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ABSTRACT: We present modi�ed sudden death test (MSDT) plans to address the problem of

limited testing positions in life tests. A single MSDT involves testing k specimens simultaneously

until the rth failure. The traditional sudden death test (SDT) is a special case when r = 1. The

complete MSDT plan consists of g single MSDTs run in sequence. When r > 1, there can be up to

r � 1 idle test positions at any time. We propose testing \standby" specimens in the idle positions

and use simulation to gauge the improvement over the basic MSDT plan. We evaluate test plans

with respect to the asymptotic variance of maximum likelihood estimators of quantities of interest,

total experiment duration and sample size. In contrast to traditional experimental plans, shorter

total testing time and smaller sample sizes are possible under MSDT plans.

KEYWORDS: Cornish-Fisher expansions, limited test positions, maximum likelihood methods,

modi�ed sudden death test, sudden death test, Type I and Type II censoring, Weibull distribution.

1



1 Introduction

1.1 Motivation

In fatigue life tests of materials, experimenters are constrained not only by time and the number

of test specimens but also by the additional constraint of limited testing positions. The cost of

purchasing and maintaining test stands and other equipment limits the number of units that can be

tested simultaneously. In fatigue testing shops, for instance, typically only a small number of test

machines are available. Laboratory testing of components in an automobile engine requires the use

of expensive \test stands." Dynamic testing of rf power devices requires expensive and complicated

electronic circuitry to drive each device. When interest centers on the lower part of life distribution,

it is unnecessary and even detrimental to accuracy to run all units until failure. In this paper, we

study a test procedure addressing these issues, particularly, the issue of a limited number of test

positions.

1.2 Related Work

Gertsbakh [1] obtains optimal test plans with a limited number of test positions and Type I censoring

under an exponential regression model. A complete test plan consists of g stages of �xed lengths. The

sum of these lengths serves as another test constraint. In each stage, devices are immediately restored

upon failure and runouts (right-censored observations) occur when the stage duration expires. To

evaluate plans, he uses the criterion of minimizing the sum of the asymptotic variances of estimators

of the regression model coe�cients.

A solution to the problem of limited test positions is the traditional sudden death experiment

where k units are put on test until the �rst failure. Johnson [2] discusses how sudden death experi-

ments can signi�cantly reduce testing time and still yield estimates of Weibull quantiles that are just

as precise as when all observations are failures. Kececioglu [3] illustrates how sudden death testing

can be used to estimate life distribution quantiles for Weibull distributions. We shall see in the

discussions below, however, that the tests designed to stop at the second, third, or some subsequent

failure in the group can provide a test that is better than the sudden death test.

Suzuki, Ohtsuka and Ashitate [4] study test plans that consist of g simultaneous sudden death

experiments with k units. Assuming that fatigue life is distributed Weibull, they investigate plans

under di�erent values of g and k through maximum likelihood methods. They also incorporate the

idea of Type II censoring in the plans as a generalization. That is, they terminate the experiment

at the pth sudden death failure. They use a transformed expression for the total test length L to

compare di�erent values of g; k and p.

We generalize the concept of a sudden death test (SDT) by considering the modi�ed sudden
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death test (MSDT) that tests k units until the rth failure. The MSDT includes the SDT as a special

case when r = 1. The test plans we consider below consist of running g MSDTs in sequence. We

illustrate these test plans by relating them to actual life data sets. We use e�ciency, sample size,

and total testing time as a set of simple criteria for choosing reasonable test plans.

The modi�ed sudden death test plans discussed below are related to Type II or \failure" censoring

where specimens are removed from testing when a certain number has failed. Halperin [5] and

Battacharyya [6] show that, under certain regularity conditions, maximum likelihood estimators

based on Type II censored data are consistent, asymptotically normally distributed and e�cient.

Halperin [5] mentions that Type II censoring in destructive tests helps maintain the total monetary

loss within budget restrictions. Escobar and Meeker [7] study experimental test plans for accelerated

life tests with Type II censored data. They mention that Type II censoring provides more control of

the amount of information obtained from the experiment. Escobar and Meeker [8] give an algorithm

to compute the variance factors for the Fisher information matrix for the extreme value, normal and

logistic distributions with censoring. We use this algorithm to compute large-sample approximate

variances for estimators from modi�ed sudden death tests.

1.3 Approach

In practice, it is common to test specimens in sequence so that failures are replaced as soon as they

occur and nonfailing units are removed after a predetermined length of time (e.g., 100 thousand

cycles). We shall refer to this as the traditional experiment and use this as a reference point in

studying MSDT plans. For �xed values of k and r, we determine the number g of modi�ed sudden

death tests required to achieve precision similar to that of a traditional experiment. We will measure

precision in terms of asymptotic variances of maximum likelihood (ML) estimators of quantiles of

the life distribution. We vary the values of g and r in the test plans to study the tradeo�s between

sample size, estimation accuracy, and total duration of testing. We investigate situations where

MSDT plans provide improvements over the traditional plan.

When r > 1, there is a maximum of r � 1 idle test positions at any time during testing. As an

improvement on the modi�ed sudden death test, we propose the use of \standby" specimens to be

tested in idle test positions. We gauge the improvement over the basic modi�ed sudden death test

through simulation studies.

The distribution of test length L under MSDT plans does not have a simple closed form. We ap-

proximate quantiles of L by Cornish-Fisher expansion approximations which use cumulants of the life

distribution. Cornish and Fisher [9] and Fisher and Cornish [10] provide formulas for approximating

quantiles of random variables whose cumulants are known. Johnson, Kotz and Balakrishnan [11]

provide formulas for the probability density function (pdf), moments and cumulants of Weibull order
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statistics.

1.4 Overview

Section 2 describes the modi�ed sudden death test and discusses notation and distributional as-

sumptions. Section 4 discusses the distribution of total testing time under an MSDT plan. In

Section 5, we present the results of simulation studies to evaluate small-sample properties of MSDT

plans. The similarities between small and large-sample properties suggest that large-sample ap-

proximations provide a computationally e�cient method of comparing MSDT plans. In Section 6,

we include standby specimens in MSDT plans to utilize idle test positions and, thus, improve the

e�ciency of the plans. In Section 7, we apply MSDT plans to practical situations and discuss advan-

tages of using these plans. We evaluate plans in terms of asymptotic and small-sample e�ciency of

the maximum likelihood estimators, total testing time, and sample size. Section 8 outlines possible

areas for further research.

2 The Modi�ed Sudden Death Test, Notation and Distribu-

tional Assumptions

In traditional tests, specimens are tested in sequence and failures are replaced as soon as they occur.

Unfailed units (runouts) are removed after a certain length of time (time or Type I censoring). There

is, however, some di�culty in deciding when to take specimens o� testing. First, predetermined

censoring times do not guarantee enough failures to carry out analysis at a desirable level of accuracy.

Second, choosing a Type I censoring time requires knowledge of the life distribution and test results

are highly sensitive to the choice. Unless prior knowledge of the life distribution is available or the

censoring times are determined dynamically in the progress of the experiment, the above strategy

can lead to results that fall short of expectations. Below we study the modi�ed sudden death test

(extended Type II censoring) as an alternative to the extended Type I strategy in traditional tests.

We also specify the scope of the problem and introduce notation that we will be using henceforth.

A single MSDT involves testing k specimens simultaneously until the rth failure occurs at which

time all remaining specimens are removed. This results in r failures and k � r runouts. The

traditional SDT is a special case when r = 1. The complete MSDT, proposed here, consists of

running g single MSDTs in sequence. Thus, the test has a total of gr failures and gk � gr runouts

out of gk specimens. We will use the notation MSDT(g; k; r) to denote this experiment. A single

MSDT corresponds to MSDT(1; k; r).

The special case MSDT(1; k; r) is known as Type II or \failure" censoring in the literature. In
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Type II censoring, testing is terminated when a certain number of specimens on test has failed. In

general, an MSDT(g; k; r) can be viewed as a sequence of Type II censored life tests. Thus, the

properties of estimators from MSDTs follow from those of Type II censored life tests.

We use the following approach to study the performance of MSDT(g; k; r) plans under di�erent

values of g; k and r. Suppose we are interested in estimating the q quantile of life distribution

under a �xed set of experimental conditions. Let Yij be the jth observation in the ith single MSDT

for i = 1; : : : ; g and j = 1; : : : ; k. Assume that Yij ; i = 1; : : : ; g; j = 1; : : : ; k are identically and

independently distributed Weibull with scale and shape parameters � and �, respectively, where

�; � > 0: The probability density and cumulative distribution functions of Yij are given by

fY (y) = �
� y
�

���1
exp

�
�

� y
�

���
; y � 0;

and

FY (y) = 1� exp

�
�

� y
�

���
; y � 0;

respectively. For the discussions that follow, we will assume, without loss of generality, that � = 1

since the desired scale is achieved by multiplying the appropriate constant to Yij .

3 The Asymptotic Variance of the Maximum Likelihood Es-

timator of Population Quantiles

Suppose that the objective of the life test is to estimate the q quantile of Yij by ML methods. Let

yq be the q quantile of Yij and byq be its ML estimator. The asymptotic variance of log(byq) is given
by the equation

gk�2AVar(log byq) = 1

f11f22 � f212
ff22 + f11[log(� log(1� q))]2 � 2f12[log(� log(1� q))]g (1)

where

gk�2

2
4 f11 f12

f12 f22

3
5

is the Fisher information matrix under MSDT(g; k; r) and log denotes natural logarithm. Escobar

and Meeker [8] give numerical algorithms to compute the fij 's. The right hand side of (1) depends on

the proportion failing p through the fij '. For MSDT plans, p = r=k. Figure 1 plots gk�2AVar(log byq)
versus q for di�erent values of p. Our results will show that a general rule of thumb in selecting a

\good" MSDT plan is to choose the smallest r so that r=k is at least q and, if possible, as large as

2q.
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Figure 1: Plot of Variance Factor versus q for the ML Estimators log(byq)
4 Total Testing Time L under MSDT(g; k; r)

This section describes the distribution of total testing time L under the MSDT(g; k; r) plan. We

give expressions for L in terms of the sample data and formulas for its mean and variance. We

obtain approximations of the quantiles of L by Cornish-Fisher expansions.

Let Yi(r) denote the rth order statistic of Yi1; : : : ; Yik for i = 1; 2; : : : ; g. Johnson et al. [11]

provide formulas for the pdf and moments of Weibull order statistics. The sth moment of Yi(r) is

given by

ms(r) � E[Y s
i(r)] =

�
1 +

s

�

� r�1X
j=0

(�1)j
�
r�1
j

�
(k � r + j + 1)

1+ s

�

: (2)

The mean and variance of Yi(r) are given by

�(r) = m1(r) (3)

and

�2(r) = m2(r) � [m1(r)]
2; (4)

respectively.
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The total length L of MSDT(g; k; r) can be written as

L =

gX
i=1

Yi(r):

The mean and variance of L are �L = g�(r) and �2L = g�2
(r)
, respectively.

Under the MSDT(g; k; r) plan, the distribution of L does not have a simple form. We approxi-

mate the quantiles of L by Cornish-Fisher expansions which use the cumulants of L. Let L0 be the

standardized version of L, that is, L0 = (L� �L)=�L. Let f�ig
1

i=1 be the cumulants of L
0. It can be

shown that

�1 = 0

�2 = 1

�3 =
g

�3
(r)

[m3(r) � 3m1(r)m2(r) + 2m3
1(r)]

�4 =
g

�4
(r)

[m4(r) � 4m1(r)m3(r) � 3m2
2(r) + 12m2

1(r)m2(r) � 6m4
1(r)]

Let L0q and zq denote, respectively, the q quantiles of L
0 and a standard normal random variable. A

Cornish-Fisher expansion approximation of L0q is given by

L0q
:
= zq +

1

6
�3(z

2
q � 1) +

1

24
�4(z

3
q � 3zq)�

1

36
�23(2z

3
q � 5zq): (5)

Cornish and Fisher [9] and Fisher and Cornish [10] provide the derivation of this approximation. An

approximation for Lq, the q quantile of L, is Lq
:
= �L+�LL

0

q: This provides a more computationally

e�cient method of obtaining quantiles than simulation.

5 Simulation Studies to Evaluate MSDT(g; k; r) Plans under

the Weibull Distribution

This section uses simulation to present a broader study of small-sample behavior of the ML estimators

of quantiles under MSDT plans. The results here also justify the use of asymptotic variance as a

computationally e�cient tool for comparing MSDT designs.

For the simulation study below, we use the Weibull scale � = 19:59 and shape � = 2:35 (from

the laminate panel example below) as planning values. We are interested in the MSDT(10; 5; r)

plans for estimating the q quantile of the life distribution. In one simulation replication, we draw 10

random samples of size 5 from the Weibull distribution and obtain the corresponding observations

(failures/runouts) under MSDT(10; 5; r) for r = 1; : : : ; 5. For each r, we compute the ML estimate

of log(yq) where yq is the q quantile. We repeat this procedure 4000 times. We use the variance of
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the 4000 estimates to compare plans and gauge the improvement that larger values of r have over

smaller ones. For purposes of consistency and comparisons, our approach here parallels that used

to construct Figure 1.

Under the plan MSDT(10; 5; r), there are 50 specimens tested yielding 10r failures and 10(k�r)

runouts. Table 1 gives the mean �L, standard deviation �L and quantiles of length L of testing using

formulas in Section 4. Fatigue life is given in millions of cycles.

Table 1: Quantiles, Mean and Standard Deviation of Test Length under the Plans MSDT(10; 5; r)

for r = 1; : : : ; 5

Plan L05 L50 L95 �L �L

MSDT(10, 5, 1) 67 87 109 88 13

MSDT(10, 5, 2) 110 131 153 131 13

MSDT(10, 5, 3) 147 169 192 169 14

MSDT(10, 5, 4) 186 210 236 211 15

MSDT(10, 5, 5) 239 269 301 269 19

Figure 2 gives a plot of the simulated values of gk�2Var(log byq) versus q for MSDT(10; 5; r) plans

with r = 1; : : : ; 5. The similarity between Figures 1 and 2 suggests that the asymptotic variance of

ML estimators provides an adequate guideline for comparing MSDT plans.

Figure 2 shows that the sudden death (r = 1) plan does not perform as well as the alternative

plans, although it competes well for q quantiles for q in the vicinity of 0.10 to 0.20. As expected,

larger values of r are necessary to estimate larger quantiles with improved precision. The intuitive

rule of choosing the smallest r so that the proportion failing r/5 exceeds the value q of interest is

illustrated in Figure 2.

Based on precision and length of testing, MSDT(10; 5; 2) and MSDT(10; 5; 3) plans are

reasonable. They are competitive with the other plans, particularly if interest is in lower quantiles,

as is often the case in actual applications.

6 Improving the E�ciency of the MSDT Plans

When failures occur under the MSDT(g; k; r) plan, the corresponding test positions are idle until

the rth failure. In general, when r > 1, there are at most r� 1 idle test positions at any given time

during testing. This causes some ine�ciency.

To improve the e�ciency of MSDT plans we consider testing \standby" specimens in test po-

sitions when they become vacant. At the start of the experiment, we divide specimens into two
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Figure 2: Plot of Variance Expression Versus q for Simulated ML Estimates of log(yq) under the

Plans MSDT(10; 5; r) for r = 1; : : : ; 5

groups. Group 1 consists of the gk units to be tested under MSDT(g; k; r) and Group 2, a number

of units called \standbys" to be tested in idle positions. We propose the following procedure to test

the standby units.

� When a failure (not the rth) occurs, take a standby specimen from Group 2 and test it until

it fails or until the rth failure from the original set of specimens occurs.

� If a standby fails before the rth failure, replace it with another standby specimen.

� When the rth failure occurs, remove all units including standbys and test a fresh batch of k

specimens from Group 1.

� Nonfailing standby specimens will continue to be tested in the same test stands in which they

were �rst tested, as soon as their stands become idle again. Each standby specimen will be

tested until a speci�ed amount of running time (or number of cycles) tqc .

� The experiment ends when the rth failure occurs in the gth batch.

The sample size and the number of failures are random under this procedure. On the other hand,

the improved plan yields g(k � r) + r � 1 runouts. The distribution of test length L remains the

same as before because the standbys are tested without adding testing time to the original plan.
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Consider censoring standbys at the qc quantile tqc of the life distribution for di�erent values of qc.

We use IMSDT(g; k; r; qc) to denote the improved experimental plan that combines MSDT(g; k; r)

and standbys censored at tqc . Note that IMSDT(g; k; r; 0) is equivalent to MSDT(g; k; r) and

IMSDT(g; k; r; 1) is an experimental plan in which standbys are not censored at all except at the

gth (last) batch in the test. Figure 3 illustrates a possible experimental scenario under the plan

IMSDT(g, k = 5, r = 3, qc = 1).
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Figure 3: An Experimental Scenario under IMSDT(g, k = 5, r = 3, qc = 1)

Recall the simulated tests in the previous section for the MSDT(10; 5; r) plans. We use a similar

simulation to evaluate the improvements provided by IMSDT(10; 5; r; qc) over MSDT(10; 5; r)

for qc = 0:40; 0:60; 0:80; 1. For this purpose, we use the Weibull planning values � = 1 and � = 2:35,

and assume that specimen replacement is instantaneous. To measure the improvement, we compute

the percent decrease in the variance of the ML estimate of log(yq) for each r relative to the MSDT

plan.

Table 2 gives information on mean sample sizes �n and mean proportions failing �pf under

IMSDT(10; 5; r; qc) for r = 2; 3; 4; 5 based on simulation. The �rst row of the table corresponds to

MSDT(10; 5; r).

Figure 4 gives a plot of the percent decrease in the variance of the ML estimates under IMSDT(10,

5, 2, qc). Figure 5 is an analogous plot for IMSDT(10; 5; 5; qc). The �gures indicate greater

improvements for larger values of r, as expected. For these values of r, there are more idle positions

in which to test standby specimens. For instance, Table 2 shows that there are 26 to 37 more

specimens tested under IMSDT(10; 5; 5; qc) than under IMSDT(10; 5; 2; qc). If testing time

and availability and cost of specimens are not restrictive, the plan IMSDT(10; 5; r; qc) for large r
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Table 2: Average Sample Sizes �n and Proportions Failing �pf under the Plans IMSDT(10; 5; r; qc) for

r = 1; : : : ; 5 and qc = 0:40; 0:60; 0:80; 1

r = 2 r = 3 r = 4 r = 5

qc �n �pf �n �pf �n �pf �n �pf

0.00 (MSDT) 50.00 0.40 50.00 0.60 50.00 0.80 50.00 1.00

0.40 53.95 0.39 60.42 0.56 70.63 0.67 89.57 0.72

0.60 53.47 0.40 59.12 0.58 68.06 0.73 84.40 0.81

0.80 53.27 0.41 58.47 0.60 66.58 0.77 81.52 0.89

1.00 53.11 0.42 58.09 0.62 65.83 0.80 79.94 0.95

provides the best results.

For the example above, when test specimens are inexpensive and testing standby units is con-

venient, useful gains in e�ciency are possible. Figures 4 and 5 show that qc = 1 is generally a

good choice for estimating low and high quantiles. For intermediate quantiles, other choices for qc

are better. For larger values of r, qc = 0:40 is a competitive alternative to qc = 1. When r = 5,

censoring standbys at the 0:40 quantile is best for estimating quantiles below the 0.75 quantile.

The results here do not take anything away from the practicality of MSDT plans with small

values of r. If time is constrained and if experimental units are expensive, small values of r provide

appropriate plans for estimating small quantiles. When r is small, investing in standbys may not

yield worthwhile dividends in terms of improved estimation precision because test stand idle times

are short and standbys will not increase sample size signi�cantly. MSDT plans in this case are

adequate.

We saw above that IMSDT improvements over MSDT vary with the choice of quantile at which

to censor standbys. To optimize the use of standbys in testing, one must have good distribution

planning values because quantiles depend heavily on these values. If there is a high degree of

uncertainty in one's planning values, choosing qc = 1 is, in general, a conservative strategy to follow.
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7 MSDT and IMSDT Plans to Estimate the q Quantile of

Life Distribution

Below we study the MSDT(g; k; r) and IMSDT(g; k; r; qc) plans in several situations chosen

to correspond with actual applications. We relate these test plans to actual life test data sets

assuming a particular number of test positions. We determine the values of g so that the MSDT

plans achieve about the same precision as the actual life test as measured by asymptotic variance

of ML estimators. We also study corresponding IMSDT plans to investigate improvements over

the MSDT plans. The examples below show instances where MSDT and IMSDT have advantages

over traditional test plans. They also illustrate tradeo�s between precision, sample size, and test

duration in determining feasible plans.

7.1 Numerical Examples

For traditional tests, we assume that test specimens are tested in sequentially in k test positions so

that failures are replaced as soon as they occur and surviving units are removed after a predetermined

length of time tc. If planning values for model parameters are available at the planning stage, the

following procedure can be used to select appropriate MSDT and IMSDT plans.

1. For r = 1; : : : ; k, we determine the value of g so that MSDT(g; k; r) achieves approximately

the same precision [i.e., AVar(log(byq))] as the traditional experiment. Let f(p) be the right

hand side of (1) for proportion failing p. Suppose that in the traditional experiment, n is the

sample size and pf is the expected proportion failing. We compute g using

g =
nf( r

k
)

kf(pf )
:

Smaller sample sizes or, equivalently, smaller values of g, are desirable because of constraints

on both time and number of test specimens. If sample size is not restrictive, we can consider

higher values of g.

2. We reduce test lengths under these plans by using smaller values of g or r. Comparisons

provide insight about the tradeo�s between test length and relative e�ciency.

3. We improve the e�ciency of the MSDT plans by considering the corresponding IMSDT plans.

7.1.1 Sensitivity of Traditional and MSDT Plans to Model Misspeci�cation

The censoring time tc in traditional plans often corresponds to a proportion failing pf . Because

pf depends on the model parameters, an appropriate choice for tc relies heavily on the planning
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values. If under the planning values, pf is smaller than its true value (there is more censoring than

expected at tc), the value of gk�
2AVar(log byq) will be higher than expected. This variance expression

is constant for MSDT plans because these plans are based on a �xed proportion failing and not on a

�xed censoring time. Figure 6 plots gk�2AVar(log byq) versus the proportion failing pf for traditional
and MSDT plans with k = 5 test positions. It is clear from the plot that traditional plans are not

robust to model misspeci�cation in which pf is overestimated. There is more control of the amount

of information derived from MSDT plans in that gk�2AVar(log byq) is already known at the planning
stage.
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Figure 6: Plot of Variance Factor versus pf for the ML Estimators log(by0:05) under Traditional and
MSDT Plans (k = 5)

7.1.2 Example 1: Laminate Panel Fatigue Data

Consider the laminate panel data given by Shimokawa and Hamaguchi [12]. This data set was

the result of four-point out-of-plane bending tests of carbon eight-harness-satin/epoxy laminate

specimens. For our purposes, we will use the 25 observations taken at stress 270 MPa. Seventeen

specimens failed, while 8 were censored at about 20 million cycles. Fitting a Weibull distribution

gives ML estimates of the scale and shape parameters b� = 19:59 (million cycles) and b� = 2:35,

respectively. These estimates will be used as planning values.

For the traditional test plan, 25 specimens are tested until failure or until 20 million cycles.
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Under this plan with the planning values given above, the proportion failing is pf = 0:65. Suppose

that there are k = 5 test positions available. Table 3 gives the values of g needed and the resulting

sample sizes n for MSDT(g; 5; r) to achieve the same precision as the traditional test in estimating

the 0.05 quantile of the life distribution.

Table 3: Sample Sizes, Quantiles, Mean and Standard Deviation of Test Length, and Asymptotic

Variance of the ML Estimator of log(by0:05) under the Plans MSDT(g; k = 5; r) for r = 1; : : : ; 5

Plan n L05 L50 L95 �L �L CV (%) AVar(log(by0:05))
Traditional 25 74 84 93 84 5.8 6.9 0.0788

MSDT(7; 5; 1) 35 45 61 79 61 10.5 17.1 0.0749

MSDT(6; 5; 2) 30 62 78 96 79 10.1 12.8 0.0782

MSDT(6; 5; 3) 30 84 101 119 102 10.6 10.5 0.0681

MSDT(5; 5; 4) 25 88 105 123 105 10.7 10.2 0.0705

MSDT(4; 5; 5) 20 89 107 128 108 12.0 11.1 0.0725

The table includes the 0.05 quantile L05, median L50, 0.95 quantile L95, mean �L and standard

deviation �L of total testing time L under MSDT plans and the traditional experiment. For the

MSDT plans, the test length mean and variance are computed using formulas given in Section 4

and the quantiles are approximated by Cornish-Fisher expansions. Because there is no systematic

unit-replacement scheme in the traditional experiment, we simulate it 1000 times and compute the

mean, standard deviation and quantiles of the total test length. Fatigue life is in millions of cycles.

The table gives the coe�cient of variation CV , the standard deviation as a percentage of the mean.

The CV is a unitless quantity that is useful in comparing relative variabilities of testing lengths

under di�erent test plans. The asymptotic variance of the ML estimator of the 0.05 quantile is also

given for each test plan.

Table 3 shows that any MSDT plan has competitive sample size and test length. For 10 specimens

more, the SDT plan MSDT(7; 5; 1) provides the same precision as the traditional test in less time

on the average. The plan MSDT(6; 5; 2) still has a smaller �L and requires only 5 specimens more

than the traditional plan. MSDT(4; 5; 5) reduces sample size from 25 to 20, but requires more

time.

We investigate MSDT plans with g = 4 or 5 and improve upon them by considering the corre-

sponding IMSDT plans. Recall that MSDT and IMSDT plans have the same test length. Below, we

choose qc = 1 for the IMSDT plans. Figures 4 and 5 suggest that other values of qc may yield more

improvement depending on r and the quantile being estimated. However, qc = 1 is a conservative

strategy to follow.
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Table 4 provides information on test length distributions under MSDT(4; 5; r) (or

IMSDT(4; 5; r; qc = 1)) and MSDT(5; 5; r) (or IMSDT(4; 5; r; qc = 1)) for r = 1; : : : ; 5

based on Cornish-Fisher expansion approximations. MSDT(4; 5; 3) and MSDT(5; 5; 2) yield

shorter test lengths than the traditional plan on the average. MSDT(5; 5; 3) has mean test length

equal to that of the traditional plan. The reductions in test length under MSDT plans, however, are

at the price of losing e�ciency in estimating the 0:05 quantile. We improve the e�ciency by testing

standby specimens in idle positions.

Table 4: Quantiles, Mean and Standard Deviation of Test Length and Variance of 1000ML Estimates

of log(by0:05) under Traditional, MSDT and IMSDT (qc = 1) Plans with k = 5

Var(log(by0:05))
Plan L05 L50 L95 �L �L CV (%) MSDT IMSDT

Traditional 74 84 93 84 5.8 6.9 0.0850 0.0850

g = 4 r = 1 22 35 49 35 7.9 22.6 0.1276 �

r = 2 39 52 66 52 8.2 15.7 0.1089 0.1003

r = 3 54 68 82 68 8.7 12.8 0.0987 0.0847

r = 4 69 84 100 84 9.6 11.4 0.0890 0.0698

r = 5 89 107 128 108 12.0 11.1 0.0761 0.0517

g = 5 r = 1 30 43 59 44 8.9 20.2 0.1024 �

r = 2 51 65 81 66 9.2 14.0 0.0874 0.0812

r = 3 70 84 101 85 9.7 11.5 0.0802 0.0658

r = 4 88 105 123 105 10.7 10.2 0.0716 0.0579

r = 5 113 134 157 135 13.4 10.0 0.0612 0.0421

We simulate the traditional, MSDT and IMSDT experiments 1000 times each and obtain the ML

estimates of the 0:05 quantile. Table 4 gives the variances of the estimates for the plans. Table 5

gives information on mean sample sizes �n and mean proportions failing �pf under the MSDT and

IMSDT plans based on the simulations.

IMSDT(4; 5; 3; qc = 1) and IMSDT(5; 5; 2; qc = 1) have better e�ciencies and smaller test

length means than the traditional plan. IMSDT(4; 5; 3; qc = 1) has an average sample size smaller

than the sample size of 25 in the traditional plan. The average sample size of IMSDT(5; 5; 2; qc = 1)

is slightly above 25. Generally, IMSDT(4; 5; 3; qc = 1) and IMSDT(5; 5; 2; qc = 1) are good

alternatives to the traditional plan.

For estimating higher quantiles, IMSDT plans may not simultaneously yield shorter test lengths,

smaller sample sizes and better e�ciency relative to the traditional plan. For example, for estimating
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Table 5: Average Sample Sizes �n and Proportions Failing �pf under MSDT and IMSDT (qc = 1)

Plans with k = 5

r = 2 r = 3 r = 4 r = 5

Plan �n �pf �n �pf �n �pf �n �pf

g = 4 MSDT 20.00 0.40 20.00 0.60 20.00 0.80 20.00 1.00

IMSDT 21.61 0.40 23.94 0.58 27.36 0.74 29.42 0.88

g = 5 MSDT 25.00 0.40 25.00 0.60 25.00 0.80 25.00 1.00

IMSDT 26.86 0.40 29.61 0.59 33.75 0.76 41.18 0.90

the population median (0:50 quantile), IMSDT(4; 5; 4; qc) and IMSDT(5; 5; 4; qc) have test length

distributions similar to that of the traditional plan, better e�ciencies, but slightly larger sample

sizes. IMSDT(4; 5; 3; qc), on the other hand, has shorter test lengths and smaller sample sizes in

exchange for a 15% loss in e�ciency.

7.1.3 Example 2: Annealed Aluminum Wire Fatigue Data

Shen [13] analyzes a fatigue data set on annealed aluminum wire. There were 20 observations, all

failures, at stress level 294.3 MPa. The planning values are given by the ML estimates b� = 9:2

thousand cycles and b� = 6:22 of the Weibull scale and shape parameters, respectively. A large

shape parameter value such as 6:22 is not typical of fatigue data. Large values of � (small CV

values) imply that failures occur close together.

Assume that k = 5 test positions are available and that for the traditional experiment, all units

are tested until failure. Again, we consider the MSDT(g; 5; r) plans and �nd the values of g that

give the same precision as the traditional test. Table 6 gives the values of g needed for estimating the

0.05 quantile. It also gives information on the test length distribution and the asymptotic variance of

the ML estimator of the 0:05 quantile for each plan. The test length information for the traditional

plan is based on 1000 simulations of the experiment and that for MSDT plans is based on formulas in

Section 4. It is clear from Table 6 that MSDT(4; 5; 5) provides the best MSDT plan for estimating

the 0:05 quantile because it is the shortest, on the average, and has the smallest sample size.

We study MSDT and IMSDT plans with g = 4 or 5. Table 7 gives information on test length

under MSDT(4; 5; r) (or IMSDT(4; 5; r; qc = 1)) and MSDT(5; 5; r) (or IMSDT(5; 5; r; qc = 1))

for r = 1; : : : ; 5. The table also gives the variances of the ML estimators of 0.05 quantiles based

on 1000 simulations of each plan. IMSDT sample sizes and proportions failing based on these

simulations are given in Table 8.

IMSDT(4; 5; 5; qc = 1), IMSDT(5; 5; 3; qc = 1), IMSDT(5; 5; 4; qc = 1) and IMSDT(5; 5; 5; qc =
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Table 6: Sample Sizes, Quantiles, Mean and Standard Deviation of Test Length, and Asymptotic

Variance of the ML Estimator of log(by0:05) under the Plans MSDT(g; k = 5; r) for r = 1; : : : ; 5

Plan n L05 L50 L95 �L �L CV (%) AVar(log(by0:05))
Traditional 20 34 38 41 38 1.9 5.0 0.0103

MSDT(8; 5; 1) 40 47 53 58 53 3.5 6.6 0.0094

MSDT(7; 5; 2) 35 50 55 59 55 2.6 4.7 0.0096

MSDT(6; 5; 3) 30 48 52 55 52 2.1 4.0 0.0097

MSDT(5; 5; 4) 25 44 48 50 47 1.8 4.0 0.0101

MSDT(4; 5; 5) 20 38 41 44 41 1.7 4.2 0.0103

1) are at least as e�cient as the traditional plan. But, the improved e�ciency is at the cost of larger

sample sizes and longer test lengths. We have similar comments about IMSDT plans for estimating

the population median.

The CV column in Table 7 shows that, in comparison to the laminate panel example, there is

less relative variability in test length. This is because the Weibull shape parameter is large and,

thus, failures tend to occur closer together and it would be more sensible to wait for all test units

to fail. All the observations failed in the actual test.

7.2 Discussion

From a practical perspective, there are important advantages of using MSDT plans instead of tra-

ditional experimental plans. MSDT plans provide a systematic procedure of replacing test units.

Unlike traditional test plans, when censoring is used to limit testing time, MSDT plans give the

experimenter control over the number of failures and, equivalently, over the accuracy of estimation

(measured, for example, by asymptotic variance or con�dence interval width). The control of in-

formation in MSDT plans is more robust to model parameter misspeci�cation than in traditional

plans.

MSDT plans for estimating a small quantile, say the 0:05 quantile, provide smaller sample sizes or

shorter testing times than traditional plans. In the laminate panel data, MSDT plans with smaller

values of r resulted in shorter test lengths but increased sample sizes. IMSDT tests, however,

resulted in not only smaller sample sizes but also better e�ciency than the traditional plan. But,

in the annealed aluminum example, there were tradeo�s between sample size, e�ciency and test

length.

The bene�ts of using MSDT and IMSDT plans should be assessed in the light of the possibility of

censoring in the tests. Censoring is especially common when the failure time distribution has a large
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Table 7: Quantiles, Mean and Standard Deviation of Test Length and Variance of 1000ML Estimates

of log(by0:05) under Traditional, MSDT and IMSDT (qc = 1) Plans with k = 5

Var(log(by0:05))
Plan L05 L50 L95 �L �L CV (%) MSDT IMSDT

Traditional 34 38 41 37 1.9 5.1 0.0103 0.0103

g = 4 r = 1 23 27 30 26 2.5 9.4 0.0171 �

r = 2 28 31 34 31 1.9 6.2 0.0141 0.0139

r = 3 32 35 37 35 1.7 5.0 0.0125 0.0119

r = 4 35 38 40 38 1.6 4.4 0.0118 0.0115

r = 5 38 41 44 41 1.7 4.2 0.0103 0.0090

g = 5 r = 1 35 40 45 40 3.0 7.7 0.0148 �

r = 2 43 47 51 47 2.4 5.1 0.0119 0.0114

r = 3 48 52 55 52 2.1 4.1 0.0108 0.0105

r = 4 53 56 60 56 2.0 3.6 0.0099 0.0090

r = 5 58 62 65 62 2.1 3.5 0.0087 0.0070

coe�cient of variation CV (small Weibull shape parameter �). This was the case in the laminate

panel example. On the other hand, when the CV is small (� is large), it is generally unnecessary to

censor a life test, given that the test will be run until at least some failures are observed. Failures in

this situation tend to occur closer together than when � is smaller. In the aluminum wire example,

the shape parameter is large and all observations are failures. Here, to achieve the same e�ciency

as traditional plans, MSDT plans need sample sizes at least as big as the traditional plan's. Some

information on the coe�cient of variation is thus useful in selecting an appropriate MSDT or IMSDT

plan.

Table 8: Average Sample Sizes �n and Proportions Failing �pf under MSDT and IMSDT (qc = 1)

Plans with k = 5

r = 2 r = 3 r = 4 r = 5

Plan �n �pf �n �pf �n �pf �n �pf

g = 4 MSDT 20.00 0.40 20.00 0.60 20.00 0.80 20.00 1.00

IMSDT 21.09 0.38 22.42 0.55 24.02 0.71 26.20 0.85

g = 5 MSDT 25.00 0.40 25.00 0.60 25.00 0.80 25.00 1.00

IMSDT 26.18 0.39 27.75 0.57 29.56 0.73 32.21 0.88
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8 Conclusions and Suggestions for Further Research

When there is a limit on the number of testing positions, MSDT and IMSDT plans provide useful

alternatives to traditional test plans. Test lengths under these plans are shorter than under tradi-

tional plans on the average. When the cost and availability of specimens are not restrictive (but

test positions are still limited), we can avoid MSDT machine idle times by using IMSDT plans that

test standby specimens in idle test positions. The simulation studies and examples above show that

IMSDT plans signi�cantly improve e�ciency. The MSDT and IMSDT plans perform best when cen-

soring is expected (large CV) or needed in traditional plans. Relative to traditional plans, IMSDT

plans have shorter test lengths, smaller sample sizes and better e�ciency particularly in estimating

low quantiles.

The discussions above are con�ned only to the Weibull distribution. Other life distributions such

as the lognormal and loglogistic distributions could be investigated. We would expect to see similar

results. Unlike the Weibull distribution, there are no closed forms for the moments of lognormal or

loglogistic order statistics. The moments, however, can be computed numerically and simulations

can be conducted without di�culty.

The MSDT plans considered here involve testing in sequence g groups of k specimens until the

rth failure. This procedure could be improved by taking advantage of the sequential nature of the

testing. The test plan for each batch is determined by information from previous test batches. This

makes the choice of test plans dynamic and reduces the experimenter's dependence on starting values

of parameters. Asymptotic theory for sequential plans is, however, much more complicated. For

example, Ford, Titterington and Kitsos [14] remark that the distribution of the ML estimators is

complex and its variance-covariance matrix is no longer proportional to the inverse of the Fisher

information matrix. The sample information matrix can be used as a measure of the precision of the

estimation of model parameters rather than as an estimated covariance matrix. Simulation studies

on the large-sample distribution of estimators o�er an alternative. From a practical point of view,

such sequential tests would also be more di�cult to administer.
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