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ABSTRACT 

This thesis shows that the number of (0,1)-matrices wit h n rows and k columns uniquely 

reconstructible from their row and column sums are the poly-Bernoulli numbers of negative 

index, BA-k). Two proofs of this main theorem are presented giving a combinatorial bijection 

between two poly-Bernoulli formula found in the literature. Next, some connections to Fermat 

are proved showing that for a positive integer n and prime number p 

and that for all posit ive integers {x, y , z, n } greater than two there exist no solutions to t he 

equation: 

B (- n ) + B (- n ) = B (- n) 
x y z . 

In addition directed graphs with sum reconstructible adjacency matrices are surveyed , and 

enumerat ions of similar (0,1)-matrix sets are given as an appendix . 
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CHAPTER 1. General Introduction 

This thesis concerns the set of binary matrices that can be described uniquely by their row 

and column sums. 

Definition 1 (Lonesum matrix). A Lonesum matrix is a binary matrix that can be uniquely 

reconstructed from its row and column sums. 

In chapter 1 we will give historical perspective, and define terms the reader may not be 

familiar with. Chapter 2 gives two proofs that the number of Lonesum matrices is equal to the 

poly-Bernoulli numbers of negative index, then points out some relations between Lonesum 

matrices and Fermat's last and little theorems. Our third chapter will explore directed graphs 

with Lonesum adjacency matrices. Chapter 4 counts similar classes of matrices using brute 

force computation. 

1.1 Motivation 

We are given the popular Milton Bradley game BattleshipTM. It consists of a rectangular 

array of coordinates, and a collection of vessels ranging from aircraft carriers to submarines. 

How many configurations of vessels can we reconstruct given only the number of squares 

covered by a ship in each row and column? In general how many (0,1)-matrices can we 

reconstruct given their row aud column sums? 

1.2 Historical Perspective 

The modern foundations of binary matrix reconstruction can be traced to Herb Ryser, 

Delbert Ray Fulkerson, and Richard Brualdi:[44],[11], [18],[23],[17],[24]. The first question we 
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ask ourselves is: "What condition is needed for a (0,1)-matrix to be reconstructible from its 

row and column sum vectors?" Fortunately, we have the following theorem: 

Definition 2 (interchange operation). An interchange operation one of the following: re­

placing the sub-matrix (~6) with (6~), or replacing the sub-matrix (6~) with (~6). Note that row 

and column sum vectors stay unchanged after interchange operations are preformed. 

Theorem 1 (Ryser 1957[44]). Any (0,1}-matrix with row sum vector R and column sum 

vector S can be transformed into any other (0,1}-matrix with row s·um vector R and column 

sum vector S via interchange operations. 

This give rise to the notion of a Ryser class: 

Definition 3 (Ryser Class). A Ryser Class is the set of (0,1}-matrices with the same row 

sum vector, and the same column sum vector.(50} 

For example, the Ryser Class of (~66) is { (~66), (6~6), (66~)} 

By Theorem 1, the Ryser classes can be represented as graphs where each vertex is a matrix 

in the Ryser class, and each edge is an interchange operation. The analysis of these graphs is 

an interesting area of research, but it is outside the scope of this thesis. 

For this thesis we will be interested in Ryser classes of size one. By Theorem 1 we can 

deduce that a (0,1)-matrix will be uniquely determined by its row and column sums if and 

only if no interchange operation can be preformed on the matrix. 

Definition 4 (Forbidden Minor). A forbidden minor is a sub-matrix of the form (~6) or 

(6~) 

1.3 Graph Reconstruction 

Graph reconstruction is the study of how little, or what kinds of information are needed to 

construct a graph. Here are two major open problems: 

Open Problem 1 (Vertex Reconstruction). For an unlabeled simple graph with > 3 

vertexes can we reconstruct it uniquely given only the single vertex deleted subgraphs ? 
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Open Problem 2 (Edge Reconstruction). For an unlabeled simple graph with 2 4 edges 

can we reconstruct it uniquely given only the single edge deleted subgraphs? 

The edge reconstruction problem has been proven true for graphs that contain only 2 vertex 

degrees [40], and graphs that have no two vertexes i,j such that deg(vi)=deg(vj + 1). 

1.4 Applications 

There are four areas of interest that directly benefit from this thesis. First is the area of 

Discrete Tomography. Discrete Tomography deals with the reconstruction of discrete valued 

images from density information. For our purposes we view a (0,1)-matrix as an image formed 

by a 2D black and white pixel array. We are interested in how many images exist that we can 

uniquely reconstruct by using only the number of black pixels in every row and column. 

Discrete Tomography is an active area of study. As we will prove later, the number of 

n x k (0,1)-matrices that are sum reconstructible is very small compared to all 2nxk of them. 

Research is currently being conducted into approximations for non-exact constructions, and 

creating higher resolution scans by taking many density profiles. Refer to [32],[10] for more 

details. 

A second application is the simplification of number theory proofs. Instead of manipulating 

poly-Bernoulli numbers we will be able to do transformations on Lonesum matrices. As we will 

see in chapter 2 many proofs from the literature will be reduced from pages of manipulation 

to a few lines once we have shown that the number of Lonesum matrices of a given size is a 

poly-Bernoulli number of negative index. 

A third area is graph compression and reconstruction. We can view square Lonesum matri-

ces as adjacency matrices of directed graphs. A Lonesum adjacency matrix can be compressed 

by storing only the row and column sums. We get a compression ratio of 2n(l~)n, hinting, as we 

prove in chapter 2, that there are not many of them compared to the set of all binary matrices. 

The fourth area of interest is forbidden submatrix enumeration. Many combinatorial ob-

jects such as posets and labeled interval orders can be represented as digraphs that either avoid 

or force the inclusion of certain subgraphs. It is hoped that this research will aid the enurnera-
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tion of combinatorial structures with larger forbidden subgraphs in their graph representation. 

A good survey article of this topic is chapter 10 of [57], and this t hesis sheds light on Spinrad's 

open problem 10.1: "What is the number of h-free n by n matrices?" (The book defines has 

an induced 2 by 2 ident ity matrix.) Other applications of are perfect phylogenies[42][55], and 

electrical engineering[27]. 

1.5 The Stirling, Bernoulli, and poly-Bernoulli numbers 

Definition 5 (Stirling Numbers of the Second Kind). The Stirling numbers of the second 

kind are the number of ways to partition n elem ents into k non-empty subsets. 

We denote this the Stirling Numbers of the Second Kind by: 

{n} = (-l)k ~(- l) 1 (k)ln 
k k! L l 

l = O 

Table 1.1 Example: G} = 7 

{1, 2, 3} LJ{ 4} {1, 2, 4} LJ{3} 
{1,3, 4}LJ{2} {2, 3, 4} LJ{l} 
{1 , 2} LJ{3, 4} {1 , 3} LJ{2, 4} 
{1 ,4}LJ{2, 3} 

Definition 6 (Bernoulli numbers). The Bernoulli are denoted as B n, and are the coeffi-

C'ients in the formula 
xex oo :r:n 
--~B ­ex - 1 - L n n! . 

n = O 

They have the recursive formula 

~( )n-i (n) Bo = 1, B n = L - 1 i Bi. 
i = O 

Combinatorially the Bernoulli n-urnbers are an inclus'ion exclusion over the set of length n 

words, where the surn is taken over all words of length n with k distinct letters, and normalized 

by k + 1. 

B ernoulli numbers thus have the fo rmula 

n '{ n} 
En= L (- l)rn+n m . m . 

. rn + 1 
i = rn 
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Table 1.2 combinatorial interpretation of the B ernoulli numbers 

Bo= 1 0 
Bi= 

1 Uall 
2 2 

B2 = 
1 _Uaall + f{ab,ba}f 
6 2 3 

B3 = 0 li aaa ll _ I { aab,aba,baa,bab,bba} I + I { abc,acb,bac,bca,cab,cba} I 
2 3 4 

An interesting relation for the Bernoulli numbers is that: 

Where ((.r) is the famous Riemann Zeta Function 

Where: 

1 r)Q ux-1 
((x) = r(x) lo eu - 1 du 

r(x) = ! 00 tx- l e- tdt 
lo 

For the more combinatorially inclined one can think of r ( x) as a continuous version of the 

factorial function, because r( n + 1) = n!. 

The following is a $1000000 USD prize problem from the Clay Mathematics Institute, 

http: //www.claymath.org: 

Open Problem 3 (Riemann Hypothesis). Show that the only values of s over the complex 

numbers other than - 2, - 4, - 6, .. . such that ((s) = 0 have the form s= ~+xi, where i = A . 

An extension to the Bernoulli numbers defined by Kaneko in [33]: 

- (k) 
Definition 7 (poly-Bernoulli Numbers) . The poly-Bernoulli numbers are written as Bn 

and 

where Lik ( z ) denotes the formal power series: 

oo _m. 

I: ~ m 
1n = l 
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Kaneko notes that when we set k equal to one we get back the Bernoulli numbers: 

x 00 n 
~=~B( 1 ) ~ 
e x - l ~ n n ! 

n = O 

Fortunately, Kaneko also proves two combinatorial formulas. 

min (n ,k ) 

B (- k) = L (j ! )2 { ~+1 }{~+1 } 
n . J+l J+l 

]=0 

1.6 Poly-Bernoulli numbers in the literature 

Here is a short survey of poly-Bernoulli number results in the literature. 

Theore m 2 (Sy mmetry (Kaneko[33])). B~-k) = B k-n) 

Theorem 3 (A theorem of Vandiver). {33} 

p- 2 1 1 
B; 1 ) = ~ (1+-+ ... +- (rn+l) i) (modp) 

~ 2 rn 
1n = l 

(1.1) 

(1.2) 

Theore m 4 (A Clause n-von Staudt type theore m). (Arakawa and Kaneko) f6} Let 

k , p, n EN. Assume k 2: 2. Let p be a prime number satisfying k + 2 ::=; p ::=; n + 1. 

(i) If n = 0 (mod (p - 1) ), then pk B~k) is a p-adic integer and satis.fi es 

(i i) If n ¢. 0 (mod (p - 1)) , then pk- I B <t) is a p-adic integer. It satisfies 
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ifn = 1 mod (p - 1) } 

otherwise 

Also, in two articles [53],[52] Roberto Sanchez-Peregrino gives shorter proofs than Kaneko 

of equation 1.2. 

Some other articles where poly-Bernoulli numbers are cited include: [51], [1], [34], [41], and 

[39]. 
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CHAPTER 2. Poly-Bernoulli Numbers of Negative Index and Lonesum 

Matrices 

In this chapter we shall prove that the cardinality of t he set of n by k Lonesum matrices 

is the Poly-Bernoulli number B~ -k) . 

Here is a recap of a few definitions from the last chapter: 

Definition 8 (Forbidden Minor). A forbidden minor is a sub-matrix of the form (~6) or 

Definition 9 (Lonesum matrix). A Lonesum matri:r; is a (0,1)-matrix uniquely determined 

by its ordered row and column sum vectors. 

Definition 10 (poly-Bernoulli Numbers). The poly-Bernoulli numbers are written as B~k) 

and have the formula: 

B~ik) = t (-l)n+mm!{:}(m+ 1)- k 
rn= O 

2 .1 The sieve formula 

Hypothesis 1 (sieve formula). The number of distinct n x k Lonesum matrices is 

To simplify the proof we will turn it into a word count ing problem. 

Definition 11 (column alphabet). A column alphabet is a legal set of columns that can 

co-exist in a Lonesum (0,1)-matrix. 
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Definition 12 (Forbidden word). A forbidden word is an ordered list of { 0, 1} columns that 

when concatenated farm a forbidden minor. 

For example, the three symbol word (~i~) is allowed while the three symbol word (~g) is 

forbidden because it contains the forbidden minor (~6). 

Definition 13 (symbol weight). Symbol weight is the number of 1 's in a { 0,1} column. 

Lemma 1 (Symbol Weight). : No two symbols of the same weight occur in the same word 

of our language, unless they are the same symbol. 

Proof. Let S1 and S2 be symbols in our alphabet, S 1 -=f. S2, and weight(S1) = weight(S2). 

Since S1 -=f. S2 there must be a row where they have different values. Scanning both symbols 

from top to bottom find the first row where their weights differ and call it X. At this point the 

running total of one symbol weight is bigger than the other, so scan down to the row where 

their weights are equal again and call that row Y. Thus, we have (;~~:~\) or (;g:~\) . Since 

both are forbidden minors the lemma holds. We can't have two symbols of the same weight 

occur in the same word of our language unless they are the same symbol. D 

Observation 1 (Row Weight). By a similar argument no two rows have the same weight 

unless they are identical. 

Lemma 2 (Swap). Permuting rows or columns does not change m embership in the class of 

Lonesum matrices. 

Proof. Note that the forbidden minors are mirror images. Swapping either the rows or columns 

of one forbidden minor will give you the other. Thus, any permutation of rows or columns will 

still yield t he same muuber of forbidden minors. D 

By Lemma 1 every column alphabet must consist of symbols with unique weight. For 

convenience we will throw out the all zero and all 1 symbol until later. If we order the symbols 

of a size m - 1 alphabet in decreasing order of their weight and view the alphabet as a word 

every row will sum to an integer between zero and m. Thus, we have m distinct equivalence 

classes on the row weights. Partitioning the rows into m distinct equivalence classes, and 
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assigning equivalence classes values of a permutation of the integers 0 to m, the number of 

alphabets is (m) !{ ~}-

Alphabets containing m - 1 symbols will be a subset of the alphabets containing m symbols 

so we must do an inclusion exclusion to avoid over-counting. 

Thus summing over all size m - 1 alphabets not containing the all l's symbol or the all 

zeros symbol, writing all possible length k words over these alphabets along with the all l 's 

symbol and all zeros symbol, and doing inclusion exclusion to avoid over counting yields the 

formula 

Thus, we have proven the following theorem. 

Theorem 5 (Sieve formula). The number of distinct n x k Lonesum matrices is 

We can now use transformations on sets of Lonesum matrices to simplify proofs about 

the poly-Bernoulli Numbers of negative index. For instance, take this identity proved by 

Kaneko[33] using a few pages of algebra. It is now a one line proof given Theorem 5. 

Corollary 1 (Inversion). For any n , k 2 0 we have B~-k) = B k- n) 

Proof. Trnnspose the set of n x k Lonesum Matrices. Since (~6) and (b~) are duals under this 

transformation no forbidden matrices are added or deleted from our set. D 

2.2 The closed formula 

Recent work has went into finding cleaner proofs for a closed equation of the Poly-Bernoulli 

numbers [53][52]: 
Min(n ,k) 

L m! { n + 1}m!{k + 1} 
m + l rn + l 

m.=l 

Here we will give a combinatorial proof involving Lonesum matrices. 



11 

Hypothesis 2 (closed equation). 

Min(n ,k) 

B (-k)= ~ m!{n+l}m!{k+l} 
n ~ m+ 1 m+ 1 

1n=l 

and more specifically the number of Lonesum n x k (0,1)-matrices with exactly m distinct 

· l { n+l} l { k+l} nonzero rows is rn. m+l m. m + l . 

We want to show that the number of Lonesum n x k (0,1)-matrices is equal to the new 

equation, and that m parameterizes the number of distinct nonzero rows. 

Lemma 3 (Distinct row maps). If a Lonesum matrix has m distinct rows out of n then 

there are m!{;;;,} ways to map a set of m distinct nonzero rows if all rows are nonzero, and 

there are (m+ l)!{m~l} ways to map a set ofm distinct nonzero rows along with at least one 

copy of the zero row. 

Proof. This follows from having an onto function from an n set(matrix rows) to an m set( distinct 

row maps) along with an onto function from a n set (matrix rows) to an m + 1 (distinct row 

maps and the zero row) set. D 

Now we have the question of given all possible mappings of n rows, how many sets of rows 

do we have to map? 

Lemma 4 (Distinct m. row sets). The number of distinct m row sets is 

m! + (m + 1)! {k} { k } 
m m+l 

Proof. By the row weight lemma earlier in the chapter we know that rows have to obey a linear 

order, with row i less than row j when all 1 entries of row i are also contained in row j and 

row j has more 1 entries than row i. 

Use this ordering to sort our nonzero row sets from highest weight to lowest weight. Notice 

that we have m rows and each of them is nonzero. From the existence of a linear order at least 

one column must have m l's. Instead of writing out the whole row set we could represent it 

as a string of k numbers from zero to m representing column sums where at least one of the 

column sums is m. For example: 
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1 1 1 

1 1 0 

1 0 0 

could be written as {3,2, 1}. 

Thus, all row sets can be written as either an onto function from the k set of columns to 

the set of integers 1 to m , or as an onto function from the k set columns to the set of integers 

0 to m in the case we get an all zero column 

1 1 0 

1 0 0 

Thus, m!{!J will count the sets without a zero column, and (m + l)!{ (m~l) } will count row 

sets with at least one zero column. Thus the number of legal distinct nonzero m row sets is 

0 

Using the previous two lemmas we have: 

Lets do a little cleaning to get the form we want. Factor out the m! and we get: 

Now use the substitution {~} + (b + l){b:1} = {~!i}. 

m!{ n + 1}m!{k+1} 
m+l m+l 

Now we have a formula for the number of Lonesum (0,1)-matrices with exactly m distinct 

nonzero rows. 

Since the the number of set partit ions where the number of partitions is bigger than t he 

set is zero we only need to sum m up to lVIin(n, k). For the set of all n x k Lonesum matrices 

we theu get: 

Al in(n,k) 

B~-k) = L m!{ n + 1}m !{ k+1 } 
rn+l m+ l m=l 
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Thus we have proved the following theorem. 

Theorem 6 (closed equation). 

Min(n,k) 

B( - k) = L m!{ n+l }m!{k+l } 
n m+l m+l 

m=l 

and more specifically the number of Lonesum n x k (0,1)-matrices with exactly m distinct 

· I { n+ 1 } I { k+ l } nonzero rows ism. m + l m. m+l · 

Corollary 2 (Rank) . The number of n x k rank m Lonesum (0,1) -matrices is 

1{n+l} 1{k+l } m . m. m+l m+l 
Proof. Since they contain m distinct nonzero rows, and by the row weight lemma they must 

be linearly independent, the matrix has rank m. D 

2.3 Connections to Fermat's last theorem 

Before closing the chapter we would like to state one of our favorite open problems on 

language counting: 

Open Problem 4 (Combinatorial FLT) . Give a COMBINATORIAL proof of the following: 

Given three alphabets L x' Ly' L z with I Lx I = x, I Ly I = y, I L z I = z show that there is no 

bijection from L~ LJ L~ to L~ for n 2: 3, and every alphabet containing at least one letter. 

As you have noticed this is Fermat 's last theorem stated as a counting problem. Andrew 

Wiles proved this theorem in the mid 1990's, but relied on heavy number theory not known to 

Fermat. A simple combinatorial proof using mathematics plausibly known to Fermat would 

be interesting indeed. 

Ernst Kummer in the 1800's attempted to attack Fermat's last theorem with the Bernoulli 

numbers. His approach showed that for a prime number p, if p could not divide B~1 ), ... , B61l 

then p could not be an exponent satisfying Fermat's last theorem. 

There is also a related open problem[30]: 
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Open Problem 5 (Regular primes). A prime p is called regular if it does not divide any 

of B;;1, ... , B01 . Prove that there are an infinite number of regular primes. 

Note that we can encode the equation yn as the set of y x n (0,1)-matrices, where scanning 

from top to bottom in each column there are zero or more ones followed by all zeros. Thus we 

can think of yn as the set of y x n Lonesum (0,1)-matrices with unordered rows. 

Theorem 7 (Ordered FLT). There exist no integers x,y,z,n greater than 2 such that 

Proof. As above view the poly-Bernoulli numbers as the set of Lonesum (0,1)-matrices. For 

convenience let x :S y. By the pigeonhole principle we also have y j z. 

The assumption we wish to prove false is that we can create a bijection from the height x 

and height y Lonesum matrix sets to the height z Lonsum matrix set. 

Encode B~-n) into the set B1-n) by padding extra rows of zeros at the bottom until the 

height is y + 1. Encode B[- n) into B1-n) by letting them be the matrices in B~ with at least 

one nonzero value in the bottom row. 

We can set the bottom row to all ones and exactly copy over our matrices from B[- n) to 

the top of the matrix. The problem is that we also have the set of matrices where the last row 

is replaced with a nonzero row with at least one zero that does not induce a forbidden minor. 

For instance the all l's y x n matrix induces this. Thus we obtain the contradiction that the 

set Bi-n) is too large if it contains one more row than the y set, yet the z set have at least one 

more row to fit the x set. D 

Furthermore we can derive a cohort to Fermat 's little theorem stating aP =a (mod p). We 

will start with the main lemma of [3]. 

Lemma 5. Let S be a finite set, p be a prime number, and f(x) : S __, S be a function that 

has the property fP(:r:) = x for all elements x E S. Then ISi = IFI mod p where F is the 

number of .fixed points. 
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One could view the function f as a directed graph on elements in S consisting of disjoint 

length p cycles and loops. 

Theore m 8 (congruence ). Given a prime number p, and a positive integer n , 

B~-p) = 2n (mod p) 

Proof. Let S the set of n x p Lonesum (0,1)-matrices. Let f be the function that rotates the 

columns of a matrix once to the left. The matrices that are fixed points in this function are 

those consisting of all l 's and all zero rows. Their are 2n such matrices, so let F = 2n . From 

the above lemma 

JSI = JFI (mod p) 

Substituting for S and F we get 

D 
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CHAPTER 3. Related Graphs 

The following is intended to be a small survey of graphs with Lonesum adjacency matrices. 

Almost, if not all, of the results presented here can be found in the literature. 

3.1 Labeled Directed Graphs (with loops) 

First we will look at n by n Lonesum matrices with no restriction. 

Corollary 3 (Labeled Directed Graphs). The number of n by n labeled directed graphs 

uniquely reconstructible from their in and out degrees is B~ -n) 

Proof. By viewing the square (0,1)-matrix as an adjacency matrix the row and column sum 

vectors correspond to in and out degrees for each vertex. Thus, n by n Lonesum matrices 

are equivalent to labeled directed graphs uniquely reconstructible from their in and out degree 

vectors. From the previous chapter we know that the number of these matrices is B~ -n) . D 

3.2 Labeled Directed Graphs (without loops) 

How about labeled directed graphs without loops? This question was asked by D. Ray 

Fulkerson in his 1960 paper, "Zero-one matrices with zero trace" [18] 

In this case we restrict ourselves to square Lonesum matrices that have 0 down the main 

diagonal; Viai ,i = 0. Instead of enumerating them outright we will show that they are equivalent 

to labeled interval orders on n elements. In Sloane's database of integer sequences[56] this is 

sequence number A079144. 

Definition 14 (Interval Order). An interval order 'is the combinatorial object where a, b, c, d 

are distinct elements in a set I with two properties: 
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(i)Irrefiexive: a < a is not valid. 

(ii)Relativity:{ a < b, c < d} implies at least one of {a < d, c < b} 

Proposition 1 (Labeled Interval Orders on n Elements). Square Lonesum Matrices 

with 0 on the main diagonal are the set of labeled interval orders on n elem ents 

Proof. View the matrix as ai,j = 1 ? i < j . 

(i) is satisfied because ai,i = 0, thus we never have a < a 

(ii) is satisfied because we have no forbidden minors. 

Take the intervals a, b, e, f. The forbidden minor: 

< e f 

a 1 0 

b 0 1 

shows that a < e, b < f. It violates condition (ii) because a < f or b < e must exist . 0 

Observation 2 (Labe led Interval Order Enumeration). With the paper by Chen f13}, 

and another by Zagierf65} we can naively construct a closed formula: 

n 2k+l 
I = _1_ """' (n) . (- l )k+ l52k+l ~ """' ((- l )mm,!{ n + 1 }a ) 

n 24n L.__, k 12 L.__, m + 1 O,rn ' 
k = O in= O 

with ao,m = (-l) [m/4] * 2- [m/2J * 1 - 04,m.+1, 

and 04.i = 1 if 4 divides i , and zero otherwise. 

3.3 Simple Graphs 

T he set of Lonesum matrices that correspond the adjacency matrices of simple graphs is 

trivial. If ai,j = 1 then aj,i = 1 by symmet ry, and we get the forbidden minor: 
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a b 

a 0 1 

b 1 0 

Thus, the only matrix in this class is the all zero n by n matrix; t he empty graph. 

3.4 Simple Graphs (with loops) 

We now allow every vertex in our graph to have a loop. This is t he set of Lonesum n by n 

matrices with a· · =a ·· . i,J J ,i 

List the forbidden minors and their implications. Assume a, b, c, d are distinct vertexes: 

a b 

a 0 1 

b 1 0 

(1) Every edge is connected to a looped vertex. If the edge ab exists, but a loop on a or b does 

not, then we get the above forbidden minor. 

a b 

a 1 0 

b 0 1 

(2) Every two loops are connected by an edge. Two loops not connected by an edge forms the 

above forbidden minor. 

a c 

a 1 0 

b 0 1 
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(3}Every loop is distance :::; 1 from every edge. From the above forbidden minor, given the 

loops a and c we must also include at least one of the edges ac or ab. Either edge would make 

the distance between a and be at most one. 

a e 

a 0 1 

b 1 0 

(4)Any two edges sharing a non-loop vertex form a triangle. If a is a non-loop vertex, and 

ae, be are edges in the graph, then edge be must be added to avoid the above forbidden minor. 

e d 

a 1 0 

b 0 1 

(5)Every two non-adjacent edges are connected by an edge. Given the edges ae, bd we must 

inser t either edge be or edge ad to avoid the above forbidden minor. 

The resulting graph consists of a completely connected and looped center , surrounded by 

unlooped leaves. 

Theorem 9 (Labeled Lonesum Graphs) . The number of labeled graphs with a Lonesum 

adjacency matri.r on n vertexes is: 

G(n) = t[ (~) 2k (n-k) ] 
k= O 

Proof. Since the looped vertexes arc totally counected make a choice for each set of k looped 

vertexes. Next we must decide how to connect the remaining n - k vertexes to the looped 

vertexes. Each vertex has k possible edges to a looped ver tex,or 2kedge configurations. There 

are n - k vertexes that must make this choice , thus 2k*(n - k ) total edge configurations for every 

k set of looped vertexes. D 
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CHAPTER 4. Conclusion 

In this chapter we shall investigate future areas of research. 

4.1 Computational Results on forbidden sub-matrices 

The obvious continuation of this thesis is to start a program for the enumeration of (0,1)­

matrices that avoid a finite set of forbidden matrices. Even for the case of 2 x 2 forbidden 

matrices this is not an easy task. We have 216 different sets to inspect. To begin this we 

have written a program in C that does a depth first search of the matrix space branching for 

every possible (0,1) matrix and bounding by making sure the branch did not induce one of our 

forbidden submatrices. To prevent overflow the GNU GMP library was used to get arbitrarily 

large integers. Also, since the problem is intractable by brute force all computations were 

bounded by a time limit , usually 5-10 seconds per table entry on a Pentium4 l.8ghz Linux 

machine. Some of these numbers grew rather large, so the output 2: NUMBER means that 

the computation took too long to run and we produce a lower bound. These tables can be 

found in appendix A, and the source code is in appendix B. 

4.2 Labeled Poset Enumeration 

Open Problem 6 (Poset Enumeration [9]). How many posets are there on n elements for 

n greater than 1 (]? 

One very outstanding problem related to this thesis is the enumeration of labeled partially 

ordered sets. A partially ordered set on n elements can be viewed as an n x n (0,1) adjacency 

matrix A , where A i ,j /\ Aj.k =? Ai,k · Thus, the number of labeled sets on n elements is 
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equivalent to the number of n x n (0,1)-matrices with 1 on the diagonal that avoid permutations 

of the forbidden induced subgraphs: 

1 1 0 

0 1 1 

0 0 1 

1 1 0 

1 1 1 

0 0 1 

1 1 0 

0 1 1 

1 0 1 

1 1 0 

0 1 1 

1 1 1 

1 1 0 

1 1 1 

1 1 1 

It is our view that a program should be started to enumerate the number of labeled graphs 

that avoid small forbidden minors, and the pairwise intersection of the sets. Then, for com­

binatorial structures with an arbitrarily small finite set of forbidden minors we could use 

inclusion-exclusion to automatically come up with an enumerative formula for our new set of 

objects. 
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APPENDIX A. More forbidden (0 ,1) matricies 

T his appendix contains tables enumerating more classes of forbidden (0,1) matricies. The 

source code used can be found in the next appendix. Our program takes as input a list of 

forbidden (0,1) matricies and does a depth first search to count matricies that avoid them. 

More stuff 

We start by looking at the (126) sets of forbiden 2 x 2 matrix pairs: 

Table A.I Poly-Bernoulli Numbers of Negative Index B~-k) Avoids 
(~6) , (6~) OEIS A099594,A048163 

f(n ,k) 2 3 4 5 6 7 
2 14 46 146 454 1394 4246 
3 46 230 1066 4718 20266 85310 
4 146 1066 6902 41506 237686 1315666 
5 454 4718 41506 329462 2 2240224 2 1010101 
6 697 20266 237686 2270762 2 990099 2 800080 
7 2123 85310 1315666 2 1450145 2 800080 2 660066 

Table A.2 A voids (6~) 

f(n,k) 2 3 4 5 6 7 
2 15 54 189 648 2187 7290 
3 54 330 1888 10304 54272 278016 
4 189 1888 16927 140626 1103671 5202340 
5 648 10304 140626 1725316 2 4820482 2 2370237 
6 891 54272 1103671 2 5490549 2 2270227 2 1890189 
7 2916 278016 5772397 2 3070307 2 1880188 2 1630163 



23 

Table A.3 A voids G~) 

f(n ,k) 2 3 4 5 6 7 
2 15 54 189 648 2187 7290 
3 54 330 1888 10304 54272 278016 
4 189 1888 16927 140626 1103671 5505552 
5 648 10304 140626 1725320 2 5000500 2 2490249 
6 891 54272 1103671 2 5770577 2 2330233 2 2020202 
7 2916 278016 6022604 2 3050305 2 1990199 2 1710171 

Table A.4 A voids (ii) 

f(n,k) 2 3 4 5 6 7 
2 15 54 189 648 2187 7290 
3 54 334 1952 10944 59392 313856 
4 189 1952 18521 165120 1401445 2 6040604 
5 270 10944 165120 2293896 2 5470547 2 2490249 
6 891 59392 1401445 2 5930593 2 2550255 2 2100210 
7 2916 313856 2 7200720 2 2670267 2 2080208 2 1630163 

Table A.5 Avoids (ii) , (~~) 

f(n,k) 2 3 4 5 6 7 
2 14 44 128 352 928 2368 
3 44 156 408 720 720 0 
4 128 408 840 720 720 0 
5 352 720 720 0 0 0 
6 928 720 720 0 0 0 
7 2368 0 0 0 0 0 

Table A.6 A voids GD, G~) 

f( u ,k) 2 3 4 5 6 7 
2 14 46 146 454 1394 4246 
3 46 230 1066 4718 20266 85310 
4 146 1066 6902 41506 237686 1315666 
5 454 4718 41506 329462 1625752 2 1460146 
6 486 20266 237686 1595749 2 15001 50 2 750075 
7 1458 85310 1315666 2 1910191 2 810081 2 650065 
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Table A.7 Avoids GD,(~~) 

f(n,k) 2 3 4 5 6 7 
2 14 44 128 352 928 2368 
3 44 192 726 2492 7976 24208 
4 128 726 3384 13872 51888 181120 
5 352 2492 13872 66134 282514 516060 
6 928 7976 51888 282514 549981 509079 
7 2368 24208 181120 596068 549083 2 610061 

Table A.8 Avoids (iD, (~~) 

2 3 4 5 6 7 8 9 10 
14 44 128 352 928 2368 5888 14336 34304 
44 177 582 1693 4584 11847 29634 72345 173292 
128 582 1992 5860 15882 40924 101922 247668 94270 
352 1693 5860 17255 46662 119853 131437 72612 65016 
928 4584 15882 46662 125848 131139 81833 63180 55882 
2368 11847 40924 119853 211147 121609 72423 63957 46974 
5888 29634 101922 271451 131838 92425 73396 65150 38516 
14336 72345 247668 242629 133187 93960 65150 57190 40973 
34304 173292 384299 205030 125889 86978 78520 50974 45304 

Table A.9 This is from [43] Theorem 2 and avoids the matrix 
(110)T, (101)7' 

2 3 4 5 6 7 8 
16 64 256 1024 4096 16384 65536 
63 490 3773 28812 218491 1647086 12353145 
117 3552 50413 698898 7961086 2 3540354 2 2450245 
432 24425 614664 2 5110511 2 1830183 2 1310131 2 1150115 
1566 160218 2 4570457 2 1340134 2 1020102 2 790079 2 720072 
5589 1008647 2 2300230 2 880088 2 690069 2 550055 2 500050 
19683 2 3400340 2 920092 2 640064 2 500050 2 410041 2 360036 
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Table A.10 Also from [43] and avoids (~6), (~D, (6D(101f 

f(n ,k) 2 3 4 5 6 7 8 9 10 
2 13 38 104 272 688 1696 4096 9728 22784 
3 33 129 450 1452 4424 12896 36288 99200 264704 
4 71 356 1531 5927 21237 71682 230672 2 600060 2 320032 
5 60 851 4415 20138 83538 322023 2 410041 2 240024 2 220022 
6 97 1828 11257 59690 283375 2 380038 2 210021 2 180018 2 150015 
7 147 3613 26069 158985 2 430043 2 190019 2 150015 2 130013 2 100010 
8 212 6679 55855 388315 2 210021 2 140014 2 110011 2 90009 2 80008 
9 294 11686 112216 2 350035 2 130013 2 110011 2 90009 2 70007 2 50005 
10 395 19526 213544 2 220022 2 110011 2 90009 2 70007 2 50005 2 50005 

Table A.11 Avoids (~b) , (b~) , (11), from [27] 

f(n,k) 2 3 4 5 6 7 8 9 10 
2 7 10 13 16 19 22 25 28 31 
3 15 22 29 36 43 50 57 64 71 
4 31 46 61 76 91 106 121 136 151 
5 63 94 125 156 187 218 249 280 311 
6 127 190 253 316 379 442 505 568 631 
7 255 382 509 636 763 890 1017 1144 1271 
8 511 766 1021 1276 15~H 1786 2041 2296 2551 
9 1023 1534 2045 2556 3067 3578 4089 4600 5111 
10 2047 3070 4093 5116 6139 7162 8185 9208 10231 
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Table A.12 Another application is the threshold functions for the Bipartite 
Turan Property [26]. In this problem we are looking at the 
function z(n, t) which is the maximum number of l's in an 
n x n matrix such that no size t submatrix is all l's. For this 
problem our code was slightly modified in six lines to count 
the largest number of l's encountered. Thus a set of matrices 
can be input and the program will count the largest number 
of l's present in matrices of each size avoiding the forbidden 
submatrices. This avoids the 3 x 3 all l's submatrix 

f(n,k) 2 3 4 5 
2 16 
3 64 511 
4 256 4067 63935 
5 1024 32242 993206 ::::: 2340234 
6 4096 254506 ::::: 2640264 
7 16384 2000033 ::::: 1490149 
8 65536 ::::: 3120312 
9 262144 ::::: 2270227 
10 1048576 ::::: 1690169 
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APPENDIX B. Source Code 

This appendix contains the source code used. 

Forbiden (0,1) matrix enumeration code 

Input is a list of forbidden matrix minors. 

3 3 //Size of minor 

0 0 1 //The minor itself (Only needs to be sepeated by whitespace, 

1 0 1 //but newlines are pretty ;) 

1 1 1 

//Either another minor or EDF. 

The program then enumerates a table of size 1,1 .... n,n zero one matricies 

that avoid the set of forbidden matrix minors . 

We are lazy so forbidden minors are stored in a list. 

There is an option to also include all permutations of forbiden minors. 

There is also an option to ignore all minors that involve diagonal elements 
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Optimization can be done to eliminate bigger forbidden minors that have 

smaller forbidden minors as part of them. 

Also, we can make sure that the forbidden masks are not repeated. 

Another great optimization would be to create minimal circuts of that could 

detect forbidden subgraphs of that size . 

The program DFS generates row by row the whole matrix. 

All minors possible minors with the new element in the lower left hand 

corner are checked. 

#include <stdlib.h> 

#include <stdio.h> 

#include <gmp . h> 

#include <time.h> 

#define RowMin 2 

#define RowMax 10 

#define ColMin 2 

#define ColMax 10 



#define ForbMatrixSizeMax 3 

#define MaxForbMats 30 

#define TEX_PRINT 1 

#define SEARCH_TIME 5 

struct forbMat{ 

int rows; 

int cols; 
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int arr[ForbMatrixSizeMax] [ForbMatrixSizeMax]; 

}; 

struct forbMat forbMats[MaxForbMats]; 

int forbNum,TOO_LONG; 

unsigned long count; 

mpz_t bigCount; 

int chosenX[RowMax]; 

int chosenY[ColMax]; 

short wrkMat[20] [20]; 

time_t START_TIME,END_TIME; 

int matrixCollision( int index) 

{ 

int i,j,k; 

for(i=O;i<forbMats[index] .rows; i++){ 
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for(j=O;j<forbMats[index] .cols;j++){ 

if(wrkMat[chosenX[i]] [chosenY[j]] !=forbMats[index] .arr[i] [j]) 

return O; 

} 

} 

return 1; 

} 

/*Check forbMats[index] to see if it violates the matrix with the last row 

fixed to rmax, and the last col fixed to colmax 

Return 1 if there is a conflict, return 0 if they don't conflict 

*/ 

int dfsCheck(int usedX, int usedY, int index, int rmax, int colmax) 

{ 

int i,j,k; 

if(usedX < forbMats[index] .rows-1){ 

if(usedX==O) 

i=O; 

else 

i=chosenX[usedX-1]+1; 

for(i; i<rmax; i++){ 

chosenX[usedX]=i; 

if(dfsCheck(usedX+l,usedY,index,rmax,colmax)) 

return 1; 

}/*Choose all copies of this row greater than the last chosen*/ 

} 

else{ 
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chosenX[forbMats[index] .rows-1]=rmax; 

if(usedY < forbMats[index] .cols-1){ 

if(usedY==O) 

i=O; 

else 

i=chosenY[usedY-1]+1; 

for(;i<colmax; i++){ 

chosenY[usedY]=i; 

if(dfsCheck(usedX,usedY+1,index,rmax,colmax)) 

return 1; 

} 

} 

else 

return matrixCollision(index); 

} 

return O; 

} 

dfsSearch(int row, int col, int rmax, int colmax) 

{ 

int i,j,k,bad; 

if(TOO_LONG) 

return; 

bad=O; 

for(i=O;i<forbNum;i++){ 



} 
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/*Check to see if the forbiden matrix is applicable*/ 

if(row<forbMats[i] .rows-1 I I col< forbMats[i] .cols-1) 

continue; 

/*Check for conflicts and return if an conflict is found*/ 

chosenX[forbMats[i] . rows- 1]=row; 

chosenY[forbMats[i] .cols-1]=col ; 

if(dfsCheck(O,O,i,row,col)) 

return; 

/*Set zero and 1*/ 

col++; 

if(col<colmax){ 

} 

wrkMat[row] [col]=1; 

dfsSearch(row , col,rmax ,colmax) ; 

wrkMat[row] [col]=O; 

dfsSearch(row,col,rmax,colmax) ; 

e lse{ 

col=O ; row++; 

if (row<rmax) { 

wrkMat [row] [col ] =1; 

dfsSearch (row,col, r max , colmax) ; 

wrkMat[row] [col]=O; 

dfsSearch (row ,col , rmax , colmax) ; 

} 

else{ 
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/*We have found another legal matrix*/ 

count++; 

if(count > 10000){ 

mpz_add_ui(bigCount,bigCount,count); 

count=O; 

time(&END_TIME); 

if(((int)difftime(END_TIME,START_TIME))> SEARCH_TIME) 

TOO_LONG=1; 

} 

} 

} 

/* for(i=O;i<colmax;i++){ */ 

/* for(j=O;j<rmax;j++) */ 

/* printf("%d",wrkMat[i][j]); */ 

/* printf ( 11 \n"); */ 

/* } */ 

/* printf("\n"); */ 

} 

int main() 

{ 

int i,j,k,rows,cols; 

//Read in forbidden Matricies. 

forbNum=O; 

mpz_init(bigCount); 

while (1){ 
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if (EOF==scanf ( "%d" ,&forbMats [forbNum] . rows)) 

break; 

scanf("%d",&forbMats[forbNum] . cols); 

for(i=O;i<forbMats[forbNum] .rows;i++){ 

for(j=O;j<forbMats[forbNum] .cols;j++){ 

scanf ("%d" ,&forbMats [forbNum]. arr [i] [j]); 

} 

} 

forbNum++; 

} 

if(TEX_PRINT) 

{ 

printf("\nThe matricies you gave me were:\n"); 

for(i=O;i<forbNum;i++){ 

gmp_printf("\\[\\left(\\begin{array}{"); 

for(j =O;j<forbMats[i] . cols; j ++) 

gmp_printf("c") ; 

gmp_printf("}\n" ) ; 

for(j =O; j<forbMats[i] . rows;j ++) { 

f or(k=O;k<forbMat s[ i ] . cols- 1 ;k++) 

gmp_printf ( "%d % " , forbMats [i] . arr [j] [k]) ; 

} 

gmp_printf ( "%d \\\\\n" , forbMat s[i] . arr[j ] [forbMats[i] .col s -1] ); 

} 

gmp_printf( "\\end{array}\\right) \\]\n" ); 

} 

if (TEX_PRINT) { 
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gmp_printf("\\begin{table}\n\\begin{tabularHI"); 

for(i=ColMin;i<=ColMax;i++){ 

gmp_printf("cl"); 

} 

gmp_printf("cl}\\hline\n"); 

gmp_printf("f(n,k) "); 

for(i=ColMin;i<=ColMax;i++){ 

gmp_printf("& %d",i); 

} 

gmp_printf("\\\\"); 

for(i=RowMin;i<=RowMax;i++){ 

if(TEX_PRINT){ 

gmp_printf("\n %d",i); 

} 

else 

gmp_printf("\n"); 

for (j=RowMin;j<=RowMax;j++){ 

count=O; 

mpz_set _ui (bigCount,O); 

wrkMat[OJ [OJ=O ; 

dfsSearch (O,O,i,j); 

wrkMat [OJ [OJ =1; 

time(&START_TIME); 

TDO_LONG=O; 

dfsSearch(O,O,i,j); 

mpz_add_ui (bigCount,bigCount ,count); 

if(TEX_PRINT){ 
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if(TOO_LONG) 

gmp_printf(" & $\\geq%Zd$",bigCount); 

else 

{ 

} 

} 

gmp_printf(" & %Zd",bigCount); 

} 

else 

if(TOO_LONG) 

gmp_printf(">%Zd \t",bigCount) ; 

else 

} 

gmp_printf("%Zd \t " ,bigCount) ; 

} 

if (TEX_PRINT) 

gmp_printf ( " \\\\") ; 

if(TEX_PRINT) 

gmp_printf("\n\\end{tabular}\n\\end{table}\n" ) ; 

mpz_clear (bigCount); 

return O; 
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