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1  | INTRODUC TION

Doubled haploids (DHs) have been a valuable tool in maize breed-
ing for decades (Geiger & Gordillo, 2009; Liu et al., 2016; Röber, 
Gordillo, & Geiger, 2005; Smith et al., 2008). DHs can generate fully 
homozygous inbred lines in just two generations, while traditional 
breeding methods require six or more generations of self-pollina-
tions to achieve nearly homozygous inbred lines. DHs can also re-
duce the breeding cycles needed to introgress new genetic loci into 
elite germplasm (Lübberstedt & Frei, 2012). The time and resource 
savings obtained from using DH technology allows breeders to eval-
uate substantially more inbred lines for hybrid performance than 
would be practical using traditional breeding practices.

In maize, in vivo haploids are produced by pollinating a female 
donor line contributing the haploid genome with a male haploid 

inducer line. A haploid kernel is produced in this cross when the fe-
male egg cell is stimulated to develop without proper fertilization 
by the male pollen grain (Li et al., 2017; Zhao, Xu, Xie, Chen, & Jin, 
2013). Haploid kernels, therefore, possess a haploid embryo con-
taining the maternal genome and a fertilized triploid endosperm. The 
frequency of haploid kernels on typical maize ears is less than 0.1% 
(Chase, 1949). In 1959, Coe identified the maize line, Stock 6, which 
produces haploids at a rate 3% of progeny (Coe, 1959). Modern hap-
loid inducers have been selected for haploid induction frequencies 
up to 15% (Cai et al., 2007; Liu et al., 2016; Rotarenco, Dicu, State, 
& Fuia, 2010). Despite the 5-fold increase in induction frequency, 
haploids remain a small fraction of total kernels in an induction cross. 
Consequently, DH production efficiency is limited, in part, by the 
techniques used to identify haploid kernels among a larger pool of 
hybrid siblings.
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Abstract
Doubled haploids (DHs) are an important breeding tool for creating maize inbred lines. 
One bottleneck in the DH process is the manual separation of haploids from among 
the much larger pool of hybrid siblings in a haploid induction cross. Here, we demon-
strate the ability of single-kernel near-infrared reflectance spectroscopy (skNIR) to 
identify haploid kernels. The skNIR is a high-throughput device that acquires an NIR 
spectrum to predict individual kernel traits. We collected skNIR data from haploid 
and hybrid kernels in 15 haploid induction crosses and found significant differences 
in multiple traits such as percent oil, seed weight, or volume, within each cross. The 
two kernel classes were separated by their NIR profile using Partial Least Squares 
Linear Discriminant Analysis (PLS-LDA). A general classification model, in which all 
induction crosses were used in the discrimination model, and a specific model, in 
which only kernels within a specific induction cross, were compared. Specific models 
outperformed the general model and were able to enrich a haploid selection pool to 
above 50% haploids. Applications for the instrument are discussed.
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Haploid kernels per se are not visually distinguishable from hy-
brid siblings. To discern the two classes, dominant colour markers 
are used to mark the paternal genome in hybrid embryos (Geiger & 
Gordillo, 2009; Liu et al., 2016). The R1-nj allele causes purple antho-
cyanin accumulation in both the embryo and the endosperm aleu-
rone. When an R1-nj inducer is crossed to a colourless female donor, 
haploids kernels can be sorted from diploids visually based on the 
lack of anthocyanin in the embryo. Unfortunately, kernel pigmen-
tation is suppressed in some genetic backgrounds. The C1-I allele is 
a dominant suppressor of anthocyanin accumulation in kernels, and 
C1-I is common in tropical and Flint germplasm (Chaikam et al., 2015; 
Rotarenco, Kirtoca, & Jocota, 2007). In seedlings, the dominant "red 
root" Pl1 allele identifies haploids based on absence of root color-
ation (Chaikam, Martinez, Melchinger, Schipprack, & Boddupalli, 
2016; Rotarenco et al., 2010). The R1-nj and Pl1 visual markers re-
quire that each kernel or seedling be scored by trained personnel 
and, in the case of the red root marker, require transplanting haploid 
seedlings soon after scoring. Manually sorting tens of thousands of 
induction cross progeny is a bottleneck for larger-scale DH opera-
tions (Geiger & Gordillo, 2009).

Automated systems are an attractive alternative to manual sort-
ing. Automated systems differentiate hybrid and haploid kernels 
based on physical or chemical differences between the kernel geno-
types. Pilot studies on automated colour sorting based on expression 
of R1-nj in the embryo scutellum showed feasibility to identify more 
than 80% of haploids (Boote et al., 2016; De La Fuente, Carstensen, 
Edberg, & Lübberstedt, 2017; Song et al., 2018). However, the ef-
fectiveness of colour sorting on a broad range of induction crosses 
with variable expression of R1-nj as well as testing randomly oriented 
kernels is needed to determine accuracy in a practical context. There 
are also physical and compositional differences between haploid and 
hybrid kernels. Haploid kernels have reduced weight and relative 
oil content as compared to hybrid siblings (Rotarenco et al., 2007; 
Smelser et al., 2015). These differences allow alternative approaches 
for sorting haploids that do not rely on genetic colour markers (Chen 
& Song, 2003; Melchinger, Schipprack, Friedrich Utz, & Mirdita, 
2014; Melchinger, Schipprack, Mi, & Mirdita, 2015; Melchinger, 
Schipprack, Würschum, Chen, & Technow, 2013; Smelser et al., 
2015).

Near-infrared reflectance (NIR) spectroscopy is an established 
method for rapid, non-destructive determination of the chemical 
composition of grains (Osborne, 2006, Gustin & Settles, 2015). 
Near infrared light, consisting of wavelengths between 700 nm and 
2,500 nm, is absorbed by water and organic chemical bonds within 
the grain and penetrates further into the sample than the more 
strongly absorbed mid and far infrared light (Lodder, 2002). The 
NIR absorbance profile of a sample can be converted to estimates 
of chemical or physical characteristics of the kernel such as protein 
content, oil content, grain weight, or density using chemometrics 
approaches.

Jones et al. (2012) demonstrated that single-kernel near-in-
frared transmittance spectroscopy could discriminate haploids 
from hybrids. Although haploid classification was accurate, the 

transmittance spectra were acquired over 1 min as the kernel was 
vibrated into multiple positions. Additional studies have verified that 
near-infrared transmittance can classify maize haploids with long in-
tegration times (Lin, Yu, Li, & Qin, 2017). The long data acquisition 
time required for accurate transmittance spectra is not well suited 
for high-throughput processing of single kernels (Baye, Pearson, & 
Settles, 2006).

Armstrong (2006) developed a rapid single-kernel NIR (skNIR) 
device that acquires an NIR spectrum with a 20 millisecond integra-
tion time from an individual kernel as it tumbles down an illuminated 
light tube (Tallada, Palacios-Rojas, & Armstrong, 2009). The skNIR 
device can predict single-kernel traits including oil, protein, density, 
weight and volume (Armstrong & Tallada, 2012; Gustin et al., 2013; 
Spielbauer et al., 2009). The skNIR device has also been shown to 
predict composition traits for other large seed crops such as soybean 
and common bean (Hacisalihoglu et al., 2016; Hacisalihoglu, Larbi, & 
Settles, 2010). The objective of this study was to test the accuracy 
of this rapid skNIR device for sorting haploid kernels.

2  | MATERIAL S AND METHODS

2.1 | Kernel samples

Haploid and diploid kernels from 15 induction crosses derived 
from the Germplasm Enhancement of Maize (GEM) project were 
used to generate the data for the study (http://www.public.iasta 
te.edu/~usda-gem/GEM_Proje ct/GEM_Proje ct.htm) (Brenner, 
Blanco, Gardner, & Lübberstedt, 2012). The female donor parents 
were backcross generation 3 (BC3) plants from introgressions of 
BGEM inbred lines into the expired PVP lines, PHB47 and PHZ51, 
as recurrent parents. BGEM inbred lines contain introgressions of 
various tropical accessions into PHB47 and PHZ51 (Brenner et al., 
2012; Sanchez, Liu, Ibrahim, Blanco, & Lübberstedt, 2018; Smelser, 
Gardner, Blanco, Lübberstedt, & Frei, 2016; Vanous et al., 2018; 
Vanous et al., 2019). PHB47 is from the stiff stalk (SS) heterotic 
group, while PHZ51 is a non-stiff stalk (NSS). BHI201 was the hap-
loid inducer. It has the R1-nj and Pl1 colour marker genes and 12%–
14% induction rate (Liu et al., 2016).

2.2 | Single-kernel NIR spectra and determination of 
kernel traits

From each of the 15 induction crosses, 48 diploid and 48 haploid 
kernels were visually identified and arrayed in 48-well microtitre 
plates. Kernel weights and skNIR spectra were collected from each 
kernel using the skNIR platform described by Armstrong & Tallada 
(2012) and Spielbauer et al. (2009). NIR reflectance values were re-
corded at 1 nm intervals between 907 and 1,689 nm and absorbance 
values were calculated as log(1/R). Each spectrum was centred to 
an arbitrary mean of 1. Two weights and two spectra were recorded 
from each kernel. Seven kernel composition and quality traits were 

http://www.public.iastate.edu/%7Eusda-gem/GEM_Project/GEM_Project.htm
http://www.public.iastate.edu/%7Eusda-gem/GEM_Project/GEM_Project.htm
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determined for each kernel from the averaged NIR spectra using 
previously derived PLS regression coefficients (Gustin et al., 2013; 
Spielbauer et al., 2009). The traits were relative oil, protein and 
starch content, measured on a fresh weight basis, as well as total and 
material density, and total and material volume. Total density and 
volume include air space, whereas material density and volume do 
not. Single-kernel weight was measured with an in-line microbalance 
on the skNIR platform.

2.3 | Validating ploidy

After skNIR data collection, the kernels were planted and seedling 
leaf tissue was sampled for DNA extraction. Seedlings that could 
not be genotyped were not included in the analysis. The ploidy of 
each DNA sample was evaluated by amplifying two insertion/dele-
tion (INDEL) markers that were polymorphic between the inducer 
line and the PHB47 and PHZ51 recurrent female donor lines. In 
most cases, haploid kernels contained only the recurrent donor 
line allele. In some induction crosses, the allele from the exotic 
non-recurrent parent of the female donor line was polymorphic 
with the recurrent parent. In such cases, a third marker was used 
to determine ploidy. In all, 1,354 kernels were confirmed as either 
haploid or diploid.

2.4 | General model

Partial least squares linear discriminant analysis (PLS-LDA) was 
used to construct models to separate haploid and hybrid ker-
nels based on skNIR data. PLS models extract relevant latent 
variables from highly dimensional, highly covariate data such as 
spectral data and are standard for NIR spectral calibration mod-
els (Frank & Friedman, 1993; Wold, Sjostrom, & Eriksson, 2001). 
PLS-LDA models are divided into the PLS and LDA operations. 
PLS identifies latent factors that best explain variance between 
the haploid and hybrid classes. LDA calculates a discriminant vec-
tor from the PLS factors that best separates the classes. PLS-LDA 
was implemented in the R package "plsgenomics" (Boulesteix, 
Durif, Lambert-Lacroix, Peyre, & Strimmer, 2015). Prior to PLS-
LDA model construction, the sample set was adjusted to reflect 
a haploid induction frequency of 11% by randomly subsampling 
the haploid class to fit a 1:8 ratio of haploids:hybrids. The mod-
els were calibrated on 14 of 15 induction crosses, while the 15th 
induction cross was held out for external validation. Leave-one-
out validation was repeated 15 times so that all induction crosses 
were held out. Calibration and validation steps were repeated 100 
times using random subsampling of haploid kernels to ensure that 
all haploid kernels were included in the external validation set.

Kernel ploidy (haploid vs. hybrid) was the dependent variable. 
Predictor variables were either mean-centred spectra or eight kernel 
composition and quality traits. No additional pretreatments beyond 
mean centring were applied to the spectra. Predictor variables were 

the average of two technical replicates of skNIR spectra for each 
kernel; whereas validation was tested with a single, randomly se-
lected spectrum. This approach reflected a likely usage case where 
a sorting instrument could be calibrated using kernels with multiple 
skNIR technical replicates, while classification and sorting would rely 
on a single spectrum per kernel.

The PLS models were fit using the SIMPLS algorithm. PLS factors 
were chosen based on minimization of the standard error of pre-
diction (SEP) for the cross-validation set. Class assignments for the 
validation samples were made using the [predict.lda] function with 
prior probabilities set to 0.11 and 0.89 for haploid and hybrid classes, 
respectively, to reflect expected proportions within the sample set. 
Accuracy was evaluated with the False Discovery Rate (FDR), which 
was the fraction of predicted haploids that were actually hybrid ker-
nels, and the False Negative Rate (FNR), which was the fraction of 
actual haploid kernels predicted to be hybrid. Reported results are 
based on validation datasets.

2.5 | Induction cross-specific models

Independent PLS-LDA models were calibrated for each induction 
cross population by subsampling 50% of the hybrid and haploid 
kernels in a 1:1 ratio of haploid:hybrid genotypes. External vali-
dation kernels were randomly drawn from the remaining kernels 
in a 1:8 ratio of haploids:hybrids. Calibration and validation were 
repeated 100 times using random subsampling to ensure that 
most haploid kernels were evaluated in the validation set. PLS-
LDA models were fit and evaluated using the same approach as 
general models.

2.6 | Statistical analysis

MANOVA and ANOVA analyses were conducted using "manova" 
and "aov" functions, respectively, in the R statistical package 
"stats" (Team, 2017). To address MANOVA assumptions, outlier 
data were removed, by identifying values within groups that were 
greater than three standard deviations from the group mean. On 
average, less than one outlier was removed per group. Group dis-
tribution normality was evaluated using the Shapiro–Wilk test in 
the package "stats", and homogeneity of variance/covariance ma-
trices among groups was tested using Box's M-test in the pack-
age "biotools" (da Silva, Malafaia, & Menezes, 2017; Team, 2017). 
Twenty of 270 groups (15 induction crosses × 9 kernel compo-
sition traits × 2 ploidy classes) had a Shapiro-Wilk test p-value 
less than .01 indicating that they were not normally distributed 
and 3 of 15 induction populations had heterogeneous covari-
ance matrices. These populations were BGEM-0014-S × inducer, 
BGEM-0112-S × inducer and BGEM-0071-S × inducer. While lim-
ited, these violations of MANOVA assumptions suggest that the 
MANOVA and ANOVA results for these inducer populations may 
be inaccurate.
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3  | RESULTS

3.1 | NIR spectral variation between haploid and 
hybrid kernels

NIR-based discrimination of haploid from hybrid kernels requires 
chemical and/or structural differences between the two classes 
resulting in predictable variation within the NIR spectra. Figure 1 
shows mean NIR spectra of haploid and hybrid kernels. Differences 
between these means are slight when all induction crosses are 
combined (Figure 1a). Within specific induction crosses, spectral 
profiles can differ more substantially. Figure 1b shows mean hap-
loid and hybrid spectra from the BGEM-0055-S × inducer popula-
tion. The ends of the spectral profiles are largely non-overlapping. 

A difference plot between haploid and hybrid wavelength values 
shows the distinctions more clearly (Figure 1c). The difference 
between the overall means ranges from approximately −0.001 to 
0.001, while the BGEM-0055-S × inducer population ranges from 
approximately −0.008 to 0.008, an 8-fold increase in spectral sep-
aration. These data suggest that spectral features distinguishing 
haploid kernels from hybrid are not generally conserved among all 
induction crosses.

3.2 | Compositional and quality variation in GEM 
induction crosses

Kernel oil content and weight are known to be reduced in haploids 
(Melchinger et al., 2013; Rotarenco et al., 2007; Smelser et al., 2015). 
However, additional signatures may exist that could help facilitate 
NIR-based discrimination. The induction crosses were evaluated for 
eight kernel composition and quality traits and compared by ploidy 
and by the GEM recurrent parent (Table 1). The largest difference 
between haploid and hybrid kernels was relative oil content. Haploid 
oil content was reduced 0.88% on average, which represents a 27% 
relative reduction compared to hybrid kernels.

Weight and volume were also reduced in haploid kernels, but 
by a relatively smaller amount than kernel oil. Kernel weight was 
reduced by 18 mg, on average, in haploids. Unlike oil content, not 
all induction crosses produced lighter haploids. Only, 7 of the 15 
crosses had significant differences in kernel weight between ploidy 
classes (Table 2). Eight of the 15 inductions crosses had a signifi-
cant difference for total volume, which includes air spaces within 
the kernel, or material volume, which excludes air space. Haploids 
in one cross, BGEM-0110-N x inducer, had a larger predicted total 
kernel volume without a significant change in material volume, sug-
gesting increased air space in the haploid kernels of this specific 
donor by inducer combination. Increased air space in the kernel has 
been shown to be associated with haploids in certain backgrounds 
due to malformed or missing embryos (Irani, Knapp, Lubberstedt, 
Frei, & Askari, 2016).

Relative protein content was increased in haploids in both donor 
backgrounds and was significant in five crosses. Starch and density var-
ied between GEM backgrounds, but at least one of these traits was sig-
nificant in 9 of the 15 crosses. Reduced material density combined with 
increased protein content are rough indicators of haploid kernels. While 
these general observations show that kernel oil content was the best 
marker for haploid status among the traits that were analysed, haploids 
in individual induction crosses had pronounced differences in traits other 
than oil (Table S1). The data show that the female donor genotype sub-
stantially influenced the size, chemical and quality differences between 
haploid and hybrid kernels, in agreement with previous observations 
(Melchinger et al., 2014; Rotarenco et al., 2007; Smelser et al., 2015).

To test if the cross-specific and haploid versus hybrid trait differ-
ences were significant, an interaction term between ploidy and induc-
tion cross was included in MANOVA and two-way ANOVA. All three 
terms were highly significant when all kernel traits were evaluated 

F I G U R E  1   Differences between haploid and hybrid NIR spectra. 
(a) Overall mean absorbance spectra of haploid and hybrid kernels. 
(b) Mean absorbance spectra of haploid and hybrid kernels from 
BGEM-0055-S x inducer induction population. (c) Difference 
between the absorbance values of the mean haploid and hybrid 
spectra from all kernels (overall) and from BGEM-0055-S × inducer 
cross. Absorbance is reported as (log(1/reflectance)

0.85

0.9

0.95

1

1.05

1.1

1.15

900 1100 1300 1500 1700

-0.01

-0.005

0

0.005

0.01

900 1100 1300 1500 1700

0.85

0.9

0.95

1

1.05

1.1

1.15

900 1100 1300 1500 1700

(a)

(b)

(c)

H
ap

lo
id

 –
 H

yb
ri

d 
A

bs
or

ba
nc

e 

Wavelength (nm)

A
bs

or
ba

nc
e

A
bs

or
ba

nc
e Haploid

Hybrid

Haploid

Hybrid

Overall



     |  5GUSTIN eT al.

simultaneously in the MANOVA model (Table S2). Evaluation of each 
trait using two-way ANOVA found that the cross by ploidy interac-
tion term was significant for all traits except for material volume and 
percent starch (Table S3). The ploidy term was significant (p < .05) for 
kernel oil, weight, protein, total density and total and material volume. 
These analyses illustrate that the female donor genotype significantly 
influences the effect of a haploid embryo on mature kernel traits. 
While the relative effect size was small for all traits except oil, the 
MANOVA suggests that other traits predicted by skNIR can be distin-
guishing features between hybrid and haploid kernels. The additional 
NIR signatures could be leveraged to improve discrimination accuracy 
beyond what can be achieved by kernel oil content per se.

3.3 | Haploid discrimination using general 
skNIR models

Two PLS-LDA models were evaluated to determine the accuracy of 
haploid and hybrid classification for all crosses combined. The first 

model used the 770 wavelengths of the NIR absorbance spectra 
as predictors, while the second model used eight kernel composi-
tion and quality traits predicted by skNIR. Predicted kernel compo-
sition traits yielded lower FDR with slightly higher FNR (Table 3). 
However, the error rates for both general models were too high to 
be effective methods for sorting haploid kernels. By comparison, 
visual discrimination using the R1-nj was far more accurate than 
either general models.

Table 4 shows the general model accuracy within each induc-
tion cross. The data represent 10 iterations of subsampling the in-
duction crosses with a 1:8 haploid:hybrid ratio. The general skNIR 
model classified some induction crosses with higher accuracy than 
others. For example, BGEM-0071-S × inducer was the most accu-
rately classified induction cross with FDR and FNR of 0.59 and 0.53 
respectively. There were no induction crosses in which the PLS-LDA 
model rivalled visual accuracy. There was also no significant correla-
tion between the visual FDR and skNIR FDR (r = .45, p = .09, df = 13), 
indicating that visual classification accuracy was not a predictor of 
PLS-LDA model accuracy.

PHZ51/NSS PHB47/SS

InducerHaploid Hybrid Haploid Hybrid

Weight (mg) Mean 345 364 349 364 168

SD 50.1 47.9 46.0 48.2 23.0

Rangea  293–370 314–379 298–377 325–401 113-214

Oil (%) Mean 2.37 3.27 2.55 3.47 3.23

SD 0.7 0.82 0.659 0.765 0.713

Range 2.33–2.95 2.73–3.73 1.85–3.42 3.14–4.14 1.00-4.59

Protein (%) Mean 10.9 10.7 13.3 13.0 16.2

SD 1.38 1.42 1.32 1.55 1.18

Range 9.99–11.2 10.3–11.2 11.7–14.3 11.2–14.5 13.5–20.3

Starch (%) Mean 63 62.1 56.3 56.5 53.7

SD 3.76 3.87 3.59 3.62 2.82

Range 59.5–65.1 58.9–66.0 52.9–60.6 53.6–59.1 47.7-62.9

Density (t) 
(g/cm3)

Mean 1.57 1.61 1.57 1.58 1.43

SD 0.06 0.07 0.080 0.07 0.05

Range 1.56–1.60 1.57–1.70 1.45–1.62 1.52–1.62 1.29-1.59

Density (m) 
(g/cm3)

Mean 1.54 1.53 1.57 1.57 1.57

SD 0.03 0.03 0.04 0.04 0.03

Range 1.52–1.56 1.51–1.55 1.54–1.60 1.53–1.59 1.44-1.63

Volume (t) 
(cm3)

Mean 262 264 245 257 161

SD 35.0 37.1 29.7 31 28.7

Range 236–292 239–297 211–255 234–278 73.8-218

Volume (m) 
(cm3)

Mean 242 250 222 231 123

SD 31.2 28.1 28.5 26.7 22.6

Range 220–259 228–257 193–235 216–254 57.4-182

aRange shows minimum and maximum values of induction cross population means and the 
minimum and maximum kernel values for the inducer. 

TA B L E  1   Kernel composition and 
quality trait measurements of haploid 
and hybrid kernels grouped by recurrent 
female parent/heterotic group and 
haploid inducer line
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3.4 | Haploid discrimination with induction cross-
specific models

The cross-specific variation in NIR spectral differences between 
haploids and hybrid kernels suggests that higher classification ac-
curacy could be achieved using specific classification models for 
each induction cross. To test this, induction cross-specific PLS-LDA 
models using either the spectra or the kernel composition traits as 
predictors were constructed. In addition, an oil-only approach was 
evaluated whereby 20% of kernels with the lowest predicted oil con-
tent were classified as haploid. The 20% oil threshold matches the 
fraction of kernels predicted to be haploid from induction cross-spe-
cific PLS-LDA models using spectra as the predictors. Comparisons 
between the oil-only approach and the other models can evaluate if 
adding traits in addition to oil improves the predictive power.

The PLS-LDA models using NIR predictors performed the best 
with average FDR and FNR of 0.54 and 0.16, respectively (Table 5). 
These results suggest NIR spectra have discriminatory signal that is 

not captured by the latent vectors used to predict kernel traits. The 
FNR using NIR predictors was substantially lower than the other two 
approaches and was even lower than the FNR for visual classifica-
tion, suggesting a larger proportion of true haploids can be recov-
ered. Nine of the fifteen induction crosses had an FDR of less than 
0.50, meaning that over 50% of the kernels classified as haploid were 
true haploids (Table 4). Each of these nine crosses also had an FNR 
less than 0.23, meaning that over 75% of true haploids were classi-
fied correctly. The BGEM-0110-N x inducer cross had near perfect 
separation of haploid kernels (FDR and FNR = 0.03).

There was also variation in the accuracy of visual sorting with six 
crosses having an FDR > 0.1. Interestingly, the FDR for cross-spe-
cific skNIR models was positively correlated with the FDR for visual 
separation (r = .65). The underlying cause for this relationship is not 
readily apparent, but it suggests that some aspect of the visual score, 
possibly anthocyanin accumulation in the embryo, is encoded in the 
NIR signal.

3.5 | skNIR haploid classification uses information 
beyond oil content

Relative oil content was the most consistent trait that differentiated 
the two kernel classes (Table 2). However, there was no significant 
relationship between the oil content difference between haploid and 
hybrid kernels, hereafter, indicated by oilΔ, and the FDR or FNR for 
the cross-specific models (Figure 2). The two induction crosses with 
the largest oilΔ, BGEM-0029-S × inducer (oilΔ = 1.86%) and BGEM-
0110-N × inducer (oilΔ = 1.88%), had divergent FDR values of 0.50 

TA B L E  2   Kernel trait differences between mean hybrid and mean haploid values for kernels from each induction cross

Induction cross
Recurrent 
parent

Weight 
(mg)

Oil 
(%)

Protein 
(%)

Starch 
(%)

Total density 
(g/cm3)

Material density 
(g/cm3)

Total 
volume 
(cm3)

Total 
volume 
(cm3)

BGEM-0000-S × inducer PHB47 8 0.9a  0.1 0.4 −0.01 −0.01 4 2

BGEM-0014-S × inducer 5 0.5a  0.4 −2.0a  0.04a  0.03a  −6 6

BGEM-0029-S × inducer 3 1.7a  −1.9a  0.6 0.01 −0.02a  18a  15a 

BGEM-0112-S × inducer −13 1.1a  −0.7 1.7a  0.03 0.00 6 6

BGEM-0055-S × inducer 48a  1.0a  1.3a  0.0 −0.02 0.01 28a  15

BGEM-0071-S × inducer 47a  0.8a  0.6 0.2 0.02 0.01 25a  21a 

BGEM-0095-S × inducer 1 0.9a  0.0 −1.8a  0.01 −0.01 8 11a 

BGEM-0168-S × inducer 30a  0.8a  −0.3 −0.2 −0.01 −0.01 21a  18a 

BGEM-0172-S × inducer 30a  1.0a  −0.6a  0.8 0.02 −0.01 13a  16a 

BGEM-0213-S × inducer 25 0.4a  −0.8a  2.0a  −0.04a  0.00 11 1

BGEM-0046-N × inducer PHZ51 14 0.7a  −0.1 0.9 0.01 −0.01 6 2

BGEM-0110-N × inducer 24a  1.8a  −0.5 −6.5a  0.04a  0.01 −39a  10

BGEM-0181-N × inducer 38a  0.7a  0.4 0.2 0.02 0.00 21a  19a 

BGEM-0207-N × inducer 11 0.9a  0.0 −1.3 0.01 −0.02a  3 6

BGEM-0231-N × inducer 5 0.4a  −0.8a  1.9a  0.00 −0.02a  14 0

aStudent’s t test p value less than the Benjamini–Hochberg critical value for False Discovery Rate of 0.05. 

TA B L E  3   General model haploid discrimination accuracies for 
single genotypic holdout external validation kernels

Models Predictors Factors FDRa  FNRb 

PLS-LDA NIR 9 0.70 0.73

PLS-LDA Kernel Composition 8 0.36 0.89

Visual Kernel Colour — 0.17 0.17

aFalse Discovery Rate. 
bFalse Negative Rate. 
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and 0.03, respectively (Table 4). There were also induction crosses 
with low oilΔ and relatively low FDR. However, there was a trend 
for induction crosses with high oilΔ values to have low FNR values, 
but low FNR values were not unique to high oilΔ crosses. These data 

indicate that skNIR provides information beyond oil composition to 
classify haploids in many induction crosses.

4  | DISCUSSION

4.1 | Multiple NIR signals discriminate haploid 
kernels

Rotarenco et al. (2007) originally proposed that lack of xenia in the 
haploid embryo would alter kernel composition relative to hybrid 
kernels in an induction cross. Haploid embryos can reduce ker-
nel oil content by 19% on average and embryo weight by 8%–14% 
when multiple donor genotypes are used (Rotarenco et al., 2007; 
Smelser et al., 2015). For the PHZ51 and PHB47 recurrent parent 
backgrounds in this study, haploid kernels reduced oil content by 

Induction cross
Recurrent 
parent

General model
Cross-specific 
model Visual

OilΔ 
(%)FDRa  FNRb  FDR FNR FDRc 

BGEM-0000-S x 
inducer

PHB47/SS 0.77 0.87 0.34 0.07 0.04 0.78

BGEM-0014-S x 
inducer

0.94 0.92 0.68 0.23 0.25 0.46

BGEM-0029-S x 
inducer

0.83 0.78 0.50 0.02 0.14 1.86

BGEM-0112-S x 
inducer

0.69 0.48 0.64 0.22 0 1.01

BGEM-0055-S x 
inducer

0.66 0.65 0.42 0.12 0.06 0.81

BGEM-0071-S x 
inducer

0.59 0.53 0.59 0.17 0.13 0.87

BGEM-0095-S x 
inducer

0.91 0.85 0.75 0.28 0.27 0.81

BGEM-0168-S x 
inducer

0.54 0.60 0.70 0.32 0.14 0.72

BGEM-0172-S x 
inducer

0.49 0.56 0.61 0.13 0.14 1.00

BGEM-0213-S x 
inducer

0.52 0.72 0.25 0.23 0 0.33

BGEM-0046-N x 
inducer

PHZ51/NSS 0.39 0.75 0.42 0.12 0 0.77

BGEM-0110-N x 
inducer

0.78 0.78 0.03 0.03 0 1.88

BGEM-0181-N x 
inducer

0.76 0.75 0.58 0.12 0 0.51

BGEM-0207-N x 
inducer

0.52 0.82 0.46 0.03 0 1.31

BGEM-0231-N x 
inducer

0.80 0.78 0.29 <0.01 0.04 0.48

aFalse Discovery Rate. 
bFalse Negative Rate. 
cVisual FDR was the fraction of hybrid kernels visually scored as haploids and confirmed by 
genotyping. 

TA B L E  4   External validation 
classification accuracy of each haploid 
induction cross using general and cross-
specific models

TA B L E  5   Haploid discrimination accuracy using induction cross-
specific models. Values from PLS-LDA models represent single-
kernel holdout external validation. Lowest oil method uses the 20% 
lowest oil values per induction cross

Method Predictors Factors FDRa  FNRb 

PLS-LDA NIR 9 0.53 0.16

PLS-LDA Kernel Composition 8 0.57 0.49

Lowest Oil Oil — 0.67 0.39

aFalse Discovery Rate. 
bFalse Negative Rate. 
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27% and 26% and reduced kernel weight by 5% and 4% respectively. 
Reduced kernel oil content in haploids can be explained by reduced 
embryo size relative to hybrid. The embryo contains a large propor-
tion of total kernel oil. Reducing embryo size would reduce both the 
total and relative oil content, as long as the oil concentration in the 
embryo remains constant.

Other kernel traits were also significantly altered in haploids of 
many induction populations including kernel volume, density and 
relative protein content. The embryo has higher density than the en-
dosperm (Gustin et al., 2013). This suggests that haploids could have 
a lower density than hybrids due to a smaller embryo size. Indeed, 
two induction crosses had haploids with significantly lower density. 
Overall, however, density traits did not show consistent trends in 
different induction crosses. In 4 of the 15 crosses, protein content 
was increased in the haploid kernels. It is not clear why haploid em-
bryos would increase a kernels protein content. These induction 
cross-specific changes in kernel traits provide additional signals, be-
yond oil, for haploid kernel classification.

The lack of consistent trends beyond reduced oil content within 
the skNIR spectra precluded the development of a general PLS-LDA 
model to sort haploids accurately. This is consistent with other au-
tomated haploid sorting studies, which found donor, inducer and 
donor by inducer-specific effects rendered general classification 
models inaccurate (Jones et al., 2012; Melchinger et al., 2015). 
However, we found that constructing a PLS-LDA model specific to 
donor by inducer cross substantially improved classification accu-
racy. Eight of the 15 induction crosses achieved FDR < 0.50 and 
FNR < 0.23. For induction populations with a haploid sorting accu-
racy of FDR < 0.50, incorporating a skNIR instrument would reduce 
the number of kernels for manual inspection by 80% or more. In a 
practical usage case, a user would first calibrate the skNIR sorter 
using a small sample of the induction population by visually sorting 
with the R1-nj colour marker. The small sample would then be run 
on the skNIR and if the FDR of the calibration model was less than 
0.50, the skNIR sorter could be used to enrich haploids from a large 
population of the specific cross prior to manual sorting.

The accuracy of haploid sorting using skNIR could be greatly 
improved by crossing donors with a high-oil haploid inducer, such 
as UHM600 or UHM601, which have 10%–12% kernel oil content 
(Melchinger et al., 2013). In an induction cross, the high oil genes 
contributed by the inducer increase hybrid kernel oil content, while 
haploid kernels develop maternal-level oil content (Rotarenco et al., 
2007). When UHM600 or UHM601 is used as inducers, the oilΔ 
averaged 1.78% with diverse donors (Melchinger et al., 2014). This 
increase in oilΔ was enough to separate haploid and hybrid kernels 
into largely non-overlapping oil distributions. Here, the oilΔ aver-
aged 0.9% with two induction crosses having oilΔ greater than 1.7% 
(Figure 2). Both high oilΔ populations had an FNR of less than 0.05 
and one had an FDR of 0.1 supporting the high oilΔ effect in im-
proving sorting accuracy. The increased oilΔ provided by a high-oil 
haploid inducer combined with the additional signals embedded with 
the NIR spectra have the potential to reduce skNIR FDR and FNR 
close to visual accuracy.

Nuclear Magnetic Resonance (NMR) spectroscopy is an alternative 
to NIR for sorting haploids based on kernel composition. Single-kernel 
NMR spectroscopy provides higher accuracy measurements of oil con-
tent in grains than NIR and several studies have shown that haploid 
sorting using NMR spectroscopy can match or even improve upon vi-
sual sorting in high-oil induction crosses with diverse female donors 
(Melchinger et al., 2014; Melchinger et al., 2015; Melchinger et al., 
2013). Several automated NMR single-kernel sorting platforms have 
been constructed that are capable of sorting haploids (Wang et al., 
2016; Melchinger et al., 2018). Although these NMR sorters have a 
more accurate determination of seed oil content, these systems are 
slow as compared to skNIR. Current designs of NMR sorters require 
4–6 s to process each kernel. The skNIR platform, on the other hand, 
was designed to process 10 kernels per second or 36,000 kernels per 
hour (Armstrong, 2006). Increased sorting speed makes the skNIR an 
attractive option for high-throughput sorting of maize haploids, partic-
ularly if combined with a high oil inducer that can drive larger oilΔ. We 
are constructing a single-kernel sorting device based on the light tube 

F I G U R E  2   Scatterplot of the difference between hybrid and 
haploid oil content and the (a) FDR and (b) FNR for the induction 
cross-specific models. Linear regression trend line is shown
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design of the platform used in this study. This device will be used to 
test the practical application of skNIR in the DH production process.
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