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ABSTRACT 

This thesis reports the results of projects I have participated in during the period of my 

masters’ thesis. The first project reports a new fluidic micro-plasma chip with an Al-coated 

spherical surface. This device is designed to efficiently capture the glowing microdischarge signal. 

The detection of nutrients in water using this chip has been demonstrated. The detailed 

explanations of the basic principle of glowing microdischarge signal, the fluidic microplasma chip, 

the operating optical system, the concentration tests and result data analysis will be introduced in 

the following chapters. We detected the nitrate and phosphate in water sample successfully with 

our device.  

The second project reports an optimized microfluidic droplet device for fabricating 3D 

microtissues and studying the cell behaviors in 3D microtissues. It has been found by properly 

selecting the size of the microchambers on the microfluidic device and choosing an optimal 

concentration of collagen to fabricate microtissues. The behaviors of cells in the microtissues can 

be essentially the same as those of cells in a conventional cell culture system. Furthermore, this 

optimized microfluidic droplet device for fabricating 3D collagen-based microtissues can also be 

used to study breast cancer cell proliferation and motility. This is additional work that I did for my 

master’s thesis and is included in the appendix. 
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CHAPTER 1. GENERAL INTRODUCTION 

Thesis Organization 

 This thesis starts by describing the research project “Detection of Chemical Nutrients in 

Water Using a Fluidic Microplasma Chip with Enhanced Optical Collection Efficiency”, which 

has been published as a proceeding from MicroTAS conference. Chapter 2 also includes the basic 

principle of glowing micro-discharge signal, the fluidic micro-plasma chip, the operating optical 

system and result data analysis. 

 Appendix A describes the research project related to cells’ behaviors in a microfluidic 

device. This Appendix includes two papers “High Throughput Studies of Cell Migration in 3D 

Microtissues Fabricated by a Droplet Microfluidic Chip” (published in Micromachines) and 

“Studies of Cell Behaviors in 3D Microtissues in Microfluidic Device: Growth and Migration” 

(published on IEE sensors conference 2017). It included the description of the microfluidic device, 

device fabrication, experimental producers, experiment result data and discussions on the studies 

of cell behaviors. 

Appendix B is the mask schematics and its design function.  

Appendix C is the materials and surface functionalization.  

Appendix D is the AAO fabrication. 
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CHAPTER 2. DETECTION OF CHEMICAL NUTRIENTS IN 

WATER USING A FLUIDIC MICROPLASMA CHIP WITH 

ENHANCED OPTICAL COLLECTION EFFICIENCY 

Modified from a paper published in MicroTAS 2017 

Shenmin Gong, Chao Song, Daji Qiao and Long Que 

Abstract 

This paper reports a new fluidic microplasma chip with an Al-coated spherical surface 

designed to capture the glowing microdischarge signal. The detection of nutrients in water using 

this chip has been demonstrated. Compared to conventional techniques (UV/Vis spectrometry, ion 

chromatography, high-performance liquid chromatography, and capillary electrophoresis), this 

new fluidic microplasma chip offers many advantages such as low cost, small size, simple 

measurement procedures and detection of multiple species. Experiments found that nitrate and 

phosphate can be detected by this fluidic microplasma device simultaneously. A sample’s 

concentration can also be measured by using the intensity of the nitrogen spectrum which are seen 

in the microdischarge. As the sample’s concentration increases, the spectra intensity of the water 

sample increases.  

Introduction 

Water is one of the most common chemicals on earth. It is an important resource for the 

survival of all living things. In addition, all living things are composed primarily of water. Many 

biochemical reactions occur in water, and it is used to fill the spaces in and between cells. In the 

human body, water is also necessary for digestion, absorption, transport, nutrient dissolution, etc. 
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The importance of water to living creatures, particularly human, has led to the concern about water 

pollution. The technologies leading to the design of water quality sensors to detect the chemicals 

in water have been the focus of research for years. However, a large amount of work still is to be 

completed in order to improve a sensor’s specificity, accuracy and concentration limitations. 

Water quality testing is also an important part of environmental monitoring. Water quality 

affects the surrounding ecosystem. Several parameters are used to characterize the water quality. 

Important measures of chemical characteristics of water quality include pH, dissolved oxygen, 

disinfectant concentration, nitrogen content (ammonia, amines, nitrate) and phosphorous content 

(phosphate). We will mainly discuss the following parameters: nitrogen and phosphorous. 

Nitrogen is the most abundant chemical element in the air. Nitrogen is rare in the earth’s 

crust. Most of it is present in the atmosphere in the form of diatomic nitrogen molecules, which 

makes up about 78% of earth’s atmosphere. However, nitrogen in the gaseous form cannot be 

absorbed and used as a nutrient by plants and animals. The process of converting N2 into ammonia 

and other nitrogenous is called nitrogen fixation[Fig.1]. 

	

Figure 1: Major transformations in the nitrogen cycle 
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In nature, there are two ways to fix nitrogen. First, nitrogen fixation by lightning, high 

temperature discharge, etc. This formation of nitrogen fixation is rare. The second way is 

biological nitrogen fixation; that is, the diatomic nitrogen molecules are reduced to highly water-

soluble ammonia within biological organisms, mainly microorganisms. The basic reactions of 

nitrogen-fixing microorganisms is as follow:  

	

The following basic conditions must be met in order for this reaction to proceed: nitrogen-fixing 

enzymes must be available; there must be electron donors; there must be an energy supply (since 

N2 molecule has a strong bond with high bond energy and it requires lots of energy to break it); 

the environment is free from oxygen, due to the fact that the enzyme that catalyzes nitrogen 

fixation is usually inhibited by oxygen. 

After the nitrogen is converted to ammonia, the process of converting ammonia to nitrite 

and nitrate is also an important step in the global cycle. A two-step chemical reaction is carried 

out in this process. First, the oxidation of ammonium(NH4
+) to nitrite(NO2

-): 

 

Second, the oxidation of nitrite(NO2
-) to nitrate(NO3

-): 

 

Nitrate, nitrite and ammonium are important factors in water quality detection. Many 

reviews have discussed the design and fabrication of nitrate and nitrite sensors [1-3]. Excessive 

concentrations of nitrate, nitrite and ammonium in the soil will cause water loss in plants eventually 

leading their death. For these reasons, the maximum allowable contaminant level for nitrate-
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nitrogen has been set at 10 ppm (10 mg L-1 or 0.7 mM) by the U.S. Environmental Protection 

Agency (EPA). 

Phosphate is a naturally occurring form of the elemental phosphorus that can be found in 

various phosphorous-containing minerals. In organisms, phosphorus appears in form of free 

phosphate ions. Phosphorous is a crucial nutrient for plant growth. The Fig. 2 shows the 

eutrophication of a lake, the eutrophication means the nutrients in a lake or other body of water 

are rich. The excessive phosphate will boost the phytoplankton growth in the lake, which will lead 

to the lack of resources such as oxygen, and cause the death of other organisms [4,5]. Usually, the 

concentration of phosphate in water is very low (typically below 100 ppb). Many reviews have 

discussed the design and fabrication of phosphate sensors [4-7]. 

		 	

Figure 2. (a) the description of the eutrophication process; (b) the photo of the eutrophication 
of a lake 

.  

In general, many sensors or methods have been developed by research labs. Usually, these 

sensors will recognize the particular chemical first, then transfer it into a measurable physical 

signal. These physical signals include: mechanical transduction, optical transduction, 

electrochemical transduction and electric transduction. 
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Mechanical transduction can transfer the chemical reaction to a swelling strain [10] and 

detects mass changes. The mass change could be detected by the changes of resonance frequency 

(quartz crystal microbalance). The most common application of mechanical transduction is a 

quartz crystal microbalance (QCM), which is a very sensitive quality inspection instrument with 

an accuracy measured to nanograms. It can detect small amounts of the adsorb compound, and has 

been used in the water quality sensing applications. 

There are many types of sensors based on the optical properties of absorbance, fluorescence, 

luminescence and light scattering. However, they cannot provide sufficient quantification. 

Colorimetry is the most common optical detection principle applied in sensing. It is easily read by 

eyes or with a common detector like a camera. However, it suffers from the disadvantage that the 

chemical reagents are required for the detection. 

The electrochemical sensor works by reacting with the measured gas or liquid and 

producing an electrical signal proportional to the sample’s concentration. Usually, this kind of 

sensor contains electrodes and electrolytes. Chemical reactions involve electric charges moving 

between electrodes and an electrolyte. Recently, a low cost, miniaturized and sensitive 

electrochemical based nitrate sensor was designed for remote quantitative determination of nitrate 

in ground water samples [11]. In the sensor [Fig.3], a concentric design for working- and counter- 

electrodes was used, to improve the uniformity of current distribution between electrodes. The 

working- and reference- electrodes were fabricated with sliver, and the counter electrode was 

fabricated by gold. The thickness of the electrodes is 200 nm.  
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Figure 3. Microfabrication of the sensor. (a) Schematic of the three electrodes system of the 
nitrate microsensor. (b) Optical image of the microsensor 

	
The nitrate reduction follows a two electrons transfer process to form nitrite: 

	

However, the electrochemical techniques suffer from the following disadvantages: 

• Chemical erosion: Usually, some chemicals will be generated during the reaction. 

These chemicals will corrode the electrodes and decrease the sensor’s lifetime.  

• Specificity: Electrochemical sensors are susceptible to be interference from other 

gases in the air. In addition, detection of multiple chemicals in the sample at the 

same time is impossible, because all the chemical reactions convert concentrations 

to common outputs: currents and voltages. 

• Temperature: The sensors are usually very sensitive to the temperature because it 

is easy to generate heat between electrodes. 

Current widely-used techniques include UV spectrometry, ion chromatography, high-

performance liquid chromatography and capillary electrophoresis. These conventional techniques 

are performed with bench-top equipment [12-13]. These techniques are unsuitable for on-site 
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operation in the field, and unaffordable for large-scale field deployment due to their cost, bulky 

size and complex measurement procedures. Other approaches for sensing nutrients in water are 

needed. One interesting technique uses microplasma and these devices have been used to detect 

metals in water samples [14]. Herein, a nutrient sensor based on fluidic microplasma technology 

is demonstrated.  

 

Principle of the glowing microdischarge signal  

 The principles of the emission spectrum are illustrated in Fig.4. Atoms or molecules at a 

high energy level generate radiation when they transition to lower energy levels. During this 

process, the excess energy will be emitted in the form of photon. The energy of the photon released 

equals the energy difference between the two levels. For each atom or molecule, there are many 

possible transitions, and each transition responds to an energy with a specific wavelength. 

Therefore, the emission spectrum of each element is unique. High voltages are used to move 

electrons from low energy levels to high energy levels. Based on this theory, spectroscopy has 

been used to identify the elements in unknown constituents. 

	

Figure 4. the principle of the emission spectrum 
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Device description and fabrication process 

Device description 

 The sketch of the device and testing setup is shown in Fig. 5. The microplasma device 

consists of two electrodes [14]. One metal electrode (cathode) is directly connected with the water 

sample, which is inside a water sample holder, serving as a water electrode. The other metal 

electrode is positioned very closely to the water sample. A DC voltage can be applied (~500 V) 

between the two electrodes [14-16]. In addition, the device has an Al-coated spherical surface (the 

radius and height of the spherical surface have been calculated) to ensure the light from the 

microplasma can be collected by the optical fiber probe efficiently, leading to a spectrometer. 

	

Figure 5. the setup for collecting the spectra of the water sample from the microplasma device: 
sketch of the microplasma device with an Al-coated spherical surface to enhance the 

collection of the optical signal 

 
 

Device Fabrication 

 The device was fabricated using the process flow developed in our lab. The basic process 

flow is illustrated in Fig. 6. First, we designed a spherical mold. The radius and the height of the 
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mold need to be calculated before because it decides the spherical surface on the device. 

Polydimethylsiloxane(PDMS) with a weight ratio 10:1 was used to cover the bottom of the mold, 

followed by 1.5 hours of curing at the temperature of 65 °C. Then a steel ball was chosen and put 

into the mold with liquid PDMS (weight ratio 10:1), followed by the same process of bake 1.5 

hours at the temperature of 65 °C. Then, an aluminum layer (2-3 µm thick) was coated on the 

surface of the device by using E-beam evaporation. In the end, a small PDMS holder was designed 

and placed on the center of the device. This PDMS was used to hold the water sample and connect 

to electrodes (cathode). The optical fiber was placed vertically above this holder and the glowing 

microdischarge signal will be generated between the optical fiber and PDMS holder. 

	

Figure 6. Fabrication process flow of the fluidic microplasma device 

 
 

Result and discussion 

 A photo of a fabricated device is shown in Fig. 7. Using the setup illustrated in Fig. 5, the 

measured spectra using the new device and the device with a planar surface for Na2HPO4 water 

sample are shown in Fig. 8. Clearly the new device can more efficiently capture the signals. To 
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demonstrate the detection of nitrate, we tested NaNO3, KNO3 and HNO3 water samples. For the 

control experiments, NaCl water sample was tested. As shown in Fig. 9, the characteristic spectra 

of nitrate can be clearly observed except for NaCl water sample. In addition, the major spectrum 

at 360 nm for N2 can be routinely observed. This is because all the experiments have been 

performed in air ambient, thus the N2 in air emits its characteristic spectrum from the microplasma. 

	

Figure 7. Photo of a fabricated device with a Quarter dollar 

 
 

	
Figure 8. Optical signal collection from a microplasma device (a) with a planar surface and 

(b) with a spherical surface: the spectra pointed by red arrows clearly enhanced by the device 
with an Al-coated spherical surface. 
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Figure 9. Measured emission spectra form NaCl (1 mol/L), NaNO3 (1 mol/L), KNO3 (1 

mol/L), and HNO3 (5%) water samples in air with lines separated intentionally by 1000 along 
the y axis for clearer visibility. 

 
 The multiplexed detection capability of the devices has also been demonstrated. 

Specifically, we tested a mixed water sample of Na2HPO4 and NaNO3, and the characteristic 

spectra for both nitrate and phosphate are clearly observed as shown in Fig. 10. 

	

Figure 10. Measured emission spectra from a mixture of Na2HPO4 (1mol/L) and NaNO3 (1 
mol/L). 

 
 

 It has been observed that the spectral intensities of the nitrate increase with their 
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concentrations. Hence some experiments to demonstrate the possibility to determine the 

concentration of nitrate in water have been carried out. In this case, the intensity of the nitrogen 

(N2) spectrum at 360 nm (assume N2 concentration is constant in the air ambient), which are seen 

in all microdischarge, is used as a reference [14]. For example, by measuring the ratio of the spectra 

intensities of the primary nitrate (393 nm) to N2 (360 nm), it is possible to determine the 

concentration of the nitrate over a wide dynamic range (10 ppm to 1500ppm) as shown in Fig. 11.  

 

Figure 11. Ratio of nitrate to N2 spectral intensities as a function of nitrate concentration 

 

Conclusion and future work 

 The detection of nutrients including nitrate and phosphate in water using a fluidic 

microplasma chip with an Al-coated spherical surface has been demonstrated. This chip is possible 

to detect concentration of the nutrients in water. However, a datasheet related to the specific 

nutrient concentration (ratio of nutrients in water to N2 spectral intensities vs nutrients 

concentration) need to be made in the future. Drinking water, water from lake and streams and 

water from ocean need to be tested to confirm the influence of impurities on the signals that the 

device is able to detect. The performance of our device is compared to other technologies in the 
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following table: 

Techniques Operation  Cost specificity Detection 
limit 

Multiplex 
detection 

HPLC  Complex Expensive Excellent  Excellent Multiple 

UV spectrometry Complex Expensive Excellent Excellent Multiple 

Electrochemical sensor [13] Easy Cheap Good Excellent Single 

The fluidic microplasma 
sensor 

Easy Cheap Excellent Good Multiple 

 

Acknowledgements 

 Research supported by Exploratory Research Program from College of Engineering at 

Iowa State University. 

 

References 

 [1] Moorcroft M J, Davis J and Compton R G 2001 Detection and determination of nitrate and 
nitrite: a review Talanta 54 785–803  

[2] Miro M, Estela J M and Cerda V 2003 Application of flowing stream techniques to water 
analysis. Part I. Ionic species: dissolved inorganic carbon, nutrients and related compounds 
Talanta 60 867–86  

[3] Bühlmann P, Pretsch E and Bakker E 1998 Carrier-based ion-selective electrodes and bulk 
optodes. 2. Ionophores for potentiometric and optical sensors Chem. Rev. 98 1593–688  

[4] Stoddard J L, Van Sickle J, Herlihy A T, Brahney J, Paulsen S, Peck D V, Mitchell R and 
Pollard A I 2016 Continental-scale increase in lake and stream phosphorous: are oligotrophic 
systems disappearing in the United States? Environ. Sci. Technol. 50 3409–15  

[5] Maavara T, Parsons C T, Ridenour C, Stojanovic S, Dürr H H, Powley H R and Van Capellen 
P 2015 Global phosphorous retention by river damming Proc. Natl Acad. Sci. 112 15603–8  

[6] Berchmans S, Issa T B and Singh P 2012 Determination of inorganic phosphate by 
electroanalytical methods: a review Anal. Chim. Acta 729 7–20  



 

	

15 

[7] Warwick C, Guerreiro A and Soares A 2013 Sensing and analysis of soluble phosphates in 
environmental samples: a review Biosens. Bioelectron. 41 1–11  

[8] Estela J M and Cerda V 2005 Flow analysis techniques for phosphorous: an overview Talanta 
66 307–31  

[9] Hsu L H H and Selvaganapathy P R 2014 Stable and reusable electrochemical sensor for 
continuous monitoring of phosphate in water IEEE Sensors 14 1423–6  

[10] Godin M, Tabard-Cossa V, Grütter P and Williams P 2001 Quantitative surface stress 
measurements using a microcantilever Appl. Phys. Lett. 79 551–3  

[11] Gartia, Manas Ranjan, et al. “The Microelectronic Wireless Nitrate Sensor Network for 
Environmental Water Monitoring.” Journal of Environmental Monitoring, vol. 14, no. 12, 2012, 
p. 3068 

[12] P. Rundel, E. Graham, M. Allen, J. Fisher, T. Harmon, “Environmental sensor networks in 
ecological research,” New Phytologist, 182(3), 589-607, 2009.  

[13] M. R. Gartia, B. Braunschweig, et al, “The microelectronic wireless nitrate sensor network 
for environmental water monitoring,” Journal of Environmental Monitoring, 14(12), 3068-3075, 
2012.  

[14] C. Wilson and Y. B. Gianchandani, “Spectral detection of metal contaminants in water using 
an on-chip micro- glow discharge,” IEEE Transactions on Electron Devices, 49(12), 2317-2322, 
2002. 	

[15] L. Que, C. Wilson, Y. B. Gianchandani. "Microfluidic electrodischarge devices with 
integrated dispersion optics for spectral analysis of water impurities." Journal of 
microelectromechanical systems, 14(2), 185-191, 2005.  

[16] B. Mitra, C. Wilson, L. Que, P. Selvaganapathy, Y. B. Gianchandani. "Microfluidic 
discharge-based optical sources for detection of biochemicals." Lab on a Chip, 6(1), 60-65, 2006.  

 

 

 

 

 

 



 

	

16 

APPENDIX A. STUDIES OF CELL BEHAVIORS IN 3D 

MICROTISSUES IN A MICROFLUIDIC DEVICE: GROWTH AND 

MIGRATION 

Modified from a paper submitted to IEEE-Sensors and a paper submitted to micromachines 

Xiangchen Che, Jacob Nuhn, Shenmin Gong, Ian Schneider, Long Que 

 

Abstract 

 This paper reports, an optimized microfluidic droplet device for fabricating 3D 

microtissues and studying the cell behaviors in 3D microtissues. It has been found by properly 

selecting the size of the microchambers on the microfluidic device and choosing an optimal 

concentration of collagen (2 mg/ml) to fabricate microtissues, the behaviors of cells in the 

microtissues can be essentially the same as those of cells in a conventional cell culture system. The 

normal cell spreading and division in the microtissues have been observed, and the cell migration 

speed is ~14.1µm/hr, close to that of 16.2 µm/hr in a macroscale tissue. All these experimental 

results suggest the microfluidic droplet device might provide a new avenue to replace other 

approaches to fabricate 3D microtissues and study cell behaviors.  

 

Introduction 

 Traditional cell culture system, which can only offer 2 dimensional (2D) tissues and cannot 

isolate single cells or groups of cells, is difficult to be used as technical platform to uncover how 

cells respond to the extracellular matrix (ECM) and how cells communicate [1-2]. 

 The platform has the following features: (a) the platform can realize the encapsulation of 
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cells in ECM similar to that in human body. The ECM should be 3 dimensional. (b) the platform 

can achieve the isolation of single cells or groups of cells in order to control the cell-cell 

communication. (c) the platform allows to build microenvironments that are sufficiently small 

such as microtissues. (d) the platform can rapidly generate a large number of cell-encapsulated 

microtissues in parallel in a cost-effective manner for high throughput studies. 

 The microfluidic device we developed and used to fabricate 3D microtissues and study the 

cell migration in this paper coined as first-generation device [8]. However, it was found that the 

cell migration speed inside microtissue, which has a volume of ~600 pL, is ~ 2 µm/hr lower than 

that of the same type of cells when they are in macroscale tissue of 16.2 µm/hr [3]. Fuethermore, 

due to the size/volume limitation of the microtissue, the proper growth of the cells cannot be 

observed. Basically, at this volume size range, the behaviors of cells are different from those of 

cells when they are at a large-scale tissue environment.  

 In order to study the cells’ behaviors in microfluidic devices with the aforementioned 

features, meanwhile in order to ensure their behaviors are essentially the same as those in the large-

scale environment, in this effort, we modify the dimensions of the microfluidic device (coined as 

second-generation device) and evaluate the cells’ behaviors for the first time. 

 

Description of the microfluidic device 

 The droplet microfluidic device for generating arrayed microtissues is given in Fig. 12. 

Filtered silicone oil is used as the continuous flow phase and the carrier fluid. Along the flowing 

direction of the fluids as illustrated in Fig. 12, this device consists of a T-shape droplet generator, 

a liquid-droplet merger, a serpentine control-channel (c-channel), and the droplet storage-

chambers (chambers). The droplet generator forms cell-laden collagen droplets. The c-channel is 
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designed to prevent any air bubbles or non-uniform droplets from entering and occupying the 

chambers at the beginning of the operation of the device [3]. Once the uniform droplet generation 

is established, the c-channel is closed, and the outlet of the chambers is open. As a result, the 

droplets will flow toward the chambers, thereby entering and occupying them one by one. 

Compared to the first-generation device [3], the dimensions of the second-generation devices have 

been scaled up. Specifically, the diameter of the chamber increases from 120 µm to 360 µm, while 

the width of the flowing channel increases from 50 µm to 150 µm. The height of the chamber has 

been designed as 30 µm and 80 µm, respectively for two types of the second-generation devices. 

	

Figure 12. (a) Sketch of the droplet microfluidic device for generating 3D microtissues: Each 
storage chamber (a cylinder with a radius of 180 µm and height of 30 or 80 µm) has one 3D 
microtissue containing single or multiple cells; (b) photo of a fabricated chip with 15 storage 

chambers; (c) optical micrography showing the storage chambers 
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Device fabrication and experimental procedure 

Device fabrication 

 The device is fabricated using a soft lithography process. Briefly, a SU-8 mold (30 µm, 50 

µm and 80 µm thick) of the device is formed on a silicon substrate. Polydimethylsiloxane (PDMS) 

is then casted on the mold, followed by 1.5 h of curing at the temperature of 65 °C. Finally, the 

PDMS microfluidic layer is peeled off from the mold, and then bonded with a glass substrate after 

oxygen plasma treatment for 10 seconds. The input and output holes are made in the PDMS layer 

for the delivery of the samples to the chip, followed by assembling input and output tubing 

(Upchurch Scientific, Inc., Oak Harbor, DC, USA) 

3D microtissues fabrication procedure 

 The device is firstly soaked in PBS buffer solution (pH –7.4) in incubator (FISHER 

SCIENTIFIC-ISOTEMP 3530) overnight [3]. Silicone oil (SIGMA-ALDRICH) is used as the 

fluid carrier. The cell loading in the collagen droplets is based on Poisson distribution during the 

experiments. No surfactant is used to facilitate the droplet stability. The collagen flowing input 

tube and syringe and submerged into a cold-water tank (0~2 °C) to avoid fast polymerization. After 

the droplets are in the chambers, the device is flipped over regular until the collagen is fully 

polymerized, thereby making sure the cells are in the middle of the storage chamber (along z-axis), 

namely the cells in the 3D-matrix. 

Materials and methods 

 Breast cancer MDA-MB-231 cells were subcultured in Dulbecco’s modified Eagle’s 

medium with 10% fetal bovine serum, 2% Glutamax, and 1% penicillin/streptomycin. Imaging 

media was the same except it lacked phenol red and was supplemented with 12 mM HEPES. On 

the day the chambers were loaded, cells were trypsinized and suspended in 2 mg/mL collagen 
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solution (rat tail-CORNING-354249) neutralized with imaging media at a cell density of 2 × 106 

cells/mL.  Chips were either loaded with a continuous collagen phase or with droplets in the storage 

chambers. Cells were allowed to spread over 24 h. Phase contrast images were then taken every 

0.5–2 min over 4–8 h. Slabs of collagen were generated between two microscope slides with 60 

µm (thin) or 360 µm (thick) spacers. Cells were prepared and imaged in the same way as for the 

devices with the exception that 3 × 105 cells/mL were used. 

In order to mitigate or even eliminate the droplet shrinking issue due to evaporation,  

the fabricated chip was firstly soaked in PBS buffer solution (pH-7.4) in incubator  

(FISHER SCIENTIFIC-ISOTEMP 3530) overnight before use to ensure that PDMS was saturated 

with PBS. Silicone oil (SIGMA-ALDRICH) was used as the fluid carrier. Harvard syringe pump 

(70–4500) was connected with syringes for flowing the oil and the collagen/cells. In the 

experiments, the cell loading in the collagen droplets was based on Poisson distribution without 

any attempt to control the loading process. In addition, no surfactant was used to facilitate the 

droplet stability. During the collagen droplet generation and storage process, the collagen flowing 

input tube and syringe were submerged into a cold water tank (0~2 °C) to avoid fast polymerization 

since the polymerization rate is highly depended on temperature. After the droplets were stored in 

the chambers, the device was flipped over every minute within 10 min until the collagen was fully 

polymerized in the storage chamber, and to make sure the cells were in the middle of the storage 

chamber (along the z-axis), thereby ensuring the cells to stay in the 3D-matrix. For the experiments, 

the droplet microtissues remain surrounded by silicone oil. Experiments on the cell behaviors after 

the oil is replaced by cell culture media are in progress. 

Confocal reflectance microscope (LEICA LAS-AF, Weltzlar, Germany) was used to image 

the 3D-matrix system. Standard incubator (FISHER SCINTIFIC-ISOTEMP 3530, FISHER 
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SCINTIFIC, Waltham, MA, USA) was used to incubate the chip overnight in order to make cells 

accommodate to 3D-matrix system for cells’ optimum behavior. OLYMPUS IX73 (OLYMPUS, 

Tokyo, Japan) with camera DP73 (OLYMPUS, Tokyo, Japan) was used to track the cell migration. 

During the cell tracking process, the chip was submerged into a glass petri dish filled with 

PBS buffer at 37 °C to prevent drying problem. A heating stage (HARVARD APPARATUS-c-

11842, HARVARD APPARATUS, Holliston, MA, USA) was applied to supply continuous heat. 

Finally, image J (National Institutes of Health, Bethesda, MD, USA) with a cell tracker model was 

used to track and plot the cell migration diagram. Experiments found that oxygen depletion was 

not a problem, even in our relatively small microtissues with PDMS and media above. Cell death 

did not occur over the period of about two days in the chamber, particularly if it was kept under 

proper pH buffering and temperature conditions. The oxygen consumption rate (OCR) for cancer 

cells is no higher than 30 pmol·s−1·10−6·cells [3]. The volume of each microtissue is ~6.0 × 10−10 L 

and no more than 10 cells occupy a microtissue. Consequently, the OCR for one microtissue is 

500 nM/s. If no oxygen transfer occurs, it would take over a day for the cells in each microtissue 

to decrease the oxygen concentration from 260 µM, the saturated level of media in equilibrium 

with air in the incubator, to 200 µM, a value still well above hypoxic conditions. However, there 

is oxygen transport across the liquid and PDMS, and the transport is governed by the following 

equation at steady state: OCR = (D/h)A(C* − C), where OCR is the oxygen consumption rate (0.3 

fmol/s), D is the diffusion coefficient of oxygen in PDMS or water (3 × 10−5 cm2/s) [4], A is the 

cross-sectional area of each microtissue (1.2 × 10−4 cm2), C* is the equilibrium concentration of 

oxygen in fluid (260 µM), C is the local oxygen concentration around the cells and h is the height 

of the PDMS and fluid above the microtissue. At a height of 0.8 cm, the steady-state oxygen 

concentration is about 200 µM. While there is little information on whether cell function is altered 
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at this concentration, it is well above that which is considered hypoxic (<6 µM). Furthermore, 

because media is initially at an equilibrium concentration of 260 µM oxygen, it takes time for the 

oxygen concentration to reach this steady state. At the time that experiments are conducted, the 

oxygen level is 200–210 µM. Consequently, the 0.8 cm of PDMS and media is thin enough to 

support the relatively low rate of oxygen consumption within the microtissues.  

 

Results and discussion 

Droplet capture 

 The optical image of the fabricated arrayed microtissues inside the storage chambers is 

given in Fig 13 The optical image of the fabricated arrayed microtissues inside the storage 

chambers is given in Fig 13a. Following the procedure described in Section 2, it has been 

demonstrated that the uniform microtissues can be formed and stored in the storage chambers on 

the chip routinely. However, it should be emphasized that care should be taken to avoid the 

polymerization of the collagen in the flowing channels on the chip; otherwise, the storage 

chambers cannot be occupied by microtissues properly. In Fig 13b, a close-up optical image of a 

droplet shows a cell inside a polymerized collagen fiber. In order to show the collagen fiber more 

clearly, a confocal image in Fig 13c has been taken on the droplet, showing one cell embedded in the 

polymerized collagen fiber. 
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Figure 13. (a) Photo of arrayed microtissue stored in storage chambers; (b) close-up of one 
microtissue containing one cell; (c) confocal image of one cell inside polymerized collagen 

fiber, forming a microtissue 

 

Droplet environment  

In order to confirm that the cell is indeed surrounded by a 3D extracellular matrix (ECM), 

which is made up of polymerized collagens, some confocal images of the microtissues have been 

taken. A topside view, cross-section view and the stacked images from the bottom to the top of a 

microtissue are obtained in Fig 14. Given that the nominal height of the fabricated storage 

chambers is ~50 µm, the cell is roughly ~20 µm above the bottom of the microtissue and ~20 µm 

below the top of the microtissue. Basically, the cell is embedded inside the collagen fibers. Note 

that the gap of the cell from the top and bottom of the microtissue can be readily increased by 

increasing the height of the storage chambers. 
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Figure 14. Confocal images showing one cell inside a 3D microtissue in a storage chamber: 
(a) topside view; (b) cross-section view; (c) stacked confocal images of a microtissue showing 

one cell inside a 3D microtissue 

	
It has been found that as long as the silicone oil does not directly contact the cells, it will 

not affect cell viability. In the experiments, only the cells embedded within the polymerized 

collagen have been studied. These cells are not directly exposed to oil. The total time for the cells 

inside the polymerized collagen for the experiments was up to 32 h, and no clear effect on cell 

viability was observed during this time period, suggesting that the oil does not diffuse into the 

microtissue droplets. 

It has also been observed that the polymer gel structure has some differences at the interior 

versus the edges of the microtissue droplets. Interactions with surfaces could potentially nucleate 

collagen fiber assembly or simply act as an adherent surface for collagen fibers. The typical time 
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for the polymerization of the collagen is ~15 min at room temperature, similar to that for collagen 

polymerization on a glass cover slip.  

The real-time migration videos (in the supplementary) of the cells inside microtissue have 

been recorded using an optical microscope. The representative images in Fig 15, (a) and (b) shows 

the migration of three congregated cells inside microtissue in a 7 h period of time, while the 

representative images in Fig 15, (c) and (d) shows the migration of one cell inside a microtissue 

during the same period of time. These experiments demonstrate that the chip can provide a platform 

to study the migration of one single cell or multiple cells in a microtissue environment. In addition, 

since the cells are confined in a small volume (~600 pL), the communication among them may be 

easily studied.  

 

Figure 15. Representative optical images showing (a,b) the migration of three cells inside 3D 
microtissue during a 7 h period at 37 °C; (c,d) the migration of one cell inside 3D 

microtissue during a 7 h period at 37 °C. 
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Results of the first-generation device 

Based on the recorded videos (in the supplementary), the cell migration speed has been 

calculated under two conditions. The first condition includes chips that are filled with cells 

embedded in collagen, generating a continuous collagen network. This increases the volume of the 

environment, decreasing the opportunity for the depletion of nutrients or accumulation of waste. 

Also, cells in different chambers may communicate. The second condition includes devices that 

only contain cells embedded in collagen in droplets within the chambers (Fig 15). These droplets 

have relatively small volumes and cells in a particular droplet cannot communicate with cells in other 

droplets. These conditions were compared to cell migration in thin (60 µm) and thick (360 µm) slabs 

of collagen. Representative migration trajectories are shown in Fig 16 (a) and (b). Cells in the 

continuous collagen gels migrate similarly to those in the thin collagen slabs and slower than those 

in the thick collagen slabs (Fig 16c). Cells in droplets migrated much slower than any other condition 

(Fig 16c). 

 

Figure 16. Representative trajectories of cells embedded in collagen (2 mg/mL) in the chip (a) 
and embedded in a collagen (2 mg/mL) slab between two coverslips (thick: grey, thin: black); 
(b) The chip is either filled with a continuous polymerized collagen network (grey) or droplet of 
collagen within the chambers (black); (c) Average cell speed under the different conditions as 
well as the length scales associated with each condition. Error bars are 95% confidence 
intervals. 
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It is interesting that the chip filled with a continuous collagen network and a thin slab results 

in similar migration rates. Collagen stiffness is known to alter migration speeds and the observed 

stiffness of flexible networks changes close to stiff interfaces, a so-called wall effect. The similar  

z-dimension length scales between these conditions likely generate the similar migration speeds. 

Consequently, thicker polymerized collagen networks in the chips are likely needed to observe  

faster migration. Finally, the droplet xy-dimensions length scales are much smaller than the other 

conditions suggesting that either (1) cells require communication between chambers or (2) small 

volumes in this first-generation chip inhibit migration. The second-generation chips with storage 

chambers that are both thicker and larger will allow us to eliminate the wall effects and focus on  

cell-cell communication within and between chambers that governs cell migration. 

Cell spreading in 3D microtissue (the second-generation device) 

 Representative images showing the measured cell spreading in first generation device and 

the second-generation device are given in Fig 17. As seen clearly, the cells are still alive but do 

not show apparent spreading after 24-hour incubation in the first-generation device. Basically, the 

shape of the cell remains roughly round 24 hours later. In contrast, the spreading of cells in the 

second generation is very obvious. The morphologies of the cells become essentially the same as 

those of cells grown inside the large-scale tissue in a conventional cell culture system, indicating 

as far as the dimensions are selected properly, the microtissue can provide similar biological 

environment for cells to that of macroscale tissue. The volume of the microtissue in the second-

generation device is ~8140 pL in comparison with the volume of ~600 pL for the first-generation 

device. 
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Figure 17. Cell spreading in 3D matrix within (a) small chamber of ~600 pL; (b) larger 
chamber of ~8140 pL volume after 24-hour incubation. 

	
Cell division in 3D microtissue 

 Another important observation of the second-generation device is the cell division 

procedure as shown in Fig. 18. In the first-generation device, the cell division was not observed, 

suggesting the size limitation of the tissue, resulting in the abnormal growth of the cells [8]. As 

shown clearly in the second-generation device, the cell becomes round shape in Fig. 18c. then cell 

division occurs in Fig. 18d. after the two daughter cells are formed in Fig. 18c, they grow normally 

in Fig. 18f. 
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Figure 18. Optical micrographs showing the cell spreading and growth procedure in a 3D 
microtissue 

 
Cell migration trajectory and speed in 3D microtissue 

 The videos of cells’ migration inside microtissue have been recorded using an optical 

microscope [9]. Representative migration trajectories are given in Fig. 19a. Compared to those in 

first generation devices, the range of the migration of cells has been significantly increased. For 

instance, the cell migration is within an area of 3 µm * 14 µm for the second-generation device. 

Also, the cell migration speed has been calculated based on the videos as shown in Fig. 19b. 
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Figure 19. Comparison: cell migration trajectory (a) and migration speed (b) inside the 
microtissue fabricated in the first-generation device and the second generation. 

 
Collagen concentration (tissue fiber density) effect on cell migration speed: Different 

concentration of collagen have been used to fabricate microtissues, resulting in microtissues with 

different densities. The measured cell migration speeds are summarized in Fig. 20. It has been 

found that the lower collagen densities (1 mg/ml and 2 mg/ml) show an improved cellular 

migration speed over the higher collagen densities (3 mg/ml). This is due to the thick gel having 

more fibers to restrict the pore size within the matrix. An increased density of fibers would require 

more MMP activity to increase pore size and allow for higher freedom of movement. Note that 

collagen fibers must be dense enough for the cell to grow on, but not too dense to limit the cell 

migration speed. Experiments have found that 2 mg/ml is an optimal concentration for collagen 

because most of cell spreading and division are only observed at this value. 
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Figure 20. Collagen concentration (tissue fiver density) effort on cell migration speed. 2 
mg/ml used as a standard concentration since most of cell spreading occurs and cell division is 

only observed at this concentration 

 
 Microtissue thickness (volume) effect on cell migration speed: In order to understand the 

cell speed influenced by the microtissue thickness (i.e. volume), devices with chamber thickness 

of 30 µm and 80 µm are fabricated, while the chamber diameter remains 360 µm for both types of 

devices. As shown in Fig. 21, the average cell migration speed in 30 µm thick microtissue is ~7.1 

µm/hr, which is much lower than that in 80 µm thick microtissue of 14.1 µm/hr. This indicates the 

microtissue thickness (volume) indeed affects the cells’ behavior. For comparison, the measured 

cell migration speed in a slab of 360 µm thick tissue is ~16.2 µm/hr, very closed to the device with 

80 µm thick microtissue. 

 For the device with an increased chamber height, and thus increased volume of microtissue, 

the cells migrate faster as a result of experiencing less edge effects, cellular waste taking longer to 

accumulate, and oxygen depletion within the gel requiring more time to affect the cells. 
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Figure 21. Thickness (volume) effect on the migration speed: the second-generation devices 
with chamber heights of 30 um and 80 um. A large gel with a height of 360 um. The cell 

migration speed in 30 um thick microtissue is half of that in 80 um thick microtissue, which is 
close to the migration speed in the 360µm thick tissue 

 
 These experiments indicate by adjusting the dimensions of our microfluidic device, the 

cells’ behaviors in microtissue in a microfluidic device can be similar to that in the tissue 

fabricated in a conventional cell culture system. But the microfluidic device offers many 

advantages over the conventional cell culture system as mentioned in the Introduction section.  

	
Conclusions 

 In summary, in this effort, we have demonstrated the possibility to use microfluidic devices 

to fabricate microtissues of proper sizes/volumes for studying the normal cells’ behaviors 

including growth and migration, which are similar to those of cells in a large scale tissue. This 

technical platform opens a new avenue to study the behaviors of single cell and/or a group of cells 

in a in vivo – mimicking 3D microtissue environment.  
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APPENDIX B. MASK SCHEMATICS AND DESIGN FUNCTION 

 The Appendix B shows the schematic masks and design functions for the microfluidic 

device. 

 The schematic of mask is showed in Fig. 22. There are five patterns in the mask, which 

means can fabricate 5 devices once by using this mask. There are 15 chambers, 3 inputs channel, 

one control channel and one output channel. 

	

Figure 22. The schematic of mask 



 

	

35 

	
 The design of droplet-based microfluidics is described in the citation [1]. In my 

experiment, we used the principle of direct trapping (RI < Ru) to catch the cells (Fig. 23). 

	

Figure 23. Droplet capture in the traps using direct trapping and indirect trapping approach 
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Figure 24. (a) Schematic of a single loop highlighting the various geometric dimensions; (b) 
the table shows four different ratios of lower to upper branch resistance that were tuned by 
varying the width (w) and length (l) of the constriction in the hydrodynamic trap and the 
length of the upper branch. The subscripts denote the various sections of the feometry; 

	
 Here, both of the channel resistances (RI and Ru) were calculated using the following 

equation: 
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The ratio was tuned by varying the width and length of the constriction in the 

hydrodynamic trap and, the length of the upper branch as shown in Fig. 24. The trap size (wa = 

150 µm) and device height (h = 80 µm) were fixed. The data we used for our microfluidic device 

illustrated in Fig. 25. 

	

Figure 25.Parameter datasheet in the microfluidic device 
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APPENDIX C. MATERIALS AND SURFACE 

FUNCTIONALIZATION 

Materials  

1. 1/9 (mol ratio) of HSC10COOH/HSC8OH in absolute ethanol. 

a. Get 10 ml 0.2mM HSC10COOH: 

i. Take 4.3672mg in 10ml absolute ethanol to get 2mM HSC10COOH 

ii. 1 ml 2mM mix with 9ml absolute ethanol to get 0.2mM HSC10COOH 

b. Get 10 ml 1.8mM HSC8OH 

i. 31.4ul HSC8OH in 10ml to get 18Mm 

ii. 1ml 18mM HSC8OH, mix with 9ml absolute ethanol to get 1.8mM 

HSC8OH 

c. Mix 10ml 0.2mM HSC10COOH & 10ml 1.8mM HSC8OH 

2. NHS and EDC 

a. 0.2M N-hydroxysuccinimide (NHS) and 0.05M  

N-(3-dimethylamnopropyl)-N-ethylcarbodiimide hydrochloride (EDC) in H2O, 

2.3018g NHS, 0.9585g EDC dissolve in 100ml H2O  

3. 1M PH8 phosphate buffer 

a. 1M Na2HPO4: 56.784g Na2HPO4 dissolve in 400ml H2O 

b. 1M NaH2PO4: 11.998g NaH2PO4 dissolve in 100ml H2O 

c. 1M pH8 phosphate buffer: 372.8ml 1M Na2HPO4 + 27.2ml 1M NaH2PO4 

4. 0.1M pH7.2 PBS with 5mM KCl and 1mM 

a. 0.1481g KCl, 32g NaCl, 5.76g Na2HPO4, 0.96g KH2PO4, 0.08g MgCl2•6H2O, 
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dissolve in 400ml H2O, adjust pH using KOH. 

5. 1M ethanolamine (EA) dissolved in H2O 

a. 500µL EA dissolve in 9.401 H2O 

Surface functionalization protocol 

1. Get a gold coated AAO sensor. Get the spectrum. 

2. Dip HSC on the surface, incubate for overnight, 4 °C. 

3. Rinse with Ethanol, then rinse with 10 mM PBS 8.0. Get the spectrum. 

4. Dip EDC on the surface, incubate for 2 hours, room temperature. 

5. Rinse with PBS 8.0. Get the spectrum. 

6. Dip antibody on the surface, incubate for overnight, 4 °C. 

7. Rinse with PBS 8.0. Get the spectrum. Dip EA on the surface, incubate for 2 hours 

8. Rinse with PBS 8.0. Get dip A-beta or T-tau on the surface, incubate for 2 hours. 

9. Rinse with PBS 8.0. Get the spectrum. 

	

Figure 26. Surface functionalization flow 
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APPENDIX D. AAO FABRICATION 

Materials  

1. ITO glass (purchased from Nanocs, Inc). The sheet resistance is 100X/sq. 

2. Photoresist (AZ1512) and AZ developer (purchased from AZ Electronic Materials). 

Fabrication process 

The fabrication process is described in Fig. 27a. First of all, The ITO glass substrate need to be 

washed by DI water, Acetone, IPA, and DI water in sequence. After the ITO substrate being 

washed, it will be baked about 5 minutes to dry the surface. A thin film of aluminum layer is 

deposited by E-beam evaporation shown in Fig. 27b. The quality of the aluminum layer is 

important to achieve the successful anodization. There are two requirements for this aluminum 

lay: 1. This layer should be totally oxide-free. 2. The surface should be smooth enough. 

Measurements have a typical roughness in the range of 6–12 nm [2-4]. Then, anodization process 

need to be applied. The processed glass will be added into the acid solution (0.3 M oxalic acid) 

with 45 V DC voltage at 2 C to form AAO (Fig. 27c). A layer of AAO will be formed over the 

substrate during this process. For the one-step anodization process [6], we only carry out one-step 

anodization on the samples for 25, 35, and 45 min. For the two-step anodization process [5], it 

takes 10 min for step-one anodization in 0.3 M oxalic acid, followed by etching using a mixture 

of phosphoric acid (0.4 M) and chromic acid (0.2 M) at 65 °C for 30 min, followed by a 40-minute 

step-two anodization in 0.3 Moxalic acid with the same experimental conditions as for step-one 

anodization. After the anodization process, another 150nm thick aluminum layer will be deposited 

on surface by the thermal evaporation as shown in Fig. 27d. In order to create the nano pore on 

the AAO surface, a process of photolithography will be applied on the Al-coated AAO substrate. 
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For the photolithography process, we use the standard process designed by our research group: a 

1 lm photoresist (AZ 1512) layer is spin-coated at 4000 rpm on the substrate, then the coated 

substrate is soft baked for 50 s at 95 °C. The micro-patterns are then transferred and generated on 

the photoresist through a photomask using a 416nm light exposure with a dose of 70 mJ/cm2, 

followed by a post-exposure bake for 50 s at 105 C. The exposed photoresist is developed and 

selectively removed by immersing in AZ developer for 25 s. The layer of AZ will protect the Al 

underneath to avoid being etched. The processed substrate will be added to the etching solution 

{(H3PO4: CH3-COOH: HNO3: H2O) 80:5:5:10 by weight%} for 35 s to etch away the Al layer 

Fig. 27e. After that, the processed substrate will be added to a mixture of phosphoric acid (0.4 M) 

and chromic acid (0.2 M) at 20 C for 100 min to etch away the unprotected AAO Fig. 27f. In the 

end, the rest of photoresist will be washed away by dipping the substrate in acetone, followed by 

removing the Al layer using the Al etching solution.  

	
Figure 27. Sketch of the fabrication process flow for AAO micro-patterns 

	
	

 



 

	

42 

References 

[1] Bithi, Swastika S., and Siva A. Vanapalli. “Behavior of a Train of Droplets in a Fluidic 
Network with Hydrodynamic Traps.” Biomicrofluidics, vol. 4, no. 4, 2010, p. 044110., 
doi:10.1063/1.3523053. 

[2] X. Li, Y. He, T. Zhang, T. Lee, L. Que, Proc. IEEE NANO (2012), http://dx.doi.org/ 
10.1109/NANO.2012.6321926.  
[3] X. Li, Y. He, T. Zhang, L. Que, Opt. Express 20 (19) (2013) 21272–21277.  

[4] X. Li, Y. He, L. Que, Langmuir 29 (7) (2013) 2439–2445.  

[5] Y. He, X. Li, L. Que, J. Nanosci. Nanotechnol. 12 (10) (2012) 7915–7921.  

[6] G. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, J.P. Celis, J. Electrochem. Soc. 149 (7)  

(2002) 97–103.  

 

 


