heff = ŨP †HdiagŨ
P

satisfies the decoupling condition QHeffP = PHeffQ = 0. The effective Hamiltonian in the P -space

is then

Heff = ŨP †HP
diagŨ

P = ŨP †(P UHU † P )ŨP , (2.12)

Since we start with Hermitian H, it can be easily seen that Heff is Hermitian as well. By construc-

tion, Heff reproduces the spectrum in the P -space. For brevity, we define the OLS transformation

as

UPOLS ≡ ŨP †PU , (2.13)

5Specific caution needs to be taken that the determinant of UP should be nonvanishing.
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such that

Heff =UPOLS H UP †OLS . (2.14)

We remark that Heff is not unique since there is the freedom of a residual P -space unitary transfor-

mation that preserves the sprectrum of Hdiag. Additional mathematical issues have been addressed

in Ref. [50] such as the breakdown when linearly dependent projected eigenvectors are encountered.

We did not encounter this breakdown in the calculations reported in this work.

A central issue for the current work is to investigate the effects of the corresponding transfor-

mation on the observables O needed to generate consistent renormalizations. That is, we define

consistent effective operators 6

Oeff = UPOLS,f O UP †OLS,i , (2.15)

where UPOLS,i denotes the OLS transformation constructed from the bare Hamiltonian of the initial

system, Hi, while UPOLS,f is the OLS transformation constructed from the bare Hamiltonian of the

final system, Hf . The effective operator Oeff reproduces the corresponding full space calculation

with the bare operator

〈φf|O|φi〉 = 〈φPeff,f|Oeff|φPeff,i〉 , (2.16)

where |φi〉 and |φf〉 are eigenvectors of Hi and Hf , which transform as

|φPeff,i〉 =UPOLS,i |φi〉 , (2.17)

|φPeff,f〉 =UPOLS,f |φf〉 . (2.18)

While these steps provide the formal framework, the essential question of a practical implemen-

tation requires further discussion. In the NCSM, one introduces an auxiliary confining potential,

which is later removed, and solves for the OLS transformations on a subset of the nucleons in the

nucleus (typically two or three nucleons) in what is dubbed a “cluster approximation” [9, 19, 20].

6Note that we are addressing a P -space which generally includes eigenstates with different conserved quantum
numbers. The UPOLS transformation will properly manage scalar operators that conserve the symmetries of H as well
as nonscalar operators that may induce transitions between eigenstates.
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The derived few-nucleon effective interaction is designed to renormalize the strong few-nucleon cor-

relations in the presence of other nucleons approximated by the auxiliary potential. This effective

interaction is subsequently employed to define an A-nucleon effective Hamiltonian. The cluster

approximation is guaranteed to produce the exact results as either the cluster size is increased to

reach the full A-nucleon system or as the P -space truncation is removed. The two-nucleon cluster

approximation of the NCSM serves as a paradigm for introducing and solving the NN systems

of this work. Our aim is to investigate the ramifications of this approach for effective electroweak

operators derived in a manner consistent with the softened interaction.

2.3 Results and discussions

To this stage, we have described the formal structure of the OLS method and we have discussed

its applications within the NCSM. For the two-nucleon systems we address below, either without

or with a HO trap, we apply the OLS approach in the relative coordinate system. Since the NN

Hamiltonian is defined with the conserved symmetries of each NN partial wave (channel), we

apply the OLS method to each NN channel independently. That is, we solve for individual OLS

transformations in a relative HO basis of fixed total angular momentum, coupled spin, parity, and

charge — the conserved quantum numbers for each NN channel. Then, we calculate the effective

nonscalar operators with OLS transformations from the NN channels required for that operator.

2.3.1 Deuteron ground state

We define an initial system to consist of two nucleons described by the H [Eq. (2.1)]. We will

discuss the ground-state energy of this system in this subsection. Motivated by the NCSM cluster

approximation framework, we will define a second two-nucleon system in the next subsection that

adds a confining HO interaction (trap). Both systems are numerically solvable. We refer to the

numerical solutions of these two systems as their “exact” results. Using graphical representations,

we compare these exact results with solutions from a truncation approach and with solutions from
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an OLS effective Hamiltonian approach. We refer to the results from the truncation approach and

the results from the OLS approach each as “model” results.

We adopt NN interactions from chiral EFT and we include the Coulomb interaction between

proton pairs in the Hamiltonian. Specifically, we employ the NN interactions of the Low Energy

Nuclear Physics International Collaboration (LENPIC) [37, 38, 39, 40, 41], which have been de-

veloped for each chiral order up through N4LO. These LENPIC interactions employ a semilocal

coordinate-space regulator and we select the interactions with the regulator range R = 1.0 fm

[40, 41]. We refer to these interactions as “LENPIC-X”, where “X” defines the specific chiral order

(LO, NLO, N2LO, N3LO, or N4LO). We also employ the chiral EFT interaction of Ref. [42] with

momentum-space regulator 500 MeV, which we refer to as “Idaho-N3LO”. All of these chiral EFT

interactions are charge dependent.

We consider the neutron-proton (np) system since the deuteron ground-state provides the only

bound NN state. In particular, we solve for the deuteron ground-state energy for each interaction

using three approaches. First, we obtain a high-precision result by diagonalizing the Hamiltonian

in the coupled [np; (3S1,
3D1)] channel in a very large HO basis (Nmax = 400) for three different

values of the basis strength ~Ω. We have verified that these ground-state energies produce the

same result as the numerical solution of the Schrödinger equation to at least five significant figures

[37, 38] in all cases. We refer to these results from diagonalization at Nmax = 400 as the “exact”

results. One may view these exact results as creating a discretized approximation to the continuum

and we note that the largest eigenvalues exceed 1 GeV in all cases investigated here. Second, we

solve for the ground-state energy in the HO bases truncated at lower Nmax values to produce model

results for the simple truncation approach. Third, we solve for the OLS effective Hamiltonian at

each value of Nmax and ~Ω, following the methods described above, to produce the model results for

the OLS approach. We follow this same approach for the neutron-neutron (nn) and proton-proton

(pp) channels needed for some of the transitions addressed in this work.

The model results of the truncation and OLS approaches are used to calculate their fractional

difference with respect to our exact results for each observable (i.e., observables calculated with the
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Nmax = 400 wave functions) where the fractional difference, Fract. Diff., is defined as the scaled

difference (model − exact)/|exact|. The Fract. Diff. results for the deuteron ground state energy

are presented as curves in Fig. 2.1 for a representative selection of our NN interactions. We do

not show the results for LENPIC-LO since they are similar to the LENPIC-NLO results. Also, we

do not show the LENPIC-N4LO results, which are similar to those of LENPIC-N3LO.

From the results in Fig. 2.1, we observe that the convergence rates for the truncation approach

can depend significantly on the chiral order with the LENPIC NN interaction. In particular,

there is a dramatic slowing of the convergence rates at N3LO as seen in Fig. 2.1(c) compared to

Figs. 2.1(a) and 2.1(b). The dependence of the convergence rates on the LENPIC chiral orders

is also revealed in many-body observables where slower convergence leads to larger extrapolation

uncertainties [39, 40, 41].

Table 2.1: (Adopted from Ref. [2]) Ground-state eigenvalues (in MeV) for the specified potentials

used as the “exact” values in Fig. 2.1 as a function of the basis parameter ~Ω (in MeV).

Potential ~Ω = 5 ~Ω = 10 ~Ω = 20

LENPIC −2.20607 −2.20609 −2.20609

LENPIC-N2LO −2.23508 −2.23516 −2.23516

LENPIC-N3LO −2.22324 −2.22326 −2.22326

LENPIC-N4LO −2.22458 −2.22459 −2.22458

Comparing the LENPIC NN interaction results in Fig. 2.1 also reveals changing shapes of the

convergence patterns with increasing chiral order for the bases using basis parameter ~Ω = 5 and

10 MeV. In particular, the case with ~Ω = 5 MeV develops a region showing significantly reduced

slope, nearly a plateau, with increasing Nmax at N3LO [Fig. 2.1(c)]. The results for the Idaho-N3LO

interaction shown in Fig. 2.1(d) indicate convergence patterns intermediate to LENPIC-N2LO [Fig.

2.1(b)] and LENPIC-N3LO [Fig. 2.1(c)]. These regions of reduced slope correspond to Fract. Diff

≈ 1.0, which defines a region of P -spaces where the lowest solution is transitioning between an
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Figure 2.1: (Adopted from Ref. [2]) The fractional differences, where Fract. Diff. of an observable

is defined as (model − exact)/|exact|, for the deuteron ground-state energy at three values of the

basis parameter ~Ω as a function of the P -space limit Nmax. The model results from diagonalizing

the P -space truncated Hamiltonian matrix produce Fract. Diff. curves that decrease towards

zero with increasing Nmax in accordance with the variational principle. The model results from

diagonalizing the OLS-renormalized Hamiltonian matrix reproduce the exact results at each Nmax

to high precision, yielding flat and overlapping green lines for their Fract. Diff. plots in all cases.

Panels (a), (b) and (c) correspond to the Hamiltonians constructed with the LENPIC chiral EFT

interactions [37, 38, 39, 40, 41] at NLO, N2LO, and N3LO, respectively. We employ the LENPIC

interactions with coordinate-space regulator R = 1.0 fm. Panel (d) corresponds to the Hamiltonian

constructed with the Idaho-N3LO potential [42] with momentum-space regulator 500 MeV. The

exact ground-state energies are given in Table 2.1.
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unbound state and a bound state with increasing Nmax. Thus, for some interactions at lower values

of ~Ω, we observe a plateau-like behavior as seen in Figs. 2.1(c) and 2.1(d). In these same cases,

after crossing over to a bound-state solution, the convergence rate accelerates. We have investigated

this plateau and have found a correlation with a changing feature of the wave function: while the

solution is moving across the plateau with increasing Nmax, it is building up its d-state component

from near zero to near its final value. When it nearly acquires its final value, the energy decreases to

a bound state (Fract. Diff. falls below 1.0) and accelerates its convergence rate. We examined other

interactions exhibiting this plateau in Fract. Diff. and found a similar correlation with buildup of

the d-state probability. We anticipate that, at sufficiently low values of the basis ~Ω, we would find

a similar plateau with all realistic interactions for the deuteron.

The dependence of the convergence rate on the basis ~Ω for the truncation approach in Fig. 2.1

is systematic — from most rapid convergence at ~Ω = 20 MeV to slowest at ~Ω = 5 MeV. We have

not sought to optimize the choice of ~Ω, although that is often a point of interest in many-body

applications. Our interest here is rather to feature results for a range of choices of ~Ω that will be

useful for our investigation of electroweak observables in the system of the following subsection.

The Fract. Diff. for the results of the OLS approach in Fig. 2.1 always remains at zero, to within

our numerical precision, which is what one anticipates. That is, since the OLS approach should

provide the exact ground-state energy in any basis space, these results serve as a verification of our

numerical procedures. The OLS procedure reproduces that subset of eigenvalues of the complete

problem compatible with the dimensionality fixed by Nmax, including eigenvalues lying high in the

continuum. We verify the accuracy of the eigenvalues from the OLS approach by direct comparison

with the corresponding subset of results from the complete problem for each set of P -space basis

parameters. We have confirmed that our OLS eigenvalues agree with the respective subset of the

exact eigenvalues to at least six significant figures.

We now present additional observables for the deuteron that represent baseline results for later

comparison. In Fig. 2.2 we show the ground-state energy [Fig. 2.2(a)], r.m.s. point-proton radius

[2.2(b)], electric quadrupole moment [2.2(c)], and magnetic moment [2.2(d)] for the same set of
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Figure 2.2: (Adopted from Ref. [2]) The fractional differences for a selection of deuteron properties

at three values of the basis parameter ~Ω as a function of the P -space limit Nmax. Following the

scheme of Fig. 2.1, we present the Fract. Diff. for the truncated basis calculations (three colored

curves approaching zero at high Nmax) and for the OLS renormalized calculations (green curves all

coincident with zero). All results are obtained with the LENPIC-N2LO interaction with regulator

R = 1.0 fm. The ground-state energy in panel (a) is an expanded version of the ground-state

energy in panel (b) of Fig. 2.1. The r.m.s. point-proton radius rrms appears in panel (b), the

electric quadrupole moment Q in panel (c) and the magnetic moment µ in panel (d). The model

results using the OLS transformation method reproduce the exact results at each Nmax to high

precision, yielding flat and overlapping green lines for their Fract. Diff. plots in all cases. The

short dashed lines provide envelopes for results with “sawtooth” patterns. The exact values used

for the observables here are given in Table 2.2.
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3DHO basis parameters as in Fig. 2.1 using the LENPIC-N2LO interaction. Here, we expand the

scale to see details of the results from Nmax = 0 − 40. Clearly, the results in the truncated basis

exhibit strong deviations from their exact values and those deviations exhibit nonsmooth behavior,

such as sawtooth patterns, with increasing Nmax. The excursions in the electric quadrupole moment

in Fig. 2.2(c) are especially prominent. These features represent the role of an s-state plus d-state

combination that are added with each increase in Nmax by 2 units. With the addition of two such

combinations (increase Nmax by four units) we include states with canceling asymptotic tails. This

observation helps one to understand why results differing by 4 units in Nmax follow a simpler trend

in Fig. 2.2 — a trend visualized by the dotted line connecting the successive maxima and another

dotted line connecting the successive minima of the “sawtooth” patterns. Such a visualization is

also applied to the maxima and the minima of the sawtooth patterns of the other observables in

Fig. 2.2, the r.m.s. radius [Fig. 2.2(b)] and magnetic moment [Fig. 2.2(c)]. Note that the scale

for the magnetic moment is greatly enlarged relative to the other scales in Fig. 2.2 indicating it is

rather insensitive to basis truncation effects.

Table 2.2: (Adopted from Ref. [2]) Ground-state eigenvalues and selected observables used as the

“exact” values in Fig. 2.2 as a function of the basis parameter ~Ω (in MeV). The results are

obtained with the LENPIC-N2LO interaction with regulator R = 1.0 fm. No confining potential is

included.

Ground-state observable ~Ω = 5 ~Ω = 10 ~Ω = 20

H (MeV) −2.23508 −2.23516 −2.23516

rrms (fm) 1.96440 1.96436 1.96436

Q (e · fm2) 0.269862 0.269874 0.269873

µ (µN ) 0.856323 0.856323 0.856323

Here again, the calculations of the effective operators with the OLS method, when employed

with the OLS wave functions in the same P -space, provide the exact results to within six digits for
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each observable at each value of the trap. The OLS results are seen as the flat green lines at Fract.

Diff. ≈ 0 in Fig. 2.2.

2.3.2 Two nucleons in HO trap ground-state energy

In this section, we investigate the effective electroweak operators of the two-nucleon systems. In

view of the future applications to finite nuclei, we add a confining interaction (or trap) to the initial

two-nucleon system in the previous section. In particular, we adopt a HO confining potential, where

the effects of the confining potential are separated into the center-of-mass (COM) and the relative

motions. Note that the COM and the relative motions exactly factorize. We hence consider only

the relative motion of the two-nucleon system in the confining trap. The resulting Hamiltonian

reads:

H =Trel + V +
1

2
MredΩ2r2 , (2.19)

where Trel and V denote the relative kinetic energy and the interaction of the two-nucleon system,

respectively. 1
2MredΩ2r2 denotes the confining HO trap, where r is the separation between the two

nucleons, while Mred = 1
2M̃N = 469.46 MeV is the reduced mass of the two-nucleon system. In

this work, we take the oscillator frequencies of the confining trap (Ω) to be the same as those of

the basis values ~Ω = 5, 10, and 20 MeV introduced in the discussion above.

The HO confining trap applied in this second system plays the role of simulating the effect of

the nuclear medium in finite nuclei, in which the two-nucleon system is embedded. We tune the

confining strength of the trap (also referred to as the trap strength in the following discussion)

according to the properties of the nuclei: for example, we adopt weak (strong) trap strength for

weakly (deeply) bound nuclei. In this work, we test the electroweak properties of the two-nucleon

systems with the trap strengths of 5, 10 and 20 MeV. In addition, we remark that the application

of the HO trap emulates the mathematical framework of the two-body cluster approximation in

the NCSM, in which the HO trap is introduced in constructing the effective Hamiltonian and

later removed in defining the effective interaction [9]. This auxiliary HO trap serves as a pseudo-

potential to improve the convergence in NCSM applications with the OLS approach via the cluster
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Figure 2.3: (Adopted from Ref. [2]) Fractional differences between model and exact results as

a function of the P -space for selected ground-state observables of the two-nucleon system in the
3S1 −3 D1 channel for three different HO traps. The NN interaction is the LENPIC-N2LO NN

interaction with regulator R = 1.0 fm. The ~Ω for the bases correspond to the HO energies of the

traps. The observables correspond to the eigenenergy (a), the r.m.s. point-proton radius (b), the

electric quadrupole moment (c), and the magnetic dipole moment (d). The exact values used for

the observables here are given in Table 2.3.

approximation. Overall, we anticipate that our study of the properties of a range of two-nucleon

systems embedded in different HO traps will provide useful insights into the renormalization effects

of various observables in future applications of the NCSM to the finite nuclei.

In testing this second two-nucleon system, we elect to retain only a subset of the LENPIC NN

interactions for the simple purpose of demonstration. We show in Fig. 2.3(a) the ground-state

energy of the two-nucleon system in the 3S1 −3 D1 channel (namely, neutron-proton system). The

exact results are listed in Table 2.3. Due to the external trap, the corresponding exact results

depend explicitly on the basis parameter ~Ω (also the trap strength) for the second system. The
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convergence rate for the results via the truncation approach is systematic and increases with ~Ω.

Note that the scale for the Fract. Diff. in Fig. 2.3(a) is much larger than those in Fig. 2.1.

Nevertheless, we again find good agreement between the results via the OLS approach and the

exact ground-state energy results over all choices of P -space, which can be seen from the coincident

flat green lines at Fract. Diff. = 0.

Table 2.3: (Adopted from Ref. [2]) Ground-state eigenvalues and selected observables used as the

“exact” values in Fig. 2.3. The results were obtained with the LENPIC-N2LO interaction with

regulator R = 1.0 fm. The parameter of the confining HO potential is the same as the basis

parameter ~Ω (in MeV) that labels each column of results.

Ground-state observable ~Ω = 5 ~Ω = 10 ~Ω = 20

H (MeV) −0.703487 2.35148 10.7332

rrms (fm) 1.44078 1.20869 0.992923

Q (e · fm2) 0.204165 0.164676 0.122359

µ (µN ) 0.852184 0.849597 0.84814

2.3.3 Two nucleons in HO trap — Electromagnetic observables

We now investigate additional observables in the second system. Our focus is, again, to compare

the truncation approach with the OLS approach. As reported in Refs. [44, 45, 46], the results of

various long-range observables computed via the truncation approach is within the range from

a few percent to about 10% compared to those computed via the OLS approach. We intend to

demonstrate the truncation effect, as well as the renormalization effect, of various electroweak

observables with the second two-nucleon system. Comparing the truncation and OLS approaches,

we find large renormalization effects for the matrix elements of some observables in cases where the

trap strength is small, and/or where the basis space is small (limited Nmax). This suggests that,

for the observables involving weakly bound states and the transitions involving resonance states,

the truncation effects are severe, so that the renormalization becomes important and necessary.
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We again examine the ground-state variables such as the energy, the r.m.s. point-proton radius

rrms, quadrupole moment Q, and magnetic dipole moment µ as initial tests. Due to the extra

harmonic confining trap, the wave functions of the second two-nucleon system possess the gaussian

type of asymptotic properties. The long-range contributions to the matrix element of long-range

observables are hence moderated. Note that in the real nuclear environment of bound state nu-

clei, however, such asymptotic properties of the wave functions are exponential and will therefore

generate more significant contributions to the matrix element of the long-range observables.

We calculate the ground-state expectation values of these operators via both the truncation

approach and the OLS approach. The results are shown in Fig. 2.3 as the fractional difference

from the exact results (Table 2.3) obtained in Nmax = 400 calculations. We note the major

differences in the scales of the Fract. Diff. results in Fig. 2.3; the truncation effects are largest for

the ground-state energy and decrease in size in the sequence of rrms, Q, and µ. We also find that

the truncation effects increase with decreasing trap strength. This can be interpreted as arising

from the competing roles of the external HO trap and the NN interaction in the Hamiltonian.

As the trap strength increases, the role of the NN interaction in the Hamiltonian becomes less

dominant; the second two-nucleon system simply resembles the HO Hamiltonian with a sufficiently

large trap strength (~Ω =20 MeV in this case). In addition, we find that the “sawtooth” behavior

of the results from the truncation approach seen in Fig. 2.2 (without the HO confining potential)

is absent from Fig. 2.3 — the generally smooth trend is present for the results computed via the

truncation approach. While the truncation results of the ground-state energy, rrms [Fig. 2.3(b)]

and µ [Fig. 2.3(d)] present a monotonic convergence pattern, the convergence pattern of Q is more

complicated: the Fract. Diff. of Q in the truncation approach still shows a sign change for all the

choices of trap strength. This sign change becomes less visible with increasing trap strength.

Meanwhile, we again find good agreement between the ground-state observables in Fig. 2.3

via the OLS approach and respective exact results over all choices of P -spaces and traps. This is

evident from the coincident green lines remaining zero in all panels. Indeed, we checked and found

that the Fract. Diff. for all the OLS results are zero to at least six significant digits.
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2.3.4 Two nucleons in HO trap — Weak observables

Table 2.4: (Adopted from Ref. [2]) Ground-state transition matrix elements used as the “exact”

values in Figs. 2.4 and 2.5. The strength of the confining HO potential is the same as the basis

parameter ~Ω (in MeV) that labels each column of results. The GT transition matrix element

values correspond to the Nmax = 400 case, where they have converged to six or more significant

digits. The 0ν2β transition matrix element values correspond to the Nmax = 200 case, where they

have converged to four or more significant digits.

Decay Potential ~Ω = 5 ~Ω = 10 ~Ω = 20

GT NLO −1.40355 −1.42839 −1.43974

N2LO −1.40338 −1.42902 −1.44106

0ν2β NLO 1.59067 0.505287 0.827882

N2LO 1.48274 0.476412 0.792684

We now investigate the truncation effect and the renormalization effect of the weak operators

of the two-nucleon system confined in the HO trap. For a demonstration, we first consider the

Gamow-Teller (GT) β-decay matrix element for the transition between the ground states of the

1S0 nn channel and the 3S1 −3 D1 np channel. We take the GT operator to be of the simple spin-

isospin form [51].7 Two NN interactions of lower chiral orders, namely, the LENPIC-NLO NN

interaction and the LENPIC-N2LO NN interaction, are adopted for the purpose of illustration.

The corresponding results are shown in Fig. 2.4(a) and Fig. 2.4(b), respectively.

As seen from the Fract. Diff. for the GT matrix elements (Figs. 2.4(a) and 2.4(b)), the

convergence pattern of the results via the truncation approach is similar to that of the operators

in Figs. 2.3(a), 2.3(b) and 2.3(d), but with the opposite sign. The exact results are shown in Table

2.4 for completeness. Note that there is an overall negative sign for all the GT matrix elements. We

7In the future, we will employ operators, including the GT operators, that are derived consistently from the chiral
EFT.
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Figure 2.4: (Adopted from Ref. [2]) Fractional differences between model and exact results as a

function of the P -space for selected ground-state transitions from the lowest state of the 1S0 nn

system in three different HO traps. Panels (a) and (b) are for the allowed GT transition to the

ground state of the 3S1−3D1 channel. Panels (c) and (d) are for the 0ν2β-decay to the ground state

of the 1S0 pp system. The NN interaction for cases (a) and (c) are taken to be the LENPIC-NLO

potential, while we adopt the LENPIC-N2LO potential for cases (b) and (d). All results shown

employ LENPIC NN interactions with coordinate space regulator R = 1.0 fm. The exact values

used for the observables here are given in Table 2.4.
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remark that the negative sign is arbitrary and results in no physical consequence. As the P -space

dimension increases, the results via the truncation approach converge to the exact results from

below, producing the trends in Figs. 2.4(a) and 2.4(b). Therefore, the results via the truncation

approach with restricted basis space would necessitate the application of a scaling factor, or a

quenching factor (less than unity), in order to match the exact results. For clarification, we present

the plots of this quenching factor (defined as the exact/model) in Figs. 2.5(a) and Fig. 2.5(b) based

on the results in Figs. 2.4(a) and 2.4(b). We find the quenching factors of the GT matrix elements

deviate from unity by about 6% at most. Smaller quenching factors are obtained for the cases

with smaller trap strengths, where the confinement of the nn and np systems is weaker. In other

words, the GT quenching factor is smaller (relative to unity) with increasing spatial distribution

of the two-nucleon system (i.e. decreasing ~Ω), which resembles the phenomenological decrease in

the quenching factor (i.e. trending lower than unity), of the valence-space GT-transition matrix

elements with increasing atomic number [52]. As for the OLS approach, we again find that the

exact GT results are reproduced for all our choices of P -space and trap strength. This is evident

from the overlapping green lines at zero in Figs. 2.4(a) and 2.4(b), or, equivalently, at unity in

Figs. 2.5(a) and 2.5(b).

Via the same approach used in studying the GT transitions, we study the 0ν2β-decay matrix

element for the transition between the ground states of the 1S0 nn channel and the 1S0 pp channel.

As before, three HO traps (of trap strength 5, 10, 20 MeV) and two low-order chiral interactions

are adopted for the second two-nucleon system. The 0ν2β-decay operator is derived from chiral

EFT in Ref. [53], which is consistent with the chiral NLO (the expression of the 0ν2β operator

in the 3DHO representation is shown in Appendix A.9). The corresponding results are shown in

Figs. 2.4(c) and 2.5(c) (with LENPIC-NLO) and Figs. 2.4(d) and 2.5(d) (with LENPIC-N2LO).

In calculating the exact results (shown in Table 2.4), we employ a basis space with Nmax = 200

for good convergence. Note that we elect not to apply the LENPIC semi-local coordinate-space

regulator to this 0ν2β operator, since this regulator is not gauge invariant.
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Figure 2.5: (Adopted from Ref. [2]) Quenching factor defined as exact/model for GT-decay and

0ν2β-decay matrix elements as a function of the P-space for ground-state transitions from the

lowest state of the 1S0 nn system in three different HO traps. Panels (a) and (b) are for the

allowed GT-transition to the ground state of the 3S1−3 D1 channel. Panels (c) and (d) are for the

0ν2β-decay to the ground state of the 1S0 pp system. The NN interaction for cases (a) and (c)

are taken to be the LENPIC-NLO potential, while we adopt the LENPIC-N2LO potential for cases

(b) and (d). All results shown employ LENPIC NN interactions with coordinate space regulator

R = 1.0 fm. A quenching factor greater than unity signals an enhancement of the model results is

required to arrive at the exact results. The exact values used for the observables here are given in

Table 2.4.
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We find that the convergence patterns of the 0ν2β-decay results via the truncation approach

are sensitive to the trap strength. The Fract. Diff. results in Fig. 2.4 do not appear to approach

zero (which indicates the convergence of the model-space calculations) until Nmax reaches 10, 20, 40

for ~Ω = (20, 10, 5) MeV, respectively. As Nmax increases, these convergence patterns are similar

but not monotonic. We find the magnitude of the results via the truncation approach are much

smaller than the exact results when Nmax is small, which means that the 0ν2β-decay results via

the truncation approach would be largely suppressed in truncated and limited model spaces.

The results of the corresponding quenching factors via the truncation approach are shown in

Figs. 2.5(c) and 2.5(d). Contrary to the quenching factors of the GT matrix elements, we find

that the quenching factors rise significantly above unity for small basis space (small Nmax). For

weaker HO trap strength, this rise is larger. This indicates that, when evaluated via the truncation

approach, significant contributions from the intermediate-range components of our 0ν2β operator

are missing for the cases with restricted basis space. Also, larger quenching factors (acting as

enhancements here) would be necessary for the 0ν2β-decay in weakly bound nuclei.

As for the OLS approach, we again find that the exact 0ν2β results are reproduced for all the

choices of P -space and trap strength. This can be seen from the Fract. Diff. results (coincident

green lines) at zero in Figs. 2.4(c) and 2.4(d), or from the quenching factor results (coincident

green lines) at unity in Figs. 2.5(c) and 2.5(d). It is worth noting that the OLS transformation is

defined separately for the initial and final states of transitions (GT- and 0ν2β-decays in this work).

Indeed, to reproduce the exact results of the transition matrix elements for all model spaces via

the OLS approach is a nontrivial benchmark test of our numerical procedures.
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CHAPTER 3. TIME-DEPENDENT BASIS FUNCTION METHOD

3.1 Introduction

A unified treatment of nuclear structure and reactions is a central, but challenging, issue of ab

initio nuclear theory. Specifically, the challenge is to incorporate the discrete bound states with the

scattering states in the continuum [54, 55]. For few-body systems with mass number A ≤ 4, highly

precise methods such as Faddeev [56], Faddeev-Yakubovsky [57, 58], Alt-Grassberger and Sandhas

[59, 60], and hyperspherical harmonics [61, 62] have been developed using internal coordinates. As

for light and medium nuclei with A > 4, there are also a wealth of cutting edge approaches. A

survey of the methods includes the no-core shell model with resonating group method [63, 64, 65, 66],

the no-core shell model with continuum method [67, 68, 69], the coupled cluster method with the

Gamow basis [70, 71, 72], the no-core shell model with the Gamow basis [73, 74, 75], the HORSE

(J-matrix) method [76, 77, 78], the configuration interaction with resonating group method [79],

the Green’s function Monte Carlo method [80, 81], and the nuclear lattice effective field theory

[82, 83]. However, these successful methods may be challenged to retain the full, non-perturbative

quantum coherence of the scattering over all potentially relevant intermediate and final states which

could be important for complex scattering processes involving exotic nuclei. For short-lived rare

isotopes, where the low-lying states are either weakly bound or unbound, one will be challenged

to include the relevant degrees of freedom for a complete description of the inelastic processes. In

particular, a large number of intermediate states may be needed to provide accurate descriptions

of the dynamical multi-step processes contributing to the final states.

In order to address these complex processes and retain predictive power, we propose an ab initio,

time-dependent non-perturbative approach, which we call the time-dependent Basis Function (tBF)

approach. The idea, which is based on a successful time-dependent approach in quantum field theory

[84, 85, 86, 87, 5], is to solve the equation of motion (EOM) for the scattering of the system in the
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representation constructed from the energy eigenbases of the system before scattering. The state

vector for the system hence reduces to a set of amplitudes with respect to the chosen eigenbases, in

which the full coherence is retained, and the EOM becomes a set of first order differential equations

in time.

We demonstrate the tBF approach with a very simple problem, the internal excitation of a

trapped deuteron in the time-varying external Coulomb field of a heavy ion, or deuteron Coulomb

excitation [88, 89]. Note in this initial application, the motion of the COM of the deuteron is

constrained to the trap and the excitation in the COM degree of freedom is neglected. Future work

will remove the trap and evolve the motion of the COM. Within the tBF formalism, the evolution

of the deuteron system is examined through its consequent transition probabilities and through

expectation values of different observables during the scattering. The dynamics of the scattering

process will also be revealed by the time evolution of the deuteron system’s internal charge density

distribution.

This chapter is essentially the published paper [4]. It is organized in the following way. We first

introduce the theory of the tBF approach in Sec. 3.2. Then, we discuss the details of our model

problem in Sec. 3.3 and present the simulation conditions of the problem in Sec. 3.4. Later, we

provide illustrative numerical results in Sec. 3.5.

3.2 Theory

We begin with an introduction of the framework for time-dependent scattering within a basis

space determined from an ab initio structure calculation. In particular, we outline the problem

where the external field, which induces the transitions, is treated as a classical, possibly strong,

time-dependent electromagnetic (EM) source. The generalization to more complex sources will

be considered in subsequent works. To be concrete and simple, we outline the approach for the

specific case of a trapped deuteron as the system undergoing excitation, which, however, can be

straightforwardly generalized.
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3.2.1 Hamiltonian

Our full Hamiltonian for the target scattered by the time-varying EM field produced by the

impinging heavy ion (HI) is

Hfull(t) = H0 + Vint(t) , (3.1)

where the Hamiltonian for the intrinsic motion of the target is

H0 = Trel + VNN + Utrap , (3.2)

with Trel the relative kinetic energy and VNN the nucleon-nucleon (NN) interaction. Utrap denotes

an external HO trap introduced to localize the COM of the target and to discretize the continuum

of the target’s scattering states. We neglect the excitation of the COM motion. Removing the

regularization provided by the trap will be the subject of future investigations.

For physical motivation to retain a weak trap, one may cite the utility of a quasi-deuteron

approach to reactions as an example. In that case, the presence of our trap simulates a nuclear

environment in which the deuteron degree of freedom is selected to respond to an external probe

[90].

The time-dependent interaction between the target and the external EM field is Vint(t), which

is formulated by the coupling between the four current Jµ = (ρ, ~j) of the target and the four

potential Aµ = (ϕ, ~A) of the external EM field

Vint(t) =

∫
AµJ

µ d~r =

∫
ρ(~r, t)ϕ(~r, t) d~r −

∫
~j(~r, t) · ~A(~r, t) d~r . (3.3)

Note we adopt the natural units and set ~ = c = 1 throughout this chapter.

3.2.2 EOM for the scattering

The EOM for the target during the scattering, in the interaction picture, is

i
∂

∂t
|ψ; t〉I = eiH0t Vint(t) e

−iH0t |ψ; t〉I ≡ VI(t) |ψ; t〉I , (3.4)



32

where VI(t) denotes the interaction part in the full Hamiltonian. The subscript “I” specifies the

interaction picture. The state vector of the target at time t ≥ t0 (t0 is the time when the target is

defined in its initial state and begins to experience the time-dependent interaction) can be solved

as

|ψ; t〉I = UI(t; t0)|ψ; t0〉I , (3.5)

where UI(t; t0) is the unitary operator for the time-evolution

UI(t; t0) = T̂

{
exp

[
− i
∫ t

t0

VI(t
′) dt′

]}
, (3.6)

with T̂ the time-ordering operator towards the future.

The time-evolution operator UI(t; t0) can be evaluated numerically by first dividing the interval

[t0, t] into segments with step length δt = (t− t0)/n (n being sufficiently large to attain numerically

stable results) and then replacing the integration in the exponent with additive increments. Keeping

only terms up to the order of δt in the following Taylor expansion, we get

UI(t; t0)
∑
δt−−−→

[
1− i VI(t)δt

] [
1− i VI(tn−1)δt

]
· · ·

[
1− i VI(t1)δt

]
. (3.7)

The direct evaluation according to Eq. (3.7) is called the Euler scheme. It is numerically unstable

since this scheme is not symmetric in time; the norm of the state vector of the target may not be

conserved [91] during the evolution. We therefore adopt the MSD2 scheme [92] in our tBF method.

Via the MSD2 scheme, the state vector for the target at the time t1 = t0 + δt is still evolved via

the Euler scheme. However, for t′ = t2, t3, · · · , tn−1, the state vector under time evolution is

|ψ; t′ + δt〉I ≈ |ψ; t′ − δt〉I − 2i VI(t
′) δt |ψ; t′〉I . (3.8)

For the current model problem, we also calculate the state vector of the target via first-order

perturbation theory for comparison

|ψ; t〉I →

[
1− i

(
VI(t) + · · ·VI(t2) + VI(t1)

)
δt

]
|ψ; t0〉I , (3.9)

where only the terms up to the order of δt are retained.
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3.2.3 Basis representation

We solve the energy eigenbases of the target from its intrinsic Hamiltonian (Eq. (3.2)). The

eigenequation is

H0|βj〉 = Ej |βj〉, (3.10)

where Ej is the eigenvalue corresponding to the eigenvector |βj〉 and the subscript j is an index

running over the individual states. In the basis representation defined by the set of bases {|βj〉},

the state vector of the target becomes a vector of time-dependent amplitudes, while the operators

become matrices and the EOM (Eq. (3.4)) becomes sequential matrix-vector multiplications.

3.2.4 Transition amplitude

In the basis representation, the state vector of the target at any moment t during the scattering

is

|ψ; t〉I =
∑
j

AIj (t)|βj〉 , (3.11)

where the AIj (t) is the amplitude corresponding to the basis |βj〉. Given the initial state vector

of the target at the beginning of the scattering (t = t0) to be |ψ; t0〉 = |βi〉, AIj (t) describes the

transition amplitude from |βi〉 to |βj〉 and can be computed as

AIj (t) = 〈βj |UI(t; t0)|βi〉 , (3.12)

with AIj (t0) = δij . The corresponding transition amplitude in the Schrödinger picture is

Aj(t) = exp

[
− iEjt+ iEit0

]
AIj (t) , (3.13)

and the full state vector of the target at time t is

|ψ; t〉 =
∑
j

Aj(t)|βj〉 . (3.14)
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3.2.5 Observables and the density distribution

Based on |ψ; t〉, we can calculate the expectation values of observables during the scattering as

〈O(t)〉 = 〈ψ; t| Ô |ψ; t〉 =
∑
j,k

A∗j (t)Ak(t) 〈βj |Ô|βk〉 , (3.15)

where Ô denotes the operator for the selected observable.

As an example, we can study the dynamics of the target via the evolution of its effective charge

density distribution, which is formulated as

ρ(~r; t) = 〈ψ; t|~r〉〈~r|ψ; t〉 =
∑
jk

A∗k(t)Aj(t)〈βk|~r〉〈~r|βj〉 , (3.16)

where 〈~r|βj〉 denotes the wave function of the jth basis in coordinate space. The charge density

distribution of the target in its relative coordinates will be simply referred to as the internal charge

distribution in the following text.

3.3 Setup of the model problem

Figure 3.1: (Adopted from Refs. [4, 5]) Set up of the peripheral scattering. See the text for the

details.
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As shown in Fig. 3.1, we set the scattering plane to be the xz-plane. The target is a deuteron.

For simplicity, we assume its COM is fixed at the origin, i.e., the recoil of the target during the

scattering is neglected. The relative coordinates of the target are defined as ~r = ~rp − ~rn, where ~rp

and ~rn are the single-particle coordinates for the proton and the neutron, respectively. The masses

of the neutron and the proton are taken to be their average mass 938.92 MeV. The mesonic degree

of freedom is not considered and the unit charge of the target is carried by the proton.

The projectile is a HI. It carries charge Ze and is assumed to move, for simplicity here, with a

constant velocity ~v parallel to the ẑ-axis. The impact parameter b is set to be sufficiently large such

that the nuclear interaction is negligible compared to the EM interaction during the scattering. ~R

denotes the position of the HI with respect to the origin.

3.3.1 Background field

As an initial application of the tBF method, we assume that the HI impinges with a low speed

(non-relativistic) and the magnetic interaction between the target and the induced vector field

~A(~r, t) is ignored. That is, we evaluate only the interaction between the target and the time-

varying Coulomb field. We then perform the multipole expansion of the Coulomb field [93] and,

for this initial application, we retain only the contribution of the E1 multipole component. The

investigation on the contributions of other components (e.g., E0, E2) as well as the magnetic

transitions (e.g., M1) will be addressed in the future.

In the basis representation, the operator for the E1 multipole component [88, 94] of the time-

varying Coulomb interaction VI(t) becomes a matrix with elements formulated as

〈βj |VI(t)|βk〉 =
4π

3
Ze2ei(Ej−Ek)t

∑
µ

Y ∗1µ(ΩR)

|R(t)|2

∫
d~r 〈βj |~r〉

r

2
Y1µ(Ωr) 〈~r|βk〉 , (3.17)

where Yλµ(Ω) denotes the spherical harmonics (the Condon-Shortley convention [95, 96] is adopted

in this work). λ = 1 denotes the dipole contribution out of the multipole components of the

Coulomb field. ΩR denotes the direction of the HI, which is specified by the polar angle and the

azimuth angle of ~R. Similarly, Ωr is specified by the polar and azimuth angles of ~r. The matrix

representation for the time-evolution operator UI(t; t0) can thus be solved according to Eq. (3.17).
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3.3.2 Structure calculation of the target

In our tBF method, we solve for target properties by an ab initio nuclear structure calculation.

In this work, the three dimensional (spherical) harmonic oscillator (3DHO) representation in relative

coordinates is implemented to calculate the eigenenergies and the corresponding eigenbases. For

the internal motion of the deuteron system, each 3DHO basis |nlSJM〉 is specified by the radial

quantum number n, the quantum number l for the orbital angular momentum, the quantum number

S for the spin, the quantum number J for the total angular momentum (we adopt the scheme where

l is coupled to S to form J) and the magnetic quantum number M for the ẑ-projection of the total

angular momentum. Note that the E1 multipole component does not act on the isospin degree of

freedom; we hence omit the isospin part of the 3DHO basis in this work. The truncation parameter

for the model space is defined by 2n+ l ≤ Nmax. Hence the model’s 3DHO basis set {|nlSJM〉} is

specified by good quantum numbers S, J , M and parity (determined by (−1)l) of the np system.

We thus define our retained eigenbasis in Eq. (3.10) as

|βj〉 =
∑
nj lj

anj lj |njljSjJjMj〉 , (3.18)

where β stands for l, S, J and M for each channel. {anj lj} denotes the set of the expansion

coefficients, which are obtained by the diagonalization of the matrix H0 in the 3DHO representation.

The kernel in Eq. (3.15) thus becomes

〈βj |Ô|βk〉 =
∑
nj lj

∑
nklk

a∗nj ljanklk〈njljSjJjMj |Ô|nklkSkJkMk〉 . (3.19)

Details of our conventions for the 3DHO basis representation, the EM operators and the observables

employed here in the 3DHO basis are presented in Appendix A.

3.4 Simulation conditions

In this work, we will adopt a concrete but simple test application to demonstrate the feasibility

of the tBF method and to gain an initial appreciation of the coherent features available in time-

dependent evolution at the amplitude level. The projectile is taken as a fully stripped uranium,
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U92+. The incident speeds are set to be 0.1, 0.2 and 0.4. We fix the duration of exposure time to

be from −5 MeV−1 to 5 MeV−1, which is approximately 6.582×10−21 sec. The impact parameter

is chosen as b = 5 fm. That is, as an example, the projectile with the incident speed v = 0.1 travels

from 100 fm before the distance of the closest approach between the projectile and the origin to

100 fm after the closest approach.

Figure 3.2: (Adopted from Refs. [4, 5]) The eigenbasis vector of the target deuteron confined in

an external HO trap of strength 5 MeV. This vector makes explicit the basis representation for

our model and lists the channel quantum numbers, the angular momentum projection, and the

eigenenergies. For the ab initio structure calculation, the 3DHO bases are adopted, for which the

basis strength is set to be ω = 5 MeV and the truncation parameter Nmax to be 60. The lowest-

lying 7 states are chosen to construct the basis representation for the target. Note there are the

expected degeneracies with respect to the target system’s magnetic projection M .

One of the main features of the tBF approach is the ability to incorporate microscopic nuclear

structure via the ab initio method with an adopted realistic nuclear interaction. For the current

work, we adopt the JISP16 [97, 98, 99] realistic NN interaction to construct the target Hamiltonian

(Eq. (3.2)). In the 3DHO representation, the eigenenergies and the corresponding eigenstates of the

np target are solved according to Eq. (3.10) with both the trap and basis parameters taken to be 5

MeV and Nmax = 60. For simplicity, we take only three interaction channels for the target, which

are ( 3S1,
3D1), 3P0 and 3P1. The lowest states of each channel, as shown in Fig. 3.2, are taken

into account. In applying the tBF method to this simple demonstration problem, we construct the

basis representation for the total time-dependence of the target in terms of these states. The initial
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state of the target is taken to be ( 3S1,
3D1), M = −1, which is polarized against the ẑ-axis. More

interaction channels, different NN interactions and different targets will be studied in the future

work.

The interaction between the target and the time-varying external Coulomb field is then ex-

pressed as matrix elements in the basis representation. According to the EOM [Eq. (3.4)], the

time-dependent state vector of the target can be solved in the form of Eq. (3.11) and Eq. (3.12).

In this work, we investigate selected observables of the target, the transition probability, the

r.m.s. charge radius, the r.m.s. intrinsic momentum, the r.m.s. angular momentum, the intrinsic

energy and the ẑ-projection of the total angular momentum, as functions of the exposure time and

the incident speed (or, equivalently, bombarding energy). To help formulate our intuition, we also

present some details of the evolution of the internal charge distribution (Eq. (3.16)) during the

scattering.

3.5 Results and discussions

3.5.1 Transition probabilities

With the total exposure time fixed and only the incident speed altered, we present in Fig. 3.3 the

transition probabilities of the basis states of the np target as functions of the time and the incident

speed of the HI at intermediate times (from −1 MeV−1 to 2 MeV−1), which covers the time period

where the significant transitions occur. Note we ignore the corrections from the relativistic effects

and the magnetic transitions caused by the induced vector field. For the numerical calculation,

we apply the same method introduced in our previous paper [5], where we checked that the tBF

method agrees with first-order perturbation theory when the external Coulomb field is sufficiently

weak and the first-order effects dominate. In addition, we conduct two more validity checks. First,

the normalization of the time-dependent wave function is verified during the evolution of the np

target. Second, the time-reversal symmetry of the algorithm for the evolution is verified by explicitly

running the solution backwards to the initial state.
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Figure 3.3: (Adopted from Ref. [4]) The Coulomb excitation (only the E1 multipole component is

included) of the target illustrated as a function of the time and the incident speed of the HI in the

middle of the scattering. The target is characterized by 7 basis states. It is initially prepared to be

in the state (3S1,
3D1), M = −1. The HI projectile is taken to be a fully stripped uranium, U92+,

and the incident speed is taken as 0.1, 0.2 and 0.4. The transition probabilities of each basis state

of the target are calculated via the non-perturbative tBF method and compared with results from

first-order perturbation theory (curves labeled by “Pert” in the legend).
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3.5.1.1 General features of the excitation

During the scattering, when the HI projectile is sufficiently close to the mass center of the tar-

get, abrupt transitions occur and the probabilities exhibit short-time fluctuations. Such quantum

fluctuations are expected in the quantal treatment of scattering and we verified that these quan-

tum fluctuations are consistent with the uncertainty relation. We clearly observe such quantum

fluctuations in, for example, the evolution of the initial state (3S1,
3D1), M = −1 with an incident

speed v = 0.4 in Fig. 3.3. Here, the elastic scattering probability dips sharply and relaxes to its

asymptotic value. For this case, the full width half maximum (FWHM) (for the first dip during the

evolution) is ∆t > 0.1 MeV−1, while the transition energy is ∆E > 12.7 MeV, yielding a product

greater than unity which is consistent with the uncertainty principle.

Eventually, short-time fluctuations attenuate and approach asymptotic values as the Coulomb

field fades away. The excited target then evolves into a final superposition of the available eigen-

states of the target Hamiltonian. From the produced scattering amplitude at later times, the

amplitude for breakup into a particular, kinematically allowed, final state is found by projecting

onto that final state. In reality, the excited target can also decay through other kinematically ac-

cessible channels, such as through spontaneous EM radiation, which is not included in the present

model.

3.5.1.2 Allowed and forbidden transitions

In Fig. 3.3, the difference in the transition probabilities given by the non-perturbative tBF

method and the corresponding first-order perturbation theory shows the importance of the higher-

order effects during the scattering process. Specifically, since only the E1 multipole component

of the time-varying Coulomb field is included, we expect the dominant transitions in Fig. 3.3 to

reflect the E1-selection rule for the calculations based on first-order perturbation theory. We refer to

transitions from the initial state that are permitted by first-order perturbation theory as “allowed”

and all other transitions as “forbidden” for the purposes of this discussion. However, for the current

setup (Z = 92, b = 5 fm), the Coulomb interaction is strong when the projectile is close to the
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target; higher-order effects, which are included by the non-perturbative tBF approach, produce

some major consequences when compared with first-order perturbation theory. For example, first-

order perturbation theory predicts (3S1,
3D1), M = 1 to be a “dark” state (an E1-forbidden

transition), while its population is clearly revealed by the non-perturbative tBF method during

the scattering process via a succession of E1 transitions through the accessible intermediate states.

The tBF population of two additional dark states is shown in Fig. 3.3, which is evident by the

contrasting null results from first-order perturbation theory. For the allowed transitions in Fig.

3.3, there are visible differences in the magnitudes between the tBF and the perturbation theory

results with first-order perturbation theory tending to overestimate the transition probability for

the simulations with the incident speed 0.1 and 0.2.

The time sequence of the transition probabilities is illustrated in Fig. 3.4. The states that

obey the E1-selection rule from the ground state are populated earlier with more population (e.g.,

3P1, M = −1), compared to transitions forbidden at leading order. Shortly thereafter, secondary

transitions begin to populate the 1st-order forbidden states (e.g., (3S1,
3D1), M = 0) (these

secondary routes are referred to as populating the “1st-order forbidden” states). However, these

effects do not significantly populate the forbidden states until the E1-allowed states accumulate

appreciable population. It is important to note that the de-excitation of states is also included

among the transitions. After the 1st-order forbidden states are sufficiently populated, the transition

network starts to build up the population for the 2nd-order forbidden states, e.g., 3P1, M = 1. In

general, the forbidden states populated by the higher-order transitions build up relatively smaller

populations.

3.5.1.3 Dependencies of the transitions on the incident speed

With increasing incident speed, we find that the transitions begin later and that the oscillations

of the transition probabilities attenuate more rapidly (transitions experience damping of their

oscillatory patterns and approach to asymptotic values). These behaviors can be understood based

on the strength and time-variation of the Coulomb interaction sensed by the target. According to
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Figure 3.4: (Adopted from Ref. [4]) Illustration of the state populations changing with time during

the scattering. Note the transition probabilities are all scaled. The E1-allowed state 3P1, M = −1

is populated initially. Then one observes the transport of population from the state 3P1, M = −1

to the 1st-order forbidden state (3S1,
3D1), M = 0. Later, the transition network populates the

2nd-order forbidden state 3P1, M = 1 with that population fed from the state (3S1,
3D1), M = 0.

The forbidden states also receive population from other states, in which cases relative phases can

lead to interference.

Eq. (3.17), the time-variation of the interaction matrix element is, in part, scaled by the geometric

factor
Y ∗1µ(ΩR)

|R(t)|2 . Since we set the scattering plane to be the xz-plane, the azimuth angle for ~R

vanishes and hence the geometric factor is real. As an example, the values of the geometric factor

and its time-variation are shown for the scattering with incident speed v = 0.1 in Fig. 3.5. We find

that significant transitions occur only when the HI projectile is sufficiently close to the target (note

the time for approaching differs with the incident speed), where the field strength is strong and the

time-variation of the field is rapid. After the HI passes by, the transition probabilities attenuate

asymptotically due to the decreasing geometric factor in the interaction matrix elements.

We note that the asymptotic transition probability of each level does not depend on the incident

speed monotonically. This is due to the phase factor in Eq. (3.17), which depends on the transition

energies. In fact, this phase favors specific transition energies depending on the incident speed.

Taking into account the specified transitions included for the current description of the np target

(Fig. 3.2), the non-monotonic dependencies of the transition probabilities on the incident speed
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Figure 3.5: (Adopted from Ref. [4]) Illustration of the geometric factor (panel (a))
Y ∗1µ(ΩR)

|R(t)|2 (µ =

±1, 0) and its time-variation (panel (b)) during the scattering. The incident speed is taken as

v = 0.1. Since the scattering plane is the xz-plane, the azimuth angle vanishes and Y ∗1µ(ΩR) is real.

The results related to Y1−1(ΩR) are omitted owing to the fact that Y ∗11(ΩR) = −Y1−1(ΩR).

can be understood. In other words, the transition probability of each state does not necessarily

increase with incident speed. For example, the transition probability to the state 3P1,M = −1 is

the largest when the incident speed is v = 0.2.

In addition, we find that first-order effects increasingly dominate the final state populations

as the incident speed of the HI projectile increases. This could be due to the limitation of the

current 7-basis system, where higher-lying scattering states are yet to be included. One expects

that higher-lying states receive more population as the incident speed increases. Since our main

purpose is to define the approach and demonstrate the method of solution, we defer inclusion of a

more complete basis to a future effort.

3.5.2 Observables

With the same simulation conditions as those in Fig. 3.3, we compute the wave functions

of the target during the scattering and evaluate a selected set of operators (we refer to them as

“observables” for brevity) as functions of the exposure time and the incident speed (Fig. 3.6). We

again provide calculations based on first-order perturbation theory to compare with those from

the non-perturbative tBF method. Note that the expectation values of the observables do not
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Figure 3.6: (Adopted from Ref. [4]) Selected observables of the np target as functions of the

exposure time and the incident speed of the HI in the middle of the scattering. Panels (a), (b),

(c) and (d) show the evolutions of r.m.s. charge radius, r.m.s. momentum, r.m.s. orbital angular

momentum and intrinsic energy, respectively.

change appreciably until the HI gets sufficiently close to the target, while they relax to respective

asymptotic values after the HI flies away from the target. We also comment that the initial values

of the observables differ from those for a natural deuteron due to the external HO trap introduced

in Eq. (3.2). For example, the r.m.s. charge radius of the target before the scattering is 1.472

fm, which is about 25% smaller the experimental measurement 1.975(3) fm for a natural deuteron

[100, 101].

All the expectation values of the target observables are evaluated with the time-dependent wave

function of the target during the scattering, in which the full quantal coherence is retained. With

our limited basis set (Fig. 3.2), the matrix representation of each of our selected operators is

diagonal. In other words, the expectation of each observable at a certain moment simplifies here to

the calculation of the weighted average (the possible values of the observable weighted by respective
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eigenbasis probabilities). Therefore, it is not surprising that the evolutions of different observables

behave similarly; the time-dependencies of the observables can be easily understood by the results

in Fig. 3.3 and by the fact that higher-lying basis states contribute larger r.m.s. charge radii,

eigenenergies and r.m.s. orbital angular momenta together with smaller r.m.s. intrinsic momenta.

That is, for each observable as a function of the different incident speeds, the sequence of the

onsets of the quantum fluctuations in the middle, the subsidence of the oscillations at the end

of the scattering, the importance of the higher-order effects and the dependence on the incident

speed are easily interpreted in terms of the behaviors of the transition probabilities (Fig. 3.3). In

future applications, with a larger eigenbasis, we anticipate this simple picture will be distorted, for

example, by additional coherent effects on the transition matrix elements since the time-dependent

amplitude will acquire contributions that are off-diagonal in the eigenbasis.
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Figure 3.7: (Adopted from Ref. [4]) Expectation values of the ẑ-projection of the total angular

momentum as functions of the exposure time and the incident speed in the middle of the scattering.

These values are calculated in the same manner as the observables in Fig. 3.6.

We find that momentum, angular momentum and energy are transferred significantly to the

target when the projectile is near its closest approach. The spikes indicating quantum fluctuations

with short-time duration subside as the Coulomb field weakens following the HI’s closest approach.

After the scattering, we find from Fig. 3.6 that the intrinsic motion of the target is excited and that
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excitation is greater when the incident speed leads to favorable phase coherence within the current

level structure. For example, the average intrinsic energies of the scattered np target (panel (d))

increase by at least 0.7 MeV when the incident speeds are 0.2 and 0.4, indicating the important

roles of the excited channels. Even for the case with the incident speed v = 0.1, the average intrinsic

energy of the scattered target increases by about 10%.

We also note that the ẑ-projection of the total angular momentum, which determines the

polarization of the target, is similarly affected during the scattering process as seen in Fig. 3.7.

Indeed, the expectation value of the ẑ-projection of the total angular momentum indicates the

orientation of the target during the scattering.

3.5.3 Evolution of the internal charge distribution
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Figure 3.8: (Adopted from Ref. [4]) The internal charge distribution (in fm−3) of the np target

before scattering. The initial target is prepared in the state (3S1,
3D1), M = −1, in which the

polarization is anti-parallel to the ẑ-axis. The xz-plane is the scattering plane (see Fig. 3.1), the

xy- and yz-planes are respectively perpendicular and parallel to the impinging HI.

The tBF method enables investigations of the detailed dynamics of the scattering process. As

an example, we will show in this work the evolution of the internal charge distribution of the target

during the scattering process. Since our main purpose here is to set up the methodology, we shall

consider only the case with the incident speed v = 0.1, where higher-order effects are clearly visible

in the complex flow of populations among the levels as discussed above.
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Figure 3.9: (Adopted from Ref. [4]) The overview of the evolution of the internal charge distribution

(in fm−3) of the np target during the scattering. The simulation conditions are the same as those

in Fig. 3.3, except that the incident speed is chosen as 0.1. These graphs show the difference in the

internal charge distributions between the scattered targets at T = −1.975,−0.255, 0, 0.255, 1.975

MeV−1 and the initial target (T = −5 MeV−1) in three orthogonal coordinate planes, where the

transition amplitudes of each basis state of the target at the selected moments are calculated via

the non-perturbative tBF method. See the text for the details.
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In Fig. 3.8, we present the initial internal charge distribution of the target. For the np system

under investigation, it is a prolate spheroid with the major axis along the ẑ-axis. Our distribution

differs from the two peaked structure shown in Refs. [102, 103] due to the fact that our wave

functions of the np target are solved implementing the JISP16 NN potential, which is a realistic

“soft” potential without strong short-range correlations. We present the difference in charge distri-

butions between the initial and the scattered targets (Figs. 3.9, 3.10) to investigate the dynamics

at selected intermediate exposure times. We emphasize that this is the information available within

our time-dependent treatment. We provide this information to help develop one’s intuition, though

it is difficult to imagine an experiment that interrogates for this information.

We find, in general, the scattering of the target can be mainly divided into three sequential

stages as described in the following.

Stage I: At the very beginning of the scattering, the internal charge distribution of the target

begins to polarize due to the repulsive Coulomb interaction, producing a dumbbell shape (the 1st

row of Fig. 3.9). Shortly thereafter, more of the positive charge density shifts to the far-side

(the side away from the HI) of the target, as would be expected from the effect of the repulsive

Coulomb force in a classical picture. The dipole fluctuation of the charge density [104] is also

observed together with the general migration of the positive charge density. As the HI approaches,

the amplitude of the dipole fluctuation increases. These oscillations are the result of mixing in the

excited states with the initial state, however small those mixings may be.

Stage II: As the HI nears the target, the strength of the Coulomb field sensed by the target

is stronger and time-variation of the field intensifies. Transitions become stronger (the 2nd row of

Fig. 3.9); the modes of different internal motions become more apparent, generating more complex

patterns for the charge distributions. The dipole fluctuation of the charge density is suppressed.

The migrated positive charge density (forced by the Coulomb repulsion) still concentrates at the

far-side of the target.



49

��

��

�

�

�

�

�

�
�

�

�

��
��
��

��
��
��

��
��
��

�

���	������

���

�

�

�

���

�

�

��

��

�

�

�

�

�

���

�

�

�����������

���

�

�

���

�

��

��

�

�

�

�

�

���

�

�

���	�������

���

�

�

���

�

���	�����

���
�����

���������

��	�����

��������

�������

��

��

�

�

�

�

���

�

������
�������

��	
�������

���

�

������
�������

�

���

������

Figure 3.10: (Adopted from Ref. [4]) Stabilization of the target after the scattering. These graphs

show the difference in the internal charge distributions (in fm−3) between the initial target (T = −5

MeV−1) and the scattered targets at T = 0.36 MeV−1 (top row), 0.435 MeV−1 (2nd row), 0.565

MeV−1 (3rd row), 0.695 MeV−1 (bottom row). The other simulation conditions are the same with

Fig. 3.9 and the transition amplitudes of each basis state are calculated via the tBF method. See

the text for the details.
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Right after the HI passes its closest approach to the np system, different coordinate planes

show the rotational motion of the np target (indicated by the 3rd and 4th rows of Fig. 3.9). The

directions are counter-clockwise in the xy- and xz-planes and clockwise in the yz-plane. These

rotational directions are determined by the preparation of the initial target. For example, if we

had prepared (3S1,
3D1), M = 1 as the initial state for the target, the direction of the rotation

would switch (e.g., the rotation would become clockwise in the xy-plane). We verified this by actual

simulation. In addition to the rotational motion, fluctuations with complex modes in the charge

density occur, as clearly shown in the 4th row of Fig. 3.9.

Stage III: When the HI moves further away, the Coulomb field weakens and its time-variation

decreases, reducing the amount of energy, momentum and angular momentum transferred to the

target per unit time. The target begins to stabilize. The snapshots for the stabilization process

are shown in Fig. 3.10. Note that we present the sequence of graphs such that the internal charge

distribution rotates evenly in the xy-plane, as can be easily seen from the steady increase in the

azimuth angle of the “green cloud” in the leftmost column.

After stabilization (the 5th row of Fig. 3.9), the scattered target evolves as a superposition of

the basis states according to the ‘unperturbed’ Hamiltonian H0. The time evolution of the internal

charge distribution of the target shown in Fig. 3.10 repeats, indicating the final state is reached.

We find the range of the internal charge distribution of the scattered target expands compared to

the initial distribution shown in Fig. 3.8. This is signified by the expansion of the r.m.s. charge

radius as shown in the panel (a) of Fig. 3.6. In addition, the complex patterns in the internal

charge distribution indicate the excitation of the orbital angular momentum (panel (c) in Fig. 3.6).

Finally, we observe the combination of the rotation and oscillations in the charge density, again

indicating the excitation of these degrees of freedom.
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CHAPTER 4. CHIRAL NUCLEON-PION MODEL VIA BASIS

LIGHT-FRONT QUANTIZATION

4.1 Introduction

Developing a relativistic methodology that is broadly applicable to nuclear physics is important

for studying high-momentum transfer experiments on nuclear targets in exclusive, nearly exclusive

or inclusive processes [105, 106, 107]. One of the promising methods for such investigations is the

Basis Light-Front Quantization (BLFQ) approach [84].

BLFQ is a non-perturbative, ab initio method, which treats relativistic quantum field theory

via the Hamiltonian approach within the light-front (LF) formalism. BLFQ has been shown to

be a promising tool in a range of applications, such as the electron anomalous magnetic moment

[108, 109], the positronium spectrum [110], and the heavy quarkonium structure and radiative

transitions [111, 112, 113, 114, 115]. More recently, BLFQ has been applied successfully to the

properties of the light mesons [116], which are then extended to higher scales by QCD evolution

[117]. This Hamiltonian approach has also been extended to develop a non-perturbative scattering

framework through time-dependent BLFQ (tBLFQ) [85, 118].

BLFQ employs the LF formalism [119, 120], where physical systems are quantized at fixed

LF time x+ = t + z [121]. The structure and dynamics of the systems are characterized by the

Hamiltonian formalism. The LF vacuum has a simple structure since the Fock vacuum is an exact

eigensate of the full normal-ordered Hamiltonian [122, 123]. This provides access to the Fock-space

expansion of the physical states in the LF field theory and thereby generates physical intuition for

their underlying structures [122, 123].

BLFQ also takes the advantage of the developments in ab initio non-relativistic quantum many-

body theories, such as the No-Core Shell Model (NCSM) [19, 20, 9], and the rapidly developing

supercomputing techniques (algorithm and hardware) (see, e.g., [3] and references therein). In
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BLFQ, the LF mass-squared operator of a hadron system in the basis representation becomes a

sparse matrix whose dimensions are controlled by truncations that respect the relativistic symme-

tries. By matrix diagonalization, the eigenvalues produce the mass sprectum, while the resulting

eigenfunctions are the light-front wave functions (LFWFs) that encode the hadronic properties.

The LFWFs can be boosted to a general Lorentz frame for calculating, e.g., form factors and

scattering processes [122].

The LF quantization approach to treat a chiral model of the nucleon-pion (Nπ) system was first

proposed by Miller [124, 125] in studying the Nπ scattering and the nucleon-nucleon scattering via

perturbation theory. In this work, we will present the first non-perturbative, ab initio treatment

of the same chiral model via the BLFQ method. In particular, we consider a physical proton as

the relativistic bound state of the Nπ system. Using the BLFQ approach, we obtain the LF mass-

squared matrix of the Nπ system within a truncated basis. We then compute the proton’s mass and

the corresponding LFWF by numerical diagonalization of the mass-squared matrix. We evaluate

the proton’s parton distribution function (PDF) and Dirac form factor based on the LFWF. In this

work, we also implement an improved model to calculate the proton’s Dirac form factor.

This chapter is based on Refs. [6, 7] and is organized in the following way. We begin by

introducing our adopted Lagrangian density in Sec. 4.2. Then, in Sec. 4.3, we introduce the

elements of BLFQ, such as the derivation of the LF Hamiltonian density, our choice of the basis

construction and truncation schemes, the derivation of the mass-squared matrix element in the basis

representation, and the formalism for obtaining additional observables in this work. We present

the results in Sec. 4.4 for the proton’s mass, the calculations of the proton’s LFWF, PDF and the

Dirac form factor.
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4.2 Theory I: Lagrangian density of the chiral model

We begin with the nucleon-pion (Nπ) Lagrangian density (c.f., Eqs. (2.1) and (2.2) in Refs.

[124, 125])

L′total =
1

4

( F
gA

)2
Tr
(
∂µU∂

µU †
)

+
1

4
M2
π

( F
gA

)2
Tr
(
U + U † − 2

)
+ L′Nπ , (4.1)

where L′Nπ denotes the non-linear representation of the Nπ-interaction:

L′Nπ =N̄

{
γµi∂

µ −MN−
1

1 +
(
π
)2( gA

2F

)2 [ gA2F
γµγ5~τ · ∂µ~π+

1

4F 2
γµ~τ · ~π × ∂µ~π

]}
N . (4.2)

N denotes the nucleon field operator. We set F ≡ gA ·fπ with gA = 1.25 representing the tree-level

axial-vector coupling constant and fπ representing the pion decay constant (set as 93 MeV in this

work). Mπ denotes the pion mass (taken to be 137 MeV in this work). The unitary operator U

corresponds to the definition of the pion field (more details are available in Refs. [126, 124, 125]).

In this work, we choose U as

U =(U−1)† =
1 + iγ5~τ · ~π gA2F

1− iγ5~τ · ~π gA2F

= 1 + iγ5
gA
F
~τ · ~π +O

( g2
A

F 2

)
, (4.3)

where ~τ denotes the Pauli matrices τa (a = 1, 2, 3), while ~π represents the pion fields πa (a = 1, 2, 3).

In order to treat the chiral model [Eqs. (4.1) and (4.2)] via the LF Hamiltonian formalism, we

first manipulate the factor 1
4F 2 and obtain

L′Nπ =N̄

{
γµi∂

µ −M− 1

1 +
(
π
)2( gA

2F

)2 [ gA2F
γµγ5~τ · ∂µ~π+

( gA
2F

)2
γµ~τ · ~π × ∂µ~π

]}
N

+N̄

{
1

1 +
(
π
)2( gA

2F

)2 [g2
A − 1

4F 2
γµ~τ · ~π × ∂µ~π

]}
N . (4.4)

We then transform/redefine the nucleon field (c.f., Refs. [124, 125]) as

N =U−
1
2χ , (4.5)

where χ denotes the transformed nucleon field. The unitary operator U−
1
2 is

U−
1
2 =
(
U

1
2

)†
=

1− iγ5~τ · ~π gA2F√
1 + (π)2

( gA
2F

)2 . (4.6)
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The following identities hold

U±
1
2γµ =γµU

∓ 1
2 , (4.7)

i∂µU−
1
2 =RµU−

1
2 . (4.8)

where we define

Rµ ≡ 1

1 +
(
π
)2( gA

2F

)2 [ gA2F
γ5~τ · ∂µ~π+

( gA
2F

)2
~τ · ~π × ∂µ~π

]
. (4.9)

Applying the transformation Eq. (4.5) and the identities Eqs. (4.7) and (4.8) to Eq. (4.4), we

obtain the transformed Nπ interaction Lagrangian density as

LNπ = χ̄
[
γµi∂

µ −MNU
†
]
χ+

g2
A − 1

4F 2
χ̄

{
1

1 +
(
π
)2( gA

2F

)2 [γµ~τ · ~π × ∂µ~π]
}
χ . (4.10)

Note that the first term of Eq. (4.10) is of the linear representation of the chiral symmetry used

by Gürsey [126] and Miller [124, 125], while the second nonlinear term is proportional to the

Weinberg-Tomozawa [127, 128] contact term.

Overall, we obtain the transformed total Nπ Lagrangian density (c.f., Eqs. (2.1) and (2.2) in

Ref. [124]) as

Ltotal =
1

4

( F
gA

)2
Tr
(
∂µU∂

µU †
)

+
1

4
M2
π

( F
gA

)2
Tr
(
U + U † − 2

)
+ LNπ , (4.11)

where LNπ is shown in Eq. (4.10). Note that L′total [Eq. (4.1)] and (after the chiral transformation

Eq. (4.5)) Ltotal are approximately invariant (Mπ 6= 0) under the chiral transformation [124, 125]

N → eiγ5~τ ·~a N (or χ→ eiγ5~τ ·~aχ) , (4.12)

U → e−iγ5~τ ·~a U e−iγ5~τ ·~a . (4.13)

If one works up to the terms with the one-pion processes (or, up to the order of gA/F ), Eq.

(4.11) takes the following form:

Ltotal =
1

2
∂µ~π · ∂µ~π −

1

2
M2
π~π · ~π + χ̄

[
γµi∂

µ −MN

(
1− igA

F
γ5~τ · ~π

)]
χ+O

( g2
A

F 2

)
. (4.14)
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4.3 Theory II: BLFQ approach to the chiral model

In this section, we demonstrate the idea/methodology of treating the chiral Lagrangian [Eqs.

(4.1) and (4.2)] via the non-perturbative BLFQ approach. We begin by obtaining the Hamiltonian

density and follow with details about solving for the mass spectra and LFWFs. We also present

the method for calculating selected observables. The interested reader is referred to our paper [7],

which is to be submitted for publication soon.

4.3.1 Hamiltonian dynamics

The dynamical Nπ system can be evaluated from the eigenvalue equation

PµPµ|Ψ〉 = M2|Ψ〉 , (4.15)

where Pµ is the four-vector operator of the energy-momentum. In the LF coordinates, the mass-

squared operator,

HLC ≡ P 2 = PµPµ = P+P− − (P⊥)2 , (4.16)

is analogous to the Hamiltonian in non-relativistic quantum mechanics. The details of the LF

conventions and notations in this work can be found in Appendix C. Since P+ and (P⊥)2 are

kinematical, the P−,

P− =
(P⊥)2 +M2

P+
, (4.17)

is also referred to as LF Hamiltonian that generates the LF time-evolution (dynamics). P− is

obtained from the Lagrangian via a Legendre transformation.

HLC can be numerically evaluated in a chosen set of basis states as in BLFQ. In principle, the set

of basis states has infinite dimension. In practice, one limits the basis size by introducing truncation

scheme(s). The resulting finite-dimensional eigenvalue problem can be evaluated numerically as a

function of cutoff(s) in the truncation scheme(s). By extrapolation to the continuum limit, the

physical observables can be obtained. Alternatively, as is frequently the case in an effective field
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theory, one selects a truncation to match a limiting scale in the theory. For example, we can view

the present effort as the application of an effective field theory valid on a scale below the scale

where quark and gluon dynamics are essential.

4.3.2 LF Hamiltonian density by Legendre transformation

Applying the standard Legendre transformation (see, e.g., Refs. [85, 124]) to the Lagrangian

density Eq. (4.14), we obtain the LF Hamiltonian density as

P− =
1

2
∂⊥πa · ∂⊥πa +

1

2
M2
ππaπa + χ†+

(p⊥)2 +M2
N

p+
χ+︸ ︷︷ ︸

kinetic energy for free pion and nucleon

+ χ†+

[
− γ⊥ · i∂⊥ +MN

] 1

p+
MN

[
−iγ5

gA
F
~τ · ~π

]
χ+ + χ†+MN

[
+iγ5

gA
F
~τ · ~π

] 1

p+

[
γ⊥ · i∂⊥ +MN

]
χ+︸ ︷︷ ︸

one-pion emission and absorption

+O(g2
A/F

2) , (4.18)

where χ+ is the dynamical component of the nucleon field. It is related to the kinematic component

of the nucleon field, χ−, by the constraint equation:

χ− =
1

p+
γ0
[
γ⊥ · p⊥ +MN

(
1−iγ5

gA
F
~τ · ~π

)]
χ+ . (4.19)

Note that in this prototype work that mainly focuses on demonstrating the features of the BLFQ

framework for this dynamical system, we retain only the terms up to the order of gA/F as for the

interaction terms, which correspond to the processes of single-pion emission/absorption. Higher-

order terms, such as the π2 terms and the instantaneous fermion propagation terms (c.f., Refs.

[124, 125]), are expected to be the corrections to the current calculation and will be the topic of a

future work.

4.3.3 Basis representation: construction and truncation schemes

4.3.3.1 Symmetries

The BLFQ methodology of constructing the basis for carrying out the matrix eigenvalue solution

of the LF mass-squared operator HLC is discussed in Refs. [84, 85, 110]. In particular, we need to
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pay specific attention to the symmetries of the LF Hamiltonian P−. These symmetries are: (1) the

translational symmetry in the longitudinal direction, which results in the conservation of the total

longitudinal momentum P+; (2) the rotational symmetry in the transverse direction, which means

that the projection of the total angular momentum is conserved; (3) the conservation of net fermion

number; and (4) transverse boost invariance. In this work, we also assume rotational symmetry

in isospin space, where the projection of the isospin of the constituent system is conserved. We

construct the LF basis set according to these symmetries.

4.3.3.2 Single-particle basis

We start with constructing the single-particle (s.p.) basis. In the longitudinal direction, we

employ the discretized plane wave basis {|p+〉}. In particular, we constrain a particle in a longitu-

dinal box of length x+ = L and apply the periodic (anti-periodic) boundary condition to the boson

(fermion). The longitudinal momentum is discretized as

p+ =
2π

L
j , (4.20)

with j = 1, 2, 3, · · · for the boson and j = 1
2 ,

3
2 ,

5
2 , · · · for the fermion. Note that we exclude the

“zero modes” (j = 0) for the bosons (pions in this work).

It is useful to define the longitudinal momentum fraction x in terms of the total longitudinal

momentum P+ as the Bjorken variable

x ≡ p+

P+
=

j

K
, (4.21)

where the dimensionless parameter K is related to P+ via the relation P+ = 2π
L K.

In the transverse direction, we employ the two dimensional harmonic oscillator (2DHO) basis.

As explained in the Appendix D, the 2DHO basis in the momentum representation can be labeled

by the radial number n and the angular quantum number m. Adopting the 2DHO basis in the

transverse direction provides us with means to insure the transverse boost invariance of the LF

kinematics [84, 122] as discussed further in Sec. 4.3.5 below.
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In addition to the momentum space, we also have the the spin and isospin degrees of freedom

for the Nπ model. The s.p. basis can thus be classified according to the following set of quantum

numbers

|α〉 =|x, n,m, s, t〉 , (4.22)

where s denotes the helicity and t denotes the projection of the isospin of the particle. It is

understood that the nucleons are of spin 1
2 and isospin 1

2 , while pions are of spin 0 and isospin 1.

The orthonormality relation of the s.p. basis is

〈x, n,m, s, t|x′, n′,m′, s′, t′〉 = δx,x′δn,n′δm,m′δs,s′δt,t′ . (4.23)

4.3.3.3 Multi-particle basis

The multi-particle basis is constructed as a direct product of the s.p. bases (⊗|α〉). According

to the symmetries of P− for the Nπ system, we require the quantum numbers for all the constituent

particles (labeled by i) in the retained multi-particle basis states to satisfy the following relations

∑
i

p+
i = P+,

∑
i

mi +
∑
i

si = MJ ,
∑
i

ti = Tz,
∑
i

nif = Nf . (4.24)

The first identity requires all the basis states to have the same total longitudinal momentum. It is

equivalent to

∑
i

ji = K or
∑
i

xi = 1 , (4.25)

according to Eqs. (4.20) and (4.21) for the fixed box-length L and the total longitudinal momentum

P+. The second identity in Eq. (4.24) states the conservation of the projection of the total angular

momentum MJ , which is produced by the helicity s and the projection of the orbital angular

momentum m of each constituent particle. (Note, however, the total angular momentum J is not

a good quantum number in the LF basis states.) The third identity in Eq. (4.24) states that the

projection of the total isospin Tz or, equivalently, total charge of the system is conserved. The last

identity in Eq. (4.24) refers to the conservation of the net fermion number Nf , where nif = 1 for a

nucleon and nif = 0 for each pion.
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4.3.3.4 Truncation scheme

We apply three truncations in this work. First, the number of Fock sectors for the Nπ system

is truncated at the nucleon plus one-pion sector

|Nphys〉 = a|N〉+ b|Nπ〉 , (4.26)

with the amplitudes a = 〈N |Nphys〉 and b = 〈Nπ|Nphys〉. It is also possible to include higher Fock

sectors, e.g., |Nππ〉. However, we would postpone this to future work. According to the Fock sector

truncation Eq. (4.26), we have the net fermion number Nf = 1 for all the basis states.

According to the Fock sector truncation Eq. (4.26), the LF basis set in this work is

{|ξ〉} = {|ξN 〉} ⊕ {|ξNπ〉} . (4.27)

For the |N〉 sector, the LF basis set is

{|ξN 〉} = {|xN , nN ,mN , sN , tN 〉} , (4.28)

with xN = 1 due to the conservation of the longitudinal momentum. For the |Nπ〉 sector, the LF

basis set is

{|ξNπ〉} = {|xN , nN ,mN , sN , tN ;xπ, nπ,mπ, λ〉} , (4.29)

where λ denotes the isospin projection of the pion field. The null spin projection of the pion field

(sπ = 0) is omitted. Note that xπ 6= 0 since we exclude the zero mode of the pion field in the

longitudinal direction. Due to the conservation of the total longitudinal momentum, we also have

xN + xπ = 1 and 0 < xN < 1 for the |Nπ〉 sector.

Second, we cut off the total longitudinal momentum for the many-body basis state

K = Kmax, (4.30)

which makes the number of the longitudinal modes finite [129]. The longitudinal continuum limit

can be approached at the limit of Kmax →∞ for a given box length L.
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Third, we truncate the number of the modes in the transverse direction for the many-body basis

states by restricting the number of maximal excitation quanta, Nmax, as

∑
i

(2ni + |mi|+ 1) ≤ Nmax, (4.31)

where i denotes the constituent particles. By taking Nmax → ∞, the continuum limit in the

transverse direction is realized.

4.3.3.5 UV and IR cutoffs

The 2DHO basis parameters are related, intrinsically, to the ultravilot (UV) and infrared (IR)

cutoffs of the model space [130, 131]. In the momentum space, the UV and IR cutoffs can be,

respectively, approximated by the basis truncation parameter Nmax and the basis strength b as

p⊥max ≈b
√

2Nmax , (4.32)

p⊥min ≈b/
√

2Nmax . (4.33)

4.3.3.6 Factorization

The application of the 2DHO s.p. basis in the transverse direction with Nmax truncation admits

an exact factorization of the LFWF into “intrinsic” and COM components [110, 132, 9]. Taking

advantage of this factorization, the spurious COM excitation due to the adoption of the 2DHO

s.p. basis can be eliminated by the use of a Lagrange multiplier term as explained below. The

analogous factorization scheme has been adopted in the studies of nuclear structures (c.f., Refs.

[132, 9]), where the three dimensional harmonic oscillator basis is adopted.

4.3.4 Mode expansions

The pion field can be expressed in terms of the creation and annihilation operators (c.f., Refs.

[85, 110])

πa(x) =
∑
k+

λ=1∑
λ=−1

1√
2Lk+

∫
d2k⊥

(2π)2

[
a(k, λ)εa(λ)e−ikx + a†(k, λ)εa

∗(λ)eikx
]
, (4.34)
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where we make it explicit that we are discretizing the longitudinal momenta and we introduce the

following polarization vectors for the isospin degree of freedom of the pion field πa (a = 1, 2, 3)

ε(+1) =
1√
2

(1, i, 0)T , ε(0) = (0, 0, 1)T , ε(−1) =
1√
2

(1,−i, 0)T , (4.35)

with ε†(λi)ε(λj) = δλi,λj and ε(−λ) = ε∗(λ). The subscript “a” also indicates the component of

the polarization vector ε(λ). λ denotes the projection of the isospin of the physical pions, i.e., π±

and π0.

Similar to the pion field, the nucleon field can be represented with the creation and annihilation

operators (c.f., Refs. [85, 110])

χ+(x) =
∑
p+

∑
s,t

1√
2L
ζ(s)T (t)

∫
d2p⊥

(2π)2

[
b(p, s, t)e−ipx + d†(p,−s,−t)eipx

]
, (4.36)

where

ζ(+
1

2
) = (1, 0, 0, 0)T , ζ(−1

2
) = (0, 1, 0, 0)T , (4.37)

T (+
1

2
) = (1, 0)T , T (−1

2
) = (0, 1)T . (4.38)

With the discretized longitudinal momentum [Eq. (4.21)], the commutation and anticommuta-

tion relations are

[a(k, λ), a†(k′, λ′)] =(2π)2δ(2)(k⊥ − k′⊥)δλ,λ′δx,x′ , (4.39)

{b(p, s, t), b†(p′, s′, t′)} =(2π)2δ(2)(p⊥ − p′⊥)δs,s′δt,t′δx,x′ , (4.40)

{d(p, s, t), d†(p′, s′, t′)} =(2π)2δ(2)(p⊥ − p′⊥)δs,s′δt,t′δx,x′ . (4.41)

Note that with our limited Fock space [Eq. (4.26)], the independent field for the anti-nucleon is

not included. The canonical anti/commutation relations are

[πa(x), πb(y)]x+=y+ =− i

4
ε(x− − y−)δ(2)(x⊥ − y⊥)δab , (4.42)

{χ+(x), χ†+(y)}x+=y+ =
1

2
γ0γ+δ(x− − y−)δ(2)(x⊥ − y⊥) . (4.43)

ε(x) = θ(x)− θ(−x) is the antisymmetric step function, where the step function is

θ(x) = 0 for x ≤ 0 ; θ(x) = 1 for x > 0 . (4.44)
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The relations ∂ε(x)
∂x = 2δ(x) and |x| = xε(x) hold. For the representation of the gamma matrices in

this work, we follow the convention in Ref. [121].

The creation and annihilation operators in terms of the 2DHO basis with the momentum fraction

weighted variables are

a(x, k⊥, λ) =
1√
x

∑
n,m

Ψm
n (

k⊥√
x

)α(x, n,m, λ) , (4.45)

b(x, p⊥, s, t) =
1√
x

∑
n,m

Ψm
n (

q⊥√
x

)β(x, n,m, s, t) , (4.46)

with the anti/commutation relations

[α(x, n,m, λ), α†(x′, n′,m′, λ)] =δx,x′δn,n′δm,m′δλ,λ′ , (4.47)

{β(x, n,m, s, t), β†(x′, n′,m′, s′, t′)} =δx,x′δn,n′δm,m′δs,s′δt,t′ . (4.48)

4.3.5 Mass-squared operator

The adoption of the 2DHO s.p. basis in the transverse direction allows the spurious COM

excitation for the mass spectrum. In order to eliminate the states with COM excitation in the

BLFQ approach, we follow Ref. [110] and introduce a Lipkin-Lawson Lagrange multiplier term

[134, 133] to the mass-squared operator HLC [Eq. (4.16)]. The modified mass-squared operator is

H = HLC + Λ(HCOM − 2b2I) , (4.49)

where Λ > 0 is the Lagrangian multiplier. The intrinsic motion in the solutions is not influenced

by this Lawson term (HCOM− 2b2I) due to the factorization of the LFWF in the 2DHO basis with

Nmax truncation. The mass spectrum of the intrinsic motion is only determined by the intrinsic

part of the LFWF below the scale set by Λ. The COM motion is governed by

HCOM =
(
P⊥
)2

+ b4
(
R⊥
)2
, (4.50)

where the COM momentum and coordinate in the transverse direction are, respectively,

P⊥ =
∑
i

p⊥i , R
⊥ =

∑
i

xir
⊥
i . (4.51)
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In terms of momentum fraction weighted variables (see definitions in Appendix D), these COM

variables are

P⊥ =
∑
i

√
xiq
⊥
i , R

⊥ =
∑
i

√
xis
⊥
i . (4.52)

HCOM satisfies the eigenequation

HCOM|ÑM̃〉 = (2Ñ + |M̃ |+ 1)2b2|ÑM̃〉, (4.53)

where |ÑM̃〉 is the eigenvector that corresponds to the eigenvalue EÑM̃ = (2Ñ + |M̃ | + 1)2b2.

Based on Eq. (4.53), it is easy to see that the states with COM excitation (i.e., states with Ñ 6= 0

and/or M̃ 6= 0) are lifted in the spectrum; only the states with the lowest COM mode (i.e., states

with Ñ = M̃ = 0) remain without a shift [135]. In general, the spectrum of H is a set of equally

spaced approximate copies 1 (named as subspectra), with the spacing characterized by 2Λb2 for

every additional excitation quanta in the COM degree of freedom. In practice, we choose Λ to be

sufficiently large such that the subspectra with different COM modes are well separated.

Making use of the LF Hamiltonian density P− [Eq. (4.18)] and the mode expansions for the

pion and nucleon fields [Eqs. (4.34) and (4.36)], we calculate the mass-squared operator [Eq. (4.16)]

as

HLC =P+
(
P−KEN

+ P−KEπ
−P−int

)︸ ︷︷ ︸
P−

−
(
P⊥
)2
, (4.54)

where P−KEN
and P−KEπ

denote the contributions from a free nucleon and a free pion, respectively.

P−int denotes the Nπ-interaction term (only for one-pion processes) in this work. The detailed

expressions of P+P−KEN
, P+P−KEπ

and P+P−int are shown in Appendix E.

4.3.6 Observables

In terms of the LF basis set {|ξ〉} [Eq. (4.27)], the matrix of the modified mass-squared operator

for the Nπ system [Eq. (4.49)] can be constructed. By solving the eigenequation (via numerical

1The copies are not exact numerical copies since the addition of available quanta to the COM motion means the
loss of available quanta in the relative motion.
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matrix diagonalization)

H|Ψi〉 =M2
i |Ψi〉 , (4.55)

we obtain the eigenmass Mi and the corresponding eigenvector

|Ψi〉 ≡
∑
ξ

Ci(ξ) |ξ〉 , (4.56)

with Ci(ξ) = 〈ξ|Ψi〉 being the LF amplitude corresponding to the basis state |ξ〉. The summation

is taken over the LF basis set {|ξ〉}. The LFWF is made up by the LF amplitudes {〈ξ|Ψi〉}.

For computational efficiency, we limit the summation in Eq. (4.56) to basis states of a specified

symmetry as discussed above in Sec. 4.3.3.3. Separate calculations are then performed to obtain

solutions of each desired symmetry.

We can apply the LFWF 2 to compute observables for the hadronic structure, such as the PDF,

the elastic electric and magnetic form factors, and the spin decomposition. As illustrations, we

present the calculations of the PDF and the Dirac form factor in this work.

4.3.6.1 PDF

The probability to find a constituent nucleon of the longitudinal momentum fraction xN in the

current Nπ model is

f(xN ) =
∑′

C∗(ξ)C(ξ) , (4.57)

where it is understood that xπ = 1 − xN due to the conservation of the longitudinal momentum.

The primed sum in Eq. (4.57) denotes that the sum is over all the quantum numbers in Eq. (4.27)

except xN (and xπ). Since the sum is performed for the amplitudes corresponding to a selected

state of interest, the index i is suppressed. Note that the right hand side of the above equation is

a function of xN .

2In principle, the application of the Fock-sector truncation requires the renormalization of the LFWF (see, e.g.,
Ref. [109]). However, we will defer this study to a future effort.
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4.3.6.2 Dirac form factor

In the LF coordinates, the Dirac form factor can be computed as [136]

F1(Q2) =〈P ′, ↑ |J
+(0)

2P+
|P, ↑〉 , (4.58)

where the upward arrows denote the initial and final states with the projections of the total angular

momenta being +1
2 . P and P ′ are the momenta of the initial and finial states, respectively. q =

P ′−P is the momentum carried by the probing virtual photon. Adopting the Drell-Yan frame, we

have

q =
(
q+, q−, q⊥

)
=
(
0,− q2

P+
, q⊥
)
, (4.59)

P =
(
P+, P−, P⊥

)
=
(
P+,

M2

P+
, 0
)
, (4.60)

q2 = −2P · q = −
(
q⊥
)2 ≡ −Q2 , (4.61)

where Q2 is referred to as the squared transverse momentum transfer in the following. In principle,

the Dirac form factor (or, more generally, observables) should be frame independent due to the

Lorentz invariance. In practice, however, the Lorentz symmetry is broken by the Fock-sector

truncation in our model [137, 138, 139].3 The frame dependence of the Dirac form factor could

hence serve as a measure of the Lorentz symmetry violation, which will be the topic of a future

work.

In our current model, the Fock-sector expansion for the physical proton can be schematically

written as

|pphys〉 =ap|p〉+ apπ0 |pπ0〉+ anπ+ |nπ+〉 , (4.62)

where ap, apπ0 and anπ+ schematically represent the amplitudes since each term on the right hand

side of Eq. (4.62) represents a sum over of the basis states with corresponding amplitudes. Hence,

there are three different classes of contributions to the Dirac form factor of the physical proton:

3In this work, higher Fock sectors, such as |Nππ〉, are omitted in Eq. (4.26). As the higher Fock sectors are
systematically included in our model, the Lorentz symmetry can be dynamically restored, through which we anticipate
that the Dirac form factor gradually becomes frame independent.
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(1) the virtual photon couples to the current of the bare proton |p〉, which results in F p1,f (Q2); (2)

the virtual photon couples to the current of the bare proton when dressed by charge-neutral π0,

which results in F pπ
0

1,f (Q2); and (3) the virtual photon couples to the current of π+, which results

in Fnπ
+

1,b (Q2). The Dirac form factor for the physical proton is hence

F1(Q2) =F p1,f (Q2) + F pπ
0

1,f (Q2) + Fnπ
+

1,b (Q2) , (4.63)

where the subscripts f and b denote the contributions to F1(Q2) from the fermionic current and

the bosonic current, respectively. The detailed expression of F1(Q2) is shown in Appendix F.

4.4 Results and discussions

In this work, we adopt the Fock-sector-dependent renormalization (FSDR) [140, 141, 142, 143]

scheme. We numerically diagonalize the matrix of the modified mass-squared operator H [Eq.

(4.49)] using an iterative process where the bare nucleon mass is tuned in the matrix elements

within the single-nucleon sector. This process continues until the square-root of the eigenvalue of

the ground state (identified as a physical proton) matches the mass of the physical proton (taken

as 938 MeV in this work).

According to the FSDR scheme, the mass counterterm is introduced only to the single-nucleon

sector. We expect the mass counterterm to compensate for the mass correction due to the radiative

processes: the quantum fluctuation from the single-nucleon sector to the Nπ sector and back again.

On the other hand, the nucleon mass in the Nπ sector remains as the physical value until a future

effort would renormalize it with the inclusion of a higher Fock sector. We fix the pion mass at 137

MeV in the FSDR procedure.

4.4.1 Mass spectrum of the Nπ system

We first study the dependence of the mass spectrum of the Nπ system on the model space,

which is determined by the truncation parameters, Nmax and Kmax, and the basis strength, b. For

convenience, we set Kmax to be Nmax + 1/2 throughout this work.
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Figure 4.1: (Adopted from Ref. [6]) Model space dependence of the spectrum of the Nπ system

computed via the BLFQ approach. The masses corresponding to the lowest 6 eigenstates are plotted

as functions of Nmax (set to be Kmax− 1
2). The basis strength is fixed as b = 250 MeV. The dashed

line (at 1075 MeV) shows the threshold of the continuum of the Nπ system. The ground state

(bound) is identified as the physical proton whose mass is set to 938 MeV in the FSDR scheme (see

the text for details).

In Fig. 4.1, we show the lowest 6 states in the mass spectrum of the Nπ system as a function of

Nmax, where we choose b = 250 MeV as an example. We identify the ground (and also bound) state

as the (physical) proton, of which the eigenvalue has been renormalized to 938 MeV by the FSDR

procedure. The corresponding LFWF is boost invariant; it encodes the information of the intrinsic

structure of the proton. The other states lie above the threshold of the continuum, which is the

sum of the physical pion and proton masses adopted in this work (i.e., 1075 MeV), and therefore

represent Nπ scattering states.

We find all the eigenenergies of these 6 states seem to converge as Nmax increases. The proof

of the convergence is complicated and demanding in computing power, especially with continuum

states emerging in the spectrum. As Nmax increases, a better representation of the scattering

states of the Nπ system is anticipated. This can be inferred from the increasing level density of
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the scattering states as Nmax increases. We defer detailed investigation of these continuum states

to a later effort.

4.4.2 Proton’s LFWF

To compute the proton’s LFWF, we need to fix the basis strength b besides fixing the bare

nucleon mass via the FSDR procedure for each choice of Nmax (recall Kmax = Nmax + 1/2). This

is achieved by varying b to fit the r.m.s. charge radius of a proton
√
〈r2
p,E〉, which is 0.844 fm

(see, e.g., Ref. [144]). Overall, we fit for each Nmax both the mass and the r.m.s. charge radius

to respective physical values in order to determine the mass counterterm and b in computing the

proton’s LFWF. In Table 4.1, we list the resulting model space parameters (Nmax and b) to obtain

the proton’s LFWFs.

Table 4.1: Model space parameters employed to obtain the proton’s LFWFs.

Nmax 6 8 10

b [MeV] 176.95 245.54 279.55

Table 4.2: Fock-sector probabilities [Eq. (4.62)] computed from the proton’s LFWFs.

Nmax |ap|2 |anπ+ |2 |apπ0 |2

6 0.829 0.114 0.057

8 0.694 0.204 0.102

10 0.619 0.254 0.127

Via the proton’s LFWFs, we compute the probability of each Fock sector according to Eq.

(4.62), as shown in Table 4.2. For each model space we apply to compute the proton LFWF (Table

4.1), we find that the probability of the bare proton sector (|ap|2) dominates, while the probability

of the |nπ+〉 sector (|anπ+ |2) is twice of that of the |pπ0〉 sector (|apπ0 |2).
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4.4.3 Proton’s PDF

We apply the proton’s LFWF to compute its PDF, which encodes the distribution of the

longitudinal momentum carried by its constituents. In this work, such PDF also represents the

probability that a proton fluctuates into the constituent nucleon (of the longitudinal momentum

fraction xN ) and pion (of the longitudinal momentum fraction xπ).

Figure 4.2: (Adopted from Ref. [6]) The proton’s PDF, f(xN ), as a function of the longitudinal

momentum fraction of the constituent nucleon xN (note we rescale the x-axis as 1 − xN = xπ in

the plot) and of the model space (defined by Nmax and b). The details are in the text.

In Fig. 4.2, the proton’s PDF, f(xN ), is shown as a function of xN and of the model space

(with parameter set shown in Table 4.1). Note we rescale the x-axis as xπ = 1 − xN in the plot.

We do not show the result for f(xN = 1) in Fig. 4.2, which represents the probability to find a

bare nucleon in the physical proton (|ap|2 as in Eq. (4.62)) in different model spaces. For the cases

with Nmax = 6, 8 and 10, such probabilities are 0.83, 0.69, and 0.62, respectively.

For each Nmax, we checked that f(xN ) satisfies both the normalization condition and the mo-

mentum sum rule. As Nmax increases, f(xN ) seems to converge (as indicated by the spacing
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between the curves and the positions of the peaks in the plot). Our results of f(xN ) peak at about

xπ = 0.45 (or xN = 0.55) for the model spaces with Nmax = 8 and 10. In the future, we plan to

investigate in detail the model-space dependence of f(xN ). Also, the internal degrees of freedom

of the constituent nucleon and pion will be included to study the flavor asymmetry of the proton

[145, 146, 147, 148].

4.4.4 Proton’s Dirac form factor

Figure 4.3: The computed Dirac form factor F1(Q2) of the proton as a function of the squared

transverse momentum transfer Q2 and of the model space (determined by Nmax and b, with Nmax =

Kmax − 1
2). The basis parameters used to computed the LFWFs are given in Table 4.1. The

experimental results (black) [149], along with the corresponding error bars, are also presented for

comparison.
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We apply the boost invariant LFWFs to compute the proton’s Dirac form factor. In Fig. 4.3, we

present the proton’s Dirac form factor F1(Q2) [Eq. (4.63)] as a function of the squared transverse

momentum transfer Q2 [Eq. (4.61)] and of the model space (determined by Nmax and b).

As Nmax increases, the computed F1(Q2) seems to converge (as seen from the spacing of curves).

Note we tune b for each choice of Nmax such that the proton’s LFWF produce the experimental

value of
√
〈r2
p,E〉 (and also the physical proton’s mass). This can be seen from the agreement

between the slopes of the computed F1(Q2) and that of the experimental result in the vicinity of

the origin (details shown in Fig. 4.4). Note the slope of the F1(Q2) in the limit of vanishing Q2 is

related to the r.m.s. charge radius as [150]

〈r2
p,E〉 =− 6

dGE(Q2)

dQ2

∣∣∣∣∣
Q2→0

, (4.64)

where GE(Q2) is the Sachs electric form factor

GE(Q2) =F1(Q2)− Q2

4M2
N

F2(Q2) . (4.65)

In this work, we take proton Pauli form factor at Q2 = 0 to be F2(0) = 1.79280, in units of the

nuclear magneton µN , when extracting the r.m.s. charge radius according to Eq. (4.64). Refining

this approach will be a future research effort. In the limit of vanishing Q2, we find F1(0) = 1,

which indicates the conservation of charge. This also shows a proper normalization of the proton’s

LFWFs. In the current work, the normalization is precise to at least eight significant figures. In

the limit of Q2 → ∞, the F1(∞) is equal to the probability of the bare proton sector |ap|2 (as

shown in Eq. (4.62) and Table 4.2), representing the point-like proton.

We find the computed F1(Q2) deviates from the experimental results as Q2 increases. Imple-

menting larger model spaces (by increasing Nmax) could increase the range of agreement. However,

the major reason for this deviation is the simplicity of the chiral model adopted in this work. As

pointed out (e.g., Ref. [151]), inclusion of the vector mesons and also the ∆-resonance state of pion

and nucleon can increase the range of agreement up to about Q2 = 0.16 GeV2. To achieve the

agreement for even higher Q2, more fundamental degrees of freedom (quarks and gluons) need to

be included (e.g., Ref. [152]).
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Figure 4.4: Dirac form factor F1(Q2) for the proton as a function of the squared transverse momen-

tum transfer Q2 and of the model space (determined by Nmax and b). The basis parameters used

for calculating the LFWFs are presented in Table 4.1. The experimental results (black), along with

the corresponding error bars, are also presented for comparison. Note the result with the model

space parameter Nmax = 8 and b = 245.54 MeV nearly coincides with the result computed with

Nmax = 10 and b = 279.55 MeV over the range of Q2 shown here.

4.4.5 An improved model for the proton’s Dirac form factor

We implement a simple model in order to improve the calculation of the proton’s Dirac form

factor. To this end, we modify Eq. (4.63) to be

F1(α1, α2, Q
2) =D1(α1, Q

2)
[
F p1,f (Q2) + F pπ

0

1,f (Q2)
]

+D2(α2, Q
2)Fnπ

+

1,b (Q2) , (4.66)

where D1(α1, Q
2) and D2(α2, Q

2) are the auxiliary functions to correct for anticipated contributions

from the finite charge distributions of the bare proton and the charged π+, respectively. α1 and α2
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are the parameters. We remark that (1) we do not consider the corrections of the charge-neutral

constituents (i.e., the bare neutron and π0) since they do not contribute to the Dirac form factor up

to the chiral order in this work (i.e., next to leading order); (2) the explicit forms of the auxiliary

functions could be determined by fitting the experimental data or by the input from other theories

(on, e.g., more fundamental degrees of freedom of the nucleon and pion).

As an initial test to gain some useful insights, we take the auxiliary functions to be of the same

dipole form 4

D1(α1, Q
2) = D2(α2, Q

2) ≡ D(α,Q2) =
1

(1 + αQ2)2
, (4.67)

with a parameter α. The modified model for the proton’s Dirac form factor [Eq. (4.66)] hence

simplifies

F1(α,Q2) =D(α,Q2)
[
F p1,f (Q2) + F pπ

0

1,f (Q2) + Fnπ
+

1,b (Q2)
]
. (4.68)

With this improved model, we calculate the proton’s LFWF following the similar procedures

of parameter fitting as before. That is, we tune α, b and bare nucleon mass for each Nmax such

that (1) the ground state of the Nπ system produces the physical proton mass after the FSDR

procedure; (2) the computed proton’s r.m.s. charge radius matches the experimental value. The

resulting parameter set are shown in Table 4.3.

Table 4.3: Parameter set of the model spaces (determined by Nmax and b) and of the auxiliary

function D(α,Q2) employed to obtain the mass and r.m.s. charge radius of the proton. Note the

modified model Eq. (4.68) is employed to calculate the proton’s Dirac form factor. We again set

Nmax = Kmax − 1
2 .

Nmax 6 8 10

α [GeV−2] 1.00 1.05 1.10

b [MeV] 754.96 1147.04 1198.44

4A monopole form is more realistic, and commonly used for the pion form factor; we will present the corresponding
investigation in an upcoming work.
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Figure 4.5: The computed Dirac form factor F1(Q2) of the proton as a function of the squared

transverse momentum transfer Q2 based on the improved model [Eq. (4.68)]. The parameters of

the model spaces, Nmax and b, and the corresponding parameter of the auxiliary function, α, are

shown in Table 4.3. The experimental results (black), along with the corresponding error bars,

are also presented for comparison. The colored lines with the coarse dashes (which coincide with

the experimental data) present the computed F1(Q2) based on Eq. (4.68). The colored lines with

the fine dashes show the behavior of the auxiliary function D(α,Q2), while the colored solid lines

present the contributions from F1(α = 0, Q2), i.e., F1 calculated with the point-charge assumption.

We show this improved proton’s Dirac form factor F1(Q2), along with the auxiliary function,

as a function of the squared transverse momentum transfer Q2 and of the model space (determined

by Nmax and b) in Fig. 4.5. For each model space and the corresponding auxiliary function with

parameters shown in Table 4.3, we find the computed F1(Q2) based on the modified model [Eq.

(4.68)] agrees well with the experimental data within the range of the squared transverse momentum
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transfer up to 0.20 GeV2. Beyond this range, our simple model needs to be further improved (see,

e.g., [153]).
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CHAPTER 5. CONCLUSIONS AND OUTLOOKS

5.1 Effective interactions and operators

Our initial application to the deuteron ground state revealed the order-of-magnitude effects of

simple P -space (or “model space”) basis truncations compared with exact results as a function of the

harmonic oscillator (HO) basis strength ~Ω for a set of realistic nucleon-nucleon (NN) interactions.

The smallest value studied, ~Ω = 5 MeV, produced the largest truncation effects (hence the largest

renormalization effects) for these interactions. We also showed that, for a wide range of P -spaces

and a selection of NN interactions, the Okubo-Lee-Suzuki (OLS) approach consistently reproduced

the exact results which one anticipates from a theoretical perspective.

Effective Hamiltonians and effective electroweak operators were then calculated for two nucleons

in a confining harmonic oscillator trap as a function of the P -space. For this system, matrix elements

of all OLS-derived effective operators again agree with exact results in all model spaces and for

all traps investigated. We quantify the deviations of the simple truncated space results from the

exact results for three different traps as a function of the P -space. We illustrate these effects for

the root-mean-square (r.m.s.) point-proton radius, electric quadrupole moment, magnetic dipole

moment, Gamow-Teller (GT) transition and neutrinoless double-beta (0ν2β) decay operators using

NN interactions from chiral effective field theory.

From the results shown in Figs. 2.3, 2.4 and 2.5, we found that the size of the error in the

matrix element of an observable introduced by a truncated basis space approach depends on the

observable, the value of the HO parameter of the trap ~Ω, and the severity of the P -space truncation

given by Nmax. Long-range observables, such as the r.m.s. point-proton radius and the electric

quadrupole moment exhibited larger errors due to truncation to smaller spaces than the magnetic

dipole and GT operators. We also found surprisingly large truncation errors for the 0ν2β decay

operator — larger than that of the electric quadrupole moment, and of the same order as the r.m.s.
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point-proton radius. Such cases suggest that a careful treatment of renormalization effects must

be implemented for 0ν2β-decay matrix elements in limited basis spaces. This careful theoretical

effort is needed in view of the significant experimental efforts that are aimed at searches for 0ν2β

decay which require significant investments in new experimental facilities. On the other hand, the

GT operator exhibited behaviors similar to the magnetic moment as may be expected.

While these results appear to be reasonable in the qualitative sense and are consistent with

previous investigations, the quantitative dependences shown here may be useful in estimating un-

certainties for observables obtained in truncated many-body calculations with realistic NN inter-

actions. In particular, since renormalization effects tend to be larger in cases with weaker traps

and smaller basis spaces, applications to heavier nuclei, for both transitions between weakly bound

nucleons and to continuum states, will likely be subject to the more significant renormalization

effects.

The results presented here also signal the approximate magnitude of the corrections that the

OLS renormalization provides for each of our selected observables. These corrections, which can

be obtained with OLS renormalization, should be carried forward to the appropriate many-body

applications. It will also be important to implement the chiral effective field theory treatment of

the electroweak operators that are consistent with the chiral effective field theory of the strong

internucleon interactions.

(This section is essentially from the published paper [2].)

5.2 Time-dependent basis function method

We develop an ab initio, non-perturbative approach to treat the non-relativistic nuclear struc-

ture and scattering problems in a unified manner. We call this approach the time-dependent Basis

Function (tBF) method. Within the tBF formalism, the state vector of the system is calculated

at the amplitude level during the scattering, by explicitly evaluating the time-evolution operator.

The full quantal coherence is therefore retained and we are able to study the detailed dynamics for

complex scattering processes.
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As an initial test problem for illustrating the tBF method, we study the Coulomb excitation of a

deuteron in a weak harmonic potential (the setup shown in Fig. 3.1). We scatter a U92+ projectile

(with the incident speed v = 0.1, 0.2, 0.4 and the impact parameter b = 5 fm) to generate the

time-varying Coulomb field, for which the multipole decomposition is performed and only the E1

component is kept for illustration.

In this simple application of the tBF formalism, the structure of the target is solved using

the JISP16 NN interaction. With the 3DHO representation, we construct the target Hamiltonian

setting the full space truncation parameter Nmax ≤ 60 and basis strength ω = 5 MeV. To localize

the target and to regulate the continuum states, we also introduce a weak HO trap of strength 5

MeV for the target Hamiltonian. By diagonalization of the target Hamiltonian, the lowest 7 states

in the interaction channels (3S1,
3D1), 3P0 and 3P1 are solved (Fig. 3.2). We select these states as

a basis set to construct a basis representation for the time-dependent solution of the target under

scattering. Note the center of mass excitation of the target is neglected for simplicity.

Within the basis representation, the time-dependent state vector of the target becomes the wave

function, which consists of a set of amplitudes of respective basis states. Meanwhile, the equation

of motion for the scattering takes the form of matrix multiplications. In this work, we prepare the

initial target to be polarized in the state (3S1,
3D1), M = −1 and solve the wave function during

the scattering numerically by the MSD2 scheme. In order to reveal the importance of higher-order

effects in the scattering, we also solve the wave function via first-order perturbation theory.

The time-dependent wave function, obtained via either the MSD2 or first-order perturbation

theory, is used to investigate the intrinsic excitations of the target. We study the transition prob-

abilities to different basis states as functions of the exposure time and the incident speed. We

find that abrupt transitions occur during the scattering, when the strength of the Coulomb field is

strong and its time-variation is rapid. The transitions subside and approach asymptotic values as

the Coulomb field subsides.

We also study the feeding of allowed and forbidden states. We find that higher-order transitions

occur later and build smaller populations for the forbidden states. With increasing incident speed,
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first-order effects dominate the transitions, with non-monotonic dependencies of the transition

probabilities on the incident speed clearly visible in the simulations. This could be due to the

restricted basis representation for the target in the current model problem.

The tBF method enables us to study the evolution of the target observables, such as the r.m.s.

charge radius, the r.m.s. intrinsic momentum, the r.m.s. angular momentum, the intrinsic energy

and the ẑ-projection of the total angular momentum. Applying the matrix representations of the

corresponding operators as well as the time-dependent wave functions, we study the evolution of

the observables according to the exposure time and the incident speed. The evolution of these

observables is analyzed based on the transition probabilities to different basis states, from which

we obtain the transfer of the energy, the momentum and the angular momentum between the

background field and the target during the scattering.

By the tBF method, we expose the dynamics of the scattering directly from the evolution of the

internal charge distribution of the target. To illustrate, we show the difference in internal charge

distributions between the scattered and initial targets for the case with the incident speed v = 0.1.

We find that the scattering of the target in the time-varying Coulomb field is divided into three

sequential stages, i.e., the polarization stage, the transition stage and the stabilization stage. At

the end of the scattering, the excitation in the intrinsic degrees of freedom, such as the rotation

and fluctuation of the charge density, is evident.

In the future, we will remove the trap and adopt a more complete description for both the

interaction channels and the time-varying EM field to investigate the complex processes such as

the reorientation [154, 155, 156], the dissociation [157, 158, 159] of the deuteron system and the

dependence on the NN interaction. The scattering due to the strong nuclear interaction with the

heavy ion will also be included in future work.

(This section is essentially from the published paper [4].)
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5.3 Chiral nucleon-pion model via Basis Light-Front Quantization

In this work, we apply, for the first time, the Basis Light-Front Quantization (BLFQ) approach

[84] to study a chiral model for the nucleon-pion (Nπ) system via an ab initio, non-perturbative,

Hamiltonian approach. We demonstrate the approach with a test problem, in which a physical

proton is treated as the relativistic bound state of the Nπ system.

Starting from the Lagrangian density for the chiral model of the Nπ system [124, 125], we

proceed with a Legendre transformation to obtain the corresponding light-front (LF) Hamiltonian

density. In this work, we keep only the Fock sectors |N〉 and |Nπ〉. Correspondingly, we restrict

the interaction terms in the LF Hamiltonian density and keep only the terms that correspond to

the single-pion emission and absorption processes.

We then show our choice of the construction and truncation schemes of the LF basis. In particu-

lar, we employ the discretized plane wave basis in the longitudinal direction and the two dimensional

harmonic oscillator basis in the transverse direction. Besides the basis sets in momentum space,

we also discuss our choice of the basis set in spin and isospin degrees of freedom. We prune our

basis according to the symmetries of the Hamiltonian for our chosen system.

We construct the matrix of the mass-squared operator within the LF basis representation, where

we regulate the center of mass excitation by the Lipkin-Lawson method [133, 134]. Incorporating

the Fock-sector-dependent renormalization (FDSR) [140, 141, 142, 143] scheme, we obtain the mass

spectrum of the proton and the corresponding boost-invariant light-front wave function (LFWF)

by solving the eigenvalue problem of the mass-squared operator.

The mass spectrum of the Nπ system in our solution includes both the bound and scattering

states. We study the model space dependence of the spectrum. In particular, we investigate the

lowest 6 states as a function of the model space, which is determined by the truncation parameters

(Nmax and Kmax), basis strength (b), and the current choice of Fock sectors. With increasing

dimensionality, we find all the eigenvalues of these 6 states seem to converge, while the scattering

states of the Nπ system produce improving representations of the continuum. We also find the

eigenvalue of the ground state produces the physical proton mass for each model space with proper
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choice of the mass counterterm. Note that larger Fock spaces are necessary in order to verify the

convergence which we postpone to a future work.

To study the proton’s parton distribution function (PDF) and also its Dirac form factor F1(Q2),

we compute the proton’s LFWFs in a sequence of model spaces (determined by Nmax, Kmax and

b) where both the proton’s mass and its r.m.s. charge radius are fitted to respective experimental

values. We investigate the dependencies of the resulting PDF on the longitudinal momentum

fraction of the constituent nucleon (xN ) and on the model space. We find the proton’s PDF seems

to converge with increasing dimension of model space. For the model spaces with Nmax = 8 and

10, the computed PDFs peak at about xN = 0.55 (or xπ = 0.45). Further inclusion of the quark

distribution functions of the constituents will hopefully reveal the pion cloud’s role in the light

quark flavor asymmetry of the proton (see, e.g., Ref. [148]).

We also study the proton’s Dirac form factor F1(Q2) as a function of the squared transverse

momentum transfer Q2 and the model space. We find that F1(Q2), as for the PDF, seems also to

converge with increasing dimension of the model space. However, for all choices of model space,

the results of F1(Q2) deviate from the experimental results when Q2 increases. We argue this is

mainly because of the simplicity of the chiral model in this work, i.e., 1) only nucleons and pions are

included; 2) both species are taken to be structureless, point-like particles. For a phenomenological

improvement, we implement a simple model that describes the finite charge distributions of the

constituents to calculate the proton’s F1(Q2). We find the resulting F1(Q2) agrees well with the

experimental data for Q2 ≤ 0.20 GeV2.

This work can lead to multiple paths in the future. We attempt to connect the current chiral

model to the modern chiral effective theory (see, e.g., [42, 160] and references therein). This work is

currently ongoing. After this connection is accomplished, we plan to extend the current calculation

to incorporate systematically the contributions from higher Fock sectors, where we will examine

the basis-space dependence as well as the convergence of the Fock-sector expansion. We expect

such investigations to be demanding in computing power. We plan to incorporate the technology

of high performance computing (see Ref. [3] and references therein).



82

The current framework can be straightforwardly extended to investigate more nucleonic observ-

ables of experimental interest, such as the transverse momentum distribution, and various categories

of form factors. In addition, this framework can be extended to study more complicated nuclear

systems, such as the deuteron, where the role of the relativistic dynamics is important but still

unclear.



83

BIBLIOGRAPHY

[1] DOE/NSF Nuclear Science Advisory Committe, The Frontiers of Nuclear Science: A Long-

Range Plan, 2007.

[2] J. P. Vary, R. Basili, W. Du, M. Lockner, P. Maris, S. Pal and S. Sarker, Phys. Rev. C 98, no.

6, 065502 (2018).

[3] J. P. Vary, R. Basili, W. Du, M. Lockner, P. Maris, D. Oryspayev, S. Pal, S. Sarker, H. M.

Aktulga, E. Ng, M. Shao and C. Yang, Proceedings of the International Conference ‘Nuclear

Theory in the Supercomputing Era-2016’ (NTSE-2016), Khabarovsk, Russia, September 19-23,

2016. Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk, Russia,

2018, p. 15.

[4] W. Du, P. Yin, Y. Li, G. Chen, W. Zuo, X. Zhao and J. P. Vary, Phys. Rev. C 97, no. 6,

064620 (2018).

[5] W. Du, P. Yin, G. Chen, X. Zhao and J. P. Vary, Proceedings of the International Confer-

ence ‘Nuclear Theory in the Supercomputing Era-2016’ (NTSE-2016), Khabarovsk, Russia,

September 19-23, 2016. Eds. A. M. Shirokov and A. I. Mazur. Pacific National University,

Khabarovsk, Russia, 2018, p. 102.

[6] W. Du, Y. Li, X. Zhao, and J. P. Vary, Proceedings of the International Conference ‘Nuclear

Theory in the Supercomputing Era - 2018’ (NTSE-2018), Daejeon, South Korea, October

29 - November 2, 2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University,

Khabarovsk, Russia, 2019, p. 92.

[7] W. Du, Y. Li, X. Zhao, G. A. Miller and J. P. Vary, in preparation.

[8] J. Carlson and R. Schiavilla, Rev. Mod. Phys. 70, 743 (1998).



84

[9] B. R. Barrett, P. Navratil and J. P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).

[10] R. B. Wiringa, V. G. J. Stoks and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

[11] P. Doleschall, Phys. Rev. C 69, 054001 (2004).

[12] R. Machleidt, Phys. Rev. C 63, 024001 (2001).

[13] A. M. Shirokov, J. P. Vary, A. I. Mazur and T. A. Weber, Phys. Lett. B 644, 33 (2007).

[14] A. M. Shirokov, I. J. Shin, Y. Kim, M. Sosonkina, P. Maris and J. P. Vary, Phys. Lett. B 761,

87 (2016).

[15] S. C. Pieper, V. R. Pandharipande, R. B. Wiringa and J. Carlson, Phys. Rev. C 64, 014001

(2001).

[16] S. C. Pieper, R. B. Wiringa and J. Carlson, Phys. Rev. C 70, 054325 (2004).

[17] M. Pervin, S. C. Pieper and R. B. Wiringa, Phys. Rev. C 76, 064319 (2007).

[18] L. E. Marcucci, M. Pervin, S. C. Pieper, R. Schiavilla and R. B. Wiringa, Phys. Rev. C 78,

065501 (2008).

[19] P. Navratil, J. P. Vary and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000).

[20] P. Navratil, J. P. Vary and B. R. Barrett, Phys. Rev. C 62, 054311 (2000).

[21] H. Kummel, K. H. Luhrmann and J. G. Zabolitzky, Phys. Rept. 36, 1 (1978).

[22] E. Epelbaum, H. Krebs, D. Lee and U. G. Meissner, Phys. Rev. Lett. 106, 192501 (2011).

[23] S. K. Bogner, H. Hergert, J. D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer and

R. Roth, Phys. Rev. Lett. 113, 142501 (2014).

[24] G. R. Jansen, J. Engel, G. Hagen, P. Navratil and A. Signoracci, Phys. Rev. Lett. 113, no.

14, 142502 (2014).



85

[25] G. A. Negoita et al., Phys. Rev. C 99, no. 5, 054308 (2019).
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APPENDIX A. 3DHO BASIS AND OPERATORS

For the NN system, we introduce the 3DHO basis in the relative coordinate as

〈~r |nlSJMTtz〉 =
∑
ml,ms

(lmlSms|JM)Rnl(r)Ylml(r̂)χSmsχTtz , (A.1)

where n is the radial quantum number, l is the quantum number of the orbital angular momentum

~l. S is the quantum number for the total spin ~s of the NN system. ml and ms are the z-components

of ~l and ~S, respectively. The total angular momentum ~J is coupled by the LS scheme with M

being the z-component. tz is the z-component of isospin T . Ylml(r̂) denotes the spherical harmonics

and (lmlSms|JM) is the CG-coefficient (both following the Condon-Shortley convention [95, 96]).

χSms and χTtz are, respectively, the spin and isospin parts of the wave function. We include χTtz

in our definition of the 3DHO basis for the convenience in evaluating the weak operators. As for

the rest of the operators in this thesis that do not operate on the isospin degree of freedom, χTtz

can be omitted whenever there is no risk of confusion. Rnl(r) is the radial part of 3DHO wave

function

Rnl(r) =

√
2n!

r3
0Γ(n+ l + 3

2)

( r
r0

)l
exp

[
− r2

2r2
0

]
L
l+ 1

2
n

(r2

r2
0

)
, (A.2)

where r denotes the separation between the two nucleons in the relative coordinates. Γ(n+ l+3/2)

is the Gamma function. L
l+ 1

2
n (r2/r2

0) is the associated Laguerre polynomial. Since we work in the

relative coordinates, the length scale of the 3DHO basis [Eq. (2.4)] becomes

r0 =

√
1

MredΩ
, (A.3)

where Mred = MN/2 = 469.46 MeV is the reduced mass for the NN system, while Ω is the oscillator

strength.

The normalization condition for the 3DHO basis Eq. (A.1) is

〈nlSJMTtz|n′l′S′J ′M ′T ′t′z〉 =δn,n′δl,l′δS,S′δJ,J ′δM,M ′δT,T ′δtz ,t′z . (A.4)
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The matrix element of the operatorO in the 3DHO representation, 〈nlSJMTtz|O|n′l′S′J ′M ′T ′t′z〉,

is computed analytically in the coordinate space. The results for the operators that are relevant to

this work are shown in the following.

A.1 r2

The matrix element for the operator r2 is

〈nlSJMTtz|r2|n′l′S′J ′M ′T ′t′z〉

=r2
0 δll′δSS′δJJ ′δMM ′δTT ′δtzt′z ×



(2n+ l + 3
2) for n = n′

−
√

(n+ l + 3
2)(n+ 1) for n = n′ − 1

−
√

(n′ + l + 3
2)(n′ + 1) for n = n′ + 1

0 else

. (A.5)

The rms point-proton charge radius of the NN system is evaluated as 1
2

√
〈r2〉 in this work.

A.2 p2

The matrix element of the operator p2 is

〈nlSJMTtz|p2|n′l′S′J ′M ′T ′t′z〉

=p2
0 δll′δSS′δJJ ′δMM ′δTT ′δtzt′z ×



2n+ l + 3
2 for n = n′√

(n+ l + 3
2)(n+ 1) for n = n′ − 1√

(n′ + l′ + 3
2)(n′ + 1) for n = n′ + 1

0 else

, (A.6)

where p0 =
√
MredΩ is the oscillator momentum.

A.3 L2

The matrix element of the operator L2 is

〈nlSJMTtz|L2|n′l′S′J ′M ′T ′t′z〉 = l(l + 1) δnn′δll′δSS′δJJ ′δMM ′δTT ′δtzt′z . (A.7)
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A.4 Jz

The matrix element for the operator Jz, the ẑ-projection of the total angular momentum, is

〈nlSJMTtz|Jz|n′l′S′J ′M ′Tt′z〉 = M δnn′δll′δSS′δJJ ′δMM ′δTT ′δtzt′z . (A.8)

A.5 rY1µ(r̂)

The matrix element of the operator rY1µ(r̂) in the 3DHO representation is

〈nlSJMTtz|rY1µ(r̂)|n′l′S′J ′M ′T ′t′z〉

=δTT ′δtzt′z

∫
R∗nl(r)rRn′l′(r)r

2dr

×
∑
mlms

∑
ml′ms′

δSS′δmsms′ (lmlSms|JM)(l′ml′S
′ms′ |J ′M ′)

× (−1)ml

√
3(2l + 1)(2l′ + 1)

4π

 l 1 l′

−ml µ ml′


 l 1 l′

0 0 0

 . (A.9)

In our calculation, we adopt the 3j-symbols, e.g., l 1 l′

−ml µ ml′


following the Condon-Shortley convention [95, 96]. The radial integral in Eq. (A.9) can be computed

as

∫
R∗nl(r)rRn′l′(r)r

2dr = r0



√
n+ l + 3

2 δn,n′ −
√
nδn,n′+1 for l′ = l + 1√

n′ + l′ + 3
2 δn,n′ −

√
n′δn′,n+1 for l = l′ + 1

0 else

. (A.10)
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A.6 r2Y2σ(r̂)

The matrix element of the operator r2Y2σ(r̂) in 3DHO representation is

〈nlSJMTtz|r2 Y2σ(r̂)|n′l′S′J ′M ′T ′t′z〉

=r2
0

√
3ll′(l + 1)(l′ + 1)

2π
δTT ′δtzt′zδSS′R(n, l;n′, l′)

×
∑
mlms

∑
m′lm

′
s

δmsm′s(lmlSms|JM)(l′m′lS
′m′s|J ′M ′)(−1)ml

 l 2 l′

−ml σ m′l


 l 2 l′

0 0 0

 ,

where the radial part of the integration is

R(n, l;n′, l′)

=

[
(2n+ l +

3

2
)δnn′ −

√
(n+ l +

3

2
)(n+ 1)δn,n′−1 −

√
(n′ + l +

3

2
)(n′ + 1)δn,n′+1

]
δl,l′

+

[√
(n′ + l +

3

2
)(n′ + l +

5

2
)δnn′ − 2

√
(n′ + 1)(n′ + l +

5

2
)δn,n′+1 +

√
(n′ + 1)(n′ + 2)δn,n′+2

]
δl′,l+2

+

[√
(n+ l′ +

3

2
)(n+ l′ +

5

2
)δnn′ − 2

√
(n+ 1)(n+ l′ +

5

2
)δn′,n+1 +

√
(n+ 1)(n+ 2)δn′,n+2

]
δl,l′+2

(A.11)

The E2 operator can be used to calculate the quadrupole moment (see, e.g., [95, 96]) as

Q(α, J) =

√
16π

5
〈 αJ,M = J |

(r
2

)2
Y20(r̂)| αJ,M = J〉 , (A.12)

where α denotes all the other quantum numbers necessary to specify the state of the NN system.

A.7 Operator of the static magnetic dipole moment

The magnetic dipole (M1) operator for the NN system can be found in textbooks1 (see, e.g.,

[93, 161]). Since we only calculate the static magnetic dipole moment of the deuteron system

(S = 1, J = 1, T = 0 and tz = 0), we adopt a simplified form of the operator µ10 (e.g., [161]). The

1Note that these definitions does not count the mesonic degree of freedom.
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corresponding matrix element in 3DHO representation is

〈nlSJMTtz|µ10|n′l′SJMTtz〉

=δnn′δll′

{
(Kp +Kn)M + (Kp +Kn −

1

2
)

[ ∑
ml,ms

ml(lmlSms|JM)(l′mlSms|JM)

]}
. (A.13)

In the unit of nuclear magneton µN , the proton magnetic momentKp and neutron magnetic moment

Kn are [162]

Kp = 2.7928473508(85) , (A.14)

Kn = −1.91304273(45) . (A.15)

The dipole moment of the deuteron is calculated as [95, 96]

µ(α, J) = 〈αJ,M = J |µ10|αJ,M = J〉 . (A.16)

A.8 Allowed Gammow-Teller operator

In the 3DHO representation, the one-body operator for the allowed Gammow-Teller (GT) tran-

sition of the NN system [93] is

〈nlSJMTtz

∣∣∣M1σ

∣∣∣n′l′S′J ′M ′T ′t′z〉, (A.17)

where the one-body operator M1σ is [93]

M1µ =
gA√
4π

2∑
k=1

t+(k)σµ(k) , (A.18)

with gA = 1.25 being the axial coupling constant [93]. The summation is over all the nucleons

(labled by k). t+(k) is the rising operator acting on the isospinors as t+|n〉 = |p〉 and t+|p〉 = 0.

σµ (with µ = 0,±1) is the covariant spherical component of the Pauli operator. The corresponding

matrix element is

〈nlSJMTtz

∣∣∣M1µ

∣∣∣n′l′S′J ′M ′T ′t′z〉
=

gA√
4π
δnn′δll′

∑
mlms

∑
m′lm

′
s

δmlm′l(lmlSms|JM)(l′m′lS
′m′s|J ′M ′)〈SmsTtz

∣∣∣ 2∑
k=1

t+(k)σµ(k)
∣∣∣S′m′sT ′t′z〉 .

(A.19)
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A.9 0ν2β decay

In this work, we evaluate the 0ν2β decay up to the NLO in the framework of the chiral effective

field theory. In 3DHO representation, the matrix element of the 0ν2β operator is

〈
nlSJMTtz|M0νββ

∣∣ n′l′S′J ′M ′T ′t′z〉 , (A.20)

where the expression of the M0νββ is given by Eq. (54) in Ref. [53].

As a test problem for the application of the OLS procedure, we consider the transition from the

ground state of a di-neutron system in the channel (nn; 1S0) to the ground state of a di-proton

system in the channel (pp; 1S0), where the initial and final NN systems are both enclosed in a HO

potential trap. The quantum numbers for the initial and final channels are l = l′ = 0, S = S′ = 0,

J = J ′ = 0, T = T ′ = 1, tz = 1, t′z = −1. The corresponding matrix element is

〈
αfn0001− 1

∣∣M0νββ

∣∣αin′000011
〉

=− 6

√
2n!

r3
0Γ(n+ 3

2)

√
2n′!

r3
0Γ(n′ + 3

2)

∫
r(Mπr − 2) exp

[
− r2

r2
0

−Mπr
]
L

1
2
n

(r2

r2
0

)
L

1
2
n′

(r2

r2
0

)
dr , (A.21)

where r is the separation between the two nucleons in initial/finial system. Mπ is the mass of the

charged pions. Note that the second term in Eq. (54) in Ref. [53] vanishes for the 0ν2β decay

between the spin-singlet initial and final states. In practice, we evaluate Eq. (A.21) numerically.
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APPENDIX B. OKUBO-LEE-SUZUKI TRANSFORMATION

B.1 Non-Hermitian effective Hamiltonian

There is more than one way to construct effective Hamiltonians (and, consistently, other oper-

ators) via the Okubo-Lee-Suzuki (OLS) transformation. In the section, we present a formal theory

for the OLS transformation. The interested reader is also referred to, e.g., Refs. [9, 33, 34, 35, 36].

These different methods are equivalent to within a residual unitary transformation that does not

mix the P and Q-spaces. This difference could be interesting when approximations are employed.

We start from the arbitrary Hamiltonian equation

H|k〉 = Ek|k〉 , (B.1)

where H is the Hamiltonian, e.g., for a many-body system. We assume that H is Hermitian. |k〉

is the eigenvector corresponding to the eigenvalue Ek. The set {|k〉} spans the the full basis space

for the system.

We divide the full basis space into the P-space and the complementary Q-space. The projection

operator for the P- and Q-spaces are, respectively,

P =
∑
αP

|αP 〉〈αP | , (B.2)

Q =
∑
αQ

|αQ〉〈αQ| , (B.3)

where {|αP 〉} is the basis set of the P-space of dimension dP , while {|αQ〉} is the basis set of the

Q-space of dimension dQ. The following conditions hold for the projection operators

P 2 = P, Q2 = Q,P +Q = 1, PQ = QP = 0 , (B.4)

where 1 is the identity operator of the full basis space.
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The similarity transformation of the arbitrary Hamiltonian H and that of the corresponding

eigenvector |k〉 [Eq. (B.1)] are defined as

H 7−→H̃ = e−ωHeω , (B.5)

|k〉 7−→|k̃〉 = e−ω|k〉 , (B.6)

where the the generator of the similarity transformation satisfies

ω =QωP. (B.7)

The following conditions hold for ω

ω2 =0 , (B.8)

(ω†)2 =0 , (B.9)

eω =1 + ω , (B.10)

e−ω =1− ω . (B.11)

The transformed Hamiltonian equation is

H̃|k̃〉 =Ek|k̃〉 , (B.12)

or, in the matrix representation,PH̃P PH̃Q

QH̃P QH̃Q


P |k̃〉
Q|k̃〉

 = Ek

P |k̃〉
Q|k̃〉

 . (B.13)

We can choose a set K that contains dP eigenvectors of the Hamiltonian H, i.e.,

K = {|k〉}, k = 1, 2, · · · , dP . (B.14)

where dP is the dimension of the space P. We will construct the effective Hamiltonian that preserves

the eigenvalues for the eigenvector in set K. Based on Eqs. (B.6), (B.7) and (B.11), we require the

following mapping conditions to hold for |k〉 ∈ K

P |k̃〉 =P |k〉 , (B.15)

Q|k̃〉 =0 . (B.16)
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Assuming these state vectors in the set {P |k̃〉}, with k = 1, 2, · · · , dP , are linearly independent, it

follows from Eq. (B.15) and (B.16) that [50]

1. The generator of the similarity transformation ω satisfies

Q|k〉 =ωP |k〉 for ∀|k〉 ∈ K. (B.17)

2. The decoupling condition holds

QH̃P =0 . (B.18)

3. P |k̃〉 is the eigenvectors of PH̃P with the eigenvalue Ek

PH̃P P |k̃〉 =EkP |k̃〉, k = 1, 2, · · · , dP . (B.19)

We remark that

1. The transformed Hamiltonian H̃ is not Hermitian since PH̃Q does not necessarily vanish.

2. The effective Hamiltonian that preserves the spectrum for the set K is defined as

H̃eff ≡ PH̃P . (B.20)

3. ω can be solved from Eq. (B.17) as

∑
αQ∈Q

〈αQ|k〉 =
∑
αP∈P

〈αQ|ω|αP 〉〈αP |k〉 . (B.21)

Assuming the dP × dP matrix of the element 〈αP |k〉 (with |k〉 ∈ K) is invertible, ω in terms

of the basis sets {|αP 〉} and {|αQ〉} is

〈αQ|ω|αP 〉 =
∑
k∈K
〈αQ|k〉〈k̂|αP 〉 , (B.22)

where 〈k̂|αP 〉 denotes the element of the inverse of the matrix with the element 〈αP |k〉, i.e.,

∑
αP∈P

〈k̂|αP 〉〈αP |k′〉 = δk,k′ , ∀k, k′ ∈ K . (B.23)
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B.2 Hermitian effective Hamiltonian

The Hermitian effective Hamiltonian can be obtained directly by a unitary transformation of

the Hamiltonian H [35, 36]. We start with the arbitrary Hamiltonian equation [Eq. (B.1)]

H|k〉 = Ek|k〉 .

To proceed, we assume that H is Hermitian and that

ω =QωP . (B.24)

Again, we choose dP eigenvectors to form the set K and the following condition holds for these dP

eigenvectors

Q|k〉 =ωP |k〉, k = 1, 2, · · · , dP , (B.25)

while the rest dQ eigenvectors forms the set S

S ={|k〉}, k = dP + 1, dP + 2, · · · , dP + dQ , (B.26)

which is complementary to K.

We define the left and right identity operators Peω
†

and eωP for the eigenvectors in set K

Peω
†

= P (1 + ω†), s.t. 〈k′| = 〈k′|Peω† , (B.27)

eωP = (1 + ω)P, s.t. |k〉 = eωP |k〉 , (B.28)

with k, k′ ∈ K. Eq. (B.1) can be modified as

〈k′|Peω†HeωP |k〉 =Ek〈k′|Peω
†
eωP |k〉 . (B.29)

By applying the Hermitian metric

M = M † ≡Peω†eωP = P (1 + ω†)(1 + ω)P = P (1 + ω†ω)P , (B.30)

on both sides of Eq. (B.29), we get

〈k̄′|e−SHeS |k̄〉 = Ek〈k̄′|e−SeS |k̄〉 , (B.31)
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where we have defined the transformation eS as

e−S ≡M−
1
2 eω

†
, (B.32)

eS ≡eωM−
1
2 , (B.33)

|k̄〉 ≡e−S |k〉 , (B.34)

〈k̄′| ≡eS〈k′| . (B.35)

The transformation for the Hamiltonian H is correspondingly

H̄ ≡ e−SHeS . (B.36)

The formal solution of the generator S(ω) of the transformation is [35, 36]

S =arctanh(ω − ω†) . (B.37)

It is straightforward to show that

S† = −S, e−S = (eS)† . (B.38)

Hence H̄ is Hermitian due to the unitary transformation eS . It follows from Eq. (B.25) that the

mapping conditions

P |k̄〉 =|k〉 , (B.39)

Q|k̄〉 =0 , (B.40)

hold for k = 1, 2, · · · , dP .

In the matrix representation, we havePH̄P PH̄Q

QH̄P QH̄Q


P |k̄〉
Q|k̄〉

 = Ek

P |k̄〉
Q|k̄〉

 . (B.41)

It follows that

1. The full decoupling condition holds

QH̄P = PH̄Q = 0. (B.42)
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2. The effective Hamiltonian in the P-space

H̄P
eff ≡PH̄P , (B.43)

reproduces the eigenvalue Ek of the eigenvector |k〉 ∈ K as

H̄P
eff P |k̄〉 =Ek P |k̄〉, k = 1, 2, · · · , dP , (B.44)

with P |k̄〉 being the eigenvectors of H̄P
eff .

3. The operator ω that can be solved from [Eq. (B.25)] in the form of Eq. (B.23).

4. Due to the full decoupling condition Eq. (B.42), the effective Hamiltonian in the Q-space can

be consistently defined as

H̄Q
eff ≡QH̄Q , (B.45)

which reproduces the eigenvalue of each eigenvector |k〉 ∈ S as

H̄Q
eff Q|k̄〉 =Ek Q|k̄〉, k = dP + 1, dP + 2, · · · , dP + dQ . (B.46)

5. The effective Hamiltonians in the P- and Q-spaces are Hermitian as

PH̄P = PH̄†P, QH̄Q = QH̄†Q . (B.47)

B.2.1 Remarks

1. A formal solution for the full decoupling problem can be found in [36].

2. More discussions on the OLS transformation (e.g., mathematical conditions and possible

pitfalls) are shown in Ref. [50].
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3. The expression of S(ω) [Eq. (B.37)] can be solved in the following way

ln[eSP ] = ln[eωM−
1
2P ]

= ln[(1 + ω)P (1 + ω†ω)−
1
2P ]

= ln[(1 + ω − ω†)P ]− 1

2
ln[(1 + ω − ω†)(1− ω + ω†)P ]

= ln[(1 + ω − ω†)P ]− 1

2
ln[(1 + ω − ω†)P ]− 1

2
ln[(1− ω + ω†)P ]

=
1

2
ln[(1 + ω − ω†)P ]− 1

2
ln[(1− ω + ω†)P ]

=
1

2
ln
[ 1 + (ω − ω†)

1− (ω − ω+)
P
]

= arctanh(ω − ω†)P , (B.48)

where from the 2nd to the 3rd line, we have applied the identities

ω†P =Pω†QP = 0 ,

ωω =QωPQωP = 0 ,

ω†ω† =0 . (B.49)

One gets

ln[eSP ] = arctanh(ω − ω†) P ,

ln[eS ] P = arctanh(ω − ω†) P ,

S P = arctanh(ω − ω†) P . (B.50)

Since the P-space and hence its projector P can be chosen arbitrarily, we have

S(ω) = arctanh(ω − ω†) . (B.51)

4. When the bases of the P- and Q-spaces, i.e., |αP 〉 and |αQ〉, are chosen to be the eigenbases

of the Hamiltonian |k〉 (k = 1, 2, · · · , dP , dP + 1, · · · , dP + dQ), the effective Hamiltonian H̄P
eff

admits the form of Eq. (2.14) (note the same form is adopted in Ref. [47]).
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APPENDIX C. CONVENTION OF THE LF COORDINATES

The light-front (LF) variable is defined as

xµ = (x+, x−, x⊥) , (C.1)

where the “LF time” is x+ = x0 +x3 and the longitudinal variable is x− = x0−x3. The transverse

coordinates are x⊥ ≡ x⊥ = (x1, x2).

The metric tensors are

gµν =



0 2 0 0

2 0 0 0

0 0 −1 0

0 0 0 −1


, gµν =



0 1
2 0 0

1
2 0 0 0

0 0 −1 0

0 0 0 −1


. (C.2)

The following is true

x± = 2x∓ . (C.3)

In terms of the LF variables, the inner product is

x · y =
1

2
x+y− +

1

2
x−y+ − x⊥ · y⊥ . (C.4)

The partial derivatives ∂µ = ∂
∂xµ are

∂+ = 2∂− = 2
∂

∂x−
, ∂− = 2∂+ = 2

∂

∂x+
. (C.5)

where the LF time-derivative is ∂+ = ∂
∂x+

and the derivative of the longitudinal variable is ∂− =

∂
∂x− .

The dispersion relation is

k− =
(k⊥)2 +m2

k+
. (C.6)
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In the the light-cone region (time-light region and the light-front), k0 ≥ k3 and k− = k0 − k3 ≥ 0.

This implies the longitudinal momentum to be semipositive definite k+ ≥ 0, in which

k+k− = (k⊥)2 +m2 ≥ 0 . (C.7)

k+ vanishes only if m = 0 and k⊥ = 0.

We follow the convention in Ref. [121] for the gamma matrices

γ0 = β =

0 −i

i 0

 , γ3 =

0 i

i 0

 , γ1 =

−iσ2 0

0 iσ2

 , γ2 =

iσ1 0

0 −iσ1

 , γ5 =

σ3 0

0 −σ3

 ,
(C.8)

where σ = (1, ~σ) are the standard Pauli matrices with

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (C.9)

Then we have

γ+ = γ0 + γ3 =

 0 0

2i 0

 , γ− = γ0 − γ3 =

0 −2i

0 0

 . (C.10)

The definition of the alpha matrices are

~α = γ0~γ . (C.11)

We have

α1 =

 0 σ2

σ2 0

 , α2 =

 0 −σ1

−σ1 0

 , α3 =

1 0

0 −1

 . (C.12)

The projection operators are defined as

Λ+ =

1 0

0 0

 , Λ− =

0 0

0 1

 , (C.13)

with

Λ+ + Λ− = 1, (Λ±)2 = Λ±, (Λ±)† = Λ±. (C.14)
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The following identities hold for the projection operators

Λ± =
1

4
γ∓γ± =

1

2
γ0γ± =

1

2
(1± α3), (C.15)

γ∓ =2Λ±γ0 = γ∓Λ∓, (C.16)

[γ⊥,Λ±] =[γ0,Λ±] = [γ5,Λ±] = 0, (C.17)

α⊥Λ± =Λ∓α⊥, (C.18)

γiΛ∓ =
1

2
γi ± i1

2
εijγjγ5 . (C.19)

where the εij is 2-dimensional Levi-Civita symbol.
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APPENDIX D. 2DHO BASIS AND RELEVANT INTEGRALS

D.1 2DHO basis

The generating operator for the 2DHO basis can be expressed as [110]

PΩ
+ =

(p⊥)2

2p+
+

1

2
Ω2p+(r⊥)2 =

1

2
Ω
[ (p⊥)2

xP+Ω
+ xP+Ω(r⊥)2

]
, (D.1)

where the oscillator energy Ω is related to the energy scale of the 2DHO basis set as

b =
√
P+Ω . (D.2)

We refer to b as the basis strength.

For the convenience in evaluating integrals involving the 2DHO basis, one can further introduce

the momentum fraction weighted variables [135] as

q⊥ ≡ p⊥√
x
, s⊥ ≡

√
xr⊥ , (D.3)

where the canonical commutator [s⊥i , q
⊥
j ] = iδij (i, j = 1, 2) holds. The generating operator of the

2DHO basis in terms of the conjugate variables (s⊥, q⊥) can be rewritten as

PΩ
+ =

1

2
Ω
[( q⊥√

P+Ω

)2
+
(√

P+Ωs⊥
)2]

. (D.4)

In the momentum representation, the 2DHO wave function is

〈q⊥|nm〉 = Ψm
n (q⊥) =

1

b

√
4πn!

(n+ |m|)!
ρ|m|e−

1
2
ρ2L|m|n (ρ2) eimφ , (D.5)

where the transverse momentum in the complex representation is

q⊥ = bρeiφ , (q⊥)∗ = bρe−iφ , (D.6)

with φ = arg q⊥, |q⊥| = bρ. n, m are the quantum numbers for the radial part and angular part

of the wave function, respectively. They define the eigenenergy of the corresponding 2DHO wave

function

Enm =(2n+ |m|+ 1)Ω . (D.7)
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For completeness, we also present the 2DHO wave function in the coordinate representation:

〈s⊥|nm〉 = Ψ̃m
n (s⊥) = ei

π
2

(2n+|m|)︸ ︷︷ ︸
phase

1

l

√
n!

π(n+ |m|)!
ρ|m|e−

1
2
ρ2L|m|n (ρ2) eimθ , (D.8)

where, in the complex representation, the transverse position vector is

s⊥ = lρeiθ,
(
s⊥
)∗

= lρe−iθ , (D.9)

with θ = arg s⊥, |s⊥| = lρ and l = 1
b . The phase ei

π
2

(2n+|m|) is fixed by the Fourier transformation:

Ψ̃m
n (s⊥) =

∫
d2q⊥

(2π)2
eiq
⊥·s⊥Ψm

n (q⊥) , (D.10)

Ψm
n (q⊥) =

∫
d2s⊥ e−iq

⊥·s⊥Ψ̃m
n (s⊥) , (D.11)

with the conjugate variables (s⊥, q⊥).

The orthonormality relation of the 2DHO basis is

〈nm|n′m′〉 = δn,n′δm,m′ . (D.12)

D.2 Talmi-Moshinsky transformation

The Talmi-Moshinsky (TM) transformation of the 2DHO wave function [Eq. (D.5)] is defined

via the following relation:

Ψm1
n1

(q⊥1 )Ψm2
n2

(q⊥2 ) =
∑

NMnm

MN,M,n,m
n1,m1,n2,m2

(x1, x2)ΨM
N (Q⊥)Ψm

n (q⊥) , (D.13)

where the TM bracket is defined as

MN,M,n,m
n1,m1,n2,m2

(x1, x2) =MN,M,n,m
n1,m1,n2,m2

(δTM) ≡ 〈NMnm|n1m1n2m2〉 , (D.14)

with 2n1 + |m1| + 2n2 + |m2| = 2N + |M | + 2n + |m| and m1 + m2 = M + m. The phase δTM

is given by tan δTM =
√
x2/x1. The analytic expression of the TM bracket can be found in Refs.

[163, 110]. q⊥1 and q⊥2 are defined according to Eq. (D.3) as

q⊥1 =
p⊥1√
x1
, q⊥2 =

p⊥2√
x2

. (D.15)
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The relative momentum q⊥ and COM momentum Q⊥ are, respectively,

q⊥ =

√
x2q
⊥
1 −
√
x1q
⊥
2√

x1 + x2
, (D.16)

Q⊥ =

√
x1q
⊥
1 +
√
x2q
⊥
2√

x1 + x2
. (D.17)

D.3 Some integrals involving the 2DHO basis

D.3.1 Identities

P(k)(n,m) =

∫
d2q⊥

(2π)2

(
q⊥
)k

Ψm
n (q⊥) = bk+1(−1)n2k

√
(n+ k)!

πn!
δk,−m . (D.18)

PC(k)(n,m) =

∫
d2q⊥

(2π)2

[(
q⊥
)∗]k

Ψm
n (q⊥) = bk+1(−1)n2k

√
(n+ k)!

πn!
δk,m . (D.19)

P(1)(n′,m′;n,m) =〈n′m′|q⊥|nm〉 = 〈n′m′|q⊥|nm〉

=b δm′,m+1


√
n+ |m|+ 1δn,n′ −

√
nδn,n′+1 , m ≥ 0, n ≥ n′√

n+ |m|δn,n′ −
√
n+ 1δn′,n+1 , m < 0, n ≤ n′

. (D.20)

PC(1)(n′,m′;n,m) =〈n′m′|
(
q⊥
)∗|nm〉 = 〈n′m′|

(
q⊥
)∗|nm〉

=b δm,m′+1


√
n′ + |m′|+ 1δn,n′ −

√
n′δn′,n+1 , m′ ≥ 0√

n′ + |m′|δn,n′ −
√
n′ + 1δn,n′+1 , m′ < 0

. (D.21)

〈n′m′|q⊥(q⊥)∗|nm〉 =

∫
d2q⊥

(2π)2

(
Ψm′
n′ (q

⊥)
)∗
|q⊥|2Ψm

n (q⊥)

=b2δm′,m

[
(2n+ |m|+ 1)δn′,n −

√
n′(n′ + |m′|)δn′,n+1 −

√
n(n+ |m|)δn,n′+1

]
. (D.22)
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D.3.2 Shifted operator

The shifted operator, in the 2DHO representation, is defined as 〈n′,m′;u⊥ + q⊥|n,m;u⊥〉,

where the initial and final transverse momenta are u⊥ and u⊥+ q⊥, respectively. According to the

translational invariance of the 2DHO basis function, it can be evaluated as

〈n′,m′;u⊥ + q⊥|n,m;u⊥〉 =〈n′,m′;u⊥ +
1

2
q⊥|n,m;u⊥ − 1

2
q⊥〉 . (D.23)

Applying the 2DHO wave function in the complex momentum representation [Eq. (D.5)], the

shifted operator reads∫
d2u⊥

(2π)2

(
Ψm′
n′ (u

⊥ + q⊥)
)∗

Ψm
n (u⊥) =

∫
d2u⊥

(2π)2
Ψm′
n′
∗(
u⊥ +

1

2
q⊥
)
Ψm
n

(
u⊥ − 1

2
q⊥
)

=
∑
ν

MN,0,ν,µ
n′,−m′,n,m

(π
4

) b√
4π

(−1)NΨµ
ν

( 1√
2
q⊥
)
, (D.24)

with

µ =m−m′, (D.25)

N =n′ + n− ν +
1

2

(
|m′|+ |m| − |µ|

)
, (D.26)

0 ≤ν ≤ n+ n′ +
1

2

(
|m′|+ |m| − |µ|

)
. (D.27)

D.3.3 Integrals involving three 2DHO basis functions

∫
d2q⊥1
(2π)2

d2q⊥2
(2π)2

d2q′⊥

(2π)2
(2π)2δ2(

√
x1q
⊥
1 +
√
x2q
⊥
2 −
√
x′q′

⊥
) Ψm1

n1
(q⊥1 )Ψm2

n2
(q⊥2 )Ψm′

n′
∗
(q′
⊥

)

=δm1+m2,m′
1

x′
Mn′,m′,n,0

n1,m1,n2,m2
(x1, x2) P(0)(n, 0) , (D.28)

where n = n1 + n2 − n′ + 1
2(|m1|+ |m2| − |m1 +m2|) ≥ 0.

∫
d2q⊥1
(2π)2

d2q⊥2
(2π)2

d2q′⊥

(2π)2
(2π)2δ2(

√
x1q
⊥
1 +
√
x2q
⊥
2 −
√
x′q′

⊥
) · q′⊥ ·Ψm1

n1
(q⊥1 )Ψm2

n2
(q⊥2 )Ψm′

n′
∗
(q′
⊥

)

=δm1+m2,m′−1
1

x′

min[ν,n′+1]∑
N=max[0,n′−1]

MN,m′−1,ν−N,0
n1,m1,n2,m2

(x1, x2) P(1)(n′,m′;N,m′ − 1) P(0)(ν −N, 0)

(D.29)
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where ν = N + n = n1 + n2 + 1
2(|m1|+ |m2| − |m1 +m2|).

∫
d2q⊥1
(2π)2

d2q⊥2
(2π)2

d2q′⊥

(2π)2
(2π)2δ2(

√
x1q
⊥
1 +
√
x2q
⊥
2 −
√
x′q′

⊥
) · (q′⊥)∗ ·Ψm1

n1
(q⊥1 )Ψm2

n2
(q⊥2 )Ψm′

n′
∗
(q′
⊥

)

=δm1+m2,m′+1
1

x′

min[ν,n′+1]∑
N=max[0,n′−1]

MN,m′+1,ν−N,0
n1,m1,n2,m2

(x1, x2) PC(1)(n′,m′;N,m′ + 1) P(0)(ν −N, 0) ,

(D.30)

where ν = N + n = n1 + n2 + 1
2(|m1|+ |m2| − |m′ + 1|).

∫
d2q⊥1
(2π)2

d2q⊥2
(2π)2

d2q′⊥

(2π)2
(2π)2δ2(

√
x1q
⊥
1 +
√
x2q
⊥
2 −
√
x′q′

⊥
) · q⊥1 ·Ψm1

n1
(q⊥1 )Ψm2

n2
(q⊥2 )Ψm′

n′
∗
(q′
⊥

)

=

{√
x1

(x1 + x2)3

min[n′+1,ν]∑
N=max[0,n′−1]

MN,m′−1,ν−N,0
n1,m1,n2,m2

(x1, x2) P(1)(n′,m′;N,m′ − 1) P(0)(ν −N, 0)

+

√
x2

(x1 + x2)3
θ(n) Mn′,m′,n,−1

n1,m1,n2,m2
(x1, x2) P(1)(n,−1)

}
δm1+m2,m′−1 , (D.31)

where ν = N+n = n1+n2+ 1
2(|m1|+|m2|−|m′−1|) and n = n1+n2−n′+ 1

2(|m1|+|m2|−|m′|−1) ≥ 0.

∫
d2q⊥1
(2π)2

d2q⊥2
(2π)2

d2q′⊥

(2π)2
(2π)2δ2(

√
x1q
⊥
1 +
√
x2q
⊥
2 −
√
x′q′

⊥
) ·
(
q⊥1
)∗ ·Ψm1

n1
(q⊥1 )Ψm2

n2
(q⊥2 )Ψm′

n′
∗
(q′
⊥

)

=

{√
x1

(x1 + x2)3

min[n′+1,ν]∑
N=max[0,n′−1]

MN,m′+1,ν−N,0
n1,m1,n2,m2

(x1, x2) PC(1)(n′,m′;N,m′ + 1)P(0)(ν −N, 0)

+

√
x2

(x1 + x2)3
θ(n) Mn′,m′,n,1

n1,m1,n2,m2
(x1, x2) PC(1)(n, 1)

}
δm1+m2,m′+1 , (D.32)

where ν = N+n = n1+n2+ 1
2(|m1|+|m2|−|m′+1|) and n = n1+n2−n′+ 1

2(|m1|+|m2|−|m′|−1) ≥ 0.
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APPENDIX E. CONTRIBUTIONS TO THE LF HAMILTONIAN

E.1 Kinetic energy for the Nπ system

The contribution from a free nucleon to P− is

P−KEN
=
∑
p+

1
2∑

s=− 1
2

1
2∑

t=− 1
2

∫
d2p⊥

(2π)2
b†(p, s, t) b(p, s, t)

(p⊥)2 +M2
N

p+
. (E.1)

Substituting Eq. (4.46) to the above expression, we obtain the analytic expression of the contribu-

tion of a free nucleon to the mass squared operator H [Eq. (4.49)] in terms of the LF basis:

P+P−KEN

=
∑
xN

∑
s

∑
t

∑
n1,m1

∑
n2,m2

β†(xN , n1,m1, s, t)β(xN , n2,m2, s, t) δm1,m2

×

{
b2
[
(2n2 + |m2|+ 1)δn1,n2 −

√
n1(n1 + |m1|)δn1,n2+1 −

√
n2(n2 + |m2|)δn2,n1+1

]
+
M2
N

xN
δn1,n2

}
,

(E.2)

where we have applied the relation xN = p+

P+ [Eq. (4.21)] with P+ being the total longitudinal

momentum. Note that xN = 1 for the |N〉 sector and 0 < xN < 1 for the |Nπ〉 sector. When

evaluating the integral, we have also made use of the integral identity Eq. (D.22).

The contribution from a free pion to P− is

P−KEπ
=
∑
k+

1∑
λ=−1

∫
d2k⊥

(2π)2
a†(k, λ) a(k, λ)

(k⊥)2 +M2
π

k+
. (E.3)
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Analogous to Eq. (E.2), we also obtain the expression of the contribution of a free pion to the mass

squared operator:

P+P−KEπ

=
∑
xπ

∑
λ

∑
n1m1

∑
n2m2

α†(xπ, n1,m1, λ)α(xπ, n2,m2, λ) δm1,m2

×

{
b2
[
(2n2 + |m2|+ 1)δn1n2 −

√
n1(n1 + |m1|)δn1,n2+1 −

√
n2(n2 + |m2|)δn2,n1+1

]
+
M2
π

xπ
δn1,n2

}
,

(E.4)

with xπ = k+

P+ . Note that 0 < xπ < 1 in this work.

E.2 Interaction terms for the Nπ system

Up to the level of the one-pion processes, the interaction terms in P− can be sorted into the

pion-absorption term and the pion-emission term

P−int = P−int;abs + P−int;em . (E.5)

For an incoming nucleon (labeled “2”) that absorbs a pion (carrying momentum k and isospin

projection λ) and the outgoing nucleon (labeled “1”), the term corresponding to one-pion absorption

is

P−int;abs =iMN
gA
F

∑
p+1

∑
p+2

∑
k+

1

2π
√

2Lk+
δ(p+

1 |k
+ + p+

2 )

∑
s1,s2

∑
t1,t2

∑
λ

∫
d2p⊥1√
(2π)2

d2k⊥√
(2π)2

d2p⊥2√
(2π)2

δ(2)(p⊥1 − k⊥ − p⊥2 )

× b†(p1, s1, t1)a(k, λ)b(p2, s2, t2)

× ζ†(s1)

{
γ⊥ · p⊥1 +MN

p+
1

γ5 − γ5
−γ⊥ · p⊥2 +MN

p+
2

}
ζ(s2)︸ ︷︷ ︸

spinor kernel

T †(t1)
[∑

a

τaεa(λ)
]
T (t2)︸ ︷︷ ︸

isospinor kernel

,

(E.6)
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where δ(p+
1 |k+ + p+

2 ) is the Kronecker delta for the discretized longitudinal momenta p+
1 , k+ and

p+
2 ; it ensures the conservation of the longitudinal momentum during the pion absorption. The

spinor kernel for different helicity configurations of the incoming and outgoing nucleons is

s1 ζ†(s1)

{
γ⊥·p⊥1 +MN

p+1
γ5 − γ5

−γ⊥·p⊥2 +MN

p+2

}
ζ(s2) s2

↑ 1
p+1
MN − 1

p+2
MN ↑

↑ 1
p+1

(p⊥1 )∗ − 1
p+2

(p⊥2 )∗ ↓

↓ 1
p+1
p⊥1 − 1

p+2
p⊥2 ↑

↓ − 1
p+1
MN + 1

p+2
MN ↓

. (E.7)

For clarity, we use ”↑” and ”↓” to denote the values of +1
2 and −1

2 , respectively. The isospinor

kernel for different isospin configurations of the incoming and outgoing nucleons is

t1 T †(t1)
[∑

a τaεa(λ)
]
T (t2) t2 λ = t1 − t2

↑ 1 ↑ 0

↑
√

2 ↓ 1

↓
√

2 ↑ −1

↓ −1 ↓ 0

. (E.8)

Applying Eqs. (4.45), (4.46) and Eq. (D.3), we obtain the contribution from the one-pion absorp-

tion term to the mass squared operator [Eq. (4.16)]:
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P+ · P−int;abs =iMN
gA
F

1√
4πK

∑
x1

∑
x2

∑
xk

∑
s1,s2

∑
t1,t2

∑
λ

∑
n1,m1

∑
n2,m2

∑
nk,mk

√
x1x2 δ(x1|xk + x2)

× β†(x1, n1,m1, s1, t1) α(xk, nk,mk, λ) β(x2, n2,m2, s2, t2) T †(t1)
[∑

a

τaεa(λ)
]
T (t2)

×
∫

d2q⊥1
(2π)2

d2q⊥k
(2π)2

d2q⊥2
(2π)2

(2π)2δ(2)(
√
x1q
⊥
1 −
√
xkq
⊥
k −
√
x2q
⊥
2 )

×



Ψm1
n1

∗(q⊥1 )
[
MN
x1
− MN

x2

]
Ψmk
nk

(q⊥k )Ψm2
n2

(q⊥2 ), for s1 =↑, s2 =↑

Ψm1
n1

∗(q⊥1 )
[

1√
x1

(q⊥1 )∗ − 1√
x2

(q⊥2 )∗
]

Ψmk
nk

(q⊥k )Ψm2
n2

(q⊥2 ), for s1 =↑, s2 =↓

Ψm1
n1

∗(q⊥1 )
[

1√
x1
q⊥1 − 1√

x2
q⊥2
]

Ψmk
nk

(q⊥k )Ψm2
n2

(q⊥2 ), for s1 =↓, s2 =↑

Ψm1
n1

∗(q⊥1 )
[
− MN

x1
+ MN

x2

]
Ψmk
nk

(q⊥k )Ψm2
n2

(q⊥2 ) for s1 =↓, s2 =↓

.

(E.9)

where we have substituted the identity P+ = 2π
L K. The longitudinal momentum fractions are

x1 =
p+1
P+ , x2 =

p+2
P+ and xk =

p+k
P+ . The analytic expression of the matrix element P+ ·P−int;abs in the

LF representation can be evaluated applying the identities in Sec. D.3.

Note that the one-pion emission contribution to the mass squared operator is the Hermitian

conjugate of the one-pion absorption term P+P−int;abs.
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APPENDIX F. THE PROTON’S DIRAC FORM FACTOR

The Dirac form factor for the physical proton [Eq. (4.63)] is

F1(Q2) =F p1,f (Q2) + F pπ
0

1,f (Q2) + Fnπ
+

1,b (Q2) . (F.1)

Note that q2 is substituted by Q2 according to Eq. (4.61).

The first contribution is

F p1,f (Q2) =
∑

tN ,nN ,mN ,sN

C∗(xN , nN ,mN , sN , tN )C(xN , nN ,mN , sN , tN ) , (F.2)

which results from the virtual photon coupling to the current of the bare proton |p〉. Here, the

basis quantum numbers (according to Eq. (4.27)) are shown explicitly for clarity. The subscript

“f” denotes the contribution from the fermionic current. The summation in Eq. (F.2) is only for

the bare proton sector, i.e., xN = 1. In fact, F p1,f (Q2) is the probability of the bare proton sector,

|ap|2 (according to Eq. (4.62)), and it is independent of Q2.

The second contribution is

F pπ
0

1,f (Q2) =
∑
xN

∑
sN

∑
tN ,λ

∑
n′N ,m

′
N

∑
n′π ,m

′
π

∑
nN ,mN

∑
nπ ,mπ

e
(
tN
)

× C∗(xN , n′N ,m′N , sN , tN ;xπ, n
′
π,m

′
π, λ)C(xN , nN ,mN , sN , tN ;xπ, nπ,mπ, λ)

× 〈n′N ,m′N ;
xπ√
xN

q⊥|nN ,mN 〉 〈n′π,m′π;− xπ√
xπ
q⊥|nπ,mπ〉 . (F.3)

F pπ
0

1,f (Q2) denotes the contribution from the virtual photon coupling to the current of the bare

proton when dressed by charge-neutral π0. The effective charge factor of the nucleons is e
(

+ 1
2

)
= 1

and e
(
− 1

2

)
= 0. The kernel in the last line is the shifted operator, which is defined in Appendix

D.3.2. This kernel, hence F pπ
0

1,f (Q2), vanishes as Q2 →∞. At the limit of Q2 = 0, F pπ
0

1,f (0) = |apπ0 |2,

which represents the probability of the |pπ0〉 sector [Eq. (4.62)].
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The third contribution is

Fnπ
+

1,b (Q2) =
∑
xN

∑
sN

∑
tN ,λ

∑
n′N ,m

′
N

∑
n′π ,m

′
π

∑
nN ,mN

∑
nπ ,mπ

e
(
λ
)

× C∗(xN , n′N ,m′N , sN , tN ;xπ, n
′
π,m

′
π, λ)C(xN , nN ,mN , sN , tN ;xπ, nπ,mπ, λ)

× 〈n′N ,m′N ;− xN√
xN

q⊥|nN ,mN 〉 〈n′π,m′π;
xN√
xπ
q⊥|nπ,mπ〉 . (F.4)

Fnπ
+

1,b (Q2) denotes the contribution from the virtual photon coupling to the current of π+ that

dresses the bare neutron. The subscript “b” denotes the contribution from the bosonic current.

The effective charge factor of the pions is e
(
λ
)

= +1, 0,−1 for λ = +1, 0,−1. Analogous to

F pπ
0

1,f (Q2), Fnπ
+

1,b (Q2) vanishes for Q2 → ∞. At the limit of Q2 = 0, Fnπ
+

1,b (0) = |anπ+ |2, which

represents the probability of the |nπ+〉 sector [Eq. (4.62)].
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