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Current distributions by moving vortices in superconductors
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We take account of normal currents that emerge when vortices move. Abrikosov vortices in the bulk and Pearl
vortices in thin films are considered. Velocity-dependent distributions of both normal and persistent currents
are studied in the frame of time-dependent London equations. In thin films near the Pearl vortex core, these
distributions are intriguing in particular.
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I. INTRODUCTION

It has been shown recently that moving vortexlike topo-
logical defects in, e.g., neutral superfluids or liquid crystals
differ from their static versions [1]. This is also the case in
superconductors within the time-dependent London (TDL)
theory, which takes into account normal currents, a necessary
consequence of moving vortex magnetic structure [2–4].

The London equations were employed for a long time to
describe static or nearly static vortices out of their cores [5,6].
The equations express the basic Meissner effect and can be
used at any temperature for problems where the cores are
irrelevant. As far as their current distributions are concerned,
moving vortices are commonly considered to be the same as
static vortices displaced as a whole.

As shown in Ref. [4], the magnetic flux carried by the
moving vortex is equal to the flux quantum but is redistributed
so that the part of it in front of the vortex is depleted whereas
the part behind it is enhanced. This redistribution is caused by
the normal currents resulting from the electric field induced
by the moving nonuniform magnetic structure.

In this paper, analytic solutions are given for the field and
current distributions of Abrikosov vortices moving in the bulk.
It is shown that despite the anisotropic distribution of normal
currents, the distribution of supercurrents in the vicinity of
the vortex core remains close to the static case with nearly
cylindrical symmetry. This suggests that distortions of the
vortex core shape in the bulk are weak.

The case of Pearl vortices moving in thin films is quite
different. For one, the sheet currents g in the film are related
to the tangential field components hx,y, rather than to hz of
the vortex in the bulk. In other words, they are determined
by the stray field in the free space out of the film and, as
a result, decay as a power law with the distance r from the
vortex core as compared with the exponential decay in the
bulk. Besides, as r → 0, the field hz ∼ 1/r, i.e., faster than
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hz ∼ ln(λ/r) in the bulk. Moreover, the sheet currents diverge
as 1/r2 instead of the bulk’s 1/r. For any in-plane anisotropy,
the supercurrents increase as r → 0 leading to a situation in
which the depairing value is reached at different distances for
different directions that may lead to deviations of the vortex
core shape from the circle of the isotropic case. In particular,
vortex motion is a source of such anisotropy, the subject of
this work. We find that the distribution of supercurrent values
near the core of moving vortices is quite unconventional (see
Figs. 9 and 10).

The TDL equations are employed in this paper. The equa-
tions are linear and contain the first derivative with respect to
time, which makes them in a sense similar to the well-studied
diffusion equation. As in the diffusion case, we employ the
Fourier transform in solving for fields and currents. To get
results in real space, one has to calculate integrals over kx, ky

of the Fourier space from −∞ to ∞, a heavy numerical pro-
cedure. We offer a way to transform the double integrals over
k to single integrals from 0 to ∞ which are easily evaluated
numerically.

In time-dependent situations, the current consists, in gen-
eral, of normal and superconducting parts:

j = σE − 2e2|�|2
mc

(
A + φ0

2π
∇χ

)
, (1)

where E is the electric field, � is the order parameter, and χ

is the phase.
The conductivity σ approaches the normal-state value σn

when the temperature T approaches Tc; in s-wave supercon-
ductors it vanishes fast with decreasing temperature along
with the density of normal excitations. This is not the case
for strong pair breaking, when superconductivity becomes
gapless while the density of states approaches the normal-
state value at all temperatures. Unfortunately, there is not
much experimental information about the T dependence of
σ . Theoretically, this question is still debated; for example,
Ref. [7] discusses possible enhancement of σ due to inelastic
scattering.
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Within the London approach, |�| is a constant �0, and
Eq. (1) becomes

4π

c
j = 4πσ

c
E − 1

λ2

(
A + φ0

2π
∇χ

)
, (2)

where λ2 = mc2/8πe2|�0|2 is the London penetration depth.
Acting on this by curl, one obtains

h − λ2∇2h + τ
∂h
∂t

= φ0z
∑

ν

δ(r − rν ), (3)

where φ0 is the flux quantum, rν (t ) is the position of the νth
vortex, z is the direction of vortices, and the relaxation time

τ = 4πσλ2/c2. (4)

Equation (3) can be considered as a general form of the time-
dependent London equation.

Within the general approach to slow relaxation processes,
one has

γ
∂h
∂t

= −δF

δh
, (5)

where F = F/V = ∫
d2r[h2 + λ2(curlh)2]/8πV is the Lon-

don free energy density (sum of magnetic and kinetic parts).
Comparing this with Eq. (3), one has γ = σλ2/c2 = 4πτ .
In fact, the time-dependent Ginzburg-Landau (GL) equations
can be obtained in a similar manner [8].

As in the static London approach, the TDL version of
London Eqs. (3) is valid only outside vortex cores. As such it
may give useful results for materials with large GL parameter
κ in fields away from the upper critical field Hc2. On the
other hand, Eq. (3) is a useful, albeit approximate, tool for
low temperatures where the GL theory does not work and the
microscopic theory is forbiddingly complex.

II. MOVING ABRIKOSOV VORTEX IN THE BULK

The field distribution of this case has been evaluated nu-
merically in Ref. [2]. Here, we provide this distribution in a
closed analytic form.

The magnetic field h has one component hz, so we can omit
the subscript z. Taking the Fourier transform of Eq. (3) and
solving the differential equation for hk(t ), we obtain at t = 0

h(r) = φ0

4π2λ2

∫
d2k eikr

1 + k2 − ikxs
, s = vτ

λ
, (6)

where λ is chosen as a unit length in writing the dimensionless
integral. To evaluate this double integral, we use the identity

(1 + k2 − ikxs)−1 =
∫ ∞

0
e−u(1+k2−ikxs)du, (7)

so that

4π2λ2

φ0
h(r) =

∫ ∞

0
du e−u

∫
d2k eik·r−u(k2−ikxs)

=
∫ ∞

0
du e−u

∫
d2k eik·ρ−uk2

, ρ = (x + us, y).

(8)

Integrals over kx, ky are Fourier transforms of Gaussians:
∫ ∞

−∞
dkx eikxρx−uk2

x

∫ ∞

−∞
dky eikyy−uk2

y = π

u
e−ρ2/4u. (9)

Hence we have

h(r) = φ0

4πλ2

∫ ∞

0

du e−u

u
exp

[
− (x + us)2 + y2

4u

]

= φ0

2πλ2
e−sx/2λK0

( r

2λ

√
4 + s2

)
, (10)

where K0 is the modified Bessel function and the last line is
written in common units [9]. For the vortex at rest, s = 0, and
we get the standard result h = (φ0/2πλ2)K0(r/λ) [5,10].

The current distribution follows:

8π2λ3

cφ0
jx = −y

√
4 + s2

2r
e−sx/2K1

( r

2

√
4 + s2

)
, (11)

8π2λ3

cφ0
jy = e−sx/2

[
s

2
K0

( r

2

√
4 + s2

)

+ x
√

4 + s2

2r
K1

( r

2

√
4 + s2

)]
, (12)

where λ is used as a unit length on the right-hand sides.
The current j here is obtained from the field h, so that it

is the total, superconducting and normal, j = js + jn. It is of
interest to have also js and jn separately. To this end, we note
that jn = σE, so that the streamlines of jn coincide with those
for E. Hence one takes the Fourier transform of the field h
from Eq. (6) and obtains the electric field with the help of
Maxwell equations i(k × Ek)z = −∂t hzk/c and k · Ek = 0:

c

φ0v
Exk = − kxky

k2(1 + k2 − ikxs)
, (13)

c

φ0v
Eyk = k2

x

k2(1 + k2 − ikxs)
(14)

(λ is used as the unit length).
The field E(r) in real space can be obtained in the same

manner as was done for h(r). The results are

Ex = φ0v

2πcλ2

∫ ∞

0
du e−u 2y(x + us)

[(x + us)2 + y2]2
, (15)

Ey = φ0v

2πcλ2

∫ ∞

0
du e−u y2 − (x + us)2

[(x + us)2 + y2]2
. (16)

The streamlines of E satisfy 0 = (d� × E )z = dxEy −
dyEx, where d� = (dx, dy) is a line element. Introduce now a
scalar “stream function” G(x, y) such that

Ey = ∂G

∂x
, Ex = −∂G

∂y
, (17)

i.e., the streamlines are given by G(x, y) = const. One can
check by direct differentiation that

G(r) = φ0v

2πcλ2

∫ ∞

0

du e−u(x + us)

(x + us)2 + y2
(18)

generates E of Eqs. (15) and (16).
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FIG. 1. The streamlines of the normal current near the moving
vortex for s = 0.05. Positive contour numbers correspond to the
clockwise direction of jn, whereas negative contour numbers cor-
respond to the counterclockwise direction; x, y are in units of λ. The
cut at x < 0 of the x axis is traced to Eq. (16) for Ey, where at y = 0
and negative x the integral is not defined.

Figure 1 shows the streamlines of normal currents for
s = 0.05. Since the field h is directed out of the figure plane,
the normal currents cause its reduction in front of the moving
vortex and enhancement behind.

The total magnetic flux carried by a vortex, hk at k = 0,
is still φ0, so that the appearance of normal currents should
change the distribution of supercurrents as well:

js = j − jn = cφ0

8π2λ3

(
ĵ − s

2π
Ê

)
, (19)

where the under-hat quantities are dimensionless right-hand
sides in expressions (11) and (12) for j and integrals in
Eqs. (15) and (16) for E.

Of particular interest is the distribution of the values | js| =√
j2
sx + j2

sy, because | js| cannot exceed the depairing value,

thus defining qualitatively the “core boundary.”
Figure 2 shows contours of constant | js| for s = 0.05 in

the vicinity of the core. Hence the moving vortex core in this
case should be close to a circle; the anisotropy of js is still
seen, e.g., in the contour marked by 100, which only slightly
differs from a circle. In other words, despite the presence
of normal currents lacking any resemblance of cylindrical
symmetry (Fig. 1), the core shape of an Abrikosov vortex is
hardly affected by the vortex motion. We have checked that for
a faster motion with s = 2, contours js(x, y) = const near the
singularity are close to circles. This implies that for a moving
Abrikosov vortex in the bulk the normal currents near the core
are small and their effects on persistent currents are weak.
As is shown below, the situation in thin films is drastically
different.
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FIG. 2. Contours of constant values of the supercurrent | js| near
the moving vortex for s = 0.05; x, y are in units of λ. Note that this
distribution is not cylindrically symmetric, although distortions of
this symmetry are weak.

III. THIN FILMS

We start with a few known results and then apply them to
moving Pearl vortices. Let the film of thickness d be in the
xy plane. Integration of Eq. (3) over the film thickness gives,
for the z component of the field at the film for a Pearl vortex
moving with velocity v,

2π�

c
curlzg + hz + τ

∂hz

∂t
= φ0δ(r − vt ). (20)

Here, g is the sheet current density related to the tangential
field components at the upper film face by 2πg/c = ẑ × h;
� = 2λ2/d is the Pearl length, and τ = 4πσλ2/c2. Using
divh = 0, Eq. (20) is transformed into

hz − �
∂hz

∂z
+ τ

∂hz

∂t
= φ0δ(r − vt ). (21)

A large contribution to the energy of a vortex in a thin film
comes from stray fields [11]. The problem of a vortex in a
thin film is, in fact, reduced to that of the field distribution
in free space subject to the boundary condition supplied by
solutions of Eq. (20) at the film surface. Since, outside the
film, curlh = divh = 0 (see remark [12]), one can introduce
a scalar potential for the outside field in the upper half-space:

h = ∇ϕ, ∇2ϕ = 0. (22)

The general form of the potential satisfying the Laplace equa-
tion that vanishes at z → ∞ is

ϕ(r, z) =
∫

d2k
4π2

ϕ(k)eik·r−kz. (23)

Here, k = (kx, ky), r = (x, y), and ϕ(k) is the two-dimensional
Fourier transform of ϕ(r, z = 0). In the lower half-space, one
has to replace z → −z in Eq. (23).

As is done in Ref. [2], one applies the two-dimensional
(2D) Fourier transform to Eq. (21) to obtain a linear
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differential equation for hzk(t ). The solution is

hzk = −kϕk = φ0e−ik·vt

1 + �k − ik · vτ
(24)

and

ϕk = − φ0e−ik·vt

k(1 + �k − ik · vτ )
. (25)

In fact, this gives distributions of all field components outside
the film, its surface included.

We are interested in the vortex motion with constant veloc-
ity v = vx̂, so that we can evaluate this field in real space for
the vortex at the origin at t = 0:

hz(r) = φ0

4π2

∫
d2k eik·r

1 + �k − ikxvτ
. (26)

It is convenient in the following to use Pearl � as the unit
length and measure the field in units φ0/4π2�2:

hz(r) =
∫

d2k eik·r

1 + k − ikxs
. (27)

We left the same notations for hz and k in new units; when
needed, we indicate formulas written in common units. The
parameter

s = vτ

�
= 2π

vσd

c2
, (28)

so that s � 1 for most practical situations. However, in recent
experiments the velocities 1.5 × 106 cm/s were recorded, for
which s might reach 0.1, which may still increase in future
experiments [13,14]. Besides, vortices exist not only in low-
temperature laboratories but also, e.g., in neutron stars, about
whose motion we know little. Hence, below, we consider
arbitrary values of s.

After applying the same formal procedure as for a 3D
Abrikosov vortex, one obtains [4]

hz(r) = 2π

∫ ∞

0
du

u e−u

(ρ2 + u2)3/2
, (29)

with ρ2 = (x + us)2 + y2. Hence we succeeded in reducing
the double integral (27) to a single integral over u which is
readily evaluated.

The results are shown in Fig. 3. The field distribution is
not symmetric relative to the singularity position: The field
in front of the moving vortex is suppressed relative to the
symmetric distribution of the vortex at rest, whereas behind
the vortex it is enhanced [4].

Integrating by parts, we obtain from Eq. (29)

hz = 2π

[
1

r
−

∫ ∞

0

du e−u√
ρ2 + u2

(
1 + s(x + su)

ρ2 + u2

)]
. (30)

For the Pearl vortex at rest, s = 0, ρ = r, and the known result
for a vortex at rest follows; see, e.g., Ref. [15]. In particular,
the last form of hz(x, y) shows that as r → 0 the leading
term of this field diverges as 1/r, i.e., faster than | ln r| of the
Abrikosov vortex in the bulk [15,16].

For the most realistic slow motion with s � 1, one can get
analytic approximation for the field distribution. To this end,
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FIG. 3. Contours of hz(x, y) = const for s = 2; hz is in units
φ0/4π 2�2 and x, y are in units of �.

go back to Eq. (29) and expand the integrand in powers of
small s up to O(s):

hz = 2π

(∫ ∞

0

du u e−u

(r2 + u2)3/2
+ 3sx

∫ ∞

0

du u2e−u

(r2 + u2)5/2

)
. (31)

The first term gives the field of the vortex at rest. The
second is

−s x

[
2

r
+ π

2
(Y0 − H0)r + π

2r
(Y1 − H1)r

]
, (32)

where Y0,1 and H0,1 are Bessel and Struve functions of
argument r.

IV. CURRENT DISTRIBUTION

As mentioned above, the sheet current is related to the
tangential field components by

2π

c
gx = −hy,

2π

c
gy = hx. (33)

In 2D Fourier space, tangential fields are hxk = ikxϕk and
hyk = ikyϕk. The potential at t = 0 and z = +0 is given (in
common units) by

ϕk = − φ0

k(1 + �k − ikxvτ )
. (34)

Then, we have

gx(r, s) = −i
cφ0

2π�2
Ix, Ix =

∫
dk kyeikr

k(1 + k − ikxs)
, (35)

gy(r, s) = i
cφ0

2π�2
Iy, Iy =

∫
dk kxeikr

k(1 + k − ikxs)
. (36)
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To evaluate dimensionless integrals Ix,y, we make use of the
identity (7) in which k2 → k:

Ix =
∫

d2k kyeikr

k

∫ ∞

0
du e−u(1+k−ikxs)

=
∫ ∞

0
du e−u

∫
d2k ky

k
eikρ−uk . (37)

To evaluate here the integral over k, we make use of the
Coulomb Green’s function [4]:

1√
x2 + y2 + z2

= 1

2π2

∫
d3q
q2

eiqR

= 1

2π2

∫
d2keikr

∫
dqzeiqzz

q2
z + k2

= 1

2π

∫
d2k

k
eikr−kz. (38)

Replace now r → ρ = (x + us, y), z → u,

1√
(x + us)2 + y2 + u2

= 1

2π

∫
d2k

k
eikρ−ku, (39)

and apply ∂y to get the integral over k in Eq. (37),

− y

(ρ2 + u2)3/2
= i

2π

∫
d2k ky

k
eikρ−ku. (40)

Hence we obtain

�2

cφ0
gx = y

∫ ∞

0

du e−u

(ρ2 + u2)3/2
(41)

and

�2

cφ0
gy = −

∫ ∞

0

du e−u(x + us)

(ρ2 + u2)3/2
. (42)

It is easy to see that streamlines of the total current coin-
cide with contours of ϕ(x, y) = const. These are shown in
Fig. 4, so that for a fast motion the current distribution differs
substantially from the static case.

Note again that the currents in Eqs. (41) and (42) are in
fact total, i.e., the sum of persistent and normal currents,
g = gs + gn. It is of interest to separate these contributions, be-
cause the size and shape of vortex cores are related to the value
of persistent currents only. As was done for the Abrikosov
vortex, we calculate first the normal currents gn = σEd .

A. Normal currents

To this end, one takes the magnetic field of the moving
vortex, Eq. (24), and obtains the electric field from Maxwell
equations i(k × Ek)z = −∂t hzk/c and k · Ek = 0:

Exk = −φ0v

c

kxky

k2(1 + k − ikxs)
, (43)

Eyk = φ0v

c

k2
x

k2(1 + k − ikxs)
(44)

(� is used as the unit length).
The streamlines of the normal current gn coincide with

those for E which satisfy 0 = (d� × E )z = dxEy − dyEx.
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�2

�1

0

1

2

x

y

FIG. 4. Contours of ϕ(x, y) = const and, what is the same, the
streamlines of the total current g for a fast-moving vortex with s = 2.
x and y are in units of �.

Introducing S(x, y) such that

Ey = ∂S

∂x
, Ex = −∂S

∂y
, (45)

we see that the streamlines of the vector field E are given by
S(x, y) = const. Using Eqs. (43) or (44), we obtain in Fourier
space

Sk = φ0v

ic

kx

ik2(1 + k − ikxs)
(46)

and

S(r) = φ0v

4π2ic

∫
dk kxeikr−kz

k2(1 + k − ikxs)
. (47)

Making use of identity (39), we arrive at (see Appendix)

S(r) = − φ0v

2πc

∫ ∞

0
du e−u x + us

R(R + u)
, (48)

R2 = (x + us)2 + y2 + u2 = ρ2 + u2. (49)

The electric field is now obtained with the help of Eq. (45):

2π�2c

φ0v
Ex(r) = −

∫ ∞

0
du e−u y(x + us)(u + 2R)

R3(u + R)2
, (50)

2π�2c

φ0v
Ey(r) =

∫ ∞

0
du e−u R2(u+ R)− (x + us)2(u+ 2R)

R3(u+ R)2
.

(51)

Figure 5 shows the streamlines of normal currents [in fact,
these are contours of constant S(x, y)] for s = 0.05. Figures 6
and 7 show the distribution of normal current values at large
and short distances for s = 0.05. Exotic shapes of these distri-
butions close to the core signal allude to possible peculiarities
of supercurrents as well.

To make sense of the “cloverleaf” shape of the normal
current distributions, let us look at the E components of
Eqs. (50) and (51) for slow motion s � 1. Note that the
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FIG. 5. Streamlines of the normal current, i.e., the lines of
S(x, y) = const, for a slow motion with s = 0.05. x and y are in
units of �. The positive values of S correspond to the clockwise di-
rection of gn, and negative values correspond to the counterclockwise
direction.

prefactor φ0v/2πλ2c ∝ v ∝ s, so that for s → 0 one can set
s = 0 in the integrals over u:

Ex ∝ −s
∫ ∞

0
du e−u yx(u + 2R1)

R3
1(u + R1)2

, (52)

Ey ∝ s
∫ ∞

0
du e−u R2

1(u + R1) − x2(u + 2R1)

R3
1(u + R1)2

, (53)

FIG. 6. Contours of constant normal current values
√

g2
nx + g2

ny

for a moving vortex with s = 0.05. x and y are in units of �, so
that the figure represents the distribution at large distances. To avoid
misunderstanding, note that the contours of constant |gn(x, y)| differ
from the streamlines of g, unlike the case of a vortex at rest.

�0.10 �0.05 0.00 0.05 0.10
�0.10

�0.05

0.00

0.05

0.10

x

y

FIG. 7. Contours of constant normal current values
√

g2
nx + g2

ny

for a moving vortex with s = 0.05 at short distances. Corresponding
constants are not shown since they would overload the figure; be-
sides, the contours are calculated for dimensionless parts of current
components thus reflecting only the general form of |gn(x, y)|. x and
y are in units of �.

where R2
1 = r2 + u2 so that in polar coordinates x =

r cos ϕ, y = r sin ϕ, and R1 depends only on r. Hence we
can write these equations as

Ex = A(r) sin 2ϕ, Ey = B(r) − C(r) cos2 ϕ, (54)

where A(r), B(r),C(r) should be evaluated by integrations
over u. However, it is clear even without integrations that
|E| =

√
E2

x + E2
y depends on the azimuth ϕ. The same is true

for |gn|. A simple example of the azimuthal dependence is
shown in Fig. 8 for some set of A, B,C. Thus the unusual
distributions of |gn| at short distances from the vortex center
can be traced to azimuth-dependent divergences of gn when
one approaches the vortex core.

B. Persistent currents

The normal sheet current density is gn = σE d , whereas
the supercurrent is gs = g − gn, so that

gsx = gx − gnx = cφ0

�2

(
ĝx − s

4π2
Êx

)
, (55)

where ĝx and Êx are the dimensionless integrals of Eqs. (41)
and (50). In particular, this reflects the fact that normal cur-
rents disappear at v = 0. Similarly, we have

gsy = gy − gny = cφ0

�2

(
ĝy − s

4π2
Êy

)
. (56)

As mentioned, the vortex core cannot be described by the
London theory, but the distribution of gs(r) outside the core
may reflect its shape [17]. A qualitative picture of the core
shape can be obtained by examining contours of the current
values |gs(x, y)| = const outside the core. These are shown
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FIG. 8. Contour of constant values
√

E 2
x + E 2

y according to

Eq. (54) with A = 1, B = 3, and C = 5.5.

in Figs. 9 and 10. One can see that the distortion of supercur-
rents near the vortex core disappears with increasing distance
from the core.

The London current gs diverges if r → 0. One may define
qualitatively the core “boundary” as a curve where the Lon-
don current reaches the depairing value, jd = cφ0/16π2λ2ξ
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FIG. 9. Contours of constant supercurrent values
√

g2
sx + g2

sy for

a moving vortex with s = 0.05. x and y are in units of �. One can
see that the anisotropy of this distribution decreases with the distance
from the vortex singularity.
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FIG. 10. Contours of constant supercurrent values
√

g2
sx + g2

sy for

a moving vortex with s = 0.05 at short distances. x and y are in units
of �.

for the bulk or gd = cφ0/8π2�ξ for thin films; see, e.g.,
Ref. [17]. For the Abrikosov vortex at rest in the isotropic
bulk case this simple procedure gives the coherence length ξ

as the core size. An example of the core shape so defined for
a moving vortex is given in Fig. 10.

The persistent currents of the Pearl vortex at rest diverge
as const/r when r → 0; see, e.g., Ref. [15]. However, for a
moving vortex, the constant here may depend on the direc-
tion along which the origin is approached. As we have seen,
the total magnetic flux carried by vortex is φ0; therefore the
appearance of normal currents in a moving vortex will cause
redistribution of supercurrents as well. In particular, near the
singularity this redistribution is substantial because normal
currents diverge there, too; see Figs. 6 and 7. This may result
in exotic shapes of the lines of constant |gs(x, y)| at short
distances from the singularity.

V. DISCUSSION

We have shown that the magnetic structure of the moving
vortices is distorted relative to the vortex at rest. The flux
quantum of a moving vortex is redistributed: The back-side
part of the flux is enhanced, whereas the in-front part is de-
pleted. Physically, the distortion is caused by normal currents
arising due to a time-dependent magnetic field at each point in
space; the electric field is induced and causes normal currents.

Distributions of both normal and persistent currents out of
the vortex core have been considered for moving Abrikosov
vortices in the bulk and for Pearl vortices in thin films. It
turned out for films that these distributions at distances r that
are small on the scale of the Pearl � have the exotic shapes
shown in Figs. 9 and 10.

This finding is potentially relevant because the vortex core
shape might be affected by persistent currents out of the
core, if the core “boundary” is defined as the place where the
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outside supercurrents reach the depairing value, the concept
introduced by Landau’s theory of superfluidity [18]. Our cal-
culations show that if one approaches the vortex singularity
along a straight line at an angle ϕ with velocity (directed along
x), the depairing value is reached at the azimuth-dependent
r(ϕ). The validity of such a definition of the core boundary
should be confirmed, of course, by microscopic calculations
of the order parameter �(r, ϕ) inside the core, a problem that
is outside the scope of this work.

If our picture is confirmed, a problem will arise about the
structure of the inside-the-core quasiparticle states in moving
vortices, which can differ substantially from the states in a
vortex at rest [19].

Uncommon current distributions of moving vortices in
isotropic materials are due to the vector of velocity that breaks
the cylindrical symmetry of fields and currents. In other
words, the problem becomes anisotropic. This leads to an
idea that in anisotropic superconductors, similar distributions
might occur even in vortices at rest. We plan to present our
results for this case in a separate publication.

There are experimental techniques which, in principle,
could probe the field distribution in moving vortices [13].
There is the highly sensitive superconducting quantum in-
terference Device (SQUID)-on-tip, with the loop small on
the scale of possible Pearl lengths. Recent experiments have
traced vortices moving in thin films with velocities well above
the speed of sound [13,14]. Vortices crossing thin-film bridges
being pushed by transport currents have a tendency to form
chains directed along the velocity. The spacing of vortices
in a chain usually considerably exceeds the core size, so
that a commonly accepted reason for the chain formation,
namely, the depletion of the order parameter behind mov-
ing vortices, is questionable. However, at distances r 	 ξ

the time-dependent London theory is applicable. Another
promising technique for studying moving vortices could be
Tonomura’s Lorentz microscopy [20].
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APPENDIX: DERIVATION OF S(r) OF EQUATION (48)

The Fourier transform of the stream function for vector
field E is

Sk = φ0v

i c

kx

ik2(1 + k − ikxs)
. (A1)

Hence

S(r) = φ0v

4π2i c

∫
d2k kxeikr

k2(1 + k − ikxs)

= φ0v

4π2i c

∫ ∞

0
du e−u

∫
d2k kxeikρ−k u

k2
. (A2)

To evaluate the integral over k, one integrates the identity
(38) over z from z1 to z2,

ln

√
r2 + z2

2 + z2√
r2 + z2

1 + z1

= 1

2π

∫
d2k eikr(e−kz1 − e−kz2 )

k2
, (A3)

applies ∂x, and takes the limit z2 → ∞,

x√
r2 + z2(z + √

r2 + z2)
= i

2π

∫
d2k kx eikr−kz

k2
, (A4)

where we dropped the subscript of z1.
Now, replace r → ρ and z → u to obtain

S(r) = − φ0v

2πc

∫ ∞

0
du e−u x + us

R(u + R)
, (A5)

with R2 = (x + us)2 + y2 + u2.
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