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GENERAL INTRODUCTION 

1 Introduction 

Censored data (left, right or interval censored) occur in a variety of applications. In 

the case involving independent observations, numerous methods have been proposed to 

deal with the analysis of censored data (Helsel, 1990; Gibbons, 1995; Porter, Ward and 

Bell, 1988). In contrast, there are few adequate methods for the handling of censored 

observations involving spatial dependence. There are various statistical methods that 

allow for the analysis of spatially dependent data, but none of these statistical methods 

deal with the case involving censored data (Cressie, 1993; Ecker and Gelfand, 1997; 

Besag, 1974; Kaiser and Cressie, 2000). 

In most spatial settings, if censoring has occurred, it usually results in left censored 

observations. Often, all the censored observations are set equal to some constant value, 

which results in single imputation for the censored observations. For example, in the 

case involving the measurement of environmental pollutants, some function of the level 

of detection (e.g. LOD1 LOD/2) is commonly imputed for the censored observation. 

This single imputation method results in biased estimates of the mean, variability and 

spatial dependence. 

This dissertation will present and illustrate a data augmentation approach, a method 

first proposed by Tanner and Wong (1987) and Li (1988), for the analysis of spatially 

correlated data, in which some of the observations are censored. Both a Bayesian geosta-
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tistical model and a Bayesian conditionally specified Gaussian model will be presented 

within the data augmentation framework for the handling of censored observations. The 

method can be easily extended to the cases of interval censored and right censored spa

tial data. Comparison of the data augmentation method to the method of replacing the 

censored observations with LOD or LODf2 will also be illustrated using two different 

studies involving soil contamination. 

2 Methods for censored independent observations 

Censored data is a type of missing data that is "non-ignorable" (Little and Rubin, 

2002). If we were to throw out or ignore the censored observations, the resulting param

eter estimates would be biased. Censoring, whether left or right, also results in the loss 

of information. The loss of information or censoring needs to be accounted for in the 

statistical analysis. There are various methods for the analysis of censored data in the 

case of independent observations. Some methods are more efficient than other methods. 

A few of the common methods to analyze censored data in the case of independence are 

outlined below. 

2.1 Deletion and substitution methods 

The easiest methods to handle censored data are the deletion and substitution meth

ods. In the deletion procedure, observations reported below the detection limit are not 

used in the computation of the mean and the standard deviation. Hence, the mean is 

over-estimated while the standard deviation is under-estimated. Another method com

monly used is the substitution method where one replaces the censored observations 

with either 0, LOD/2 or LOD. Then, based on this "imputed dataset", estimates of 

the mean and standard deviation are computed. 

For example, let the truth be 
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0.5, 1, 4, 5, 5, 6 

and the observed data be reported as 

< 2, < 2, 4, 5, 5, 6. 

If we were to replace the two censored values with their level of detection, the sample 

mean and standard deviation would be 4 and 1.67, respectively. If we were to replace 

the censored values with half their level of detection, the mean and standard deviation 

would be 3.67 and 2.16. Lastly, if we were to replace the censored values with 0, the 

resulting mean and standard deviation would be 3.33 and 2.66, respectively. In contrast, 

the true mean and standard deviation is 3.58 and 2.29, respectively. 

Both the deletion and the substitution methods result in biased parameter estimates. 

In the case of large datasets with very few censored observations, the bias is not as 

extreme as in the case of small datasets or studies involving a large number of censored 

observations. In addition to biased estimates, there is no statistical justification for 

which constant to impute for the censored values. Due to the bias and arbitrary choice 

of the constant used in the imputation, these methods are not recommended (Newman, 

1995; Gilbert, 1987; Helsel, 1990). 

2.2 Sample median, trimmed mean and Winsorized datasets 

The sample median and the trimmed mean are ways to produce a reasonable estimate 

of the mean or average. For example, instead of computing the sample mean as the 

measure of center, the sample median can be used. This approach is appropriate if not 

more than 50% of the observations are censored and if the underlying distribution is 

symmetric. 

Another option is the use of the trimmed mean. A 100p% trimmed mean, where 

0 < p < 0.50, is computed by finding the mean of the middle 100(1 —2p)% of the ordered 

observations. That is, the mean is computed on the middle n( 1 — 2p) observations, 
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where the largest np and smallest np observations are excluded from the computation. 

If the number of censored observations is no more than np, the trimmed mean can be 

computed. Thus, in the presence of a large proportion of censored observations, the 

trimmed mean can not be computed. 

An idea similar to the trimming of datasets to computed a trimmed mean is the idea 

of Winsorizing. Winsorizing replaces the censored observations in a way that produces 

unbiased estimates of the mean and standard deviation. This method produces what is 

called the Winzorized mean and standard deviation. Assuming a symmetric distribution, 

the censored values are replaced by the smallest observation above the LOD. Then, the 

the same number of the largest observed values are replaced with the next smallest 

observation. 

For example, if the dataset is 

NA, NA, NA, 2, 3, 4, 4, 6, 7, 9, 10, 11, 

the three NA values would be replaced with the value 2 and the values 9, 10 and 11 

would be replaced with the value 7. Thus, the Winsorized dataset is 

2, 2, 2, 2, 3, 4, 4, 6, 7, 7, 7, 7. 

The Winsorized mean is the mean of the Winsorized dataset. The Winsorized stan

dard deviation is Sw(n — l)/(v — 1), where Sw is the standard deviation of the Winsorized 

dataset, n is the number of observations and v is the number of unchanged observations. 

The mean and standard deviation computed using the Winsorized dataset, are unbiased 

estimates of the true mean and standard deviation. Thus, for our example, the Win

sorized mean and standard deviation are 4.42 and 4.10. This method fails if there is 

more than one level of detection and if the number of censored observations is greater 

than or equal to n/2. 
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2.3 Likelihood approach 

A more model oriented approach to analyze censored data is through the use of a 

likelihood function that accounts for the censored observations. In using this method, 

an assumption of the distributional form for the responses is required. This can be a 

drawback to the method. With the presence of censored observations, the assignment of a 

distribution form can be difficult. It is often hard or impossible to verify the distribution 

form in many cases involving censored data, leaving the distributional assumption as 

one's best guess. 

The likelihood is composed of a piece representing the observed data and a piece 

representing the censored data. Let yt- have probability distribution function (or prob

ability mass function) fy{yi\0) for i — 1, ... n, where Fy(-) is the CDF of fy(-). The 

following are the likelihoods involving the three types of censored data (i.e. left, right 

and interval censored). 

• Left Censoring at a: 

L(6; y) = fl fy{Vi\0) s '  Fy(ay~5 , ,  where Si is 1 if yt- is observed and 0 if censored. 
i=l 

• Right Censoring at b: 

L(9; y) = EI fyiVi' ,  — Fy(b)) l~5 , ,  where Si is 1 if y, is observed and 0 if censored. 
2=1 

• Interval Censoring between a and b: 

L(6;y) = J] fy(yi 'i9) s ' (Fy(b) — Fy(a)y~6 \  where Si is 1 if y, is observed and 0 if 
i—1 

censored. 

The likelihood or log-likelihood function is then maximized in terms of 0, producing 

maximum likelihood parameter estimates. 
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2.4 Probability plotting methods 

Probability plotting is a commonly used approach for the estimation of the mean and 

standard deviation in the presence of censored observations. The probability plotting 

method is outlined below for the case involving left censored observations. 

1. Let y ~ NOR(,u, ex2). Let the data (before censoring) be yi,  y2 , . . . ,  yn  where % 

observations are censored (less than the LOD) and n2 observations are observed 

(greater than the LOD). 

2. Let yi-n represent the i t h  order statistic for i  = n i + 1,..., n (observed responses). 

3. The cumulative percentage corresponding to each observation is then estimated 

and a plot of the cumulative percentage verses concentration is constructed. 

4. A line that follows the data is then drawn on the plot. 

5. The estimate of ji is taken to be the 50% cumulative percentage (P50). 

6. The standard deviation is estimated by finding P16 (16%-tile) and P84 (84%-tile). 

The estimate of a is taken to be (P84-P16)/2. 

This method has the disadvantage of subjectivity in the fitting of the line. This 

problem can be overcome by using regression techniques to fit the line. In addition, if 

more than 16% of the data is censored, the method is not able to compute the estimate 

of the standard deviation. 

A variation on the probability plotting method is the robust probability method 

(Helsel, 1990). This method is a modification of the probability plotting method that 

combines the observed data with extrapolated or imputed values for the censored ob

servations to produce estimates of the mean and standard deviation. In doing so, a 

distributional form is assumed for the data. The method is as follows. 
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1. Assuming a distributional form, for each observation above the LOD , a z score is 

computed. 

2. A plot of log(response) verses the z scores is constructed for which a regression 

line is then fit. 

3. This regression line is then used to extrapolate/predict values for the censored 

observations. 

4. A back transformation is then applied to return to values to the original units. 

5. This process yields an "imputed dataset" from which estimates of the mean and 

standard deviation are computed. 

Bias corrections for the use of back-transformation have been discussed in the literature 

and can be used to correct the bias due to transformation. 

Lastly, the ad hoc quantile method is a combination of both the robust method and 

the probability plotting method (Cressie, 1998). Again, a drawback to this method is 

that estimates produced are not MLE's. The basic idea is to use the observed data 

to produce a regression line. From the regression line, prediction/extrapolation for the 

censored data is completed. Using the "imputed" dataset, estimates of the mean and 

standard deviation are then computed. This procedure of imputing and estimation is 

done until convergence. For the case of left censoring, the idea is as follows. 

1. Let y ~ NOR(/z, a2).  Let the data (before censoring) be j/l5 y2, •••, yn  were n \ 

observations are censored (less than the LOD) and n2 observations are observed 

(greater than the LOD). 

2. Let yi:n represent the i t h  order statistic for i  = n\ +1,. . . ,  n (observations observed). 

3. Based on these order statistics, estimate // and a2 by using the standard normal 

Q-Q plot.  This is done by fit t ing the line y = jj, + az. 
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4. Based on the estimates of f i  and u2, £l  and â2, define y,-:n to be y i : n  = p. + 

g-^~1(t~y2) for z = 1,rii (i.e. imputation for the censored observations). 

5. Using the imputed values for the censored values and the observed values, estimate 

^ and ̂  to be /Ï = ^ -
Z=1 

6. This procedure involving imputation and estimation (steps 4 and 5) is repeated 

until convergence. 

Note, the estimate of a2 does not account for the variability involved in the impu

tation. Also, the method does not produce MLE's. The point estimates are adequate, 

but the standard errors are too small. The difference between the robust probability 

plotting method and the ad hoc quantile method is the iteration of the ad hoc quanti le 

procedure until convergence. As with the likelihood method, an incorrect distributional 

assumption will lead to incorrect parameter estimates. 

2.5 System error approach 

Tackling the problem of censored data in a more philosophical approach is the idea of 

system error or measurement error approach. As stated by Porter, Ward and Bell (1988), 

"More information is gained when a numerical result and an estimate of measurement 

precision are reported for every measurement, as opposed to reporting "not detected" 

or "less than"". They further state that system error should be considered with the 

analysis of monitoring data. 

Consider the following measurement error model, 

A m = À p + c( ATp), 

where Xm  represents the measured amount, Xp  represents the true amount, and e(Xp) 

represents the measurement error. We wish to find out about the quantity Xp by using 

the observed data Xm. Thus, applying the idea of measurement error to censored data, 
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one does not report values as falling below a detection level. Instead, every value is 

reported with a numerical value and an estimate of the measurement precision. That 

is, measurements are reported as Xm± measurement error for all values, including val

ues falling below a detection level or non-detectable. A valid reporting definition of a 

non-detect or censored observation would be an interval that covers 0 (i.e. 0 E -Ym± 

measurement error) (Porter, Ward and Bell, 1988). 

2.6 Probability of acceptance curves 

Lastly, a method closely related to the system error approach is a method proposed 

by Lambert, Peterson and Terpenning (1991). The method introduces the use of a 

probability of acceptance curve, p(m), which relates the probability of detection to the 

measured response. In doing so, the 'minimum reliably detected concentration' is defined 

as 

7r(C) = Pr(acceptance | concentration = C) 

= / Pr( accept an ce | measurement = m) f(m\C)dm 

— J p(m.)f(m\C)dm. 

where C is a spiked concentration from a quality control sample, m is a measurement 

obtained from a field sample, and f(m\C) is the density for the field samples with 

true concentration C. The 90</l percentile of 7r(C) is referred to as the minimum reliably 

detected concentration and is the censoring limit. For example, assuming all non-detects 

fall below the smallest detected value is reasonable if the probability of acceptance curve 

rises sharply from 0 to 1. 

The advantage to this approach is that it combines data from field samples and 

quality control samples. A disadvantage of this method of defining detection limits is 

that p(m) requires an analyst to make the binary detection decision using their own 

detection criteria. Hence, "Lambert's method models the detection criterion of the 
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analyst but not the actual capabilities of the analytical method itself" (Gibbons, 1995). 

Therefore, different acceptance curves can be produced by difference analysts. 

3 MCMC estimation and inference 

Using Markov chain Monte Carlo (MCMC) in the form of a Gibbs sampler, a model 

can be fit with parameter estimation and inference based on the resulting simulated 

values from the chain. Let Y = (Yi, Y2,..., Yv) represent a random vector with joint 

distribution P(Y). The Gibbs sampler is a successive substitution sampler, in which 

draws are taken from the conditional distribution of each element in Y given all other 

elements. That is, at iteration t, Y^ is generated from p(Yi|y2'<_1\ •••, Y^-1'), Y^ is 

generated from p(Y2\Y}t\ Y^-1',..., Yj<_1)) and Y^ is generated from p(Y^|Y^\ ..., Y^\) 

(Geman and Geman, 1984; Shafer, 1997; Gilks, Richardson and Spiegelhalter, 1996). 

After the chain has converged, say at iteration k, Y^k*\ V k* > k can be considered 

as simulated values from the true joint posterior distribution, leading to an estimate of 

the joint posterior distribution, P(Y), or any marginal posterior distributions that may 

be of interest. For example, an estimate for the random quantity Yi could be found 

by using a summary feature of marginal posterior distribution which can be estimated 

from the simulated values Y^k ', \/k* > k produced by the Gibbs sampler. In addition 

to a point estimate for Y%, an approximate 95% Bayesian equal-tail credible interval for 

the random quantity Y\ can be found by taking the 2.5 and the 97.5 percentiles of the 

simulated values Y±k \ V7c* > k. If the posterior distribution is symmetric and unimodal, 

the equal-tail intervals correspond to the highest posterior density (HPD) credible set 

(Gelman, Carlin, Stern and Rubin, 1995; Carlin and Louis, 1996; de Oliveira and Ecker, 

2002). 
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4 Kriging and Bayesian prediction 

Along with estimating quantities of interest, the goal of many spatial analyses is 

to predict the value at unobserved locations. Let Yu(Zi) represent an ungauged (un

observed) value at location tx. Let Yg = (F^), F(s2),.., y(ss)) represent a gauged 

(observed) vector for locations {si, s2,.., s5}. The goal is to predict YL(<i), where tj is 

the unobserved or ungauged location. One method to predict follows from the geosta-

tistical literature called kriging. Kriging is done by considering only linear unbiased 

predictors of the form 

%) = E w. 
2 — 1 

n 

Assuming stationarity, E(Y(si)) — //, this constraints J2 A; = 1. Hence, under square 
i=1 

error loss we need to minimize 

- E A,T(^)F - A, - 1}. 
2— 1  i=l 

This minimization yields A = T *7 where A = (Ai,..., As, m)T, 7 = (7(^1 — si), ...,7(^1 — 

sg),  l)T  and 

7(si — si) 7(si — ss) 1 

r = 
7(gg-3l) ... 7(39 "S,) 1 

1 1 1 0  

The kriging weights (A,) are written as a function of the semi-variogram, which is 

half the variogram. The variogram is defined as 

27(5,. - Sj) = Var(y(%) - y(3j)) = 2Var(y(^)) - 2Cov(y(a,),y(gj)) 

with 7(.) representing the semi-variogram. For an exponential parameterization of the 

spatial covariance matrix, 



12 

7(y w - y(5j)) = 

The standard error for the prediction is cr2(ti)  = AT7- In place of 7(-), which is unknown, 

we use the estimate of the semi-variogram based on the estimated parameter values 

(Cressie, 1993; Matheron, 1963). 

Hence, kriging at a given location results in the computation of a weighted mean, 

where the weights are based on the spatial dependence and variability parameters of 

the spatial model considered. In the case of independence, A, = ^ for V?' = 1 ,...,g (i.e. 

equal weights). If censored data is present, by replacing the censored observations with 

a constant (e.g. LODjT) not only are the subsequent parameter estimates biased, but 

also predictions. By applying data augmentation to spatial censored data, we hope to 

get more accurate parameters estimates along with better predictions. 

An alternative to the traditional geostatistical kriging method is Bayesian prediction 

or Bayesian kriging. Again, let Yu represent an ungauged (unobserved) vector Yu — 

(Y(ti),Y(t2), ..,Y(tu)) for locations t2,tu}. Let Y g = (Y(si), Y(s2),..,Y(sg)) rep

resent a gauged (observed) vector for locations {si, s2,.., sg}. Bayesian prediction uses 

the posterior predictive distribution 

= ;p(yjy„e)xe|y,Ke 

for prediction purposes. 

In the case involving censored data and data augmentation, let Y  U , Y  g ,  Y g o ,  Y g c  

represent the ungauged vector, gauged vector, gauged observed vector and the gauged 

censored vector, respectively. The joint distribution of Yu and Yg is then 

MVN 
// \ . w 

^uu ^ug u 

\  Tlgg J J \ V g  J  

with mean vectors //„ and fig of appropriate lengths, Suu = V(cr2 ,  (f>, Du u) + r2/, 

S5 5  = V(cr2 ,</>, Dg g) + T2 / ,  SU 3  = V(cr2 ,( f) ,  Du g),  and Eg u  = V(cr2 ,( f) ,  Dg u),  where Du u ,  

Dgg, Dug, Dgu are matrices containing distances between the ungauged and gauged sites. 
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Therefore, the conditional distribution for the ungauged sites given the gauged sites is 

multivariate normal. 

Approximation of the posterior predictive distribution p(YU \Yg) can be accom

plished using a Monte Carlo approach, where one simulates predictions from 

~ mvn(^),SW), 

with „<5 = + S- «(")), ES = E(«-EWE-'MSM and 

Y * ( k )  — (Vjo, Y (
g

k J T ) T
:  for a large number MCMC iterations, k ,  (Carlin and Louis, 1996; 

de Oliveira and Ecker, 2002; Gelman, Carlin, Stern and Rubin, 1995). One advantage 

of the Bayesian prediction method is that the posterior predictive distribution reflects 

the variability in parameter estimation when predicting; kriging does not. Prediction 

standard errors produced via the kriging method are too small. 

5 Dissertation organization 

This dissertation provides a solution to the analysis of censored spatial data. Spa

tially dependent data occurs in a variety of applications in which observations are as

sociated with a spatial location. Traditional methods to analyze spatial data are not 

appropriate when censored observations are present. In environmental studies, it is not 

uncommon for measurements of contaminants to fall below a level of detection (LOD). 

There are many statistical methods for the analysis of censored data when the obser

vations are independent, but what does one do when spatial correlation is present? A 

solution presented in this dissertation is to use data augmentation for the analysis of 

censored spatial data. 

The first paper will look at a geostatistical model (Cressie, 1993; Matheron, 1986). 

The model is set in the Bayesian framework, leading naturally to the data augmentation 

procedure. Prior distributions must be specified for all model parameters. So this will 

also be discussed (Ecker and Gelfand, 1997). In addition to parameter estimation and 
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inference, a main focus of many geostatistical analysis is spatial prediction. Censored 

observations cause some problems for traditional prediction methods. Spatial prediction 

will also be presented and illustrated involving censored data. Comparison of the data 

augmentation method to methods which replace any censored observations with half the 

level of detection and level of detection will be presented using data from two environ

mental studies; the first study investigating dioxin contamination in Missouri (Zirschky 

and Harris, 1986) and the second study looking at metal soil contamination at an old 

industrial site, called site 15. 

The second paper explores the use of data augmentation for censored spatial data in 

the context of a Bayesian conditionally specified Gaussian or conditional auto-regressive 

model (Kaiser and Cressie, 2000; Besag, 1974; Daniels, Lee, and Kaiser, 2001). Once 

again, the use of a Bayesian model leads to data augmentation in a Gibbs sampler. Speci

fication of prior distributions will be discussed. As opposed to the Bayesian geostatistical 

model, the focus of this paper is not on prediction, but on parameter estimation and 

subsequent inference. Comparison of the data augmentation method to the common 

method of replacing censored values with level of detection (LOD) and LOD/2 are il

lustrated using both the Missouri dioxin study and the site 15 metal contamination 

study. 

In the third paper, results from an extensive simulation study, conducted to investi

gate the effect of different factors on the effectiveness of augmentation for the handling 

of censored spatial data, are presented and discussed. The simulation study will try 

and answer questions like, "Does the method work for high levels of censoring?," "Does 

the method work well for small samples?," "Does the method work better if there is 

large spatial dependence present in the data?" Two simulation studies were conducted, 

one for the geostatistical model and one for the conditionally specified Gaussian model, 

to answer these questions. In addition to simulation studies investigating factors that 

may impact the data augmentation procedure, two additional simulation studies were 
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conducted to look at the general adequacy of the augmentation procedure for both the 

geostatistical and conditionally specified Bayesian models. 

These three papers are followed by a summary chapter giving the general conclusions 

for the entire dissertation. The summary discusses the superiority of the data augmen

tation method for the analysis of censored spatial data for both the geostatistical model 

and the conditionally specified model. The discussion concludes with general comments 

regarding the simulations studies presented in the fourth chapter of this dissertation. 
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DATA AUGMENTATION FOR A BAYESIAN SPATIAL 

MODEL INVOLVING CENSORED OBSERVATIONS 

A paper to be submitted to Environmetrics 

Brooke Fridley and Philip Dixon 

Abstract 

The analysis of spatially dependent data involving observations falling below a detec

tion level occurs occasionally in environmental applications. With the increased interest 

in long term exposures to low level contaminants, better methods for handling small 

levels of a response variable, which lead to many censored observations, are needed. 

The most common practice for the handling of censored data in spatial settings is to 

replace the censored observations with some function of the level of detection (LOD), 

like LOD/2. The resulting parameter estimates and standard errors found using this 

single imputation method are biased. A data augmentation procedure using a Gibbs 

sampler for the analysis of censored spatial data in the context of a Bayesian spatial 

model is presented. Comparison of the data augmentation method to the LOD method 

and the LOD/2 method will be illustrated using data from a dioxin contaminated site 

and an old industrial area contaminated with heavy metals. 



18 

1 Introduction 

Environmental studies, where contamination levels are measured at geographic loca

tions, often result in some observations falling below a level of detection (LOD). Hence, 

some of the data are left censored. A method commonly used to handle censored spatial 

data is to assume independent observations and then use one of many methods available 

to handle censored data (Helsel, 1990; Gibbons, 1995; Porter, Ward and Bell, 1988). 

Another common approach that does not ignore the spatial dependency, is to replace 

the censored observation with some function of the level of detection (e.g. LOD/2, 

LOD). This ad hoc method of replacing all censored values with a constant results in 

biased estimates of the mean, variability, and spatial dependence. 

Analysis of missing data has been an area of extensive research. The basic ideas 

and principles of missing data and the analysis of missing data have been outlined 

by Little and Rubin (2002). The idea of data augmentation to handle missing data 

using Markov chain Monte Carlo (MCMC) was first presented by Tanner and Wong 

(1987). Hopke, Liu and Rubin (2001) use a data augmentation procedure to provide k 

complete, augmented datasets which can then be analyzed using traditional statistical 

methods. Dempster, Laird and Rubin (1977) provide a general methodology using the 

EM (expectation/maximization) algorithm that can be used in a variety of missing 

data problems. The EM algorithm works by iteratively maximizing the data likelihood 

whereby setting the missing data or missing variable equal to its expectation until a 

convergence criteria has been satisfied. The EM algorithm and various hybrids of the 

algorithm have been used extensively for the handling of missing or censored data in 

mixed model (Hughes, 1999; Smith and Helms, 1995; Pettitt, 1986). Hybrids using 

both EM and MCMC ideas have also been used to handle missing data. Shafer (1997) 

further outlines the use of the EM algorithm and data augmentation to handle missing 

data and discusses similarities between the EM algorithm and data augmentation. The 
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EM algorithm has expectation and maximization steps, while data augmentation has an 

imputation step followed by a posterior step. 

Much work has been done in spatial statistics, were observations are thought of as 

resulting from a stochastic process {Z(s) : s £ £>}, where s represents a location and 

D £ *Ud (Cressie, 1993; Matheron, 1963). In addition to traditional geostatistical and 

likelihood approaches for data analysis, recently much work has been focused on applying 

Bayesian ideas to spatial data analysis. Prior specification for geostatistical spatial 

models is presented by Ecker and Gelfand (1997). Berger, de Oliveira and Sanso (2001) 

address non-informative prior specification resulting in the use of a special reference 

prior for the dependency parameter. The use of the reference prior ensures a proper 

joint posterior distribution. 

A major goal in many spatial analysis is to identify areas of high contamination that 

may require clean-up. Detection of areas of extreme contamination using a Monto Carlo 

approximation to the Bayesian posterior predictive distribution for a set of predicted 

locations is discussed in de Oliveira and Ecker (2001). Ancona and Tawn (2002) dis

cuss the use of conditional independence and integration to account for the censored 

observations in the data portion of the model analyzed via MCMC methods. Handling 

censored observations via a data augmentation procedure in a Bayesian spatial analysis 

has yet to be discussed. In this paper, we combine the ideas of data augmentation and 

a Bayesian spatial model to analyze left censored spatial data. 

2 Censored data and data augmentation 

Censoring is a type of missing data mechanism that is "non-ignorable" (Little and 

Rubin, 2002). If we were to throw out or ignore the censored observations, the re

sulting parameter estimates would be biased. One solution to the problem of cen

sored data is to integrate the censored data out of the joint posterior distribution, 
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/p(0|Yc, Y0)p(YC \Y0)dyc .  The problem with trying to implement this solution is 

the required integration, which may be very difficult. Another method for handling 

censored data is imputation, that is, to replace every censored observation with a real 

value. The question then becomes "What value to impute?" The easiest (but not al

ways the best) method is to replace the censored values with a constant. Commonly, 

half the level of detection (LOD/2) is imputed. Another method would be to use some 

random imputation scheme to impute a value for the censored data (single imputation 

or multiple imputation). By imputing a constant (LOD or LOD/2), one is going to 

bias subsequent parameter estimation. Also, there is no sound justification for which 

value or constant to impute. The advantage of using multiple imputation over single 

imputation is that one is able to quantify the additional error in estimation due to the 

imputation. 

The main issue in a single or multiple imputation scheme is which parameter values 

(based on the model) to use for the imputation? The answer to this question is to 

handle both the imputation for the censored data and the parameter estimation using 

Markov Chain Monte Carlo sampling. That is, it is possible to apply the idea of data 

augmentation as proposed by Tanner and Wong (1987) to the case of censored spatial 

data. The idea is as follows. 

• Given the current value of the parameters 0^, draw a vector Y[t+1^ for the cen

sored data from p(Yc| Y0, ©'*'). 

• Then based on Y [ t + 1 \  draw ©<<+1) from p(0|Yo, Y^+1'), the complete data pos

terior for 0. 

At every iteration of the simulation we are "augmenting" the data with imputed values 

for the censored observations. In doing so, we have eliminated the need to work with the 

observed data posterior p(0|Yo), which in many cases is intractable or difficult to obtain. 

This process yields a stochastic sequence {0^, Y^ : t = 1,2,...} whose stationary 
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distribution is p(0, Yc| Y0) (Shafer, 1997; Gilks, Richardson and Spiegelhalter, 1996). 

Data augmentation can be thought of as using Markov chain Monte Carlo to perform 

imputation. 

Data augmentation can also be looked at as a method that solves the problem of 

having to integrate out the censored observations from p(0|Yc, Y0). As presented in 

Tanner and Wong (1987), let  ^—observed data,  z=augmentated data (missing data),  9 = 

parameters. If both y and z are observed, then p(9\y, z) is easily calculated, whereas, if z 

is not observed, p{9\y) = f p(9\y, z)p(z\y)dz may be difficult to calculate. Thus, multiple 

values of z for augmentation are generated from the predictive distribution p(z\y) in two 

steps. The first steps is to generate a value of 9, say <f>, and based on this value 0, 

the second step is to generate z from p(z|</>, y). Then, p(9\y) can be approximated by 

averaging p(9\y,z) over the generated values of z (i .e.  fp{9\y, z)p(z\y)dz).  

3 Spatial Bayesian model and prediction 

Define {Y(s) : s G D] to be a spatial stochastic process, where s varies continuously 

over D, D in 5R2. We specify a spatial isotropic model as 

Y(s{) —/j,  + W(s{) + e(si),  (1) 

where Y(s,-) represents the observation at location s,-, fi is the overall mean, s(s,-) repre

sents the random observational error at location Sj with E(SJ) ~ NOR(0, T2), and ^(s,) 

represents the random spatial effect at location s,- with W(s) ~ MVN(0, V(cr2, <j>)) where 

V{a2, 4>)ij = a2 exp{-dij/<f)}, d{j = ||s, - Sj|| and = exp{—dij/<f>}. Note, there 

are various alternate ways to parameterize V(-). 

Hence, we have Y ~ MVN(/i, V(cr2, 0) + r 2 I )  and Y \ W  ~ MVN(/i + W ,  r2/). To 

complete the Bayesian model specification, prior distributions are put on all parameters 

in the model. There are various choices for the prior specifications, ranging from elicited 
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or conjugate proper priors to non-informative or improper priors. Whatever the choice, 

sensitivity analysis for the final inferences with respect to the prior distributions is 

recommended. 

Prior specification involving non-informative, improper priors would be 

oc 

oc (T2)-\ 

f#) * (M#*] -

where ^ = ((^) 2,) 2;^, 2^ = ^(||,, - %||), 

and A'</>(lls — u ||) = corr{ Z ( s ) ,  Z ( u ) }  is an isotropic correlation function (Berger, de 

Oliveira, and Sanso, 2001). As discussed in Berger, de Oliveira and Sanso (2001), it is 

this reference prior for <f> that ensures a proper joint posterior distribution. 

An alternative spatial Bayesian model would be to place proper prior distributions 

on all the parameters in the following fashion: 

<7% - INGAM(a,/)), 

- INGAM(^), 

NOR(A,^2), 

4> ~ GAM(?7,6). 

One thing to note is that there is no conjugate prior for cf> leading to easy computation 

of the full conditional distribution for </>. 

In addition to fitting a model to produce parameter estimates, prediction is often 

a goal of spatial studies. Let Yu represent an ungauged (unobserved) vector and Yg 

represent a gauged (observed) vector. Bayesian prediction uses the posterior predictive 

distribution, p{Yu\Yg), as the method for prediction. The joint distribution of Yu and 

Yg can be written as 
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resulting in a multivariate normal distribution as the conditional distribution for the 

ungauged sites given the gauged sites. Approximation of the posterior predictive dis

tribution can be accomplished by simulating predictions from this multivariate normal 

distribution. 

For the case involving censored data and data augmentation, the approximation of 

the posterior predictive distribution can be modified to account for the censored observa

tions. Let Yu,Yg, Yg0, and Ygc represent the ungauged vector, gauged vector, gauged 

observed vector and the gauged censored vector, respectively. Approximation of the 

posterior predictive distribution, p(Yu\Yg), is accomplished by simulating predictions 

from 

With + SgE-K'Ify'1' - /»W), Effl = Sg-EWS-iMEW and 

Y * ( k )  = (Yjo, Y g k J T ) T ,  for various MCMC iterations k  (Carlin and Louis, 1996; de 

Oliveira and Ecker, 2002; Gelman, Carlin, Stern and Rubin, 1995). 

4 Markov chain Monte Carlo for data augmentation 

For the analysis of censored spatial data modeled with a Bayesian spatial or geosta-

tistical model with proper priors, data augmentation can be completed within a Gibbs 

sampler (Tanner and Wong, 1987; Geman and Geman, 1984). The Gibbs sampler is a 

special case of the data augmentation procedure outlined by Tanner and Wong in which 

t=1, where t is the number of augmentated datasets created at iteration to approximate 

the current posterior distribution. 
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With the Baysian spatial model involving censored data satisfying the assumptions 

for the Gibbs sampler, the data augmentation procedure can be completed as follows. 

At each iteration of the Gibbs sampler, the censored data are imputed by generating 

values from Yc's full conditional distribution, p(Yc |Y0, ft, r2, <72, (/>), using the auxiliary 

information that Yc < LOD. This results in an augmented complete dataset. Using 

this updated complete dataset, the parameters T2, a2 and 4> are generated from their 

corresponding full conditional distributions. This process yields a sequence {©', Yl
c : 

t = 1,2,...} that is a stochastic process with stationary distribution p(0, YC|Y0), where 

© contains /u, r2, a2 and <f>. Derivations of the full conditional distributions required 

for the Gibbs sampler are located in the appendix. The MCMC data augmentation 

algorithm is as follows. 

1. Set starting values for t2^°\ cr2(°\ W^0', and </>(°\ Set m = 0. 

2. Set censored values equal to their level of detection, Y^0' = L O D .  Let 

YT(M) _ Y0)t, where YC and Y 0  represent the censored data and observed 

data, respectively. 

3. Generate from NOR(//im+1\ cr^m+1^), with 

M™+11 = (SSSi)li=A + - IVM)| and 

4. Generate T2<m+1) from INGAM(n/2 + 7, (l/2)(Y(M) - (^M+1) + W ( m ) ) ) T ( Y { m )  -

5. Generate from INGAM(n/2 + a, + /?)-

6. Generate from where 

and 
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7. Using Metropolis-Hastings step(s), simulate 0(m+1^ from 

-X jŷ TW exp{5̂ TWT,™+1»V(«-,M'("+'» - H}. 

8. Now have 0^+^ = (^(m+1) ^2(m+l) ^2(m+l) ^(m+1) jy(m+l)^ 

9. Using ©fm+1' and Y^m\ impute values for Yc to produce y(m+1). Let 

yc - (vie, y2c, Vfcc). 

(a) Generate y/c
m+1^ from N(/i^m+1' + W^m+1',r2(m+1'), truncated at LOD\.  

(b) Generate V^c
m+1* from N(/j(m+1) + H^m+1', r2(m+1'), truncated at LODk-

10. Complete prediction for a set of locations based on y(m+1) and ©'m+1\ 

11. Set m  =  m  +  1 and repeat algorithm a large number of times. 

By introducing the spatial random variable (W-7) to the model, the imputation step 

of the algorithm simplifies to the generation of values from univariate truncated normal 

distributions. 

5 Illustrative example I: Missouri dioxin contamination 

5.1 Description of data 

In 1971, dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD) contaminated waste 

was dumped along sections of a country road in Missouri. Vehicles, animals and precip

itation have since transported some of the dioxin away from the original contaminated 

areas. As a result of the pollution, a number of animals died. In November of 1983, the 

USEPA investigated the contaminated site to determine which areas required clean-up. 
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Figure 1 Missouri study locations, o represents an observed value and • 
represents a censored value 

They sampled various areas, including the shoulder of the road, to determine their con

tamination levels. The data reported in Zirschky and Harris (1986), which only includes 

the sampled areas along the shoulder of the road, will be used to illustrate the use of 

data augmentation for spatial censored data. The goal of the analysis is to identify 

portions of the shoulder requiring clean-up. 

The spatial directions are the X-direction (measured in (y^)feet), representing di

rection parallel to the road, and the Y-direction (measured in feet), representing the 

direction perpendicular to or away from the road. The road is located at the Y coordi

nate of 30. The shoulder of the road was divided into long transects in the X direction, 

most 200 feet, in which 8 samples were taken. The 8 samples were aggregated together 

to give one measurement per transect. For illustration purposes, we will treat the values 

reported as coming from one sampled location, with the X coordinate indicating the 

start of the transect. 
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From the samples taken, roughly 43% of the observations were censored, falling below 

some level of detection (LOD). The level of detections range from 0.10 /itg/kg to 0.79 

fig/kg. The level of detection is very "matrix" dependent; different amounts of soil, type 

of soil, moisture level, etc. may affect the limit of detection. All samples were analyzed 

according to US EPA approved procedures - USEPA, "Determination of 2,3,7,8-TCDD 

in Soil and Sediment", USEPA Region VII Laboratory, Kansas City, KS. The clean-up 

criteria for dioxin is 1 yug/kg. The goal is to perform spatial prediction that results in a 

map of predicted contamination levels for the entire area. 

5.2 Model specification 

The Bayesian spatial model assumes normality. A log transformation was applied to 

the original observations, resulting in a clean-up level of 0 ln(yug/kg). In addition to a log 

transformation of the data, a transformation of the original X coordinate by dividing 

by 100 was also required. This was due to a possible problem with the assumption 

of isotropy (no directional dependence). After initial investigation, there seemed to 

be a directional dependence in the data in the X direction. After transforming the X 

coordinate (i.e. defining a different distance measure), the isotropy assumption seemed 

reasonable. 

The model for the analysis was the Bayesian spatial model outlined in Section 3 

with prior distributions of ji ~ NQR(0,50), a2 ~ INGAM(2.1,6.6), <f> ~ GAM(2,0.1), 

and T2 ~ INGAM(2.1,0.55). These priors have large, but finite, variance with the 

distributions centered roughly around the parameter estimates found by replacing the 

censored values with their levels of detection in a non-Bayesian geostatistical analysis. 

For this analysis, the data were used to choose priors, but only to give a rough idea 

of appropriate prior means for the model parameters. Alternatively, a fully Bayesian 

analysis could be applied involving the specification of hyper-priors. Again, the question 

comes down to the specification of the hyper-prior parameters. The use of improper or 
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Table 1 Dioxin: Median and 95% credible intervals based on the simulated 
marginal posterior distributions 

DA LOD/2 LOD 
Median Interval Median Interval Median Interval 

H -0.701 
0.169 

r2 7.425 
^ 17.697 

(-1.744, 0.609) 
(0.076, 0.372) 
(3.85, 17.74) 
(8.93, 40.51) 

-0.646 
0.193 
4.122 

15.760 

(-1.488, 0.338) 
(0.090, 0.383) 
(2.330, 9.178) 
(7.90, 36.51) 

-0.441 
0.170 
3.337 

16.599 

(-1.305, 0.531) 
(0.083, 0.322) 
(1.783, 8.087) 
(7.96, 44.21) 

flat priors for the hyper-parameters is an option, but care should be taken to insure 

a proper joint posterior distribution. As in the case of the first level priors, special 

consideration for the dependence parameter 4> was needed in order to insure a proper 

joint distribution. In this case, a proper prior or a specific reference prior (Berger, de 

Olivieria and Sanso 2001) is required to insure a proper joint posterior distribution. 

For the simulation of <j> via Metropolis-Hastings step(s), the candidate generating 

distribution of GAM(2X, 2) was used, where X represents the current value of <f). By 

choose GAM(2X, 2), the mean of the candidate generating distribution for the current 

iteration of the chain is the current value for the random variable. At each iteration of 

the Gibbs sampler, 5 Metropolis-Hastings steps were completed for the simulation of 4>. 

The chain was run for 10,000 iterations, excluding the first 500 iterations for burn-in. 

Convergence was checked via time-series plots constructed for each parameter. 

5.3 Results 

Summaries comparing the spatial analysis using data augmentation (DA) for cen

sored observations to the method that replaces the censored observations with half the 

level of detection (LOD/2) or the level of detection (LOD) are presented in Table 1. 

Table 1 displays medians and 95% credible intervals for the parameters fi, r2, cr2, and 0. 

In addition to numerical summaries, Figures 2 through 5 provide approximate marginal 

densities for the parameters YU, T2, A2 and 4> using DA, LOD/2 and LOD methods for 
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Table 2 Dioxin: Point Estimates found using Weighted Least Squares 

LOD/2 LOD 

M -0.871 -0.569 
T2 0.502 0.435 
(J2 5.876 4.423 

<t> 20.672 21.430 

handling censored data. From these results, one notices in addition to difference in 

posterior medians, the data augmentation procedure produced larger variability in the 

approximated marginal densities as compared to the LOD/2 and the LOD methods. 

The biggest difference between the three methods is in the estimation of the spatial 

variability parameter cr2. The median of the posterior distribution for a2 is 7.425 using 

data augmentation, while half the level of detection and the level of detection methods 

produce medians of 4.122 and 3.337, respectively. 

A comparison of the Bayesian method and the traditional method to find estimates 

using Weighted Least Squares to fit a variogram model was also investigated. The 

estimates found using Weighted Least Squares (WLS) are presented in Table 2. The 

table presents results based on replacing the censored observations with half the level 

of detection (LOD/2) and the level of detection (LOD). Comparing the results in Table 

1 and Table 2, we see that the WLS method produced slightly larger point estimates, 

with the largest difference in regards to the estimation of r2. Overall, the two methods 

agree fairly well, with the possible difference between the two methods due to the prior 

specification involved in the Bayesian analysis. 

Since the goal of this study is the identification of areas requiring clean-up based on 

a criteria of 0 ln(/i/kg), Bayesian prediction results are presented in Figures 6 and 7. 

Figure 6 displays the median of the approximated data augmentation Bayesian posterior 

predictive distribution. Figure 7 contain corresponding graphs of the posterior proba-
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Figure 2 Dioxin: Simulated marginal posterior distributions for fj, (A) data 
augmentation for censored values (B) censored values replaced by 
LOD/2  (C) censored values replaced by LOD 
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3 Dioxin: Simulated marginal posterior distributions for r2 (A) data 
augmentation for censored values (B) censored values replaced by 
LOD/2  (C) censored values replaced by LOD 
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Figure 4 Dioxin: Simulated marginal posterior distributions for cr2 (A) data 
augmentation for censored values (B) censored values replaced by 
LOD/2  (C) censored values replaced by LOD 
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Figure 5 Dioxin: Simulated marginal posterior distributions for (f> (A) data 
augmentation for censored values (B) censored values replaced by 
LOD/2  (C) censored values replaced by LOD 
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Figure 6 Dioxin: Posterior median of the Bayesian predictive distribution 
using data augmentation for censored values 

O 10 SO 30 

X Coordlnal* 

Figure 7 Dioxin: Posterior probability of prediction being greater than the 
clean-up criteria using data augmentation for censored values 
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bility of a prediction being greater than the clean-up criteria of 0 ln(^/kg). Based on 

these plots or other summaries of the posterior predictive distribution, clean-up deci

sions can be made which better reflect the true contamination levels, by accounting for 

the censored observations adequately. 

Figures 8 and 9 provide comparison of predictions produced by the DA and LOD/2 

methods. These figures portray the difference in medians of posterior predictive distribu

tions and posterior predictive probability being greater than clean-up criteria produced 

by using the DA and LOD/2 methods. The two figures show that setting censored ob

servations equal to half the level of detection resulted in larger predictions in the areas 

far away from the road (Y direction), in particular for locations far down the road (in 

the positive X direction). With respect to the posterior probability of a location's con

tamination being greater than the clean-up criteria of 0 ln(//g/kg), there are two major 

areas of discrepancy; along the shoulder (Y coordinates of 10 to 20 and 40 to 50) and at 

large values of X located on the road (Y coordinates around 30). Along the shoulder, 

replacing the censored values with half the level of detection resulted in larger posterior 

probabilities of contamination while data augmentation produced larger probabilities on 

and around the road at large values of the X coordinate. 

To illustrate the difference in the clean-up regions determined by the DA and LOD/2 

methods, Figure 10 contains contour plots for the probability being greater than the 

clean-up criteria were plotted for probabilities of 0.60, 0.70, 0.80, and 0.90. These 

probabilities of being greater than the clean-up criteria can be used to determine which 

areas needed to be cleaned up. The clean-up region is the area inside the plotted line, 

where a smaller clean-up region was found using the DA method as compared to the 

LOD/2 method. For this study, there was a moderate difference in the clean-up regions. 

Other studies may show larger difference in clean-up regions or no difference in clean

up regions; the DA method produces better parameter estimates and predictions which 

in some examples still will not result in any meaningful difference in clean-up regions 
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Figure 8 Dioxin: Difference in posterior medians for DA and LOD/2 meth
ods for handling censored values (LOD/2 - DA) 

Figure 9 Dioxin: Difference in posterior predictive probability being greater 
than the clean-up criteria for DA and LOD/2 methods (LOD/2 -
DA) 
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X Coordinate X Coordinate 

X Coordinate X Coordinate 

Figure 10 Dioxin: Difference in clean-up regions between the DA method 
(interior line) and the LOD/2 method (exterior line) based on 
different probabilities of being above clean-up cut-off values 
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Table 3 Dioxin: Median and 95% credible intervals based on the simulated 
marginal posterior distributions for three different prior specifica
tions 

Primary Analysis Second Analysis Third Analysis 
Median Interval Median Interval Median Interval 

li -0.701 
T2 0.169 
a2 7.425 
^ 17.697 

(-1.744, 0.609) 
(0.076,0.372) 

(3.853,17.740) 
(8.931,40.511) 

-0.144 
0.209 
7.951 

19.373 

(-0.917, 0.519) 
(0.105, 0.434) 
(4.727,13.850) 

(11.828, 31.263) 

-0.681 
0.246 
7.394 
18.493 

(-1.901, 0.285) 
(0.119, 0.509) 

(3.792, 17.087) 
9.448, 41.927) 

between the DA and LOD/2 methods. 

Lastly, sensitivity analysis was performed to investigate the impact of the prior 

distributions on the parameter estimates. Two more analyses were completed using 

prior distributions of fi ~ NOR((), 20), a2 ~ INGAM(3,12), </> ~ GAM(10, 0.5), r2 ~ 

INGAM(3,1) and fi ~ NOR(0,100), <r2 ~ INGAM(2.1,4.4), 0 ~ GAM(2.2,0.1), r2 ~ 

INGAM(2.1,1.1). Comparison of parameter estimates for the primary analysis and the 

two additional analyses can be seen in Table 3. As Table 3 presents, there are only small 

differences among the three analyses in terms of parameter estimation, with the largest 

differences for the estimation of fj,. Overall, the priors used in the primary analysis seem 

appropriate. 

6 Illustrative example II: site 15 

6.1 Description of data 

Site 15, an old industrial site converted into a park, is a site of metal contamination. 

A study was conducted to investigate the level of metal contamination at the site. The 

main purpose of the study was to determine the amount of Metal C present in the soil 

and whether clean-up was required. The second goal of the study was to determine if 

Metal C was associated with other metals of interest (e.g. Metal B). 
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A soil core was drilled at each sampled location and measurements taken at different 

depths. The depths intervals (which varied from location to location) were determined 

by the type of soil and soil characteristics, with no information available beyond the 

depth sampled. That is, no information was available on the type of soil, only the 

depth. To demonstrate the data augmentation procedure, we investigated the amount 

of Metal B present in the soil. The clean-up criteria for Metal B is 1 mg/kg for both 

residential and non-residential areas. Censored observations occurred for metal B due to 

detection limits or LOD (i.e. left censoring). The detection limits varied, due partially 

to the amount of sample analyzed and the amount of moisture in the sample. 

To illustrate the data augmentation method and comparison to the LOD/2 and 

LOD methods for the handling of censored spatial data in the context of a Bayesian 

Spatial model, only the second depth measurements were analyzed (i.e. measurements 

right below the topsoil). The data augmentation procedure can be easily extended to 

the 3-dimensional setting. For the site 15 dataset, it was not clear how to handle the 

depth dimension, since the depths varied from location to location with no information 

recorded on the type of soil. Of the 82 observations, 32 (39%) were censored with the 

largest LOD being 1.5 mg/kg. Thus, the highest LOD is greater than the clean-up 

criteria for residential areas with a moderate amount of the data censored. Sampled 

locations for Metal B are displayed in Figure 11. 

6.2 Model specification and results 

The analysis of Metal B was completed using the spatial model outlined in Section 3. 

A log-transformation was applied to the original response variable to meet the normality 

assumption required for the model. This resulted in a clean-up criteria of 0 ln(mg/kg). 

After initial investigation and diagnostics, the assumption of isotropy seemed reasonable. 

To complete the Bayesian model, proper priors were placed on the parameters. The 

priors were chosen to have large, finite variances with the distributions centered around 
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Figure 11 Sampled locations of Metal B, o represent observed values and • 
represent censored values 

reasonable values found from initial analysis and investigation. The prior distributions 

used were ^ - NOR(-1,SO), T2 - INGAM(2.1,1.65), <7% - INGAM(2.1,2.97) and 

<j> ~ GAM(50,0.1). One thing to note is that the two closest points in the study are 

roughly 200 units apart, with the X coordinates and Y coordinates ranging roughly 

from 0 to 12,000. The prior distribution for <j> results in a average range being 1500. 

That is, responses observed at locations more than 1500 units apart can be considered 

independent. 

For the simulation of <fi, 5 Metropolis-Hastings steps were completed at each iteration 

of the Gibbs sampler, where the candidate generating distribution was GAM(2%, 2) with 

X representing the current value of 0. The value 2 is thought of as a "tuning parameter" 

that can be changed to increase "mixing" of the chain. The chain was run for 10,000 

iterations, excluding the first 500 iterations for burn-in. Convergences was checked using 

time-series plots for all model parameters. The analysis was run three times, using either 
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Table 4 Metal B: Median and 95% credible intervals based on the simulated 
marginal posterior distributions 

DA LOD/2 LOD 
Median Interval Median Interval Median Interval 

p -1.807 
T2 1.189 
(T2 2.089 
^ 14.459 

(-2.263,-1.391) 
(0.329, 3.190) 
(0.676, 4.033) 
(11.43, 17.89) 

-1.465 
0.875 
1.532 

14.434 

(-1.796, -1.124) 
(0.305, 2.074) 
(0.570, 2.611) 
(11.51, 17.81) 

-1.217 
0.841 
1.298 

14.462 

(-1.534, -0.903) 
(0.296, 1.815) 
(0.545, 2.267) 
(11.50, 17.83) 

the data augmentation (DA) method, the LOD/2 method or the LOD method as the 

means to handle the censored observations. 

The results of the three analysis are displayed in Table 4 and Figures 12 to 15. As 

with the Missouri dioxin example, the level of spatial variability (cr2) is vastly under

estimated using either the LOD/2 or the LOD method. In addition to the difference in 

the estimation of cr2, there was also a difference in the estimation of fi and r2 between the 

three methods. Data augmentation produced an estimate (median of simulated posterior 

density) of r2 to be 1.189, while LOD/2 and LOD produced estimates of 0.875 and 0.841. 

Another interesting difference between the DA and the LOD/2 and LOD methods is the 

amount of variability in the posterior distributions. Like the Missouri dioxin example, 

data augmentation produced posterior distributions with more variability. In other 

words, the LOD/2 and LOD methods are under-estimating the true posterior variability. 

Thus, credible intervals produced from posterior distributions found using the LOD/2 

and LOD methods tend to be too small. Lastly, there was little difference between the 

methods with regards to the estimation of cj> (i.e. range parameter). The estimates of <f> 

indicate no spatial dependence present in the data. 

Results from analyses performed using Weighted Least Squares (WLS) are presented 

in Table 5. Comparison of the WLS method to the Bayesian method, in which the 

censored observations are replace with either the LOD/2 or LOD, show similar results 
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Table 5 Dioxin: Point Estimates found using Weighted Least Squares 

LOD/2 LOD 
-1.495 -1.224 

T2 1.332 1.252 
<72 1.506 1.206 
<t> 1709 1773 

with the except of </> and r2. As with the Missouri example, WLS produced much larger 

estimates of r2 as compared to the Bayesian method. As for the large estimates of </> 

produced via WLS, this may be due to the fact that with very little spatial dependence 

present in the data. The standard errors estimates produced for the estimates of </> 

were on the same order of magnitude as the estimates, thus indicating little precision in 

estimation. 

With a major goal of spatial analysis the prediction and identification of areas re

quiring clean-up, Bayesian prediction was also completed. Bayesian prediction in the 

setting of censored spatial data is outlined in Section 3. Displays of the predictions 

(i.e. medians of posterior predictive distributions) found via the DA method and the 

difference between the LOD/2 and DA methods are located in Figures 16 and 17. Since 

little spatial dependence is present in the data, predictions for the DA method are close 

to -1.8 ln(mg/kg), the estimate of fi. Likewise, the difference in predictions between the 

LOD/2 and the DA methods is close to 0.35 ln(mg/kg), the difference in the estimates 

of ji for the LOD/2 and DA methods. Based on the clean-up criteria of 0 ln(mg/kg), 

there does not seem to be excessive amount of Metal B present in the soil. For this 

example, both the LOD/2 and the DA methods produce similar conclusions in terms 

of clean-up. But, in terms of prediction and parameter estimation, the data augmenta

tion procedure produced vastly different marginal densities for fi, r2 and <j2 along with 

producing smaller predictions as compared to the LOD/2 method. 
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Figure 12 Metal B: Simulated marginal posterior distributions for f i  (A) 
data augmentation for censored values (B) censored values re
placed by LOD/2  (C) censored values replaced by LOD 
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Figure 13 Metal B: Simulated marginal posterior distributions for r2 (A) 
data augmentation for censored values (B) censored values re
placed by LOD/2 (C) censored values replaced by LOD 
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Figure 14 Metal B:Simulated marginal posterior, distributions for cr2 (A) 
data augmentation for censored values (B) censored values re
placed by LODj2 (C) censored values replaced by LOD 
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Figure 15 Metal B: Simulated marginal posterior distributions for cj> (A) 
data augmentation for censored values (B) censored values re
placed by LODf  2 (C) censored values replaced by LOD 
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Figure 16 Metal B: Posterior median of the Bayesian predictive distribution 
using data augmentation for censored values 

Along with constructing time-series plots for checking convergence, autocorrelations 

were computed for various lags. Plots of the autocorrelations for the DA analysis and 

the LOD/2 analysis are displayed in Figure 18 and 19. From these plots, we see that 

the DA method produces higher levels of autocorrelation as compared to the LOD/2 

method. For example, independent iterates for the parameter /i occurs around a lag of 30 

with data augmentation, while with the LOD/2 method independence of iterates occurs 

around a lag of 12. The data augmentation method produces lags that are roughly twice 

as large as the lags produces by the LOD/2 method. As stated on page 84 of Analysis 

of Incomplete Multivariate Data by Shafer (1997), "If the missing information is a large 

portion of the total information, the 0 will depend heavily on Ymis at each P-step, which 

will in turn depend on the value of 9 used in the previous I-step; successive iterates of 6 

will tend to be highly correlated and convergence will be slow." In the case of censored 

spatial data, this is even more evident. Since the censored data is informative, as the 
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Figure 17 Metal B: Difference in posterior medians for DA and LOD/2 
methods for handling censored values (LOD/2 - DA) 

percent of censored observations increases, so does the amount of serial correlation when 

using the data augmentation procedure. Therefore, one may wish to use every k iterate 

when performing inferences, based on the amount of serial correlation. 

Lastly, to investigate the effects of the prior distributions on estimation, sensitivity 

analysis was performed. Two more analyses were completed with prior distributions for 

the parameters being ~ NOR(0,50), a2 ~ INGAM(2.1,3.3), 4> ~ GAM(10,0.1), r2 ~ 

INGAM(2.1,2.2) and p - NOR(-1,100), ^ - INGAM(2.1,4.4), - GAM(5,0.1), 

T2 ~ INGAM(2.1,3.3). These two sets of prior specifications are very similar to the 

priors used in the first or primary analysis. The main difference is with regards to the 

means for the prior distributions for <p. Parameter estimates for the primary analysis 

and the two additional analyses are displayed in Table 6. 

The results for /i, T2 and a2 are similar for the three sets of prior distributions. 

With regards to the parameter 4>, the specified prior distribution seems to have an 
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Figure 18 Metal B: Plot of autocorrelation function (ACF) for the param
eters (A) fi (B) T2 (C) a2 and (D) <j> using data augmentation 
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Figure 19 Metal B: Plot of autocorrelation function (ACF) for the param
eters (A) fi (B) T2 (C) a2 and (D) <f> using LOD/2 method 



51 

Table 6 Metal B: Median and 95% credible intervals based on the simulated 
marginal posterior distributions for three different prior specifica
tions 

Primary Analysis Second Analysis Third Analysis 
Median Interval Median Interval Median Interval 

p -1.807 
1.189 
2.089 

^ 14.459 

(-2.263, -1.391) 
(0.329, 3.190) 
(0.676, 4.033) 
(11.43, 17.89) 

-1.747 
1.418 
1.906 
5.916 

(-2.217, -1.328) 
(0.449, 3.314) 
(0.704, 3.757) 
(3.738, 8.810) 

-1.871 (-2.348, -1.445) 
1.555 (0.560, 3.387) 
1.971 (0.796, 3.775) 
4.430 (2.321, 6.914) 

effect on estimation. The primary analysis used a prior for <f> that reflects a small 

amount of spatial dependence, with observations further than 1500 units apart being 

considered as independence observations. From this first analysis, we find the level of 

spatial dependence to be even smaller, with <j) estimated to be 14.459. For all practical 

considerations for the site 15 study, an estimate of (j> equal to 14 or 5 both result in 

little to no spatial dependence (i.e. range of around 45 or 15), leading to very similar 

predictions. 

7 Discussion and conclusions 

We have proposed a data augmentation method for the analysis of spatially correlated 

data in which some of the observation are censored. A Bayesian spatial or geostatistical 

model was used in which the spatial dependency was modeled using an exponential 

form. We also discussed the process of spatial prediction for unobserved locations using 

the augmented data and parameter estimates. The data augmentation procedure for 

censored spatial data was illustrated and compared to the LOD/2 and LOD methods 

using two environmental contamination sites; one involving dioxin and one involving a 

heavy metal. 

The use of a model involving a spatial random effect allowed for imputation of the 
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censored observations to be completed using truncated univariate normal distributions. 

If not for the introduction of a spatial random effect to the model, the imputation step of 

the Gibbs sampler would have required the generation of the censored observations from 

a  t runca ted  mul t ivar ia te  normal  d is t r ibut ion ,  p (Y c \Y 0 ,0,  Y c  < LOD ) ,  where  LOD 

represents a vector containing the level of detections for the censored observations. One 

approach to generate values from a truncated multivariate normal distribution would be 

to implement the multivariate generation inside another Gibbs sampler, updating cen

sored values one at a time. This method would be more computer intensive, requiring 

re-decomposition of the mean vector and the covariance matrix and subsequent calcula

tion of the univariate conditional normal distribution for each censored observation at 

every iteration of the MCMC. 

Likewise, the assumption of geometric anisotropy in the Missouri dataset lead to 

simplification of the analysis. Another option to handle anisotropy would be to model 

a trend in the X direction. A median polish procedure could also be performed and 

the resulting residuals used in the data augmentation procedure. But again, there is 

the question of how to deal with censored observations in a median polish procedure 

for the removal of a trend effect. For example, if all censored values were replaced with 

their level of detections, the median polish procedure would be removing the trend from 

the detection levels. For the Missouri data, by using a different distance measure, we 

were able to avoid the problems related to the median polish procedure when censored 

data are present. One thing to note, is that the method does not require isotropy. 

The procedure can be extended to cases involving directional dependence where simple 

techniques/solutions to handle directional dependence are not applicable. 

The procedure could be easily extended to other Bayesian spatial models and other 

forms of censoring (e.g. right censoring, interval censoring). Instead of modeling the spa

tial dependence between observations with an exponential form, a spherical or Gaussian 

form could be applied. Since the data augmentation/imputation of the censored data is 
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based on the model, the results may be dependent upon this modeling choice. Future 

work is needed to investigate the robustness of the procedure to model misspecification 

and model diagnostics involving spatial data augmentation. 

Convergence and serial correlation is another important issue with the analysis of 

censored spatial data using the data augmentation method. As seen with the site 15 

example, the amount of serial correlation is larger when using the data augmentation 

method as opposed to a method that replaces the censored values with a constant, like 

LOD/2. As the percent of censoring increase, so does the amount of serial correlation 

and the number of iterations needed to reach convergence. Thus, in addition to model 

misspecification and diagnostics, work is needed to investigate the issues of convergence 

and serial correlation in cases involving moderate to large proportions of censored re

sponses. 

In addition to the extension of the method to different models, sensitivity analysis 

with respect to the prior distributions needs to be done. The data augmentation proce

dure for the analysis of censored spatial data can also be extended to a fully hierarchical 

Bayesian model using hyper-priors. Care must be taken when specifying prior distribu

tions in the setting of spatial analysis to ensure proper joint distributions. As stated on 

page 81 of Analysis of Incomplete Multivariate Data by Shafer (1997), "Even when an 

improper prior is known to yield a proper posterior in the case of complete data, it may 

not necessarily do so when some data are missing." 

In conclusion, this paper presents the use of data augmentation for the analysis of 

censored spatial data, which occurs often in environmental applications. Data augmen

tation produces more accurate parameter estimates as opposed to the common method 

of replacing the censored observations with half the level of detection. Along with 

producing biased parameter estimates, the common practice of replacing censored ob

servations with a function of the level of detection under-estimates the variability in the 

approximated marginal densities. This under-estimation of the variability parameters 
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and variability in the marginal densities was also found when applying the data aug

mentation method in the context of a Bayesian conditionally specified Gaussian Model 

(Fridley and Dixon, 2003). Data augmentation can be easily applied to analyze censored 

spatial data, producing more accurate marginal posterior distributions and predictions. 

As seen in the two illustrative examples, the difference in predicted contamination levels 

between the ad hoc methods and the data augmentation can be extreme. These differ

ences may lead to varying clean-up regions, which may have severe health, political and 

cost implications. 

Appendix 

This appendix presents the derivation of the full conditional distributions required 

for the Gibbs Sampler involving proper prior distributions. 

Full conditional distribution for a2: 

The full conditional distribution for a2 is 

p(a 2 \T 2 ,< j ) ,n ,W,X)  «  p(W\cr 2 , ( f>)p(cr 2 )  

oc \cr 2 V*(4>)\~ 1 ^ 2  exp{^iy T ( (T 2 V*(</>))~ 1 iy} (cr 2)~1(af+1Wp{—/? /<t 2 } ,  

where V*(4>)  = expTherefore, the full conditional distribution for a 2  is 

<T2|T2, ^ W, X - INGAM(n/2 + a, (l/2)^y*(^)"^ + /?)-

Full conditional distribution for r2: 

The full conditional distribution for r2 is 

P(T2|<T2, f i ,  <f>,  W,  X)  oc p(X\W,  f i ,  T 2 ) P ( T 2 )  

OC (T2)n/21(T2)-,+ l GXp{^&(% - (a* + W)) T (X -  (/X+ W))  -  ̂- } .  

Therefore, the full conditional distribution for r2 is 
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T2|<72,p, & TV, X ~ INGAM(^/2 + -y, (l/2)(% - (/i + Ty))^(% - (^ + VK)) + f). 

Full conditional distribution for fx\ 

The full conditional distribution for fi is 

p(m|t2,<t2>, W,X) oc p(X\W, i i ,T 2 )p( f j , ) .  

We will first find the full conditional distribution for fx and then the full conditional 

distribution for //. Thus, 

p(n\T 2 ,c r 2 ,< f> ,W,X)  

oc exp{f((X -IV)- » ) ) t ( tH)-\(X -W)- »)) + - A )T{<P2I)~<(p. - A)}. 

By completing the square, we have 

where p, = (^)(^A + - TV)) and 2. = Since (1^/n)^ = /%, the full 

conditional distribution for // is 

p|<72 , T 2 , & t r , x ~NOR(mX), 

where ^ - W)} and a\ - (^)(^p-). 

Full conditional distribution of W: 

The full conditional distribution for the spatial random effects, W, is 

p(W|X,/i,r2,cr2,0) oc p ( X \ W ,  f i ,  T 2 ) p ( W \ c r 2 , 0) 

oc exp{^(X - (/i + 1V))^(TV)-X% - (p+ IV))} x exp{^^y(^^)-i^y} 

= exp{^((% - /f) - vy)^(T^)-X(x _ ^) _ vy) + f 

By completing the square, we have the full conditional distribution for W to be 
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W|X,p, T%, 0 - MVN(/^, 2,), 

where fiw = [V_1(cr2,0) + ̂ I]~l[^{X - /*)] and ^7]"1. 

Full conditional distribution of cf>: 

The full conditional distribution for (j) is 

pM/A r2,<r2, <I>,W,X)  ( X  p ( W | ct2 ,  i#)p(<£) 

« iî^OTexp{^WTV"M-1H' -

Hence, there is no closed form (i.e. known distribution) for the full conditional for (j>. 

The full conditional distribution for <f> is only known up to a proportional constant. 
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DATA AUGMENTATION FOR A CONDITIONALLY 

SPECIFIED GAUSSIAN SPATIAL MODEL INVOLVING 

CENSORED OBSERVATIONS 

A paper to be submitted to the Journal of the American Statistical Association: Case 

Studies and Applications 

Brooke Fridley and Philip Dixon 

Abstract 

Censored data occur in numerous areas of application. When independence of obser

vation can be assumed, various methods have been proposed to analyze censored data. 

When one adds the complexity of spatial dependency between observations, methods for 

handling censored observations are not as clear. There are various statistical methods 

that allow for the analysis of spatial data, but none of these standard methods deal 

with the occurrence of censored data. In many spatial analyses involving pollutants or 

contamination, censoring often occurs from contamination values falling below a level 

of detection (LOD). That is, often censored spatial data are left censored. A common 

practice is to set the censored observations equal to the LOD or some function of the 

level of detection, like LOD/2. This single imputation method results in biased param

eter estimates. This paper will present and illustrate a data augmentation approach for 

the analysis of spatially correlated data using a Bayesian conditionally specified Gaus

sian model, in which some of the observations are left censored. Comparison of the data 
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augmentation method to the methods of replacing the censored observations with LOD 

and LOD/2 are also illustrated using a study looking at metal contamination in an old 

industrial area and a dioxin contaminated area in Missouri. 

1 Introduction 

Analysis of data involving spatial dependence arise in many applications, some of 

which include environmental sciences and epidemiology. In the case of lattice data, 

modeling can be done using Markov random fields. That is, one models the distri

bution of a random variable conditional on all other variables. Using the Markovian 

property, the conditional distribution of a random variable only depends on its neigh

bors. Recently, much research has been done using Markov random fields or conditional 

autoregressive models within a Bayesian framework. In particular, much of the work 

has been in regards to disease mapping applications (Stern and Cressie, 1999; Xia and 

Carlin, 1998; Bell and Broemeling, 2000; Gumpertz, Graham, and Ristaino, 1997). In 

addition to disease mapping, Daniels, Lee and Kaiser (2001) fit a hierarchical model 

for the analysis of particulate matter in Pittsburgh, where the random spatial effect is 

model with a conditionally specified Gaussian model. 

In specifying a Bayesian conditionally specified model, one must specify the prior dis

tributions along with the neighborhood structure for modeling the spatial dependence. 

The definition of the neighbors of a given location or neighborhood system varies. For 

example, one neighborhood structure could depend on distance from the given location, 

while another neighborhood structure would only include the nearest neighbors in the 

neighborhood structure (Besag, 1974; Kaiser and Cressie, 2000; Cressie, 1993). In ad

dition to specifying the neighborhood structure and priors, one must also specify the 

distribution for the random variables. A common distributional assumption is that of 

Gaussian. Gelman and Meng (1991) discuss the use of Gaussian conditional distribu
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tions to model multivariate data. Exponential families are discussed in detail by Besag 

(1974). Kaiser, Cressie and Lee (2002) extend the use of exponential family conditional 

distributions to spatial mixture models. The use of Markov chain Monte Carlo and 

the Bayesian paradigm has also been discussed by Besag and Green (1993) and Besag, 

Green, Higdon and Mengersen (1995). 

In environmental applications, it is not uncommon for some observations to fall 

below some detection level (LOD), resulting in left censored observations. A common 

technique to handle censored observations in the spatial setting is to replace the censored 

observation with some function of the level of detection. This method of replacing all 

censored values with a constant results in biased parameter estimates. Another common 

approach is to treat the data as independent observations and then use methods that can 

be applied in the case of independence (Helsel, 1990; Gibbons, 1995; Porter, Ward and 

Bell, 1988). The drawback with this approach is that one ignores the spatial information 

available. 

Much research has been done and is currently being done in the area of missing data, 

where censored observations represent a form of non-ignorable missing data. Little and 

Rubin (2002) outline the basics for analyzing data involving missing observations. The 

EM algorithm (Dempster, Laird and Rubin, 1977) is a procedure that can be used to 

analyze missing data. The EM algorithm has been used extensively for the handling 

of missing or censored data involving mixed model (Hughes, 1999; Smith and Helms, 

1995; Pettitt, 1986). The idea of data augmentation was first presented by Tanner 

and Wong (1987) in which analysis and augmentation of missing data is done within 

a Markov chain Monte Carlo. Hopke, Liu and Rubin (2001) use a data augmentation 

procedure to produce k sets of complete data, which can then be analyzed by traditional 

statistical methods. Hybrids using both EM and MCMC ideas have also been used to 

handle missing data. Shafer (1997) further outline the use of the EM algorithm and 

data augmentation to handle missing data. Implementation of data augmentation for 
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the handling of censored data in a spatial setting has yet to be addressed. In this paper, 

we combine the ideas of spatial analysis using a conditionally specified Gaussian model 

and data augmentation as a means for analyzing censored spatial data. 

2 Censored data and data augmentation 

Censored data is a form of missing data that if not accounted for will result in biased 

parameter estimates. In the terminology of Little and Rubin (2002), censored data is a 

type of "non-ignorable" missing data. One possible solution to the problem is to integrate 

out the censored data from the posterior distribution, /p(©| Yc, Y0)p(YC\Y0)dyc. A 

problem with this solution is that the integration may be difficult or intractable. To 

solve this problem, one may employ the idea of data augmentation within a Markov 

chain Monte Carlo. Data augmentation is a method that solves the problem of having 

to integrate out the censored observations from p(©| Yc, Y0). 

Let y represent the observed data, z represent the augmentated data (censored data), 

and 0 represent the parameters. The posterior distribution p(0\y, z) is easy to compute 

if both y and z are observed, whereas, p(9\y) — f p((%, z)p(z\y)dz may be cumbersome 

to calculate if z is not observed (Tanner and Wong, 1987). Hence, multiple realizations 

of z are generated from the predictive distribution p(z\y). The generation of z from 

p(z\y) can be decomposed into the following two steps: (1) a value of 0 is generated, say 

0, and (2) based on 0, generate z from p(z\cf),y). Averaging p(0\y, z) over the simulated 

values of z results in an approximation for p(9\y). 

Data augmentation can be thought of as using Markov chain Monte Carlo to perform 

imputation. Data augmentation results in "augmenting" or imputing values for the 

censored observations at each iteration of the chain, followed by a posterior step that 

generates values of the parameters conditional on the augmented data. The idea is 

the following. Given the current value of the parameters Q^\ draw a vector y(t+1) 



63 

for the censored data from p(Y c \Y a ,  ©^). Then based on Y^ + 1 \  draw ©(<+1) from 

the complete data posterior p(©| Y0, Y^+1)). Repeating this process numerous times 

yields a stochastic sequence {©^, Y^ : t = 1,2,...} whose stationary distribution is 

p(0, Yc| Y0). In addition, {©^ : t = 1,2,...} has stationary distribution p(©| Y0). 

Hence, the sequence {©^' : t = 1,2,...} can be used to estimation of the joint posterior 

distribution p(©|Y0) (Shafer, 1997; Geman and Geman, 1984; Gilks, Richardson and 

Spiegelhalter, 1996). 

3 Bayesian conditionally specified Gaussian spatial model 

Fitting a conditionally specified Gaussian or conditional autoregressive model, let 

{y(s,-) : i = 1,..., n} represent a set of random variables at locations {s,- : i = 1,..., n}. 

Then, Y(s{) is model as 

y(^)|y(7V,) - NOR(//„T:), 

where Y(N{) represent all observations that are neighbors to s,-. In addition, the param

eterization of ni takes the form 

n 

m = a, 4- E Q;(!/(^) - Oj). 
i=i 

We then define a4- = a, and c*j = rj(dij)~l if sj E Ni. The joint distribution of 

y — (y(si),..., y(sn)) is then given by 

y-GA(/(a,(/-C)^M), (1) 

where C contains the elements c,j which involve 77 ,  and M is a diagonal matrix containing 

t2 (Besag, 1974; Kaiser and Cressie, 2000). In this conditionally specified Gaussian 

model, we are modeling the inverse covariance matrix as opposed to the covariance 

matrix as in geostatistical models. In addition to modeling the inverse covariance matrix, 

o represents the large scale model and ctj models the spatial dependence or small scale 
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model. If covariates are available, a,- can be modeled as at- = X j /?. Just as there are ways 

to model with covariate information, there are other forms for the parameterization 

of C. For the remainder of this paper, we will not focus on the modeling aspect of the 

analysis, but instead on the data augmentation procedure for the handling of censored 

spatial data. 

For the model specified in equation (1), C  —  r j H ,  where H  is a known symmetric 

matrix containing inverse distances. The covariance matrix (I — C ) ~ l M  is a non-negative 

definite matrix. This does not guarantee that H is non-negative or positive definite, since 

the eigenvalues of H can be positive or negative. If h i , h 2 , . . . ,  h n  represent the ordered 

eigenvalues of H, then |(7 —  C ) \  =  JI (1 ~ where r j  must be such that each term is 
2 — 1 

positive (Kaiser and Cressie, 2000; Cressie, 1993). Thus, we have the following bounds 

for 77. 

• If 0 < h \ ,  then f j  <  l / h n  

• If h n  <  0, then r j  >  l / h i  

• If h i  < 0 < h n ,  then 1 / h i  < 77 < l / h n  (most common case ) 

To finish the specification of the model, prior distributions are placed on all param

eters in the model. A possible prior specification involving non-informative, improper 

priors would be 

p ( a )  oc 1, 

p(T^) (X (T=)-l, 

p ( r ] )  OC 1 over the possible range of r j .  

Another option would be to put proper prior distributions on all parameters. The 

following is a possible prior specifications involving proper priors and the priors used for 

the remainder of the paper: 



65 

a ~ NOR(,u, cr2), 

T 2 -  I N G A M ( ^ , ^ ) ,  

r] ~ Transformed BETA(î/>,0), 

where 77 = y(h^~^ ) + ̂ , and y ~ BETA(^, 0). To ensure (/—C^))-1 is positive definite, 

we exclude ^ and from the support set of the transformed beta distribution, of which 

both have measure 0. If both tp and cf> are set equal to 1, the transformed beta prior 

reduces to a uniform prior over the range (^-, ^)- To place either a informative or 

non-informative prior distribution on 77, we need to compute the largest and smallest 

eigenvalues of H. Based on the eigenvalues, the prior distribution will have support 

(-00,  l/hn), (I//11, 00),  or (I//11,1 /hn). 

4 Markov chain Monte Carlo for data augmentation 

The handling of censored spatial data using a data augmentation procedure is done 

within a Markov chain Monte Carlo (MCMC). For the augmentation procedure, the 

Gibbs sampler will be utilized with an additional augmentation or imputation step. The 

Gibbs sampler is a special case of the data augmentation procedure presented by Tanner 

and Wong (1987), where only one augmentated dataset is generated at each iteration of 

the chain. 

With the assumptions of the Gibbs sampler satisfied for the Bayesian conditionally 

specified Gaussian model involving censored data, the data augmentation procedure can 

be completed as follows. At each iteration of the Gibbs sampler, the censored data will be 

imputed by generating values from p(Yc|Y0, a, r2, rj). Using the augmented-complete 

dataset, the parameters a, r2, and 77 will be generated from their corresponding full 

conditional distributions. Repeating this process numerous times, yields a stochastic 

process with stationary distribution p(0, YC|Y0), where © = (a, T2, 77) (Geman and 

Geman, 1984). Derivation of the full conditional distributions required for the Gibbs 
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Sampler are located in the appendix. The MCMC data augmentation algorithm within 

the framework of a Bayesian conditionally specified Gaussian model involving censored 

observations is as follows. 

1. Set starting values for t2(°\ and rj^. Set m = 0. 

2. Set censored values equal to their level of detection, Y^ = LOD , where Y c  

represent the vector of censored observations. 

3. Let Y T { m )  = (Y^71', Y 0 ) T ,  were Y 0 represent the observed values. 

4. Generate a(m+1) from N(fi^n+1\ <T^m+1') with 

= ji T ( ^ i + m c  -  o r 1 ^ 1  + MV - c,)yl™)) 

5. Generate T%™+i) from + -y, ^(Y^ - - C) 

(yW _aW)) + /?). 

6. Using Metropolis-Hastings step(s), simulate from 

p(7/|yW,TW),aW)) oc [H(l _^,)]i/2exp{^ry(YW -a(-+i))T 

H(Y im) ~ «<•"«))} (r, - y*->[l-fo-' 

7. Now have ©(m+1' = (a(m+1),r
2(m+1)î^(m+1)). 

8. Using ©tm+1), impute values for the censored values Yc and produce Y^m+1^. 

Let Yc — (Ylc, Y2c,.., Ykc) represent k censored observations. Let (ii = a + 
n 

E c;j(Y(sj) - a), and c tJ = r)(dij)~h for s3 e N t. 
j = 1 

(a) Generate Y/C
m+1* from Ylc|Y2™\ .., Y^™\ Y0, 0(m+1) which is a univariate nor

mal distribution N(/4m+1\r2(m+1)), truncated at LOD\. 
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(b) Generate V2
(
c
m+1) from Y2 c\Y l

{™+ 1\  Y^\ Y^\ Y 0 ,  6(m+1) which is a univari

ate normal distribution N(/4m + 1\  r2(m + 1)),  truncated at LOD2 .  

(c) Generate Y^+^ from Kfcc|Yic
m+1),Ya, 0(m+1) which is a conditional 

univariate normal distribution N(/z^m + 1\  r2^m + 1)),  truncated at LODk-

9. Set m = m + 1 and repeat the algorithm a large number of times. 

The reason behind using a Metropolis-Hastings algorithm for the generation of r)  

instead of a rejection algorithm is due to fact that a bound M for the function is 

required for a rejection algorithm. By using a Metropolis-Hastings algorithm, we were 

not required to find the bound M, only to specify a candidate generating distribution. 

If the chain converges slowly or does not mix well with respect to 77, one may wish to 

use a different candidate generating distribution for the Metropolis-Hastings step(s). 

5 Illustrative example: site 15 

5.1 Description of data 

Site 15 is an old abandoned industrial site that was later converted into a park. A 

study was conducted to look at the level of metal contamination at the site. The purpose 

of original study was to determine if the soil contained excessive amounts of Metal C 

and if clean-up was required. In addition, the study was designed to investigate possible 

association of Metal C with other metals found in the soil (e.g. Metal A and Metal B). 

At each location sampled, a soil core was drilled. Measurements were taken at 

different depths based on soil characteristics. No information was available on the type 

of soil, only the depth. Censored observations occurred for various metals. For a given 

metal the detection limits varied, partly due to the amount of sample used in the analysis 

or the amount of moisture in a sample. 
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After initial investigation, the assumption of i sot ropy was adequate and a log trans

formation was required for the normality assumption. To illustrating the data aug

mentation method for censored spatial data, only the second depth measurements were 

analyzed (i.e. observations right below topsoil). The data augmentation procedure can 

be extended to the 3-dimension setting. For site 15, it was not clear how to handle the 

depth dimension, due to the fact that no information was available on the type of soil. 

The only information available was the depth of the samples taken, which differed from 

location to location. 

For illustration purposes, we will only investigate two metals, Metal A and Metal B. 

Metal A was recorded in units mg/kg with a EPA clean-up criteria of 340 mg/kg for 

non-residential and 14 mg/kg for residential areas. Of the 82 observations, 52 (63%) were 

censored with varying levels of detection, the largest LOD being 35 mg/kg. Metal B was 

also recorded in mg/kg, but with a clean-up criteria of 1 mg/kg for both residential and 

non-residential areas. Of the 82 observations, 32 (39%) were censored with the largest 

LOD being 1.5 mg/kg. For both metals, their highest LOD is greater then the clean-up 

criteria for residential areas with moderate to large proportions of the data censored. 

Sampled locations for Metal A and Metal B are displayed in Figures 1 and 2. Metal 

A and Metal B will be used to illustrate the application of data augmentation for the 

handling of spatial censored data in the context of a Bayesian conditionally specified 

Gaussian model. 

5.2 Model specification and results 

For the analysis of both Metal A and Metal B, a Bayesian conditionally specified 

Gaussian model given in Section 3 was used with priors specifications of a ~ NOR(Q, 50), 

T2 ~ INGAM(2.1,2.2), and r/ ~ transformed BETA(1,1), excluding 1/Ai and l/hn from 

the support set for rj. This specification resulted in very diffuse priors, with finite 

va r i ance ,  fo r  a l l  pa ramete r s .  By  us ing  a  t r ans fo rmed  be ta  d i s t r ibu t ion  a s  the  p r io r  fo r  r j ,  
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Figure l Sampled locations of Metal A, o represent observed values and • 
represent censored values 

Figure 2 Sampled locations of Metal B, o represent observed values and • 
represent censored values 
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one can either specify a non-informative prior or an informative prior by changing the 

parameter values for the beta distribution. To look at the effects of using an informative 

prior on rj, another model was fit with prior specification of 77 ~ transformed BETA(8,2). 

Derivation of the transformed beta distribution can be found in the Appendix. The 

eigenvalues for the H matrix depend on the distances between sampled locations. The 

smal les t  and larges t  e igenvalues  for  the  Si te  15 locat ions  are  hi  = -.051219 and h n  = 

0.26088, respectively. Hence, for this model, 77 Ç (-19.524, 3.833). 

For the Metropolis-Hastings steps used for the simulation of 77 within the Gibbs 

sampler, a transformed beta distribution with the support of (-19.524, 3.833) was used 

as the candidate generating distribution. The candidate generating distribution used 

was a TBETA(/3iX, /?i(l — %)), resulting in the mean of the generating distribution to 

be centered around the current value, X, for rj. The value of (3\ was set to be 2 and 

can be thought of as a tuning parameter that can be changed to increasing "mixing" of 

the chain. The results presented are based on 10,000 iterations, excluding the first 500. 

Time-series plots were constructed to verify convergence. At each iteration of the Gibbs 

sampler, 5 Metropolis-Hastings steps were completed. 

The analysis of Metal A using data augmentation (DA), half the level of detection 

(LOD/2) and the level of detection (LOD) for the handling of the censored data resulted 

in vastly different parameter estimates for a and r2. As presented in Table 1 and Figures 

3 through 5, data augmentation produced a smaller estimate for a and a much larger 

estimate for r2 as compared to the LOD/2 and the LOD methods. For the estimation of 

rj, the data augmentation procedure produced a negative estimate for 77, along with the 

DA method producing more variation in the marginal posterior distribution as compared 

to the LOD/2 and LOD methods. All three methods produce results that indicate no 

spatial dependence, with zero contained in the credible intervals. The lack of precision 

in estimating rj may be due to the fact that 52 out of the 82 observations are censored. 

Hence, the lack of information available resulted in low precision in the estimation of 
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Table 1 Median and 95% credible intervals based on the simulated marginal 
posterior distributions for Metal A and Metal B 

DA LOD/2 LOD 
A Median Interval Median Interval Median Interval 
a 
T 2  

V 

0.520 
2.808 

-3.815 

(-0.093, 0.990) 
(1.723, 4.942) 

(-15.532, 2.823) 

1.248 
1.475 

-0.331 

(0.921, 1.568) 
(1.111, 2.018) 
(-9.295, 3.121) 

1.687 
1.155 
0.827 

(1.356, 2.00) 
(0.865, 1.593) 
(-6.346, 3.240) 

B Median Interval Median Interval Median Interval 
a 
T2 

V 

-1.886 
3.343 
1.895 

(-2.623, -1.220) 
(2.269, 5.091) 
(-3.161, 3.385) 

-1.371 
2.373 
1.904 

(-1.799, -0.683) 
(1.784, 3.238) 
(-3.778, 3.441) 

-1.225 
2.078 
1.418 

(-1.688, -0.747) 
(1.553, 2.860) 
(-4.841, 3.327) 

the dependence parameter 77. 

Metal B analysis produced similar findings with regards to the differences in results 

between the three methods. Table 1 and Figures 6 to 8 display the estimated marginal 

posterior distributions, medians and credible intervals for the parameters a, r2 and 77. 

Once again, a lower estimate of a and a larger estimate of r2 were produced by the 

data augmentation method. By replacing the censored values with LOD/2 or LOD, the 

estimate of the variability was underestimated and the estimate of the mean was over 

estimated. With regards to the estimation of 77, the three methods produced similar 

results, with data augmentation producing a slightly larger estimate of 77. 

With the locations of the censored observations, the observed values at locations close 

to the censored locations and the varying level of detections all effecting the estimation of 

the dependence parameter 77, it is hard to say that data augmentation will always produce 

lower estimates of spatial dependence as compared to the LOD/2 and the LOD methods. 

For the case were the level of detections vary, with some level of detections being very 

large, it becomes even more difficult to make general statements about how the DA, 

LOD/2 and LOD methods will compare for the estimation of the spatial dependence 

parameter. 
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Figure 3 Metal A: Simulated marginal posterior distributions for a (A) data 
augmentation for censored values (B) censored values replaced by 
LOD/2 (C) censored values replaced by LOD 
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Figure 4 Metal A: Simulated marginal posterior distributions for r2 (A) 
data augmentation for censored values (B) censored values re
placed by LOD/2 (C) censored values replaced by LOD 
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Figure 5 Metal A: Simulated marginal posterior distributions for rj (A) data 
augmentation for censored values (B) censored values replaced by 
LOD/2 (C) censored values replaced by LOD 
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Figure 6 Metal B: Simulated marginal posterior distributions for a (A) data 
augmentation for censored values (B) censored values replaced by 
LOD/2 (C) censored values replaced by LOD 
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Figure 7 Metal B: Simulated marginal posterior distributions for r2 (A) 
data augmentation for censored values (B) censored values re
placed by LOD/2 (C) censored values replaced by LOD 
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Figure 8 Metal B: Simulated marginal posterior distributions for 77 (A) data 
augmentation for censored values (B) censored values replaced by 
LOD/2 (C) censored values replaced by LOD 
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Table 2 Median and 95% credible intervals based on the simulated marginal 
posterior distributions for Metal A and Metal B using an informa
tive prior  for  r j  

Metal A Metal B 
Median Interval Median Interval 

q 0.546 
T-2 2.781 
r j  -0.516 

(-0.100, 1.029) 
(1.755, 4.909) 
(-6.980,2.846) 

-1.890 
3.387 
1.708 

(-2.571,-1.263) 
(2.322, 5.184) 
(-2.473, 3.225) 

Data augmentation produces estimates based on the observed values by using MCMC 

to integrate out the censored observations while the single imputation method treats the 

censored data as actual observed values. Thus, the variability in estimation with the 

LOD/2 or LOD method is under-estimated while data augmentation produces more 

accurate measures of estimation variability. Since variability in estimation is directly 

related to sample size and since the LOD/2 and LOD methods are treating all N ob

servations as observed, these single imputation methods over-estimate the precision in 

estimation. 

With specifying the prior for r j  as a transformed beta distribution, one has the flex

ibility of either using an informative prior or a non-informative prior. To look at the 

effects of using an informative prior on tj, another model was fit with prior distribution 

for rj being transformed BETA(8,2). The range of possible values for rj is -19.524 to 

3.833. The use of this transformed beta distribution results in less probability given to 

large negative values of rj and more probability given to values of rj around 0. 

Table 2 presents estimates and 95% credible intervals for Metal A and Metal B using 

an informative prior for ij and data augmentation to handle the censored observations. 

Comparing the results in Table 2 to the results displayed in Table 1, we see no difference 

in parameters estimates for a and r2. With regards to the estimation of rj, we see a large 

difference between the use of a non-informative and an informative prior. The use of an 
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Table 3 Median and 95% credible intervals based on the simulated marginal 
posterior distributions for Metal A and Metal B using three differ
ent non-informative prior specifications 

Primary Analysis Second Analysis Third Analysis 
A Median Interval Median Interval Median Interval 
A  

T 2  

V  

0.520 
2.808 
-3.815 

(-0.093, 0.990) 
(1.723, 4.942) 
(-15.53, 2.823) 

0.503 
2.864 
-3.767 

(-0.116, 0.970) 
(1.771, 5.065) 
(-15.32 ,2.852) 

0.520 
2.803 
-3.733 

(-0.069, 0.977) 
(1.704, 4.909) 
(-15.36, 2.866) 

B Median Interval Median Interval Median Interval 
A  

t2 

77 

-1.886 
3.343 
1.895 

(-2.623, -1.220) 
(2.269, 5.091) 
(-3.161, 3.385) 

-1.753 
3.333 
2.082 

(-2.376, -1.066) 
(2.318, 5.017) 
(-3.292, 3.425) 

-1.744 
3.392 
2.058 

(-2.362, -0.907) 
(2.341, 5.082) 
(-3.036, 3.451) 

informative prior distribution resulted in both higher precision in estimation and larger 

point estimates for rj. Thus, both the prior and the data are impacting the estimation of 

the dependence parameter. Care should be taken when using an informative prior for 77. 

But, if there is prior knowledge with regards to the value of 77, it could be incorporated 

into the prior distribution. In the case of the spatial dependence, more then likely there 

is no spatial dependence (77 = 0) or positive spatial dependence (77 > 0). Thus, it may 

seem reasonable to use a prior that puts less probability at large negative values of 77. 

Finally, sensitivity analysis was conducted to investigate the impact of the prior 

distributions. For both Metal A and Metal B, two additional analyses with varying 

prior distributions were completed. The prior specifications for Metal A were a ~ 

NQR(0,100), y: - INGAM(2.1,3.3), 77 - TBETA(1,1) and a - NQR(1,50), -

INGAM(2.1,2.2), 77 ~ TBETA(1,1). The two additional analyses for Metal B used the 

prior distributions a ~ NOR( —1,50), r2 ~ INGAM(2.1,3.3), 77 ~ TBETA(1,1) and 

a ~ NC)R(0,100), t2 ~ INGAM(2.1,4.4), 77 ~ TBETA(1,1). Results of the primary 

analyses and the two additional analyses for both Metal A and Metal B are presented 

in Table 3. The results show similar parameter estimates for the three different analyses 

using different prior distributions. Thus, we feel comfortable that the priors used in the 
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primary analysis of Metal A and Metal B are adequate. 

6 Illustrative example: Missouri dioxin contamination 

6.1 Description of data 

In 1971, sections of a country road in Missouri were polluted with dioxin (2,3,7,8-

tetrachlorodibenzo-p-dioxin or TCDD) contaminated waste. In November of 1983, in

vestigation and determination of areas requiring clean-up was completed by the USEPA. 

Portions of this data, reported by Zirschky and Harris (1986), will be used to illustrate 

the data augmentation procedure for the analysis of censored spatial data. The data 

published by Zirschky and Harris only includes the sampled areas along the shoulder of 

the country road. The original study conducted by the USEPA was a much larger study 

that included areas beyond the shoulder of the road. 

In the sampling of the locations, a regular sampling pattern was used with the X-

direction representing direction parallel to the road and the Y-direction representing the 

direction perpendicular to or away from the road. The sampling was done by dividing 

the shoulder of the road into long transects in the X direction, in which 8 samples were 

taken. To get one measurement per transect, the 8 samples taken in a given transect 

were aggregated. Figure 9 displays the sampled locations, along with displaying which 

observations were censored. For our purposes, we will treat the values reported as coming 

from one sampled location, with the X coordinate indicating the start of the transect 

with the Y coordinate of 30 representing the road. 

Of the 126 sampled locations, 43% of the observations fell below some level of detec

tion [LOD). The detection levels varied, ranging from 0.10 //g/kg to 0.79 /xg/kg. The 

clean-up criteria for dioxin is 1 /ig/kg. Thus, none of the levels of detection were greater 

than the clean-up criteria. Varying levels of detections are due in part to the amount of 

soil, the type of soil, the moisture level, etc. 
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Figure 9 Missouri study locations, o represents an observed value and • 
represents a censored value 

6.2 Model specification and results 

Bayesian conditionally specified Gaussian model outlined in Section 3 was used to 

analyze the amount of dioxin present on the shoulder of the Missouri road. To satisfy the 

Gaussian assumption, a log-transformation was performed on the original observations. 

In addition to transforming the response variable, the X coordinate was transformed by 

a factor of 100 (i.e. X/100). In other words, the distance measure used was a variation of 

the commonly used Euclidean distance measure. Using Euclidean distance or the original 

X scale, there seems to be directional dependence, which was all but eliminated with 

the transformation or alternative distance measure. Another option would be to model 

the directional dependence (e.g. = 771 sin2(%)( j^)h + 772 cos2(0ij)(jL)h if Sj 6 Ni). 

Priors specifications of a ~ NOR(Q, 50), r2 ~ INGAM(2.1,2.2), and 77 ~ transformed 

BETA(1,1), excluding 1/hi and l/hn from the support set, were used in the analysis. 

These hyper-parameters result in diffuse prior distributions. We have chosen to place 

ooao o 00 

X Coordinate 
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Table 4 Median and 95% credible intervals based on the simulated marginal 
posterior distributions for the Missouri dataset 

DA LOD/2 LOD 
Median Interval Median Interval Median Interval 

a -1.205 
r2 4.401 

77 0.117 

(-7.016, 3.969) 
(2.529, 13.083) 
(0.100, 0.118) 

-0.852 
2.617 
0.117 

(-5.249, 3.591) 
(1.487, 7.292) 
(0.104, 0.118) 

-0.555 
1.917 
0.117 

(-4.378, 3.321) 
(1.081, 5.404) 
(0.105, 0.118) 

a flat prior on 77 with the transformed BETA(1,1) distribution resulting in an uniform 

distribution. An informative prior could be used for rj by changing the hyper-parameter 

values in the specification of the transformed beta distribution. Care should be taken 

when using informative priors. For the parameter 77, it may seem reasonable to use a 

prior which places less probability on large negative values, since rj represents spatial 

dependence .  For  the  sampled  loca t ions  in  the  Missour i  s tudy ,  h i  = -2 .414  and  h n  = 

8.483, giving 77 £ (-0.4143, 0.1179). Derivation of the transformed beta distribution can 

be found in the Appendix. 

The Gibbs sampler with a data augmentation step was ran for 10,000 iterations. For 

the simulation of 77, 5 Metropolis-Hastings steps were completed at each iteration of the 

Gibbs sampler. The candidate generating distribution used in the Metropolis-Hastings 

steps was a transformed BETA(/9iAr, j3x{l - %)) over the support (-0.4143, 0.1179), 

where X represents the current value for 77. The value fii, a "tuning" parameter, was 

set to 5 for the analysis. Time-series plots were used to verify convergence of the chain. 

Inferences were based on the last 9,500 iterations. Results are presented in Table 4 and 

Figures 10 to 12. 

As with the site 15 example, the data augmentation method produced a much larger 

estimate for r2. Data augmentation produced an estimate of 4.401, while the LOD/2 and 

the LOD methods produced parameter estimates of 2.617 and 1.917, respectively. Along 

with producing a larger point estimate, Figures 10 through 12 illustrate the fact that the 
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Figure 10 Missouri: Simulated marginal posterior distributions for a (A) 
data augmentation for censored values (B) censored values re
placed by LOD/2 (C) censored values replaced by LOD 
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Figure 11 Missouri: Simulated marginal posterior distributions for r2 (A) 
data augmentation for censored values (B) censored values re
placed by LOD/2 (C) censored values replaced by LOD 
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Figure 12 Missouri: Simulated marginal posterior distributions for 77 (A) 
data augmentation for censored values (B) censored values re
placed by LOD/2 (C) censored values replaced by LOD 
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(B)  

O S 10 16 O B IO 15 

Figure 13 Missouri: Plot of autocorrelation function (ACF) for T2; (A) DA 
(B) LOD/2 

data augmentation procedure produced more variability in the approximated marginal 

densities as compared to the LOD/2 and LOD methods. While data augmentation 

produced different parameter estimates for r2, the marginal densities for a and 77 did 

not differ greatly between the 3 methods, with spatial dependence indicated in all three 

results. 

In addition to time-series plots for the verification of convergence, autocorrelation 

was computed for various lags. Figure 13 displays plots of the autocorrelation for the 

parameter r2. Figures 13 (A) and (B) represent the autocorrelations produced when 

data augmentation and the LOD/2 method are used to handle the censored observa

tions, respectively. The autocorrelation for r2 is twice as large for the data augmentation 

method, as compared to the LOD/2 method. Censored spatial data model with a geosta-

tistical model also produce larger autocorrelation with the data augmentation procedure 

(Fridley and Dixon, 2003). This occurrence of larger autocorrelations when data aug-
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Table 5 Median and 95% credible intervals based on the simulated marginal 
posterior distributions for three different prior specifications for the 
Missouri dataset 

Primary Analysis Second Analysis Third Analysis 
Median Interval Median Interval Median Interval 

a -1.205 
T2 4.401 

77 0.117 

(-7.016, 3.969) 
(2.529, 13.083) 
(0.100, 0.118) 

-1.203 
4.299 
0.111 

(-3.676, 1.193) 
(2.810, 7.376) 
(0.091, 0.117) 

-1.236 
4.333 
0.110 

(-3.199, 0.681) 
(2.883, 7.041) 
(0.090, 0.117) 

mentation is employed to handle censored data is not unexpected. As Shafer states on 

page 84 of Analysis of Incomplete Multivariate Data, "If the missing information is a 

large portion of the total information, the 6 will depend heavily on Ymis at each P-step, 

which will in turn depend on the value of 6 used in the previous I-step; successive iterates 

of 6 will tend to be highly correlated and convergence will be slow." One may wish to 

use every k iterate for the estimation and inference if the autocorrelation is high, where 

k is set to the lag at which two iterates are uncorrelated. 

Lastly, two additional analyses for the Missouri dataset was completed to investigate 

the impact of the prior specification. The two additional analyses used prior distribu

tions a ~ NOR(L,50), T2 ~ INGAM(2.1,5.5), r/ ~ TBETA(8,2) and a ~ NOR(0,50), 

T2 ~ INGAM(2.1,3.3), rj ~ TBETA(1,1). Results of the primary analysis and the two 

additional analyses for dioxin are presented in Table 5. The parameter estimates and 

intervals show no major differences in the results based on the three different prior spec

ifications. Hence, we feel comfortable with the prior distributions used in the primary 

analysis and the subsequent results and inferences. 

7 Discussion and conclusions 

We have proposed a data augmentation approach for the handling of censored spatial 

observations model with a Bayesian conditionally specified Gaussian model. In doing 
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so, we discussed the use of a transformed beta distribution as the prior distribution 

for rj. This allows for the specification of either a non-informative or an informative 

prior distribution that may reflect any prior knowledge about the spatial dependence 

parameter  r j .  

The demonstration of the data augmentation method for the analysis of left censored 

observations was illustrated using an old industrial site contaminated with heavy metals 

and a site in Missouri contaminated with dioxin. Comparison of results for the site 15 

and the Missouri site using data augmentation verses replacing the censored values with 

the level of detection and half the level of detection were also presented. These com

parisons illustrated the differences in parameter estimation between the three methods. 

In the analysis Metal A, Metal B and dioxin, data augmentation produced larger esti

mates of variability as compared to estimates produced using the LOD/2 and the LOD 

methods. Data augmentation for the analysis of censored spatial data using a Bayesian 

geostatistical model produced similar results for the parameters representing variability 

(Fridley and Dixon, 2003). 

The method can be easily extended to more complex models involving possible hyper-

priors, hierarchical modeling, different parameterization of neighborhood structure and 

varying forms of censoring (i.e. interval censoring). Also, one should note that the impu

tation of the censored values at each iteration of the chain is conditional on the model. 

An incorrect model for the spatial process would lead to inaccurate augmentation or 

imputation for the censored data. Further work is needed to investigate the application 

of data augmentation to spatial settings and the robustness of the procedure to model 

misspecification, especially if the proportion of censored observations is large. 

Along with robustness of the procedure, investigation into the issue of serial corre

lation in cases involving large proportions of censored data is needed. As seen with the 

dioxin example, the serial correlation for r2 was twice as high for the data augmentation 

method as compared to the LOD/2 method. The occurrence of large autocorrelations 
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using data augmentation for the analysis of censored data using a geostatistical model 

has also been illustrated and discussed by Fridley and Dixon (2003). The amount of se

rial correlation is directly related to the amount of censored observations. As the amount 

of censored observations increases, so does the level of autocorrelation. Further work is 

needed to investigate the issue of serial correlation when using the data augmentation 

method for the analysis of censored spatial data. 

In addition to the investigation of model misspecification, sensitivity analysis is rec

ommended with regards to the prior specifications. As an alternative to specifying values 

for the parameters in the prior distributions, a fully Bayesian analysis could be imple

mented. In doing so, care should be taken when using non-informative or improper 

priors in the setting of data augmentation, in that the resulting joint posterior distribu

tion is proper. Shafer (1997) recommends using proper priors whenever in doubt due to 

the fact that even when a improper prior distribution is known to yield a proper joint 

posterior distribution in the complete data scenario, this is not always the case when it 

comes to data augmentation for missing/censored data. 

In conclusion, this paper presents a data augmentation approach for the analysis of 

censored spatial data. Commonly, censored observations are set equal to some function 

of their level of detection. This ad hoc method of replacing the censored values with 

a constant results in biased parameter estimates. By imputing or augmenting values 

for the censored data at iteration of a Markov chain Monte Carlo, we more accurately 

estimate parameters in the setting involving censored data. As seen in the site 15 and 

Missouri dioxin examples, the level of variability was under-estimated with the LOD/2 

and the LOD methods. Along with producing more accurate parameter estimates, data 

augmentation also produced more variability in the approximated marginal densities, 

particular in the case of estimating the variability parameter r2. Hence, data augmen

tation is a procedure that can be applied to analyze censored spatial data, which often 

occurs in environmental applications. 
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Appendix 

This appendix presents the derivation of the full conditional distributions required for 

the Gibbs sampler using proper prior distributions and the derivation of the transformed 

beta distribution. 

Full conditional distribution for T2: 

The full conditional distribution for r2 is 

p(r2|y,a,?7) c c  p ( y \ T 2 , a , T ] ) p ( T 2 )  

oc (r2)-(n/2+T°+1) exp{=i (I(y _ a)T(7 - C ) ( y  -  a) +  / ? „ ) } .  

Hence, the full conditional distribution for r2 is 

t2|2/, or, 77 ~ I N G A M ( ^  +  70, \ ( y  -  a ) T ( I  -  C ) ( y  -  a) +  / ? „ ) .  

Full conditional distribution for a: 

The full conditional distribution for a is 

p ( a \ y ,  T2, r j )  oc p { y \ a ,  r2, r j ) p ( a )  

oc exp{^-(y - a ) T M _ 1 ( I  -  C ) ( y  -  a )  +  = ± ( a  -  //0l)T(<r2/)-1(a - j i Q  1)}. 

We will first find the full conditional distribution for a and then the full conditional 

distribution for a, where cx — la. Completing the square, we have the full conditional 

distribution for <x to be 

a \ y ,  T2, r j  ~  M V N ( n a ,  E a ) ,  

where = (^/ + ^(/ — C))_1(^|l + ^(/ — C)t/) and £a = (^/ + ^(/ — C ) ) ~ l .  

Therefore, the full conditional distribution for a is 

«|z/,t2,?7 ~ N( f i a,<rl), 
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where fia = ^lT/*a and c2
a = ±lTT,2

al. 

Full conditional distribution for r j :  

The full conditional distribution for r )  is 

p ( r j \ y ,  T2) oc p ( y \ a ,  r2, r j ) p ( r ] )  

oc |(7 — C)~lM\~ll2 exp{^-(t/ — a)TM_1(/ - C ) ( y  —  a)} 

- rr)*0"1!! - (t -

K [n"=i(l - l k i ) } ' / 2 e x p { & ( y  ~  < * ) T H ( y  -  a)} x(tj - jr)',"-1[l - ( l  ~ • 

There is no closed form for rfs full conditional distribution (i.e. no known distribution). 

The full conditional distribution is only known up to a proportional constant. That is, 

p{v\yi ai T2) oc 

[nr=i(l -  ̂ )]1/2exp{^(y -  a ) T H ( y  - a)}(?7 - - (r? - ̂  X^^)]00"1-

Derivation of transformed Beta distribution: 

If the support of x is ljh\ < x < l/hn and y = (x — we have 0 < y < 1. 

Likewise, if the support of y is 0 < y < 1 and x = we have ^ < x < 

Let y ~ Beta(a,(3) and x = g(y) = y{\~^ ) + Hence, we have y = g~l(x) — 

(x — By transformation, we have 

f x ( x )  =  f , ( ( x  - £)(£$;)) X |£(z -

Now, /„((* -  i)(^)) = 5^[(Z - *)(^t)r'[l- ( X - rrXiSr)]"-1 and 

|^:(.T — )| = - Thus, the distribution for the transformed beta random 

variable x is 

M * )  =  -  y-'li - (* - ïr)(Ê^)!"-'. 
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with 1/h i  < x  <  l /h n .  
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SIMULATION STUDY: DATA AUGMENTATION FOR THE 

HANDLING OF SPATIALLY CENSORED OBSERVATIONS 

A paper to be submitted to the Journal of Computational and Graphical Statistics 

Brooke Fridley and Philip Dixon 

This paper will present four simulation studies investigating the use of a data aug

mentation method for the analysis of censored spatial data. Censored spatial data occurs 

often in environmental applications. The two basic classes of models for the analysis 

of spatially correlated data, that of geostatistical and Markov random field models, are 

applied. Therefore, the simulation studies were completed for each type of model in a 

Bayesian framework. The goal of Simulation Studies I and III is to access the data aug

mentation procedure for the analysis of censored spatial data in the terms of parameter 

estimation and prediction. In addition to assessing the data augmentation procedure, 

comparison of the augmentation procedure to the common practice of replacing the 

censored values with half the level of detection will also be discussed. In contrast to 

Simulation Studies I and III, which investigates the general accuracy of the data aug

mentation method for only one combination of parameter values, Simulation Studies II 

and IV were designed to identify possible factors, like level of censoring and level of spa

tial dependence, that may impact the performance of the data augmentation procedure 

for the analysis of censored spatial data for each type of spatial model. 
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1 Introduction 

In many environmental studies, observations may be censored for one reason or an

other. For example, in the measurement of wind speeds, it may be impossible to measure 

wind speeds accurately if they pass beyond some threshold value. The resulting obser

vations are recorded as falling above the threshold value, or right censored. Conversely, 

left censoring occurs often when one is measuring trace amounts of pollutants in soil, 

air or water. In these cases, the observations are recorded as falling below some level 

of detection (LOD), which is often attributed to the analysis procedure or equipment. 

Due to the nature of the data, assuming independence is often invalid, leaving standard 

methods to handling censored observation inapplicable. 

A common approach for the analysis of censored spatial data is to replace the cen

sored values with some function of the level of detection (e.g. LOD/2, LOD). Once the 

censored values have been set equal to a constant, data analysis is completed on this 

"imputed" dataset as if all the values were observed. This approach has the disadvantage 

of producing biased parameter estimates, especially with the estimation of parameters 

representing sources of variability. In addition to producing biased point estimates, re

placing the censored values with a constant, like LOD/2, will result in under-estimating 

the variability in the posterior distribution or standard errors. 

One method that handles censored data in a spatial setting more adequately is the 

use of data augmentation. Data augmentation was first introduced by Tanner and Wong 

(1987). Fridley and Dixon (2003) have since applied the idea of augmentation to the 

analysis of censored spatial data in the context of both a Bayesian geostatistical model 

and a Bayesian conditionally specified or conditional auto-regressive (CAR) model. Fri

dley and Dixon found that replacing the censored observations with half their level of 

detection (LOD/2) or the level of detection (LOD) resulted in parameters measuring 

variability being underestimated. On the other hand, the data augmentation method 



97 

produced larger estimates of variability and smaller estimates of the mean. Likewise, 

Fridley and Dixon observed that predictions found in conjuncture with data augmen

tation for the handling of the censored observations resulted in different predictions as 

c o m p a r e d  t o  t h e  m e t h o d  o f  r e p l a c i n g  t h e  c e n s o r e d  v a l u e s  w i t h  L O D / 2 .  

The purpose of these four simulation studies is to investigate whether these results 

occur in many datasets. The analysis procedure used are Bayesian in nature, but we 

will use a frequentist approach for the evaluation of parameter estimates and predic

tions. Given parameter values, datasets are simulated for which analysis and posterior 

distribution are computed. Then for each dataset, the posterior median is computed 

as the point estimate from which characteristics of the estimates are examined using 

frequentist ideas of bias and mean square error. 

The goal of this paper is to assess via simulation the data augmentation proce

dure presented by Fridley and Dixon (2003) for the analysis of censored spatial data. 

Simulation Studies I and III assess the data augmentation procedure in terms of param

eter estimation and prediction in the context of a Bayesian geostatistical model and a 

Bayesian conditionally specified Gaussian model. In addition, comparison of the data 

augmentation method to the method of replacing the censored observations with half 

their level of detection (LOD/2) is also presented. In contrast to Simulation Studies I 

and III, Simulation Studies II and IV investigate factors, like percent censored and vari

ability, that may impact the data augmentation procedure. For simplicity, we will refer 

to the methods to handle censored data as DA for data augmentation procedure and 

LOD/2 for the method that replaces the censored values with half the level of detections. 

2 Data augmentation procedure 

First introduced by Tanner and Wong (1987) and Li (1988), data augmentation is a 

procedure that can be use to handle missing data. In doing so, a Markov chain Monte 
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Carlo is used to "augment" or impute values for the missing or censored values at each 

iteration of the chain. Following the imputation for the censored or missing values, which 

Tanner and Wong called the I-step or imputation step, a posterior step or P-step is per

formed in which parameter values are simulated, conditional on the augmented data. 

That is, given the current value of the parameters 0^, augmentation is complete by 

drawing a vector Y^<+1' from p(Yc\Y0, ©^), where Yc and Y0 represent the censored 

and  observed  da ta .  Then  based  on  the  cur ren t  augmented  da ta  Y^ + 1 ^  =  (  Y T
0  ,  Y^ + 1 ^ T ) T ,  

a posterior step is completed in which ©(<+1) is generated from p(©|Y^<+1^). Once the 

chain has converged, say at iteration £*, {©^ : t > i*} and {Y^ : t > t*} can be 

thought of as draws from p(©|Y0) and p(Yc| Y0), respectively. That is, this process 

produces a stochastic sequence {©^, Y^ : t = 1, 2,...} whose stationary distribution is 

p(©, YC\Yo) (Shafer, 1997; Geman and Geman, 1984; Gilks, Richardson and Spiegelhal-

ter, 1996). This procedure in essence integrates out the censored data from the posterior 

distribution, p(©jY0, Yc). 

Therefore, data augmentation within a Gibbs sampler can be performed as a method 

to handle censored observations in a spatial setting, for both a Bayesian spatial model 

and the Bayesian conditionally specified Gaussian model. At each iteration of the Gibbs 

sampler, data will be imputed for the censored spatial data conditional on the current 

values of the parameters with subsequent generation of the parameters conditional on 

the complete, augmented dataset. In doing so, model and prior specification will be 

described along with the details of the Gibbs sampler algorithm used in the simulation 

studies (Fridley and Dixon, 2003). 
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3 Data augmentation within a Bayesian spatial model 

3.1 Model specification and data augmentation procedure 

Let a spatial stochastic process be represented by {Y(s) : s G D}, for which s varies 

continuously over D, D in 5R2. An isotropic spatial or geostatistical model is then, 

=  +  +  ( i )  

where Y(s,-) represents the observation at location s,-, \i the overall mean, e(si) the 

random observational error at location s,- with e(s,-) ~ AT(0, r2), and W(s,-) the random 

spatial effect at location s; with W(s) ~ MVN(0,V(cr2,<j))) (Cressie, 1993; Carlin and 

Louis, 1996). For the simulation study, the parameterization of the covariance matrix 

for the spatial dependence has an exponential form, with V(cr2,<^)ij = a2 exp{—d,j/<f>}, 

dij = 115; — Sj\\ and V*(4>) = exp{—dij/<$>}. 

For the simulation study, we have chosen to use proper priors to insure that the joint 

posterior distribution is proper. The prior distributions placed on the parameters were 

- INGAM(a,/)), 

T2 - INGAM("y,f), 

NOR(A,^2), 

4> ~ GAM(?7,6). 

For the Bayesian spatial model given in equation (1) with exponential parameteriza

tion of spatial covariance and proper priors, the following is the the Markov chain Monte 

Carlo with data augmentation step implemented within a Gibbs sampler as present by 

Fridley and Dixon (2003). Derivation of full conditional distributions can be found in 

Appendix I. 

1. Set starting values for t2(°\ <t2(°\ and <f>(°K Set censored values equal 

to their level of detection, = L O D  and m = 0. 
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2. Let Y t^ = (Y^m\ Y 0 ) T ,  where Y 0 represents the observed data and Y c repre

sents the censored data. 

3. Generate from NOR(/ijm+1', cr^m+1^), with 

(r+1) = - """"H "ï(m+1) = 

4. Generate from INGAM(n/2 + -y, (1/2)(Y ̂  - (pW) + vy W))T(y W _ 

( / m + D  +  +  f ) .  

5. Generate ^(m+i) from INGAM(m/2 + a, (l/2)TV^y ^ 

6. Generate W^m+1^ from MVN/ijj"+1',S^m+1'), where 

7. Using Metropolis-Hastings step(s), simulate ^m+1) from 

p(<%(m + 1>,T2(m + 1V2 ( m + 1 ) ,  W { m + 1 ) ,Y { m ))  

8. Have ©(m+1) = (^(m+1),r2(m+1),a^m+1\^m+1\ W(m+1)). 

9. Using ©(to+1'5 impute values for Y c and get y(TO+1). Let Y c  = (lie,  Y2c,. . ,  Yk c)-

(a) Generate y/c
m+1' from NOR(/^m+1' + W[mJrl\ r2(m+1)), truncated at LODi. 

(b) Generate Y^+1^ from NOR(ju(m+1) + Wj:m+1\ r2(m+1)), truncated at LODk.  

10. Set m = m, + 1 and repeat algorithm a large number of times. 
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3.2 Simulation Study I 

The first simulation study was conducted using data augmentation for the analysis 

of censored observations within a Bayesian geostatistical spatial model. The goal of the 

simulation study was to investigate properties of the estimates and predictions produced 

by imputing values for the censored observations within a Markov chain Monte Carlo. 

In addition to assessing the validity of the data augmentation procedure, Simulation 

Study I also compares the data augmentation method to the method of replacing the 

censored observations with half their level of detection. 

3.2.1 Estimation 

The first goal of Simulation Study I is to assess properties of the parameter estimates 

produced by the DA and LOD/2 methods. 1000 generated datasets were constructed 

containing 100 observations on a 10x10 regular grid or lattice. The data were simulated 

using the exponential parameterization of the spatial covariance matrix with parameter 

values of /i = 0, T2 = 1, a2 =5, 0=10 and % censored = 20%. To finish the specification 

of the Bayesian model, proper diffuse priors, centered at the truth, were specified. The 

priors used in the simulation study were 

^ - NOR(0,50), 

T-2 - INGAM(2.1,1.1), 

<7% - INGAM(2.1,5.5), 

GAM(1,0.1). 

For each simulated dataset, the Gibbs sampler outlined in Section 3.1 was run for 

3,000 iterations, with a single Metropolis-step for the simulation of </>. The estimation 

was based on the last 2,000 iterations of the chain. In addition to the use of DA for the 

handling of the censored observations, an analysis replacing the censored observations 

with half their level of detection was completed in order to compare the two methods. 
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The results using the DA and the LOD/2 methods for the 1000 simulated datasets are 

displayed in Tables 1 through 3 and Figures 1 and 2. 

Figure 1 present plots of the 1000 estimates produces via DA verses the 1000 estimates 

produced using the LOD/2 method. Estimates were taken to be the median of their 

marginal posterior density. Figure 1 (A) and (C) show the DA method systemically 

producing smaller estimates for )jl and larger estimates of a2 as compared to the LOD/2 

method. Estimates of f(/fDA < AtOD/z), < ffoD/z), f^ 

P(4>da < 4>lod/2) were found to be 0.993, 0.272, 0.00 and 0.491, respectively. 

Summary and graphical displays of the estimates for yu, r2, a2 and 0 across the 1000 

simulated datasets are displayed in Table 1 and Figure 2. From these displays, one can 

observe that the DA method produced estimates of fi, r2 and a2 closer to the true values 

of 0, 1, and 5, with little difference in the estimation of (f) between the two methods. 

Boxplots displaying jl — /i, f2 — r2, à2 — cr2, and 0 — </> are presented in Figure 2. These 

boxplot illustrate the difference in estimation between the DA and LOD/2 methods. 

The largest discrepancy between the two methods is in regards to the estimation of the 

spatial variability, a2. With the LOD/2 method, the average estimate of a2 was 2.778, 

while data augmentation produced an average estimate of 4.897, almost twice as large. 

Furthermore, Figure 2 shows the data augmentation method producing more variability 

in the estimates for the parameters r2 and a2 in relation to the LOD/2 method. 

To assess the estimation procedure more quantitatively, estimates of the mean square 

error (MSE), bias E(0) — 6, and variance V(9) were computed. Estimates of MSE, bias 

and variance were found by computing the sample mean and sample variance of the 1000 

estimates, producing an estimate of E(0) and Va,r(9). The estimates of MSE, bias and 

variance for the DA and the LOD/2 methods are displayed in Table 2. The estimated 

MSE for n and cr2 are much larger for the LOD/2 method. As for r2, the estimate of the 

MSE is larger for data augmentation, even though estimates produced by the LOD/2 

method are more biased. This is due to the fact that there is more variability in the 
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Table 1 Summary of estimates for the 1000 simulated datasets 

DA Parameter Min Ql Median Mean Q3 Max 

-1.156 -0.228 0.011 0.011 0.254 1.205 
T2 0.458 0.644 0.752 0.833 0.928 3.719 
(72 2.388 4.047 4.768 4.897 5.628 9.016 

0 1.738 7.598 9.539 9.673 11.646 21.202 
LOD/2 Parameter Min Ql Median Mean Q3 Max 

-0.788 0.094 0.359 0.353 0.610 1.771 
T2 0.335 0.577 0.664 0.704 0.780 2.206 
(J2 1.320 2.289 2.660 2.778 3.164 5.298 

0 1.723 7.075 9.421 9.611 11.812 23.601 

Table 2 Estimates of bias, variance and mean square error for estimation 
of fx, T2, <72 and <f) using data augmentation and LOD/2 method. 

DA Parameter Bias Variance MSE 

V 0.011 0.134 0.134 
T2 -0.167 0.103 0.131 
<72 -0.103 1.305 1.315 

-0.326 9.728 9.834 
LOD/2 Parameter Bias Variance MSE 

0.353 0.138 0.262 
T2 -0.296 0.036 0.124 
<72 -2.222 0.459 5.394 

-0.389 13.033 13.184 
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LOD/2 Estimate LOD/2 Estimate 

Figure 1 Scatterplot of estimates found via DA and LOD/2; (A) fj, (B) 
(C) <72 (D) 0 
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(A) 

; 1 : I*#* 1 • 
: 1 ' 1 ^5 S 
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(B) 

— 1 • 1— i S 
Mu Tau2 Sigma2 Phi 

Figure 2 Boxplots of Çi - /i, f2 - r2, â2 - a2 and (j> - 4> using (A) data 
augmentation and (B) LOD/2 method 
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Table 3 Summary of lengths for 95% credible intervals for the 1000 simu
lated datasets 

DA Parameter Min Ql Median Mean Q3 Max 

A* 0.744 1.381 1.578 1.589 1.788 2.488 
T2 1.092 2.268 2.845 2.912 3.434 7.025 
<72 2.514 4.872 5.747 5.932 6.703 18.257 

5.900 13.968 17.341 19.106 21.780 64.779 
LOD/2 Parameter Min Ql Median Mean Q3 Max 

P 0.555 1.130 1.339 1.348 1.574 2.364 
T2 0.634 1.432 1.724 1.759 2.024 4.221 
a2 1.227 2.545 3.099 3.223 3.725 7.551 

0 5.564 14.869 19.248 21.367 26.254 57.415 

estimation of r2 using the data augmentation procedure as compared to the LOD/2 

method (0.103 vs. 0.036). 

In addition to investigating point estimates, lengths of 95% equal-tail credible inter

vals were also computed. Summary results are presented in Table 3. As seen with point 

estimates, intervals for r2 and a2 tended to be larger with the use of data augmentation. 

Intervals for a2 and 0 tended to be large, with a few intervals for </> being quite large. 

This lack of precision in estimating the spatial range parameter 4> may be attributed to 

the sample size. With only 100 observations, in which 20% are censored, it maybe quite 

difficult to estimate the spatial range parameter with any precision. 

3.2.2 Prediction 

The second goal of Simulation Study I is to compare the error in prediction produced 

using the data augmentation method to the prediction error resulting from replacing 

the censored observations with half their level of detection (LOD/2). To investigate 

the aspect of prediction, 50 simulated datasets were constructed on a regular 15 x 15 

lattice with 5 units between nearest neighbors. This resulted in 225 observations per 

dataset. The datasets were simulated with an exponential parameterization of the spatial 
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40 

X Coordinate 

Figure 3 Locations for simulation study investigating prediction error, o 
represent locations used in parameter estimation and * represent 
locations used for prediction 

covariance matrix using parameter values of n = 0, r2 =1, a2 — 5 and 0=10 with 20% 

of the observations censored. Half of the simulated dataset, 112 observations, was set 

aside for use in the prediction stage of the simulation study. This dataset would be use 

as the "truth" for which subsequent predictions would be compared. The remaining 113 

sampled locations, constituting the observed data, were used in parameter estimation 

along with prediction. To illustrate further, Figure 3 displays the observed locations and 

the predicted locations. One thing to note is that the locations for prediction represent 

the best possible scenario for prediction, since most locations are surrounded by four 

observed locations. 

The prediction stage of the analysis was completed using the Bayesian prediction 

method. In Bayesian prediction, the posterior predictive distribution, p(Yu|Y9), is 

used as the means for prediction, where Yg represent the gauged or observed locations 

and Yu represent the ungauged or predicted locations. In the case of censored data 
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and augmentation, Yg is partition into Ygo and Ygc representing the gauged observed 

values and the gauged censored values, respectively. Since the joint distribution of Yu 

and Yg follows a multivariate normal distribution, the posterior predictive distribution 

can be approximated by simulating predictions from 

yv|y,„,yw,0(1) ~ MVN(Xg,2g), 

with = Ml" + - 4k))> Ei3 = SÏÏ-Eg'E-'WSW, and 

y*( k )  — (yJo,V^T)r, for a large number of MCMC iterations, k  (Carlin and Louis, 

1996; de Oliveira and Ecker, 2002; Fridley and Dixon, 2003). 

The same analysis procedure and priors outlined in Section 3.2.1 were used for the 

estimation of parameters within a Markov chain Monte Carlo. Approximation of the 

posterior predictive distribution was completed using every 5 t h  iteration from iteration 

1000 to 3000. In other words, the posterior predictive distribution for each location 

was approximated via 400 simulated predictions. The prediction at a given location 

z, y;, was then taken to be the median of the simulated predicted distribution. Using 

these predictions and the truth, the mean prediction error (MPE) and mean squared 

prediction error (MSPE) were computed for each simulated dataset (i.e. J2{yi — Vi)!™ 
i=1 

n 
and J2 (Vi  — Vi) 2 ! n ) -  To compare the data augmentation method to the LOD/2 method, 

Z=1 

this procedure was completed for the 50 simulated datasets. Each simulated dataset 

was analyzed twice; once using data augmentation for the handling of the censored 

observations and once using the LOD/2 method. Results are displayed in Table 4 and 

Figures 4 through 6. 

Table 4 and Figures 4 and 5 illustrate the fact that the data augmentation method 

not only produces better parameter estimates, but also better predictions. Across the 

50 simulated datasets, data augmentation produced smaller MSPEs, with the except of 

one simulated dataset. The case when data augmentation out-performed the LOD/2 

the most and vice verse are displayed in Figure 6. Figure 6 (A) represents the case when 
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Table 4 Summary of mean prediction error (MPE) and mean squared pre
diction error (MSPE) for the 50 simulated datasets using data aug
mentation and LOD/2 method for the handling of censored data 

DA Measure Min Ql Median Mean Q3 Max 
MPE -0.448 -0.191 -0.023 -0.027 0.119 0.356 

MSPE 2.197 2.925 3.186 3.203 3.526 4.308 
LOD/2 Measure Min Ql Median Mean Q3 Max 

MPE 0.047 0.288 0.465 0.443 0.583 0.875 
MSPE 2.752 3.255 3.698 3.778 3.975 5.798 

LOD/2-DA Measure Min Ql Median Mean Q3 Max 
MSPE -0.138 0.342 0.567 0.575 0.728 1.543 

Ratio of LOD/2 MSPE to DA MSPE 

Figure 4 Histogram of the ratio of LOD/2 MSPE to DA MSPE 
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LOD/2 MSPE 

Figure 5 Scatterplot of DA MSPE and LOD/2 MSPE 

C Coordlnal* X Coordlna X Coordlnat* 

Figure 6 Map of the truth, predicted surface using DA and predicted sur
face using LOD/2 method; (A) Simulated dataset that resulted in 
largest superior performance with DA (B) Simulated dataset that 
resulted in the only superior performance via the LOD/2 method 



I l l  

data augmentation produced a MSPE of 4.256 while LOD/2 produced a value of 5.798. 

Conversely, Figure 6 (B) displays the simulation resulting in a MSPE equaling 3.044 for 

the LOD/2 method and 3.183 for data augmentation. In addition to the LOD/2 method 

producing larger MSPEs, with the largest MSPE being 5.798, each simulated dataset 
n 

produced MPE greater than 0 (i.e. J2(i/i ~ Vi)/n > 0). Hence, the LOD/2 method is 
1 = 1  

over-estimating when it comes to prediction. 

Simulation Study I shows the data augmentation procedure for the handling of cen

sored spatial data in the context of a Bayesian spatial model to be superior to the 

common method of replacing the censored values with LOD/2. Along with producing 

more accurate point estimates, the DA method produced larger credible intervals for the 

parameters (i.e. more variability in the approximated marginal densities for the param

eters). Simulation Study I and all results were based on only one set of parameter values 

(/i = 0, r2 = 1, cr2 = 5, 4> = 10, percent censored = 20%, N=100). The generalities of 

these results for other parameter combinations are investigated in Section 3.3: Simula

tion Study II. In addition, Simulation Study II is focused on determining which factors, 

if any, impact the performance of the data augmentation procedure for the analysis of 

censored spatial data. 

3.3 Simulation Study II 

Simulation Study II is a study to investigate factors that may impact the performance 

of the data augmentation procedure for spatially censored data, in terms of accuracy and 

precision in estimation. The factors investigated are sample size (N), percent censored, 

level of variability (T2), level of spatial variability (cr2), and level of spatial dependence 

(4>). The factor levels for Simulation Study II can be found in Table 5. The standard 

parameter values, sample size and percent censored were set to be ^=0, T2 = 1, cr2 = 5, 

0=10 and N=100 (10x10 regular lattice) with 20% of the data censored. For example, 

to investigate the effects of percent censored, the simulation of the datasets would be 
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Table 5 Factor levels for Simulation Study II 

Factor Level 1 Level 2 Level 3 Level 4 
Sample Size (N) 7x7 10x10 15x15 

% Censored 0 20 40 60 
Variability (r2) 0.5 1.5 5.0 — 

Spatial Variability (cr2) 0.5 1.5 5.0 
Spatial Dependence (0) 5.0 10.0 15.0 

completed using ^=0, r2 = 1, cr2 =5, 0=10 and N=100 with percent censored levels 

of 0%, 20%, 40% and 60%. This gives a total of 16 scenarios. For each scenario, 50 

simulated datasets were generated using the spatial model outlined in Section 3.1 with 

exponential parameterization of the spatial covariance matrix. 

The sampled locations were on a square lattice with 10 units distance between nearest 

neighbors. To produce censored observations, level of detection values were determined 

based on the level of the percent censored factor. For instance, if 20% of the observations 

were to be censored, a LOD value would be found such that the proportion of the data 

below the LOD value was 20%. Any observation falling below the set level of detection 

would be coded as "< LOD". Therefore, the detection level did not vary within a 

simulated dataset. 

To complete the analysis, proper priors were placed on all parameters. The hyper-

parameters used in the prior specification resulted in distributions center around the 

truth with large, but finite, variances. Let cr2*, T2* and 0* represent the true value of 

cr2, T2 and 0 used in the generation of the simulated datasets. Based on the factor being 

investigated, the priors used in the analysis were 

p - jvoa(0,50), 

T 2  - 7ArGAM(2.1, l . l ( T 2 " ) ) ,  

0~ GV1M(O.1(0*),O.1). 
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For example, analysis involving the percent censored factor level of 20% would use the 

prior distributions fj, ~ NOR(0,50), r2 ~ INGAM(2.1,1.1(1)), cr2 ~ INGAM(2.1,1.1(5)), 

and 0 - GAM(0.1(10),0.1). 

The data augmentation procedure outlined in Section 3.1 was used for the analysis of 

the simulated spatial data involving censored observations. The Gibbs sampler was run 

for 4,000 iterations with the last 3,000 iterations used for estimation and inference. The 

simulation of 0, within the Gibbs sampler, was completed with one Metropolis-Hastings 

step using the candidate generating distribution GAM(2X, 2), where X represents the 

current value of 0. Results for Simulation Study II are presented in Tables 6 and 7 and 

Figures 7 through 12. 

Results in terms of estimation accuracy are displayed in Table 6 and Figures 7 to 

9. Average parameter estimates for the parameters at the various factor levels are 

presented in Table 6. Figures 7, 8 and 9 graphically display estimated bias and 95% 

confidence intervals are plotted for each bias estimate. All factors seem to have some 

impact (small or moderate) on estimation, with the exception of the percent censored. 

A possible explanation for the level of percent censoring not impacting the estimates 

is the fact that the censored observations are handling in a reasonable fashion. That 

is, the censored observations were intergrated out of the joint posterior via MCMC. 

Thus, the percent censoring does not impact point estimation but instead the precision 

in estimation. The figures also show that higher sample sizes resulted in lower levels of 

bias in the estimation of cr2 and </>, while at higher levels of variability (r2) the amount of 

bias in 4> increased. The level of spatial variability (cr2) seemed to impact the estimation 

bias of all parameters, with the exception of /i. The level of spatial variability impacted 

the estimation of both and T2; at the lowest level of cr2, cp was estimated poorly 

while the estimation of r2 improved as the level of spatial variability decreased. Lastly, 

the level of dependence only effected the accuracy in estimating the spatial parameters 

(cr2 and </>). At the lower level of <j>, there was more difficulty in estimating cr2 and 
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Table 6 Average parameter estimates for the various factor levels 

Factor Level 1 Level 2 Level 3 Level 4 

N 49 100 225 

M 0.02 -0.06 -0.02 
T2 0.81 0.86 0.81 
a2 4.35 4.89 4.97 

</> 8.78 9.49 9.748 
% Censored 0 20 40 60 

M 0.03 0.02 0.00 0.05 
r2 0.76 0.86 0.82 0.77 
a2  5.20 5.32 4.88 5.07 
<t> 10.47 10.31 10.31 9.30 

Variability, r2 0.5 1.5 5.0 — 

V 0.02 -0.05 0.03 — 

T2  0.40 1.25 4.92 — 

a2  5.08 5.01 4.90 — 

4> 9.78 9.31 7.86 — 

Spatial Variability, a2  0.5 1.5 5.0 — 

0.00 0.06 0.00 — 

T2  1.00 0.95 0.84 — 

a2  0.42 1.47 4.90 — 

0 8.38 9.94 9.52 — 

Spatial Dependence, 4> 5 10 15 — 

V -0.06 -0.08 0.08 — 

T2  0.87 0.79 0.78 — 

a2  4.70 5.12 5.24 — 

<t> 3.17 9.35 14.91 — 
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ure 7 Plot of 95% confidence intervals for the average estimate for the 
various factor levels; (A) Sample Size (B) Percent Censored 
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(A) 
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(B) 

Level of Spatial Variability 

S ? 

Level of Variability Level of Spatial Variability 

Level of Variability Level of Spatial Variability 

Level of Variability Level of Spatial Variability 

Figure 8 Plot of 95% confidence intervals for the average estimate for the 
various factor levels; (A) Variability (B) Spatial Variability 
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Figure 9 Plot of 95% confidence intervals for the average estimate for the 
various levels of spatial dependence 
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Table 7 Average length of credible intervals for the various factor levels 

Factor Level 1 Level 2 Level 3 Level 4 

N 49 100 225 

V 2.10 1.58 1.08 
T2 3.23 2.94 2.55 
cr2 6.86 5.88 4.24 
<t> 23.27 18.10 12.79 

% Censored 0 20 40 60 
1.68 1.73 1.72 1.67 

T2 2.63 2.92 2.99 3.26 
<T2 5.79 6.44 6.55 7.58 

17.21 18.87 20.83 19.21 
Variability, r2 0.5 1.5 5.0 

V 1.60 1.62 1.62 
T2 2.11 3.76 8.34 
cr2 5.56 6.54 9.29 
<j> 16.01 20.88 24.83 

Spatial Variability, a2 0.5 1.5 5.0 

V 0.72 1.13 1.58 
T2 1.28 1.82 3.02 
a2 1.13 2.40 6.07 
<i> 29.97 27.96 19.44 

Spatial Dependence, <j> 5 10 15 — 

V 1.10 1.60 1.91 
T2 3.97 3.03 2.31 
a2 5.63 6.21 6.81 — 

10.81 17.42 27.30 

4> accurrately. The effects of 0 and a2 on one another maybe due to the connection 

between cr2 and </>; as a2 tends to 0, <f> is undefined. 

In addition to accuracy in estimation, another goal of the simulation study was to 

investigate factors that may possibly impact precision in estimation. Length of 95% 

equal-tail Bayesian credible intervals were used as the measure of precision. Table 7 

displays the average length of intervals for the various factor levels. As seen in Table 7, 

as sample size increased the mean length of credible intervals decreased, while most of 

the interval lengths increased as the amount of variability (r2 or cr2) increased. Figures 
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(A) 

Sample Size 

(B) 

Percent Censored 

Sample Size Percent Censored 

Sample Size Percent Censored 

Sample Size Percent Censored 

Figure 10 Plot of 95% confidence intervals for the average length of credible 
intervals for the various factor levels; (A) Sample Size (B) Percent 
Censored 
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(A) (B) 

Level of Variability Level of Spatial Variability 

Level of Variability Level of Spatial Variability 

Level of Variability Level of Spatial Variability 

Level of Variability Level of Spatial Variability 

Figure 11 Plot of 95% confidence intervals for the average length of credible 
intervals for the various factor levels; (A) Variability (B) Spatial 
Variability 
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Figure 12 Plot of 95% confidence intervals for the average length of credible 
intervals for the various levels of spatial dependence 
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10, 11 and 12 are plots of 95% confidence intervals for the mean interval lengths. A few 

interesting things to note from these figures: (1) surprisingly, the percent censored has 

little impact on interval length, (2) intervals for the parameter <f> reduce in length as the 

level of spatial variability (a2) increased due to the fact that a2 and cf> are connected 

with <f> being undefined as a2 tends to 0, (3) as the level of spatial dependence increased 

(</>), length of intervals increased since we are basically reducing our amount of total 

information (due to the dependence), with the exception of r2. 

For an investigator, these results indicate that a sample size of 50 is too small to 

produce accurate estimates, in which 20% of the observations are censored. When using 

a grid sampling design with 10 units between adjacent locations, accuracy in estimation 

of <$> is poor when the level of spatial dependence is low (i.e. 4> = 5). In addition to 

estimation, if an investigator wishes to have high percision in estimation, factors other 

than sample size come into play. If a high amount of variability or spatial dependence 

is present, a larger sample size will be needed to produce precise results. Surprisingly, 

the amount of censored data had only a mild impact on interval length or precision. 

Therefore, when designing a study, in addition to sample size, investigators need to take 

into account the amount of variability and spatial dependence thought to be present in 

any collected data. 

4 Conditionally specified Gaussian spatial model 

4.1 Model specification and data augmentation procedure 

Let {lz(s,) : i  = 1,n} represent a set of random variables at location {s; : i  = 

1,..., n}. Then F(s,), an observation at location s;, is model as 

y(6,)|y(7v,) ~ NOR^f), 
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n 
where //,• = £*+ 53 Cij{y( s j )  ~  <*) and c,j = rj(dij) if Sj G M'- This model results in the 

j=i 

joint distribution for Y^), F(s2), ...Y"(.sn) being 

(2) 

where C contains the elements c,j, with C = f]H,  where H is a known symmetric matrix 

containing inverse distances, and M is a diagonal matrix containing r2 (Besag, 1974; 

Kaiser and Cressie, 2000). 

Proper prior distributions were placed on all parameters to insure a proper joint 

posterior distribution. The prior distributions used in the simulation study were 

a ~ NOR(/x, (J2) 

7-2 - INGAM(-y,/3) 

?? ~ Transformed BETA(^>,</>). 

Based on the eigenvalues of H, the prior distribution for r] will have support (^-, ̂ -), 

where hi and hn represent the smallest and largest eigenvalues of the matrix H, respec

tively. That is, Tj = y{\~£n) + ^ ~ Transformed BETA(^,^), where y ~ BETA(V>,<j>) 

(Fridley and Dixon, 2003). Derivation of the transformed beta distribution can be found 

in Appendix II. 

For the Bayesian conditionally specified Gaussian model represented in equation (2), 

the data augmentation algorithm using a Gibbs sampler as outlined by Fridley and 

Dixon (2003), is as follows. Derivation of full conditional distributions can be found in 

Appendix II. 

1. Set starting values for a'0', r2(°', and Set m = 0. 

2. Set censored values equal to their level of detection, = LOD, where Y c repre

sents the vector of censored observations and LOD represents a vector containing 

the level of detection values. 
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3. Let Y T { m )  — (Y<m), Y0)T, were Y 0 represent the observed values. 

4. Generate a { m + l )  from NOR(^a, <r2) with u\  = ^\T( -^1+ ̂ ^{1 

and " C(7;W))yM). 

5. Generate -r^+D from INGAM(^ + -y, |(yW - -

aW)) + /)). 

6. Using Metropolis - Hastings step(s), simulate r/"1"1"1' from 

p(77|yW,T^),aW)) oc [n(l-^)]i/2exp{^^(yW-a(-+i))T #(yM 
i=1 

_a("> + l))} (, _ J-)*-i[l _ (, _ iJfAA-)]*-!. 

7. Now have 0^+  ̂= (̂ +1)̂ ^+1), 77^+ )̂. 

8. Using ©(m+1) and YT^m\ impute values for the censored values Yc and get y 

Let YC — (Yic, Y2C, Ykc) represent k censored observations. Let 

^ ^^+1) = for^ 6 AT,-. 
j=1 

(a) Generate v/c
m+1^ from Y i c \Y j™\ .., Y^\  Y0, 0(m+1) which is a univariate nor

mal  dis t r ibut ion N0R(/4 m + 1 ' ,  r 2 ' m + 1 ' ) ,  t runcated a t  LOD\.  

(b) Generate Y2
(
c
m+1) from Y2c|Y/c

m+1\ Yj™\ .., Y^\  Y 0 ,  0(TO+1> which is a univari

a te  normal  d is t r ibut ion N0R(/4 m + 1 \  r 2 ( m + 1 ) ) ,  t runcated a t  LOD 2 .  

(c) Generate yfc
(™+1' from Yfcc|Y/c

m+1),Y0,6(m+1) which is a univariate 

normal  d is t r ibut ion NOR(/ j [ m + 1 \  r 2 ( m + 1 ' ) ,  t runcated a t  LODk-

9. Set m = m + 1 and repeat the algorithm. 
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4.2 Simulation Study III 

Simulation Study III was conducted using data augmentation for analysis of censored 

spatial data within a Bayesian conditionally specified Gaussian model. The aim of the 

study was to investigate the accuracy of the data augmentation procedure along with 

compar ing the  procedure  to  the  method of  replacing censored observat ions  wi th  LOD/2.  

The goal of Simulation Study III was to investigate the estimates and predictions pro

duced by imputing values for the censored observations at each iteration of the Markov 

chain Monte Carlo, as outlined in Section 4.1. In addition to investigating the data aug

mentation procedure in general, analyses replacing the censored observations with half 

their level of detection (LOD/2) were also completed. Hence, the data augmentation 

procedure and the common method of replacing the censored values with LOD/2 are 

compared. 

4.2.1 Estimation 

To assess the parameter estimates produced by using data augmentation, 1000 sim

ulated datasets of size 100 (10x10 regular grid) were simulated. For the conditionally 

specified Gaussian model to be valid, 77 is restricted to be between -6.258 and 0.376. 

The 1000 datasets were simulated using a = 0, r2 = 2, and 77=0.25 with 20% of the 

observations censored. To finish the specification of the Bayesian model, the proper 

diffuse priors used were 

a ~ NQR(0,50), 

r: - INGAM(2.1,2.2), 

77 ~ Transformed BETA(1.0,1.0), 

with -6.258 < 77 < 0.376. The Gibbs sampler was run for 3,000 iterations with four 

Metropolis-Hastings steps for the simulation of 77. The candidate generating distribu

tion used in the Metropolis-Hastings steps was the transformed BETA(2X, 2(1 — %)), 
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Table 8 Summary of estimates for the 1000 simulated datasets for the data 
augmentation and LOD/2 methods. 

DA Parameter Min Q1 Median Mean Q3 Max 
a -0.854 -0.174 -0.012 -0.009 0.140 0.783 
T2 1.095 1.671 1.901 1.898 2.103 3.023 

V -3.858 -0.818 -0.426 -0.605 -0.201 0.102 
LOD/2 Parameter Min Q1 Median Mean Q3 Max 

a -0.564 0.099 0.245 0.250 0.386 0.984 
T 2  0.678 0.982 1.106 1.117 1.242 1.799 
r)  -2.864 -0.765 -0.396 -0.558 -0.195 0.055 

where X represents the current value of r j .  Estimation was based on the last 2,000 itera

tions. For comparison purposes, censored observations were handled using both the data 

augmentation method (DA) and the method which replaces the censored observations 

with half their level of detection (LOD/2). 

Comparison of the 1000 estimates produced via DA and the 1000 estimates pro

duced using the LOD/2 method are illustrated in Figure 13. The scatterplots show the 

DA method consistently producing smaller estimates of a and larger estimates of r2 as 

compared to the LOD/2 method. Hence, for this particular scenario, replacing the cen

sored values with LOD/2 resulted in the variability being under-estimated and the mean 

b e i n g  o v e r - e s t i m a t e d .  T o  s u m m a r i z e  t h e  s c a t t e r p l o t s ,  e s t i m a t e s  o f  p{àoa <  &lod/2)>  

P{^da < Hod/2) and P(r]d/1 < Vlod/2) were found to be 1, 0, and 0.543, respectively. 

Table 8 and Figure 14 show the data augmentation procedure tended to produce 

estimates closer to the truth as compared to the LOD/2 method. Using the LOD/2 

method, the average estimates for a and r2 were 0.250 and 1.117, respectively. Con

versely, data augmentation produced estimates of a and r2 closer to the true values of 

0 and 2. In addition to the difference in estimation accuracy, the LOD/2 method also 

under-estimated the variability in estimating r2. This can also be seen in Table 9, which 

displays summary information of the 1000 95% equal-tailed credible intervals. The aver-
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Figure 13 Scatterplot of estimates found via DA and LOD/2; (A) a (B) r2 
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(B) 

Figure 14 Boxplots of â - a, T2 - r2, and f j  - r j  using (A) data augmentation 
and (B) LOD/2 method 
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Table 9 Summary of lengths for 95% credible intervals for the 1000 simu
lated datasets using data augmentation and LOD/2 methods. 

DA Parameter Min Ql Median Mean Q3 Max 
A 0.192 0.383 0.445 0.448 0.513 0.808 
T2 0.724 1.114 1.257 1.263 1.402 2.037 

?7 0.563 1.565 2.125 2.199 2.758 4.257 
LOD/2 Parameter Min Ql Median Mean Q3 Max 

A 0.141 0.284 0.336 0.335 0.386 0.597 
T2 0.378 0.563 0.631 0.638 0.708 1.021 

V 0.608 1.495 2.011 2.073 2.577 3.906 

age interval length for r2 using the LOD/2 method was 0.638, while data augmentation 

on average produced intervals of length 1.263. While there seems to be differences with 

regards to the estimation of a and r2, there does not seem to be much difference in the 

estimation of 77 between the two methods. This may be due to the fact that a sample size 

of 100 with 20% of the observations censored is too small of a sample to estimate 77 with 

any accuracy or precision. The effect of sample size when estimating 77 was examined in 

section 4.3, were N is shown to have an impact on the estimation of 77. 

Quantification of the estimation procedures in terms of the mean square error (MSE) 

was also completed. Estimates of bias and variance were computed by finding the sample 

mean and variance of the 1000 estimates. Estimates of MSE, bias and variance for both 

the DA method and the LOD/2 method are displayed in Table 10. Once again, we 

see that DA produced smaller estimates of MSE for a and r2, with MSEs of 0.0587 

and 0.1117 as compared to the estimates 0.1111 and 0.8147 produced using the LOD/2 

method. 

4.2.2 Prediction 

Along with parameter estimation, predictions between the DA and the LOD/2 meth

ods were compared. To compare the two methods, 50 simulated datasets were con-
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Table 10 Estimates of bias, variance and mean square error for estimation 
of a, T2 and rj using data augmentation and LOD/2 methods. 

DA Parameter Bias Variance MSE 
Of -0.0092 0.0586 0.0587 

r2 -0.1019 0.1013 0.1117 

V -0.8552 0.3288 1.0602 
LOD/2 Parameter Bias Variance MSE 

a 0.2498 0.0487 0.1111 

r2 -0.8828 0.0354 0.8147 

"n -0.8080 0.2597 0.91245 

structed on a 15x15 regular lattice with 5 units distance between adjacent locations. 

Each dataset of sample size 225 was generated with 20% of the observations being coded 

as censored using parameter values of a=0, t2 = 2 and 77 =0.05. The choice of rj was 

due to the fact that rj was restricted to the range -3.11 to 0.12. The simulated data 

were then split-up into two parts; a dataset for analysis and estimation of parameters 

(observed locations) and a dataset for prediction (predicted locations). The prediction 

dataset will be used as the "truth" to be compared to predictions produced by the DA 

and the LOD/2 methods. Figure 3 displays the locations used in the estimation of pa

rameters and the locations used for prediction. The prediction stage of the analysis was 

completed by approximating the Bayesian posterior predictive distribution as described 

in Section 3.2.2 (Haining and Griffith, 1989; Carlin and Louis, 1996; de Oliveira and 

Ecker, 2002; Fridley and Dixon, 2003). 

The parameter estimation and prediction for the 50 simulated datasets were con

ducted using the same proper diffuse priors outlined in Section 4.2.1. The Gibbs sampler 

was ran for 3000 iteration with 4 Metropolis-Hastings steps at each iteration for the esti

mation of rj. The posterior predictive distribution was then approximated using the last 

2000 iterations. To eliminate any possible correlation between iterations, every 5th iter

ation was used for prediction. So, for each prediction location, the posterior predictive 
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Table 11 Summary of mean prediction error (MPE) and mean squared pre
diction error (MSPE) for the 50 simulated datasets using data 
augmentation and LOD/2 method for the handling of censored 
data 

DA Measure Min Qi Median Mean Q3 Max 
MPE -0.409 -0.109 0.003 0.036 0.210 0.551 

MSPE 1.661 1.859 2.122 2.140 2.318 2.888 

LOD/2 Measure Min Ql Median Mean Q3 Max 
MPE -0.082 0.179 0.328 0.347 0.503 0.894 

MSPE 1.680 2.025 2.195 2.235 2.390 3.146 

LOD/2 - DA Measure Min Ql Median Mean Q3 Max 
MSPE -0.124 -0.017 0.104 0.095 0.177 0.690 

distribution was approximated via 400 simulated predictions. From these approximated 

posterior predictive distributions, point estimates (y,-) were computed as the median of 

the posterior predictive distribution for each of the i locations. Following the simulation 

of the posterior predictive distributions, two measures were computed for each of the 
n 

50 simulated datasets; the mean prediction error (MPE), J2(yi ~ Vi)/7 1 ,  and the mean 
2=1  

n 
squared prediction error (MSPE), J2(yi ~ Vi)2/n• This process was complete for the 

2 = 1 

two different methods of handling censored spatial data, that of the DA and the LOD/2 

methods. Results are displayed in Table 11 and Figures 15 through 17. 

Out of the 50 simulated datasets, the data augmentation method produced lower 

MSPE 70% of the time. Table 11 shows a similar finding as does Table 4 in Section 

3.2.2; the LOD/2 method over-estimates when it comes to prediction. Lastly, Figure 17 

displays the case when data augmentation was vastly superior to LOD/2 and likewise, 

the case in which LOD/2 outperformed data augmentation. Figure 17 (A) is the case 

when MSPE was 2.456 for data augmentation while the LOD/2 method produced a value 

of 3.146. Figure 17 (B) shows the converse case with the LOD/2 and data augmentation 

methods producing MSPEs of 1.810 and 1.935, respectively. 

As with Simulation Study I, Simulation Study III looked at general properties of the 
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Figure 15 Histogram of the ratio of LOD/2 MSPE to DA MSPE 

Figure 16 Scatterplot of DA MSPE and LOD/2 MSPE 
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Figure 17 Map of the truth, predicted surface using DA and predicted sur
face using LOD/2 method; (A) Simulated dataset that resulted 
in largest superior performance with DA (B) Simulated dataset 
that resulted in superior performance via the LOD/2 method 



134 

data augmentation procedure in the context of a conditionally specified Gaussian model 

for the analysis of one particular situation. The study showed the data augmentation 

procedure to be superior to the LOD/2 method in terms of estimation and prediction. 

Data augmentation produced smaller estimate of MSE for the overall mean (a) and the 

level of variability (T2) as compared to the LOD/2 method. In terms of prediction, data 

augmentation also produced smaller MSPE 70% of the time. The question becomes, 

"Do these results hold in general?". This question is addressed in Simulation Study IV, 

where investigation into which factor(s) may impact the data augmentation procedure 

was conducted. 

4.3 Simulation Study IV 

The fourth simulation study was focused on answering the question "What factor(s), 

if any, impact the data augmentation procedure for the analysis of censored spatial data 

in the context of a Bayesian conditionally specified Gaussian model?". To answer this 

question, Simulation Study IV was designed to look at four possible factors: sample 

size, percent censored, variability and spatial dependence. The factor levels used in the 

study are displayed in Table 12. The 13 different scenarios were produced by changing 

the necessary simulation parameters. For each scenarios 50 simulated datasets were 

generated using the conditionally specified Gaussian model outlined in Section 4.1. The 

data were simulated with the default parameter values of a = 0, r2 = 2,77=0.25 with 20% 

censored data on a 10x10 regular lattice (10 units between nearest neighbors), yielding 

a sample size of 100. For example, to investigate the factor of variability, simulation 

parameters would be a=0, >7=0.25, N = 100 and % censored = 20% with values of r2 

fixed to be 0.5, 1.5 or 5.0. 

There was an added complication for the factor sample size. The factor sample 

size took levels of 7x7 (N=49), 10x10 (N=100) and 15x15 (N=225). Due to model 

restrictions, 77 had an upper bound of 0.570 for N=49, 0.376 for N=100 and 0.239 for 
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Table 12 Factor levels used for Simulation Study IV 

Factor Level 1 Level 2 Level 3 Level 4 
Sample Size (N) 7x7 10x10 15x15 

% Censored 0 20 40 60 
Variability (r2) 0.5 1.5 5.0 

Spatial Dependence (77)  0.00 0.15 0.30 

N=225. Thus, for investigation of the factor sample size, r j  was fixed to be 0.15 instead 

of 0.25. For instance, to simulate data to look at the factor sample size, data were 

generated using a = 0, r2 = 2, 77=0.15 and % censored = 20% with sample sizes of 49, 

100 and 225. 

To apply the data augmentation procedure, portions of the data were coded as falling 

below the level of detection (LOD). The level of detection was determined by the level of 

censoring. If 40% of the observations were to be censored, the LOD value was determined 

to be the value in which 40% of the observations fell below. This value would then be 

the LOD and any observation falling below the LOD would be recorded as "< LOD". 

To complete the model, proper diffuse priors were placed on all parameters. Let r2* 

represent the true value of r2 used to simulate the data. The priors used for Simulation 

Study IV, based on the current level of the factor being investigated, were 

a ~ NOR(0,50), 

-  INGAM(2.1 ,1 .1(7- :*) ) ,  

77 ~ Transformed BETA(1.0,1.0), 

for 77 G (1/Ai, l/hn),  where l/hx and l/hn  are the smallest and largest eigenvalues of H 

(C=77H), respectively. The prior 77 ~ transformed BETA(1.0,1.0) results in an uniform 

prior over the range (^, ̂ ). For instance, the priors used to analyze data created to 

address the lowest level of the factor variability (r2) would be a ~ NC)R(0,50), r2 ~ 

INGAM(2.1,1.1(0.5)) and 77 ~ Transformed BETA(1.0,1.0). 
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Table 13 Average parameter estimates for the various factor levels 

Factor Level 1 Level 2 Level 3 Level 4 

N 49 100 225 

a -0.06 0.00 -0.05 
T2 1.84 1.93 2.01 

V -0.86 -0.69 -0.16 
% Censored 0 20 40 60 

a 0.02 -0.06 0.01 0.00 
T2 1.97 1.98 1.71 1.84 

V -0.49 -0.53 -0.71 -0.74 
Variability, r2 0.5 1.5 5.0 

a 0.02 0.00 -0.09 

T2  0.48 1.46 4.96 

n -0.38 -0.45 -0.45 
Spatial Dependence, 77 0 0.15 0.30 

a 0.00 -0.03 0.00 
r2 1.92 1.87 2.00 

V -0.62 -0.60 -0.41 

The Gibbs sampler was run for 3,000 iterations. For estimation purposes, 2500 it

erations were used, ignoring the first 500 iterations for burn-in. For the simulation of 

?7, 4 Metropolis-Hastings steps were implemented at each iteration of the Gibbs sam

pler, using a transformed BETA(2X, 2(1 —Jf)) as the candidate generating distribution. 

Results of the simulation study are displayed in Tables 13 and 14 and Figures 18 to 21. 

Estimates of bias were computed for each scenario as a measure of accuracy. Table 

13 and Figures 18 and 19 show the average estimates and confidence intervals for the 

estimated bias for the 13 scenarios. The factors of sample size and percent censored 

impacted the estimation of </> and r2, but not a. The amount of variability and spatial 

dependence were estimated more accurately at the highest level of sample size while the 

higher levels of censoring resulted in larger bias in the estimation of r2 and 77. As for the 

factor of variability, as the level of variability increased so did the confidence interval 

for the bias in estimating the parameters a and r2. The level of spatial dependence (77)  
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Figure 18 Plot of 95% confidence intervals for the average estimate for the 
various factor levels; (A) Sample Size (B) Percent Censored 
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Table 14 Average length of credible intervals for the various factor levels 

Factor Level 1 Level 2 Level 3 Level 4 

N 49 100 225 

a  0.83 0.56 0.48 

T2  1.77 1.31 0.89 

1  3.68 2.59 1.17 
% Censored 0 20 40 60 

a  0.66 0.60 0.60 0.80 

T2  1.13 1.33 1.40 1.92 

n  2.14 2.41 2.86 3.14 
Variability, r2 0.5 1.5 5.0 

a  0.40 0.60 0.98 

T2  0.32 0.98 3.36 

1  2.21 2.25 2.26 

Spatial Dependence, r j  0 0.15 0.30 
a  0.62 0.58 0.74 
T 2  1.30 1.26 1.36 

V  2.56 2.48 2.19 

seemed to have little or no impact on estimation accuracy. 

Along with interest in estimation bias or accuracy, investigation into which factors 

may possibly effect estimation precision was completed. The measure of precision used 

was length of equal-tailed 95% credible intervals. Results for the various factor levels are 

displayed in Table 14 and Figures 20 and 21. The length of intervals for all parameters 

are greatly impacted by the sample size and the amount of censoring. As sample size 

increased, the average width of intervals decreased, while interval widths increased as 

the amount of censoring increased. In addition to the factors of sample size and percent 

censoring, the level of variability also impacted precision in estimating a and r2. As 

the amount of variability increased, the width of 95% credible intervals for a and r2 

increased. Lastly, the level of spatial dependence seems to have little impact on the 

p rec i s ion  i n  e s t ima t ing  a ,  r 2  and  r j .  

The practical implications of these results for investigators are the following: (1) 
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Figure 20 Plot of 95% confidence intervals for the average length of credible 
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avoid using small sample sizes (N < 100), since sample size impacts both accuracy 

and precision in estimation, (2) the amount of censored data impacts the precision in 

estimation; increase the sample size if the amount of censoring is expected to be large, (3) 

the amount of variability present in the data impacts the precision in estimation; increase 

the sample size to increase the precision in estimation, if cost permits. Simulation studies 

can be used to aid in the choice of sample size based on different study scenarios. 

5 Conclusions 

This paper presented simulation results assessing the accuracy and precision when 

using data augmentation for the analysis of censored spatial data. The simulation studies 

were conducted using both a Bayesian spatial or geostatistical model and a Bayesian 

conditionally specified Gaussian or CAR model. These simulation studies or others can 

be used to aid experimenters in study design. For example, simulation studies can be 

used to help determine the sampling design or layout (e.g. grid verses non-grid). 

The first part of the paper (Simulation Study I and II) addressed the application 

of data augmentation procedure within a Bayesian spatial model. Simulation Study 

I focused properties of parameter estimates and predictions produced when using the 

data augmentation procedure for the handling of censored spatial data. In addition, 

comparison of the data augmentation method to the LOD/2 method was also completed. 

The second simulation study focused on answering the question "What factor(s), if any, 

impact the performance of data augmentation for the analysis of censored spatial data?". 

In doing so, the factors of sample size, percent censored, level of variability, level of spatial 

variability and spatial dependence were investigated at various levels. 

The results showed the data augmentation procedure to out-perform the LOD/2 

method in terms of both parameter estimation and prediction. When compared to the 

LOD/2 method, the data augmentation method produced smaller mean square predic
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tion errors 98% of the time. In addition to demonstrating the accuracy of parameter es

timation and prediction when using the data augmentation procedure, Simulation Study 

II showed the factor of percent censored had little effect on the accuracy of estimation. 

The other factors (sample size, variability, spatial variability and spatial dependence) 

all impacted the amount of bias in estimation for one or more parameters. In terms of 

precision in estimation, all factors seem to impact the level of precision in one way or 

another. 

The second half of the paper focused on the conditionally specified Gaussian or CAR 

model and the use of data augmentation. Simulation Study III once again focused on 

estimation and prediction with comparison of the data augmentation method to the 

LOD/2 method. Likewise, Simulation Study IV focused on factors that may impact 

the performance of the data augmentation procedure. For the conditionally specified 

Gaussian model, the factors used in the simulation study were sample size, percent 

censored, variability and spatial dependence. 

For the conditionally specified Gaussian model, Simulation Study III showed data 

augmentation to be superior to the common method of replacing the censored values 

with LOD/2. The largest difference between the two methods was in regards to the 

estimation of a and r2. The LOD/2 method consistently under-estimated r2 and over

estimated Q. Both methods performed about the same in terms of estimating 77. In terms 

of prediction, data augmentation produced smaller mean squared prediction errors 70% 

of the time. Simulation Study IV found the amount of bias in estimation to be influenced 

by the sample size, percent censored, and to a small extent the factors of variability and 

spatial dependence. The factors sample size, percent censored and level of variability all 

seemed to influence the precision in estimation (i.e. length of credible intervals). 

Overall, the simulation studies demonstrated the data augmentation method to be 

superior to the common method of replacing the censored observations with half the 

level of detection, particular in the estimation of parameters representing variability. 
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Since the parameter estimates go directly into prediction, more accurate estimation lead 

to better predictions and smaller mean square prediction errors. Not accounting for 

the censored observations in a adequate manner leads to inaccurate predictions that 

may have severe health, political and cost ramifications. A good study design can also 

help produce data of higher quality and consequently better estimation and predictions. 

Simulation Studies II and IV presented factors that seem to impact estimation accuracy 

and precision. Investigators can use these results or results from other simulation studies 

to aid them in the construction of study designs. Practical implications of these results 

for study design are: 

1. If possible under time and cost constraints, avoid using small sample sizes, since 

sample size impacts both accuracy and precision in estimation. 

2. If a high amount of variability or spatial dependence is present, a larger sample 

size will be needed to produced precise results. 

3. Depending on the amount of censoring, one may wish to increase the sample size 

to produce more reliable and precise estimates. 

4. Make sure the sample design is able to estimate the spatial dependence parameter 

accurately. As seen in Simulation Study I, by using a grid sampling design with 10 

units between adjacent locations, accuracy in estimating the spatial dependence 

parameter was poor when the level of spatial dependence was low. 

Lastly, with data augmentation completed conditional on the model specified, stud

ies looking at parameter estimation and prediction using an incorrect model for the 

augmentation and subsequent analysis are needed. Further work is needed to investi

gate the robustness to model misspecification and diagnostics in the context of data 

augmentation for censored spatial data. 
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Appendix I 

This appendix presents the derivation of the full conditional distributions required 

for the Gibbs sampler involving a data augmentation step for the Bayesian spatial model. 

Full conditional distribution for a2: 

The full conditional distribution for a2 is 

p(a2\r2 ,(f),fi ,W,X) oc p(W\a2 ,<f))p(a2) 

where V*(<j>) — exp{—d/(f>}. Therefore, the full conditional distribution for a2 is 

- INGAM(n/2 + a,(l/2)^y*(<A)-'iy+ /?). 

Full conditional distribution for r2: 

The full conditional distribution for T2 is 

p(T2 \ A 2,/i,(j) , W , X )  oc P ( X \ W , H , T 2 ) P ( T 2 )  

« l T ,)•/»'(, .)•,*. ™P{j^(X -(M + W)f(x -  (M  + W)) -  £}. 

Therefore, the full conditional distribution for r2 is 

TV, % ^ INGAM(n/2 + 7, (1/2)(X - (^ + Ty - (/% + VV)) + 6). 

Full conditional distribution for [i: 

The full conditional distribution for /x is 

We will first find the full conditional distribution for fi and then the full conditional 

distribution for fi. Thus, 
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p O | T 2 , c t 2 , 0 ,  W ,  X )  

oc exp{^((% - IT) - /#(T2/)-i((X - Ty) - M) + f - A)}. 

By completing the square, we have 

iy,X ~ MVN(/io,2.), 

where fia  = + ±r(X -  VF)) and E0 = Since (1 T/n)n = /x, the full 

conditional distribution for n is 

^\t\4>,W,X ~ NOR(M.,<ri), 

where ji\ = + $(X - IV)] and af = (*)(£&). 

Full conditional distribution of W :  

The full conditional distribution for the spatial random effects, W, is 

p ( v y T 2 , ( T 2 , < ^ )  ( X  p ( % | T V , T 2 ) p ( T V | ^ ,  

ocexp{^(% - (^ + w))^(T2/)-i(% - (^ + vy))} x exp{^iy7y((72,<^)-ivy} 

= exp{^((% - - vy^(T2/)-X(% - M - ̂y) + ^^y(^,^)-'vy}. 

By completing the square, we have the full conditional distribution for W  to be 

ty |X, p, T\ _ MVN(^, 2„), 

where fiw  = [V~ l{cr2 ,  c/)) + ^I]~ l[^{X -  fi)} and Ew  = [V~ l{(T2 ,4>) + 

Full conditional distribution of <j>: 

The full conditional distribution for cf) is 

PWV, t 2 , < t 2 ,  < f i , W , X )  <x p(W\<r2 ,<f>)p(<l>) 

<x Ff^7Iexp{^WTVW-'W - Ofi. 
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Hence, there is no closed form (i.e. known distribution) for the full conditional for (j>. 

The full conditional distribution for <f> is only known up to a proportional constant. 

Appendix II 

This appendix presents the derivation of the full conditional distributions required for 

the Gibbs sampler involving a data augmentation step within the Bayesian conditionally 

specified Gaussian model. The derivation of the transformed beta distribution is also 

presented in this appendix. 

Full conditional distribution for r2: 

The full conditional distribution for r2 is 

p(r2\y,a,rj) oc p(y\T2 ,a,rj)p(T2) 

oc (T2)-(n/2+7o+i) exp{^(|(z/ - a)T(I -  C)(y -  a) + #>)}. 

Hence, the full conditional distribution for r2 is 

r2\y, a,r}~ INGAM(\ + %, \(y -  a)T(I -  C)(y -  a) + j30).  

Full conditional distribution for a: 

The full conditional distribution for a is 

p(a\y, T2, Tj) (X p(y\a , r2, r])p(a) 

oc exp{^-(% - O L ) tM ~ 1 ( I  - C)(y - a) + =±(a -  fi0l)T(<T2/)-1(a - fi01)}. 

We will first find the full conditional distribution for a and then the full conditional 

distribution for a, where a = la. Completing the square, we have the full conditional 

distribution for a to be 

<x\y,r2 , r j  ~  MVN(f j ,a ,  Ea ) ,  
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where fia  = {jjJ + 72 (7 - C)) Hjfl + -  C)y) and Sa - (^7 + 72 (7 - Q) \ 

Therefore, the full conditional distribution for a is 

a|2/,T2,% ~ 

where fia = ~1T fia and <r2 = ^lTY,2
al. 

Full conditional distribution for rj: 

The full conditional distribution for 77 is 

X%IZf, r^) « P(%f |a, 

oc |(7 - C)~ lM\~1^2  exp{^-(y -  a)TM~1(I -  C)(y -  a)} 

<X [nr,i(l - vh i ) ]1/2exp{Jî(y - a ) T H ( y  -  a)} x(ij - ̂ )*^1[1 - ( l  ~ 

There is no closed form for 77 's full conditional distribution (i.e. no known distribution). 

The full conditional distribution is only known up to a proportional constant. That is, 

-  V ^ ) ] 1 / 2  e x p {^(y -  a)TH(y -  a ) } ( r ]  -  ̂ )*^[1 - (77  -  ̂ ) (^^)] 0 O _ 1 -

Derivation of transformed Beta distribution: 

If the support of x is 1 jh\ < x < 1 jhn  and y = [x — ^)(^1^ ), we have 0 < y < 1. 

Likewise, if the support of y is 0 < y < 1 and x — y{\~^ ) + we have < x < 

Let y ~ Beta(a,f3) and x = g(y) = y{hl~^ ) + Hence, we have y — g~ l{x) = 

(x — ^•)(^l\'n )• By transformation, we have 

M " )  = /,<(* - £)(i£fc)) x l£(* - sr)(i^t)l-

N=™, /,((* - £)(£!)) = Blis)!!1 - iXiatr-'U - (x - and 

\-^{x — /~)(^l\'n) 1 = • Thus, the distribution for the transformed beta random 

variable 2 is 
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AM = â(Wa;)^ - ̂ ""[1 -

with l/hi < x < 1 jhn .  
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GENERAL CONCLUSIONS 

Censored observations occur often in environmental studies where one is measuring 

trace amounts of contaminants at different spatial locations. This research presented a 

method for the analysis of censored spatial data through the use of data augmentation. 

This procedure allows for more accurate modeling of the spatial processes involving 

censored observations. The data augmentation method for handling spatial censored 

data is implemented through a Markov chain Monte Carlo, with an additional step for 

the imputation or augmentation of the censored observations. 

This dissertation presented data augmentation for the analysis of censored spatial 

data in terms of a traditional geostatistical model and a conditionally specified Gaus

sian or auto-regressive (CAR) model. In addition, a Bayesian framework was used in 

which proper priors were specified for all parameters. By using the Bayesian approach 

in estimation and prediction, we were able to incorporate the uncertainty of parameter 

estimation into the the posterior predictive distribution. In addition, the Bayesian ap

proach produces an entire distribution for the prediction at each location, as opposed to 

a prediction point estimate and prediction error. 

Overall, the data augmentation method for the analysis of censored spatial data was 

found to be superior to the common method of replacing the censored observations with 

a function of the level of detection. Along with producing biased parameter estimates, 

the common practice of replacing censored observations with a function of the level of 

detection under-estimates the variability in the approximated marginal densities. The 

data augmentation procedure produced more accurate marginal posterior distributions 
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and predictions as compared to the method of replacing the censored observations with 

half their level of detection. The largest difference in parameter estimation was in terms 

of the variability parameters. By replacing all censored observations with half their level 

of detection, the variability is vastly under-estimated. The data augmentation approach 

resulted in much larger variability parameter estimates, along with more variability in 

their marginal posterior densities. 

The last section of this dissertation presented results from four simulation studies 

looking at the general properties of the data augmentation method, along with compari

son to the method of replacing the censored observations with half their level of detection 

(LOD/2). Two of the four simulation studies were conducted using a Bayesian spatial or 

geostatistical model and the remaining two studies used a Bayesian conditionally speci

fied Gaussian model. Data augmentation was shown to out-perform the LOD/2 method, 

in terms of both parameter estimation and prediction. In addition to investigation of 

the general accuracy of the data augmentation method, the simulation studies also in

vestigated which factors may impact the procedure. Investigators can use the results 

from these simulation studies or other simulation studies to aid them in the construction 

of studies designed to investigate censored responses taken at various spatial locations. 
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