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ABSTRACT 
 

 

        Recommendation systems have become an important research area. Early 

recommendation systems were based on collaborative filtering, which uses the principle that 

if two people enjoy the same product they are likely to have common favorites. We present 

an alternative recommendation approach based on finding clusters of similar customers using 

integer programming model which is to find the minimal number of clusters subjected to 

several similarity measures. The proposed recommendation method is compared with 

collaborative filtering, and the experimental results show that it provides relatively high 

prediction accuracy as well as relatively small variance. 
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CHAPTER 1   INTRODUCTION 

 

 

1.1 Motivation 

Recommender systems are a specific type of information filtering (IF) technique that 

attempts to present to the user information items that the user is interested in. Examples of 

such application for recommendation systems include recommending movies, music, books, 

news, web pages and so on. In order to make good recommendation, the user's profile is 

compared to some reference characteristics, which may be from the information item (the 

item-based approach) or the other user's profiles (the collaborative filtering approach).  

The most popular technique used in recommendation systems is collaborative 

filtering (CF), especially k-nearest neighbor collaborative filtering, such as those used by 

Netflix, Amazon, and other Web retailers. (Adomavicius and Tuzhilin, 2005) CF is based on 

the principle that if two people enjoy the same product, they're likely to have other favorites 

in common too. But behind this simple premise is a complex algorithm that incorporates 

millions of user ratings, tens of thousands of items, and ever-changing relationships between 

user preferences. For example, in Netflix published data set, there are over 17 thousand 

movie titles and over 100 million ratings from 480 thousand randomly-chosen, anonymous 

Netflix customers. (REF) To deal with this complexity, algorithms for recommendation 

systems are "trained" on huge datasets. One dataset used in Netflix's system contains the star 

ratings--one to five--that Netflix customers assign to movies. Using this initial information, 

good algorithms are able to predict future ratings, and therefore can suggest other films that 

an individual might like. 

Clustering is the process of grouping the data into classes or clusters, so that objects 

within a cluster have high similarity in comparison to one another but are very dissimilar to 

objects in other clusters. (Han 2006) Several similarity measures are often used such as 
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Euclidean distance measures, cosine measures, correlation coefficient measure etc. However, 

current clustering algorithms need decision-makers to pre-estimate the number of clusters or 

the number of nearest neighbors, which is normally a vague parameter since we hardly know 

in advance the patterns of the dataset. The minimal number of clusters is a very important 

parameter in data mining clustering problems since it shows minimal clusters to represent the 

original large data set and it also can improve the accuracy of current clustering methods. 

Similarly, k-nearest neighbor CF is designed to recommend items for the user according to 

other k users that are most likely to the target user (whom the recommendation system 

attempts to recommend items for). Since we generally don’t know k beforehand, the kth user 

may be far away from the target user, hence the predicted value often has a large variance if k 

is not suitable chosen. Moreover, most CF algorithms only employ one similarity measure to 

determine similarity among users or items, causing that prediction may not be good in some 

cases due to the drawbacks of some similarity measures themselves. For example, distance-

based similarity measure takes only the impact of the distance into account, cosine measure 

considers the direction of items which is often more used in document retrievals, while 

correlation coefficient measure has advantage with the scaled value between -1 and 1.  

 

1.2 Objective 

In this study, we design a new clustering method by using an integer programming 

model, aiming at minimizing the total number of clusters and subjected to several similarity 

measures. The proposed model is applied to predict the movie rates of Netflix 

recommendation system after dynamically generating the most correlated data set for each 

target customer according to his/her preference indicated by his/her historical records of 

movie rates. Prediction is based on other similar customers in the same cluster by employing 

the proposed integer programming clustering model. The results provide relatively high 

prediction accuracy as well as small variance compared to collaborative filtering algorithms. 
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1.3 Thesis Organization 

Chapter 2 reviews relevant literatures about most commonly used clustering methods, 

typical similarity measures and recommendation systems. In chapter 3, we develop a new 

clustering method by using integer programming model. We report extensive experiments 

about the suitable conditions that the model can be applied as well as parametric analysis. In 

chapter 4, we further apply the proposed integer programming model to the Netflix published 

data set to predict the movie rates by finding clusters of similar customers. Conclusion and 

future work are drawn in chapter 5. 
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CHAPTER 2    LITERATURE REVIEW 

 

 

2.1 Clustering Methods 

Clustering is the unsupervised classification of instances into similar groups (clusters). 

The methods of clustering technique have two big categories: hierarchical clustering 

algorithms and partitional clustering algorithms. According to Jain, Murty and Flynn (1999) 

as showed in Figure 1, these also have several subcategories respectively. 

A hierarchical clustering method is to group instances into a hierarchy of clusters that 

describes the degree of similarity between those instances.  Hierarchical clustering methods 

can be further classified as either agglomerative or divisive, depending on if the hierarchical 

decomposition is formed in a bottom-up (merging) or top-down (splitting) fashion. Distance 

among clusters for most hierarchical clustering algorithms are single-link (Sneath and Sokal 

1973), complete-link (King 1967), or minimum-variance (Ward 1963; Murtagh 1984). 

Especially, the single-link and complete-link algorithms are most popular used. The single-

link method uses the minimal distance between instances in the two clusters, while the 

complete-link applies the maximum of all pair-wise distances in the two clusters.  

The partitional techniques usually produce clusters by optimizing a criterion function 

in order to organize objects into partitions, and each partition represents a cluster. The k-

means algorithm is to employ a squared error criterion (McQueen 1967) and iteratively 

generate cluster centers. Several variants of k-mean are k-medoids, CLARANS and so on. 

The best-known graph-theoretic divisive clustering algorithm is provided by Zahn (1971), 

who constructs the minimal spanning tree (MST) and delete the longest MST edges in order 

to generate clusters. The Expectation Maximization (EM) algorithm is the representative for 

the mixture resolving approach with the underlying assumption that the patterns of clusters 
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are drawn from one of several distributions, and the goal is to identify the parameters of each 

distribution (Dempster et al. 1977). Other mixture resolving and model-seeking algorithms 

are conceptual clustering, neural network approach and so on. (Han 2006) A problem 

accompanying the use of a partitional algorithm is the choice of the number of desired output 

clusters, which is normally hard to know in advance especially for high dimensional data set.  

 

 
Figure 1 Clustering Methods 

 

In addition to classical clustering methods mentioned above, there was extensive 

work done on optimization methods in clustering techniques as reviewed by Olafsson, Li and 

Wu (2006).  

Vinod (1969) first provides integer programming formulations for the clustering 

problem. In one of his formulation, decision variables are binary to indicate if the instance is 

assigned to the cluster and the objective is to minimize the total assignment cost. Rao (1971) 

improves Vinod’s work by minimizing two compactness measures, in which one measure is 

the within cluster sum of squares and the other, the maximum distance within clusters. 

Bradley et al. (1996) and Bradley and Mangasarian (2000) also provide mathematical 

programming formulations for the clustering problem, but they focus on identifying cluster 
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centers (decision variables). However, the solution from Bradley et al. (1996) turns out to be 

the cluster centers such that each instance in the cluster is as close as possible to the center, 

which means that the solution may be a cluster set where the clusters are not well separated. 

Bradley and Mangasarian (2000), on the other hand, employ mathematical programming to 

find the best cluster planes instead of the best centers. They propose an iterative algorithm, 

like k-means algorithm, to find the plane that minimize the sum of squares of distances of 

each instance to the cluster. 

More recent work defines clustering problem as set covering (e.g. Shmoys, 1999). For 

example, the problem of locating the best clusters mirrors problems in facility location 

(Shmoys et al., 1997), and especially the k-center and k-median problems. Several other 

research work focus on the scalability of clustering algorithms. (Bradley et al. 1998; Ng and 

Han, 1994; Zhang et al., 1996) 

Another clustering problem is sequential clustering, which is equivalent to the 

partitional clustering problem, except that the instances are ordered and this order must be 

maintained in the clustering. Hwang (1981) shows how to find optimal clusters for this 

problem, and Joseph and Bryson (1997) show how to find so called w-efficient solution to 

sequential clustering using linear programming.  

 

2.2 Similarity Measures 

Similarity is quite difficult to measure, since the quantity reflects the strength of 

relationship between two objects. This quantity is usually having range of either 0 to 1 or 

normalized into -1 to 1. If the similarity between object i and object j is denoted by sij, we can 

measure this quantity in several ways depending on the scale of measurement (or data type) 

that we have. Typical similarity measures include Euclidean distance measure, cosine 

measure and correlation coefficient measure. (Aldenderfer and Blashfield, 1984)
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2.2.1 Euclidean distance measure 

Euclidean Distance is the most common use of distance. In most cases when people 

talk about distance, they refer to Euclidean distance. Euclidean distance or simply ‘distance’ 

examines the root of square differences between coordinates of a pair of objects. This can be 

written mathematically as 

2

1
( )

n

ij ik jk
k

d x x
=

= −∑ , 

where ikx means the element of instance i  for attribute k. 

 

2.2.2 Cosine measure 

Cosine measure, also called angle measure, actually is the cosine angle value between 

two objectives (vectors), which accounts for similarity rather than distance or dissimilarity. 

Thus, higher value of angular similarity indicates the two objects are similar. The value of 

angular measure is [-1, 1] similar to cosine. It is often called as Coefficient of Correlation. 

This can be written mathematically as  

1
1

2 2 2

1 1

( )

n

ik jk
k

ij n n

ik jk
k r

x x
s

x x

=

= =

=
∑

∑ ∑
, 

where ikx means the element of instance i  for attribute k. 

2.2.3 Correlation coefficient measure 

Correlation coefficient is standardized angular separation by centering the coordinates 

to its mean value. The value is between -1 and +1. It measures similarity rather than distance 

or dissimilarity. This can be written mathematically as  
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, 1
1

2 2 2

1 1

( )( )

( ( ) ( ) )

n

i jik jk
k

ij n n

i jik jk
k k

x x x x
s

x x x x

=

= =
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=

− −

∑

∑ ∑
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where  

1

1 n

i ik
k

x x
n =

= ∑ , 
1

1 n

j jk
k

x x
n =

= ∑ . 

 

2.3 Recommendation System 

Recommendation systems help customers to find the items that they would like to 

purchase by predicting the rate of the item or producing a list of top-N recommended items 

for a given customer. The work on recommendation systems can be traced back to cognitive 

science (Rich, 1979), information retrieval (Salton, 1989), forecasting theories (Armstrong, 

2001), management science (Murthi and Sarkar, 2003) and so on. However, recommendation 

systems emerged as independent research area since the mid of 1990s when the focus turned 

to rating structure of recommendation systems. In general, many customers provide rates to 

different items. The space of items can be very large, ranging in hundreds of thousands or 

even millions of items in some applications, such as recommending books, CDs or movies. 

Some pairs of customer-item have rates, while others are missing (unrated), as showed in 

Table 1. The goal of the recommendation system is to predict the missing rates, so that we 

can recommend to customers the item(s) with the highest estimated rating(s). 
 

Table 1 A Fragment of Rating Matrix for a Movie Recommendation System 
Customers K-PAX Life of Brian Memento Notorious 

Alice 4 3 2 4 
Bob ? 4 5 5 

Cindy 2 2 4 ? 
David 3 ? 5 2 
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Collaborative filtering (CF) has been the most successful recommendation technique. 

CF is the method of making predictions or recommendation (filtering) about the interests of a 

user by collecting taste information from many other customers (collaborating). Suppose a 

list of m customers  and a list n items1 2{ , ,..., }mU u u u= 1 2{ , ,..., }nI i i i= , where each customer 

has a list of itemsiu
iuI . Opinions are generally given by the customer as a rating sore within 

a certain range. Hence it forms a m n× customer-item data set as a rating matrix, A, where 

each in A represents the preference score (rating) of customer on item. ija thi thj

There have been many collaborative systems developed in the past decades. Grundy 

system was the first recommendation system that proposed to build models of users based on 

a limited amount of information on each individual user using stereotypes (Rich, 1979). Later, 

the Tapestry system relied on each user to identify like-minded users manually (Goldberg et 

al., 1992). GroupLens (Konstan et al., 1997; Resnick et al., 1994), Video Recommender (Hill 

et al., 1995) and Ringo (Shardanand and Maes, 1995) were the first systems to use CF 

algorithms to automate prediction. Other examples of collaborative recommender systems 

include the book recommendation system from Amazon.com and the Jester system that 

recommends jokes. 

Two main categories were developed about CF algorithms in the past, Memory-based 

(user-based) algorithms and Model-based (item-based) algorithms (Breese, Heckerman and 

Kadie, 1998). Memory-based CF algorithms employ statistical techniques to find a set of 

neighbor users, which have similar historical preference with the target user. Once a 

neighborhood of the users is determined, then systems use different algorithms to combine 

the preferences of neighbors to make a prediction or top-N recommendation for the target 

user. Model-based CF algorithms provide item recommendation by finding similar items that 

co-rated by different users. The model building process can also be performed by different 

machine learning algorithms such as Bayesian network, clustering and rule-based approaches. 

The Bayesian network model provides a probabilistic model for CF problems (Breese, 
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Heckerman and Kadie, 1998). Clustering model considers CF problems as classification 

problems by clustering similar users in same class (Breese et al., 1998; Basu et al., 1998; 

Ungar and Foster, 1998), but those clustering methods are fallen in classical clustering 

techniques. The rule-based approach determines recommendation based on the strength of 

the association between co-purchased items applying association rule discovery algorithms 

(Sarwar et al., 2000). 

The underlying assumption of CF approach is that those who agreed in the past tend 

to agree again in the future. For example, a collaborative filtering or recommendation system 

for music tastes could make predictions about which music a user should like given a partial 

list of that user's tastes (likes or dislikes). 

For the user-based k-nearest neighbor CF, suppose rating vector for the target user to 

be
auI , the algorithm applies Pearson correlation coefficient or cosine-based approach to find 

out the most similar k other users. The formulas with Pearson correlation coefficient 

similarity measure is as follows: 

, ,

2 2
, ,

( )( )
( , )

( ) (

i ju i u j
u U

i ju i u j
u U u U

R R R R
sim i j

R R R R

∈

∈ ∈

− −
=

− −

∑

∑ ∑ )
, 

where ,u iR  is the rating vector of user i and ,u jR is the rating vector of user j; iR is the 

average rate for user i and jR is the average rate for user j; U is a set of rates from co-rated 

items. The formula with cosine similarity measure is as follows: 

2 2

( , ) cos( , ) i jsim i j i j
i j

= =
•

G GG G iG G . 

The predicted rate is defined as aggregating rating values of the most similar k other 

users to predict the rate of the target user as follows. Here, is the predicted rate for the 

customer c to item s. C’ is the set of the most similar k other customers. Here, q is the 

,c sr
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normalized value, normally defined as l'
1/ ( , ')

c C
q sim c

∈
= c∑ . We listed three ways of 

aggregation. In this thesis, we choose (b) to compute rates for the target user from the most 

similar k other users. 

 

l
, '

'
 c s c s

c C
r aggr r

∈
=  

(a)   
l

, ',
'

/c s c s
c C

r r
∈

= ∑ k

,(b)  
l

, '
'

( , ')c s c s
c C

r q sim c c r
∈

= ×∑
(c)

l
', '

'

( , ') ( )c cc s c s
c C

r r q sim c c r r
∈

= + × −∑ ,  
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CHAPTER 3    MATHEMATICAL MODEL 
 

 

3.1 Mathematical Formulation by QIP model 

A cluster is defined to be a collection of data objects that are similar to one another 

within the same cluster and are dissimilar to the objects in other clusters. The clustering 

approach in this study is concerned with finding the minimal number of clusters given 

constraints of several similarity measures. We design to find the minimal number of clusters 

because decision makers often prefer to group a large data set into a smallest amount of 

clusters, each of which can be viewed as an individual, so as to efficiently deal with 

individual clusters instead of the large data set. Similarity measures including cosine measure 

and distance measure are two basic metrics in various clustering methods. The smaller the 

angle between two vectors is, the more similar they are. The less distance between two 

vectors, the more likely they belongs to the same cluster. As mentioned before, two 

traditional similarity measures, angle measure and distance measure, partially reflect the 

similarity of the compared objects, and they are complementary with respect to the distance 

and direction. The complementary feature of two measures suggests that it would be useful to 

consider both measures as our constraints in grouping vectors.  

The number of clusters in classical clustering methods is often predetermined, like k-

means, k-medoids, CLARANS and so on, or it is left users to specify the desired number of 

clusters as a termination condition, like agglomerative or divisive hierarchical clustering. It is 

seldom as a decision variable in the previous clustering approaches. So, we attempt to 

minimize the number of clusters as an objective function. After initially finding the optimal 

number of clusters, we may further apply other current clustering approaches to better cluster 

the data set. A quadratic integer programming clustering model is as follows: 
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Index sets: 

NC={1,…K}, set of clusters, 

NI={1,…, n}, set of instances, 

NB={(i,j): angle( vi, vj)< bij or distance(vi, vj)> dij } 

 

Problem parameters: 

bij:  minimal similarity requirement between vector i and vector j; 

dij:  maximal distance requirement between vector i and vector j; 

angle( vi, vj): angle measure between vector i and vector j; 

distance(vi, vj): distance measure between vector i and vector j; 

M:  large positive number; 

K: the maximum number of clusters, normally K≤n; 

 

Decision variables: 
1  if cluster  has elements
0 otherwisek

k
Y ⎧

= ⎨
⎩

 

1 if instance  assigned to cluster 
0 otherwiseik

i k
X ⎧

= ⎨
⎩

 

Quadratic Integer Programming (QIP) Model:  

min k
k NC

Y
∈
∑   

s.t. 

angle( , )   ,   i j ij ik jkv v b X X i j NI k NC≥ ∀ ∈ ∀ ∈                          (1) 

distance( , )   ,   i j ik jk ijv v X X d i j NI k NC≤ ∀ ∈ ∀ ∈                    (2) 

1  ikk NC X i NI
∈

= ∀ ∈∑                                                              (3) 

  ik ki NI X MY k N
∈

≤ ∀ ∈∑ C                                                          (4) 

, {0,1}    ik kX Y i NI k= ∀ ∈ ∀ ∈NC                                              (5) 
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In the above formulation, the objective function is to minimize the total number of 

clusters. Constraint (1) requires that angle measure should no less than bij if vector i and 

vector j belong to the same cluster k. If vector i and vector j belong to different clusters, then 

constraint (1) is redundant. Similarly, constraint (2) requires that vectors in the same cluster 

are no larger than maximal distance requirement. Constraint (3) assures that each vector can 

be only assigned in one cluster. The LHS of constraint (4) counts the number of element in 

cluster k. If cluster k has a positive number of elements, Yk has to be 1 since M is a large 

positive number. If cluster k is empty, then Yk can be either 1 or 0. But the objective is to 

minimize the sum of Yk, so Yk tends to be 0 in this case. 

 

3.2 Example of QIP model 

Suppose 3 instances, v1, v2 and v3, to be assigned to 2 clusters (K=2). The distance 

between any two instances within the same cluster is no more than d, and the minimal cosine 

similarity is b. M=1000. Then the above quadratic model would be as follows: 

 

1 2minY Y+  

s.t. 

1 2 11 21angle( , )v v bX X≥                         

1 2 11 21distance( , )v v X X d≤             

1 2 12 22angle( , )v v bX X≥                         

1 2 12 22distance( , )v v X X d≤                                                          

1 3 11 31angle( , )v v bX X≥                         

1 3 11 31distance( , )v v X X d≤             

1 3 12 32angle( , )v v bX X≥                         

1 3 12 32distance( , )v v X X d≤                                                          
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3 2 31 21angle( , )v v bX X≥                         

3 2 31 21distance( , )v v X X d≤             

3 2 32 22angle( , )v v bX X≥                         

3 2 32 22distance( , )v v X X d≤                                                          

11 12 1X X+ =                  

21 22 1X X+ =   

31 32 1X X+ =                                                   

11 21 31 11000   X X X Y+ + ≤          

12 22 32 21000   X X X Y+ + ≤                                                      

, {0,1}  1, 2 3  1  2ik kX Y i or k or= = =                    

                         

If we let the decision vector be 11 21 31 1 12 22 32 2( , , , , , , , )X X X X Y X X X Y= , any quadratic form of 

ik jkX X  can be represented as 'X FX , here F is the constant square matrix. For example,  

11

21

31

1
11 21 11 21 31 1 12 22 32 2

12

22

32

2

0 0.5 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

( , , , , , , , )
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

X
X
X
Y

X X X X X Y X X X Y
X
X
X
Y

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

Other constraints with quadratic form are similar with above example. The total amount of 

quadratic form is , where n is the total number of instances and q is types of similarity 

measures. 
2
n

q ⎛ ⎞
× ⎜ ⎟
⎝ ⎠

 

3.3 IP model 

The QIP model includes a quadratic term in both constraints (1) and (2), which is 

very hard to handle in practice due to F often bring a many sparse matrix. Actually, if 

 
 



 16

angle( vi, vj) ≥ bij and distance( vi, vj) ≤ dij, it means XikXjk=1 or 0 for any k, otherwise XikXjk=0. 

That is, if two instances, i and j, do not satisfy all similarity measures, then XikXjk=0 for any k. 

Since Xik or Xjk is binary variables, XikXjk=0 is equivalent to Xik+Xjk≤ 1. Hence, we modify the 

above QIP model into a linear IP model as follows. Constraint (6) separates two vectors into 

different clusters if the two vectors do not satisfy either the angle measure or the distance 

measure. The number of constraint (6) depends on the actual problem. The more compact of 

data, the less the number of (6). So, before solving the problem, we dynamically generate (6) 

by checking all similarity requirements for any two vectors. The model is modified as 

follows: 

min k
k NC

Y
∈
∑   

s.t. 

1   ( , )ik jkX X k NC i j+ ≤ ∀ ∈ ∀ ∈ NB                                        (6)  

1  ikk NC X i NI
∈

= ∀ ∈∑                                                              (3) 

  ik ki NI X MY k N
∈

≤ ∀ ∈∑ C                                                          (4) 

, {0,1}    ik kX Y i NI k= ∀ ∈ ∀ ∈NC                                              (5) 

 

Since the above modified model is linear (IP model), it is much easier to solve by 

most of mathematical software like Tomlab/CPLEX which includes an advanced Matlab 

interface to the state-of-the-art large-scale mixed-integer linear solver CPLEX. However, the 

coefficient matrix of (6) is normally large and sparse. In order to avoid “out of memory” 

error when running CPLEX, we need use storage of sparse coefficient matrix.  

 

3.4 Iris data set Testing and Parametric Analysis 

We try to use a classic numeric dataset, iris dataset, to test our model. The iris dataset 

is about seminal work collected by the eminent statistician R.A. Fisher in the mid-1930s and 
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is arguably the most famous dataset used in data mining. It contains 50 examples for each of 

three types of plant: Iris setosa, Iris versicolor, and Iris virginica. It is excerpted in Table 3 

that there are four attributes: sepal length, sepal width, petal length, and petal width (all 

measured in centimeters). And all attributes have values that are numeric. The following set 

of rules might be learned from this dataset: 

If petal length < 2.45 then Iris setosa 

If sepal width < 2.10 then Iris versicolor 

If sepal width < 2.45 and petal length < 4.55 then Iris versicolor 

If sepal width < 2.95 and petal width < 1.35 then Iris versicolor 

If petal length ≥ 2.45 and petal length < 4.45 then Iris versicolor 

If sepal length ≥ 5.85 and petal length < 4.75 then Iris versicolor 
 

Table 2 Iris Data 
No. 

 
Sepal length 

(cm) 
Sepal width 

(cm) 
Petal length 

(cm) 
Petal width 

(cm) 
Type 

 
1 5.1 3.5 1.4 0.2 Iris-setosa 
2 4.9 3 1.4 0.2 Iris-setosa 
3 4.7 3.2 1.3 0.2 Iris-setosa 
4 4.6 3.1 1.5 0.2 Iris-setosa 
5 5 3.6 1.4 0.2 Iris-setosa 

…      
51 7 3.2 4.7 1.4 Iris-versicolor 
52 6.4 3.2 4.5 1.5 Iris-versicolor 
53 6.9 3.1 4.9 1.5 Iris-versicolor 
54 5.5 2.3 4 1.3 Iris-versicolor 
55 6.5 2.8 4.6 1.5 Iris-versicolor 
…      

101 6.3 3.3 6 2.5 Iris-virginica 
102 5.8 2.7 5.1 1.9 Iris-virginica 
103 7.1 3 5.9 2.1 Iris-virginica 
104 6.3 2.9 5.6 1.8 Iris-virginica 
105 6.5 3 5.8 2.2 Iris-virginica 

…      

 
We cluster the iris data set only considering distance measure for simplicity, which requires 

the minimal cosine similarity to be 0. From numerical experiments, we found that when 
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maximal distance d between 2.6 and 3.8, the IP model returned optimal 3 clusters, and when 

d between 3.9 and 7, the IP model returned 2 optimal clusters. If d is set too small, like 1.5, it 

appeared that things degenerated quite quickly to a very large number of clusters, so we 

couldn’t find any feasible solution because the maximal number of clusters was smaller than 

the optimal number of clusters. It also indicates that even if we don’t know the optimal 

solution, it should be greater than 60 when maximal distance is 1.5.  When d is set too large it 

appeared that the two more similar clusters were simply combined (100 instances) and 

separated, or at least approximately separated, from the more distinct cluster (50 instances). 

When d was set large enough (d≥7.1), then all clusters became merged into one cluster. 

According to experiments, the optimization can find the correct number of clusters under a 

fairly wide range of distance parameters. Although the clusters are not exactly right possibly 

because we set all allowed maximal distance of points within one cluster the same, the 

primary purpose of this approach is to find the correct number of clusters. After initially 

finding the optimal number of clusters, we can further apply other heuristic approaches, like 

k-means algorithm to cluster the data set. If k=2, the k-means approach results in 2 clusters 

with 50×100 and k=3 with 50×50×50. The proposed model and parameter analysis also give 

us an intuitive image of the pattern of data set. For iris data set, we have hunch that there are 

2 more similar clusters and another cluster is far away from these 2 clusters.  
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Table 3 Parametric Tests for Iris Data 
Max No. of Clusters Max Distance Solution 

(No. of Clusters) Optimality No. of Cluster 
Elements 

20 1.5 None -  
40 1.5 None -  
60 1.5 None -  
25 1.8 C=8 feasible  
8 1.8 C=7 feasible  
7 1.8 C=6 feasible  
6 1.8 C=6 feasible  
6 2 C=5 optimal  
5 2.2 C=5 optimal  
5 2.4 C=4 optimal  
5 2.6 C=3 optimal  
3 2.61 C=3 optimal 51×55×44 
3 2.62 C=3 optimal 50×61×39 
3 2.63 C=3 optimal 51×45×54 
3 2.64 C=3 optimal 50×61×39 
3 2.65 C=3 optimal 51×48×51 
3 2.66 C=3 optimal 37×62×51 
3 2.67 C=3 optimal 50×48×52 
3 2.68 C=3 optimal 35×64×51 
3 2.69 C=3 optimal 51×35×64 
3 2.7 C=3 optimal 51×49×50 
3 2.8 C=3 optimal 46×51×53 
3 2.9 C=3 optimal 53×51×46 
3 3 C=3 optimal 52×24×74 
3 3.1 C=3 optimal 54×67×69 
3 3.2 C=3 optimal 27×52×71 
3 3.3 C=3 optimal 52×25×73 
3 3.4 C=3 optimal 53×22×75 
3 3.5 C=3 optimal 32×41×77 
3 3.6 C=3 optimal 60×49×41 
3 3.7 C=3 optimal 31×58×61 
3 3.8 C=3 optimal 44×19×87 
3 3.9 C=2 optimal 75×75 
2 4 C=2 optimal 59×91 
2 4.1 C=2 optimal 56×94 
2 4.2 C=2 optimal 54×96 
2 4.3 C=2 optimal 54×96 
2 4.4 C=2 optimal 54×96 
2 4.5 C=2 optimal 54×96 
2 4.6 C=2 optimal 54×96 
2 4.7 C=2 optimal 54×96 
2 4.8 C=2 optimal 51×99 
2 4.9 C=2 optimal 50×100 
2 5 C=2 optimal 50×100 
2 5.1 C=2 optimal 50×100 
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Table 3 (Continued) 
2 5.2 C=2 optimal 50×100 
2 5.3 C=2 optimal 50×100 
2 5.4 C=2 optimal 50×100 
2 5.5 C=2 optimal 50×100 
2 5.6 C=2 optimal 50×100 
2 5.7 C=2 optimal 50×100 
2 5.8 C=2 optimal 50×100 
2 5.9 C=2 optimal 50×100 
2 6 C=2 optimal 50×100 
2 6.1 C=2 optimal 48×102 
2 6.2 C=2 optimal 30×120 
2 6.3 C=2 optimal 28×122 
2 6.4 C=2 optimal 11×139 
2 6.5 C=2 optimal 24×126 
2 6.6 C=2 optimal 24×127 
2 6.7 C=2 optimal 46×104 
2 6.8 C=2 optimal 55×95 
2 6.9 C=2 optimal 51×99 
2 7 C=2 optimal 1×149 
2 7.1 C=1 optimal 150 

 

3.5 Numerical Experiments 

We simulated 2 dimensional clusters in the square space of 5000 by 5000, within 

each cluster the maximal allowed distance is 20 and the minimal allowed cosine similarity is 

0. We use PC computer with CPU 3GH and 3.5G RAM to test the different problem size as 

well as total amount of time needed. From Table 5, we found that the IP model could 

efficiently find the exact clusters up to about 100 instances when actual number of clusters is 

small (no more than 7). However, in No. 5 and No. 3, the amount of time spent in solving the 

problems by CPLEX exceeds its maximal set time, 300 second, so in this case those solutions 

are only feasible but not optimal.  
 

Table 4 Scalability Test 
No. No. of 

Instances Max No. of clusters Simulated  
No. of clusters 

Solution to  
No. of Clusters 

Total Amount 
of Time (s) 

1 44 10 2 2 0.51 
2 59 10 4 4 25.47 
3 100 10 6 7 300.26 
4 150 (iris) 6 3 3 98.40 
5 166 20 8 20 309.48 
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From the above experiments the IP model can only be suitable for solving a small 

amount of data set. In the proposed IP model, the number of constraints varies due to the 

characteristic of data set.  When instances sparsely lie in the searching space, there would be 

lots of constraints (6). As the number of instances goes up, number of constraints (6) 

increases dramatically, so the coefficient matrix for this problem is correspondingly large and 

sparse. For example in 20 randomly generated 2 dimensional instances, if the maximal 

number of clusters is set 20, the coefficient matrix is 960 by 420 with 8380 non-zeros in the 

reduced MIP problem. However, for a problem that randomly generated 100 instances with 

maximal number of clusters 50, the coefficient matrix is 126479 by 5050 with 605620 non-

zeros in the reduced MIP problem. (CPLEX first aggregates the coefficient matrix, then pre-

solves and reduces the MIP problem.)  Hence, when the problem size is too large, which 

depends on number of instances and number of maximal clusters, time spent solving the MIP 

problem by CPLEX would be not efficient enough and sometimes even cannot find the 

optimal solution.  

For a problem with a large number of instances and a small number of clusters, which 

is generally a clustering problem in most cases, the model is still suitable as we did with iris 

data that has 150 instances and 3 optimal clusters. We may also iteratively try to find the 

optimal solution by reducing the maximal number of clusters. For example, we didn’t find 

the optimal solution to No. 1 in Table 6 since the amount of time exceeds the limit (300) we 

set. However, if we can find a feasible solution (7),  by setting maximal number of clusters to 

be 10, then we can use maximal number of clusters (7) to resolve the MIP problem, since the 

minimal number of clusters should be no larger than 7. Then as showed in No. 2 in Table 6, 

CPLEX solver needs 14.81 seconds (less than 300) to resolve the problem, so the solution 

found (6) is the optimal solution. Of course, if we use maximal number of clusters to be 6, 

CPLEX only needs 2.53 seconds, as showed in case 4. In this way, the coefficient matrix for 
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the problem can be largely reduced by reducing the maximal number of clusters, until the 

optimal cluster can be found. 
 

Table 5  Reduce Max No. of Clusters 
No. No.  

of Instances Max No. of clusters Simulated  
No. of clusters 

Solution to  
No. of Clusters 

Total Amount 
of Time (s) 

1 100 10 6 7 300.26 
2 100 10 6 7 300.21 
3 100 7 6 6 14.88 
4 100 6 6 6 2.53 

 

We repeat to test iris data set for 5 times and the amount of time spent on each repeat 

is close to 98.2 seconds with standard error only 0.14. All solutions found by CPLEX solver 

from 5 repeats are same. Hence, the CPELX solver is quite stable if the optimal solution can 

be found. 
 

Table 6 Time Variability Test 
No No.  

of Instances Max No. of clusters Simulated  
No. of clusters 

Solution to  
No. of Clusters 

Total Amount  
of Time (s) 

1 150 (iris) 6 3 3 98.12 
2 150 (iris) 6 3 3 98.40 
3 150 (iris) 6 3 3 98.27 
4 150 (iris) 6 3 3 98.17 
5 150 (iris) 6 3 3 98.05 

Time ± S.E. 98.202±0.14 
 

In order to further test the effectiveness of the IP model, we apply cluster separation 

to measure the compactness of data set, which provides us a quantity that how clusters are 

separated to each other. The separation measure we use is as follows: 

2
1 1

1 1 (1 )
1

K n

between ik i k
k i

F a
d K

x γ
= =

= −
− ∑∑ − . 

Here d is the number of attributes, K is the total number of clusters, n is the total number of 

instances,  is 1 if instance i belongs to cluster k, and ika
2i kx γ− is square of distance 

between instance i and cluster center k.  We simulated 5 different clusters with 100 instances 

in Table 8 in order to test variance of time needed by CPLEX solver. We can see that the 
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larger separation between clusters, the less amount of time spent in solving the IP model. 

With the increase in the density of instances in the given space, the time needed to obtain the 

optimal solution of the IP model will be largely increased. For the last 3 cases, problem No. 4 

was solved in relatively small amount of time because each simulated cluster is well 

separated, while problem No. 3 and No. 5 both had two clusters out of 5 close to each other 

which lead to more amount of solving time. 
  

Table 7 Separation and Total Time 
No No. of 

Instances Max No. of clusters Simulated  
No. of Clusters 

Solution to  
No. of Clusters Separation Total Amount  

of Time (s) 
1 100 10 5 5 4.4519e+008 14.266±0.126 
2 100 10 5 5 1.6879e+008 14.286±0.104 
3 100 10 5 5 6.6180e+007 139.8±0.249 
4 100 10 5 5 5.1732e+007 92.66±0.167 
5 100 10 5 5 4.2298e+007 276.23±3.204 
 

3.6 Space Decomposition Technique 

Decomposition technique is often used to break a complex problem down into easily-

understood and achievable parts, e.g. decomposition linear programming (Bazaraa, et al., 

2005), benders decomposition (Kall and Wallace, 2003), hyper-tree decomposition (Gottlob, 

et al., 2001) and so on. Space decomposition is to separate the search space into mutually 

exclusive subspaces. In each subspace plus the related boundary space associated with the 

previous subspace, we apply IP model to find out the minimal number of clusters. Since 

number of instances in each subspace is normally small and solvable by CPLEX solver, 

space decomposition technique becomes a good method to deal with clustering a large 

number of instances locating in a large space with relatively small actual number of clusters. 

According to experiments in section 3.6, it is not efficient to apply IP model to a large 

number of instances and a large number of optimal clusters due to limited memory of the 

computer. However, we notice that if we decompose searching space into several subspaces, 

most clusters within the subspace would remain the same and all the connected subspaces 
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together form into the original space. For example, we may separate space of 2nd dimension 

for the example in section 3.4 into [0, 400], [400, 800] and [800, 1200], and only those 

instances near boundary of each interval would be affected the final optimal solution. If we 

have clustered instances within subspace [0, 400], then select those instances that have 

distance from boundary less near dij/2 (named sensitive instances), add sensitive instances as 

well as all instances that is fallen in the same clusters as sensitive instances into next 

subspace to reapply IP model to new data. After going through all subspaces, we get the 

same clustering results as we do for the original space. In this way the model can cluster a 

median size instances up to thousands of instances in reasonable time, showed in Table 9. 

We also simulated 2 dimensional clusters within 5000 by 5000 space with large 

number of instances. The number of subspace should be carefully chosen, since we know 

CPLEX solver can efficiently solve about 100 instances with 6 possible clusters, in most of 

cases, we separate space that each subspace has about 50 instances in average so that even 

though the boundary line crosses one of clusters, the total number of instances in the next 

subspace would not exceed 100. If one of subspace has too many instances, we may only find 

feasible solution for this subspace which causes the solution found about the number of 

clusters is larger than the simulated number of clusters.  
 

Table 8 Scalability Test by Space Decomposition Technique 
No No. of 

Instances 
No. of 

Subspace 
Simulated 

No. of cluster 
Solution to 

No. of Clusters Separation Total Amount 
of Time (s) 

1 166 3 8 8 3.55E+08 93.98±0.51 
2 214 5 10 10 4.13E+08 22.58±0.39 
3 302 6 10 10 1.1552e+009 5.59±0.06 
4 399 8 14 14 1.8804e+009 134.192±1.13 
5 509 14 14 14 2.2032e+009 199.13±1.46 
6 600 15 12 12 1.8753e+009 488±0.77 
7 1008 8 15 15 7.6040e+009 99.32±0.39 
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3.7 Heuristic Solving Procedure 

There is an iterative heuristic technique that can be used to find the sub-optimal 

solution for the IP model. First we randomly select an instance, say a target instance, and 

scan data set to select all other instances that satisfy similarity measures with the target 

instance. Second, we apply the IP model to the selected data set to come out a cluster that 

contains the target instance. Third, we remove the cluster that contains the target instance and 

go back the first step. This is a heuristic method that works well if we only are interested in a 

cluster that contains a certain target instance. Otherwise, the method tends to be an 

approximate way to obtain the minimal number of clusters for the overall data set, since 

clustering a subset of data set in this case only can reach local optimal solution. For example, 

suppose four instances {A, B, C, D}, A-B, A-C and C-D are similar but B-C is not similar. 

Then the selected sub data set for A is {A, B, C}. If clustering result for the sub data set is 

two clusters with {A, C} and {B}, the heuristic procedure will turn out to be 3-mininal 

number of clusters, instead of the optimal solution, 2-mininal number of clusters with {A, B} 

and {C, D}.  Hence, this heuristic procedure is efficient for a large data set in which we focus 

on only one instance at a time.  

 

3.8 Discussion 

From the above experiments, the IP model can find the minimal number of clusters in 

most cases up to thousands of instances. However, there are still some worst cases of data set 

that the IP model can not solve. For example, the data set has no obvious number of clusters 

at all and all data are randomly located in the space, then the optimal number of clusters 

would be very large which makes the problem too large for the CPLEX solver to solve. 

However, there is no meaning to find minimal number of clusters in this case since no 

obvious number of clusters. More, if there are a large number of instances in a small space, 
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then the space decomposition technique would fail, because instances are too density 

distributed in the boundary that each repeat has still many instances.  

Although the IP model can find the minimal number of clusters, the optimal solution 

may not be unique, especially, instances near boundary of clusters may also belong to other 

neighbor clusters. Time spent to solve the problem can work as a controller to detect if an 

optimal solution is found. If the amount of maximal running time is exceeded, then the 

solution must be a feasible solution, not necessary optimal. If a feasible solution can be found, 

we can try by reducing the maximal number of clusters and rerun the IP model, in this way 

reducing the matrix size in the IP model, in order to get an optimal solution. 
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CHAPTER 4   NETFLIX MOVIE RATE PREDICTION 
 

 

Netflix, an online movie rental service, published a data set that contains millions of 

movie rates from thousands of customers. We suppose each customer belongs to a cluster, 

either individually or in groups, that shares similar characteristics.  Their carefully elicited 

preferences and a history of their ratings of the movies are maintained in a database. 

Customers are assigned to clusters (or groups) that are constructed such that significant 

differences between clusters in the distribution of preferences and significant similar 

preference within each cluster. Rating of the customer to a movie is predicted according to 

other customer preference in the same cluster. We design to find out joint customers such as 

a group of friends or a family. It will help us not only predict the kind of movies the customer 

already touched but also some other kinds of movies the customer may potentially be highly 

interested according to its “friends”. 

In collaborative filtering algorithm, k-nearest neighbor CF algorithm requires 

predefined number of nearest customers to determine movie rate for the target customer. We 

propose to apply IP model to find out the minimal number of clusters from the most related 

data set for the target customer. Since the number of elements in the cluster varies as data set 

changes, the number of most similar customers for target customers is therefore different.  

Then we predict the movie rate for the target customer by aggregating movie rates of other 

customers in the same cluster.  
 

4.1 Dataset Description 

One of the most challenge parts of the task is the scalability to deal with the huge 

datasets, because there are 17770 files, one file per movie, and more than 100 million 
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customer records. In this thesis, we only use about 10% of the total dataset for simplicity, but 

still data set is huge. In each movie file, the data set is formatted as follows: 

CustomerID,Rating,Date 

- MovieIDs range from 1 to 17770 sequentially. 

- CustomerIDs range from 1 to 2649429, with gaps. There are 480189 users. 

- Ratings are on a five star (integral) scale from 1 to 5. 

- Dates have the format YYYY-MM-DD. 

In this study, we ignore influence of Date, since we suppose the preference of 

customers will not change with time, as the same assumption in the most collaborative 

filtering algorithm. Introducing Date for each customer for movie-customer pair will cause 

complicity which may need other model like time series to do with it.  

 

4.2 Data Reduction 

Each customer watches many movies and each movie can be seen by different 

customers. For a given customer-movie pair, we may have a rating that specifies the 

customer’s preference to the movie. Hence, it forms a network. In Figure 3, mi represents a 

movie i, Cj represents a customer j and weight of every arc is the rate for every movie-

customer pair. Then our job is to find out patterns of movie-customer pairs with similar 

weights. 
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Figure 2 Movie-customer Pair Network 
 
 

In order to deal with scalability, we need reduce the dataset to the most related subset.  

If we want to predict rate for MovieID1 watched by CustomerID1, which is a weight for m1-

C1 pair, then a population that has similar preference as CustomerID1 to MovieID1 should be 

other customers in the MovieID1 file with m1-Cj pair. Of course, there are some customers 

similar to CustomerID1 but outside MovieID1 file. However, those customers have no help 

for us to predict the rate between m1-C1 pair, because they have no such pair related to m1 at 

all. So, the relevant customers are customers in the same movie file. More, each customer 

will not only be interested in one movie, but some other movies. So, we need find out all 

movie-customer pairs for customers in m1 file by scanning database once.  

For example, there are 547 customers in MovieID1 file and the total amount of 

movie-customer pair related to customers in MovieID1 file is 55780. This data subset is used 

to predict each customer in movieID1 file. For each customer, the data subset is still large. 

To further compact the dataset, we use each customer as an instance and represent each 

customer as a long vector about rates for different movies. (See Table 10) 
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Table 9 Movie-customer Matrix 
Customer id MovieID1 MovieID2 MovieID3 … 

CustomerID1 2 3 n/a … 
CustomerID2 n/a 5 n/a … 

… … … … … 
 

The total amount of movies seen by customers in movieID1 file, 1698, is still very 

large. So, in order to predict rate for MovieID1-CustomerID1, Table 10 is a large and sparse 

matrix with 1698 columns. Since we only attempt to predict rate about CustomerID1 who has 

only watched 197 movies. So, we can reduce the number of columns to 197 movies for 

customerID1 in movieID1 file. In this way, we find a most related matrix with 547 by197 to 

predict rate for MovieID1-CustomerID1 pair, which shows all rates of movies watched by 

CustomerID1 as well as at least one movie rate from other customers in the movie fileID1. 

These data subset is suitable for us to do clustering analysis. We call the reduced movie-

customer matrix as most related matrix for mi-Cj pair which can be generated as follows: 

- choose movie file i that includes all customers that watched movie i 

- scan data base once to collect every movies as well as corresponding rates that watched by customers in movie 

i file and form movie-customer matrix 

- reduce collected movie-customer matrix by preserving only movie columns watched by customer j  

- return reduced movie-customer matrix as most related matrix 

Here, we need mask the column that includes mi-Cj entry in most related matrix, 

because we want to predict rate of mi-Cj pair.  

 

4.3 Similarity Measures for Missing Data 

Table 10 contains many “n/a” values that represent unrated movie rates.  To calculate 

similarity with missing data, we need only think about the same movies that have been co-

rated by both two customers, and ignoring movies one customer watched but the other 
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doesn’t or both don’t.  This is consistent to the idea mentioned in collaborative filtering 

algorithms.  

For example, Pearson similarity measure, correlation coefficient measure, with 

missing data can be calculated as follows. Suppose two vectors to be 

and . Then, actual vectors in calculation are and 

 

1 (3, / , 4)v n a= 2 (2,3,5)v = '
1 (3, 4)v =

'
2 (2,5)v =

 So, 1 2 2 2 2 2

(3 3.5) (2 3.5) (4 3.5)(5 3.5)( , ) 1
[(3 3.5) (4 3.5) ][(2 3.5) (5 3.5) ]

sim v v − ⋅ − + − −
= =

− + − − + −
 

For cosine similarity measure, simply selecting columns that have both rates for any 

two customers may not good enough since when some customers only have watched a few 

movies, these customers are not good to participate in providing inference for other 

customers. So, we should better modify cosine similarity measure.  The cosine measure is 

defined as 1 2
1 2

1 2

( , ) v vsim v v
v v

= . For the missing data, we have two vectors for example,  

1 (3, / , 4)v n a= and , then 2 (2,3,5)v = 1 2

2 2 2 2

(3, 4) (2,5)( , ) 0.965
3 4 2 5

sim v v ⋅
= =

+ +
 

In order to account for dimension influence of two vectors, we add an adjusting weight for all 

similarity of two vectors as follows:  

1 2
1 2

1 2

'( , ) v vnsim v v
L v v

= , 

where n is the amount of available columns that both v1 and v2 have rates. L is the maximal 

amount of available columns in the two vectors. The more elements of two vectors, the more 

information they provide, hence, the more similar they may have. And the closer the 

similarity to 1, the more similar that two customers have. This simple measurement can help 

us find if two customers have similarity according to past performance. However, in this 

thesis, we choose Pearson similarity so as to be consistent to collaborative filtering algorithm. 
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4.4 Movie Rate Prediction 

Although after data reduction, most related matrix for every customer still contains 

several hundred of instances. From numerical experiments that we did in section 3, applying 

clustering model directly into most related matrix will be hard to find the minimal number of 

clusters as well as elements in the clusters. For example, in order to predict the movie rate for 

the first customer id=1488844 and movie id=0000001, most related matrix is 547×197, 

where number of instances is 547. So, the IP model may not be easy to apply to most related 

matrix directly. However, notice that we only are attempt to predict rate for customer 

id=1488844 and movie id=0000001, so to speak, we only care about the cluster that contains 

customer id=1488844. So, we can apply heuristic procedure to find out similar customers for 

the target customer. Before clustering the data set, we first filter instances that are close to the 

target instance.  

We applied only Pearson similarity measure in the constraints which was to keep 

consistent to collaborative filtering algorithms. And we predicted rates of first 20 customers 

in movie id=0000001 in Table 11. The procedure is as follows: 

- find out most related matrix for each customer Cj, the target instance 

- filter instances out that are close to the target instance 

- run IP model with Pearson similarity measure constraint only on the filtered matrix 

- take the cluster out that contains the target customer Cj  

- predict movie rate by aggregating rates of neighbors of Cj in the same cluster 

We set filtering criteria with Pearson similarity between 0.5 and 0.7, clustering 

criteria Pearson similarity greater than 0.75 when apply the IP model. For example, for 

customer id=1488844, Instance No.=327, most related matrix 547 instances. After filtering 

with Pearson similarity greater than 0.5, we have 36 instances including the target instance 

(No. 327), showed in Table 11. After clustering by the IP model, we found there is only one 
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neighbor of instance no.327, no. 489 in the same cluster. So, the predicted rate for customer 

no. 327 and movieID=0000001 is 3.  
 

Table 10 Filtered Instances for Customer ID=1488844 
MovieID 

 
Instance No. 

1 8 17 30 … 1905 1918 1925 1939 

327 3 4 2 3  5 3 3 3 
28 5 3 0 3  4 0 0 0 
32 5 0 0 0  0 0 0 0 
39 3 0 0 0  5 0 0 0 
51 1 0 0 0  0 0 0 0 
54 4 0 0 0  0 0 0 0 
71 5 0 0 0  0 0 0 0 
77 3 0 0 0  5 0 0 0 

101 5 0 0 3  5 0 0 3 
111 5 0 0 0  5 0 0 0 
113 5 0 0 0  0 0 0 0 
125 5 0 0 0  0 0 0 0 
206 5 0 4 0  0 3 0 0 
212 4 0 0 0  5 0 0 0 
228 4 5 0 0  5 0 0 0 
230 3 0 0 0  0 0 0 0 
255 4 0 0 2  4 3 0 0 
257 4 0 4 0  5 0 0 0 
278 4 0 0 0  0 2 0 0 
286 3 0 0 0  0 0 0 0 
292 5 0 0 0  2 0 0 0 
337 5 0 0 0  0 0 0 0 
355 5 0 0 0  0 0 0 5 
397 4 0 0 0  4 2 0 0 
403 3 0 0 0  0 0 0 0 
406 4 0 0 3  0 3 0 0 
410 3 0 0 0  5 0 0 0 
440 4 0 0 0  4 0 0 0 
452 4 0 0 4  5 0 0 0 
466 4 0 0 0  0 0 0 0 
467 3 0 0 0  0 0 0 0 
489 3 0 0 3  0 0 0 0 
493 5 0 0 0  0 0 0 0 
513 5 0 0 0  0 0 0 0 
532 4 0 0 0  0 0 0 0 
537 5 0 0 0  0 0 0 0 
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Similarly, using the above procedure, we calculated the first 20 customers in 

MovieID 0000001 file. We found that prediction accuracy was about 88%, and its standard 

variance was 0.132. We noticed that customer id 124105 had relatively larger prediction 

errors than others, mostly because the customer only watched a few movies making 

prediction insufficient.  For example, customer id 124105, instance No. 37 in the Table 13, 

had only 6 movie records to predict first movie. Prediction for customer id 893988 is also 

bad but it may belong to outliers since this is true data set and movie rates from customers  
 

Table 11 Movie Rate Prediction for the First 20 Customers 
(Similarity≥0.8 if neighbor exits, otherwise Similarity≥0.75) 

Customer id Movie Rate Predicted Rate Similarity No. 
of Neighbors 

No.  
of Movies 

1488844 3 3.00 0.80 1 197 
822109 5 4.00 0.80 4 16 
885013 4 4.00 0.80 1 32 
30878 4 3.98 0.80 2 113 

823519 3 3.00 0.75 1 59 
893988 3 4.50 0.75 2 41 
124105 4 3.00 0.80 6 7 
1248029 3 3.68 0.80 4 118 
1842128 4 3.98 0.80 3 13 
2238063 3 3.53 0.80 57 3 
1503895 4 3.34 0.80 4 7 
2207774 5 4.00 0.80 1 53 
2590061 3 3.61 0.75 2 61 

2442 3 2.50 0.80 2 35 
543865 4 3.55 0.75 2 74 
1209119 4 3.55 0.80 2 29 
804919 4 4.03 0.75 4 22 
1086807 3 3.00 0.80 1 12 
1711859 4 4.00 0.80 1 72 
372233 5 - 0.75 - 81 

Avg abs error rate 0.12 

Standard variance 0.13 
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are relatively subjective. Customer id 2238063 should also be outliers since the customer has 

only two other movies for prediction which causes most of other customers are similar to the 

target customer. We cannot predict the 20th customer in that we do not find neighbor 

customers that have correlation coefficient similarity greater than 0.75. 
 

We also found weak negative correlation between prediction error and similarity (-0.197), or 

prediction error and No. of movies (-0.199), indicating that more similarity leads to less 

prediction error and more amount of movies participated in prediction leads to less prediction 

error. 
 

Table 12 Cluster for Customer ID=124105 
           Movie id 

Instance No. 1 191 563 694 1110 1220 1905 

76 3 0 0 3 5 5 4 
369 4 0 0 3 5 0 4 
502 2 0 0 3 5 0 0 

2 3 4 0 3 4 0 4 
37 4 5 5 4 5 5 5 

335 3 5 4 3 5 5 0 
527 3 5 0 3 0 0 4 

 

4.5 Collaborative Filtering 

In order to further make sure the effectiveness of the proposed integer programming 

method in recommendation system, we choose currently most popular used collaborative 

filtering algorithm in recommendation system, k-nearest neighbor CF, as a comparison. Since 

we don’t know k in advance, we choose k=1, k=5 and k=10 respectively to apply CF to 

predict movie rates for the first 20 customers in MovieID 0000001, as Table 14, 15 and 16. 

From the experiments, we noticed that when k=1, prediction accuracy was not good, only 

about 72% with standard variance 0.22, when k=5, prediction accuracy was about 83% with 

standard variance 0.13, while when k=10, prediction accuracy was about 83% with standard 
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variance 0.11. For larger k, the prediction accuracy was still almost the same as k=10 since 

the further away from the target customer, the smaller weights in aggregation for prediction.  

In Table 16, it shows smaller standard variance than that of the proposed clustering 

method in Table 12. However, the proposed method also provides us reliable indication, such 

as similarity parameter used in the IP model, number of movies participated in prediction and 

so on. If similarity parameter in the IP model is 0.8, then the prediction accuracy is mostly at 

least 0.8. The more number of movies in most related matrix means that more information is 

available. Since we relax similarity parameter to 0.75 if no neighbors available to the target 

instance, we actually tend to less prediction accuracy and increase variance of prediction 

results. Hence, we believe that if more data are used, better prediction accuracy and smaller 

variance will be reached in the proposed method. 
 

 
Table 13 Collaborative Filtering Cj-M1 Pairs, k=1 

Customer id        Movie Rate Predicted Rate 
1488844 3 3 
822109 5 3 
885013 4 4 
30878 4 5 
823519 3 1 
893988 3 4 
124105 4 3 
1248029 3 5 
1842128 4 3 
2238063 3 5 
1503895 4 3 
2207774 5 4 
2590061 3 4 
2442 3 3 
543865 4 4 
1209119 4 3 
804919 4 2 
1086807 3 3 
1711859 4 3 
372233 5 3 
Avg abs error rate 0.28 
Standard variance 0.22 
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Table 14  Collaborative Filtering Cj-M1 Pairs, k=5 

Customer id Movie Rate Predicted Rate 
1488844 3 3.60 
822109 5 4.00 
885013 4 4.03 
30878 4 3.81 

823519 3 3.11 
893988 3 4.00 
124105 4 3.20 
1248029 3 4.00 
1842128 4 2.39 
2238063 3 3.80 
1503895 4 4.00 
2207774 5 4.59 
2590061 3 4.00 

2442 3 3.60 
543865 4 3.60 
1209119 4 4.00 
804919 4 3.59 
1086807 3 3.99 
1711859 4 3.59 
372233 5 3.92 

Avg abs error rate 0.17 
Standard variance 0.13 

 
 

Table 15 Collaborative Filtering Cj-M1 Pairs, k=10 
Customer id        Movie Rate Predicted Rate 
1488844 3 3.88 
822109 5 4.09 
885013 4 4.02 
30878 4 4.20 
823519 3 3.06 
893988 3 4.00 
124105 4 2.99 
1248029 3 4.19 
1842128 4 3.37 
2238063 3 3.70 
1503895 4 3.71 
2207774 5 4.16 
2590061 3 3.69 
2442 3 3.50 
543865 4 3.42 
1209119 4 4.00 
804919 4 3.69 
1086807 3 3.50 
1711859 4 3.41 
372233 5 3.60 
Avg abs error rate 0.17 
Standard variance 0.11 
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4.6 Discussion 

The proposed IP model to cluster customers has a function of variable k in CF since 

clustering customers in one group will result in different number of neighbors to predict the 

movie rates for the target customer. Hence, the prediction accuracy shows better than the 

standard CF algorithm which pre-defines number of neighbors, k.  

Although k-nearest neighbor CF selects k most similar customers for the target 

customer and the more similarity to the target customer the neighbors have, the larger 

weights it will be used in predicting movie rates, it can not guarantee that those neighbors 

also have similar preference. For example, we want to predict a movie rate for customer A, 

who has two neighbors, B and C, according to CF algorithm, however, due to multi- 

dimensional data set, B and C may not similar to each other. In the IP model, we try to 

cluster data set into different groups, each of which has high similarity, so that those 

customers in one cluster are all similar to each other. This is one reason that the proposed IP 

model applied to recommendation system can work well in accuracy and variance. 
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CHAPTER 5    CONCLUSION AND FUTURE WORK 
 

 

The thesis studied a new clustering method by proposing an integer programming 

model, aiming at minimizing the total number of clusters and subjected to several similarity 

measures. The model was applied to Netflix recommendation system in order to predict 

movie rates for customers according to their historical preference. The proposed method was 

compared with collaborative filtering algorithm and experimental results showed that it 

provided relatively high prediction accuracy as well as relatively small variance. 

However, there are still some drawbacks in the proposed IP model.  

The model is solvable for only middle size data set up to thousands of instances due 

to large size of matrix coefficients and limited computer memory. To solve the scalability of 

model, we should better provide a similar model with more compact matrix coefficients. Or 

we may use heuristics, like genetic algorithm, taboo search algorithm and so on to apply 

directly to the QIP/IP model. 

The parameters in the IP model are not easy to be best specified. If we do parametric 

analysis for every data set in order to find out the best parameters, it will be very time 

consuming. So, how to set good parameters for the IP model is still a challenging problem.  

Finding the minimum number of clusters works well by applying the IP model. 

However, cluster elements found by the IP model are often not unique if there is an overlap 

region between two clusters. One way to solve this problem is to use the IP model to identify 

the minimal number of clusters, and then we use other standard clustering methods to find 

out the exact elements for each cluster. 
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