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ABSTRACT

The measurement of fluorescence lifetimes, especially in small
sample volumes, presents the dual challenge of probing a
small number of fluorophores and fitting the concomitant
sparse data set to the appropriate excited-state decay func-
tion. A common method of analysis, such as the maximum
likelihood (ML) technique, assumes a uniform probability dis-
tribution of the parameters describing the fluorescence decay
function. An improvement is thus suggested by implementing
a suitable nonuniform distribution, as is provided by a Baye-
sian framework, where the distribution of parameters is
obtained from both their prior knowledge and the evidence-
based likelihood of an event for a given set of parameters.
We have also considered the Dirichlet prior distribution,
whose mathematical form enables analytical solutions of the
fitting parameters to be rapidly obtained. If Gaussian and
exponential prior distributions are judiciously chosen, they
reproduce the experimental target lifetime to within 20%
with as few as 20 total photon counts for the data set, as does
the Dirichlet prior distribution. But because of the analytical
solutions afforded by the Dirichlet prior distribution, it is
proposed to employ a Dirichlet prior to search parameter
space rapidly to provide, if necessary, appropriate parame-
ters for subsequent employment of a Gaussian or exponential
prior distribution.

INTRODUCTION
Time-correlated, single-photon counting has become an integral
part of techniques such as fluorescence-lifetime imaging micro-
scopy (1–5), F€orster resonance energy transfer (6–8) and fluores-
cence correlation spectroscopy (9–11). The technique records the
time difference between the arrival times of an excitation pulse
and a pulse resulting from a photon detected from fluorescence
emission. A histogram of arrival-time differences is accumulated
and fit to a model function for the fluorescence decay. The most
frequently used fitting method (residual minimization, RM) mini-
mizes the weighted squares of the residuals of the experimental
data and the continuously optimized fitting function. RM requires
a histogram of very high quality to extract the mean lifetime
with high accuracy, and such a histogram is only obtained with
a large number of total photon counts (~20 000 for rose bengal).

In super-resolution microscopies, however, such as stimulated
emission depletion microscopy (12–14), high spatial resolution is
only obtained at the expense of the fluorescence signal, as the
latter decreases with decreasing detection volume. Additional
factors such as a low intrinsic fluorescence quantum yield or
photodegradation of the sample contribute to reducing the magni-
tude of the total photon counts, thus making it more difficult to
generate a histogram of high quality. Unless there is a certain
number of total counts, RM yields a poor estimate of the mean
lifetime (15,16). In these cases (15–17), probability-based meth-
ods, such as maximum likelihood (ML), provide considerable
improvement over RM. One of the limitations of ML, however,
is that it assumes a uniform probability distribution of the param-
eters describing the fluorescence decay function. Thus, ML can
be further improved by implementing a suitable nonuniform dis-
tribution. In this context, we note that alternative approaches
such as phasor-based methods (18–21) have been adopted in flu-
orescence-lifetime imaging microscopy, especially, for biological
samples. These methods performed well compared to RM meth-
ods in terms of computational efficiency and extracting contribu-
tions of different components.

Here, we consider photon-counting data analysis using a Baye-
sian framework, where the distribution of parameters is obtained
from both their prior knowledge and the evidence-based likelihood
of an event for a given set of parameters. If b and E represent the
parameter space and the evidence (i.e. experimental observations),
respectively, then the posterior distribution of the parameters for
E, P(b|E), is given by the Bayes’ theorem (22–24):

P bjEð Þ ¼ PðbÞPðEjbÞ
PðEÞ ð1Þ

PðEjbÞ is the likelihood of evidence given the set of parameters
b; and PðbÞ is the prior distribution of the parameters, which is
obtained from the prior knowledge of the parameters. As the evi-
dence is collected, the prior knowledge can be updated for the
prediction of the parameters. P(E) is the total likelihood (also
known as the marginal likelihood) of the evidence at all possible
points in the parameter space and acts as a normalization.

The Bayesian method is employed (23,25–38) to estimate
parameters where there are insufficient evidences. It has been
used in fluorescence-lifetime imaging (30,32,37), F€orster reso-
nance energy transfer (30) and fluorescence correlation spec-
troscopy (35,36) experiments. The choices, however, of the
parameters to which priors are assigned and the functional form
of the priors themselves varied widely. In some cases, an*Corresponding author e-mail: jwp@iastate.edu (Jacob W. Petrich)
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exponential prior has been assigned to “the relaxation time of the
photon-generating emission process” based on the argument that
it has the maximum entropy within the allowed parameter range
(37). In other cases, a uniform prior was assigned for the fraction
of mean lifetime components; but this defeats the point of imple-
menting the Bayesian approach because it becomes reduced to
the ML method (30). Thus, one of the major challenges in
implementing a Bayesian analysis of photon-counting data is
determining the choice of the prior distribution and updating it
as more evidence is successively acquired. In this work, we com-
pare Gaussian and exponential prior distributions, where the life-
time parameter is directly incorporated in the posterior that is to
be optimized, as well as Dirichlet prior distribution, where the
lifetime parameter is indirectly calculated using the estimated
probability of the bins. For the Gaussian and exponential prior,
two analysis schemes were employed. In one, an identical prior
was used for every data trace collected for a fixed number of
counts. In the other, the prior is calculated and updated using the
statistics of the results obtained from a data trace having a simi-
lar number of counts. As the latter method is preferable, the dis-
cussion of the former is given in the Supporting Information.

These prior distributions and the utility of the Bayesian
approach were tested by analyzing photon-counting data obtained
from the very well-characterized fluorophore, rose bengal. Rose
bengal in methanol has an excited-state lifetime of 0.49 � 0.01 ns
at room temperature (15). Three sets of data were collected, each
consisting of 50 individual traces, with a total number of counts of
approximately 20, 200 and 20 000, respectively. In all the analy-
ses, we incorporated the real instrument response function (IRF), a
very narrow ~20-ps time channel (to avoid the limitations incurred
from binning time channels (15)) and a shift parameter.

MATERIALS AND METHODS
Rose bengal (Sigma-Aldrich, St. Louis) was purified by thin-layer
chromatography (15). 550 nm was the excitation wavelength. Time-resolved
data were collected using a homemade instrument (15). The full width at half-
maximum of the instrument function was typically ~120 ps. The data were
collected in 1024 channels (bins), providing a time resolution of 19.51 ps/
channel and a full-scale time window of 19.98 ns. Three different data sets
consisting of 50 fluorescence decay traces were collected with a total number
of counts of approximately 20, 200 and 20 000, respectively.

For a single emissive species, the signal from the excited state of the
fluorophore is represented by a single-exponential decay. If tj is the time
after the excitation corresponding to the jth time channel, then the fluores-
cence signal corresponding to that time is given by FðtjÞ / e�ðtj=sÞ, where
s is the mean excited-state lifetime (i.e. the lifetime) of the fluorophore.
Let C ¼ ðc1; c2; . . .; cKÞ be the set of counts obtained in the K = 1024
bins represented by the time axis, t ¼ ðt1; t2; . . .; tKÞ, where the center of
the jth bin is given by tj and the corresponding counts are given by cj.
Similarly, we experimentally measure the instrument response function
(IRF) and represent it as I ¼ ðI1; I2; . . .; IKÞ, where the Ij are the number
of counts of the IRF in the jth bin. The width of each bin is given by ε =
19.51 ps. In a discretized data collection system, as in time-correlated,
single-photon counting, the probability that a photon is detected in the jth

bin, pj, is proportional to the discrete convolution of the IRF and the
model for the fluorescence decay function, F(tj).

pj s; bð Þ /
Xj�j0�1

i¼1

IiF tj � ti � b
� � ¼ Xj�j0�1

i¼1

Iie
� tj�ti�b

s

� �
ð2Þ

where b is a parameter that assumes continuous values, j0 is an integer
and the relation between them is given by b = j0ε + f, where f lies
between 0 and ε, the time width of the bin. b describes the linear shift
between the instrument response function and the fluorescence decay
(15). If Ĉ ¼ ðĉ1; ĉ2; . . .ĉKÞ represents the predicted counts from the

convoluted exponential model, then the number of predicted counts in
the jth bin, ĉj, is given by:

ĉj ¼ CTpj s; bð Þ ¼ CT

Pj�j0�1
i¼1 Iie

� tj�ti�b

s

� �
PK

k¼1

Pk�j0�1
i¼1 Iie

� tk�ti�b
sð Þ� � ð3Þ

where CT ¼Pj cj, the total number of counts.
At this point, we note that many time-resolved technique based on sin-

gle-photon counting, as for example STED with a continuous-wave deple-
tion laser, implements “time-gating” (39,40). This gating eliminates the
early part of the decay. This might be advantageous for the analysis by the
traditional RM-based fitting methods since it avoids the problem of decon-
volution of the time-resolved data and other instrumental issues, for exam-
ple, those related to depletion. Loosing the early part of the decay,
however, may influence the estimation of the lifetimes, especially if there
are any shorter lifetime components. By incorporating the experimental
IRF in our analysis, we eliminated the instrumental artifact without loosing
the dynamic range. Time-gating also decreases the number of total photons
counts. We are exploring the effect of the number of total photon counts in
this study without sacrificing the early part of the decay.

The likelihood of the collected data and the Bayesian
formulation

The likelihood of observing a sequence of counts c1; c2; . . .; cKð Þwith prob-
ability p1; p2; . . .; pKð Þ for a given set of parameters s; bð Þ and subject to the
condition, CT ¼Pj cj, is given by the multinomial form (15–17):

P c1; c2; . . .; cK js;bð Þ ¼ CT !

c1!c2!. . .cK !

YK
j¼1

pj
� �cj ¼ CT !

YK
j¼1

pj
� �cj
cj!

ð4Þ

Using Eq. (3) for the probability, pj ¼ ĉj=CT , we obtain:

Pðc1; c2; . . .; cK js; bÞ ¼ CT !
YK
j¼1

ðĉj=CT Þcj
cj!

ð5Þ

Note that both the probability of a photon being detected in the jth

channel, pj, and the predicted counts, ĉj, in that channel are functions of
the parameters s and b. The experimental data, the “evidence” of photon-
counting events for a given parameter space b � s; bð Þ; are the observed
counts. Therefore, we have E � C ¼ c1; c2; . . .; cKð Þ; and Eq. (5) can be
rewritten as:

PðEjbÞ ¼ CT !
YK
j¼1

ðĉj=CTÞcj
cj!

ð6Þ

Gaussian and exponential prior distributions. The critical part of the
Bayesian analysis is identifying and selecting a suitable prior distribution
for the parameters. Since our analysis includes two independent
parameters, s and b, the prior distribution is:

P bð Þ ¼ P sð ÞP bð Þ: ð7Þ

We have shown that the estimated mean lifetime of a fluorophore
approximately follows a normal distribution (15,16). This conclusion is
also obtained from the central limit theorem (41,42), which states that
with a sufficiently large number of samples or of observations the distri-
bution will converge to a normal distribution. Therefore, a Gaussian func-
tion with a preselected mean and variance is arguably a good choice for
a prior distribution:

P sð Þ ¼ 2pr20
� ��1=2

e
� s�l0ð Þ2

2r2
0

� �
: ð8Þ

The “hyperparameters” (i.e. the parameters determining the distribu-
tion of the parameter s) l0 and r0 are the mean and the standard devia-
tion of the prior distribution for s. We also have tested the exponential
prior distribution for the mean lifetime with known hyperparameter, k0:
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P sð Þ ¼ k0e
�k0s; ð9Þ

where hsi ¼ 1=k0 is the mean of the prior distribution. For the shift
parameters, b, since we limit ourselves to a small range, �0.1 to 0.1 ns,
it is convenient to assume that their distribution is uniform. Therefore,
we take P bð Þ ¼ 1= bmax � bminð Þ, which is a constant and does not affect
the overall prior distribution, PðbÞ. From Eq. (1), we write:

PðbjEÞ ¼ PðsÞPðbÞPðEjbÞ
P Eð Þ ð10Þ

The marginal likelihood, P(E), is given its name from the process
of “marginalization,” which is an integration over all the parameters
(27):

PðbjEÞ ¼ PðsÞPðbÞPðEjbÞR
dsdbPðsÞPðbÞPðEjs; bÞ ð11Þ

Since PðbÞ is a constant, it can be eliminated from Eq. (11). Substitut-
ing PðsÞ from Eq. (8) and the expression for P(E|b) from Eq. (6), the
logarithm of the posterior for the Gaussian prior distribution can be writ-
ten as:

lnPðbjEÞ ¼ c1 �
ðs� l0Þ2

2r20
þ
XK
j¼1

cj ln ĉj ð12Þ

where all the terms that are independent of the parameters s and b are
condensed into the constant c1. Similarly, if we choose the exponential
prior distribution for the mean lifetime given in Eq. (9), we have:

lnPðbjEÞ ¼ c2 � k0sþ
XK
j¼1

cj ln ĉj; ð13Þ

where c2 is another constant, independent of the parameters s and b.
Maximization, therefore, of the logarithm of the posterior probability dis-
tribution in Eqs. (12) and (13) provides the optimum values of the
parameters.

Dirichlet prior distribution. Since the joint probability distribution
given in Eq. (4) is in multinomial form, the Dirichlet prior (43–49)
distribution is a natural choice for estimating the probability of the
channels because it forms a conjugate prior (48,49) with the multinomial
distribution insofar as it combines with the likelihood function to form a
posterior distribution that belongs to same Dirichlet family. Thus,
analytical solutions for the parameters can be easily formulated. The
process for extracting the lifetime from the estimated probabilities of the
channels is the following. We rewrite the likelihood distribution function
from Eq. (4) as P(c|p) in the following by considering the probabilities
of the channels as unknown parameters given by p ¼ ðp1;p2; . . .;pKÞ,
where ∑j pj = 1.

PðcjpÞ ¼ CT !
YK
j¼1

ðpjÞcj
cj!

: ð14Þ

Let a ¼ a1; a2; . . .; aKð Þ be the “precounts” (virtual counts (48) or
pseudo counts (49)) of the channels with probabilities p1;p2; . . .;pKð Þ
before the evidence is collected; and let the sum of all “precounts” be
∑j aj = AT. Then, the Dirichlet prior distribution is:

PðpjaÞ�D a1; a2; . . .; aKð Þ ¼ CðATÞQK
j¼1 CðajÞ

YK
j¼1

paj�1
j ð15Þ

The “precounts,” a, function as hyperparameters for the p. The
Dirichlet prior mean and variance are given by EðpjÞ ¼ aj=AT and
VarðpjÞ ¼ ajðAT � ajÞ=A2

T ðAT þ 1Þ; respectively (43).
The posterior is given by

P pjc;að Þ/P pjað ÞP cjpð Þ�D a1þc1;a2þc2; . . .;aKþcKð Þ

¼ C AT þCTð ÞQK
j¼1C ajþcj

� �YK
j¼1

pajþcj�1
j ð16Þ

and the posterior mean is given by

EðpjjcÞ ¼ aj þ cj
AT þ CT

¼ AT

AT þ CT
hj þ CT

AT þ CT
/j ð17Þ

where, hj ¼ EðpjÞ ¼ aj=AT and /j = cj /CT. The posterior mean is thus
the weighted average of the prior mean hj and the sample mean /j with
respect to the total “precounts” and the total experimental counts, respec-
tively (43,45). The most important aspect of the Dirichlet prior is that,
unlike the Gaussian and exponential priors, it does not combine the prior
distribution of the lifetime parameter (s) directly in the estimation.
Rather, the method of employing a Dirichlet prior evaluates the expected
probability of the channels given the experimental counts.

In order to find the lifetime parameter, the bin-averaged time of the
photon counts data was evaluated from the posterior and then compared
with the same quantity calculated from the convoluted model. In order to
do this, first, one needs to estimate the “precounts” of the channels. For a
given set of initial parameters (sint, bint), we propose to distribute the total
number of experimental counts CT into the K bins to estimate
a ¼ ða1; a2; . . .; aKÞ as follows, using Eq. (3):

aj ¼ CTpj sint; bintð Þ ¼ CT

Pj�j0�1
i¼1 Iie

� tj�ti�bint
sint

� �
PK

k¼1

Pk�j0�1
i¼1 Iie

� tk�ti�bint
sint

� � ! ð18Þ

where ∑j aj = AT = CT. The expectation values of the bin probabilities
pj are then calculated using Eq. (17) for all the channels. Let tav represent
the bin-averaged time calculated from the expectation value of the bin
probability. Therefore,

tav ¼
XK
j¼1

tjEðpjjcÞ ¼
XK
j¼1

tj
aj þ cj
AT þ CT

ð19Þ

Similarly, for a given set of values of the parameters (s, b), we can
define another bin-averaged time (tav0 ) for the convoluted model using the
form of the probability pj given in Eq. (3):

t0av ¼
XK
j¼1

tjpj s; bð Þ ¼
XK
j¼1

tj

Pj�j0�1
i¼1 Iie

� tj�ti�b

s

� �
PK

k¼1

Pk�j0�1
i¼1 Iie

� tk�ti�b
sð Þ� � ð20Þ

Theoretically, the values of these two bin-averaged times (tav and tav0 )
should be equal for the ideal data without any noise. Therefore, for
experimental data we can minimize the absolute difference (Dabs)
between tav and tav0 as shown in Eq. (21) to obtain the optimum values
of the parameters (sopt, bopt).

Dabs ¼ tav � t0av
�� �� ð21Þ

The obtained optimal values are set as the new initial parameters,
sint; bintð Þ ¼ sopt; bopt

� �
and the entire procedure is repeated for several

iterations until the results converge to a preset tolerance.

Computational methods

The optimizations of the posterior distributions given in Eqs. (12) and
(13) are performed using codes written in MATLAB. (These codes are
provided in the SI.) The GlobalSearch toolbox in MATLAB uses the
“fmincon” solver to minimize the objective function with respect to the
parameters; and in each calculation, a global minimum is reached. The
ranges of the parameters s and b are assigned as 0.01 to 1.5 ns and �0.1

Photochemistry and Photobiology 3



to 0.1 ns, respectively. Within the specified ranges, we run our in-house
routine with different initial values of the parameters and always retrieve
the same results through the third decimal place.

Gaussian and exponential priors. Both Eqs. (12) and (13) depend on
the initial values of the hyperparameters. We employ two schemes to
assign the values of the hyperparameters. In the first, we use identical
prior hyperparameters (i.e. fixed l0 and r0 for the Gaussian prior or fixed
k0 for the exponential prior) for all the fifty decay traces in a set. In the
second, we update the prior hyperparameters for the analysis of Nth

decay trace using the calculated statistics of the results obtained from all
the analyzed N � 1 decay traces of that set according to the Eq. (22)
given below. In the second scheme, we update the mean and the standard
deviation after the analysis of 1 and 5 decay traces, respectively, to
obtain sufficient statistics:

ðl0ÞN ¼ 1
N � 1

XN�1

r¼1

sr; for all N[ 1

ðr0ÞN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2

XN�1

r¼1

sr � ðl0ÞN

 �2

vuut ; for all N[ 5

ðk0ÞN ¼ 1=ðl0ÞN ; for all N[ 1

ð22Þ

In both schemes, different combinations of the initial values of the
hyperparameters are assigned.

Dirichlet prior. As shown in Eq. (21), the absolute difference
between tav and t0av is minimized to obtain the new set of initial
parameters sint; bintð Þ ¼ sopt; bopt

� �
. The change of the value of the

lifetime parameter is monitored; and convergence is obtained if the
change between two successive iterations, ds, is less than a preset
tolerance value, which we set to dstol = 10�4 ns. If b\10�4 in an
iteration, then b is set to zero. (We find b � 0 using the maximum
likelihood estimation and other Bayesian analyses considered here for our
data sets. Setting b = 0 simplifies the computation.) All the calculations
converged in ≤50 iterations. To test the influence of the initial conditions,
the parameter space for the lifetime has been expanded (0.001 to 15 ns),
and various initial values of sint are chosen within that range. In all
cases, the results converge to the same lifetime value.

RESULTS AND DISCUSSION

Gaussian and exponential priors

We assign the initial values of the hyperparameters for a decay
trace and those values are mentioned in the corresponding figures
and tables. After obtaining the results from a certain number of
traces, we calculate the statistics of the results for all the decay
traces considered up to that point using Eq. (22). The calculated
statistics provide the hyperparameters for the subsequent analysis
of the remaining decay traces. After each step, a new set of hyper-
parameters is obtained. Estimated lifetimes using this scheme are
presented in Fig. 1 for all 50 decay traces for each set of data hav-
ing a total number of 20, 200 and 20 000 counts, respectively.
Each panel is labeled with the initial values of l0 and r0. The his-
tograms of the lifetimes obtained by using Gaussian and exponen-
tial priors with different sets of initial hyperparameters are given in
Fig. 2. Statistics are summarized in Table 1.

For a Gaussian prior, where r0 = 0.5 ns, the results converge to
the correct mean value as more and more decay traces are analyzed
for a data set. As a result, the distribution of the estimated lifetimes
becomes very narrow, with standard deviations of 8%, 2% and less
than 1% of the mean lifetime for the data sets with total number of
20, 200 and 20 000 counts, respectively, as shown in Fig. 2a and
Table 1. The identical-prior counterpart (see Supporting Informa-
tion) has much wider distributions, as noted in the previous sec-
tion. As in the identical-prior counterpart, however, the estimated
lifetime is not very sensitive to the initial values of the prior mean,

l0, when the initial value of the prior standard deviation r0 is wide.
For an exponential prior, the convergence is not as rapid as in the
case of the Gaussian prior using this strategy (Fig. 2b). Again, the
initial choice of k0 has no influence on the estimated lifetime for
the three data sets. These results also suggest that the Gaussian
prior is preferable to the exponential prior.

This example of updating the prior distribution using the
results from data sets with the same number of total counts is
purely illustrative. The point is that the fitting results can be
improved by employing data collected using similar experimental
conditions and choosing the prior hyperparameter accordingly.
Once obtained, higher-quality data (e.g. from a decay trace hav-
ing 20 000 total counts) can be used to extract the hyperparame-
ters for the prior when analyzing lesser-quality data (e.g. from a
decay trace having 20 total photon counts). Further updating of
the prior might even be unnecessary, since it is possible that one
data set of sufficiently high quality can provide a suitable prior.
Such higher-quality data sets may be obtained from bulk solu-
tions or from imaging data from STED experiments, for exam-
ple, using pixels of higher intensity where the experimental
conditions and fluorophore environment are similar.

Figure 1. Estimated lifetimes of all fifty decay traces obtained by the
Bayesian analysis where priors are updated following Eq. (22). The
results using a Gaussian prior are shown in column (a); and the results
from an exponential prior, in column (b). Corresponding hyperparameters
are given at the top of each panel.
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Dirichlet prior

Using the strategy of minimization of the absolute difference
between two bin-average time (tav and t0av) given in Eq. (21) for
the Dirichlet prior, each of the decay traces was analyzed; and
convergence was obtained when ds\10�4 ns. The lifetimes of
the individual traces are given in Figure S3 for all the decay

traces. The histograms of the lifetimes obtained from an analysis
employing the Dirichlet prior are given in Fig. 3 for all the data
traces for a given initial condition. The statistics of the results
for the fifty decay traces of each set are summarized in Table 2.
The value of the initial lifetime (sint), which has been used to
estimate the “precounts” (a) for the Dirichlet prior at the begin-
ning of the iteration, is 0.4 ns; and it is given in Fig. 3, Figure S3
and Table 2.

To test the influence of the initial value, the parameter space
for the lifetime was expanded (0.001 ns ≤ sint ≤ 15 ns), and var-
ious initial values of sint are chosen within that range. In all
cases, the results converge to the same lifetime value. An exam-
ple is shown in Figure S4, where the convergence is tested with
various initial conditions (sint) for a representative data trace ran-
domly chosen from each of the data set with total number of
counts 20, 200 and 20 000, respectively.

It can be seen (Tables 2 and S1) that the mean and the stan-
dard deviation of the lifetimes obtained for all the fifty decay
traces in a set using a Dirichlet prior are comparable to those
obtained using a Gaussian prior when r0 is 0.5 ns in the case of
the three values (0.2 ns, 0.5 ns and 1.0 ns) of l0. When r0 is
0.3 ns, the statistical results of the lifetimes are comparable to
those we obtained from the Dirichlet prior for all cases except
that where l0 is 1.0 ns and the data set has 20 total counts. Here,
the Gaussian prior yields 0.6 � 0.1 ns and the Dirichlet prior
yields 0.5 � 0.1 ns. As mentioned above, the statistical results
of the lifetimes for the Gaussian prior analysis depend on the
value of l0 when r0 is 0.1 ns for the data set with a total num-
ber of counts of 200 or less. On the other hand, the statistical
results of the lifetimes obtained from the Dirichlet prior analysis
are comparable to those we obtained using an exponential prior
for all cases except that where the exponential prior parameter
(k0) is 5.0 ns�1 and the data set has 20 total counts. Here, the
exponential prior yields 0.4 � 0.1 ns.

Thus, the advantage of employing a Dirichlet prior is not so
much for the result it yields but rather because its use does not
require any a priori knowledge of the lifetime of the sample.
The change of the value of the lifetime parameter between two
successive iterations, ds, should converge to yield the optimized
results from any given starting point (initial value) for all the
three data sets we have considered with total number of counts
20, 200 and 20 000, respectively. The Gaussian prior, on the
other hand, can yield much smaller standard deviations, but its
use requires prior knowledge of the parameters. In the case of
the exponential prior, the initial condition (the value of the
hyperparameter, k0) has little influence on the estimated lifetimes
for the data set with a total count number of 20. The Dirichlet
prior, being a natural conjugate prior for the multinomial distri-
bution, combines with the joint probability of the data obtained
in the photon-counting experiments to estimate the posterior of
channel probability parameters analytically. It also differs signifi-
cantly from the Gaussian and exponential prior cases in how the
parameters are evaluated.

CONCLUSIONS
We have formulated and demonstrated the usefulness of a Baye-
sian approach for analyzing time-correlated, single-photon–count-
ing data to estimate the mean fluorescence lifetime of a well-
characterized fluorophore, rose bengal. Although the exponential

Figure 2. Histograms of the estimated lifetimes of all fifty decay traces
obtained by the Bayesian analysis using updated priors following
Eq. (22). Column (a) represents the results using a Gaussian prior; and
column (b), the results using an exponential prior. Corresponding hyper-
parameters are given at the top of each panel. The mean and the standard
deviation of the estimated lifetime are given in each histogram.
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prior is less sensitive to the initial values of the hyperparameters,
the Gaussian prior yields a much narrower distribution of the
estimated lifetime and, thus, a more precise value of the retrieved
value of the fluorescence lifetime. The greatest advantage, how-
ever, of the Dirichlet prior is that for the cases we investigated,
the same optimized results are obtained regardless of the initial
conditions for the prior parameters. Thus, an analysis strategy is
suggested in which parameter space can rapidly be searched with
the Dirichlet prior, and a subsequent, more refined search may
be carried out with a Gaussian or exponential prior, if necessary.
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lyzed using a Dirichlet prior with various initial values (sint).

Table S1. Fitting results for three sets of 50 decay traces
employing a Bayesian analysis using identical prior distributions.

REFERENCES

1. O’Connor, D. V. and D. Phillips (1984) Time Correlated Single
Photon Counting. Academic Press Inc., London.

2. Bastiaens, P. I. and A. Squire (1999) Fluorescence lifetime imaging
microscopy: Spatial resolution of biochemical processes in the cell.
Trends Cell Biol. 9, 48–52.

3. Elangovan, M., R. Day and A. Periasamy (2002) Nanosecond fluo-
rescence resonance energy transfer-fluorescence lifetime imaging
microscopy to localize the protein interactions in a single living cell.
J. Microsc. 205, 3–14.

4. Tinnefeld, P., V. Buschmann, D. P. Herten, K. T. Han and M. Sauer
(2000) Confocal fluorescence lifetime imaging microscopy (FLIM) at
the single molecule level. Single Mol. 1, 215–223.

5. Gerritsen, H., M. Asselbergs, A. Agronskaia and W. Van Sark
(2002) Fluorescence lifetime imaging in scanning microscopes:
Acquisition speed, photon economy and lifetime resolution. J.
Microsc. 206, 218–224.

6. Lee, M., J. Tang and R. M. Hochstrasser (2001) Fluorescence life-
time distribution of single molecules undergoing F€orster energy
transfer. Chem. Phys. Lett. 344, 501–508.

7. Scholes, G. D. (2003) Long-range resonance energy transfer in
molecular systems. Annu. Rev. Phys. Chem. 54, 57–87.

Table 1. Fitting results for three sets of 50 decay traces employing a Bayesian analysis using updated prior distributions.

Total number of counts Mean lifetime � one standard deviation (ns)*

Gaussian prior l0 = 0.2 ns, r0 = 0.5 ns l0 = 0.5 ns, r0 = 0.5 ns l0 = 1.0 ns, r0 = 0.5 ns
20 0.48 � 0.04 0.48 � 0.04 0.49 � 0.04
200 0.49 � 0.01 0.49 � 0.01 0.49 � 0.01
20 000 0.489 � 0.001 0.489 � 0.001 0.489 � 0.001
Exponential prior k0 = 5.0 ns�1 k0 = 2.0 ns�1 k0 = 1.0 ns�1

20 0.5 � 0.1 0.5 � 0.1 0.5 � 0.1
200 0.49 � 0.03 0.49 � 0.03 0.49 � 0.03
20 000 0.490 � 0.004 0.490 � 0.004 0.490 � 0.004

*Mean lifetime � one standard deviation (ns) of fifty decay traces calculated using a Bayesian analysis for three data sets with a total number of counts
of 20, 200 and 20 000, respectively. The priors for a data trace in a set are updated using the statistics of the results of all the analyzed decay traces of
that set, as given in Eq. (22). The type of prior and the initial values of the hyperparameters are given in the shaded rows.

Figure 3. Histograms of the estimated lifetimes of all fifty decay traces
obtained by the Bayesian analysis using a Dirichlet prior distribution.
The initial values of the lifetime, sint, and the estimation of the “pre-
counts” are given at the top of the panel. The mean and the standard
deviation of the estimated lifetimes are given in each histogram.

Table 2. Fitting results for three sets of 50 decay traces employing a
Bayesian analysis using Dirichlet prior distributions.

Total number of counts Mean lifetime � one standard deviation (ns)*

Dirichlet prior sint ¼ 0:4 ns, aj = CTpj
20 0.5 � 0.1
200 0.50 � 0.04
20 000 0.489 � 0.004

*Mean lifetime � one standard deviation (ns) of fifty decay traces calcu-
lated using a Bayesian analysis for three data sets with a total number of
counts of 20, 200 and 20 000, respectively. The absolute difference
between tav and t0av shown in Eq. (21) is minimized to obtain optimum
values of the lifetime, and the convergence is obtained if the change
between two successive iteration, ds < 10-4 ns. The initial parameter, sint,
and the estimation of “precounts” are given in the shaded row.

6 Kalyan Santra et al.



8. Van Der Meer, B. W., G. Coker and S.-Y. S. Chen (1994) Reso-
nance Energy Transfer: Theory and Data. VCH, New York.

9. Thompson, N. L. (2002) Fluorescence Correlation Spectroscopy.
Springer, Boston, MA.

10. Elson, E. L. and D. Magde (1974) Fluorescence correlation spec-
troscopy. I. Conceptual basis and theory. Biopolymers 13, 1–27.

11. Magde, D., E. L. Elson and W. W. Webb (1974) Fluorescence corre-
lation spectroscopy. II. An experimental realization. Biopolymers 13,
29–61.

12. Lesoine, M. D., U. Bhattacharjee, Y. Guo, J. Vela, J. W. Petrich and
E. A. Smith (2013) Subdiffraction, luminescence-depletion imaging
of isolated, giant, CdSe/CdS nanocrystal quantum dots. J. Phys.
Chem. C 117, 3662–3667.

13. Lesoine, M. D., S. Bose, J. W. Petrich and E. A. Smith (2012)
Supercontinuum stimulated emission depletion fluorescence lifetime
imaging. J. Phys. Chem. B 116, 7821–7826.

14. Syed, A., M. D. Lesoine, U. Bhattacharjee, J. W. Petrich and E. A.
Smith (2014) The number of accumulated photons and the quality of
stimulated emission depletion lifetime images. Photochem. Photo-
biol. 90, 767–772.

15. Santra, K., J. Zhan, X. Song, E. A. Smith, N. Vaswani and J. W.
Petrich (2016) What is the best method to fit time-resolved data? A
comparison of the residual minimization and the maximum likeli-
hood techniques as applied to experimental time-correlated, single-
photon counting data. J. Phys. Chem. B 120, 2484–2490.

16. Santra, K., E. A. Smith, J. W. Petrich and X. Song (2017) Photon
counting data analysis: Application of the maximum likelihood and
related methods for the determination of lifetimes in mixtures of rose
Bengal and Rhodamine B. J. Phys. Chem. A 121, 122–132.

17. Baker, S. and R. D. Cousins (1984) Clarification of the use of chi-
square and likelihood functions in fits to histograms. Nucl. Instr.
Meth. Phys. Res. 221, 437–442.

18. Fereidouni, F., A. Esposito, G. Blab and H. Gerritsen (2011) A mod-
ified phasor approach for analyzing time-gated fluorescence lifetime
images. J. Microsc. 244, 248–258.

19. Schrimpf, W., A. Barth, J. Hendrix and D. C. Lamb (2018) Pam: A
framework for integrated analysis of imaging, single-molecule, and
ensemble fluorescence data. Biophys. J . 114, 1518–1528.

20. Digman, M. A., V. R. Caiolfa, M. Zamai and E. Gratton (2008) The
phasor approach to fluorescence lifetime imaging analysis. Biophys.
J . 94, L14–L16.

21. Colyer, R. A., C. Lee and E. Gratton (2008) A novel fluorescence
lifetime imaging system that optimizes photon efficiency. Microsc.
Res. Techniq. 71, 201–213.

22. Koch, K.-R. (1990) Bayes’ Theorem. Springer, Berlin, Germany.
23. Bishop, C. M. (2006) Pattern Recognition and Machine Learning.

Springer, New York, NY.
24. Lindley, D. V. (1991) Making Decisions. John Wiley & Sons, Lon-

don, UK.
25. Bretthorst, G. L. and U. V. Toussaint. The maximum entropy

method of moments and Bayesian probability theory. Vol. 1553, pp.
3–15. AIP, Proceedings of the AIP Conf. Proc. 2013.

26. Wakefield, J. (1996) The bayesian analysis of population pharma-
cokinetic models. J. Am. Stat. Assoc. 91, 62–75.

27. Bretthorst, G. L. (1990) An Introduction to Parameter Estimation
using Bayesian Probability Theory. Springer, Dordrecht, Nether-
lands.

28. Lai, W., X. Liu, W. Chen, X. Lei, X. Tang and Z. Zang (2015)
Transient multiexponential signals analysis using Bayesian deconvo-
lution. Appl. Math. Comp. 265, 486–493.

29. Barber, P., S. Ameer-Beg, S. Pathmananthan, M. Rowley and A.
Coolen (2010) A Bayesian method for single molecule, fluorescence
burst analysis. Biomed. Opt. Express. 1, 1148–1158.

30. Kaye, B., P. J. Foster, T. Y. Yoo and D. J. Needleman (2017)
Developing and testing a Bayesian analysis of fluorescence lifetime
measurements. PLoS ONE 12, e0169337.

31. Van Dyk, D. A., A. Connors, V. L. Kashyap and A. Siemiginowska
(2001) Analysis of energy spectra with low photon counts via Baye-
sian posterior simulation. Astrophys. J. 548, 224.

32. Rowley, M. I., A. C. Coolen, B. Vojnovic and P. R. Barber (2016)
Robust Bayesian fluorescence lifetime estimation, decay model selec-
tion and instrument response determination for low-intensity FLIM
imaging. PLoS ONE 11, e0158404.

33. Malave, P. and A. Sitek (2015) Bayesian analysis of a one-compart-
ment kinetic model used in medical imaging. J. Appl. Stat. 42, 98–113.

34. Borsuk, M. E. and C. A. Stow (2000) Bayesian parameter estimation
in a mixed-order model of BOD decay. Water Res. 34, 1830–1836.

35. Guo, S.-M., J. He, N. Monnier, G. Sun, T. Wohland and M. Bathe
(2012) Bayesian approach to the analysis of fluorescence correlation
spectroscopy data II: Application to simulated and in vitro data.
Anal. Chem. 84, 3880–3888.

36. He, J., S.-M. Guo and M. Bathe (2012) Bayesian approach to the
analysis of fluorescence correlation spectroscopy data I: Theory.
Anal. Chem. 84, 3871–3879.

37. Rowley, M. I., P. R. Barber, A. C. Coolen and B. Vojnovic. Baye-
sian analysis of fluorescence lifetime imaging data. Vol. 7903, pp.
790325–790325. International Society for Optics and Photonics, Pro-
ceedings of the SPIE BiOS2011.

38. Lubrano, M. Bayesian analysis of nonlinear time series models with a
threshold. Vol. 11, pp. 79. Cambridge University Press, Proceedings
of the Nonlinear Econometric Modeling in Time Series: Proceedings
of the Eleventh International Symposium in Economic Theory 2000.

39. Moffitt, J. R., C. Osseforth and J. Michaelis (2011) Time-gating
improves the spatial resolution of STED microscopy. Opt. Express
19, 4242–4254.

40. Vicidomini, G., G. Moneron, K. Y. Han, V. Westphal, H. Ta, M.
Reuss, J. Engelhardt, C. Eggeling and S. W. Hell (2011) Sharper
low-power STED nanoscopy by time gating. Nat. Methods 8, 571.

41. Dobrushin, R. L. (1956) Central limit theorem for nonstationary mar-
kov chains. I. Theory Probab. Appl. 1, 65–80.

42. Feller, W. (1968) An Introduction to Probability Theory and its
Applications: Volume I. John Wiley & Sons, Inc., London-New
York-Sydney-Toronto.

43. Agresti, A. (2010) Analysis of Ordinal Categorical Data. John Wiley
& Sons, Hoboken, NJ.

44. Minka, T. P. (2000) Estimating a Dirichlet distribution. Technical
report, MIT.

45. Agresti, A. and D. B. Hitchcock (2005) Bayesian inference for cate-
gorical data analysis. Stat. Meth. Appl. 14, 297–330.

46. Basu, D. and D. B. Hitchcock (1982) On the Bayesian analysis of
categorical data: The problem of nonresponse. J. Stat. Plann. Infer-
ence 6, 345–362.

47. Huang, J. (2005) Maximum likelihood estimation of Dirichlet distri-
bution parameters. CMU Technique Report.

48. Minka, T. P. (2003) Bayesian inference, entropy, and the multino-
mial distribution. Online tutorial.

49. Murphy, K. P. (2006) Binomial and Multinomial Distributions.
University of British Columbia, Tech. Rep.

Photochemistry and Photobiology 7


