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ABSTRACT

Computational fluid dynamics (CFD) has been widely studied and used in the scientific

community and in the industry. Various models were proposed to solve problems in different

areas. However, all models deviate from reality. Uncertainty quantification (UQ) process

evaluates the overall uncertainties associated with the prediction of quantities of interest. In

particular it studies the propagation of input uncertainties to the outputs of the models so

that confidence intervals can be provided for the simulation results. In the present work, a

non-intrusive quadrature-based uncertainty quantification (QBUQ) approach is proposed. The

probability distribution function (PDF) of the system response can be then reconstructed using

extended quadrature method of moments (EQMOM) and extended conditional quadrature

method of moments (ECQMOM). The method is first illustrated considering two examples:

a developing flow in a channel with uncertain viscosity, and an oblique shock problem with

uncertain upstream Mach number. The error in the prediction of the moment response is

studied as a function of the number of samples, and the accuracy of the moments required to

reconstruct the PDF of the system response is discussed. The approach proposed in this work is

then demonstrated by considering a bubbling fluidized bed as example application. The mean

particle size is assumed to be the uncertain input parameter. The system is simulated with a

standard two-fluid model with kinetic theory closures for the particulate phase implemented into

MFIX. The effect of uncertainty on the disperse-phase volume fraction, on the phase velocities

and on the pressure drop inside the fluidized bed are examined, and the reconstructed PDFs are

provided for the three quantities studied. Then the approach is applied to a bubbling fluidized

bed with two uncertain parameters. Contour plots of the mean and standard deviation of

solid volume fraction, solid phase velocities and gas pressure are provided. The PDFs of the

response are reconstructed using EQMOM with appropriate kernel density functions. The

simulation results are compared to experimental data provided by the 2013 NETL small-scale



xiv

challenge problem. Lastly, the proposed procedure is demonstrated by considering a riser of

a circulating fluidized bed as an example application. The mean particle size is considered to

be the uncertain input parameters. Contour plots of the mean and standard deviation of solid

volume fraction, solid phase velocities, and granular temperature are provided. Mean values

and confidence intervals of the quantities of interest are compared to the experiment results.

The univariate and bivariate PDF reconstructions of the system response are performed using

EQMOM and ECQMOM.
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Computational fluid dynamics (CFD) has been widely studied and used in the scientific

community and in the industry. Various models were proposed to solve problems in different

areas. However, all models deviate from reality. Sources of discrepancy between simulations

and reality can be divided into three categories [16,58]: assumptions and simplifications made

to derive a mathematical model that represents the reality, numerical errors introduced by solv-

ing the mathematical models numerically, and uncertain model input parameters that specify

the physical characteristics of the simulated system, such as geometry of the system, initial

and boundary conditions, and other key parameters that control the system. It is therefore

important to study the differences between simulations and reality to make the computational

approaches reliable. Code and solution verifications ensure the correct numerical algorithm

is used to relatively accurately solve the mathematical equations [16, 94]. Validation process

makes the models represent the true physical system [16,94]. In CFD simulations, the simula-

tion process is deterministic [24]. Mean values of uncertain input parameters are often used so

that a single-point estimation is given as the output of the simulation, which is used for design

or optimization of the system. Confidence intervals are not always provided for the simulation

results [31]. It is thus necessary to study the effects of uncertain inputs on the simulation

results. Uncertainty quantification (UQ) process evaluates the overall uncertainties associated

with the prediction of quantities of interest. In particular it studies the propagation of input

uncertainties to the outputs of the models [16]. The uncertainty in input parameters can be

caused by difficulties in measurements of experimental data, inherent variability of the system,

and lack of knowledge of the system [58], and can be divided into two categories: aleatory
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uncertainty which arises from randomness in model parameters, and epistemic uncertainty due

to lack of knowledge of the system [16,24]. The uncertainty in the UQ study refers to aleatory

uncertainty. Many UQ approaches, including polynomial chaos (PC), moment methods, and

Monte Carlo methods have been applied to single phase CFD simulations [24,50,58,73]. How-

ever, applications of UQ approaches to multiphase CFD simulations are very limited. Although

applications of UQ approaches to flows in porous media are reported in literature [36,37,63], for

more complex systems such as gas-solid flows, few works can be found [20,30–32,52]. The objec-

tives of this project are to develop a non-intrusive quadrature-based uncertainty quantification

(QBUQ) approach, and to apply it to multiphase gas-solid flow simulations.

The outline of this dissertation is as follows. Section 1.2 of Chapter 1 provides the literature

review on theory of UQ approaches and applications of UQ to single phase and multiphase CFD

simulations. Chapter 2 describes the QBUQ approach in detail. The approach is then tested on

a developed channel flow with uncertain viscosity and an oblique shock problem with uncertain

inlet Mach number. Chapter 3 discusses the implementation of the QBUQ approach into

MFIX and the application of the QBUQ approach to a bubbling fluidized bed with uncertain

particle size. Chapter 4 applies the QBUQ approach to a bubbling fluidized bed with two

independent uncertain parameters, and compares the results with experimental data provided

by the 2013 NETL small-scale challenge problem. Chapter 5 discusses the application of the

QBUQ approach to a riser of a circulating fluidized bed with uncertain particle diameter. In

the end, Chapter 6 summarizes the work and gives an outlook on future work.

1.2 Literature Review

In this dissertation, uncertainty quantification refers to the study of the propagation of

input uncertainties to the outputs of the models. The uncertainty in the input parameters

refers to aleatory uncertainty, and can be described in three ways, shown in Fig. 1.1 [24].
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Figure 1.1 Three different ways to describe uncertainty of parameters [24].

The simplest way is to give upper and lower limit of the variable. Another way is to define

a membership function on the uncertain variable, treated as a fuzzy set. Non-probabilistic UQ

methods can be used if the uncertain parameters are described in these two ways, which are

not discussed here. Probabilistic UQ approaches on which this work focuses are used when

probability distribution function (PDF) of the uncertain parameters are defined.

1.2.1 Theory of uncertainty quantification

To illustrate the following methods, a random process κ(ξ) with N random variables ξ is

considered. A probability space P(Ω,F, P ) is defined by a sample space Ω, a sigma-algebra F

which is a non-empty collection of subsets of Ω, and a probability measure P on (Ω,F).

1.2.1.1 Monte Carlo Methods

The basic idea of Monte Carlo methods is to generate a set of random realizations of

the input variables ξ, obtain the deterministic system response of the simulation for each

sample κi (i = 1, 2, . . . , N), and evaluate the statistics of the response such as mean, variance,

skewness, and kurtosis based on the solution set [24,58,109]. The convergence of Monte Carlo

methods is independent of the dimensionality of the random variables, which is an advantage

for problems with a large number of random input parameters. However, the convergence of the

high order moments of Monte Carlo method is slow with respect to the number of samples, for

instance the convergence of the standard deviation of the mean scales with N−1/2. Therefore,

a large number of samples may be required to achieve a given accuracy. Improvements to
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the basic Monte Carlo methods are reported in the literature to reduce the required number

of samples, including importance sampling Monte Carlo method [24], Latin hypercube Monte

Carlo method [24,58,70], and quasi Monte Carlo method [58,72]. In Walters and Huyse [109],

the basic Monte Carlo method is tested on some simple CFD cases.

1.2.1.2 Moment methods

The foundation of moment methods is to write the moments of the simulation outputs as

truncated Taylor series expansions about the mean value of the input parameters ξ̄ [24, 109].

Here approaches to obtain mean (µ) and variance (σ2) of the system response at first-order

and second-order accuracy are explained for one input parameter ξ. Extension to multi-variate

problems is discussed later.

First-order, first moment (FOFM)

The first-order accurate estimation of the mean value of the response is actually the de-

terministic output of the simulation performed using the mean value of the uncertain input

parameter ξ̄, written as

µ[κ(ξ)] = κ(ξ̄). (1.1)

Second-order, first moment (SOFM)

The second-order accurate estimation of the mean of the output requires an addition of a

second derivative term, whose effect sometimes can be significant [24,109].

µ[κ(ξ)] = κ(ξ̄) +
1

2
σ2(ξ)

∂2κ

∂ξ2

∣∣∣∣
ξ̄

. (1.2)

First-order, second moment (FOSM)

The variance of the output at first-order accuracy can be obtained by multiplying the

variance of the input with a first derivative term,

σ2[κ(ξ)] = σ2(ξ)

(
∂κ

∂ξ

∣∣∣∣
ξ̄

)2

. (1.3)
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Second-order, second moment (SOSM)

The second-order accurate estimation of the variance of the output also has a correction

term related to the second derivative,

σ2[κ(ξ)] = σ2(ξ)

(
∂κ

∂ξ

∣∣∣∣
ξ̄

)2

+
1

2

[
σ2(ξ)

∂2κ

∂ξ2

∣∣∣∣
ξ̄

]2

. (1.4)

Extension to multiple random variables

The extension of the method to multi-variate problems is straightforward with Taylor series

expansions. In Walters and Huyse [109], mean and variance of the system response at first-order

accuracy for a bivariate case (κ(ξ) = κ(ξ1, ξ2)) are given as:

µ[κ(ξ1, ξ2)] = κ(ξ̄1, ξ̄2), (1.5)

σ2[κ(ξ1, ξ2)] = σ2(ξ1)

(
∂κ

∂ξ1

∣∣∣∣
ξ̄

)2

+ σ2(ξ2)

(
∂κ

∂ξ2

∣∣∣∣
ξ̄

)2

+ 2

(
∂κ

∂ξ1

∣∣∣∣
ξ̄

)(
∂κ

∂ξ2

∣∣∣∣
ξ̄

)
σ12(ξ1, ξ2), (1.6)

where σ12(ξ1, ξ2) is the covariance defined as

σ12(ξ1, ξ2) = µ[ξ1ξ2 − µ(ξ1)µ(ξ2)]. (1.7)

Since higher order moments are neglected in the moment methods, for input parameters

with PDF deviating far from Gaussian distribution, the methods are no longer appropriate [24].

Applications of the moment methods to CFD simulations are reported in [47,48,89,103,109].

1.2.1.3 Polynomial chaos methods

The polynomial chaos (PC) UQ approach is a type of spectral method [58]. It estimates

the system response with a truncated series,

κ(ξ) =
∞∑
i=0

κiΨi(ξ) ≈
Q∑
i=0

κiΨi(ξ), (1.8)

where deterministic coefficients κi are called PC coefficients, and Ψi(ξ) are Hermite polynomials

in basic PC expansions, and can be extended to a class of orthogonal polynomials in generalized

PC (GPC) expansions developed by Xiu and Karniadakis [115], based on the Askey scheme [2].

The PC coefficients κi can be determined as

κi =
〈κ(ξ),Ψi(ξ)〉
〈Ψi(ξ),Ψi(ξ)〉

, (1.9)
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where the inner product 〈a, b〉 with respect to the probability measure p(ξ) is defined as

〈a(ξ), b(ξ)〉 =

∫
Ω
a(ξ)b(ξ)p(ξ)dξ. (1.10)

With the PC coefficients κi, the statistics of the response κ(ξ) can be determined [58]. In fact,

the first coefficient κ0 is the mean of the response. The variance of the response is calculated

as

σ2[κ(ξ)] =

Q∑
i=1

κ2
i 〈Ψ2

i 〉. (1.11)

The PC UQ methods can be either intrusive or non-intrusive. The intrusive approach re-

formulates the governing equations using Galerkin projection while the non-intrusive approach

treats the computational model as a black box, and determines the PC coefficients involving

different sampling strategies [73].

Intrusive approaches

The intrusive approaches determine the PC coefficients κi using a Galerkin approach. The

general idea of the method is summarized in [50] as follows. The governing equations of the

random process κ(ξ) are defined as

M(κ(ξ), ξ) = 0, (1.12)

whereM is a non-linear operator. The idea of the approach is to introduce the PC expansions

of κ(ξ) shown in Eq. 1.8 into the governing equations Eq. 1.12, then orthogonally project the

reformulated equations onto the expansion basis:〈
M

(
Q∑
i=0

κiΨi(ξ), ξ

)
,Ψj

〉
= 0, j = 0, 1, . . . , P. (1.13)

The solutions of the system shown in Eq. 1.13 are the PC coefficients. Details on applying the

method to different mathematical problems are described in [58].

Intrusive approaches are computationally efficient because only one set of mathematical

problems needs to be solved, and have been applied to CFD simulations with reasonable com-

plexity [50, 58, 73]. However, since it needs modifications to the computational models, for

complex systems, the intrusive approach is challenging to implement.
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Non-intrusive approaches

The procedure of non-intrusive PC UQ approaches is summarized in [73] as follows.

1. Generate n samples of ξ, {ξj}nj=1, using the selected sampling strategy.

2. Obtain simulation output κj for each sample ξj .

3. Calculate PC coefficients κi explicitly using Eq. 1.9.

4. Write the system response κ in the series form κ =
∑Q

i=0 κiΨi(ξ) using the PC coefficients

obtained in step 3.

The computational cost of the approach depends on the number of samples since for each sample

the simulation is performed once. Therefore, an effective sampling strategy is crucial for non-

intrusive UQ approach. Samples can be generated using random or deterministic sampling

strategies.

Random sampling strategies use Monte Carlo based approaches to evaluate the inner prod-

uct in Eq. 1.9. The method is discussed in Section 1.2.1.1 about its advantages and disadvan-

tages. Applications of Monte Carlo method and Latin hypercube sampling with PC approach

are reported in works done by Ghanem [35,73], and Ghiocel and Ghanem [39,73].

Deterministic sampling strategies, such as quadrature-based sampling strategy can signifi-

cantly reduce the number of samples required to achieve the convergence of the moments of the

system response [73]. For N independent random input parameters ξ = (ξ1, ξ2, . . . , ξN ), using

N -dimensional Gaussian quadrature formulae with q quadrature nodes in each dimension, the

PC coefficients κi can be calculated as

κi =
1

〈Ψ2
i 〉

q∑
j1=1

· · ·
q∑

jN=1

κ(ξj1 , . . . , ξjN )Ψi(ξj1 , . . . , ξjN )

N∏
i=1

wji , (1.14)

where ξji and wji are the j-th quadrature node and weight for parameter ξi. In Le Mâıtre et al.

[60], the non-intrusive PC UQ method using quadrature-based sampling is compared with in-

trusive PC UQ approach. Although this sampling strategy can reduce computational cost

significantly, it becomes inefficient for problems with a high number of uncertain parameters

because it suffers from the curse of dimensionality [58,73]: the number of samples required in-

creases exponentially with the number of the random input parameters. Improved approaches
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can significantly reduce the number of samples required, including sparse grid approach pro-

posed by Smolyak [58,97] and adaptive sparse grid method [34,58].

1.2.1.4 Stochastic collocation methods

Instead of estimating the Galerkin integrals to obtain PC coefficients, stochastic collocation

methods rely on interpolation [58, 73]. In collocation method, the system response κ(ξ) is

approximated as κ̃(ξ) with

κ̃
(
ξ(i)
)

= κ
(
ξ(i)
)
, 1 ≤ i ≤ m, (1.15)

where ξ(i) are the collocation points at which the approximation is exact. The approximated

system response κ̃(ξ) can be defined in terms of expansion as

κ̃(ξ) =
m∑
i=1

κ̃iΦi(ξ), (1.16)

where the expansion coefficients κ̃i are determined by Eq. 1.15, and Φi(ξ) are the interpolation

basis functions. The most popular choices of Φi(ξ) are based on polynomial interpolation [58].

Hosder et al. [46] apply the method to several CFD problems, using P + 1 collocation points

to determine P + 1 expansion coefficients by solving a linear system of equations with Hermite

polynomials as the basis functions.

The computational cost of stochastic collocation methods scales with the number of col-

location points. Sparse grid methods can be used to reduce the number of collocation points

required for problems with a large number of uncertain parameters [58]. Applications of sparse

grid collocation methods are reported in [6,67,78,111,114], and some applications of adaptive

approaches can be found in [27,65,76,77].

1.2.1.5 Quadrature-based UQ methods

The UQ approach adopted in the present project is based on the direct quadrature method

proposed by Yoon et al. [4, 119]. Moments of the system response are estimated directly using

Gaussian quadrature formulae [42], instead of using PC expansions to represent the system

response. With the set of moments, low order statistics of the response such as mean, variance,
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skewness, and kurtosis can be calculated. In addition, the PDF of the system response can

be reconstructed locally with the extended quadrature method of moments (EQMOM) [121]

and the extended conditional quadrature method of moments (ECQMOM). The approach can

be efficiently applied to problems with moderate number of uncertain parameters. With the

reconstructed PDF of the system response, the probability of critical events can be evaluated,

which is the key advantage of the method. In the following chapters, the method is discussed

in detail, and applications of the method to simple CFD test cases, bubbling fluidized beds,

and riser flows are presented.

1.2.2 Uncertainty quantification in computational fluid dynamics

Different UQ approaches discussed in above sections are applied to CFD simulations. Most

of the applications of UQ analysis are to single phase CFD simulations. Applications of UQ

approaches to multiphase CFD simulations are very limited. The following sections give some

examples.

1.2.2.1 UQ in single phase CFD simulations

UQ approaches have been applied to various single phase flows, including compressible

flows, incompressible flows, non-isothermal flows, and reacting flows. These applications are

discussed below.

Compressible flows

Walters and Huyse [109] reviewed different UQ approaches such as Monte Carlo method,

and moment methods. These approaches were implemented into several single phase CFD

simulations, including an oblique shock wave problem with uncertain upstream Mach number

and wedge angle, an expansion wave problem with uncertain upstream Mach number and the

flow expansion angle, and a supersonic airfoil with uncertain thickness-to-chord ratio.

Mathelin et al. [69] applied the intrusive PC UQ approach to a flow in a quasi-one-

dimensional nozzle with nozzle shape as the source of uncertainty. Results were compared with
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those obtained by Monte Carlo methods. The method performed poorly for high non-linear

cases, which made them develop a collocation method for complex non-linear problems [68].

Chen et al. [15] implemented an intrusive generalized PC UQ approach to an isentropic

flow in a dual-throat nozzle with uncertain initial conditions. They discovered that the PC

coefficients of the velocity field are smooth functions on spatial variable x, though the velocity

field is discontinuous at the shock location. They concluded that the shock location can be

predicted accurately when the variance of the uncertain initial condition is small. Otherwise,

the convergence of the method is slow and many terms in the PC expansion are required.

Hosder et al. [46] applied a collocation method to an oblique shock problem, an expansion

wave problem and a boundary layer problem. They used P + 1 collocation points to determine

P + 1 expansion coefficients by solving a linear system of equations with Hermite polynomials

as the basis functions.

Lockwood and Mavriplis [62] built a gradient-enhanced surrogate model to represent the

relation between simulation outputs and input parameters. A Monte Carlo method was then

applied for UQ analysis. The approach was applied to a hypersonic flow.

Incompressible flows

Le Mâıtre et al. [56] first applied the intrusive PC UQ method to a 2D incompressible

channel flow with uncertain viscosity. Results showed that a small number of terms in the PC

expansion are required.

Xiu and Karniadakis [116] proposed the generalized PC UQ by using a class of orthogonal

polynomials as basis functions. They applied the method to a channel flow with uncertain wall

boundary conditions and a laminar flow around a circular cylinder with uncertain freestream

condition.

Pereira et al. [85] applied the non-intrusive PC UQ approach on a blood flow in an idealized

portal vein with uncertain blood viscosity. They concluded that a fast convergence can be

obtained with second order polynomials because the contribution of the PC expansion mainly

comes from the first term.
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Non-isothermal flows

In Le Mâıtre et al. [56], the intrusive PC UQ approach was also applied to a channel flow

with uncertain viscosity caused by uncertain temperature, and the same channel flow evolving

temperature field with uncertain inlet temperature. They extended the work to Rayleigh-

Bénard flow in the Boussinesq limit, and found out the global PC expansion is not suitable for

this case. Similar conclusions were reported in the work done by Asokan and Zabaras [3].

Wan and Karniadakis [110] proposed a multi-element generalized PC approach, and applied

it to a heat transfer problem in a 2D channel. They concluded that the proposed local multi-

element generalized PC approach is more efficient than the global generalized PC methods.

Reacting flows

Phenix et al. [87] first applied the PC UQ approach to a supercritical water hydrogen

oxidation mechanism with uncertain reaction rate coefficients and species thermochemistry.

Their results showed that compared with Monte Carlo method, PC UQ is more efficient, and

second-order polynomials are enough to estimate the distributions of the response.

In Reagan et al. [91], a non-intrusive PC UQ approach was applied to two reaction cases:

a homogeneous ignition studied in [87] previously, and flames in isothermal supercritical water

oxidation. In their later work [92], Reagan et al. used PC to evaluate high-order sensitivities,

providing confidence intervals for sensitivity coefficients.

Debusschere et al. [17] studied UQ on a electrochemical microchannel flow with protein

labelling reactions. The system was relatively complex with coupled momentum equations,

species conservation equations, and electrostatic field equations.

1.2.2.2 UQ in multiphase CFD simulations

UQ in multiphase flows was first proposed by Ghanem and Dham for flows in porous

media [37] using Karhunen-Loève (KL) and PC expansions. The effect of uncertain hydraulic

conductivity on the outputs was studied. This approach combined with Monte Carlo method

was used by Ghanem [36] to study multiphase transport in random porous media. Lu and

Zhang [63] studied the flows in heterogeneous porous media using three UQ approaches: Monte
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Carlo method, moment methods, and moment-KL combined approach. The gain of efficiency

with the proposed moment-KL approach was significant.

For much more complex multiphase flows, such as gas-solid multhiphase flows, the works

reported are very limited. Gel et al. [31] built a surrogate model based on data-fitted response

surface for a bubbling fluidized bed. Then forward propagation of input uncertainties was

studied by using Monte Carlo method.

In another work done by Gel et al. [32], the uncertainty in the outputs of a circulating

fluidized bed caused by spatial discretization, time averaging, uncertain input parameters,

and surrogate model was studied. Results were shown in a probability box plot, which gave

confidence intervals for the simulation outputs.

Gel et al. [30] constructed a surrogate model using an open source UQ toolbox, PSUADE,

and then used a direct Monte Carlo-simulation-based approach to perform UQ analysis. The

influences of heating rate, pressure, and temperature on coal devolatilization kinetics in gasifier

modeling were studied.

In Donato and Pitchumani [20], a non-intrusive methodology called QUICKER was pro-

posed. Five training points were chosen based on the distribution of the uncertain parameters.

The output distribution was approximated by a modified lognormal distribution whose defining

parameters were determined by the set of simulation results. The method was applied to a

circulating fluidized bed and a turbulent fluidized bed.

Lane et al. [52] applied the statistical UQ approaches, such as sensitivity analysis and

Bayesian calibration, to a bubbling fluidized bed with immersed horizontal tubes. Effects

of six model parameters were studied, including particle-particle and particle-wall restitution

coefficients, packed bed void fraction, friction angles for particle-particle and particle-wall in-

teractions, and drag models.
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CHAPTER 2. A QUADRATURE-BASED UNCERTAINTY

QUANTIFICATION APPROACH WITH RECONSTRUCTION OF THE

PROBABILITY DISTRIBUTION FUNCTION OF THE SYSTEM

RESPONSE

Modified from a paper submitted to Computers and Fluids, 2014.

Xiaofei Hu, Alberto Passalacqua, Prakash Vedula, and Rodney O. Fox

A non-intrusive quadrature-based uncertainty quantification method is presented, which

relies on Gaussian quadrature formulae to generate the set of samples and directly compute

the approximated moments of the system response. These moments are used to reconstruct the

distribution function of the values assumed by the system response, by means of the extended

quadrature method of moments. The application of the method is then illustrated considering

two examples: a developing flow in a channel with uncertain viscosity, and an oblique shock

problem. The error in the prediction of the moment response is studied as a function of the

number of samples, and the accuracy of the moments required to reconstruct the PDF of the

system response is discussed.

2.1 Introduction

The quantification of uncertainty in computational fluid dynamics (CFD) has become of

paramount importance due to the widespread adoption of CFD tools for design and opti-

mization purposes in numerous fields of engineering. A number of applications of uncertainty

quantification reported in the literature [56, 58, 60, 69, 73, 91, 94] rely on the polynomial chaos

(PC) approach, where the random variables are represented as series of orthogonal polynomials.
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However, when the objective of the uncertainty quantification (UQ) study is to evaluate the

moments of the system response, such an approach can be replaced by the direct application of

quadrature formulae, where the computational model becomes the integrand function [4, 119].

We propose here to use this approach to calculate the moments of the system response subject

to uncertainty, and we illustrate a procedure to obtain a reconstructed form of the probabil-

ity distribution function (PDF) of the system response from the computed moments. Such a

distribution function allows the probability of critical events that may affect the system under

consideration to be calculated, which is not possible with conventional UQ methods, since they

do not provide direct access to the PDF of the system response.

Uncertainty quantification methods can be either intrusive or non-intrusive. The foundation

of intrusive UQ methods is the introduction of the uncertainty directly into the computational

model under consideration. This is typically achieved in the framework of the polynomial chaos

(PC) methodology by reformulating the original model equations into equations for the strength

of the modes of the polynomial chaos expansion [73]. While the intrusive approach is formally

general, and computationally efficient, since it only requires the solution of one mathematical

problem, the solution of the set of equations it originates can easily become challenging. In

many practical applications it is then preferable to rely on non-intrusive methodologies, which

perform the study of uncertainty propagation by computing the quantities of interest (modes

of the PC expansion or moments of the system response) from the results of a set of multiple

simulations performed using the original model. In this approach, the space of the uncertain

input parameters of the model is sampled either with a statistical or deterministic sampling

strategy, and samples are used to generate the set of simulations to be performed [58, 73]. It

is clear that the key element of non-intrusive uncertainty quantification is the strategy used to

sample the space of input parameters, in order to minimize the number of samples, without

sacrificing the accuracy of the uncertainty propagation procedure. Samples can be generated

using the Monte Carlo approach, which is convenient when the number of uncertain parameters

of the model is large, but is also known for the slow convergence of the high-order moments

as a function of the number of samples. Alternative strategies were developed to reduce the

number of samples, like the Latin hypercube approach [73]. However these methods become
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impractical for computationally intensive problems [73]. On the other hand, deterministic

quadrature-based sampling strategies can significantly reduce the number of samples required

to achieve convergence of the moments of the system response [73]. However, if the traditional

Gauss quadrature approach is used, the number of samples required by these methods increases

exponentially with the number of uncertain parameters, limiting the applicability of these

methods to models with moderate dimensionality.

In this work we adopt the direct quadrature approach proposed in [4,119], where moments

of the system response are estimated directly using Gaussian quadrature formulae [42], rather

than adopting the PC representation of the system response. This approach, which was shown

by Yoon et al. [4,119] to be equivalent to stochastic collocation [26,67–69], significantly reduces

the complexity of the procedure, and allows the number of samples required to predict the

moments of a given order to be estimated based on assumptions on the functional order that

correlates the uncertain input parameter and the output property of interest [4, 119]. The

moments computed with the direct quadrature procedure can then be used to reconstruct the

probability distribution function of the values of the model response. We achieve this result

using the extended quadrature method of moments (EQMOM) [121], which allows the output

PDF to be piecewise reconstructed using a basis of non-negative functions. EQMOM ensures

that all the moments used to perform the reconstruction are reproduced correctly. Additionally,

it presents key advantages with respect to other reconstruction methods based on entropy

maximization [71, 101], which require the solution of multidimensional optimization problems

of increasing difficulty for increasing number of moments. In this work we discuss in detail the

case of β distributions. We then illustrate the proposed UQ procedure with reconstruction of

the PDF of the response considering two example applications: a developing channel flow [56],

and an oblique shock problem [46]. For each application, the convergence of the moments

of the fluid velocity components (system response) is studied, the predicted system response

obtained with the quadrature-based UQ approach is compared with the results predicted by

the PC approach, and the PDF of the response is reconstructed at relevant locations of the

computational domain.
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2.2 Quadrature-Based Uncertainty Quantification Approach

The foundation of the quadrature-based uncertainty quantification approach consists in

the direct evaluation of the moments of the system response by means of Gaussian quadrature

formulae [4,119]. To illustrate the procedure, we consider a probability space P(Ω,F, P ) defined

by a sample space Ω, a sigma-algebra F, and a probability measure P on (Ω,F). We then define

a set of N independent random variables ξ(ω), being ω a random event. The n-th order moment

of a random process κ(ξ,x) is defined as

mn(x) = 〈κ(ξ,x)n〉 =

∫
Ω
κ(ξ,x)np(ξ)dξ, (2.1)

where p(ξ) depends on the probability measure P . In quadrature-based uncertainty quantifi-

cation, the space Ω is sampled using Gaussian quadrature formulae [29], the computational

model is evaluated in correspondence of each quadrature node, obtaining the corresponding

abscissae, and the moments of the response are explicitly approximated in terms of the quadra-

ture weights and abscissae. For sake of simplicity, in this chapter we limit the discussion to

the one-dimensional case in terms of random variables, assuming N = 1. However, for gen-

erality of the formulation, we retain the dependency on the spatial coordinates. Under these

assumptions, the integral in Eq. 2.1 can be approximated using a one-dimensional Gaussian

quadrature formula with M nodes. Considering p(ξ) as the weight function, the quadrature

approximation of the moments is

mn(x) =

∫
Ω
κ(ξ,x)np(ξ)dξ ≈

M∑
i=1

wi(x)κ(ξi,x)n, (2.2)

being wi the quadrature weights, ξi the quadrature nodes, and κ(ξi,x) the corresponding

abscissae.
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Once the moments about the originmn are defined, it is possible to evaluate the conventional

statistics of the response by converting them into central moments

µn =
n∑
i=0

(
n

i

)
(−1)n−imiµ

n−i, (2.3)

being µ = m1/m0 the mean. The variance is then given by

σ2 =
m2

m0
− µ2, (2.4)

while the skewness γ1 and the kurtosis γ2 are, respectively,

γ1 =
µ3

σ3
=
m3/m0 − 3µm2/m0 + 2µ3

σ3
, (2.5)

γ2 =
µ4

σ4
=
m4/m0 − 4µm3/m0 + 6µ2m2/m0 − 3µ4

σ4
. (2.6)

In the next subsection we illustrate how to deal with the case of uniformly distributed

random variables.

2.2.1 Uniformly distributed random variable

The case of a uniformly distributed random variable ξ leads to consider a distribution in

the form

p(ξ) =


1
b−a ξ ∈ [a, b],

0 ξ ∈]−∞, a[
⋃

]b,+∞[.

(2.7)

In such a case, Eq. 2.2 leads to

mn(x) =
1

b− a

∫ b

a
κ(ξ,x)ndξ, (2.8)

which can be calculated using a Gauss-Legendre quadrature formula, since the weight function

is assumed to be the unit function. In order to use the well-known Gauss-Legendre quadrature,

it is necessary to transform the interval [a, b] into [−1, 1], leading to

∫ b

a
κ(ξ,x)ndξ =

b− a
2

∫ 1

−1
κ

(
b− a

2
ξ +

a+ b

2
,x

)n
dξ

≈ b− a
2

M∑
i=1

wi(x)κ

(
b− a

2
ξi +

a+ b

2
,x

)n
. (2.9)
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Combining Eq. 2.9 and 2.8, we obtain the final result

mn(x) ≈ 1

2

M∑
i=1

wi(x)κ

(
b− a

2
ξi +

a+ b

2
,x

)n
, (2.10)

where ξi are roots of the Legendre orthogonal polynomials, defined by the recurrence relation

Q−1(ξ) = 0

Q0(ξ) = 1

(r + 1)Qr+1(ξ) = (2r + 1)ξQr(ξ)− rQr−1(ξ).

(2.11)

Independently from the type of distribution under consideration, quadrature weights and

nodes are determined by solving an eigenvalue problem, considering the Jacobi matrix whose

coefficients depend on the recurrence relation that defines the orthogonal polynomials [29]. The

procedure is summarized in Appendix A.

2.3 Properties of Quadrature-Based UQ

We summarize in this section a few properties of the quadrature-based uncertainty quan-

tification procedure described in the previous section. These properties were discussed in detail

elsewhere [4, 119] and discussed further in Appendix B.

2.3.1 Equivalence to stochastic collocation

The equivalence between the quadrature-based UQ procedure and stochastic collocation

methods is immediately observed [4,119], for a one-dimensional space of uncertain parameters,

by considering the approximated system response in terms of Lagrange polynomials given by

the statistical collocation method

κ(ξ) =
M∑
i=1

κiLi(ξ), (2.12)

with the Lagrange polynomial Li defined as

Li =

M∏
j=1
i 6=j

ξ − ξj
ξi − ξj

. (2.13)
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The moments defined by Eq. 2.1 are then

mn =

∫
Ω

 M∑
i=1

κi

M∏
j=1
i 6=j

ξ − ξj
ξi − ξj


n

p(ξ)dξ. (2.14)

Approximating the integral with quadrature, and choosing the stochastic collocation points

as the quadrature abscissae of an appropriate quadrature formula, the equivalence between

stochastic collocations and quadrature-based UQ becomes apparent. This is because the ex-

pression of the moments of the system response obtained with Eq. 2.14 provides the same result

given by Eq. 2.2:

mn ≈
M∑
l=1

wl

 M∑
i=1

κi

M∏
j=1
i 6=j

ξl − ξj
ξi − ξj


n

=

M∑
l=1

wlκ(ξl)
n. (2.15)

2.3.2 Polynomial chaos expansion and estimation of the required number of sam-

ples

The polynomial chaos approach [13, 38, 58, 73, 98, 115] approximates the system response

with a truncated Fourier series

κ(ξ) ≈
Q∑
j=0

κjΨj(ξ), (2.16)

being Ψj(ξ) orthogonal polynomials to the random input variable, and

κj =
〈κ(ξ),Ψj(ξ)〉
〈Ψj(ξ),Ψj(ξ)〉

, (2.17)

with 〈a, b〉 the inner product of the probability measure p(ξ), defined as

〈a(ξ), b(ξ)〉 =

∫
Ω
a(ξ)b(ξ)p(ξ)dξ.

The convergence of the PC series depends on the shape of the function κ(ξ) [11, 73]. The

moments of the system response are calculated using Eq. 2.16 to express κ(ξ) in Eq. 2.1. If

a one-dimensional case is considered, and the integrals involved in the definition of the inner

product are approximated by the corresponding quadrature formulae, the moments of the

system response can be found as [4, 119]

mn ≈
M∑
l=1

wl

 Q∑
j=0

Ψj(ξl)

(∑M
i=1wiκ(ξi)Ψj(ξi)

〈Ψj ,Ψj〉

)n . (2.18)
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Based on the properties of Gaussian quadrature formulae, it is possible to estimate the

required number of samples to compute the moments of the system response exactly. Such

estimates are rigorously derived [4, 119] in the case of a system response that is represented

by polynomials (see Appendix B). In particular, for a one-dimensional space of the uncertain

parameters, with a system response κ(ξ) represented by a polynomial of order not higher than q,

it can be shown that the number of samples M required to compute the Q-th order polynomial

chaos approximation of the moment of order n using Eq. 2.18 is

M = max

(
nq + 1

2
,
q +Q+ 1

2

)
. (2.19)

In case the number of samples is insufficient to compute the desired moment exactly, if the

random response is continuous and differentiable up to order q, with derivative of order q + 1

defined on the support of the random variable ξ, it is possible to estimate the error affecting

the estimated value of the moment by expanding the system response with a Taylor series (see

Appendix B).

2.4 Reconstruction of the Response Probability Distribution Function

The set of moments of the model response to the uncertain input parameters can be used to

reconstruct an approximated PDF of the values of the response using the extended quadrature

method of moments [121].

Before illustrating the procedure to approximate the PDF of the model output, we briefly

remind the reader of the conditions a set of real values has to satisfy in order to be a set of

moments of a probability measure, which corresponds, for the case of ξ ∈ [0, 1], to solving a

Hausdorff problem [19] to determine when moments are realizable. Such a problem is defined

considering a set of 2k + 1 scalars and the moment space M2k of a probability measure with

support on the closed interval [0, 1]

M2k = {m0,m1,m2, ...m2k}. (2.20)
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The two Hankel determinants [19] are then defined as

H2l =

∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 m1 . . . ml

m1 m2 . . . ml+1

...
...

ml ml+1 . . . m2l

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.21)

and

H2l =

∣∣∣∣∣∣∣∣∣∣∣∣∣

m1 −m2 m2 −m3 . . . ml −ml+1

m2 −m3 m3 −m4 . . . ml+1 −ml+2

...
...

ml −ml+1 ml+1 −ml+2 . . . m2l−1 −m2l

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.22)

The set defined by Eq. 2.20 belongs to the moment space M2k of a probability measure if and

only if the determinants H i, and H i are positive or null for i = 1, . . . , 2k [19] (realizability

condition):

M2k ∈M2k ⇔ H i ≥ 0 ∧H i ≥ 0, i = 1, . . . , 2k. (2.23)

The realizability condition expressed by Eq. 2.23 is a necessary condition to be able to proceed

with the PDF reconstruction, and can be used to determine if the quality of the estimated

moments is sufficient to ensure a successful reconstruction of the PDF of the model response

f(κ).

Assuming the moments of the system response computed with the quadrature-based UQ

procedure satisfy the realizability condition given in Eq. 2.23, we define the reconstruction

procedure for f(κ) for the case of one uncertain parameter ξ, leaving the extension to multi-

variate problems to future work. The foundation of such a procedure is representing f as a

weighted sum of a finite number N of non-negative functions [14,121]

fN (κ) =
N∑
i=1

ρiδσ(κ, κi), (2.24)

where we indicate with ρi the i-th quadrature weight used in the PDF reconstruction, to

avoid confusion with the quadrature weights wi used in the sampling procedure, κi is the i-th

quadrature node used in the PDF reconstruction, and δσ(κ, κi) is a kernel density function

depending on the parameter σ.
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The choice of the functional form of δσ depends on the nature of the distribution that

has to be reconstructed, and, in particular on the interval of definition (support) of such a

distribution, which is determined by the parameter σ. If κ is defined in a bounded interval

[a, b], δσ can be set equal to a beta distribution, while if κ is positive and defined on [0,+∞[,

the gamma distribution represents an adequate choice. The case of a system response defined

on the whole real set can be treated using a Gaussian distribution to define the kernel density

function. The reconstruction procedure for beta distributions is illustrated in Section 2.4.1,

while the interested reader can find the procedure for a gamma distribution [121] and for a

Gaussian distribution [14] in the literature.

2.4.1 Beta kernel function

The beta kernel function is defined as [121]

δσ(κ, κi) =
κλi−1 (1− κ)φi−1

B (λi, φi)
(2.25)

where λi = κi/σ, φi = (1− κi)/σ, κ is bounded in the interval [0, 1], and B (λi, φi) is the beta

function defined as B(x, y) =
∫ 1

0 t
x−1(1− t)y−1dt. The distribution of the system response can

be then represented as

fN (κ) =
N∑
i=1

ρiδσ(κ, κi) =
N∑
i=1

ρi
κλi−1 (1− κ)φi−1

B (λi, φi)
, (2.26)

where we have to use 2N + 1 moments to determine 2N + 1 unknowns (N quadrature weights

ρi and quadrature nodes κi for i = 1, . . . , N , and the parameter σ). This is achieved by first

considering the n-th order integer moments of δσ(κ, κi), which can be written in a recursion

form:

m(i)
n =

κi + (n− 1)σ

1 + (n− 1)σ
m

(i)
n−1 for n > 0, (2.27)

and m
(i)
0 = 1. Thus the integer moments of the distribution function f can be expressed as

mn =
N∑
i=1

ρim
(i)
n =

N∑
i=1

ρiGn(κi, σ),

with

Gn(κi, σ) =


1 n = 0

n−1∏
i=0

κi + iσ

1 + iσ
n ≥ 1

. (2.28)
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A lower triangular system can be defined to find σ by re-writing these moments as [121]

mn = ηnm
∗
n + ηn−1m

∗
n−1 + . . .+ η1m

∗
1, ηn ≥ 0

where the non-negative coefficients ηn depend only on σ, and m∗n =
∑N

i=1 ρiκ
n
i . This system

can be written in the matrix form A(σ)m∗ = m where A(σ) is a lower triangular matrix. The

quadrature weights ρi and nodes κi can be found from the first 2N moments (m∗0, . . . ,m
∗
2N−1)

using the moment inversion algorithm, Wheeler algorithm [113,120]. The parameter σ is found

using an iterative procedure [121]:

1. Guess σ

2. Compute the moments m∗n from the system A(σ)m∗ = m

3. Use the Wheeler algorithm to find weights ρi and abscissae κi from m∗

4. Compute m∗2N using ρi and κi

5. Compute

JN (σ) = m2N − η2Nm
∗
2N − η2N−1m

∗
2N−1 + . . .− η1m

∗
1

6. If J 6= 0, compute a new guess for σ and iterate from 1.

A transformation and a normalization process are required in order to extend the approach

presented above to the general bounded interval [a, b]. For such a purpose, let κ = (b−a)ξ+a,

where ξ ∈ [0, 1] with the distribution shown in Eq. 2.26. Then the normalized distribution for

κ in the interval [a, b] is

fN (κ) =

∑N
i=1 ρi

(κ−ab−a )
λi−1

( b−κb−a )
φi−1

B(λi,φi)∫ b
a

∑N
i=1 ρi

(κ−ab−a )
λi−1

( b−κb−a )
φi−1

B(λi,φi)
dκ

,

where the value of the integral in the denominator is

∫ b

a

N∑
i=1

ρi

(
κ−a
b−a

)λi−1 (
b−κ
b−a

)φi−1

B (λi, φi)
dκ = (b− a)

∫ 1

0

N∑
i=1

ρi
ξλi−1 (1− ξ)φi−1

B (λi, φi)
dξ = b− a.

As a consequence, the final normalized distribution for κ in bounded interval [a, b] is

fN (κ) =
1

b− a

N∑
i=1

ρi

(
κ−a
b−a

)λi−1 (
b−κ
b−a

)φi−1

B (λi, φi)
, (2.29)
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where parameters λi and σ are determined by the methods described above. It is worth to

mention that Eq. 2.29 can be used to determine the probability of critical events defined, for

example, by a cut-off value of κ > κcutoff. This represents a key advantage of the proposed

UQ procedure, because this type of calculation is not possible with conventional UQ methods,

where the reconstructed form of the PDF of the system response is not readily available.

2.5 Applications

Two example applications were chosen to demonstrate the proposed UQ procedure with

reconstruction of the PDF of the system response. The first is the channel flow problem

considered in [56], due to its simplicity and to the availability of UQ results suitable for com-

parison. The second is an oblique shock problem involving a compressible flow, which presents

discontinuities in the physical space, with a sudden spatial change in the values of the output

variable [46]. The moments of the streamwise fluid velocity component are computed and their

convergence as a function of the number of samples is studied. Low-order statistics of the

streamwise velocity are reported, and the PDF of the system response at specific locations in

the computational domain is reported. The accuracy of the reconstruction procedure is as-

sessed by comparing the reconstructed distribution with the one obtained by directly sampling

a large number of outputs obtained from the simulation.

2.5.1 Developing channel flow

The development of the flow in a channel considered in [56] with uncertain viscosity was

chosen as the first example application of the quadrature-based uncertainty quantification ap-

proach introduced in the previous sections. Channel flow has also been considered as a test

problem by other authors [74,116]. The channel under examination is schematically represented

in Fig. 2.1.
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Figure 2.1 Schematic representation of the channel.

In the simulations, a ratio L/D = 6 and Reynolds number Re = 81.24 were used. The

governing Navier-Stokes equations for the incompressible flow in the two-dimensional channel

are:
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u

∇ · u = 0

(2.30)

where u is the velocity field, p is the pressure, ρ is the density, and ν is the viscosity. A uniform

velocity profile is assumed at the inlet of the channel, while fully developed flow is imposed

at the outlet. No-slip boundary conditions are applied at the channel walls. The open-source

package OpenFOAM [44,79,80] was used to perform the simulations, using a second-order finite

volume scheme to discretize Eq. 2.30. The pressure-velocity coupling was achieved by means of

the SIMPLE algorithm [25, 84]. The solution was assumed to be converged when the pressure

and velocity residuals fell below 10−12, as shown in Fig. 2.2.

As anticipated, in this study we assume that the numerical solution is not affected by nu-

merical errors. As a consequence, careful attention was paid to determine the grid-independent

solution, in order to minimize the numerical error. Three grid resolutions were considered to

study the dependency of the solution on the spatial discretization (points along D × points

along L): 32 × 128, 64 × 256, 128 × 512. Since the solution on the grid with 64 × 256 points

satisfied the criterion of grid independence, differing of less than 5% from the solution on more

refined grids, this grid resolution was adopted to perform the uncertainty quantification study.



26

0 500 1000 1500 2000
Iterations

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

R
es

id
u

al
s

U
x

U
y

p

(a)

0 500 1000 1500 2000
Iterations

10
-14

10
-12

10
-10

C
o
n
ti

n
u
it

y
 e

rr
o
r

(b)

Figure 2.2 History of (a) residuals for the channel flow simulation, and of (b) the continuity

error on the 64× 256 grid.

Fig. 2.2(b) shows the convergence history of the continuity error as a function of the number

of iterations. At convergence, this error has order of magnitude of 10−12.

A uniform distribution of the constant viscosity of the flow was assumed. The mean viscosity

ν0 was supposed to be 1, and the standard deviation of the viscosity was 0.3ν0. Thus the flow

viscosity assumed values in the interval [0.7, 1.3]. The procedure illustrated in Section 2.2.1

was then used to compute the moments of the system response, after producing the samples.

2.5.1.1 Convergence of the moments

The convergence of the moments of the streamwise fluid velocity is studied here, by con-

sidering the absolute value of the difference between the value of each moment computed with

a given number of samples, and the value of the same moment computed with 1000 samples,

which is assumed to be exact.

eabs,n,i = |mn,i −mn,1000| .

Seven sets of samples were considered, respectively with 3, 5, 10, 20, 40, 80 and 100 samples.

The absolute errors for the moments of the axial component of the fluid velocity are reported in

Tables 2.1, 2.2, and 2.3. All the set of samples ensure exact prediction of the zero-order moment,

since its value is guaranteed to be exact by the quadrature representation. Additionally, we

observe that twenty samples are sufficient to calculate the five moments with an accuracy

higher than 10−8, moments of order 5 to 9 are predicted with an absolute error of magnitude
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10−8. It is worth noticing that using a significantly higher number of samples does not lead

to a significant reduction of the error affecting the highest order moments considered in this

example.

Table 2.1 Absolute error of m0, m1, m2 , m3 as a function of the number of samples.

Samples eabs,0,i eabs,1,i eabs,2,i eabs,3,i

3 0 1.246× 10−6 3.532× 10−6 7.487× 10−6

5 0 1.415× 10−8 2.979× 10−8 4.703× 10−8

10 0 1.312× 10−8 2.625× 10−8 3.942× 10−8

20 0 1.779× 10−9 3.561× 10−9 5.346× 10−9

40 0 6.865× 10−10 1.398× 10−9 2.135× 10−9

80 0 2.781× 10−10 5.576× 10−10 8.387× 10−10

100 0 1.460× 10−10 2.928× 10−10 4.404× 10−10

Table 2.2 Absolute error of m4, m5, m6 as a function of the number of samples.

Samples eabs,4,i eabs,5,i eabs,6,i

3 1.407× 10−5 2.471× 10−5 4.153× 10−5

5 6.599× 10−8 1.023× 10−7 1.553× 10−7

10 5.260× 10−8 6.581× 10−8 7.905× 10−8

20 7.134× 10−9 8.926× 10−9 1.072× 10−8

40 2.899× 10−9 3.689× 10−9 4.508× 10−9

80 1.121× 10−9 1.405× 10−9 1.691× 10−9

100 5.888× 10−10 7.380× 10−10 8.880× 10−10

Table 2.3 Absolute error of m7, m8, m9 as a function of the number of samples.

Samples eabs,7,i eabs,8,i eabs,9,i

3 6.760× 10−5 1.073× 10−4 1.669× 10−4

5 2.294× 10−7 3.378× 10−7 5.017× 10−7

10 9.231× 10−8 1.056× 10−7 1.189× 10−7

20 1.252× 10−8 1.440× 10−8 1.650× 10−8

40 5.904× 10−9 8.629× 10−9 1.271× 10−8

80 1.978× 10−9 2.267× 10−9 2.557× 10−9

100 1.039× 10−9 1.190× 10−9 1.343× 10−9

Fig. 2.3 shows the filled contour plots of the velocity mean, showing a peak axial velocity

of 1.5 m/s. The variance, skewness, and kurtosis of each velocity component are also reported

in the figure.
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(a) µ(Ux) (b) σ2(Ux) (c) γ1(Ux) (d) γ2(Ux)

(e) µ(Uy) (f) σ2(Uy) (g) γ1(Uy) (h) γ2(Uy)

Figure 2.3 Contour plots of mean, variance, skewness, and kurtosis of the two velocity com-

ponents: (a)-(d) spanwise, (e)-(h) streamwise. Two locations designated are the

points where EQMOM is used to reconstruct the PDF of the system response.
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2.5.1.2 Reconstructed distribution

The reconstructed distribution of the axial velocity is studied here with the method dis-

cussed in Section 2.4. Before proceeding with the application of the extended quadrature

method of moment [66, 121] procedure, the samples are normalized so that the values of the

system response are contained into the interval [0, 1]. This result is achieved by computing

κi =
ui − umin
umax − umin

.

and by computing the moments of κ according to Eq. 2.1. These moments are then used as

input in β-EQMOM, and approximate distributions are calculated according to Eq. 2.29. This

procedure is used to perform the EQMOM reconstruction in all the cases considered in this

work.

Two sets of data at different locations were used to perform the reconstruction, one on

the channel centerline (location 1), and the other near the wall (location 2). The approximate

distributions, reported in Fig. 2.4 display two different profiles. The axial velocity at the loca-

tion 1 presents a nearly uniform distribution, showing that the uniform distribution provided

as input is propagated to the system response without significant changes. However, the axial

velocity distribution at location 2 strongly deviates from uniform distribution.

The reconstructed distribution using EQMOM is also compared with the one obtained from

1000 samples by dividing the whole set of samples in 10 bins. Each bin is formed by a constant

number of samples Nbin, equal for each bin, and the limiting values of each bin are determined

to enforce this assumption, defining the bin width δbin. The weight attributed to each bin

wbin is calculated by summing the quadrature weights of the samples contained in the bin. The

frequency of each bin is reported in the histograms, in which the height of each bar is computed

as

hi =
1∑

j wbin,jNbin,j

Nbin,iwbin,i

δbin,i
(2.31)

The approximate distributions show good agreement with the histograms reconstructed from

1000 samples for all the considered conditions, which indicates four nodes are sufficient to

reconstruct the axial velocity distribution for this case.
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Figure 2.4 Reconstructed distribution of the axial velocity.

2.5.1.3 Polynomial chaos expansion

The PC expansion of the axial velocity is determined here to compare with the quadrature-

based UQ results. The system response can be expressed as in Eq. 2.32 [56],

u(ξ) ≈
Q∑
j=0

ujΨj(ξ) (2.32)

where Ψj is a basis of orthogonal polynomials corresponding to the input distribution, in this

case for example Legendre polynomials for uniform distributions. The coefficients uj can be

calculated as Eq. 2.33 by projecting the response against each basis function [4, 119].

uj =
〈u(ξ),Ψj(ξ)〉
〈Ψj(ξ),Ψj(ξ)〉

(2.33)

Following [56], a third order (Q = 3) polynomial chaos expansion of the axial velocity is

reported here, and the four coefficients u0, u1, u2, and u3 are shown in Fig. 2.5. Once the

polynomial chaos expansion function is obtained, the mean value of the system response is

known, which is the value of the first polynomial chaos coefficient u0. Compared the mean

values of the axial velocity obtained by quadrature-based UQ procedure and PC expansion,

shown in Fig. 2.3(e) and Fig. 2.5(a), the two contour plots show great agreement. The largest

absolute value of this differences has magnitude equal to 10−5, indicating quadrature-based UQ

procedure is consistent with the PC expansion approach.
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(a) u0 (b) u1 (c) u2 (d) u3

Figure 2.5 Contour plots of polynomial chaos expansion coefficients of the axial velocity.

2.5.2 Oblique shock problem

The second example application of the quadrature-based uncertainty quantification ap-

proach is a compressible flow with an uncertain Mach number over an inclined surface with an

angle θ with respect to the horizontal. The problem is schematically represented in Fig. 2.6.

The governing Euler equations are derived from Navier-Stokes equations for inviscid, compress-

ible flow, shown in Eq. 2.34.
∂ρ

∂t
+∇ · (ρu) = 0

ρ
∂u

∂t
+ ρu · ∇u+∇p = 0

(2.34)

In the simulations, the flow was fed with a uniform inlet. A shock discontinuity is formed

with an angle β with respect to the horizontal, which can be expressed by Eq. 2.35, related to

the inlet Mach number, the ratio of the specific heats γ, and the angle θ.

tan θ = 2 cotβ
Ma2

1 sin2 β − 1

Ma2
1(γ + cos 2β) + 2

(2.35)

The case was simulated considering a computational grid of 640× 320 cells which ensured

grid independence with the rhoCentralFoam solver provided with open-source package Open-

FOAM [79,80].

A uniform distribution of the upstream Mach number was assumed. The mean Mach

number was 3, and the standard deviation was 0.3. Thus the upstream Mach number was
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Figure 2.6 Schematic representation of the oblique shock problem.

in the interval [2.7, 3.3]. The method described in Section 2.2.1 was applied to calculate the

moments of the system response based on the samples obtained from the numerical simulations.

2.5.2.1 Low-order statistics of the system response

The low-order statistics of the streamwise velocity are presented in this section. The mo-

ments computed with 20 samples are compared to the same moments computed with 100 sam-

ples, which are assumed exact in this case. The filled contour plots of the mean and variance of

the horizontal velocity component are reported in Fig. 2.7. As expected, a shock discontinuity

is observed with an angle with respect to horizontal. This angle is not a defined value, but it

belongs to a range because of the uncertainty of the Mach number. The interval containing

the shock can be calculated analytically from Eq. 2.35, while the interval predicted by the UQ

procedure is determined by measuring the angular width of the horizontal velocity variance

across the shock. Table 2.4 shows the angle range calculated from the analytical solution and

measured in the UQ procedure, indicating that the estimation of the shock angle with the UQ

procedure matches the analytical value with an error on the order of 0.1 degrees. Fig. 2.8 shows

the absolute error of the mean and variance of the horizontal velocity component. Because of

the shock discontinuity, the absolute errors in this region are in magnitude of 10−3, while in

other regions the absolute errors are nearly zero.
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(a) (b)

Figure 2.7 Mean and variance of the horizontal velocity component: (a) µ(Ux), (b) σ2(Ux).

Three locations designated are the points where EQMOM is used to reconstruct

the PDF of the system response.

Table 2.4 Shock angles.

Ma1 βanalytical βUQ

2.7 34.78 34.32

3.3 30.27 30.50

(a) (b)

Figure 2.8 Absolute error of (a) mean and (b) variance of the horizontal velocity component.
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2.5.2.2 Reconstructed distribution

The reconstructed distribution of the horizontal velocity component is studied in this sec-

tion. Three sets of data at different locations were used to perform the reconstruction, one

below the shock (location 1), and two in the shock region (location 2 and 3). Approximate

distributions are reported in Figs. 2.9 and 2.10. The uniform distribution provided as input is

maintained nearly unchanged for the distribution of the horizontal velocity at location 1, while

distributions of the horizontal velocity at location 2 and 3 significantly differ from the uniform.

Distributions of the horizontal velocity in the shock region display step function profiles because

of the shock discontinuity.

The effect of the number of EQMOM nodes on the reconstructed distribution was consid-

ered. The approximate distribution of the horizontal velocity below the shock region shows

good consistency with the histogram, and increasing the number of EQMOM nodes does not

significantly influence the quality of the reconstruction. The approximate distributions shown

in Fig. 2.10 presents some oscillations, which is expected because of the steep discontinuity

presented by the values of the distribution that is being reconstructed. The reconstruction of

the distribution in the shock region improves when the number of EQMOM nodes increases,

because this leads to a reduction of the oscillatory behaviour. However, increasing the number

of EQMOM nodes requires higher order moments to be computed, whose accuracy decreases

with the order due to truncation errors. Considering both the calculation accuracy and the

shape of the approximate distributions, four nodes are adequate to reconstruct the horizontal

velocity distribution for this case.

2.5.2.3 Polynomial chaos expansion

The four PC expansion coefficients of the horizontal velocity u0, u1, u2, and u3 are shown

in Fig. 2.11. By substituting these coefficients into Eq. 2.32, the horizontal velocity for each

sample can be recomputed and then the mean horizontal velocity can be obtained from the

first coefficient u0. Compared the mean horizontal velocity obtained by quadrature-based UQ

procedure and PC expansion, shown in Fig. 2.7(a) and Fig. 2.11(a), the two contour plots
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Figure 2.9 Reconstructed distribution of the horizontal velocity below the shock region: (a)

4 EQMOM nodes, (b) 6 EQMOM nodes.
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Figure 2.10 Reconstructed distribution of the horizontal velocity in the shock region: (a) 4

EQMOM nodes, (b) 5 EQMOM nodes, (c) 4 EQMOM nodes, (d) 6 EQMOM

nodes.



36

(a) u0 (b) u1

(c) u2 (d) u3

Figure 2.11 Contour plots of polynomial chaos expansion coefficients of the horizontal velocity.

show good agreement. Although the number of samples used in this case is not large (100 at

most) and the shock discontinuity is formed, the absolute difference is still acceptable, with

magnitude 1.0× 10−3.

2.6 Conclusions

A quadrature-based approach to perform uncertainty quantification and reconstruction of

the distribution of values of the system response is introduced in this work, and developed for

the case of problems with one uncertain parameter. The approach is demonstrated considering

a developing channel flow and an oblique shock problem. The approach is successfully compared

to the PC methodology, showing that the quadrature-based UQ procedure correctly reproduces

the moments of the system response, without the necessity of proceeding to the application

of the PC expansion. The reconstruction of the distribution function of the system response

are performed successfully in both the cases, obtaining excellent results in the case of smooth

distributions, and satisfactory results when discontinuities are present. The reconstruction
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procedure illustrated in this work can be naturally extended to multi-variate problems, as it

will be shown in future work.
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CHAPTER 3. A QUADRATURE-BASED UNCERTAINTY

QUANTIFICATION APPROACH WITH RECONSTRUCTION OF THE

PROBABILITY DISTRIBUTION FUNCTION OF THE SYSTEM

RESPONSE IN BUBBLING FLUIDIZED BEDS

In simulations of industrial systems, it is important to have an estimate of the distributions

of errors due to uncertainty in the model parameters and input data. This can be accomplished

by developing uncertainty quantification tools that can be combined with available CFD codes.

A non-intrusive, quadrature-based, uncertainty quantification (QBUQ) method is presented

in this chapter, and is demonstrated by considering a bubbling fluidized bed as example ap-

plication. The particle size is assumed to be the uncertain input parameter. The system is

simulated with a standard two-fluid model with kinetic theory closures for the particulate phase

implemented into MFIX. The effect of uncertainty on the disperse-phase volume fraction, on

the phase velocities, and on the pressure drop inside the fluidized bed are examined, and the

reconstructed probability functions (PDFs) are provided for the three quantities studied.

3.1 Introduction

Gas-fluidized beds are widely applied to a variety of industrial operations and processes

[8, 51, 118]. Computational fluid dynamics (CFD) is a useful tool to study and model gas-

fluidized beds and to provide help for design and optimization of the process [105, 107]. In

most of CFD simulations, the predicted results are deterministic values without considering the

uncertainties caused by uncertain input parameters [31]. Therefore, studying the propagation

of uncertainty in input parameters to simulation results becomes a necessity, which is the main

objective of uncertainty quantification (UQ) process [16]. UQ approaches including polynomial
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chaos (PC) methods, moment methods, and Monte Carlo methods have been applied to many

kinds of single phase CFD simulations [24, 50, 58, 73], such as compressible flows [15, 46, 61, 62,

68,69,86,109], incompressible flows [54–56,74,85,116], non-isothermal flows [3,53,56,57,60,110],

and flows with reactions [17,59,87,90–92]. However, for multiphase CFD simulations, a limited

number of applications of UQ approaches are reported in the literature. Several works about

the applications of UQ to flows in porous media are reported in literature [36,37,63]. For more

complex system, such as gas-particle flows, few works can be found. Gel et al. built a surrogate

model and performed UQ analysis in a bubbling fluidized bed [31] and a circulating fluidized

bed [32]. Donato and Pitchumani proposed a UQ approach named QUICKER, and applied it

to a a circulating fluidized bed and a turbulent fluidized bed [20].

UQ approaches can be either intrusive or non-intrusive. Intrusive UQ approach intro-

duces the uncertainty into the governing equations, and only one set of model equations are

solved. Hence, this method is usually computational efficient. However, for complex system,

because a large amount of modifications to the governing equations are required, it is difficult

to implement this method. Therefore, non-intrusive UQ approaches are often considered for

complicated systems. Non-intrusive approaches treat the computational model as a black box.

The space of the distribution of uncertain parameters is sampled first, and for each sample,

the simulation is performed once. Therefore, the computational cost using non-intrusive UQ

approaches scales up with the number of samples, and sampling strategy becomes essential.

As described in Chapter 1, samples can be generated using random or deterministic sampling

strategies. Random sampling strategies include the basic Monte Carlo method and its im-

provements such as importance sampling Monte Carlo method and Latin hypercube Monte

Carlo method [24, 58]. The advantage of random sampling strategy is that it is efficient for

problems with large amounts of uncertain input parameters, because the convergence of the

method is independent of the number of random variables. However, the slow convergence of

the higher order moments with respect to the number of samples results in a large number

of samples required for a given accuracy, and therefore limits the implement of the method

to computationally expensive problems [58]. On the other hand, the deterministic sampling

strategies such as quadrature-based sampling strategy, can significantly reduce the number of
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samples, hence reduce the computational time [73]. However, with increasing the number of

random input parameters, the required number of samples increases exponentially, known as

“the curse of dimensionality”, which limits the applications of the method to problems with

moderate number of random input variables [58,73].

In this chapter, a non-intrusive quadrature-based uncertainty quantification (QBUQ) ap-

proach with reconstruction of the probability distribution function (PDF) of the system re-

sponse, described in Chapter 2, is applied to a bubbling fluidized bed. A set of samples are

generated for the PDF of the uncertain input parameter using Gaussian quadrature formu-

lae [42]. The simulation results of each sample are used to directly estimate the moments

of the system response by means of quadrature formulae [4, 119]. Then extended quadrature

method of moments (EQMOM) [121] is used to reconstruct the PDF of the system response.

With the QBUQ approach, not only confidence intervals for the system response can be pro-

vided, but the probability in particular of rare events can be evaluated as well. The remainder

of this chapter is organized as follows. Section 3.2 gives an introduction to the numerical

models used in this chapter to simulate the bubbling fluidized beds. Section 3.3 explains the

theory of QBUQ and its implementation to an open source CFD code MFIX (Multiphase Flow

with Interface eXchanges) (http://mfix.netl.doe.gov). Section 3.4 and Section 3.5 discuss the

application of QBUQ to a bubbling fluidized bed. Section 3.6 concludes this chapter.

3.2 Numerical Models in Simulations of Bubbling Fluidized Beds

In simulations of bubbling fluidized beds, two kinds of models are mainly considered:

Eulerian-Lagrangian models and Eulerian-Eulerian models [105, 107]. In Eulerian-Lagrangian

models, the solid phase is represented by discrete particles. The motion of each particle is

solved by Newton’s second law, with a drag force closure for particle-gas interactions, and

a collision model for particle-particle interactions. The fluid phase is continuous, and gov-

erned by Navier-Stokes equations with closures to account for interactions with discrete parti-

cle phase [18, 45, 106]. Although this discrete approach can describe the particle-particle and

particle-wall interactions in a realistic way, it is usually computationally expensive, and hence

limited to relatively small amount of particles and small scale reactors [18, 104, 105, 107]. In
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Eulerian-Eulerian models, also known as two fluid models, both fluid and solid phases are

treated as interpenetrating continua. This continuum approach is computationally more ef-

ficient than discrete method, and can be used to relatively large system. Both fluid and

solid phases are governed by traditional Navier-Stokes equations with modifications to ac-

count for property exchange phenomena. The particle-gas interactions are described by drag

force closures. Indirect properties such as solid pressure and viscosity which depend on clo-

sures are used to account for particle-particle interactions since discrete particles no longer

exist [21, 45, 100, 105, 107]. The most widely used approach to obtain closures for particle-

particle interactions is the kinetic theory of granular flows [40, 105, 107]. In this chapter, a

bubbling fluidized bed is solved using an open-source multiphase CFD code MFIX developed

by the U.S. Department of Energy’s National Energy Technology Laboratory (NETL) with a

two fluid model with kinetic theory closures for the solid phase.

3.2.1 Governing equations

The governing equations implemented into MFIX and used to solve the present bubbling

fluidized bed are as follows [9, 99].

Continuity equations

Gas-phase continuity equation is

∂

∂t
(αgρg) +∇ · (αgρgUg) = 0, (3.1)

where αg is the gas volume fraction, ρg is the density of gas, and Ug is the gas velocity field.

Solid-phase continuity equation is

∂

∂t
(αsρs) +∇ · (αsρsUs) = 0, (3.2)

where αs is the solid volume fraction with αg + αs = 1, ρs is the solid density, and Us is the

solid velocity field.
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Momentum equations

Gas-phase momentum equation is written as

∂

∂t
(αgρgUg) +∇ · (αgρgUgUg) = −αg∇pg +∇ · τg + αgρgg +Kgs (Us −Ug) , (3.3)

where pg is the gas pressure, τg is the viscous stress tensor of the gas phase, g is the acceleration

of gravity, and Kgs is the gas-solid drag coefficient.

Solid phase momentum equation is

∂

∂t
(αsρsUs) +∇ · (αsρsUsUs) = −αs∇pg +∇ · Ss + αsρsg −Kgs (Us −Ug) , (3.4)

where Ss is the solid phase stress tensor.

Gas-solid drag coefficient

Wen and Yu drag correlation [9, 112] for gas-solid interactions is used in the present work,

and the drag coefficient is defined as

Kgs =
3

4
CD

ρgαgαs |Us −Ug|
ds

α−2.65
g , (3.5)

where

CD =


24

Re
(1 + 0.15 Re)0.687 Re < 1000

0.44 Re ≥ 1000

, (3.6)

with Reynolds number Re defined as

Re =
ρgαg |Us −Ug| ds

µg
, (3.7)

where ds is the particle diameter, and µg is the shear viscosity of gas.
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Constitutive equations

Models of gas phase viscous stress tensor, solid phase stress tensor, and granular tempera-

ture shown below are applied in MFIX to close the momentum equations for both phases.

Gas phase viscous stress tensor

Gas phase stress tensor is defined as

τg = αgµg

[
∇Ug + (∇Ug)T

]
+ αg

(
λg −

2

3
µg

)
(∇ ·Ug) I, (3.8)

where λg is the bulk viscosity of gas which normally can be set to zero [10, 107], and I is the

unit tensor.

Solid phase stress tensor

Two regimes, proposed by Johnson and Jackson [33, 49, 99] are used to describe the solid

phase stress tensor Ss: plastic regime, and viscous regime. The model switches from one to

another at a critical packing α∗g, which is set to the packed bed void fraction. The solid phase

stress tensor can be written as

Ss =


−pp

s I + τs
p αg ≤ α∗g

−pv
s I + τs

v αg > α∗g

, (3.9)

where superscript p represents plastic regime and v for viscous regime, ps is the solids pressure,

and τs is the granular stress tensor of solid phase.

The solids pressure in plastic regime is defined as

pp
s = αsp

∗, (3.10)

where p∗ = 1025
(
α∗g − αg

)10
.

A model proposed by Schaeffer [95] is used to describe granular stress tensor in the plastic

regime, written as

τs
p = 2µp

s Ds, (3.11)

where the strain rate tensor is

Ds =
1

2

[
∇Us + (∇Us)

T
]
. (3.12)
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The solid phase viscosity in the plastic regime is defined as

µp
s =

p∗ sinφ

2
√
I2D

, (3.13)

where φ is the angle of internal friction, and I2D is the second invariant of the deviator of the

strain rate tensor, written as

I2D =
1

6

[
(Ds11 −Ds22)2 + (Ds22 −Ds33)2 + (Ds33 −Ds11)2

]
+ D2

s12 + D2
s23 + D2

s31. (3.14)

In the viscous regime, granular temperature Θs is introduced to describe solids pressure

and granular stress. The solids pressure is given in [40] as

pv
s = ρsαsΘs +K1α

2
s Θs, (3.15)

where Θs is the granular temperature, and K1 is written as

K1 = 2(1 + epp)ρsg0, (3.16)

with epp being particle-particle restitution coefficient, and g0 being radial distribution function

defined as

g0 =

[
1−

(
αs

αs,max

) 1
3

]−1

, (3.17)

where αs,max is the packing limit.

The granular stress tensor of solid phase in the viscous regime τs
v is defined as

τs
v = 2µv

s Ds + λv
s tr(Ds)I, (3.18)

where the solids bulk viscosity λv
s and shear viscosity µv

s are given in the following equations,

and the strain rate tensor Ds has the same definition as in the plastic regime shown in Eq. 3.12.

The equation for solids bulk viscosity is written as

λv
s = K2αs

√
Θs, (3.19)

where K2 is a constant given as

K2 =
4dsαsρs(1 + epp)g0

3
√
π

− 2

3
K3, (3.20)



45

with K3 being a constant written as

K3 =
dsρs

2

{ √
π

3(3− epp)
[0.5(3epp + 1) + 0.4(1 + epp)(3epp − 1)αsg0]

+
8αsg0(1 + epp)

5
√
π

}
. (3.21)

The shear viscosity of the solid phase µv
s is defined as

µv
s = K3αs

√
Θs. (3.22)

An algebraic granular energy equation derived from the energy equation of Lun et al. [64]

is implemented in MFIX [99], and is used in the present work. The granular temperature Θs

is solved as

Θs =

{
−K1αs tr(Is) +

√
K2

1α
2
s tr2(Ds) + 4K4αs [K2 tr2(Ds) + 2K3 tr(D2

s )]

2K4αs

}2

, (3.23)

where constant K4 is given as

K4 =
12(1− e2

pp)ρsg0

ds
√
π

. (3.24)

With above equations, the system is closed, and the bubbling fluidized bed can be solved.

3.3 Theory of Quadrature-Based Uncertainty Quantification Approach

with Reconstruction of the PDF of the System Response

As described in Section 3.2, all models present a strongly non-linear relationship between

input parameters and simulation outputs. The input parameters can be affected by uncer-

tainties caused by such as difficulties in the measurements, and assumptions made to derive

models or closures. These uncertainties in input parameters can influence the simulation re-

sults with consequences to predict the quantities of interest for real applications. Therefore,

the propagation of uncertainties from model input parameters to computational outputs need

to be studied. In this chapter, a non-intrusive QBUQ approach with the reconstruction of the

PDF of the system response proposed in Chapter 2 is adopted.
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3.3.1 Quadrature-based UQ approach

In the non-intrusive UQ approaches, the computational cost depends on the number of

samples, which sometimes can be large [58]. It is thus clear that the sampling strategy is crucial

for non-intrusive UQ approaches to reduce the number of samples without losing the accuracy

of the UQ procedure. The foundation of the quadrature-based UQ approach is to directly

evaluate the moments of the system response [4, 119] by Gaussian quadrature formulae [42].

The sampling procedure is illustrated in Appendix A [29,42].

For each sample, the simulation is performed once, whose results are used to estimate the

moments of quantities of interest. Once the moments of the system response are obtained, the

statistics of the response can be calculated using Eqs. 2.3 to 2.6. The set of moments of the

response can also be used to reconstruct the PDF of the response using extended quadrature

method of moments (EQMOM) [121]. The foundation of EQMOM is to represent the approxi-

mated PDF of the response f(κ) as a weighted sum of N non-negative kernel functions [14,121]:

fN (κ) =

N∑
i=1

ρiδσ(κ, κi), (3.25)

where ρi and κi are the i-th quadrature weight and node used in the reconstruction of the PDF,

and δσ(κ, κi) is a kernel density function. The choice of δσ(κ, κi) depends on the properties of

the distribution that needs to be reconstructed, specifically on the support of the distribution.

A beta distribution is chosen for distributions on bounded interval [a, b]; for distributions on

semi-finite interval [a,+∞), a gamma distribution can be used; for distributions on the whole

real set, Gaussian distribution is chosen. Details about the EQMOM method for these three

kernel density functions can be found in Appendix C and in the literature [14, 121]. The key

advantage of the proposed quadrature-based UQ approach is that not only the statistics of the

system response are provided, but the PDF of the response is provided as well, which can be

used to evaluate the probability of critical events.

3.3.2 Implementation of the quadrature-based UQ approach into MFIX

Two separate modules based on the Python programming language and shell scripts are de-

veloped to implement the quadrature-based UQ approach into MFIX, including a pre-processing
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Identify test cases and uncertain 
parameters of interest 

Sample the space of uncertain 
parameters to obtain quadrature 

nodes and weights 

Generate corresponding MFIX 
input files for each node 

Extract time-averaged outputs of 
interest for each sample 

Estimate moments of the outputs  

Compute low order statistics 
(mean, variance, … ) 

Reconstruct the PDF of the system 
response at specific locations 

MFIX 

Pre-processing Post-processing 

Figure 3.1 Framework of implementation of quadrature-based UQ approach into MFIX.

module and a post-processing module. The framework of the implementation is shown in

Fig. 3.1.

In the pre-processing module, the script first identifies the properties of uncertain input

parameters, such as PDF of the parameters, and lower and upper bounds of the parameters.

Quadrature weights and nodes are generated next, with which the script creates corresponding

MFIX input files for each sample, stored in separate directories.

Once the simulations for each sample are completed, the script in the post-processing mod-

ule can extract time-averaged quantities of interest for each sample. The set of moments can

be directly evaluated with these time-averaged results for each sample and quadrature weights

generated by the pre-processing module using Gaussian quadrature formulae [42]. With the

set of moments, statistics of the response, such as mean, variance, skewness, and kurtosis can

be calculated, and the PDF of the response can be reconstructed using EQMOM [14,121].
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Figure 3.2 Scheme of the bubbling fluidized bed.

3.4 Descriptions of the Computational Problem and the Uncertain

Parameters

The QBUQ procedure was demonstrated by considering a bubbling fluidized bed studied in

Taghipour et al. [100] experimentally and computationally as an example application. Details

about the simulation setup are in the following section.

3.4.1 Descriptions of the computational problem

A two-dimensional bubbling fluidized bed is simulated in the present work, with scheme

shown in Fig. 3.2. The column is 28 cm in width, and 100 cm in height. Spherical glass beads

with density 2500 kg/m3 and mean diameter 275 µm are fluidized by injecting the air uniformly

from the bottom of the column at 0.38 m/s at ambient conditions. The computational domain

is discretized by 44800 (112 × 400) cells, with the grid interval spacing being 0.25 cm. The

adaptive time stepping of MFIX is applied with starting time step being 1.0 × 10−4 s. The

maximum number of iterations per time step is set to 500, and the convergence criteria for

residual components are 1.0 × 10−3. The initial bed height is 0.4 m, and initial void fraction

is 0.4. The inlet and outlet boundary conditions are constant gas inflow, and zero relative gas
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pressure, respectively. No-slip wall boundary condition is applied to both gas and solid phases.

The particle-particle restitution coefficient is set to 0.9 for all simulations in this work. The

governing equations needed to solve this system are described in Section 3.2.1. The parameters

and conditions used in the simulations are summarized in Table. 3.1.

Table 3.1 Simulation parameters and conditions.

Properties Values

Gas density 1.225 kg/m3

Particle density 2500 kg/m3

Mean particle diameter 275 µm

Restitution coefficient 0.9

Initial bed height 0.4 m

Initial void fraction 0.4

Superficial gas velocity 0.38 m/s

Inlet boundary condition constant gas inflow

Exit boundary condition zero relative gas pressure

Grid interval spacing 0.25 cm

Simulation time 90 s

Starting time steps 1.0× 10−4 s

Maximum number of iterations 500

Convergence criteria 1.0× 10−3

3.4.2 Descriptions of the uncertain parameter

The influence of uncertain particle size on the simulation results is studied. In practice, a

distribution of particle size exists constantly. In this work, a uniform distribution is assumed

for the distribution of particle diameter. The mean particle diameter ds is 275 µm, and the

standard deviation is 0.3ds, which indicates the particle diameter is distributed uniformly on

the interval [192.5, 357.5]. Using the pre-processing module illustrated in Section 3.3.2, 20

samples are generated. Results are discussed in the next section.

3.5 Results and Discussion

Three time-averaged quantities of interest are studied to evaluate the effects of uncertain

particle size on the simulation outputs, including solid volume fraction αs, gas pressure ps,

and vertical solid velocity vs. Moments of the quantities are computed directly using the
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(a) mean µ(αs) (b) variance σ2(αs)

Figure 3.3 Contour plots of (a) mean and (b) variance of the solid volume fraction.

Gaussian quadrature formulae, mentioned in Section 3.3. Contour plots are plotted for moments

up to fourth order, and for statistics like mean and variance of the system response. The

approximated PDFs of the response are reconstructed at specific locations using EQMOM [121].

3.5.1 Solid volume fraction αs

Fig. 3.3 shows the contour plots of the mean and variance of the solid volume fraction

αs, with symmetrical profiles shown. The effect of uncertain particle size on the solid volume

fraction αs focuses on the interface of the bed, in particular on locations near the wall. Contour

plots of moments up to fourth order of solid volume fraction are also reported in Fig. 3.4.

Four sets of data at varied locations are used to reconstruct the PDF of the system response,

two on the centerline (locations 1 and 3), and two near the wall (locations 2 and 4). Locations

1 and 2 are at height near the interface of the bed, while locations 3 and 4 are in the fluidized

bed. If not noted otherwise, the designated locations in all figures in this chapter are the same.

Table 3.2 lists the coordinates of these four locations.

The reconstructed PDFs of solid volume fraction αs at these four locations are shown in
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(a) m1 (b) m2 (c) m3 (d) m4

Figure 3.4 Contour plots of moments of solid volume fraction from first order to fourth order:

(a) m1, (b) m2, (c) m3, (d) m4.

Table 3.2 Coordinates of the designated locations.

Location
Coordinates

x y

1 14.125 59.125

2 0.625 59.125

3 14.125 50.625

4 0.625 50.625
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(a) location 1 (b) location 2

(c) location 3 (d) location 4

Figure 3.5 Reconstructed PDFs of the solid volume fraction. Statistics of αs at locations 1

and 2 are given: µ, σ2, γ1, and γ2 are mean, variance, skewness, and kurtosis,

respectively.

Fig. 3.5. At locations 1 and 3, either low or high solid volume fraction is preferable. At

location 2, lower solid volume fraction has larger probability because when near the wall at

this height, particles can barely reach this height, and are moving downward, which is shown

in Section 3.5.3 later. At location 4, higher solid volume fraction has larger probability, which

indicates particles tend to accumulate at this location.

3.5.2 Gas pressure pg

Contour plots of the mean and variance of gas pressure are shown in Fig. 3.6, and moments

of gas pressure up to fourth order are shown in Fig. 3.7. The symmetrical profiles are observed

as well. The effect of uncertain particle size on gas pressure concentrates on the interface of the

bed, especially at locations near the wall, which is consistent with conclusions in Section 3.5.1.
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(a) mean µ(pg) (b) variance σ2(pg)

Figure 3.6 Contour plots of (a) mean and (b) variance of the gas pressure.

Approximated PDFs of gas pressure are also reconstructed at the same locations, shown

in Fig. 3.8. For locations 1 and 2, low gas pressure is preferred because at this height particle

concentration is very low. At lower positions, such as locations 3 and 4, though low gas pressure

still has large probability, the shape of the PDFs is broader.

3.5.3 Vertical solid velocity vs

Fig. 3.9 and Fig. 3.10 show the contour plots of mean and variance of vertical solid velocity,

and moments from first order to fourth order of vs, with symmetrical profiles observed. At

locations near the centerline of the reactor, particles are moving upward, while near the wall

negative vertical velocities are observed, which indicates circulation of particles is formed inside

the reactor. Again, at the interface of the bed, specifically near the wall, uncertain particle size

influences the results the most.

The approximated PDFs of vertical solid velocity are reconstructed at the same locations,

shown in Fig. 3.11. At location 1, particles tend to move downward. At location 2, particles are
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(a) m1 (b) m2 (c) m3 (d) m4

Figure 3.7 Contour plots of moments of gas pressure from first order to fourth order: (a) m1,

(b) m2, (c) m3, (d) m4.

(a) location 1 (b) location 2

(c) location 3 (d) location 4

Figure 3.8 Reconstructed PDFs of the gas pressure. Statistics of pg at locations 1 and 2 are

given: µ, σ2, γ1, and γ2 are mean, variance, skewness, and kurtosis, respectively.
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(a) mean µ(vs) (b) variance σ2(vs)

Figure 3.9 Contour plots of (a) mean and (b) variance of the vertical solid velocity.

(a) m1 (b) m2 (c) m3 (d) m4

Figure 3.10 Contour plots of moments of vertical solid velocity from first order to fourth order:

(a) m1, (b) m2, (c) m3, (d) m4.
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(a) location 1 (b) location 2

(c) location 3 (d) location 4

Figure 3.11 Reconstructed PDFs of the vertical solid velocity. Statistics of vs at locations 1

and 2 are given: µ, σ2, γ1, and γ2 are mean, variance, skewness, and kurtosis,

respectively.

going downward, and low vertical velocity is preferable because no-slip wall boundary condition

was applied. At location 3, PDF with a broad peak is reconstructed, and positive vertical solid

velocity is preferred. At location 4, particles have negative vertical velocity. Because of no-slip

wall boundary condition for the solid phase, lower vertical velocity has larger probability.

3.6 Conclusions

A non-intrusive quadrature-based uncertainty quantification approach with reconstruction

of the distribution of the system response is presented in this work, and is applied to a bubbling

fluidized bed with uncertain particle diameter. Contour plots of mean, variance and moments

up to fourth order of solid volume fraction, gas pressure, and vertical solid velocity are shown,

with symmetrical profiles observed. Results indicate that the influences of the uncertain particle

size on the simulation outputs focus on the interface of the bed, in particular on locations
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near the wall. Approximated probability distribution functions of the system response are

reconstructed successfully at specific locations. The approach illustrated in this work can be

extended to multi-variate problems.
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CHAPTER 4. APPLICATION OF QUADRATURE-BASED

UNCERTAINTY QUANTIFICATION TO THE NETL SMALL-SCALE

CHALLENGE PROBLEM SSCP-I

Modified from a paper submitted to Powder Technology, 2014.

Xiaofei Hu, Alberto Passalacqua, and Rodney O. Fox

Non-intrusive quadrature-based uncertainty quantification with reconstruction of the dis-

tribution of the system response is introduced and applied to the simulation of dense fluidized

beds. This approach relies on the conditional quadrature method of moments (CQMOM) to

generate a set of samples of the distribution of multiple uncertain parameters of the model.

The moments of the system response are directly estimated using Gaussian quadrature formu-

lae, and are used to reconstruct an approximate distribution of the response using extended

quadrature method of moments (EQMOM). The approach is demonstrated by considering a

bubbling fluidized bed with two uncertain parameters. Contour plots of the mean and stan-

dard deviation of volume fraction, phase velocity and pressure are provided. The probability

distribution functions of the response are reconstructed using EQMOM with appropriate kernel

density functions. The simulation results are compared to experimental data provided by the

2013 NETL small-scale challenge problem.

4.1 Introduction

Gas-fluidized beds are widely used in industrial processes, such as combustion and gasi-

fication, catalytic cracking, and coating [8, 51, 118]. Computational fluid dynamics (CFD)

provides a useful tool to study gas-solid fluidized beds, from understanding the fundamental
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knowledge inside the reactor to helping design and scale-up the process [105, 107]. Due to

the large separation of modeling scales, three approaches with different modeling levels can be

found in the literature. The approach at the most detailed level is the direct numerical simu-

lation (DNS) [45,106], which studies the particle-particle and gas-particle interactions directly.

This approach can provide closure models for more coarse-grained models. Discrete particle

modeling (DPM) and discrete element modeling (DEM) are approaches that operated at an

intermediate level, which studies the particle-particle and particle-wall interactions in a realistic

way but using closure models for gas-particle interactions [18, 45, 106]. At a coarser level, two

fluid models (TFM) are widely used, which treat both solid and gas phases as continua, with

closure models for particle-particle and gas-particle interactions [45,106,107].

Independently from the approach chosen to model gas-particle flows, each model is affected

by uncertainty. Code and solution verification aim at ensuring that the correct numerical algo-

rithm is used to accurately solve the equations of the mathematical model [16, 94]. Validation

ensures that models represent the true physical system they aim at describing [16,94]. However,

in most of CFD work, the predicted results are provided as deterministic values without confi-

dence intervals [31] to account for the uncertainty in the inputs to the simulation. Studying the

effects of uncertain inputs on the simulation results is a necessity, in order to ensure that the

effect of input uncertainty are properly represented by the model. The objective of uncertainty

quantification (UQ) is to evaluate the overall uncertainties associated to the prediction of the

quantities of interest. In particular it studies the propagation of input uncertainties to the

outputs of the models [16]. Either an intrusive or a non-intrusive approach can be used to

perform UQ analysis. The intrusive UQ approach directly introduces the uncertainty into the

system by reformulating the model equations. Although this method is computationally effi-

cient because only one set of mathematical equations needs to be solved, it is also challenging

to implement into complex systems due to the requirement of large amounts of modifications

to the computational models. Therefore, non-intrusive UQ approaches that leave the compu-

tational model unchanged are usually considered for practical applications. The computational

cost of non-intrusive approaches depends on the number of samples since for each sample the

simulation is performed once. Therefore, an effective sampling strategy is crucial. Samples can
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be generated using random or deterministic sampling strategies. The former are based on the

Monte Carlo method [58], which is convenient for a large number of random input parameters

because the convergence of the method is independent of the dimensionality of the space of ran-

dom variables. However, the method is known for its slow convergence of high-order moments

with respect to the number of samples [58]. Improvements to the Monte Carlo method are re-

ported in the literature to reduce the required number of samples, such as importance sampling

Monte Carlo method and Latin hypercube Monte Carlo method [24]. However, these meth-

ods become limited for computationally expensive problems. On the contrary, deterministic

quadrature-based sampling strategies can significantly reduce the required number of samples,

therefore reducing the computational cost [73]. However, these approaches become inefficient

for problems with a large number of uncertain parameters because the required number of sam-

ples increases exponentially with the number of random variables. Therefore, these methods

are limited to problems with a moderate number of uncertain parameters.

Many applications of UQ approaches such as polynomial chaos (PC), moment methods,

and Monte Carlo methods to single-phase CFD simulations have been reported [24, 50, 58,

73], including compressible flows [15, 46, 61, 62, 68, 69, 86, 109], incompressible flows [54–56,

74, 85, 116], non-isothermal flows [3, 53, 56, 57, 60, 110], and reacting flows [17, 59, 87, 90–92].

However, applications of UQ approaches to multiphase CFD simulations are very limited.

Although applications of UQ to flows in porous media are reported in the literature [36, 37,

63], for more complex systems such as gas-solid flows, few works can be found. Gel et al.

[31] built a surrogate model based on data-fitted response surface for a bubbling fluidized

bed. Then forward propagation of input uncertainty was studied by using the Monte Carlo

method. In another work done by Gel et al. [32], the uncertainty in the outputs of a circulating

fluidized bed caused by spatial discretization, time averaging, uncertain input parameters, and

surrogate model was studied. In Donato and Pitchumani [20], a non-intrusive methodology

called QUICKER was proposed, and was applied to a circulating fluidized bed and a turbulent

fluidized bed.

In this chapter, non-intrusive quadrature-based uncertainty quantification (QBUQ), first

proposed by Yoon et al. [4, 119], is adopted to estimate the moments of the system response
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directly. This approach relies on Gaussian quadrature formulae [42] and on the conditional

quadrature method of moments (CQMOM) [120] to generate a set of samples for the distribution

of the uncertain parameters of the model. A numerical simulation is performed for each sample,

and the moments of the system response are directly evaluated from the simulation results

by means of quadrature formulae [4, 119]. These moments are then used to reconstruct the

probability distribution function (PDF) of the system response using the extended quadrature

method of moments (EQMOM) [121]. The proposed QBUQ approach with the reconstruction of

the PDF of the outputs is then applied to a bubbling fluidized bed. For each system response,

confidence intervals are provided, and the PDF is reconstructed at specific locations in the

computational domain. The simulation results are also compared to the experimental data

of the small-scale challenge problem (SSCP-I) proposed by the National Energy Technology

Laboratory (NETL) [75].

4.2 Quadrature-Based Uncertainty Quantification Approach

The founding idea of QBUQ approach is to directly estimate the moments of the system

response using Gaussian quadrature formulae [4, 119]. To illustrate the method, a random

process κ(ξ) with N random variables ξ is considered. A probability space P(Ω,F, P ) is

defined by a sample space Ω, a sigma-algebra F, which is a non-empty collection of subsets of

Ω, and a probability measure P on (Ω,F). The objective of the approach is to estimate the

moments of the system response, defined as

mn = 〈κ(ξ)n〉 =

∫
Ω
κ(ξ)np(ξ)dξ, (4.1)

where p(ξ) relies on the probability measure P . This is achieved by means of Gaussian quadra-

ture formulae [4, 119], whose weights and nodes are found with different methods based on

the number of the random variables. For the univariate problem, Ω is sampled using a

one-dimensional Gaussian quadrature formula [42]; for multiple random variables, quadra-

ture weights and nodes are obtained by sampling Ω using CQMOM [120]. These methods are

discussed in this section.
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4.2.1 QBUQ for one random variable

We consider p(ξ) as the weight function for the univariate (N = 1) problem. The integral

shown in Eq. 4.1 is approximated by an M-node Gaussian quadrature formula:

mn =

∫
Ω
κ(ξ)np(ξ)dξ ≈

M∑
i=1

wiκ(ξi)
n, (4.2)

where wi and ξi are the quadrature weights and nodes respectively. If the PDF of the random

variable can be treated as a classical weight function, quadrature weights and nodes can be

easily obtained using existing quadrature rules, which means ξi are the roots of the orthogonal

polynomials associated to the weight function, and wi can be calculated accordingly [29]. For

example, the Gauss-Hermite quadrature rule can be used for a random variable with Gaussian

distribution, while, if ξ is uniformly distributed, the Gauss-Legendre quadrature rule can be

applied. If p(ξ) cannot be considered as one of the classical weight functions, or only the

moments with respect to ξ from zeroth order to order 2M − 1 are known, the quadrature

weights and nodes can be determined by solving an eigenvalue problem [29, 42]. The monic

orthogonal polynomials associated with the weight function are defined by a recurrence relation:

Q−1(ξ) = 0,

Q0(ξ) = 1,

Qr+1(ξ) = (ξ − αr)Qr(ξ)− βrQr−1(ξ), βr > 0,

(4.3)

where the coefficients αr and βr can be computed from the moments using Wheeler’s algorithm

[29, 88]. A symmetric tridiagonal matrix, named the Jacobi matrix, can then be constructed

(Eq. 4.4) using the coefficients of the recurrence relation,

JM =



α0
√
β1 0

√
β1 α1

√
β2

. . .
. . .

. . .√
βM−2 αM−2

√
βM−1

0
√
βM−1 αM−1


, (4.4)



63

whose eigenvalues are the quadrature nodes of the M-node Gaussian quadrature formulae [29,

42], and the corresponding quadrature weights can be computed as

wi = β0v
2
i,1, i = 1, . . . ,M, (4.5)

where vi,1 is the first component of the eigenvector vi of JM, and

β0 =

∫
I
w(ξ)dξ,

with I being the integration interval.

4.2.2 QBUQ for multiple random variables

For multiple random variables (N ≥ 2), the space Ω is sampled using a moment-inversion

procedure called conditional quadrature method of moments (CQMOM), proposed by Yuan

and Fox [120]. The foundation of the method is to compute the conditional moments from the

pure moments by solving a linear system, and to use Wheeler’s algorithm to find the conditional

weights and nodes from the conditional moments. In this way, a multi-dimensional problem

is decomposed into several one-dimensional moment-inversion problems, which can be easily

solved. In the remainder of this section, a bivariate problem (N = 2, ξ = (ξ1, ξ2)) is used as an

example to illustrate the method, while interested readers can find the details of the approach

for a higher number of variables in the literature [120].

The joint PDF of the uncertain parameters ξ1 and ξ2 can be written as in Eq. 4.6 using the

chain rule of conditional probability:

p(ξ1, ξ2) = p(ξ2|ξ1)p(ξ1), (4.6)

where p(ξ2|ξ1) is the conditional PDF of ξ2 given a fixed value of ξ1, and p(ξ1) is the marginal

PDF of ξ1. The j-th order conditional moments obtained from the conditional PDF are defined

as

〈ξj2〉(ξ1) =

∫
ξj2p(ξ2|ξ1)dξ2. (4.7)

Then the pure moments of order (i + j) of the joint PDF of the uncertain parameters can be

expressed as:

mi+j
i,j =

∫
Ω
ξi1ξ

j
2p(ξ1, ξ2)dξ1dξ2 =

∫
ξi1〈ξ

j
2〉(ξ1)p(ξ1)dξ1. (4.8)
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These pure moments are assumed to be known to sample the space of the uncertain parameters

so that quadrature weights and nodes can be obtained.

The space of the first parameter ξ1 can be sampled with an M1-node one-dimensional

Gaussian quadrature formula, as discussed in Section 4.2.1 [29, 42]. The quadrature weights

wl1 and nodes ξ1,l1 are obtained from the pure moments mi
i,0 with i = 0, 1, . . . , 2M1−1 using the

adaptive Wheeler algorithm proposed in [120]. Then, an M1-point distribution representation

of the marginal PDF p(ξ1) can be written as

p(ξ1) =

M1∑
l1=1

wl1δ(ξ1 − ξ1,l1). (4.9)

The next step is to compute the conditional moments 〈ξj2〉(ξ1,l1) with j = 1, 2, . . . , 2M2 − 1 for

each ξ1,l1 to determine conditional quadrature weights wl1,l2 and nodes ξ2,l1,l2 . From here on,

for sake of simplicity, let 〈ξj2〉l1 ≡ 〈ξ
j
2〉(ξ1,l1) denote the conditional moments. By substituting

Eq. 4.9 into Eq. 4.8, the pure moments can be expressed as

mi+j
i,j =

M1∑
l1=1

wl1ξ
i
1,l1〈ξ

j
2〉l1 . (4.10)

A Vandermonde linear system [88] is generated by Eq. 4.10, which relates the conditional

moments to the pure moments:

Ξ1W1



〈ξ2〉1 〈ξ2
2〉1 · · · 〈ξ2M2−1

2 〉1

〈ξ2〉2 〈ξ2
2〉2 · · · 〈ξ2M2−1

2 〉2
...

...
...

...

〈ξ2〉M1 〈ξ2
2〉M1 · · · 〈ξ2M2−1

2 〉M1


=



m1
0,1 m2

0,2 · · · m2M2−1
0,2M2−1

m1
1,1 m3

1,2 · · · m2M2
1,2M2−1

...
...

...

mM1
M1−1,1 mM1+1

M1−1,2 · · · mM2+2M2−1
M1−1,2M2−1


, (4.11)
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where the coefficient matrices are

Ξ1 =



1 · · · 1

ξ1,1 · · · ξ1,M1

...
...

(ξ1,1)M1−1 · · · (ξ1,M1)M1−1


, and W1 =


1

. . .

wM1

 . (4.12)

This linear system can be solved using the procedure proposed by Rybicki [88] to obtain the

conditional moments, which can be inverted to compute the conditional quadrature weights

wl1,l2 and nodes ξ2,l1,l2 for each value of l1 by means of the adaptive Wheeler algorithm [120].

With the conditional quadrature weights and nodes, a quadrature representation of the joint

PDF p(ξ1, ξ2) can be constructed:

p(ξ1, ξ2) =

M1∑
l1=1

M2∑
l2=1

wl1wl1,l2δ(ξ1 − ξ1,l1)δ(ξ2 − ξ2,l1,l2). (4.13)

The n-th order moment of the system response in Eq. 4.1 can then be computed as:

mn =

∫
Ω
κ(ξ)np(ξ)dξ ≈

M1∑
l1=1

M2∑
l2=1

wl1wl1,l2(κ(ξ1,l1 , ξ2,l1,l2))n. (4.14)

Once the moments of the system response are obtained, conventional statistics of the response

such as mean, variance, skewness, and kurtosis, can be evaluated.

It is worth noting that the adaptive Wheeler algorithm [120] is applied to automatically

determine the actual number of quadrature points M1 and M2 used in each direction of the

parameter space. The algorithm uses two parameters (eabs and rmin) to control the distance

between any two nodes and the ratio of the smallest to the largest weights respectively. The

eabs ensures any two nodes are further than a user-defined limit so that the Vandermonde

matrix shown in Eq. 4.11 is well defined. The rmin controls the minimum values of the weight

ratios in order to avoid highly skewed nodes. In CQMOM, the user has to provide only the

maximum value of quadrature nodes to be used in each direction, as an upper bound for the

quadrature algorithm, which will determine the optimal number of nodes automatically, in

order to properly represent the PDF.
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4.3 Reconstruction of the Probability Distribution Function of the System

Response

The moments of the system response obtained with the method described in Section 4.2 can

be used to reconstruct the approximated PDF of the response using the extended quadrature

method of moments (EQMOM) [121]. The founding idea of the method is to represent the

PDF p(κ) as a weighted sum of N non-negative kernel density functions [14,121]:

fN (κ) =

N∑
i=1

ρiδσ(κ, κi), (4.15)

where ρi denotes the quadrature weights used in EQMOM, in order to be distinguished from

the quadrature weights wi used in the sampling procedure, κi are the quadrature nodes used

in EQMOM, and δσ(κ, κi) is a kernel density function related to the parameter σ.

The kernel density function δσ(κ, κi) is selected based on the properties of the distribution

that needs to be reconstructed, especially based on the support of the distribution to be re-

constructed. For κ in the bounded interval [a, b], a beta distribution can be chosen for δσ; for

κ on the semi-infinite interval [a,+∞[, δσ is set to a gamma distribution; for κ ∈ R, a normal

distribution is used to define δσ. Then 2N + 1 moments of the system response are used to

solve for 2N + 1 unknowns, including the spread parameter σ, N quadrature weights ρi, and

N quadrature nodes κi with i = 1, . . . , N . It is worth recalling that the parameter σ is shared

by all the kernel density functions, in order to simplify the solution procedure that allows its

value to be determined. The remainder of this section gives a general idea of solving for these

unknowns, while procedures using different kernel densities can be found in Appendix C and

in the literature [14,121].

The first step of the EQMOM procedure consists of calculating the n-th order integer

moments of the kernel density δσ(κ, κi), and the integer moments of p. Then the integer

moments of p can be rewritten in the matrix form, which is a lower triangular system of linear

equations to find σ, shown in Eq. 4.16,

m = A(σ)m∗ (4.16)
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where m∗n =
∑N

i=1 ρiκ
n
i , and A(σ) is a lower triangular matrix. The parameter σ is then

determined by solving the system in Eq. 4.16 iteratively with the following algorithm [121]:

1. Guess the value of σ

2. Compute the moments m∗n from the lower triangular system

m = A(σ)m∗

3. Use the adaptive Wheeler algorithm to find weights ρi and abscissae κi from m∗

4. Compute m∗2N using weights and abscissae found in the last step

5. Compute the scalar function JN (σ), which is the difference between the original moments

and the approximated moments computed from m∗2N

6. If JN (σ) 6= 0, guess a new σ and iterate from step 1.

The final approximate PDFs using different kernel density functions are shown in Eq. 4.17,

fN (κ) =



1

b− a

N∑
i=1

ρi

(
κ−a
b−a

)λi−1 (
b−κ
b−a

)φi−1

B (λi, φi)
κ ∈ [a, b]

N∑
i=1

ρi
(κ− a)λi−1 e−(κ−a)/σ

Γ(λi)σλi
κ ∈ [a,+∞[

N∑
i=1

ρi

σ
√

2π
exp

[
−(κ− κi)2

2σ2

]
κ ∈ R

, (4.17)

where the parameters λi and φi are related to κi and σ, whose definitions are given in Ap-

pendix C.

4.4 Applications

The proposed approach was applied to the simulation of a bubbling fluidized bed, which was

chosen as an example application. The study is based on case 1 of the 2013 NETL small scale

challenge problem (SSCP-I) [75]. The effects of two independent uncertain parameters, namely

the particle-wall and the particle-particle restitution coefficients, on the system response are

studied. Low-order statistics of the system response are reported, and the PDF of the response
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Figure 4.1 Schematic representation of the bubbling fluidized bed.

is reconstructed at specific locations in the computational domain. The simulation results are

also compared to experimental data provided by SSCP-I.

4.4.1 Description of the simulation conditions

The experimental data of SSCP-I were obtained in a 3 in×9 in×48 in bubbling fluidized bed

with rectangular cross-section. Geldart D particles with constant diameter and high sphericity

were used in the experiments. In this work we perform two-dimensional simulations of the

experimental system, which we model as a rectangle having width of 23 cm and height of

122 cm, as illustrated in Figure 4.1. The gas is injected uniformly at the bottom of the

reactor with superficial velocity 219 cm/s. The top of the reactor is at atmospheric conditions.

The particles have a Sauter mean diameter of 0.3256 cm and a density of 1.131 g/cm3. The

initial bed height is 16.3 cm, with packed bed void fraction equal to 0.4. A uniform grid with
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46× 244 cells is used for all simulations in this work. The open source code MFIX (Multiphase

Flow with Interface eXchanges) [99] developed by NETL, is used to simulate the system. The

remaining simulation conditions are listed in Table 4.1.

Table 4.1 MFIX simulation conditions.

Conditions Value

Particle-wall restitution coefficient (epw) [0.75, 0.95]

Particle-particle restitution coefficient (epp) [0.73, 0.92]

Specularity coefficient 0.045

Inlet boundary condition Constant gas velocity

Outlet boundary condition Zero relative gas pressure

Wall boundary condition for gas phase No-slip

Wall boundary condition for solid phase Johnson-Jackson [49]

Simulation time 90 s

Initial time step 1.0× 10−4 s

Convergence criteria 1.0× 10−4

4.4.2 Governing equations

A two-fluid model [21] with kinetic theory closures for solid phase [40] was applied to

describe the fluidized bed considered in the example application. The governing equations

implemented into MFIX are briefly summarized below [99].

Continuity equations of gas phase (g) and solid phase (s)

∂

∂t
(αgρg) +∇ · (αgρgUg) = 0 (4.18)

∂

∂t
(αsρs) +∇ · (αsρsUs) = 0 (4.19)

where αi is the phase volume fraction, ρi is the density, and Ui is the phase velocity field.
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Momentum equations of gas and solid phases

∂

∂t
(αgρgUg) +∇ · (αgρgUgUg) = −αg∇pg +∇ · τg

+ αgρgg +Kgs (Us −Ug) (4.20)

∂

∂t
(αsρsUs) +∇ · (αsρsUsUs) = −αs∇pg −∇ps +∇ · τs

+ αsρsg −Kgs (Us −Ug) (4.21)

where pi is the phase pressure, τi is the phase stress tensor, g is the acceleration of gravity, and

Kgs is the gas-solid drag coefficient.

Syamlal and O’Brien gas-solid drag coefficient

Kgs =
3

4
CD

ρgαgαs

U2
rsds

(
Re

Urs

)
|Us −Ug|

CD =


24

Re
(1 + 0.15 Re)0.687 Re < 1000

0.44 Re ≥ 1000

Urs = 0.5
(
A− 0.06 Re +

√
(0.06 Re)2 + 0.12 Re(2B −A) +A2

)
A = α4.14

g

B =


0.8α1.28

g αg ≤ 0.85

α2.65
g αg > 0.85

Re =
ρgαg |Us −Ug| ds

µg

where ds is the particle diameter, and µg is the shear viscosity of gas.

Constitutive equations

The constitutive equations required to close the momentum equations are listed Table 4.2.
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Table 4.2 Constitutive equations. The symbols represent I: unit tensor, epp: particle-particle

restitution coefficient, Θs: granular temperature, φ: angle of internal friction, I2D:

the second invariant of the deviator of the strain-rate tensor, and αs,max: packing

limit.

Gas-phase stress tensor

τg = αgµg

[
∇Ug + (∇Ug)T

]
− 2

3
αgµg (∇ ·Ug) I

Solid-phase stress tensor

τs = αsµs

[
∇Us + (∇Us)

T
]

+ αs

(
λs −

2

3
µs

)
(∇ ·Us) I

Granular temperature equation

3

2

[
∂

∂t
(αsρsΘs) +∇ · (αsρsUsΘs)

]
= (−psI + τs) : ∇Us +∇ · (ks∇Θs)− γs − 3KgsΘs

Solids pressure

ps = αsρsΘs + 2(1 + epp)α2
sρsg0Θs

Solids bulk viscosity

λs =
4

3
αsρsdsg0(1 + epp)

√
Θs

π
Solids shear viscosity

µs = µs,kin + µs,fr

Solids kinetic viscosity

µs,kin =
10ρsds

√
πΘs

96αsg0(1 + epp)

[
1 +

4

5
αsg0(1 + epp)

]2

Solids frictional viscosity

µs,fr =
ps sinφ

2
√
I2D

Radial distribution function

g0 =

[
1−

(
αs

αs,max

) 1
3

]−1

Solids conductivity

ks =
150ρsds

√
πΘs

384g0(1 + epp)

[
1 +

6

5
αsg0(1 + e)

]2

+ 2α2
sρsdsg0(1 + e)

√
Θs

π

Collisional dissipation

γs =
12α2

sρsg0(1− e2
pp)

ds
√
π

Θ3/2
s
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Johnson-Jackson boundary condition

At the walls, no slip boundary condition is applied for the gas phase. For solid phase,

Johnson-Jackson boundary condition is used [49], shown in Eq. 4.22,

n · (µs∇Usl) = −πφsαsρsg0

√
3Θs

6αs,max
Usl

n · (ks∇Θs) =
παsρsg0|Usl|2

√
3Θs

6αs,max
−
√

3παsρsg0(1− epw)2

4αs,max
Θ3/2

s ,

(4.22)

where n is the unit vector normal to the wall, Usl is the slip velocity between the particles and

the wall, φs is the specularity coefficient, and epw is the particle-wall restitution coefficient.

4.4.3 Sampling procedure

As mentioned above, two independent parameters were considered as uncertain variables:

particle-wall restitution coefficient epw and particle-particle restitution coefficient epp. The

space of the uncertain parameters was sampled using the CQMOM approach described in

Section 4.2.2. The pure moments that CQMOM requires as input are estimated based on

the experimental data provided by SSCP-I for these two parameters. A series of experiments

were conducted to measure epw and epp for the particle and wall materials used in the actual

bubbling fluidized bed. The range of epw is 0.75 to 0.95, and epp is between 0.73 to 0.92. The

space of epw was sampled first with five quadrature nodes, then the conditional moments with

respect to epp were determined, with which the conditional weights and nodes were computed.

In total, fifteen samples are generated by CQMOM. Figure 4.2(a) gives the locations of each

sample, and Figure 4.2(b) shows the weights of each sample. The nodes with large weights

concentrate in the region near the mean values of the parameters.

4.4.4 Results and discussion

Once the space of the uncertain parameters was sampled, MFIX simulations were performed

for each sample. Four time-averaged quantities are considered as system response: solid volume

fraction (αs), gas pressure (pg), solid-phase horizontal velocity (us), and solid-phase vertical

velocity (vs). Low-order statistics, such as mean and variance of the system response, are

computed and compared to experimental data. The approximated PDF of the response at
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Figure 4.2 Samples generated by CQMOM: (a) locations and (b) weights of each sample.

specific locations in the computational domain is reconstructed. Results are discussed in the

remainder of this section.

4.4.4.1 Low-order statistics

Figure 4.3 shows the contour plots of mean and standard deviation of the solid volume

fraction, indicating a symmetric profile with respect to the vertical axis. The concentration of

particles decreases with increasing distance from the bottom of the reactor, in the center of

the bed, and particles concentrate near the walls. The effect of uncertain particle-particle and

particle-wall restitution coefficients on the solid volume fraction mainly focuses on the interface

of the bed, especially on the locations near the wall, and also at the center of the fluidized bed.

The minimum and maximum values of the standard deviation of αs are 4.393 × 10−6 and

3.614× 10−2, respectively.

The designated location 1 to 4 in Figure 4.3 are where the PDF of the system response

is reconstructed. Locations 1 and 2 are in the fluidized bed, where the experimental data are

obtained. Locations 3 and 4 are near the interface of the bed. If not stated otherwise, the

designated locations in all figures of this section are the same. The coordinates of these four

points are listed in Table 4.3.

Figure 4.4 reports the contour plots of mean and standard deviation of the gas pressure. The

gas pressure reduces to zero with increasing the distance from the bottom of the reactor. The
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Figure 4.3 Contour plots of (a) mean and (b) standard deviation of solid volume fraction.

Table 4.3 Coordinates of the designated locations.

Location
Coordinates

x y

1 11.50 7.50

2 1.00 7.50

3 11.50 23.50

4 1.00 23.50



75

width, cm

he
ig

ht
, c

m

 

 

0 11.5 23

20

40

60

80

100

120

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

12

34

Ba

(a) mean

width, cm
he

ig
ht

, c
m

 

 

0 11.5 23

20

40

60

80

100

120

20

40

60

80

100

120

140

34

12

Ba

(b) standard deviation

Figure 4.4 Contour plots of (a) mean and (b) standard deviation of gas pressure.

uncertain parameters influence the gas pressure the most in the center of the bed. The minimum

and maximum values of the standard deviation of pg are 5.514× 10−3 Ba and 1.583× 102 Ba,

respectively.

Figure 4.5 and Figure 4.6 show the contour plots of the mean and standard deviation of

the solid horizontal and vertical velocity. Figure 4.5(a) and Figure 4.6(a) indicate circulations

of particles are formed. The effect of uncertain parameters focuses on the locations near the

interface of the bed and at the bottom of the bed for solid horizontal velocity, and on locations

near the wall for solid vertical velocity. The minimum and maximum value of the standard

deviation of us are 0.0 cm/s and 4.947 cm/s, respectively, while those values of vs are 0.0 cm/s

and 7.365 cm/s, respectively.
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Figure 4.5 Contour plots of (a) mean and (b) standard deviation of solid horizontal velocity.
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Figure 4.7 Simulated (a) gas pressure, (b) solid horizontal velocity, (c) and solid vertical

velocity compared to experimental data.

4.4.4.2 Comparison with experimental data

Based on the results for the mean and standard deviation of the system response, the 95%

confidence interval of the simulation outputs can be calculated as

κ̄± t0.025(N − 1)
S√
N
, (4.23)

where κ̄ and S are the mean and the standard deviation of the system response, N is the number

of samples, and t0.025(N − 1) is the value at which the probability of t-distribution with N − 1

degrees of freedom is 0.025. In this work, N is 15, and t0.025(14) is 2.145. Therefore, the

simulation results can be compared to experimental data provided by SSCP-I [75], shown in

Figure 4.7.

Results show that the mean values of the simulation results are in fair agreement with exper-

imental data. Some of the experimental data give larger 95% confidence intervals, especially

near the center of the bed, which may indicate that, besides particle-particle and particle-
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wall restitution coefficients, other uncertain parameters, such as particle size, may influence

the simulation results. It is also possible that the uncertainty in the experiments due to the

measurement method causes large confidence intervals for experimental data.

4.4.4.3 Reconstruction of the PDF of the system response

Four locations are chosen to reconstruct the PDF of solid volume fraction, gas pressure, and

solid horizontal and vertical velocities using EQMOM described in Section 4.3 [121]. Results

are discussed below.

The PDF of the solid volume fraction is reconstructed using two-node beta EQMOM because

the support of the distribution of the solid volume fraction is [0, 1]. Reconstruction results for

locations 1 to 4 are shown in Figure 4.8. All the reconstructed distributions show two peaks.

However, those at locations 1, 2, and 3 are very narrow, while the one at location 4 is wider,

indicating an actual bimodal distribution. At locations 1 and 2 inside the fluidized bed, the

solid volume fraction is high, while near the bed free surface (locations 3 and 4), the peaks

corresponds to low solid volume fraction. For locations near the wall (locations 2 and 4), a

higher solid volume fraction is preferred.

Figure 4.9 shows the reconstruction results for locations 1 to 4 for the gas pressure, obtained

with gamma EQMOM. All distributions present profiles with a bimodal distribution. At lo-

cations 1 and 2 inside the bed, low gas pressure has high probability. The PDF at location 2

is narrower than the PDF of location 1, which is consistent with the conclusion obtained from

the contour plot of the standard deviation of the gas pressure shown in Figure 4.4(b) that at

locations in the center of the bed, the standard deviation of gas pressure is large.

The PDF of the solid horizontal velocity is reconstructed using two-node Gaussian EQMOM

since the distribution of velocity is defined on the whole real line. Figure 4.10 shows the

reconstruction results for locations 1 to 4. For locations 1 and 3 at the center of the bed, the

peak of the distribution forms near zero velocity with a positive tail for location 1 (inside the

bed) and a negative tail for location 3 (near interface of the bed). For locations 2 and 4 near

the wall, a bimodal distribution is observed.

The PDF of the solid vertical velocity is reconstructed using Gaussian EQMOM. As shown
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Figure 4.8 Reconstructed distribution of the solid volume fraction at different locations.
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Figure 4.9 Reconstructed distribution of the gas pressure at different locations.
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Figure 4.10 Reconstructed distribution of the solid horizontal velocity at different locations.
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Figure 4.11 Reconstructed distribution of the solid vertical velocity at different locations.

in Figure 4.11, for locations 1 to 3, two-node Gaussian EQMOM is used while for location

4, only a node reconstruction was performed because the PDF is Gaussian, and one node is

sufficient to reconstruct it accurately. At location 1, a broad peak with a shoulder is formed.

Particles are going upward, and low velocity has high probability at this location. At location 2

when particles are moving downward, a bimodal distribution is observed with high probability

for high velocity. At locations 3 and 4 near the bed free surface, particles are moving downward.

4.5 Source Code

The python source code implementing the quadrature-based UQ procedure described in this

manuscript is released under the GNU General Public License Version 3 and can be downloaded

from the git repository https://bitbucket.org/albertop/qbuq .
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4.6 Conclusions

Non-intrusive quadrature-based uncertainty quantification and a reconstruction procedure

for the PDF of the system response are presented in this work. The methods are applied to

the case of a bubbling fluidized bed as an example. Contour plots of the mean and standard

deviation of solid volume fraction, gas pressure, and solid horizontal and vertical velocities are

shown. The mean value and 95% confidence interval of the system response at specific locations

are compared to the values obtained from experimental data. The mean values of the simulation

results are in fair agreement with experiment. The confidence intervals obtained from the

simulation results sometimes cannot cover the confidence intervals provided by the experiment,

which may be caused by uncertainty introduced by other parameters besides the two parameters

studied in this work. The measurement method may also result in large confidence intervals

for experimental data. This observation needs to be studied in future work. The PDF of the

system response is reconstructed at four different locations in the computational domain. The

reconstruction procedure will be extended to multi-variate problems in future work.
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CHAPTER 5. A QUADRATURE-BASED UNCERTAINTY

QUANTIFICATION APPROACH IN A MULTIPHASE GAS-PARTICLE

FLOW SIMULATION IN A RISER

A non-intrusive quadrature based uncertainty quantification (QBUQ) approach is applied

to a riser of a circulating fluidized bed with particle size assumed to be the uncertain parameter.

The method uses Gaussian quadrature formulae to sample the space of the distribution of the

uncertain particle size. Numerical simulations are performed for each sample, whose results

are used to directly estimate the moments of the quantities of interest with quadrature rules.

The solid volume fraction, solid phase velocities, and granular temperature are considered as

quantities of interest. The set of moments is then used to calculate low order statistics such as

mean and standard deviation, and to reconstruct the probability distribution function (PDF)

of the system response with extended quadrature method of moments (EQMOM) for univariate

PDF reconstruction and extended conditional quadrature method of moments (ECQMOM) for

bivariate PDF reconstruction. Contour plots of the mean and standard deviation of quantities

of interest and reconstructed PDFs of the system response at specific locations of the compu-

tational domain are provided. The simulation results are compared to the experimental data

provided in the literature as well.

5.1 Introduction

Circulating fluidized beds (CFB) are widely used in industrial operations such as fluid

catalytic cracking (FCC), combustion, calcination, and Fischer-Tropsch synthesis [5,7,8,12,22,

43,83,93]. In a typical CFB, the riser is the unit where gas and particles interact and chemical

reactions occur, and hence where many studies are concentrating. By using computational
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fluid dynamics (CFD), the hydrodynamics of fluidization inside a riser can be studied, and

simulation results are adopted for design, scale-up, and optimization of CFB reactors. To

simulate gas-particle flows in risers, two types of approaches are in general considered: Eulerian-

Lagrangian approach and Eulerian-Eulerian approach [41, 81, 82, 96, 117]. In the Eulerian-

Lagrangian approach, Newton’s second law is applied to solid phase to solve the motion of

each particle in the flow, and therefore, the particle-particle and particle-wall interactions are

described in a realistic way. The fluid phase is considered as a continuous phase, and Navier-

Stokes equations are solved with closures for gas-particle interactions. The computational cost

for Eulerian-Lagrangian approach is usually high, and hence the approach is limited to very

dilute systems [1,18,96,117]. In the Eulerian-Eulerian approach, the fluid and solid phases are

both considered as continua, and Navier-Stokes equations are solved for both phases. Closure

models are applied to account for gas-particle and particle-particle interactions. The Eulerian-

Eulerian approach is computationally efficient, and can be applied to relatively large and dense

systems [1, 28,40,41,96,117].

In most of CFD simulations using either Eulerian-Lagrangian approach or Eulerian-Eulerian

approach, the simulation results are single values or deterministic values without statistics

provided to quantify the uncertainties introduced by factors such as uncertain input param-

eters [31]. The objective of uncertainty quantification (UQ) is to study the propagation of

uncertainty in model inputs to simulation outputs so that computational predictions with con-

fidence intervals can be provided [16]. Two methods can be used to implement UQ approaches

into CFD codes. Intrusive approach introduces the uncertainty into the computational model

by reformulating the governing equations, which are only solved once, and therefore the ap-

proach is computationally efficient. However, for complex systems such as multiphase flows,

it requires a great deal of modifications to the original computational codes, which makes it

difficult to implement the approach into multiphase CFD simulations. On the contrary, by

using the original models directly, non-intrusive approaches are usually considered for compli-

cated practical systems. For non-intrusive approaches, sampling strategy is the key element

because the CFD simulation is performed once for each sample, and the computational cost

of the approaches scales with the number of samples. For problems with a large amount of
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uncertain input parameters, Monte Carlo based random sampling strategies are usually con-

sidered because the convergence of the methods is independent of the number of random input

parameters. However, the slow convergence of high order moments with respect to the number

of samples limits the applications of the methods to computationally intense problems [58]. For

problems with a moderate number of uncertain input parameters, by using deterministic sam-

pling strategies such as quadrature-based sampling strategy, the number of samples required

and hence the computational cost can be reduced significantly [73].

In this chapter, the non-intrusive quadrature-based uncertainty quantification (QBUQ) ap-

proach first proposed by Yoon et al. [4,119] is applied to a riser flow simulation with the particle

diameter considered as the uncertain input parameter. The space of the distribution of uncer-

tain particle diameter is sampled using Gaussian quadrature formulae [42]. A CFD simulation

is performed for each sample, and the moments of the system response are directly estimated

from the simulation results using quadrature formulae [4,119]. The simulation results with con-

fidence intervals are compared to the experimental data. The set of moments are also used to

reconstruct the PDF of the system response at specific locations of the computational domain

using EQMOM [14, 121] for univariate PDF reconstruction and ECQMOM for bivariate PDF

reconstruction.

5.2 Quadrature-Based UQ Approach

The basic idea of QBUQ is to directly evaluate the moments of the system response [4,

119] using Gaussian quadrature formulae [42]. The method used to sample the space of the

distribution of uncertain parameters and to find corresponding weights and nodes depends

on the number of uncertain input parameters. For univariate problems, a one dimensional

Gaussian quadrature formula is used [29, 42], described in Section 4.2.1 and Appendix A. For

problems with multiple input parameters with uncertainty, samples can be generated using a

moment inversion algorithm, conditional quadrature method of moments (CQMOM), proposed

by Yuan and Fox [120], and illustrated in Section 4.2.2. For each sample, the CFD simulation

is performed once. Then the simulation results of quantities of interest of each sample is used

as quadrature abscissas to directly approximate the moments of the system response.
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The set of moments of the system response can be used to calculate the statistics including

mean, variance, skewness, and kurtosis using Eq. 2.3 to Eq. 2.6 in Section 2.2. The moments

can also be used to reconstruct the PDF of the system response using EQMOM [14, 121] and

ECQMOM. The procedure of univariate PDF reconstruction using EQMOM with different

kernel density functions is described in detail in Sections 2.4 and 4.3, Appendix C, and literature

[14,121]. Here the procedure for multivariate PDF reconstruction using ECQMOM is explained.

5.2.1 Multivariate PDF reconstruction

The idea of using ECQMOM for multivariate PDF reconstruction is to combine EQMOM

with CQMOM [120] described in Section 4.2.2 so that a multivariate reconstruction problem can

be transformed into a series of univariate reconstruction problems. For the sake of simplicity

and clarity, a 4-node (2 × 2) Gaussian ECQMOM, which is a bivariate extension of 2-node

Gaussian EQMOM combined with CQMOM, is illustrated as a demonstration of the method.

The same methodology can be extended to more nodes for each variable, more variables, and

other kernel density functions.

The bivariate moments of the system response κ = (κ1, κ2) are defined as

mi,j =

∫
R2

κi1κ
j
2 dκ, i, j = 0, 1, 2, . . . , (5.1)

which can be directly approximated using the QBUQ procedure. A 4-node bivariate Gaussian

distribution is then defined as

f12(κ1, κ2) =

2∑
α=1

ραg(κ1;κ1α, σ1)

 2∑
β=1

ραβg(κ2 −K(κ1);κ2αβ, σ2α)

 , (5.2)

where the Gaussian kernel density function g is

g(x;µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
. (5.3)

In Eq. 5.2, the subscript of f12 indicates the conditioning order, and here it is κ2 conditioned

on κ1.

The function K(κ1) in Eq. 5.2 is defined to have the properties shown in Eq. 5.4,

2∑
α=1

ρα

∫
R
κi1K(κ1)g(κ1;κ1α, σ1)dκ1 = mi,1, i = 0, 1. (5.4)
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A choice for K(κ1) is a linear function K(κ1) = c0 + c1κ1, where c0 and c1 and be calculated

as

c0 =
m2,0m0,1 −m1,0m1,1

m0,0m2,0 −m2
1,0

= µκ2 − µκ1c1, (5.5)

and

c1 =
m0,0m1,1 −m1,0m0,1

m0,0m2,0 −m2
1,0

=
ρσκ2
σκ1

, (5.6)

with

µκ1 =
m1,0

m0,0
, σ2

κ1 =
m2,0

m0,0
− µ2

κ1 , µκ2 =
m0,1

m0,0
, σ2

κ2 =
m0,2

m0,0
− µ2

κ2 , and ρ =
m1,1/m0,0 − µκ1µκ2

σκ1σκ2
.

It is worth noting that K(κ1) is well defined if the standard deviation in the κ1 direction σκ1

is nonzero, and in fact, K(κ1) is the conditional expected value of κ2 given κ1.

The reconstruction in the κ1 direction is a univariate reconstruction problem, in which

known integer moments set {m0,0,m1,0,m2,0,m3,0,m4,0} is used to compute nodes and corre-

sponding weights using Gaussian EQMOM described in Appendix C and in literature [14,108].

The next step is to reconstruct the PDF in the κ2 direction. To simplify the notation, the

following definition is introduced,

〈κi1Kj〉α ≡
∫
R
κi1K(κ1)jg(κ1;κ1α, σ1)dκ1, (5.7)

where Gaussian integer moments up to order of i+ j are involved, which are known functions

of κ1α and σ1.

Define y = κ2 −K(κ1), then the integer moments of f12 in Eq. 5.2 can be expressed as

mG
i,j =

2∑
α=1

ρα

∫
R
κi1g(κ1;κ1α, σ1)

 2∑
β=1

ραβ

∫
R
κj2g(κ2 −K(κ1);κ2αβ, σ2α)dκ2

 dκ1

=
2∑

α=1

ρα

∫
R
κi1g(κ1;κ1α, σ1)

 2∑
β=1

ραβ

∫
R

[y +K(κ1)]jg(y;κ2αβ, σ2α)dy

 dκ1. (5.8)

With the conditional moments of y given κ1 = κ1α defined as

µjα =

2∑
β=1

ραβ

∫
R
yjg(y;κ2αβ, σ2α)dy, (5.9)

a binomial expansion for integer j can be written as

mG
i,j =

2∑
α=1

ρα

j∑
j1=0

(
j

j1

)
〈κi1Kj−j1〉αµj1α . (5.10)



90

The unique solution to Eq. 5.10 when i = 0, 1 and j = 0 is µ0
α = 1, and likewise the solution for

the equation with i = 0, 1 and j = 1 is µ1
α = 0 using properties of K(κ1) in Eq. 5.4. In order to

determine κ2αβ, ραβ, and σ2α, Eq. 5.10 needs to be solved to obtain µj1α for j1 = 2, 3, 4, which

is straightforward by solving the following linear systems sequentially (Eq. 5.11 to Eq. 5.13):

2∑
α=1

ραµ
2
α = m0,2 −

2∑
α=1

ρα〈K2〉α,

2∑
α=1

ρακ1αµ
2
α = m1,2 −

2∑
α=1

ρα〈κ1K
2〉α;

(5.11)

2∑
α=1

ραµ
3
α = m0,3 − 3

2∑
α=1

ρα〈K〉αµ2
α −

2∑
α=1

ρα〈K3〉α,

2∑
α=1

ρακ1αµ
3
α = m1,3 − 3

2∑
α=1

ρα〈κ1K〉αµ2
α −

2∑
α=1

ρα〈κ1K
3〉α;

(5.12)

2∑
α=1

ραµ
4
α = m0,4 − 4

2∑
α=1

ρα〈K〉αµ3
α − 6

2∑
α=1

ρα〈K2〉αµ2
α −

2∑
α=1

ρα〈K4〉α,

2∑
α=1

ρακ1αµ
4
α = m1,4 − 4

2∑
α=1

ρα〈κ1K〉αµ3
α − 6

2∑
α=1

ρα〈κ1K
2〉αµ2

α −
2∑

α=1

ρα〈κ1K
4〉α.

(5.13)

Once the set of conditional moments {1, 0, µ2
α, µ

3
α, µ

4
α} for α ∈ {1, 2} is obtained, univariate

Gaussian EQMOM can be applied again to determine κ2αβ, ραβ, and σ2α.

When the univariate moments mi,0 with 1-D Gaussian EQMOM are used to find ρ1, ρ2, κ11,

κ12, and σ1, two cases can be possible: a nondegenerate case with κ11 6= κ12 and a degenerate

case with κ11 = κ12. The above procedure is suitable for the nondegenerate case. For the

degenerate case, the univariate moments mi,0 are Gaussian, and the (2 × 2)-node Gaussian

ECQMOM degenerates to a 2-node Gaussian ECQMOM because only one node is used to

represent the PDF of the first direction.

For the degenerate case, a 2-node bivariate Gaussian distribution is defined as

f12(κ1, κ2) = m0,0g(κ1;µκ1 , σκ1)

(
2∑

α=1

ραg(κ2 −K(κ1);κ2α, σ2)

)
. (5.14)
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The integer moments of f12 can be expressed as

mG
i,j = m0,0

j∑
j1=0

(
j

j1

)
〈κ1K

j−j1〉µj1 , (5.15)

where

〈κi1Kj〉 =

∫
R
κi1K(κ1)jg(κ1;µκ1 , σκ1)dκ1, (5.16)

〈K〉 =
m0,1

m0,0
= µκ2 , 〈κ1K〉 =

m1,1

m0,0
,

and the conditional moments are defined as

µj =
2∑

α=1

ρα

∫
R

(κ2 −K(κ1))jg(κ2 −K(κ1);κ2α, σ2)dκ2 =
2∑

α=1

ρα

∫
R
yjg(y;κ2α, σ2)dy, (5.17)

with y = κ2 −K(κ1), µ0 = 1, and µ1 = 0 by definition. The conditional moments µ2, µ3, and

µ4 can be found from Eq. 5.15 for i = 0 and j = 2, 3, 4:

µ2 =
m0,2

m0,0
− 〈K2〉,

µ3 =
m0,3

m0,0
− 〈K3〉 − 3〈K〉µ2,

µ4 =
m0,4

m0,0
− 〈K4〉 − 6〈K2〉µ2 − 4〈K〉µ3,

(5.18)

where the moments 〈Kj〉 can be calculated from Eq. 5.16 with i = 0. With the moment set

{1, 0, µ2, µ3, µ4}, 1-D Gaussian EQMOM can be used to determine ρα, κ2α, and σ2 for α = 1, 2.

With the above procedure, the 2-D Gaussian ECQMOM is complete for both nondegenerate

and degenerate cases.

5.3 Application of QBUQ to a Riser Flow

The QBUQ approach with PDF reconstruction is applied to a riser flow studied experi-

mentally and computationally by Tartan and Gidaspow [102]. The propagation of uncertainty

in particle diameter to simulation outputs including solid volume fraction, solid phase veloc-

ities, and granular temperature is studied. Contour plots of mean and standard deviation of

the system response are provided. Time-averaged simulation results with confidence intervals

are compared to the experimental data. The PDF of the response is reconstructed at specific

locations in the computational domain.
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5.3.1 Descriptions of the computational problem

A two-dimensional riser flow simulation was set up based on the experiments conducted in

the IIT CFB reactor described in Tartan and Gidaspow [102]. The riser of IIT CFB possessed a

diameter of 7.62 cm and a height of 699 cm. Geldart B particles were used in the experiments.

In this work, the simulations are performed in a 2-D channel with width of 7.62 cm and

height of 699 cm, discretized by 40 × 466 cells. The riser is initially empty. The mixture

of glass beads and air is injected uniformly from the bottom of the channel, and exits from

the top. MFIX (Multiphase Flow with Interface eXchanges), an open source code developed

by the National Energy Technology Laboratory (NETL) of Department of Energy (DOE)

(http://mfix.netl.doe.gov), is used to simulate the riser flow. The simulation conditions and

parameters are listed in Table 5.1.

Table 5.1 Simulation parameters and conditions.

Parameters and conditions Values

Gas density 1.184 kg/m3

Particle density 2460 kg/m3

Mean particle diameter 530 µm

Particle-particle restitution coefficient 0.95

Particle-wall Restitution coefficient 0.6

Specularity coefficient 0.007

Inlet superficial gas velocity 4.90 m/s

Inlet solid mass flux 14.2 kg/m2 · s
Inlet solid volume fraction 0.98

Exit boundary condition zero relative gas pressure

Wall boundary condition for gas phase No-slip

Wall boundary condition for solid phase Johnson-Jackson [49]

Simulation time 90 s

Starting time steps 1.0× 10−4 s

Convergence criteria 1.0× 10−3

5.3.2 Governing equations

A two-fluid model (Eulerian-Eulerian approach) [21, 23] with kinetic theory closures for

particulate phase [40] is used to solve the multiphase flow in the riser. The governing and

constitutive equations are summarized in Table 5.2 and Table 5.3. At the walls, no-slip bound-
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ary condition and Johnson-Jackson boundary condition [49] are applied to gas phase and solid

phase, respectively, shown in Table 5.4.

Table 5.2 Governing equations. Representation of symbols: subscript g – gas phase, subscript

s – solid phase, αi – phase volume fraction, ρi – density, Ui – phase velocity field,

pg – gas pressure, g – acceleration of gravity, Θs – granular temperature, I – unit

tensor, ds – particle diameter, and µg – shear viscosity of gas.

Gas phase continuity
∂

∂t
(αgρg) +∇ · (αgρgUg) = 0

Solid phase continuity
∂

∂t
(αsρs) +∇ · (αsρsUs) = 0

Gas phase momentum

∂

∂t
(αgρgUg) +∇ · (αgρgUgUg) = −αg∇pg +∇ · τg + αgρgg +Kgs (Us −Ug)

Solid phase momentum

∂

∂t
(αsρsUs) +∇ · (αsρsUsUs) = −αs∇pg −∇ps +∇ · τs + αsρsg −Kgs (Us −Ug)

Granular temperature

3

2

[
∂

∂t
(αsρsΘs) +∇ · (αsρsUsΘs)

]
= (−psI + τs) : ∇Us +∇ · (ks∇Θs)− γs − 3KgsΘs

Gidaspow gas-solid drag correlation

Kgs =


3

4
CD

ρgαgαs |Us −Ug|
ds

α−2.65
g αg ≥ 0.8

150α2
sµg

αgd2
s

+
1.75ρgαs |Us −Ug|

ds
αg < 0.8

CD =


24

Re
(1 + 0.15 Re)0.687 Re < 1000

0.44 Re ≥ 1000

Re =
ρgαg |Us −Ug| ds

µg

5.3.3 Descriptions of the uncertain parameter

In reality, particle size is not a single value, and a distribution of particle size always exists.

In this work, the effect of uncertain particle size on the simulation outputs is studied. The PDF

of particle diameter is assumed to be a uniform distribution with mean value d̄s and standard
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Table 5.3 Constitutive equations. Representation of symbols: epp – particle-particle resti-

tution coefficient, φ – angle of internal friction, I2D – the second invariant of the

deviator of the strain-rate tensor, and αs,max – packing limit.

Gas-phase stress tensor τg = αgµg

[
∇Ug + (∇Ug)T

]
− 2

3
αgµg (∇ ·Ug) I

Solid-phase stress tensor τs = αsµs

[
∇Us + (∇Us)

T
]

+ αs

(
λs −

2

3
µs

)
(∇ ·Us) I

Solids pressure ps = αsρsΘs + 2(1 + epp)α2
sρsg0Θs

Solids bulk viscosity λs =
4

3
αsρsdsg0(1 + epp)

√
Θs

π

Solids shear viscosity µs = µs,kin + µs,fr

Solids kinetic viscosity µs,kin =
10ρsds

√
πΘs

96αsg0(1 + epp)

[
1 +

4

5
αsg0(1 + epp)

]2

Solids frictional viscosity µs,fr =
ps sinφ

2
√
I2D

Radial distribution function g0 =

[
1−

(
αs

αs,max

) 1
3

]−1

Solids conductivity

ks =
150ρsds

√
πΘs

384g0(1 + epp)

[
1 +

6

5
αsg0(1 + e)

]2

+ 2α2
sρsdsg0(1 + e)

√
Θs

π

Collisional dissipation γs =
12α2

sρsg0(1− e2
pp)

ds
√
π

Θ3/2
s

Table 5.4 Wall boundary conditions. Representation of symbols: Uil – slip velocity between

gas or solid and the wall, n – unit vector normal to the wall, φs – specularity

coefficient, and epw – particle-wall restitution coefficient.

Gas phase Ugl = 0

Solid phase

n · (µs∇Usl) = −πφsαsρsg0

√
3Θs

6αs,max
Usl

n · (ks∇Θs) =
παsρsg0|Usl|2

√
3Θs

6αs,max
−
√

3παsρsg0(1− epw)2

4αs,max
Θ3/2

s ,
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deviation being 530 µm and 0.1d̄s, respectively. Hence the particle diameter ds is uniformly

distributed on the interval [477, 583]. In total 20 samples are generated using the sampling

method for one uncertain parameter described in previous chapters.

5.3.4 Results and discussion

For each sample, MFIX simulation is performed once. The moments of the system response

are directly estimated using Gaussian quadrature formulae [4, 42, 119]. The influences of un-

certain particle size on four time-averaged quantities of interest are evaluated, including solid

volume fraction αs, solid radial velocity us, solid axial velocity vs, and granular temperature

Θs. These four quantities are time-averaged from 50 s to 90 s. Results are discussed below.

5.3.4.1 Low order statistics

Figure 5.1 shows the contour plots of mean and standard deviation of the solid volume

fraction. Because of the large ratio of the height to the diameter of the riser, the riser is cut

into four parts at height of 175 cm, 350 cm, and 525 cm so that details of the contour plots can

be displayed. The contour plots are all shown in this way if not stated otherwise. Core-annular

structure is observed as expected, though the annulus is very thin. The annulus is relatively

dense, while the core is dilute. The concentration of the particles decreases with increasing

the distance from the bottom of the channel. The effect of uncertain particle size on the solid

volume fraction focuses on the bottom of the riser, the annulus, and some spots near the wall

at very high positions of the riser.

The designated points in Figure 5.1 are the locations where the reconstruction of the PDF

of the system response is performed, and at the same height, the experimental results are

obtained. Location 1 is at the centerline, while location 2 is near the wall. If not stated

otherwise, all designated points in all figures of this section have the same coordinates, listed

in Table 5.5.

Figure 5.2 gives the contour plots of mean and standard deviation of solid radial velocity.

After the initial mixing near the bottom of the riser, particles are moving towards the wall,

which can explain the dilute core and dense annulus structure. With increasing the distance
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(b) standard deviation

Figure 5.1 Contour plots of (a) mean and (b) standard deviation of solid volume fraction.
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Table 5.5 Coordinates of the designated locations.

Location
Coordinates

x y

1 3.810 420.00

2 0.381 420.00

from the bottom of the riser, the absolute value of the solid radial velocity increases, and

particles are pushed from one side of the riser to the other side. The influence of uncertain

particle size on solid radial velocity concentrates mainly on the upper part of the channel and

slightly on the locations near the inlet of the riser.

Figure 5.3 reports the contour plots of mean and standard deviation of solid axial velocity.

Particles are moving faster in the core than in the annulus. The thickness of low velocity region

increases, and the high velocity region starts to shift, with increasing the distance from the

bottom of the riser. The standard deviation is larger in the annulus than in the core, which

indicates uncertain particle size has more effect on solid axial velocity in the annulus than in

the core.

Contour plots of mean and standard deviation of granular temperature are shown in Fig-

ure 5.4. The granular temperature is low in the annulus, while it is high in the core. In the core,

the solids fluctuation is enhanced with increasing the distance from the bottom of the riser.

The standard deviation of granular temperature also presents core-annular structure, with low

value in the annulus. An interesting observation is that while the fluctuation is enhanced in

the core, the standard deviation decreases with increasing the distance from the bottom of the

riser. The influence of uncertain particle size on the granular temperature mainly focuses on

the core region, especially on the lower part of the core.

5.3.4.2 Comparison to the experimental data

The simulation results are compared to the experimental data provided in the literature

[102]. The upper and lower values of the confidence intervals are mean values plus and minus

standard deviation, respectively. Results are presented in Figure 5.5, which indicates that the

mean value of solid volume fraction has a good agreement with the experiment results, while



98

O x(cm)

y(cm)

cm/s

(a) mean

O x(cm)

y(cm)

cm/s

(b) standard deviation

Figure 5.2 Contour plots of (a) mean and (b) standard deviation of solid radial velocity.
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Figure 5.3 Contour plots of (a) mean and (b) standard deviation of solid axial velocity.
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Figure 5.4 Contour plots of (a) mean and (b) standard deviation of granular temperature.
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fair agreements are obtained comparing the mean values of solid axial velocity and granular

temperature to the experimental data. The shaded area in the figure represents the values

between the upper and lower limits of the confidence interval of each response. With the

confidence intervals, the predicted simulation results can cover most of the experimental data

except that in Figure 5.5(b) some experiment data near the walls are outside the shaded area

but close to the lower limit of the confidence interval of the predicted solid axial velocity, and

in Figure 5.5(c) upper values of the error bars of two points exceed the upper boundary of the

shaded area of granular temperature. This observation demonstrates that with UQ analysis

performed by method like QBUQ to account for the uncertainty introduced by parameters like

particle size, the reliability of the simulation results is improved, and these predicted values

can be used with confidence for purpose of design and optimization.

5.3.4.3 PDF reconstruction of the system response

Two locations in the computational domain, designated in contour plots in Section 5.3.4.1

are used to reconstruct the PDF of system response. Univariate PDF reconstruction is per-

formed for each system response using EQMOM [14, 121] described in previous chapters and

Appendix C, and the joint PDF of solid axial and radial velocities is reconstructed using 4-node

Gaussian ECQMOM illustrated in Section 5.2.1.

The PDF of the solid volume fraction is reconstructed using 2-node EQMOM with beta

distribution as the kernel density function, results shown in Figure 5.6. For location 1, which

is at the centerline, low solid volume fraction is preferred. For location 2, which is near the

wall, the distribution is broad, and lower value has higher probability.

Figure 5.7 shows the reconstructed PDF of solid radial velocity using 2-node Gaussian

EQMOM. For location 1, the peak of the distribution shows up at near zero velocity, with

negative low velocity slightly preferred. At location 2, bimodal distribution is presented, with

negative velocity having high probability.

Two-node Gaussian EQMOM is also used to reconstruct the PDF of solid axial velocity,

results presented in Figure 5.8. Bimodal distribution is observed at both locations, yet when

near the wall (location 2), the two peaks are completely separated. At the centerline (loca-
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Figure 5.5 Simulated time-averaged (a) solid volume fraction, (b) solid axial velocity, and (c)

granular temperature compared to experimental data.
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Figure 5.6 Reconstructed distribution of the solid volume fraction at different locations.



103

−2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

solid radial velocity, cm/s

f

 

 

Approximate Distribution
EQMOM nodes
Distribution of each node

(a) location 1

−2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

solid radial velocity, cm/s

f

 

 

Approximate Distribution
EQMOM nodes
Distribution of each node

(b) location 2

Figure 5.7 Reconstructed distribution of the solid radial velocity at different locations.
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Figure 5.8 Reconstructed distribution of the solid axial velocity at different locations.

tioin 1), low solid axial velocity is clearly preferred, while near the wall low velocity just has a

bit larger probability than high velocity.

The distribution of granular temperature is reconstructed using 2-node EQMOM with

gamma distribution as the kernel. According to the results shown in Figure 5.9, at both

locations, two peaks are formed. One sharp peak with high probability shows up at low gran-

ular temperature, while the other broad peak with relatively low probability is formed at high

granular temperature.

The joint PDF of solid axial and radial velocities is reconstructed using 4-node Gaussian

ECQMOM described in Section 5.2.1, results shown in Figure 5.10. At the centerline (location

1), the peak with highest probability is formed at relatively low solid axial velocity and negative
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Figure 5.9 Reconstructed distribution of the granular temperature at different locations.

(a) location 1 (b) location 2

Figure 5.10 Reconstructed joint distribution of the solid axial and radial velocities at different

locations.

solid radial velocity, which indicates particles tend to move upwards and towards the wall. At

location 2, which is near the wall, low solid axial velocity and negative solid radial velocity have

the high probability, which means most of the particles are slowly moving upwards towards

the wall. However, a relatively strong peak is formed at high axial and positive radial velocity,

which indicates some of the particles are moving fast upwards towards the center of the riser.
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5.4 Conclusions

A non-intrusive quadrature-based uncertainty quantification approach is applied to a riser

flow simulation with particle size as the uncertain input parameter. Contour plots of the mean

and standard deviation of the system response including time-averaged solid volume fraction,

solid phase velocities, and granular temperature are provided. The effects of uncertain particle

diameter on these quantities of interest are studied. The mean values and confidence intervals

of the outputs at specific height of the riser are compared to the experimental data provided in

the literature. Satisfactory agreement is obtained between the mean values of the simulation

results and the experiments. The confidence intervals calculated by the QBUQ approach can

cover most of the confidence intervals provided by the experiments. The univariate PDF re-

constructions are performed for each system response at specific locations in the computational

domain using EQMOM with different kernel density functions. The joint PDF of the solid axial

and radial velocities at the same locations are reconstructed as well using Gaussian ECQMOM,

which is a combination of EQMOM and CQMOM. The bivariate PDF reconstruction method,

Gaussian ECQMOM introduced in this chapter, can be naturally extended to more variables,

more nodes for each variable, and other kernel density functions in the future.
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CHAPTER 6. SUMMARY AND FUTURE WORK

In this chapter, sub-projects done in previous chapters are summarized, and works can be

performed are proposed in future work.

6.1 Summary

The objectives of the project are to develop a non-intrusive quadrature-based uncertainty

quantification (QBUQ) approach, and to apply it to multiphase gas-solid flow simulations. The

approach relies on Gaussian quadrature formulae and conditional quadrature method of mo-

ments (CQMOM) to generate a set of samples for the distribution of the uncertain parameters.

Simulations are performed for each sample, and the moments of the system response can be

evaluated directly using quadrature rules. With these moments, low order statistics such as

mean, variance, skewness, and kurtosis of the system response can be calculated so that confi-

dence intervals for the simulation results can be provided. Meanwhile, with the set of moments

of the system response, the probability distribution functions (PDFs) of the system response

can be reconstructed using extended quadrature method of moments (EQMOM) and extended

conditional quadrature method of moments (ECQMOM). Thus the probability especially of

the rare events can be evaluated.

In Chapter 2, the QBUQ approach is described in detail for a univariate case in terms of the

random input parameter. The approach significantly reduces the number of samples required

to predict the moments of a given order. Beta EQMOM is described in the chapter to illustrate

the PDF reconstruction method. The QBUQ approach with the reconstruction of the PDF of

the system response is demonstrated by considering a developing channel flow with uncertain

viscosity and an oblique shock problem with uncertain inlet Mach number. In the developing
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channel flow, we observe that twenty samples are sufficient to calculate moments of order 1 to 4

with an accuracy higher than 10−8, moments of order 5 to 9 are predicted with an absolute error

of magnitude 10−8. Using a significantly higher number (like 1000) of samples does not lead

to a significant reduction of the error affecting the highest order moments. The approximate

distributions of the axial velocity at two different locations show great agreement with the

histograms, and four EQMOM nodes are sufficient to reconstruct the axial velocity distribution.

In the oblique shock problem, a shock discontinuity is observed with a range of angle with

respect to horizontal because of the uncertain input Mach number. The estimation of the shock

angle range with QBUQ matches the analytical value with an error on the order of 0.1 degrees.

The approximate distributions of the horizontal velocity below the shock show good agreement

with histograms. Satisfactory distributions of the horizontal velocity in the shock region are

obtained, although some oscillations are formed because of the steep discontinuities presented

in the distributions that are being reconstructed. The reconstruction of the distribution in

the shock region improves when the number of EQMOM nodes increases, but not significantly.

Four nodes are adequate to reconstruct the horizontal velocity distributions in this case.

In Chapter 3, the QBUQ approach with reconstruction of the PDF of the system response is

applied to a bubbling fluidized bed. The approach is implemented into MFIX by two separate

modules developed based on the Python programming language and shell scripts. The script in

the pre-processing module identifies the properties of the input parameters, and generates cor-

responding MFIX input files for each sample. Once simulations for all samples are completed,

the post-processing module extracts time-averaged quantities of interest for each sample, com-

putes the set of the moments, calculates low order statistics such as mean and variance, and

reconstruct the PDF of the system response. The distribution of the uncertain input parameter

(particle size) of the bubbling fluidized bed is assumed to be uniform distribution, and twenty

samples are generated. The effects of uncertain particle size on the solid volume fraction, gas

pressure, and vertical solid velocity are studied. Contour plots of mean, variance, and moments

up to fourth order of the response indicate that the influences of uncertain particle size con-

centrate on the interface of the bed, in particular on locations near the wall. Approximated

distributions of the response are reconstructed at two different locations.
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In Chapter 4, the QBUQ approach is extended to problems with multiple uncertain input

parameters. CQMOM is used to sample the space of the uncertain parameters, and is explained

by using a bivariate problem as an example. The moments of the system response are directly

estimated using Gaussian quadrature formulae, and are used to reconstruct an approximate

distribution of the response using EQMOM. The approach is demonstrated by considering a

bubbling fluidized bed with two uncertain parameters (particle-wall restitution coefficient and

particle-particle restitution coefficient). Contour plots of the mean and standard deviation

of solid volume fraction, gas pressure, and solid horizontal and vertical velocities are shown.

Circulations of particles are formed in the bed. The effect of uncertain parameters on the solid

volume fraction mainly focuses on the interface of the bed, especially on the locations near the

wall, and also at the center of the fluidized bed. For gas pressure, the influence of uncertain

parameters focuses on the center of the bed. The uncertain parameters influence the solid

horizontal velocity the most near the interface of the bed and at the bottom of the bed, and

affect the solid vertical velocity the most near the wall. The mean value and 95% confidence

interval of the system response at specific locations are compared to the values obtained from

small-scale challenge problem. The mean values of the simulation results are in fair agreement

with experiment. The confidence intervals obtained from the simulation results sometimes

cannot cover the confidence intervals provided by the experiment, which may be caused by

uncertainty introduced by other parameters besides the two parameters studied in this work.

The measurement method may also result in large confidence intervals for experimental data.

The PDF of the system response is reconstructed at four different locations in the computational

domain using EQMOM with appropriate kernel density functions.

In Chapter 5, the QBUQ approach is applied to a riser flow simulation with particle diameter

considered as the uncertain input parameter. In total 20 samples are generated, and the

results of each sample are used to directly estimate the moments of the system response.

Contour plots of the mean and standard deviation of time-averaged solid volume fraction, solid

phase velocities, and granular temperature are provided. Core-annular structure is observed

as expected. For solid volume fraction, the effect of uncertain particle size focuses on the

bottom of the riser, the annulus, and some spots near the wall at very high positions of the
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riser. The influence of uncertain particle size on solid radial velocity concentrates mainly on

the upper part of the riser and slightly on the locations near the inlet of the riser. For solid

axial velocity, the uncertain parameter has more effect in the annulus than in the core. And for

granular temperature, the influence of uncertain particle size mainly focuses on the core region,

especially on the lower part of the core. The mean values and confidence intervals of the outputs

at specific height of the riser are compared to the experimental data provided in the literature.

Satisfactory agreement is obtained between the mean values of the simulation results and the

experiments. The confidence intervals calculated by the QBUQ approach can cover most of

the confidence intervals provided by the experiments. The univariate PDF reconstructions are

performed for each system response at specific locations in the computational domain using

EQMOM with different kernel density functions. The joint PDF of the solid axial and radial

velocities at the same locations are reconstructed as well using Gaussian ECQMOM, which is

a combination of EQMOM and CQMOM.

6.2 Future Work

Study on uncertainty quantification in multiphase CFD simulations is at its initial level.

The QBUQ approach proposed here is applied just to bubbling fluidized beds and riser flows.

The approach needs to be tested on other types of multiphase flows. Eventually, the goal is

to provide confidence for simulation results of multiphase CFD, which is a very challenging

task. For complex models like those for multiphase flows, intrusive UQ approach is hardly to

implement. Therefore, non-intrusive UQ approach is nearly the only choice. This leaves the

problem to the sampling approaches. Deterministic sampling approaches suffer from the curse

of dimensionality while random sampling approaches require too many samples. Reducing the

number of samples required for a given accuracy will be a long-term task. A compromising

way is to study the most influential parameters first to reduce the number of uncertain input

parameters, which needs proper methods to decide which parameters are indeed the most

influential. For the post-processing of the UQ data, especially for the reconstruction of the

PDF of the system response, the proposed method EQMOM for univariate problem in this

thesis has been extended to a bivariate problem using Gaussian ECQMOM. This method can
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be extended to more variables and other kernel density functions. Comparisons of EQMOM

and ECQMOM to other PDF reconstruction approaches can also be studied in the future.
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APPENDIX A. DETERMINATION OF QUADRATURE WEIGHTS

AND NODES

The determination of Gaussian quadrature weights and nodes is based on the consideration

that monic orthogonal polynomials are defined by a recurrence relation in the form [29,42]

Q−1(ξ) = 0,

Q0(ξ) = 1,

Qr+1(ξ) = (ξ − αr)Qr(ξ)− βrQr−1(ξ), βr > 0.

(A.1)

The eigenvalues of the symmetric tridiagonal matrix

JM =



α0
√
β1 0

√
β1 α1

√
β2

. . .
. . .

. . .√
βM−2 αM−2

√
βM−1

0
√
βM−1 αM−1


, (A.2)

called a Jacobi matrix, are the quadrature nodes of the M -points Gauss quadrature formula,

whose weight function is orthogonal to the polynomials defined by the recurrence relation

Eq. A.1. The corresponding quadrature weights are given by

wi = β0v
2
i,1, i = 1, . . . ,M, (A.3)

where vi,1 is the first component of the eigenvector vi of JM, and

β0 =

∫
I
w(ξ)dξ,

being I the integration interval under consideration.
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APPENDIX B. INTRODUCTION OF DIRECT QUADRATURE BASED

UNCERTAINTY QUANTIFICATION APPROACH

The main results reported in Yoon et al. are summarized here to introduce the method and

to explain how to estimate the required number of samples [4, 119].

B.1 Direct Quadrature Approach to Compute Moments of System

Response

The direct quadrature approach is proposed based on using Gaussian quadrature formulae

to compute integrals. A one-dimensional integral with form∫ b

a
f(x)w(x)dx

can be approximated by a Gaussian quadrature formula with M nodes as∫ b

a
f(x)w(x)dx ≈

M∑
i=1

f(xi)wi, (B.1)

where xi is the ith root of the orthogonal polynomials with corresponding weight function w(x),

which is 1 for Gauss-Legendre quadrature, e−x
2

for Gauss-Hermite quadrature, and 1/
√

1− x2

for Gauss-Chebyshev quadrature. If f(x) is continuous on the interval [a, b], when M → ∞,

the approximation in Eq. B.1 converges to the integral.

The error of Eq. B.1 for f(x) ∈ C2M ([a, b]) is given as

E =
f2M (ζ)

(2M)!
〈ΦM ,ΦM 〉, (B.2)

where f2M (ζ) is the 2M -th derivative of f , ζ ∈ [a, b], and 〈ΦM ,ΦM 〉 is the inner product of

the M -th order polynomial orthogonal to the weight function w(x). Eq. B.2 shows that for a

polynomial of order up to 2M − 1, M -node Gauss quadrature is exact.
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Using Gaussian quadrature formulae, the n-th order moment of a random process u with a

single random variable ξ can be approximated as

〈un(ξ)〉 =

∫ b

a
u(ξ)np(ξ)dξ ≈

M∑
i=1

u(ξi)
nwi, (B.3)

where ξi are the quadrature nodes, wi are the quadrature weights, and p(ξ) is the weight

function. The type of quadrature depends on the distribution of the random varible ξ, for

example, Gauss-Hermite quadrature for Gaussian distribution and Gauss-Legendre quadrature

for uniform distribution. Finally, for a given distribution p(ξ) without existing quadrature

rules, the moments can be approximated as

〈un(ξ)〉 =

∫ b

a
u(ξ)np(ξ)dξ

=

∫ d

c
u(ξ)n

p(ξ)

f(ξ)
f(ξ)dξ

≈
M∑
i=1

u(ξi)
n

f(ξi)
p(ξi)wi,

(B.4)

where the integration interval [c, d] is the support of the distribution f(ξ) which has an existing

quadrature rule, and ξi and wi are the corresponding quadrature nodes and weights.

B.2 Polynomial Chaos Expansion and Estimation of the Required Number

of Samples

In the polynomial chaos approach, a random process u with a single random variable ξ can

be approximated as a truncated Fourier series,

u(ξ) ≈
P∑
j=0

ujΨj(ξ), (B.5)

where Ψj are orthogonal polynomials corresponding to the distribution of the random input

variable, and the coefficients uj can be computed as

uj =
〈u(ξ),Ψj(ξ)〉
〈Ψj(ξ),Ψj(ξ)〉

. (B.6)

The n-th order moment of u can be expressed using a Gaussian quadrature formula as

〈u(ξ)n〉 ≈
M∑
l=1

 P∑
j=1

(∑M
i=1 u(ξi)Ψj(ξi)wi
〈Ψj ,Ψj〉

)
Ψj(ξl)

nwl. (B.7)
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Based on the properties of Gaussian quadrature formulae, a proposition is proposed by

Yoon et al. [4,119] to estimate the required number of samples to compute the exact moments

of the system response. For a single variable random process u(ξ) represented by a polynomial

of order up to q, at least M samples are required to compute the exact n-th order moment for

a P -th order polynomial chaos approximation to u, and M is given as

M = max

(
q + P + 1

2
,
nq + 1

2

)
. (B.8)

The mathematical reasoning for this proposition is the following:

1. To compute coefficient uP+1 using Eq. B.6, an integrand of order q + P must be integrated,

which is exact if q + P ≤ 2M − 1 or M ≥ (q + P + 1)/2 according to Eq. B.2.

2. By Eq. B.2, the n-th order moment of u computed using direct quadrature approach shown

in Eq. B.3 is exact if nq ≤ 2M − 1 or M ≥ (nq + 1)/2.

3. If M is the maximum of (q+P + 1)/2 and (nq+ 1)/2, both Eqs. B.3 and B.7 are equalities.

Therefore, Eqs. B.3 and B.7 are equivalent, which indicates the n-th order moment obtained

from direct quadrature and polynomial chaos expansion are equivalent.

4. From the three steps above, the proposed proposition can be derived.
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APPENDIX C. PDF RECONSTRUCTION USING EQMOM

The basic idea of EQMOM is to write the PDF p(κ) as a weighted sum of N non-negative

kernel density functions [14,121]:

fN (κ) =

N∑
i=1

ρiδσ(κ, κi), (C.1)

where ρi and κi are the quadrature weights and abscissae used in EQMOM, and δσ(κ, κi) is a

kernel density function related to the parameter σ, which is selected based on the nature of the

distribution that needs to be reconstructed, especially based on the support of the distribution.

In the rest of this appendix, the algorithms for EQMOM using different kernel density functions

are discussed.

C.1 Beta EQMOM

The beta kernel function is defined as Eq. C.2 for ζ ∈ [0, 1] [121],

δσ(ζ, ζi) =
ζλi−1 (1− ζ)φi−1

B (λi, φi)
(C.2)

where λi = ζi/σ, φi = (1 − ζi)/σ, and B (λi, φi) is the beta function defined as B(x, y) =∫ 1
0 t

x−1(1− t)y−1dt. The distribution of the system response can be then represented as

fN (ζ) =

N∑
i=1

ρiδσ(ζ, ζi) =

N∑
i=1

ρi
ζλi−1 (1− ζ)φi−1

B (λi, φi)
. (C.3)

The n-th order integer moments of δσ(ζ, ζi) can be written in a recursion form:

m(i)
n =

ζi + (n− 1)σ

1 + (n− 1)σ
m

(i)
n−1 for n > 0, (C.4)

and m
(i)
0 = 1.
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Thus the integer moments of the distribution function p can be expressed as

mn =

N∑
i=1

ρim
(i)
n =

N∑
i=1

ρiGn(ζi, σ),

with

Gn(ζi, σ) =


1 n = 0

n−1∏
i=0

ζi + iσ

1 + iσ
n ≥ 1

. (C.5)

A lower triangular system can be defined to find σ by rewriting these moments as

mn = ηnm
∗
n + ηn−1m

∗
n−1 + . . .+ η1m

∗
1, ηn ≥ 0 (C.6)

where the non-negative coefficients ηn depend only on σ, and m∗n =
∑N

i=1 ρiζ
n
i . The matrix

form of the system is A(σ)m∗ = m, where A(σ) is a lower triangular matrix. The quadrature

weights ρi and nodes ζi can be found from the first 2N moments (m∗0, . . . ,m
∗
2N−1) using the

moment-inversion algorithm, Wheeler algorithm [113, 120]. The parameter σ is found using

an iterative procedure described in C.4. The scalar function defined to reflect the difference

between the original moment m2N and the approximated moment m∗2N for beta EQMOM is

JN (σ) = m2N − η2Nm
∗
2N − η2N−1m

∗
2N−1 + . . .− η1m

∗
1. (C.7)

A transformation and a normalization process are required in order to extend the approach

presented above to the general bounded interval [a, b]. For such a purpose, let κ = (b−a)ζ+a,

where ζ ∈ [0, 1] with the distribution shown in Eq. C.3. Then the normalized distribution for

κ in bounded interval [a, b] is

fN (κ) =
1

b− a

N∑
i=1

ρi

(
κ−a
b−a

)λi−1 (
b−κ
b−a

)φi−1

B (λi, φi)
. (C.8)
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C.2 Gamma EQMOM

A gamma distribution is selected as the kernel function for ζ ∈ R+
0 [121]:

δσ(ζ, ζi) =
ζλi−1 e−ζ/σ

Γ(λi)σλi
, (C.9)

where λi = ζi/σ. Using Eq. C.9, the approximated PDF of ζ can be expressed as

fN (ζ) =
N∑
i=1

ρiδσ(ζ, ζi) =
N∑
i=1

ρi
ζλi−1 e−ζ/σ

Γ(λi)σλi
. (C.10)

The n-th order integer moment of the kernel density δσ(ζ, ζi) is

m(i)
n =

Γ(λi + n)

Γ(λi)

(
ζi
λi

)n
. (C.11)

As a consequence, the integer moments of p can be written as

mn =
N∑
i=1

ρi
Γ(λi + n)

Γ(λi)
σn =

N∑
i=1

ρiGn(ζi, σ), (C.12)

where

Gn(κi, σ) =


1 n = 0

n−1∏
i=0

(ζi + iσ) n ≥ 1
. (C.13)

The lower triangular system of equations used to find σ is defined as:

mn = m∗n +
N∑
i=1

ρiPn−1(ζi, σ), (C.14)

where m∗n =
∑N

i=1 ρiζ
n
i and Pn−1 is a homogeneous polynomial of order n− 1. The parameter

σ is then determined by solving the system in Eq. C.14 iteratively with the algorithm described

in C.4. The scalar function for gamma EQMOM is

JN (σ) = m2N −m∗2N −
N∑
i=1

ρiP2N−1(ζi, σ).

For cases where κ ∈ [a,+∞[ instead of R+
0 , a linear change of variables is applied so that

the approach is extended to the general interval. This is achieved by letting κ = ζ + a, where

ζ ∈ R+
0 with PDF in Eq. C.10. The final generalized PDF for κ on the semi-infinite interval

[a,+∞[ is

fN (κ) =

N∑
i=1

ρi
(κ− a)λi−1 e−(κ−a)/σ

Γ(λi)σλi
. (C.15)
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C.3 Gaussian EQMOM

For κ ∈ R, a Gaussian distribution is selected as the kernel density function [14]:

δσ(κ, κi) =
1

σ
√

2π
exp

[
−(κ− κi)2

2σ2

]
. (C.16)

The approximated PDF of κ can be written as Eq. C.17 using Eq. C.16:

fN (κ) =
N∑
i=1

ρiδσ(κ, κi) =
N∑
i=1

ρi

σ
√

2π
exp

[
−(κ− κi)2

2σ2

]
. (C.17)

The n-th order integer moment of the kernel density δσ(κ, κi) can be calculated from the

moment generation function:

m(i)
n = M (i)

n

∣∣∣
t=0

=
dnM (i)

dtn

∣∣∣∣∣
t=0

, (C.18)

where the moment generation function M (i)(t) for Gaussian distribution is defined as

M (i)(t) = exp

(
κit+

1

2
σ2t2

)
.

The first five integer moments of the kernel density function (n ≤ 4) are shown in Eq. C.19.

m
(i)
0 = 1

m
(i)
1 = κi

m
(i)
2 = κ2

i + σ2

m
(i)
3 = κ3

i + 3κiσ
2

m
(i)
4 = κ4

i + 6κ2
iσ

2 + 3σ4.

(C.19)

Therefore, the integer moments of p can be written as a lower triangular system:

mn = m∗n +

N∑
i=1

ρiPn−1(κi, σ), (C.20)

where m∗n =
∑N

i=1 ρiκ
n
i and Pn−1 is a homogeneous polynomial of order n− 1. For n ≤ 4, the

lower triangular system is

m0 = m∗0

m1 = m∗1

m2 = m∗2 + σ2m∗0

m3 = m∗3 + 3σ2m∗1

m4 = m∗4 + 6σ2m∗2 + 3σ4m∗0.

(C.21)
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By solving the system in Eq. C.20 iteratively using the algorithm in the next section, the

parameter σ is determined. The scalar function for Gaussian EQMOM is

JN (σ) = m2N −m∗2N −
N∑
i=1

ρiP2N−1(κi, σ).

C.4 The Algorithm to Solve for σ

The following algorithm is used to solve the lower triangular systems shown in Eq. C.6,

Eq. C.14, and Eq. C.20.

1. Guess the value of σ

2. Compute the moments m∗n from the lower triangular system

m = A(σ)m∗

3. Use the adaptive Wheeler algorithm to find weights ρi and abscissae κi from m∗

4. Compute m∗2N using weights and abscissae found in the last step

5. Compute the scalar function JN (σ)

6. If JN (σ) 6= 0, guess a new σ and iterate from step 1.
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Comparison between two-fluid model simulations and particle image analysis & velocime-

try (piv) results for a two-dimensional gas–solid fluidized bed. Chemical Engineering

Science, 66(17):3753–3772, 1 September 2011.

[46] S. Hosder, R. W. Walters, and R. Perez. A non-intrusive polynomial chaos method

for uncertainty propagation in CFD simulations. In In Proceedings of the 44th AIAA

Aerospace Sciences Meeting, volume 14, pages 10649–10667, 2006.



125

[47] L. Huyse. Free-form airfoil shape optimization under uncertainty using maximum ex-

pected value and second-order second-moment strategies. Technical report, ICASE Re-

port 2001-18, 2001.

[48] L. Huyse. Solving problems of optimization under uncertainty as statistical decision

problems. AIAA Paper 2001-1519, 2001.

[49] P. C. Johnson and R. Jackson. Frictional-collisional constitutive relations for granular

materials, with application to plane shearing. Journal of Fluid Mechanics, 176:67–93,

March 1987.
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[58] O. P. Le Mâıtre and P. Knio. Spectral Methods for Uncertainty Quantification. Springer,

2010.
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