
An integer programming clustering approach
with application to recommendation systems

by

Mujing Ye

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Industrial Engineering

Program of Study Committee:
Sigurdur Olafsson, Major Professor

John Jackman
Dan Zhu

Iowa State University

Ames, Iowa

2007

Copyright © Mujing Ye, 2007. All rights reserved.

UMI Number: 1447502

1447502
2008

Copyright 2007 by
Ye, Mujing

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

All rights reserved.

 by ProQuest Information and Learning Company.

 ii

TABLE OF CONTENTS

LIST OF TABLES iv

LIST OF FIGURES iv

ABSTRACT vi

CHAPTER 1 INTRODUCTION 1

1.1 Motivation 1

1.2 Objective 2

1.3 Thesis Organization 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Clustering Methods 4

2.2 Similarity Measures 6

2.3 Recommendation System 8

CHAPTER 3 MATHEMATICAL MODEL 12

3.1 Mathematical Formulation by QIP model 12

3.2 Example of QIP model 14

3.3 IP model 15

3.4 Iris data set Testing and Parametric Analysis 16

3.5 Numerical Experiments 20

3.6 Space Decomposition Technique 23

3.7 Heuristic Solving Procedure 25

3.8 Discussion 25

CHAPTER 4 NETFLIX MOVIE RATE PREDICTION 27

4.1 Dataset Description 27

 iii

4.2 Data Reduction 28

4.3 Similarity Measures for Missing Data 30

4.4 Movie Rate Prediction 32

4.5 Collaborative Filtering 35

4.6 Discussion 38

CHAPTER 5 CONCLUSION AND FUTURE WORK 39

BIBLIOGRAPHY 40

ACKNOWLEDGEMENTS 46

 iv

LIST OF TABLES

Table 1 A Fragment of Rating Matrix for a Movie Recommendation System 8

Table 2 Iris Data 17

Table 3 Parametric Tests for Iris Data 19

Table 4 Scalability Test 20

Table 5 Reduce Max No. of Clusters 22

Table 6 Time Variability Test 22

Table 7 Separation and Total Time 23

Table 8 Scalability Test by Space Decomposition Technique 24

Table 9 Movie-customer Matrix 30

Table 10 Filtered Instances for Customer ID=1488844 33

Table 11 Movie Rate Prediction for the First 20 Customers 34

Table 12 Cluster for Customer ID=124105 35

Table 13 Collaborative Filtering Cj-M1 Pairs, k=1 36

Table 14 Collaborative Filtering Cj-M1 Pairs, k=5 37

Table 15 Collaborative Filtering Cj-M1 Pairs, k=10 37

 v

LIST OF FIGURES

Figure 1 Clustering Methods 5

Figure 2 Movie-customer Pair Network 29

 vi

ABSTRACT

 Recommendation systems have become an important research area. Early

recommendation systems were based on collaborative filtering, which uses the principle that

if two people enjoy the same product they are likely to have common favorites. We present

an alternative recommendation approach based on finding clusters of similar customers using

integer programming model which is to find the minimal number of clusters subjected to

several similarity measures. The proposed recommendation method is compared with

collaborative filtering, and the experimental results show that it provides relatively high

prediction accuracy as well as relatively small variance.

 1

CHAPTER 1 INTRODUCTION

1.1 Motivation

Recommender systems are a specific type of information filtering (IF) technique that

attempts to present to the user information items that the user is interested in. Examples of

such application for recommendation systems include recommending movies, music, books,

news, web pages and so on. In order to make good recommendation, the user's profile is

compared to some reference characteristics, which may be from the information item (the

item-based approach) or the other user's profiles (the collaborative filtering approach).

The most popular technique used in recommendation systems is collaborative

filtering (CF), especially k-nearest neighbor collaborative filtering, such as those used by

Netflix, Amazon, and other Web retailers. (Adomavicius and Tuzhilin, 2005) CF is based on

the principle that if two people enjoy the same product, they're likely to have other favorites

in common too. But behind this simple premise is a complex algorithm that incorporates

millions of user ratings, tens of thousands of items, and ever-changing relationships between

user preferences. For example, in Netflix published data set, there are over 17 thousand

movie titles and over 100 million ratings from 480 thousand randomly-chosen, anonymous

Netflix customers. (REF) To deal with this complexity, algorithms for recommendation

systems are "trained" on huge datasets. One dataset used in Netflix's system contains the star

ratings--one to five--that Netflix customers assign to movies. Using this initial information,

good algorithms are able to predict future ratings, and therefore can suggest other films that

an individual might like.

Clustering is the process of grouping the data into classes or clusters, so that objects

within a cluster have high similarity in comparison to one another but are very dissimilar to

objects in other clusters. (Han 2006) Several similarity measures are often used such as

 2

Euclidean distance measures, cosine measures, correlation coefficient measure etc. However,

current clustering algorithms need decision-makers to pre-estimate the number of clusters or

the number of nearest neighbors, which is normally a vague parameter since we hardly know

in advance the patterns of the dataset. The minimal number of clusters is a very important

parameter in data mining clustering problems since it shows minimal clusters to represent the

original large data set and it also can improve the accuracy of current clustering methods.

Similarly, k-nearest neighbor CF is designed to recommend items for the user according to

other k users that are most likely to the target user (whom the recommendation system

attempts to recommend items for). Since we generally don’t know k beforehand, the kth user

may be far away from the target user, hence the predicted value often has a large variance if k

is not suitable chosen. Moreover, most CF algorithms only employ one similarity measure to

determine similarity among users or items, causing that prediction may not be good in some

cases due to the drawbacks of some similarity measures themselves. For example, distance-

based similarity measure takes only the impact of the distance into account, cosine measure

considers the direction of items which is often more used in document retrievals, while

correlation coefficient measure has advantage with the scaled value between -1 and 1.

1.2 Objective

In this study, we design a new clustering method by using an integer programming

model, aiming at minimizing the total number of clusters and subjected to several similarity

measures. The proposed model is applied to predict the movie rates of Netflix

recommendation system after dynamically generating the most correlated data set for each

target customer according to his/her preference indicated by his/her historical records of

movie rates. Prediction is based on other similar customers in the same cluster by employing

the proposed integer programming clustering model. The results provide relatively high

prediction accuracy as well as small variance compared to collaborative filtering algorithms.

 3

1.3 Thesis Organization

Chapter 2 reviews relevant literatures about most commonly used clustering methods,

typical similarity measures and recommendation systems. In chapter 3, we develop a new

clustering method by using integer programming model. We report extensive experiments

about the suitable conditions that the model can be applied as well as parametric analysis. In

chapter 4, we further apply the proposed integer programming model to the Netflix published

data set to predict the movie rates by finding clusters of similar customers. Conclusion and

future work are drawn in chapter 5.

 4

CHAPTER 2 LITERATURE REVIEW

2.1 Clustering Methods

Clustering is the unsupervised classification of instances into similar groups (clusters).

The methods of clustering technique have two big categories: hierarchical clustering

algorithms and partitional clustering algorithms. According to Jain, Murty and Flynn (1999)

as showed in Figure 1, these also have several subcategories respectively.

A hierarchical clustering method is to group instances into a hierarchy of clusters that

describes the degree of similarity between those instances. Hierarchical clustering methods

can be further classified as either agglomerative or divisive, depending on if the hierarchical

decomposition is formed in a bottom-up (merging) or top-down (splitting) fashion. Distance

among clusters for most hierarchical clustering algorithms are single-link (Sneath and Sokal

1973), complete-link (King 1967), or minimum-variance (Ward 1963; Murtagh 1984).

Especially, the single-link and complete-link algorithms are most popular used. The single-

link method uses the minimal distance between instances in the two clusters, while the

complete-link applies the maximum of all pair-wise distances in the two clusters.

The partitional techniques usually produce clusters by optimizing a criterion function

in order to organize objects into partitions, and each partition represents a cluster. The k-

means algorithm is to employ a squared error criterion (McQueen 1967) and iteratively

generate cluster centers. Several variants of k-mean are k-medoids, CLARANS and so on.

The best-known graph-theoretic divisive clustering algorithm is provided by Zahn (1971),

who constructs the minimal spanning tree (MST) and delete the longest MST edges in order

to generate clusters. The Expectation Maximization (EM) algorithm is the representative for

the mixture resolving approach with the underlying assumption that the patterns of clusters

 5

are drawn from one of several distributions, and the goal is to identify the parameters of each

distribution (Dempster et al. 1977). Other mixture resolving and model-seeking algorithms

are conceptual clustering, neural network approach and so on. (Han 2006) A problem

accompanying the use of a partitional algorithm is the choice of the number of desired output

clusters, which is normally hard to know in advance especially for high dimensional data set.

Figure 1 Clustering Methods

In addition to classical clustering methods mentioned above, there was extensive

work done on optimization methods in clustering techniques as reviewed by Olafsson, Li and

Wu (2006).

Vinod (1969) first provides integer programming formulations for the clustering

problem. In one of his formulation, decision variables are binary to indicate if the instance is

assigned to the cluster and the objective is to minimize the total assignment cost. Rao (1971)

improves Vinod’s work by minimizing two compactness measures, in which one measure is

the within cluster sum of squares and the other, the maximum distance within clusters.

Bradley et al. (1996) and Bradley and Mangasarian (2000) also provide mathematical

programming formulations for the clustering problem, but they focus on identifying cluster

 6

centers (decision variables). However, the solution from Bradley et al. (1996) turns out to be

the cluster centers such that each instance in the cluster is as close as possible to the center,

which means that the solution may be a cluster set where the clusters are not well separated.

Bradley and Mangasarian (2000), on the other hand, employ mathematical programming to

find the best cluster planes instead of the best centers. They propose an iterative algorithm,

like k-means algorithm, to find the plane that minimize the sum of squares of distances of

each instance to the cluster.

More recent work defines clustering problem as set covering (e.g. Shmoys, 1999). For

example, the problem of locating the best clusters mirrors problems in facility location

(Shmoys et al., 1997), and especially the k-center and k-median problems. Several other

research work focus on the scalability of clustering algorithms. (Bradley et al. 1998; Ng and

Han, 1994; Zhang et al., 1996)

Another clustering problem is sequential clustering, which is equivalent to the

partitional clustering problem, except that the instances are ordered and this order must be

maintained in the clustering. Hwang (1981) shows how to find optimal clusters for this

problem, and Joseph and Bryson (1997) show how to find so called w-efficient solution to

sequential clustering using linear programming.

2.2 Similarity Measures

Similarity is quite difficult to measure, since the quantity reflects the strength of

relationship between two objects. This quantity is usually having range of either 0 to 1 or

normalized into -1 to 1. If the similarity between object i and object j is denoted by sij, we can

measure this quantity in several ways depending on the scale of measurement (or data type)

that we have. Typical similarity measures include Euclidean distance measure, cosine

measure and correlation coefficient measure. (Aldenderfer and Blashfield, 1984)

 7

2.2.1 Euclidean distance measure

Euclidean Distance is the most common use of distance. In most cases when people

talk about distance, they refer to Euclidean distance. Euclidean distance or simply ‘distance’

examines the root of square differences between coordinates of a pair of objects. This can be

written mathematically as

2

1
()

n

ij ik jk
k

d x x
=

= −∑ ,

where ikx means the element of instance i for attribute k.

2.2.2 Cosine measure

Cosine measure, also called angle measure, actually is the cosine angle value between

two objectives (vectors), which accounts for similarity rather than distance or dissimilarity.

Thus, higher value of angular similarity indicates the two objects are similar. The value of

angular measure is [-1, 1] similar to cosine. It is often called as Coefficient of Correlation.

This can be written mathematically as

1
1

2 2 2

1 1

()

n

ik jk
k

ij n n

ik jk
k r

x x
s

x x

=

= =

=
∑

∑ ∑
,

where ikx means the element of instance i for attribute k.

2.2.3 Correlation coefficient measure

Correlation coefficient is standardized angular separation by centering the coordinates

to its mean value. The value is between -1 and +1. It measures similarity rather than distance

or dissimilarity. This can be written mathematically as

 8

, 1
1

2 2 2

1 1

()()

(() ())

n

i jik jk
k

ij n n

i jik jk
k k

x x x x
s

x x x x

=

= =

− −
=

− −

∑

∑ ∑
,

where

1

1 n

i ik
k

x x
n =

= ∑ ,
1

1 n

j jk
k

x x
n =

= ∑ .

2.3 Recommendation System

Recommendation systems help customers to find the items that they would like to

purchase by predicting the rate of the item or producing a list of top-N recommended items

for a given customer. The work on recommendation systems can be traced back to cognitive

science (Rich, 1979), information retrieval (Salton, 1989), forecasting theories (Armstrong,

2001), management science (Murthi and Sarkar, 2003) and so on. However, recommendation

systems emerged as independent research area since the mid of 1990s when the focus turned

to rating structure of recommendation systems. In general, many customers provide rates to

different items. The space of items can be very large, ranging in hundreds of thousands or

even millions of items in some applications, such as recommending books, CDs or movies.

Some pairs of customer-item have rates, while others are missing (unrated), as showed in

Table 1. The goal of the recommendation system is to predict the missing rates, so that we

can recommend to customers the item(s) with the highest estimated rating(s).

Table 1 A Fragment of Rating Matrix for a Movie Recommendation System
Customers K-PAX Life of Brian Memento Notorious

Alice 4 3 2 4
Bob ? 4 5 5

Cindy 2 2 4 ?
David 3 ? 5 2

 9

Collaborative filtering (CF) has been the most successful recommendation technique.

CF is the method of making predictions or recommendation (filtering) about the interests of a

user by collecting taste information from many other customers (collaborating). Suppose a

list of m customers and a list n items1 2{ , ,..., }mU u u u= 1 2{ , ,..., }nI i i i= , where each customer

has a list of itemsiu
iuI . Opinions are generally given by the customer as a rating sore within

a certain range. Hence it forms a m n× customer-item data set as a rating matrix, A, where

each in A represents the preference score (rating) of customer on item. ija thi thj

There have been many collaborative systems developed in the past decades. Grundy

system was the first recommendation system that proposed to build models of users based on

a limited amount of information on each individual user using stereotypes (Rich, 1979). Later,

the Tapestry system relied on each user to identify like-minded users manually (Goldberg et

al., 1992). GroupLens (Konstan et al., 1997; Resnick et al., 1994), Video Recommender (Hill

et al., 1995) and Ringo (Shardanand and Maes, 1995) were the first systems to use CF

algorithms to automate prediction. Other examples of collaborative recommender systems

include the book recommendation system from Amazon.com and the Jester system that

recommends jokes.

Two main categories were developed about CF algorithms in the past, Memory-based

(user-based) algorithms and Model-based (item-based) algorithms (Breese, Heckerman and

Kadie, 1998). Memory-based CF algorithms employ statistical techniques to find a set of

neighbor users, which have similar historical preference with the target user. Once a

neighborhood of the users is determined, then systems use different algorithms to combine

the preferences of neighbors to make a prediction or top-N recommendation for the target

user. Model-based CF algorithms provide item recommendation by finding similar items that

co-rated by different users. The model building process can also be performed by different

machine learning algorithms such as Bayesian network, clustering and rule-based approaches.

The Bayesian network model provides a probabilistic model for CF problems (Breese,

 10

Heckerman and Kadie, 1998). Clustering model considers CF problems as classification

problems by clustering similar users in same class (Breese et al., 1998; Basu et al., 1998;

Ungar and Foster, 1998), but those clustering methods are fallen in classical clustering

techniques. The rule-based approach determines recommendation based on the strength of

the association between co-purchased items applying association rule discovery algorithms

(Sarwar et al., 2000).

The underlying assumption of CF approach is that those who agreed in the past tend

to agree again in the future. For example, a collaborative filtering or recommendation system

for music tastes could make predictions about which music a user should like given a partial

list of that user's tastes (likes or dislikes).

For the user-based k-nearest neighbor CF, suppose rating vector for the target user to

be
auI , the algorithm applies Pearson correlation coefficient or cosine-based approach to find

out the most similar k other users. The formulas with Pearson correlation coefficient

similarity measure is as follows:

, ,

2 2
, ,

()()
(,)

() (

i ju i u j
u U

i ju i u j
u U u U

R R R R
sim i j

R R R R

∈

∈ ∈

− −
=

− −

∑

∑ ∑)
,

where ,u iR is the rating vector of user i and ,u jR is the rating vector of user j; iR is the

average rate for user i and jR is the average rate for user j; U is a set of rates from co-rated

items. The formula with cosine similarity measure is as follows:

2 2

(,) cos(,) i jsim i j i j
i j

= =
•

G GG G iG G .

The predicted rate is defined as aggregating rating values of the most similar k other

users to predict the rate of the target user as follows. Here, is the predicted rate for the

customer c to item s. C’ is the set of the most similar k other customers. Here, q is the

,c sr

 11

normalized value, normally defined as l'
1/ (, ')

c C
q sim c

∈
= c∑ . We listed three ways of

aggregation. In this thesis, we choose (b) to compute rates for the target user from the most

similar k other users.

l
, '

'
 c s c s

c C
r aggr r

∈
=

(a)
l

, ',
'

/c s c s
c C

r r
∈

= ∑ k

,(b)
l

, '
'

(, ')c s c s
c C

r q sim c c r
∈

= ×∑
(c)

l
', '

'

(, ') ()c cc s c s
c C

r r q sim c c r r
∈

= + × −∑ ,

 12

CHAPTER 3 MATHEMATICAL MODEL

3.1 Mathematical Formulation by QIP model

A cluster is defined to be a collection of data objects that are similar to one another

within the same cluster and are dissimilar to the objects in other clusters. The clustering

approach in this study is concerned with finding the minimal number of clusters given

constraints of several similarity measures. We design to find the minimal number of clusters

because decision makers often prefer to group a large data set into a smallest amount of

clusters, each of which can be viewed as an individual, so as to efficiently deal with

individual clusters instead of the large data set. Similarity measures including cosine measure

and distance measure are two basic metrics in various clustering methods. The smaller the

angle between two vectors is, the more similar they are. The less distance between two

vectors, the more likely they belongs to the same cluster. As mentioned before, two

traditional similarity measures, angle measure and distance measure, partially reflect the

similarity of the compared objects, and they are complementary with respect to the distance

and direction. The complementary feature of two measures suggests that it would be useful to

consider both measures as our constraints in grouping vectors.

The number of clusters in classical clustering methods is often predetermined, like k-

means, k-medoids, CLARANS and so on, or it is left users to specify the desired number of

clusters as a termination condition, like agglomerative or divisive hierarchical clustering. It is

seldom as a decision variable in the previous clustering approaches. So, we attempt to

minimize the number of clusters as an objective function. After initially finding the optimal

number of clusters, we may further apply other current clustering approaches to better cluster

the data set. A quadratic integer programming clustering model is as follows:

 13

Index sets:

NC={1,…K}, set of clusters,

NI={1,…, n}, set of instances,

NB={(i,j): angle(vi, vj)< bij or distance(vi, vj)> dij }

Problem parameters:

bij: minimal similarity requirement between vector i and vector j;

dij: maximal distance requirement between vector i and vector j;

angle(vi, vj): angle measure between vector i and vector j;

distance(vi, vj): distance measure between vector i and vector j;

M: large positive number;

K: the maximum number of clusters, normally K≤n;

Decision variables:
1 if cluster has elements
0 otherwisek

k
Y ⎧

= ⎨
⎩

1 if instance assigned to cluster
0 otherwiseik

i k
X ⎧

= ⎨
⎩

Quadratic Integer Programming (QIP) Model:

min k
k NC

Y
∈
∑

s.t.

angle(,) , i j ij ik jkv v b X X i j NI k NC≥ ∀ ∈ ∀ ∈ (1)

distance(,) , i j ik jk ijv v X X d i j NI k NC≤ ∀ ∈ ∀ ∈ (2)

1 ikk NC X i NI
∈

= ∀ ∈∑ (3)

 ik ki NI X MY k N
∈

≤ ∀ ∈∑ C (4)

, {0,1} ik kX Y i NI k= ∀ ∈ ∀ ∈NC (5)

 14

In the above formulation, the objective function is to minimize the total number of

clusters. Constraint (1) requires that angle measure should no less than bij if vector i and

vector j belong to the same cluster k. If vector i and vector j belong to different clusters, then

constraint (1) is redundant. Similarly, constraint (2) requires that vectors in the same cluster

are no larger than maximal distance requirement. Constraint (3) assures that each vector can

be only assigned in one cluster. The LHS of constraint (4) counts the number of element in

cluster k. If cluster k has a positive number of elements, Yk has to be 1 since M is a large

positive number. If cluster k is empty, then Yk can be either 1 or 0. But the objective is to

minimize the sum of Yk, so Yk tends to be 0 in this case.

3.2 Example of QIP model

Suppose 3 instances, v1, v2 and v3, to be assigned to 2 clusters (K=2). The distance

between any two instances within the same cluster is no more than d, and the minimal cosine

similarity is b. M=1000. Then the above quadratic model would be as follows:

1 2minY Y+

s.t.

1 2 11 21angle(,)v v bX X≥

1 2 11 21distance(,)v v X X d≤

1 2 12 22angle(,)v v bX X≥

1 2 12 22distance(,)v v X X d≤

1 3 11 31angle(,)v v bX X≥

1 3 11 31distance(,)v v X X d≤

1 3 12 32angle(,)v v bX X≥

1 3 12 32distance(,)v v X X d≤

 15

3 2 31 21angle(,)v v bX X≥

3 2 31 21distance(,)v v X X d≤

3 2 32 22angle(,)v v bX X≥

3 2 32 22distance(,)v v X X d≤

11 12 1X X+ =

21 22 1X X+ =

31 32 1X X+ =

11 21 31 11000 X X X Y+ + ≤

12 22 32 21000 X X X Y+ + ≤

, {0,1} 1, 2 3 1 2ik kX Y i or k or= = =

If we let the decision vector be 11 21 31 1 12 22 32 2(, , , , , , ,)X X X X Y X X X Y= , any quadratic form of

ik jkX X can be represented as 'X FX , here F is the constant square matrix. For example,

11

21

31

1
11 21 11 21 31 1 12 22 32 2

12

22

32

2

0 0.5 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(, , , , , , ,)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

X
X
X
Y

X X X X X Y X X X Y
X
X
X
Y

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Other constraints with quadratic form are similar with above example. The total amount of

quadratic form is , where n is the total number of instances and q is types of similarity

measures.
2
n

q ⎛ ⎞
× ⎜ ⎟
⎝ ⎠

3.3 IP model

The QIP model includes a quadratic term in both constraints (1) and (2), which is

very hard to handle in practice due to F often bring a many sparse matrix. Actually, if

 16

angle(vi, vj) ≥ bij and distance(vi, vj) ≤ dij, it means XikXjk=1 or 0 for any k, otherwise XikXjk=0.

That is, if two instances, i and j, do not satisfy all similarity measures, then XikXjk=0 for any k.

Since Xik or Xjk is binary variables, XikXjk=0 is equivalent to Xik+Xjk≤ 1. Hence, we modify the

above QIP model into a linear IP model as follows. Constraint (6) separates two vectors into

different clusters if the two vectors do not satisfy either the angle measure or the distance

measure. The number of constraint (6) depends on the actual problem. The more compact of

data, the less the number of (6). So, before solving the problem, we dynamically generate (6)

by checking all similarity requirements for any two vectors. The model is modified as

follows:

min k
k NC

Y
∈
∑

s.t.

1 (,)ik jkX X k NC i j+ ≤ ∀ ∈ ∀ ∈ NB (6)

1 ikk NC X i NI
∈

= ∀ ∈∑ (3)

 ik ki NI X MY k N
∈

≤ ∀ ∈∑ C (4)

, {0,1} ik kX Y i NI k= ∀ ∈ ∀ ∈NC (5)

Since the above modified model is linear (IP model), it is much easier to solve by

most of mathematical software like Tomlab/CPLEX which includes an advanced Matlab

interface to the state-of-the-art large-scale mixed-integer linear solver CPLEX. However, the

coefficient matrix of (6) is normally large and sparse. In order to avoid “out of memory”

error when running CPLEX, we need use storage of sparse coefficient matrix.

3.4 Iris data set Testing and Parametric Analysis

We try to use a classic numeric dataset, iris dataset, to test our model. The iris dataset

is about seminal work collected by the eminent statistician R.A. Fisher in the mid-1930s and

 17

is arguably the most famous dataset used in data mining. It contains 50 examples for each of

three types of plant: Iris setosa, Iris versicolor, and Iris virginica. It is excerpted in Table 3

that there are four attributes: sepal length, sepal width, petal length, and petal width (all

measured in centimeters). And all attributes have values that are numeric. The following set

of rules might be learned from this dataset:

If petal length < 2.45 then Iris setosa

If sepal width < 2.10 then Iris versicolor

If sepal width < 2.45 and petal length < 4.55 then Iris versicolor

If sepal width < 2.95 and petal width < 1.35 then Iris versicolor

If petal length ≥ 2.45 and petal length < 4.45 then Iris versicolor

If sepal length ≥ 5.85 and petal length < 4.75 then Iris versicolor

Table 2 Iris Data
No.

Sepal length

(cm)
Sepal width

(cm)
Petal length

(cm)
Petal width

(cm)
Type

1 5.1 3.5 1.4 0.2 Iris-setosa
2 4.9 3 1.4 0.2 Iris-setosa
3 4.7 3.2 1.3 0.2 Iris-setosa
4 4.6 3.1 1.5 0.2 Iris-setosa
5 5 3.6 1.4 0.2 Iris-setosa

…
51 7 3.2 4.7 1.4 Iris-versicolor
52 6.4 3.2 4.5 1.5 Iris-versicolor
53 6.9 3.1 4.9 1.5 Iris-versicolor
54 5.5 2.3 4 1.3 Iris-versicolor
55 6.5 2.8 4.6 1.5 Iris-versicolor
…

101 6.3 3.3 6 2.5 Iris-virginica
102 5.8 2.7 5.1 1.9 Iris-virginica
103 7.1 3 5.9 2.1 Iris-virginica
104 6.3 2.9 5.6 1.8 Iris-virginica
105 6.5 3 5.8 2.2 Iris-virginica

…

We cluster the iris data set only considering distance measure for simplicity, which requires

the minimal cosine similarity to be 0. From numerical experiments, we found that when

 18

maximal distance d between 2.6 and 3.8, the IP model returned optimal 3 clusters, and when

d between 3.9 and 7, the IP model returned 2 optimal clusters. If d is set too small, like 1.5, it

appeared that things degenerated quite quickly to a very large number of clusters, so we

couldn’t find any feasible solution because the maximal number of clusters was smaller than

the optimal number of clusters. It also indicates that even if we don’t know the optimal

solution, it should be greater than 60 when maximal distance is 1.5. When d is set too large it

appeared that the two more similar clusters were simply combined (100 instances) and

separated, or at least approximately separated, from the more distinct cluster (50 instances).

When d was set large enough (d≥7.1), then all clusters became merged into one cluster.

According to experiments, the optimization can find the correct number of clusters under a

fairly wide range of distance parameters. Although the clusters are not exactly right possibly

because we set all allowed maximal distance of points within one cluster the same, the

primary purpose of this approach is to find the correct number of clusters. After initially

finding the optimal number of clusters, we can further apply other heuristic approaches, like

k-means algorithm to cluster the data set. If k=2, the k-means approach results in 2 clusters

with 50×100 and k=3 with 50×50×50. The proposed model and parameter analysis also give

us an intuitive image of the pattern of data set. For iris data set, we have hunch that there are

2 more similar clusters and another cluster is far away from these 2 clusters.

 19

Table 3 Parametric Tests for Iris Data
Max No. of Clusters Max Distance Solution

(No. of Clusters) Optimality No. of Cluster
Elements

20 1.5 None -
40 1.5 None -
60 1.5 None -
25 1.8 C=8 feasible
8 1.8 C=7 feasible
7 1.8 C=6 feasible
6 1.8 C=6 feasible
6 2 C=5 optimal
5 2.2 C=5 optimal
5 2.4 C=4 optimal
5 2.6 C=3 optimal
3 2.61 C=3 optimal 51×55×44
3 2.62 C=3 optimal 50×61×39
3 2.63 C=3 optimal 51×45×54
3 2.64 C=3 optimal 50×61×39
3 2.65 C=3 optimal 51×48×51
3 2.66 C=3 optimal 37×62×51
3 2.67 C=3 optimal 50×48×52
3 2.68 C=3 optimal 35×64×51
3 2.69 C=3 optimal 51×35×64
3 2.7 C=3 optimal 51×49×50
3 2.8 C=3 optimal 46×51×53
3 2.9 C=3 optimal 53×51×46
3 3 C=3 optimal 52×24×74
3 3.1 C=3 optimal 54×67×69
3 3.2 C=3 optimal 27×52×71
3 3.3 C=3 optimal 52×25×73
3 3.4 C=3 optimal 53×22×75
3 3.5 C=3 optimal 32×41×77
3 3.6 C=3 optimal 60×49×41
3 3.7 C=3 optimal 31×58×61
3 3.8 C=3 optimal 44×19×87
3 3.9 C=2 optimal 75×75
2 4 C=2 optimal 59×91
2 4.1 C=2 optimal 56×94
2 4.2 C=2 optimal 54×96
2 4.3 C=2 optimal 54×96
2 4.4 C=2 optimal 54×96
2 4.5 C=2 optimal 54×96
2 4.6 C=2 optimal 54×96
2 4.7 C=2 optimal 54×96
2 4.8 C=2 optimal 51×99
2 4.9 C=2 optimal 50×100
2 5 C=2 optimal 50×100
2 5.1 C=2 optimal 50×100

 20

Table 3 (Continued)
2 5.2 C=2 optimal 50×100
2 5.3 C=2 optimal 50×100
2 5.4 C=2 optimal 50×100
2 5.5 C=2 optimal 50×100
2 5.6 C=2 optimal 50×100
2 5.7 C=2 optimal 50×100
2 5.8 C=2 optimal 50×100
2 5.9 C=2 optimal 50×100
2 6 C=2 optimal 50×100
2 6.1 C=2 optimal 48×102
2 6.2 C=2 optimal 30×120
2 6.3 C=2 optimal 28×122
2 6.4 C=2 optimal 11×139
2 6.5 C=2 optimal 24×126
2 6.6 C=2 optimal 24×127
2 6.7 C=2 optimal 46×104
2 6.8 C=2 optimal 55×95
2 6.9 C=2 optimal 51×99
2 7 C=2 optimal 1×149
2 7.1 C=1 optimal 150

3.5 Numerical Experiments

We simulated 2 dimensional clusters in the square space of 5000 by 5000, within

each cluster the maximal allowed distance is 20 and the minimal allowed cosine similarity is

0. We use PC computer with CPU 3GH and 3.5G RAM to test the different problem size as

well as total amount of time needed. From Table 5, we found that the IP model could

efficiently find the exact clusters up to about 100 instances when actual number of clusters is

small (no more than 7). However, in No. 5 and No. 3, the amount of time spent in solving the

problems by CPLEX exceeds its maximal set time, 300 second, so in this case those solutions

are only feasible but not optimal.

Table 4 Scalability Test
No. No. of

Instances Max No. of clusters Simulated
No. of clusters

Solution to
No. of Clusters

Total Amount
of Time (s)

1 44 10 2 2 0.51
2 59 10 4 4 25.47
3 100 10 6 7 300.26
4 150 (iris) 6 3 3 98.40
5 166 20 8 20 309.48

 21

From the above experiments the IP model can only be suitable for solving a small

amount of data set. In the proposed IP model, the number of constraints varies due to the

characteristic of data set. When instances sparsely lie in the searching space, there would be

lots of constraints (6). As the number of instances goes up, number of constraints (6)

increases dramatically, so the coefficient matrix for this problem is correspondingly large and

sparse. For example in 20 randomly generated 2 dimensional instances, if the maximal

number of clusters is set 20, the coefficient matrix is 960 by 420 with 8380 non-zeros in the

reduced MIP problem. However, for a problem that randomly generated 100 instances with

maximal number of clusters 50, the coefficient matrix is 126479 by 5050 with 605620 non-

zeros in the reduced MIP problem. (CPLEX first aggregates the coefficient matrix, then pre-

solves and reduces the MIP problem.) Hence, when the problem size is too large, which

depends on number of instances and number of maximal clusters, time spent solving the MIP

problem by CPLEX would be not efficient enough and sometimes even cannot find the

optimal solution.

For a problem with a large number of instances and a small number of clusters, which

is generally a clustering problem in most cases, the model is still suitable as we did with iris

data that has 150 instances and 3 optimal clusters. We may also iteratively try to find the

optimal solution by reducing the maximal number of clusters. For example, we didn’t find

the optimal solution to No. 1 in Table 6 since the amount of time exceeds the limit (300) we

set. However, if we can find a feasible solution (7), by setting maximal number of clusters to

be 10, then we can use maximal number of clusters (7) to resolve the MIP problem, since the

minimal number of clusters should be no larger than 7. Then as showed in No. 2 in Table 6,

CPLEX solver needs 14.81 seconds (less than 300) to resolve the problem, so the solution

found (6) is the optimal solution. Of course, if we use maximal number of clusters to be 6,

CPLEX only needs 2.53 seconds, as showed in case 4. In this way, the coefficient matrix for

 22

the problem can be largely reduced by reducing the maximal number of clusters, until the

optimal cluster can be found.

Table 5 Reduce Max No. of Clusters
No. No.

of Instances Max No. of clusters Simulated
No. of clusters

Solution to
No. of Clusters

Total Amount
of Time (s)

1 100 10 6 7 300.26
2 100 10 6 7 300.21
3 100 7 6 6 14.88
4 100 6 6 6 2.53

We repeat to test iris data set for 5 times and the amount of time spent on each repeat

is close to 98.2 seconds with standard error only 0.14. All solutions found by CPLEX solver

from 5 repeats are same. Hence, the CPELX solver is quite stable if the optimal solution can

be found.

Table 6 Time Variability Test
No No.

of Instances Max No. of clusters Simulated
No. of clusters

Solution to
No. of Clusters

Total Amount
of Time (s)

1 150 (iris) 6 3 3 98.12
2 150 (iris) 6 3 3 98.40
3 150 (iris) 6 3 3 98.27
4 150 (iris) 6 3 3 98.17
5 150 (iris) 6 3 3 98.05

Time ± S.E. 98.202±0.14

In order to further test the effectiveness of the IP model, we apply cluster separation

to measure the compactness of data set, which provides us a quantity that how clusters are

separated to each other. The separation measure we use is as follows:

2
1 1

1 1 (1)
1

K n

between ik i k
k i

F a
d K

x γ
= =

= −
− ∑∑ − .

Here d is the number of attributes, K is the total number of clusters, n is the total number of

instances, is 1 if instance i belongs to cluster k, and ika
2i kx γ− is square of distance

between instance i and cluster center k. We simulated 5 different clusters with 100 instances

in Table 8 in order to test variance of time needed by CPLEX solver. We can see that the

 23

larger separation between clusters, the less amount of time spent in solving the IP model.

With the increase in the density of instances in the given space, the time needed to obtain the

optimal solution of the IP model will be largely increased. For the last 3 cases, problem No. 4

was solved in relatively small amount of time because each simulated cluster is well

separated, while problem No. 3 and No. 5 both had two clusters out of 5 close to each other

which lead to more amount of solving time.

Table 7 Separation and Total Time
No No. of

Instances Max No. of clusters Simulated
No. of Clusters

Solution to
No. of Clusters Separation Total Amount

of Time (s)
1 100 10 5 5 4.4519e+008 14.266±0.126
2 100 10 5 5 1.6879e+008 14.286±0.104
3 100 10 5 5 6.6180e+007 139.8±0.249
4 100 10 5 5 5.1732e+007 92.66±0.167
5 100 10 5 5 4.2298e+007 276.23±3.204

3.6 Space Decomposition Technique

Decomposition technique is often used to break a complex problem down into easily-

understood and achievable parts, e.g. decomposition linear programming (Bazaraa, et al.,

2005), benders decomposition (Kall and Wallace, 2003), hyper-tree decomposition (Gottlob,

et al., 2001) and so on. Space decomposition is to separate the search space into mutually

exclusive subspaces. In each subspace plus the related boundary space associated with the

previous subspace, we apply IP model to find out the minimal number of clusters. Since

number of instances in each subspace is normally small and solvable by CPLEX solver,

space decomposition technique becomes a good method to deal with clustering a large

number of instances locating in a large space with relatively small actual number of clusters.

According to experiments in section 3.6, it is not efficient to apply IP model to a large

number of instances and a large number of optimal clusters due to limited memory of the

computer. However, we notice that if we decompose searching space into several subspaces,

most clusters within the subspace would remain the same and all the connected subspaces

 24

together form into the original space. For example, we may separate space of 2nd dimension

for the example in section 3.4 into [0, 400], [400, 800] and [800, 1200], and only those

instances near boundary of each interval would be affected the final optimal solution. If we

have clustered instances within subspace [0, 400], then select those instances that have

distance from boundary less near dij/2 (named sensitive instances), add sensitive instances as

well as all instances that is fallen in the same clusters as sensitive instances into next

subspace to reapply IP model to new data. After going through all subspaces, we get the

same clustering results as we do for the original space. In this way the model can cluster a

median size instances up to thousands of instances in reasonable time, showed in Table 9.

We also simulated 2 dimensional clusters within 5000 by 5000 space with large

number of instances. The number of subspace should be carefully chosen, since we know

CPLEX solver can efficiently solve about 100 instances with 6 possible clusters, in most of

cases, we separate space that each subspace has about 50 instances in average so that even

though the boundary line crosses one of clusters, the total number of instances in the next

subspace would not exceed 100. If one of subspace has too many instances, we may only find

feasible solution for this subspace which causes the solution found about the number of

clusters is larger than the simulated number of clusters.

Table 8 Scalability Test by Space Decomposition Technique
No No. of

Instances
No. of

Subspace
Simulated

No. of cluster
Solution to

No. of Clusters Separation Total Amount
of Time (s)

1 166 3 8 8 3.55E+08 93.98±0.51
2 214 5 10 10 4.13E+08 22.58±0.39
3 302 6 10 10 1.1552e+009 5.59±0.06
4 399 8 14 14 1.8804e+009 134.192±1.13
5 509 14 14 14 2.2032e+009 199.13±1.46
6 600 15 12 12 1.8753e+009 488±0.77
7 1008 8 15 15 7.6040e+009 99.32±0.39

 25

3.7 Heuristic Solving Procedure

There is an iterative heuristic technique that can be used to find the sub-optimal

solution for the IP model. First we randomly select an instance, say a target instance, and

scan data set to select all other instances that satisfy similarity measures with the target

instance. Second, we apply the IP model to the selected data set to come out a cluster that

contains the target instance. Third, we remove the cluster that contains the target instance and

go back the first step. This is a heuristic method that works well if we only are interested in a

cluster that contains a certain target instance. Otherwise, the method tends to be an

approximate way to obtain the minimal number of clusters for the overall data set, since

clustering a subset of data set in this case only can reach local optimal solution. For example,

suppose four instances {A, B, C, D}, A-B, A-C and C-D are similar but B-C is not similar.

Then the selected sub data set for A is {A, B, C}. If clustering result for the sub data set is

two clusters with {A, C} and {B}, the heuristic procedure will turn out to be 3-mininal

number of clusters, instead of the optimal solution, 2-mininal number of clusters with {A, B}

and {C, D}. Hence, this heuristic procedure is efficient for a large data set in which we focus

on only one instance at a time.

3.8 Discussion

From the above experiments, the IP model can find the minimal number of clusters in

most cases up to thousands of instances. However, there are still some worst cases of data set

that the IP model can not solve. For example, the data set has no obvious number of clusters

at all and all data are randomly located in the space, then the optimal number of clusters

would be very large which makes the problem too large for the CPLEX solver to solve.

However, there is no meaning to find minimal number of clusters in this case since no

obvious number of clusters. More, if there are a large number of instances in a small space,

 26

then the space decomposition technique would fail, because instances are too density

distributed in the boundary that each repeat has still many instances.

Although the IP model can find the minimal number of clusters, the optimal solution

may not be unique, especially, instances near boundary of clusters may also belong to other

neighbor clusters. Time spent to solve the problem can work as a controller to detect if an

optimal solution is found. If the amount of maximal running time is exceeded, then the

solution must be a feasible solution, not necessary optimal. If a feasible solution can be found,

we can try by reducing the maximal number of clusters and rerun the IP model, in this way

reducing the matrix size in the IP model, in order to get an optimal solution.

 27

CHAPTER 4 NETFLIX MOVIE RATE PREDICTION

Netflix, an online movie rental service, published a data set that contains millions of

movie rates from thousands of customers. We suppose each customer belongs to a cluster,

either individually or in groups, that shares similar characteristics. Their carefully elicited

preferences and a history of their ratings of the movies are maintained in a database.

Customers are assigned to clusters (or groups) that are constructed such that significant

differences between clusters in the distribution of preferences and significant similar

preference within each cluster. Rating of the customer to a movie is predicted according to

other customer preference in the same cluster. We design to find out joint customers such as

a group of friends or a family. It will help us not only predict the kind of movies the customer

already touched but also some other kinds of movies the customer may potentially be highly

interested according to its “friends”.

In collaborative filtering algorithm, k-nearest neighbor CF algorithm requires

predefined number of nearest customers to determine movie rate for the target customer. We

propose to apply IP model to find out the minimal number of clusters from the most related

data set for the target customer. Since the number of elements in the cluster varies as data set

changes, the number of most similar customers for target customers is therefore different.

Then we predict the movie rate for the target customer by aggregating movie rates of other

customers in the same cluster.

4.1 Dataset Description

One of the most challenge parts of the task is the scalability to deal with the huge

datasets, because there are 17770 files, one file per movie, and more than 100 million

 28

customer records. In this thesis, we only use about 10% of the total dataset for simplicity, but

still data set is huge. In each movie file, the data set is formatted as follows:

CustomerID,Rating,Date

- MovieIDs range from 1 to 17770 sequentially.

- CustomerIDs range from 1 to 2649429, with gaps. There are 480189 users.

- Ratings are on a five star (integral) scale from 1 to 5.

- Dates have the format YYYY-MM-DD.

In this study, we ignore influence of Date, since we suppose the preference of

customers will not change with time, as the same assumption in the most collaborative

filtering algorithm. Introducing Date for each customer for movie-customer pair will cause

complicity which may need other model like time series to do with it.

4.2 Data Reduction

Each customer watches many movies and each movie can be seen by different

customers. For a given customer-movie pair, we may have a rating that specifies the

customer’s preference to the movie. Hence, it forms a network. In Figure 3, mi represents a

movie i, Cj represents a customer j and weight of every arc is the rate for every movie-

customer pair. Then our job is to find out patterns of movie-customer pairs with similar

weights.

 29

Figure 2 Movie-customer Pair Network

In order to deal with scalability, we need reduce the dataset to the most related subset.

If we want to predict rate for MovieID1 watched by CustomerID1, which is a weight for m1-

C1 pair, then a population that has similar preference as CustomerID1 to MovieID1 should be

other customers in the MovieID1 file with m1-Cj pair. Of course, there are some customers

similar to CustomerID1 but outside MovieID1 file. However, those customers have no help

for us to predict the rate between m1-C1 pair, because they have no such pair related to m1 at

all. So, the relevant customers are customers in the same movie file. More, each customer

will not only be interested in one movie, but some other movies. So, we need find out all

movie-customer pairs for customers in m1 file by scanning database once.

For example, there are 547 customers in MovieID1 file and the total amount of

movie-customer pair related to customers in MovieID1 file is 55780. This data subset is used

to predict each customer in movieID1 file. For each customer, the data subset is still large.

To further compact the dataset, we use each customer as an instance and represent each

customer as a long vector about rates for different movies. (See Table 10)

m1

m2

m3

mp

C1

C2

C3

3
5

Cq

 30

Table 9 Movie-customer Matrix
Customer id MovieID1 MovieID2 MovieID3 …

CustomerID1 2 3 n/a …
CustomerID2 n/a 5 n/a …

… … … … …

The total amount of movies seen by customers in movieID1 file, 1698, is still very

large. So, in order to predict rate for MovieID1-CustomerID1, Table 10 is a large and sparse

matrix with 1698 columns. Since we only attempt to predict rate about CustomerID1 who has

only watched 197 movies. So, we can reduce the number of columns to 197 movies for

customerID1 in movieID1 file. In this way, we find a most related matrix with 547 by197 to

predict rate for MovieID1-CustomerID1 pair, which shows all rates of movies watched by

CustomerID1 as well as at least one movie rate from other customers in the movie fileID1.

These data subset is suitable for us to do clustering analysis. We call the reduced movie-

customer matrix as most related matrix for mi-Cj pair which can be generated as follows:

- choose movie file i that includes all customers that watched movie i

- scan data base once to collect every movies as well as corresponding rates that watched by customers in movie

i file and form movie-customer matrix

- reduce collected movie-customer matrix by preserving only movie columns watched by customer j

- return reduced movie-customer matrix as most related matrix

Here, we need mask the column that includes mi-Cj entry in most related matrix,

because we want to predict rate of mi-Cj pair.

4.3 Similarity Measures for Missing Data

Table 10 contains many “n/a” values that represent unrated movie rates. To calculate

similarity with missing data, we need only think about the same movies that have been co-

rated by both two customers, and ignoring movies one customer watched but the other

 31

doesn’t or both don’t. This is consistent to the idea mentioned in collaborative filtering

algorithms.

For example, Pearson similarity measure, correlation coefficient measure, with

missing data can be calculated as follows. Suppose two vectors to be

and . Then, actual vectors in calculation are and

1 (3, / , 4)v n a= 2 (2,3,5)v = '
1 (3, 4)v =

'
2 (2,5)v =

 So, 1 2 2 2 2 2

(3 3.5) (2 3.5) (4 3.5)(5 3.5)(,) 1
[(3 3.5) (4 3.5)][(2 3.5) (5 3.5)]

sim v v − ⋅ − + − −
= =

− + − − + −

For cosine similarity measure, simply selecting columns that have both rates for any

two customers may not good enough since when some customers only have watched a few

movies, these customers are not good to participate in providing inference for other

customers. So, we should better modify cosine similarity measure. The cosine measure is

defined as 1 2
1 2

1 2

(,) v vsim v v
v v

= . For the missing data, we have two vectors for example,

1 (3, / , 4)v n a= and , then 2 (2,3,5)v = 1 2

2 2 2 2

(3, 4) (2,5)(,) 0.965
3 4 2 5

sim v v ⋅
= =

+ +

In order to account for dimension influence of two vectors, we add an adjusting weight for all

similarity of two vectors as follows:

1 2
1 2

1 2

'(,) v vnsim v v
L v v

= ,

where n is the amount of available columns that both v1 and v2 have rates. L is the maximal

amount of available columns in the two vectors. The more elements of two vectors, the more

information they provide, hence, the more similar they may have. And the closer the

similarity to 1, the more similar that two customers have. This simple measurement can help

us find if two customers have similarity according to past performance. However, in this

thesis, we choose Pearson similarity so as to be consistent to collaborative filtering algorithm.

 32

4.4 Movie Rate Prediction

Although after data reduction, most related matrix for every customer still contains

several hundred of instances. From numerical experiments that we did in section 3, applying

clustering model directly into most related matrix will be hard to find the minimal number of

clusters as well as elements in the clusters. For example, in order to predict the movie rate for

the first customer id=1488844 and movie id=0000001, most related matrix is 547×197,

where number of instances is 547. So, the IP model may not be easy to apply to most related

matrix directly. However, notice that we only are attempt to predict rate for customer

id=1488844 and movie id=0000001, so to speak, we only care about the cluster that contains

customer id=1488844. So, we can apply heuristic procedure to find out similar customers for

the target customer. Before clustering the data set, we first filter instances that are close to the

target instance.

We applied only Pearson similarity measure in the constraints which was to keep

consistent to collaborative filtering algorithms. And we predicted rates of first 20 customers

in movie id=0000001 in Table 11. The procedure is as follows:

- find out most related matrix for each customer Cj, the target instance

- filter instances out that are close to the target instance

- run IP model with Pearson similarity measure constraint only on the filtered matrix

- take the cluster out that contains the target customer Cj

- predict movie rate by aggregating rates of neighbors of Cj in the same cluster

We set filtering criteria with Pearson similarity between 0.5 and 0.7, clustering

criteria Pearson similarity greater than 0.75 when apply the IP model. For example, for

customer id=1488844, Instance No.=327, most related matrix 547 instances. After filtering

with Pearson similarity greater than 0.5, we have 36 instances including the target instance

(No. 327), showed in Table 11. After clustering by the IP model, we found there is only one

 33

neighbor of instance no.327, no. 489 in the same cluster. So, the predicted rate for customer

no. 327 and movieID=0000001 is 3.

Table 10 Filtered Instances for Customer ID=1488844
MovieID

Instance No.

1 8 17 30 … 1905 1918 1925 1939

327 3 4 2 3 5 3 3 3
28 5 3 0 3 4 0 0 0
32 5 0 0 0 0 0 0 0
39 3 0 0 0 5 0 0 0
51 1 0 0 0 0 0 0 0
54 4 0 0 0 0 0 0 0
71 5 0 0 0 0 0 0 0
77 3 0 0 0 5 0 0 0

101 5 0 0 3 5 0 0 3
111 5 0 0 0 5 0 0 0
113 5 0 0 0 0 0 0 0
125 5 0 0 0 0 0 0 0
206 5 0 4 0 0 3 0 0
212 4 0 0 0 5 0 0 0
228 4 5 0 0 5 0 0 0
230 3 0 0 0 0 0 0 0
255 4 0 0 2 4 3 0 0
257 4 0 4 0 5 0 0 0
278 4 0 0 0 0 2 0 0
286 3 0 0 0 0 0 0 0
292 5 0 0 0 2 0 0 0
337 5 0 0 0 0 0 0 0
355 5 0 0 0 0 0 0 5
397 4 0 0 0 4 2 0 0
403 3 0 0 0 0 0 0 0
406 4 0 0 3 0 3 0 0
410 3 0 0 0 5 0 0 0
440 4 0 0 0 4 0 0 0
452 4 0 0 4 5 0 0 0
466 4 0 0 0 0 0 0 0
467 3 0 0 0 0 0 0 0
489 3 0 0 3 0 0 0 0
493 5 0 0 0 0 0 0 0
513 5 0 0 0 0 0 0 0
532 4 0 0 0 0 0 0 0
537 5 0 0 0 0 0 0 0

 34

Similarly, using the above procedure, we calculated the first 20 customers in

MovieID 0000001 file. We found that prediction accuracy was about 88%, and its standard

variance was 0.132. We noticed that customer id 124105 had relatively larger prediction

errors than others, mostly because the customer only watched a few movies making

prediction insufficient. For example, customer id 124105, instance No. 37 in the Table 13,

had only 6 movie records to predict first movie. Prediction for customer id 893988 is also

bad but it may belong to outliers since this is true data set and movie rates from customers

Table 11 Movie Rate Prediction for the First 20 Customers
(Similarity≥0.8 if neighbor exits, otherwise Similarity≥0.75)

Customer id Movie Rate Predicted Rate Similarity No.
of Neighbors

No.
of Movies

1488844 3 3.00 0.80 1 197
822109 5 4.00 0.80 4 16
885013 4 4.00 0.80 1 32
30878 4 3.98 0.80 2 113

823519 3 3.00 0.75 1 59
893988 3 4.50 0.75 2 41
124105 4 3.00 0.80 6 7
1248029 3 3.68 0.80 4 118
1842128 4 3.98 0.80 3 13
2238063 3 3.53 0.80 57 3
1503895 4 3.34 0.80 4 7
2207774 5 4.00 0.80 1 53
2590061 3 3.61 0.75 2 61

2442 3 2.50 0.80 2 35
543865 4 3.55 0.75 2 74
1209119 4 3.55 0.80 2 29
804919 4 4.03 0.75 4 22
1086807 3 3.00 0.80 1 12
1711859 4 4.00 0.80 1 72
372233 5 - 0.75 - 81

Avg abs error rate 0.12

Standard variance 0.13

 35

are relatively subjective. Customer id 2238063 should also be outliers since the customer has

only two other movies for prediction which causes most of other customers are similar to the

target customer. We cannot predict the 20th customer in that we do not find neighbor

customers that have correlation coefficient similarity greater than 0.75.

We also found weak negative correlation between prediction error and similarity (-0.197), or

prediction error and No. of movies (-0.199), indicating that more similarity leads to less

prediction error and more amount of movies participated in prediction leads to less prediction

error.

Table 12 Cluster for Customer ID=124105
 Movie id

Instance No. 1 191 563 694 1110 1220 1905

76 3 0 0 3 5 5 4
369 4 0 0 3 5 0 4
502 2 0 0 3 5 0 0

2 3 4 0 3 4 0 4
37 4 5 5 4 5 5 5

335 3 5 4 3 5 5 0
527 3 5 0 3 0 0 4

4.5 Collaborative Filtering

In order to further make sure the effectiveness of the proposed integer programming

method in recommendation system, we choose currently most popular used collaborative

filtering algorithm in recommendation system, k-nearest neighbor CF, as a comparison. Since

we don’t know k in advance, we choose k=1, k=5 and k=10 respectively to apply CF to

predict movie rates for the first 20 customers in MovieID 0000001, as Table 14, 15 and 16.

From the experiments, we noticed that when k=1, prediction accuracy was not good, only

about 72% with standard variance 0.22, when k=5, prediction accuracy was about 83% with

standard variance 0.13, while when k=10, prediction accuracy was about 83% with standard

 36

variance 0.11. For larger k, the prediction accuracy was still almost the same as k=10 since

the further away from the target customer, the smaller weights in aggregation for prediction.

In Table 16, it shows smaller standard variance than that of the proposed clustering

method in Table 12. However, the proposed method also provides us reliable indication, such

as similarity parameter used in the IP model, number of movies participated in prediction and

so on. If similarity parameter in the IP model is 0.8, then the prediction accuracy is mostly at

least 0.8. The more number of movies in most related matrix means that more information is

available. Since we relax similarity parameter to 0.75 if no neighbors available to the target

instance, we actually tend to less prediction accuracy and increase variance of prediction

results. Hence, we believe that if more data are used, better prediction accuracy and smaller

variance will be reached in the proposed method.

Table 13 Collaborative Filtering Cj-M1 Pairs, k=1

Customer id Movie Rate Predicted Rate
1488844 3 3
822109 5 3
885013 4 4
30878 4 5
823519 3 1
893988 3 4
124105 4 3
1248029 3 5
1842128 4 3
2238063 3 5
1503895 4 3
2207774 5 4
2590061 3 4
2442 3 3
543865 4 4
1209119 4 3
804919 4 2
1086807 3 3
1711859 4 3
372233 5 3
Avg abs error rate 0.28
Standard variance 0.22

 37

Table 14 Collaborative Filtering Cj-M1 Pairs, k=5

Customer id Movie Rate Predicted Rate
1488844 3 3.60
822109 5 4.00
885013 4 4.03
30878 4 3.81

823519 3 3.11
893988 3 4.00
124105 4 3.20
1248029 3 4.00
1842128 4 2.39
2238063 3 3.80
1503895 4 4.00
2207774 5 4.59
2590061 3 4.00

2442 3 3.60
543865 4 3.60
1209119 4 4.00
804919 4 3.59
1086807 3 3.99
1711859 4 3.59
372233 5 3.92

Avg abs error rate 0.17
Standard variance 0.13

Table 15 Collaborative Filtering Cj-M1 Pairs, k=10
Customer id Movie Rate Predicted Rate
1488844 3 3.88
822109 5 4.09
885013 4 4.02
30878 4 4.20
823519 3 3.06
893988 3 4.00
124105 4 2.99
1248029 3 4.19
1842128 4 3.37
2238063 3 3.70
1503895 4 3.71
2207774 5 4.16
2590061 3 3.69
2442 3 3.50
543865 4 3.42
1209119 4 4.00
804919 4 3.69
1086807 3 3.50
1711859 4 3.41
372233 5 3.60
Avg abs error rate 0.17
Standard variance 0.11

 38

4.6 Discussion

The proposed IP model to cluster customers has a function of variable k in CF since

clustering customers in one group will result in different number of neighbors to predict the

movie rates for the target customer. Hence, the prediction accuracy shows better than the

standard CF algorithm which pre-defines number of neighbors, k.

Although k-nearest neighbor CF selects k most similar customers for the target

customer and the more similarity to the target customer the neighbors have, the larger

weights it will be used in predicting movie rates, it can not guarantee that those neighbors

also have similar preference. For example, we want to predict a movie rate for customer A,

who has two neighbors, B and C, according to CF algorithm, however, due to multi-

dimensional data set, B and C may not similar to each other. In the IP model, we try to

cluster data set into different groups, each of which has high similarity, so that those

customers in one cluster are all similar to each other. This is one reason that the proposed IP

model applied to recommendation system can work well in accuracy and variance.

 39

CHAPTER 5 CONCLUSION AND FUTURE WORK

The thesis studied a new clustering method by proposing an integer programming

model, aiming at minimizing the total number of clusters and subjected to several similarity

measures. The model was applied to Netflix recommendation system in order to predict

movie rates for customers according to their historical preference. The proposed method was

compared with collaborative filtering algorithm and experimental results showed that it

provided relatively high prediction accuracy as well as relatively small variance.

However, there are still some drawbacks in the proposed IP model.

The model is solvable for only middle size data set up to thousands of instances due

to large size of matrix coefficients and limited computer memory. To solve the scalability of

model, we should better provide a similar model with more compact matrix coefficients. Or

we may use heuristics, like genetic algorithm, taboo search algorithm and so on to apply

directly to the QIP/IP model.

The parameters in the IP model are not easy to be best specified. If we do parametric

analysis for every data set in order to find out the best parameters, it will be very time

consuming. So, how to set good parameters for the IP model is still a challenging problem.

Finding the minimum number of clusters works well by applying the IP model.

However, cluster elements found by the IP model are often not unique if there is an overlap

region between two clusters. One way to solve this problem is to use the IP model to identify

the minimal number of clusters, and then we use other standard clustering methods to find

out the exact elements for each cluster.

 40

BIBLIOGRAPHY

Adomavicius G. and Tuzhilin A., 2005, Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE Transaction on

Knowledge and Data Engineering, Vol.17: 734-749.

Aldenderfer, M.S. and Blashfield, R.K., 1984. Cluster Analysis. Beverly Hills, CA: Sage

Press.

Ahmoys, D.B., Tardos, E. and Aardal, K., 1997. Approximation algorithms for facility

location problems. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on the

Theory of Computing, pp. 265-274.

Armstrong, J.S., 2001. Principles of Forecasting—A Handbook for Researchers and

Practitioners. Kluwer Academic.

Bazaraa, M. S., Jarvis, J. J. and Sherali, H. D., 2005. Linear Programming and Network

Flows, third edition, John Wiley & Sons, Inc., New York, NY.

Bradley, P.S., Fayyad, U.M., Mangasarian and Street, N., 1996. Clustering via concave

minimization. Advances in Neural Information Processing Systems. MIT Press, Cambridge,

MA, Vol.9: 368-374

Breese, J.S. Heckerman, D. and Kadie, C,1998. Empirical Analysis of Predictive Algorithms

for Collaborative Filtering. Proc. 14th Conf. Uncertainty in Artificial Intelligence.

 41

Breese, J. S., Heckerman, D., and Kadie, C., 1998. Empirical Analysis of Predictive

Algorithms for Collaborative Filtering. In Proceedings of the 14th Conference on Uncertainty

in Arti_cial Intelligence, pp. 43-52.

Basu, C., Hirsh, H., and Cohen, W., 1998. Recommendation as Classification: Using Social

and Content-based Information in Recommendation. In Recommender System Workshop'98.

pp. 11-15

Bradley, P.S., Fayyad, U.M. and Reina, C., 1998a. Scaling clustering algorithms to large

databases. In: Proceedings of ACM Conference on Knowledge Discovery in Databases, pp.

9-15.

Bradley, P.S. and Mangasarian, O.L, 2000, k-plane clustering. Journal of Global

Optimization. Vol.16 (1), 23-32.

Bradley, P.S., Mangasarian, O.L. and Street, N., 1996. Clustering via concave minimization,

Advances in Neural Information Processing Systems, Vol. 9. MIT Press, Cambridge, MA, pp.

368-374.

Dempster, A. P., Laird, N. M., and Rubin, D. B., 1977. Maximum likelihood from

incomplete data via the EM algorithm. J. Royal Stat. Soc. B., Vol.39 (1): 1–38.

Gottlob G., Leone, N. and Scarcello, F., 2001. Hypertree Decompositions: A Survey. MFCS

37-57.

 42

Goldberg, D., Nichols, D., Oki, B.M. and Terry, D., 1992. Using Collaborative Filtering to

Weave an Information Tapestry. Comm.ACM. Vol. 35 (12): 61-70.

Han, J. and Kamber, M., 2006. Data mining: Concepts and Techniques. 2nd edition, Elsevier

Inc.

Hill, W., Stead, L., Rosenstein, M., and Furnas, G., 1995. Recommending and Evaluating

Choices in a Virtual Community of Use. Proc. Conf. Human Factors in Computing Systems

Hwang, F., 1981. Optimal partitions. Journal of Optimization Theory and Applications.

Vol.34: 1-10.

Jain, A.K., Murty, M. N. and Flynn, P. J., 1999. Data clustering: A review. ACM Computing

Surveys (CSUR), Vol. 31 (3): 264-323.

Joseph, A. and Bryson, N., 1997. W-efficient partitions and the solution of the sequential

clustering problem. Annals of Operations Research: Nontraditional Approaches to

Statistical Classification. Vol.74: 305-319.

Kall, P. and Wallace, S.W., 1994. Stochastic Programming, John Wiley & Sons, Chichester.

King, B., 1967. Step-wise clustering procedures. J. Am. Stat. Assoc, Vol.69: 86–101.

Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., et al. 1997. GroupLens: Applying

Collaborative Filtering to Usenet News. Comm. ACM, Vol. 40 (3): 77-87.

 43

Mark S. Aldenderfer and Roger K. Blashfield, 1984. Cluster Analysis, Sage Publications, Inc.

Mcqueen, J. 1967. Some methods for classification and analysis of multivariate observations.

In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,

281–297.

Murtagh, F. 1984. A survey of recent advances in hierarchical clustering algorithms which

use cluster centers. Comput. J., Vol.26: 354–359.

Murthi B.P.S.,and Sarkar, S., 2003. The Role of the Management Sciences in Research on

Personalization. Management Science. Vol. 49 (10):1344-1362.

Ng, R. and Han, J., 1994. Efficient and effective clustering method for spatial data mining. In:

Proceedings for the 1994 International Conference on Very Large Data Bases, pp. 144-155.

Olafsson, S., Li, X. and Wu, S., 2006. Operations research and data mining. European

Journal of Operational Research, doi:10.1016/j.ejor.2006.09.023

Rao, M.R., 1971. Cluster analysis and mathematical programming. Journal of the American

Statistical Association. Vol.66: 622-626

REF: http://www.netflixprize.com

Resnick, P., Iakovou, N., Sushak, M., Bergstrom, P. and Riedl, J., 1994. GroupLens: An

Open Architecture for Collaborative Filtering of Netnews. Proc. 1994 Computer Supported

Cooperative Work Conf.

 44

Rich, E., 1979. User Modeling via Stereotypes, Cognitive Science. Vol. 3 (4): 329-354.

Salton, G.,1989. Automatic Text Processing. Addison-Wesley.

Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J., 2000. Analysis of Recommendation

Algorithms for E-Commerce. In Proceedings of the ACM EC'00. Conference. Minneapolis,

MN. pp. 158-167

Shmoys, D.B., 1999. Approximation algorithms for clustering problems. In: Proceedings of

the 12th Annual Conference on Computational Learning Theory, pp. 100-101.

Shmoys, D.B., Tardos, E., Aardal, K., 1997. Approximation algorithms for facility location

problems. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of

Computing, pp. 265-274.

Shardanand U. and Maes, P., 1995. Social Information Filtering: Algorithms for Automating

“Word of Mouth”. Proc. Conf. Human Factors in Computing Systems

Sneath, P. H. A. and Sokal, R. R., 1973. Numerical Taxonomy. Freeman, London, UK.

Ungar, L. H., and Foster, D. P., 1998. Clustering Methods for Collaborative Filtering. In

Workshop on Recommender Systems at the 15th National Conference on Artificial

Intelligence.

 45

Vinod, H.D., 1969. Integer programming and the theory of grouping. Journal of the

American Statistical Association. Vol. 64: 506-519

Ward, J. H. JR., 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat.

Assoc, Vol.58: 236–244.

Zahn, C. T., 1971. Graph-theoretical methods for detecting and describing gestalt clusters.

IEEE Trans. Comput. C-20 (Apr.): 68–86.

Zhang, T., Ramakrishnan, R. and Livny, M., 1996. BIRCH: An efficient data clustering

method for very large database. In: SIGMOD Conference, pp. 103-114.

 46

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me

with various aspects of conducting research and the writing of this thesis. First and foremost,

Dr. Sigurdur Olafsson for his guidance, patience and support throughout this research. His

insights and words of encouragement have often inspired me and renewed my hopes for

completing my graduate education. I would also like to thank my committee members for

their efforts and contributions to this work: Dr. John Jackman and Dr. Dan Zhu. I would

additionally like to thank Dr. Dan Zhu for her critical thoughts of my thesis work and Dr.

John Jackman for his potential purport in my graduate study.

	TABLE OF CONTENTS
	Mark S. Aldenderfer and Roger K. Blashfield, 1984. Cluster A

