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ABSTRACT 

This dissertation describes an investigation of modal analysis 

methods for the detection, location, and characterization of flaws or 

damage in a structure or machine. The type of damage considered in the 

research was restricted to narrow, rectangular slots in symmetric 

trapezoidal plates. Both modal testing and finite element methods were 

used to investigate changes in natural frequencies of a clamped 

trapezoidal plate for all combinations of three slot lengths and three 

slot orientations. For modal testing, an impulse hammer was used to 

excite plate vibration, and a near field microphone was used to measure 

the response of the test plates. The first five natural frequencies 

were estimated from the measured frequency response function. Modal 

shapes associated with the natural frequencies were determined roughly 

from the phase of the measured frequency response function. Natural 

frequencies and associated modal shapes were also estimated numerically 

using the ADINA finite element package. Changes in natural frequencies 

for four different slot widths were investigated using finite element 

analysis. The changes in natural frequencies obtained by the two 

methods were in good agreement for all cases studied, and the results 

agree well with previously published work for an undamaged plate. 

The investigation demonstrates that: 

1. Slot presence can be detected from the change in natural frequency 

of the plate. 

2. Slot length and angular orientation have significant effect on 
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natural frequencies of the plate. 

3. Slot width has no significant effect on natural frequencies of the 

plates. 

4. Slot presence can change the numerical order of the natural 

frequencies associated with adjacent modes of the plate. 

5. Slot presence has little influence on modal shapes. 

The results demonstrate that impact vibrational testing using a 

near field microphone as the response transducer is a viable method for 

macroscopic non-destructive evaluation. 
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I. INTRODUCTION 

Non-destructive evaluation (NDE) consists of various methods to 

detect, locate, and characterize damage or flavs in a structure or 

machine. It is used to monitor and test the safety and soundness of 

structures or machines. Practically, there are always various types of 

flaws in a structure or machine. Depending upon the location, size, 

shape, and orientation of the flaws, some of the flaws may have little 

effect on the structure while others may cause failure of the structure 

or machine. In order to ensure the safety and integrity of a structure 

or machine, information about the existence, location, and 

characterization of the flaws is necessary. 

In recent years, many new methods of NDE have been developed, 

including ultrasonic testing, radiography, eddy current methods, and 

acoustic emission. However, all existing methods have disadvantages as 

well as advantages, and there is no method that is universally 

applicable. One common disadvantage is that the components under 

inspection must be investigated in an exhaustive piece-wise manner. 

Thus, the time needed for inspecting large or complex structures is very 

long. 

The modal testing method, measurement of the modal parameters 

including the natural frequencies and damping coefficients, is an 

attractive method for NDE. An advantage of the modal testing method is 

that the modal parameters can be measured at a single point on the 

structure and are relatively insensitive to the measurement location. 
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Moreover, the measured modal parameters can be used to evaluate the 

integrity of the structure. A disadvantage of this method is that it 

may be insensitive to the presence of small flaws or cracks that could 

cause failure of the structure or machine. 

A. The Problem 

The modal testing technique for NDE is based on the fact that modal 

parameters are global properties and are functions of the physical and 

geometrical parameters of the structure or machine. Therefore, any 

change in these physical or geometrical parameters will lead to changes 

in the modal parameters. On the other hand, measured changes in the 

modal parameters suggest changes in the physical or geometrical 

parameters of the structure. Thus, the measurement of modal parameters 

of a structure at two or more stages in its life provides an opportunity 

for the evaluation of the integrity of the tested structure. If modal 

parameters were measured before the structure was put in service, 

subsequent measurements of the parameters can be used to estimate 

changes in the structure's properties, and to estimate the continuing 

soundness of the structure. 

Theoretically, any change in physical or geometrical parameters of 

the structure or machine would cause changes in the stiffness. The 

influence of damage or a flaw on the stiffness of a structure can be 

modelled by introducing a small change in the stiffness matrix of the 

structure. The equation of motion for free vibration of a multi-degree 

of freedom system is 
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[K] <iD ̂  = MM]  ̂ (1-1) 

where, [K] is the stiffness matrix 

 ̂is the amplitude vector 

[M] is the mass matrix 

and X is the eigenvalue. 

For small changes in the mass and stiffness matrices [SK] and [SM], 

there will be a small change in the amplitude vector {50}. Thus, the 

equation of motion for the modified system is 

([K]+[SK])({D}+{SD}) = (X+SX)([M]+[SM])({D3+{5D}) (1-2) 

Neglecting second order terms in Eq. (1-2) results in the linearized 

equation 

([SK] -SX[M]-X[SM]){D} + ([K]-X[M]){SD} = 0 (1-3) 

Multiplying both sides of Eq. (1-3) by [D]̂  gives 

{D}̂ ([SK]-5X[M]-X[5M]){D} + {D}'̂ ([K]-X[M]){SD} = 0 (1-4) 

The mass matrix [M] and the stiffness matrix [K] are symmetric matrices, 

so that the transpose of Eq. (1-1) is 

{D3-([K] -X[M]) = 0 (1-5) 
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Substituting Eq. (1-5) into Eq. (1-4), it becomes 

{D}T([SK] -5XIM] - X[SM]){D} = 0 (1-6) 

For most types of structural damage, the change in the mass matrix is 

much smaller than the change in stiffness or displacement matrices and 

can be neglected. Equation (1-6) thus becomes 

{D}T([SK] -SX [M]){D} = 0 (1-7) 

and solving for the change in eigenvalues gives 

{D}T [SK] {D} 
SX =f———— (1-8) 

{D}̂  [M] {D} 

Equation (1-8) relates the change in the eigenvalues to the change 

in the stiffness matrix. In this equation, the displacement vector {D} 

and mass matrix [M] are associated with the undamaged system, and can be 

obtained experimentally or numerically. Therefore, the changes in 

natural frequency SX can be determined by measuring the natural 

frequencies of the damaged structure. Equation (1-8) can be used to 

estimate the change in stiffness [SK], provided that {D}, [M], and SX 

are known. 
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B. Literature Review 

Modal testing for NDE is a relatively new field in which little 

work has been done. In this section, a summary of existing damage 

detection techniques that are based upon experimental mechanical 

vibration methods will be examined. 

The earliest work involving vibration techniques for 

non-destructive evaluation was reported in 1978 by Adams et al. [1]. 

They began with an investigation of one dimensional components including 

a straight prismatic bar and an automobile camshaft. They modelled one 

dimensional problems using the receptance analysis method. By measuring 

the natural frequencies at two or more stages of increasing damage, they 

successfully detected and located damage in one dimensional components. 

However, the method cannot be used to solve two dimensional problems 

because there is no receptance technique for two dimensional problems. 

For this reason, they used finite element analysis to study the change 

in natural frequencies of two rectangular plates [2]. In the two 

dimensional problem, they related the change in natural frequency to the 

change in stiffness of the plate. They also carried out an experimental 

study using two different plates. The plates were excited by a 

loudspeaker, while the response signals were measured using strain 

gages. The modal shapes were checked roughly by spreading sand over the 

surface of the plate undergoing excitation. The changes in the natural 

frequencies were measured for a rectangular hole and saw-cut slot. They 

concluded that the presence of damage can be determined from the change 

in natural frequency, but the location and estimation of the severity of 
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the damage require dynamic analysis. 

Crema, Castellani, and Peroni [3] investigated the possibility of 

damage detection in a fiber glass blade of a small vindpover turbine 

using modal analysis methods. They measured changes in the natural 

frequencies and compared the experimental data with finite element 

results. They found that the results agreed well for a large number of 

vibration modes. They also tried to measure changes in damping 

coefficients, but the results were inconclusive. They concluded that 

high frequency resolution and zoom techniques are necessary to evaluate 

changes in natural frequencies and damping coefficients precisely. 

Tracy, Dimas, and Pardoen [4] used modal analysis techniques to 

study the effects of impact damage in composite plates. They argued 

that for surface damage, modal testing works better than either 

ultrasonic C-scan or radiography- In their modal testing procedure, a 

broadband white noise signal was fed to an electromagnetic shaker that 

excited the plate. A small accelerometer was used to measure the 

response. In order to identify the natural frequency, damping 

coefficient, and modal shapes, the measured frequency response functions 

were curve-fit to yield the modal parameters. They corroborated the 

measured data with finite element analysis. They also found good 

agreement between numerical and experimental results, and found that the 

experimental modal shapes are closer to the numerical modal shapes at 

lower frequencies. 

Chondros and Dimarogonas [5] studied the influence of a crack on 

the dynamic behavior of a structural member. They developed a 
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cantilever beam model for welded joints. They also investigated, both 

analytically and experimentally, the relationship between the change in 

natural frequencies of a cantilever beam and the depth of a transverse 

crack located at the built-in end of the beam. They argued that the 

modal analysis method can be applied more easily than any other method 

to large structures in the field. They also noted that the method is 

less sensitive to small cracks than other methods such as ultrasonic 

scanning. 

Yang, Chen, and Dagalakis [6] successfully used a random decrement 

technique to predict four different levels of damage in a model of an 

offshore structure. Random decrement techniques are based on the 

decomposition of the random response of a structure into deterministic 

and random components. By averaging over a large number of samples of 

the same response, the random component is averaged out, and the 

deterministic component, which is the free-decay response of the system 

under random loading, remains. The advantage of this technique is that 

only measurements of the dynamic response of the structure are required. 

The input excitation causing the response need not be measured. They 

concluded that the random decrement technique was able to distinguish 

between damage and non-damage situations using only four accelerometers 

mounted an each of the legs of the structure. 

Gudmundson conducted a series of analytical studies of the dynamic 

behaviour of structures with different forms of cross-sectional cracks. 

In 1982 [7], he derived an equation to predict the changes in the 

natural frequencies of a structure with different length cracks using 
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the first perturbation method. His equation shows that the change in 

natural frequency due to a crack depends on the strain energy of a 

static solution. The method has been tested for three different cases, 

and the predicted results correlate with experimental results for small 

cracks. In 1983 [8], Gudmundson improved his previous work by using a 

consistent static flexibility matrix to model the crack. This 

mathematical model was applied to an edge-cracked cantilever beam. The 

validity of the present model was confirmed by comparisons with 

experimentally obtained natural frequencies for the same beam. In 1984 

[9], based on his previous work, he developed an analytical expression 

for determination of the changes in natural frequencies and damping due 

to small cracks. He also derived an equation to predict the length, 

position, and orientation of a crack using the measured frequency 

changes. 

It is clear from the foregoing that most of the published work in 

this area deals with one dimensional problems. Little work has been 

reported for two dimensional situations. For one dimensional problems, 

a number of methods for detecting and locating flaws or damage have been 

developed. For two dimensional problems, the presence of damage or 

flaws can be determined from changes in the natural frequencies of a 

structure. However, methods for locating and characterizing the damage 

have yet to be established. Thus, further systematic work in this 

direction is necessary. 
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C. Objective 

The primary purpose of this project is to locate and characterize 

damage or flaws in a two dimensional structure by modal analysis 

techniques. In the research described here, the effects of the 

dimensions and orientation of damage on changes in the natural 

frequencies of a clamped trapezoidal aluminum plate are investigated 

using modal testing and finite element methods. Figure 1-1 is a sKetch 

of the particular trapezoidal plate geometry that was investigated. 

Damage is simulated by cutting slots of different sizes and orientations 

into the center of the plate. The length, width, and angular 

orientation of the slot are changed. The slot length considered ranges 

from 2.0 to 3.0 inches, while the slot width ranges from 0.02 to 0.17 

inches. Three slot orientations of 0, 45, and 90 degrees with respect 

to the base of the trapezoidal plate are considered. The natural 

frequencies for the undamaged and damaged plates are determined. The 

effects of slot width, length, and orientation on changes in the natural 

frequencies of the plate are studied. 

The dimensions of the test plate are the same as was used by 

Maruyama, Ichinomiya, and Narita [10]. Maruyama and coworkers used the 

real time method of time averaged holographic interferometry to measure 

the natural frequencies and modal shapes of a trapezoidal plate. They 

also compared their experimental results for the natural frequencies and 

modal shapes with numerical predictions. The comparison revealed errors 

of less than 6% and an average error of 3.6%. Their results provide a 

good reference for experimental and finite element analysis, and it was 
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for this reason that the trapezoidal plate was chosen for this 

investigation. 

•'U 
\ \  \  \  \  \ \  \ \  \  \ \  \  \ \  \ \  

COKT 
cnko 

m 

•5 

(in inch) 

d = 3.0 inch for 0 = 45 and 90 degrees 

= 2.5 inch for 0=0 degree 

Figure 1-1. The trapezoidal plate 

Both modal testing and finite element analysis were carried out as 

parts of the research reported here. For modal testing, an impact 

hammer is employed to excite plate vibration, and a near—field 

microphone is used to measure the response. The natural frequencies of 
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undamaged and damaged plates are determined from the measured frequency 

response function. The phase of the frequency response function is used 

to roughly identify the modal shapes corresponding to each natural 

frequency. A finite element analysis is included to corroborate modal 

testing results and to facilitate parameter studies. The finite element 

analysis uses a three node triangular element. Natural frequencies and 

modal shapes are calculated using the ADINA finite element package. 

In the following chapter, the basic concepts of modal testing and 

common methods used in modal parameter estimation are introduced. 

Chapter III contains a description of the experimental procedures 

followed by a presentation and discussion of the measured results. In 

Chapter IV, the finite element model is described and numerical results 

are presented. The effects of slot width, length, and orientation are 

also discussed in Chapter IV. The dissertation concludes with a summary 

of the results and recommendations for further research. 
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II. MODAL TESTING 

Modal testing is an experimental approach in which the dynamic 

behavior of an elastic structure is characterized by its modes of 

vibration. Each mode has parameters associated vith it that may be 

identified from measurements at any point on the structure. 

Furthermore, there is a characteristic "modal shape" that defines the 

mode spatially over the entire structure. 

The main function of modal testing is to extract the modal 

parameters from analysis of the measured frequency response function 

(FRF). The general scheme for measuring the FRF consists of measuring 

simultaneously the input and response signals, transforming these 

signals to the frequency domain, and estimating the FRF by dividing the 

transformed response by the transformed input. The development, within 

the last decade, of both digital hardware and computer algorithms for 

various transforms has made digital signal processing a practical 

method for the implementation of modal analysis for structural dynamics 

problems. 

Although the name is relative new, the principles of modal testing 

were laid down many years ago. These have evolved through various 

phases from a time when descriptions such as 'Resonance Testing' and 

'Mechanical Impedence Methods' were used to describe the general area 

of activity. One of the more important milestones in the development 

of the subject vas provided by Kennedy and Pancu in 1947 [11]. The 

methods described found application in the accurate determination of 
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natural frequencies and damping factors in aircraft structures and were 

not out-dated for many years, until the rapid advance of measurement 

and analysis techniques in the 1960s. In 1963, Bishop and Gladwell 

[12] described the state of resonance testing theory which, at that 

time, was considerably in advance of its practical implementation. By 

1970, there had been major advances in transducers and electronics, 

digital signal analyzers had been developed and current techniques of 

modal testing had been established. There are a great many papers that 

relate to this period, and a bibliography of several hundred such 

references now exists [13], [14]. Among them, there are several works 

that should be mentioned. Richardson and Potter [15] developed a 

technique that is based upon digital signal processing and the fast 

Fourier transform to obtain frequency response function estimates. 

They used a least squared error estimator to identify modal properties 

from the measured frequency response data. Halvorsen and Brown [16] 

discussed the application of impulse excitation techniques and reviewed 

special problems encountered in practice and the techniques that have 

been developed for dealing with those problems. Ramsey [17] introduced 

the so called 'Band Selectable Fourier Analysis' or zooming technique 

for modal testing. Ewins summarizes the development of modal testing 

techniques in the last decade in his book [18]. 

In this chapter, the FRF which is the basis for modal testing 

techniques will be developed. Several methods for estimating modal 

parameters will be described, and experimental techniques used in the 

research will be discussed. 
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A. Modal Testing 

The theoretical foundations of modal testing are of paramount 

importance to its successful implementation. Thus, it is appropriate 

to first deal vith the basic concepts that are used at different stages 

of modal testing. The single degree of freedom system will be used 

to present these basic concepts. It should be pointed out that 

although very few practical structures can realistically be modelled as 

single degree of freedom systems, the concepts and analysis procedures 

of single degree of freedom systems are very useful for averaged modal 

testing situations [19]. For structures with modes that are well 

separated, single degree of freedom techniques result in very accurate 

answers. For structures with high modal density, the single degree of 

freedom techniques often give good results if exciter positions are 

chosen to minimize modal interaction. These two situations encompass 

the majority of test structures encountered. 

1. Single degree of freedom system theory 

Fig. (2-1) shows a single of freedom system(SDOFS) with mass m, 

spring stiffness k, damping c, and exciting force f(t). The steady 

state response of the system to an exciting force f(t) = fê  ̂can be 

assumed to be of the form 

x(t) = X ê "̂  
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f(t) 

T 

Figure 2-1. Single degree of freedom model 

The equation of motion is 

(-oc?m + icoc + k) X e = f e 

The FRF is defined as 

H((o) = x/f = l/(-a? m + k + icoc) (2-1) 

which is complex, containing both magnitude and phase information. 

Note that the FRF magnitude is 

|H(«)| = l/%k m)̂  + (ojc)̂  (2-2) 
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and the phase is 

H(«) = tan ( -«c /(k-«?m)) (2-3) 

Equation (2-3) indicates that the phase of the FRF is the angle between 

the exciting force and the response. Fig. (2-2) illustrates a 

geometrical interpretation of the phase information of the FRF for a 

single degree of freedom system. 

kx 

Reference 

Figure 2-2. Single degree of freedom response phase angle 

The FRF can also be written in complex notation with real and 

imaginary parts as 

2 k-(0 m CCI) 
H(a3) = o 5 Ô - i 2 2 ? (2-4) 

(k-w m) + (coc) (k-ci) m) +(uc) 



17 

There are three common ways in which the FRF is displayed. The 

most popular display is the Bode plot consisting of two graphs. One 

graph is a plot of the magnitude of the FRF vs frequency, while the 

other one is a plot of its phase vs frequency. A second display is the 

Nyquist plot. In a Nyquist plot, the FRF is displayed as a plot of real 

part vs imaginary part. No frequency information is contained 

explicitly in a Nyquist plot. In general, the Nyquist plot of a SDOFS 

approaches a circle near the natural frequency. This can be shown as 

follows. 

Let R be the real part of FRF, from Eq. (2-4) 

2 
k - <0 m 

(k-oc? m)̂  + (cw)̂  
(2-5) 

and the imaginary part I is 

CO) 
I = 

(k -a?m)̂  + (ca>)̂  
(2-6) 

Let L = I- 1/(2(1%:) and the following relation can be found 

R̂  + L̂  = (l/2wc)2 (2-7) 

As CO approaches Eq. (2-7) becomes 

R̂  + L̂  = (l/2*yc)2 (2-8) 

which is the equation of circle. 
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For structural damping that is inversely proportional to frequency 

c = b/(t> (2—9) 

and substituting Eq. (2-9) to Eq. (2-7), gives 

pf + = (l/2b)2 

which is exactly a circle. 

A third form of display for the FRF also contains two graphs which 

are plots of the real part of FRF vs frequency and the imaginary part vs 

frequency. 

2. Multi-degree of freedom system (MDOF) and modal shape 

For an undamped N degree of freedom system, the governing equation 

of motion can be written in matrix form as 

[M] jxt + [K] tx)» = jft (2-10) 

where, [M] is a NxN mass matrix 

[K] is a NxN stiffness matrix 

jx̂ is a Nxl displacement vector 

f̂ ̂ is a Nxl force vector. 

The natural frequencies and modal shapes can be determined from the 

solution of the free vibration equation by taking 
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In this case, -îhe solution can be assumed to be of the form 

ei** (2-11) 

where {D} is a Nxl vector of time-independent amplitudes. 

It is clear that 

= -of i** (2-12) 

Substitution of Eqs. (2-11) and (2-12) into the free vibration equation 

of motion, leads to 

([K] -J- [M])̂ D}>ê "̂  =̂ 0}> (2-13) 

for which the only non-trivial solution must satisfy 

det I[K] - J- [M]| =0 (2-14) 

2 
The above condition is an equation of order N in co . The N undamped 

natural frequencies of the system are the solutions of Eq. (2-14). 

Substituting any one of these N values of the natural frequency 

back into Eq. (2-14) yields a corresponding set of relative values of 

{D}, the so called modal shape or eigenvector corresponding to that 

natural frequency. The complete solutions for the natural frequencies 

and modal shapes can be expressed in two NxN matrices, the 



20 

eigenmatrices, as 

1 

L J 

and 

2 
where ccu is the ith eigenvalue, or squared natural frequency, and [i</] 

is a description of the corresponding modal shape. 

The FRF of MDOFS can be derived from the forced vibration equation, 

Eq. (2-10). We consider the case in which the structure is excited 

sinusoidally by a set of forces of the same frequency, «, but with 

different amplitudes and phases. That is 

where ̂ F ̂ and  ̂are Nxl vectors of time-independent complex 

amplitudes. Substituting Eqs. (2-15) and (2-16) into Eq. (2-10), the 

equation of motion becomes 

e (2-15) 

The solution of Eq. (2-10) is again assumed to be of the form 

e i** (2-16) 
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([K] -«? (2-17) 

Thus, the response can be written as 

\D\= [ [K] - [Ml] 

or 

<{D̂  = [ H(«)] {F̂  

where [H(«)] is the NxN frequency response matrix for the MDOFS. It can 

be expressed as 

[H(co)] = ([K]- (2-18) 

The general element in the frequency response matrix, Hjĵ ((o), is defined 

as 

which is similar to the definition for the SDOF system, where is the 

response at the jth point for excitation F̂  acting at the kth point. 

The frequency response matrix can also be derived using the 

orthogonal property of the modal shapes. Equation (2-18) can be written 

as 
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( [K] - cô [M] ) = [ H(co) 1"̂  (2-20) 

T 
Pre- and post-multiply both sides of Eq. (2-20) by [*] and [*], where 

[ is the normalized modal shape matrix, and noting that 

[M] [*] = 
•H 

[K] [*] = ^ 

gives 

,-l 

[ H(a>)] = [<f>l - 0)̂ 1 (2-21) 

It is clear from this expression that the frequency response matr: 

is symmetric. That is 

:jk = = (V̂ j) 

Any element of the frequency response matrix can be computed from 

Eq. (2-21) using the formulae 

,5 r*j 
H.k.(<«>) = / 2 2 (2-22) 

' rJÏ * r- * 

or 
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V» 

which is a simpler and more informative expression than Eq. (2-18). In 

Eq. (2-22), is a new parameter which is referred to as a modal 

constant (note that the modal constant is also called the 'residue' in 

some papers). 

Equation (2-22) is an important result for modal testing. It is in 

fact the central relationship upon which the method is based. In modal 

testing, the frequency response values at a certain point j can be 

measured. The natural frequency can be estimated from the measured 

FRF. Hence, Eq. (2-22) can be used to estimate the modal constant or 

the modal shape. 

So far the FRF, H((o), has been defined as the ratio of a harmonic 

displacement response to the harmonic excitation force. This quantity 

is usually called the receptance FRF. There are two alternative ways to 

define FRF, the mobility FRF, and the inertance FRF. The mobility FRF, 

Y(cù), is defined as the ratio of a harmonic velocity response and the 

harmonic excitation force, while the intertance formulation uses 

acceleration as the response parameter. 

The frequency response function contains all the information that 

is necessary to characterize the dynamic system. Unfortunately, the 

measured frequency response function is presented as a set of discrete 

values rather than in mathematical form. There is a gap between the 
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measured and theoretical expressions of the FRF. The techniques that 

extract the natural frequency, damping factor, and modal shape from a 

measured FRF bridge the gap, and are referred to as parameter 

estimation. This topic will be discussed in more detail in the next 

section. 

B. Parameter Estimation 

Experimental modal analysis has become an increasingly popular 

technique in recent years. Developments in measurement and 

instrumentation technology have facilitated the acquisition of data of 

sufficient accuracy for the extraction of the modal properties of a 

structure under test. 

One of the earliest such techniques to be applied to mechanical 

structures is a graphical analysis method developed by Salter [20]. The 

graphical method is based upon the fact that frequencies of resonance 

and £intiresonance are determined by the mass and stiffness of a 

structure. The recent development of numerical modal analysis 

algorithms has been extensive, and the curve fitting procedures upon 

which they are based are very refined. 

The purpose of parameter estimation is to identify the modal 

parameters including the natural frequency, damping coefficients, and 

modal shapes from measured structural response. The modal parameters of 

a structure are of prime interest, since these parameters define the 

dynamical behavior of the structure in a very concise mathematical 

manner. The present section describes some of the procedures used in 
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this work. 

In order to evaluate the success or failure of the modal estimation 

method, the original data are often compared to a curve that has been 

generated from the estimated modal parameters. This comparison of 

curves, referred to as curve-fitting, is one measure of the validity of 

modal parameter estimation. A variety of software [15],[21] has 

been developed for this purpose. The algorithm used in particular 

software may be different, but the basic concepts are the same. The 

description given here will focus on the basic concept. 

In most modal parameter estimation schemes, the typical procedure 

is to estimate the natural frequency and damping factor using either the 

magnitude of the frequency response function or the imaginary part of 

the response. After the natural frequency has been determined, the 

modal constant or modal shape can be estimated using Eq. (2-22). 

1. Amplitude response 

Perhaps the simplest modal parameter estimation procedure is to 

measure the magnitude of the FRF at one of the natural frequencies. The 

natural frequencies can be determined since they are the frequencies of 

maximum response. The damping factor can be determined using a 

half-power point method [22]. After determining the natural frequencies 

and damping factors, the modal constant can be found from the equation 
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2 
where, is the measured FRF value at the rth natural frequency, is 

the estimated rth natural frequency, and Ç is the estimated damping 

factor [18]. An advantage of this method is that a minimum amount of 

equipment is used. 

2. Quadrature(imaginary) response 

The quadrature or imaginary part of the frequency response function 

of the tested system reaches a maximum at the undamped natural frequency 

and approaches zero away from the natural frequency. This property can 

easily be shown from Eq. (2-16). The influence of damping on the 

natural frequency is thus eliminated making it easier to separate the 

adjacent modes. For cases where the system is lightly damped or the 

modes are well-separated, the quadrature response is a very good method. 

So far, systems have been discussed in terms of a single degree of 

freedom model that can be used for exactly single degree of freedom 

systems as well as for multi-degree of freedom systems that have well 

spaced natural frequencies. In MDOF systems neighboring modes are 

observed to contribute a noticeable amount to the total response, even 

when adjacent modes are well separated. In order to deal with this kind 

of problem, a more general type of curve-fit method, called a 

multi-degree of freedom system (MDOFS) curve-fit procedure will be 

discussed next. 
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3. Lightly damped MDOFS 

In this section, a class of structures that may be modelled as 

undamped MDOFS will be considered. The class includes structures in 

which the damping is both relatively small and of no intrinsic interest. 

This situation is encountered in a great many practical applications, 

and especially those involving investigations of individual components 

that form part of an assembled structure. Usually, the individual 

components are themselves very lightly damped, and the damping they 

possess is often of little consequence to the assembled structure. The 

modal parameter estimation method for this kind of structure is 

described below. 

For an effectively undamped system, the FRF can be expressed by 

Eg. (2—22) as 

which, for a specific value measured at frequency, can be rewritten 

in the form 

If m such individual measurements are made, these equations can be 

expressed in the form 

N 

r=l  ̂

Hjk(2i) = <!(«i  ̂ . 1- 2̂ jk 
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f 
Bjk(S2) 

' w ^  

''î jki 

2̂ jk 

(2-23) 

or simply 

 ̂= [R] 

where [R] is 

[R] = 

'(û̂ -Ŝ ) ̂  (c|-5̂ ) ̂  

l(4-Ŝ )-l (a|-sg)-l 

(2-24) 

from which a solution for the unknown modal constants Aĵ  may be 

obtained in terms of the measured FRF data and the previously estimated 

natural frequency. That is: 
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jAjk) = [R]-l t (2-25) 

Although very simple in concept, the success of the method in 

practical situations depends on the points chosen for the individual FRF 

measurements [23]. There are two sources of error that will contaminate 

the result. One is that the estimated FRF is usually contaminated by 

random measurement errors. The other is that in most practical cases, 

vibration data are acquired by measurement over limited frequency ranges 

on a system that has many degrees of freedom and a corresponding number 

of modes. Thus, it is generally impossible to carry out complete 

modal analysis. The calculated modal constants will have errors 

associated with such out-of-range frequency contributions. In order to 

reduce this error, Ewins [18] recommends the use of as memy 

antiresonances as are available. Methods for controlling the random 

errors will be discussed in the following section. 

C. Experimental Considerations for the Impact Method 

There are several methods used to excite a structural vibration 

including swept-sine, pure and pseudo random, and transient excitation. 

The impact method falls into the category of transient excitation. The 

impact method deserves particular attention because, for a wide range of 

structures, it is the simplest and fastest excitation method. There 

are, however, a number of difficulties associated with the application 

of the impact method. The major errors encountered in the application 

of the method are noise and leakage. Noise can be a problem in both the 
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input force and response signal measurements, and is mainly a 

consequence of a long analysis time compared with the impact duration. 

Leakage is of most concern in the response signal, and is caused by the 

short recording time. Another problem connected with the impact method 

is that the power spectrum of the input force is not as easily 

controlled as it is in steady-state excitation methods. This may cause 

non-linearities to be excited, and can result in variablity between 

measurements as a consequence of variations in the input force signal. 

A great deal of effort has been exerted by many researchers to improve 

impact measurement results and several special window functions have 

been developed to reduce the effects of noise [16]. No attempt will be 

made to cover all the techniques developed, but the method used in this 

work will be discussed. 

1. Window functions 

Usually, both the input force and the response signals are modified 

by a window function in the impact method. However, the purpose of the 

window function for the two signals is different. The purpose of the 

input force window is to reduce the noise and improve the signal to 

noise ratio. Typically, the force pulse has a low rms energy level even 

though its peak level is high. Also, the duration is short when 

compared with the analyzer record length. Thus, the total energy level 

of noise over the record length may be significant compared to the 

energy of the pulse. The general form of the force window is 

rectangular in shape which forces the signal outside the window to zero. 
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while the actual signal amplitude is preserved inside the window. 

An exponential window is often applied to the response signal. The 

function of the exponential window is to force the response to be zero 

at the end of the record time. The measured response of the structure 

may not decay to zero by the end of the analyzer observation time 

because of the short observation time. Thus, the measurement is a 

truncated version of the complete response. From digital signal 

processing theory, a sharp truncation of the time signal will 

contaminate the information in the frequency domain. This contamination 

is called the leakage error. By forcing the response signal to zero at 

the end of the observation time, the leakage error is reduced. 

2. Hammer 

The usefulness of the impact method lies in the fact that the 

energy in an impact is distributed continuously in the frequency domain 

rather than occurring at discrete spectral lines as is the case for 

periodic signals. Theoretically, an impact force will excite all 

resonances of the test structure. Experimentally, only the resonances 

in a certain frequency range, the useful frequency range, will be 

excited. The extent of the useful frequency range is controlled by the 

pulse shape which is determined by the stiffness of the hammer tip and 

the test structure. A harder hammer tip results in a shorter pulse 

duration, and larger useful frequency range. Corelli and Brown [24] 

suggest that a good rule of thumb is to choose a tip so that the 

auto-power spectrum of the input force pulse is no more than 10 to 20 dB 
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dovn at the end of the frequency range of interest. 

The mass of the hammer is another factor that must be considered. 

The mass of the hammer controls the amount energy that is transferred to 

the test structure. A larger mass makes more impact energy available 

for transfer to the structure. However, increasing the mass of the 

hammer also tends to increase the pulse duration. As a result, 

increasing the mass tends to reduce the useful frequency range. 

3. Zoom 

The purpose of zoom is to increase the frequency resolution and to 

separate strongly coupled frequencies. Narrow zoom ranges cause the 

analyzer observation time to become excessively long for impact testing. 

For example, an 800 line, 500 Hz analyzer requires a record length of 

1.6 seconds. Impacting a structure once every 1.6 seconds transfers a 

small amount of energy into the structure, and makes modal testing a 

slow process. A more efficient excitation method is to use a series of 

randomly spaced impacts within each time record. That is, the structure 

is impacted several times within each observation time, thereby 

increasing the total energy input to the structure. When using this 

method, care must be taken to avoid periodic impacts or the input force 

spectrum will be distorted. 

When using the random impact method, the transient window designed 

for a single impact is inappropriate since the noise problem has been 

solved by adding more signal. The additional energy in decibels is 

proportional to lOlog(M) where M is the number of impacts per data 
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record [25]. A suitable window for both channels in random impact 

testing is the Banning window. Use of a Banning window avoids 

truncation of the signal at the end of the time record, and thus reduces 

leakage, in the frequency domain. 

4. Coherence function 

In practice, measurement noise is always present at both the input 

and the output. In this work, a microphone is used as a response 

transducer, and it responds to radiated sound from the plate as well as 

to the background noise. Thus, the measured output signal is 

contaminated by background noise in the laboratory. It is important to 

estimate the effects of noise on the measurement. The coherence 

function provides a means for internally estimating the quality of an 

experimental determination of the FRF. 

The coherence function indicates whether or not the response is 

linearly related to the input and is defined by the equation 

2 G (f) 2 
Ŷ (f) =—̂  (2-26) 
y GxxCf) G,y(f) 

where, Ĝ (f) is the measured input spectral density, 

Gyy(f) is the measured output spectral density, 

Ĝ (f) is the cross spectral density. 

Experimental contamination can be modelled by including measurement 

noise at both the input and output of a linear system, as shown in 
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Fig. 2-3. 

m(t) 

x(t)  ̂u(t) 
H(f) 

n(t) 

v(t)  ̂y(t) 

Figure 2-3. Linear system with input and output measurement noise 

It follows that the measured input and output signals will be 

x(t) = u(t) + m(t) 

y(t) = v(t) + n(t) 

where, m(t) is input measurement noise 

n(t) is output measurement noise. 

By assuming the noise terms to be uncorrelated with each other and with 

the signals, that is 

G.n(f) - Sxa(f) . Gya(f) = 0 

the coherence function becomes 

T̂ (J) . (2-27) 

Equation (2-27) may be manipulated to give 
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îf)= (l- j [i_ VfL) (2-28) 
 ̂ G_(f) ̂  ̂ G ff) ̂  

which explicitly shows the effects of measurement noise on the coherence 

function. The values of coherence function less than unity indicate 

that extraneous noise is present. 

It should be pointed out that Eq. (2-27) is based on the assumption 

of linearity. If the test structure is non-linear, the coherence 

function will also be less than unity even though no noise is present in 

the measurement. Actually, the coherence is a measure of the output 

that is linearly related to the input. 
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III. EXPERIMENTAL PROCEDURES AND RESULTS 

The main goal of the research described in this thesis is to 

investigate the relationships among changes in the natural frequencies 

and the dimensions and orientation of damage in a trapezoidal plate. 

Three identical plates with thickness of 0.0397 inch were used. Plate 

damage was simulated by cutting various size center slots. Slot length 

was varied from 2.0 to 3.0 inches for a fixed slot width of 5/64 inches. 

The orientation of damage in each plate is different. An impact hammer 

was used to excite the test plate vibration. A near field microphone 

was used to detect the plate response. The natural frequencies of 

undamaged and damaged plates were determined from measured FRFs. The 

phase angles of the FRFs were also measured for each case. 

This chapter consists of four parts. The experimental set-up is 

described first. Next, the experimental procedures are discussed. The 

experimental results are presented in the third section and discussed in 

the concluding section of the chapter. 

A. Experimental Set-up 

1. Test plate 

Figure 3-1 is a sketch of the experimental apparatus. The 

apparatus consists of a trapezoidal plate, two clamping frames, and 

eight clamping pads. The plate is made from 0.0397 inch thick aluminum, 

and the clamping frames and pads are made from 3/8 inch and 1/2 inch 

thick aluminum, respectively. In order to simulate the clamped boundary 
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conditions on all four sides, the test plate is clamped between two 

strong frames that are fastened together using 40 bolts and nuts. 

The experimental apparatus is similar to that used by Maruyama in 

his investigation of undamaged trapezoidal plates [10]. The similar 

set-up was constructed so that Maruyama's results could be used to 

verify the experimental procedures. 

2. Measurement system 

The measurement system includes force and response transducers and 

the frequency analyzer. Figure 3-2 is a diagram of the data acquisition 

system. In order to obtain the frequency response function, the input 

force and response signals must be measured simultaneously. The input 

force was measured using an integral force cell that is part of the PCB 

impulse hammer. The input force signal from the force cell was 

amplified by a PCB preamplifer, and was fed to a Bruel & Kjaer Dual 

Channel Signal Analyzer, type 2032. The response signal was measured 

using a Bruel & Kjaer 1/2 inch diameter microphone. The microphone was 

supported by a stand that was isolated from the impact force. The 

distance between the microphone and the surface of the test plate was 

about 1/16 inch. The microphone signal was fed directly to the Bruel & 

Kjaer analyzer. 

The advantage of using a microphone to measure the response is that 

no inertia! mass has been added to the structure. For a light 

structure, such as the test plate, the inertial mass of an attached 

transducer could significantly influence the measured result. 



Figure 3-1. Experimental apparatus 
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Microphone Hammer 

Test plate 

Graphic 
Recorder 

B & K 2032 
Analyzer 

Figure 3-2. The data acquisition system 

During experiments, the microphone was located very close to the 

vibrating surface of the plate, and it can be considered to be in the 

near field of the plate. The sound pressure that the microphone sensed 

is proportional to the vibrational velocity of the plate. Hence, the 

measured FRF is the mobility. Only one reference involving the use of a 

microphone as a response transducer for modal testing could be found. 

Comstock, Javidinejad, Fleming, and Collins [26] used a microphone to 

measure the vibrational response of a beam and a circular plate to 

transient loading. They compared response time histories measured by 
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microphone and by accelerometer. Their results showed that a microphone 

gave a satisfactory time history for modal analysis. 

In this research, an investigation similar to that of Comstock was 

conducted for damaged and undamaged plates. In the investigation, a PCB 

302A accelerometer was mounted on a test plate, and a microphone was 

positioned 1/16 inch above the accelerometer location. Each of the 

measured response signals was fed to a B & K analyzer. It was found 

that the estimated natural frequencies were very close, although the 

measured FRFs were not identical. Table 3-1 is a comparison of the 

estimated natural frequencies using different response transducers for 

an undamaged plate. Figure 3-3 is a plot of a typical FRF measured 

using a microphone, and Fig. 3-4 is a plot of typical FRF measured using 

an accelerometer. Both Figs. 3-3 and 3-4 are for a plate with a 3 inch 

slot. The results indicate that the difference between natural 

frequencies measured using an accelerometer or a microphone is less than 

3%. 

Table 3-1. Comparison of the natural frequencies measured 
using microphone and accelerometer 

frequency(Hz) 
1̂ 2̂ % 4̂ 5̂ 

microphone 182 282 544 720 920 

accelerometer 186 288 550 734 920 
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Figure 3-3. FRF measured using microphone 
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Figure 3-4. FRF measured using accelerometer 
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The dual channel frequency analyzer is used to record, analyze, and 

display the measured signals. Figure 3-5 is a listing of the 

measurement set-up used in the experiments. It is modified version of 

the standard measurement set-up No. 12 of the analyzer. The measured 

frequency response function can be displayed in any of the three forms 

discussed in the previous chapter. 

MEASUREMENT SETUP 

MEASUREMENT: DUAL SPECTRUM AVERAGING 
TRIGGER: CH. A +SLOPE, LEVEL: +0.10 MAX INPUT 
DELAY: TRIG - A: -3.17 ms CH. A - B: 0.00 ms 
FREQ. SPAN: 1.6 Hz ÛF: 2Hz T: 500 ms TT: 244 Ms 
CENTER FREQ: BASEBAND 
WEIGHT CH.A: TRANSIENT SHIFT:1.95 ms LENGTH:13.18 ms 
WEIGHT CH.B: EXPON. SHIFT:1.95 ms length:199.46 ms 
CH. A: 2v + 3Hz DIR FILT: 25.6 HZ 3.00 mv/N , 
CH. B: 2v + PREAMP FILT: 25.6 Hz 2.00 mv/m/s 
GENERATOR: DISABLED 

Figure 3-5. The measurement set-up 

B. Experimental Procedures 

Three identical undamaged plates were used in the modal testing. 

Damage was modelled by milling 5/64 inch wide central slots in the 

plates at different angular orientations, as shown in Fig. 3-6. The 

orientations of the slots are at angles of 0, 45, and 90 degrees with 

respect to the base of the trapezoidal plate. The initial length of the 

slots is 2.0 inch. In subsequent experiments, the slot length is 

increased to 2.5, and finally to 3.0 inches. For each tested plate, the 

undamaged frequency response function was measured first. Then, for 

each slot length the measurement was repeated. The first five natural 
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frequencies and modal shapes were estimated from the measured frequency 

response functions for each case. 

The frequency response functions were measured by impacting the 

plate at a fixed point, point F in Fig. 3-6, while the microphone was 

moved from one point to another. During the test, an ensemble of 50 

excitation and response measurements was taken at each grid point and 

averaged. This was done to reduce noise and to ensure statistically 

reliable data. After each ensemble of measurements, the coherence was 

checked prior to proceeding with the data analysis. Fig. 3-7 shows a 

typical plot of the coherence for an undamaged plate. 

, V / V / / , / / / / / / / / / / / 

U K 

2 3 4 5 6 7 # 
F 

in "O 

/ /  /  ; ' / / /  /  /  y  /  '  y /  /  /  /  ;  /  

d = 3.0 in. for 0 is 45 or 90 degrees 
= 2.5 in. for 0 is zero degree 

Figure 3-6. Slot and measurement locations 
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Figure 3-7. Measured coherence function for an undamaged plate 

1. Estimated natural frequencies 

The natural frequencies of the tested plates were determined from 

the measured imaginary part of the FRF. As discussed in the Chapter 2, 

the frequencies at which the imaginary part of the FRF reaches its 

maximum values are the natural frequencies. Figure 3-8 is a typical 

plot of the measured imaginary part of the FRF. Figure 3-9 is a plot of 

the real part of the FRF for the same measurement. The real part of the 

FRF is used to further verify the natural frequencies. Recall that 

Eq. (2-5) shows that at the natural frequencies the imaginary part of 

the FRF reaches a maximum while the real part is zero. 
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Figure 3-8. Measured imaginary part of the FRF for a plate 
with a 3.0 in. slot at 45 degrees 
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Figure 3-9. Measured real part of the FRF for a plate with a 
3.0 in. slot at 45 degrees 
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2. Estimated modal shapes 

In the course of the experimental investigation, it was found that 

some of the natural frequencies changed considerably, while others had 

little change. Because some of the natural frequencies were close 

together, in some instances they changed numerical order for a damaged 

plate. In order to accurately determine changes in natural frequencies, 

it is necessary to identify each frequency by verifying the 

corresponding modal shape. The modal shape for each natural frequency 

was determined roughly from the phase of the FRF. As discussed in 

Chapter 2, the phase of the FRF is the difference between the phase of 

the input force and the phase of the response. The phase difference 

between two points on a structure indicates the relative direction of 

the motion of the two positions for that particular natural frequency. 

The phase at each natural frequency was determined from the phase 

display of the FRF. Figure 3-10 is a typical phase plot. The phase of 

the FRF was determined for the 12 points on the plate indicated in 

Fig. 3-6. 

C. Experimental Results 

The experimental results include the natural frequencies estimated 

from the measured FRF and the phase information for each damage 

condition. In this investigation, the useful frequency range of the 

impact force is from 0 to 1100 Hz. For the plates investigated, this 

range includes the first five natural frequencies. Tables 3-2 through 

3-4 contain experimentally determined estimated natural frequencies and 
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Figure 3-10. Frequency response function phase plot at measurement 
point No. 6 for 3.0 in. 45 degree slot 

Table 3-2 contains measured natural frequencies of the plate that 

has a horizontal slot. Table 3-3 contains the measured natural 

frequencies of the plate that has a 45 degree slot. Table 3-4 contains 

the measured natural frequencies for the plate that has a vertical slot. 
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Table 3-2. Measured natural frequencies of a plate with 
horizontal slot (Hz) 

without 2.0 in. 2.5 in. 3.0 in. 
frequency slot slot slot slot 

fl 344 319 318 308 
f2 630 640 636 632 
f3 754 707 669 605 
f4 1030 1028 1020 1004 
f5 1076 1090 1085 1069 

Table 3-3. Measured natural frequencies of a plate with 
45 degree slot (Hz) 

without 2.0 in. 2.5 in. 3.0 in. 
frequency slot slot slot slot 

fl 332 306 304 299 
f2 634 608 586 540 
f3 742 720 708 694 
f4 1022 962 942 916 
f5 1100 1066 1060 1058 
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Table 3-4. Measured natural frequencies of a 
plate with vertical slot (Hz) 

without 2.0 in. 2.5 in. 3.0 in. 
frequency slot slot slot slot 

fl 330 324 316 309 
f2 628 598 574 521 
f3 750 750 736 728 
f4 1020 1020 1020 976 
f5 1090 960 947 928 

Tables 3-5 and 3-6 contain the measured phases for the plate that 

has a vertical slot. 

Table 3-5. Measured FRF phases for an undamaged plate 
(in degrees) 

Points fl f2 f3 f4 f5 

1 99.3 -97.2 97.3 -114.1 72.6 
2 98.2 -92.3 93.1 -110.5 84.3 
3 96.9 -97.2 81.8 -114.5 -81.6 
4 96.0 0 75.8 0 -86.1 
5 99.2 84.3 63.5 65.7 -63.6 
6 101.2 85.9 65.2 71.0 75.8 
7 90.9 87.0 79.3 77.2 71.3 
A 101.8 -104.9 87.6 -105.7 70.1 
B 92.5 - 92.9 98.8 -118.5 77.6 
C 91.2 - 87.1 0 0 83.0 
D 82.1 -107.2 -129.7 78.7 66.2 
E 79.4 - 97.7 -110.2 75.9 0 
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Table 3-6. Measured FRF phases for a plate with a 3.0 in. 
vertical slot (in degrees) 

Points fl f2 f3 f4 f5 

1 84.7 -109.0 89.2 55.9 -92.7 
2 73.8 -112.3 94.7 50.4 -85.6 
3 70.7 - 99.9 93.6 -48.6 -87.7 
4 73.5 - 94.9 91.2 -60.3 -80.6 
5 71.3 84.4 88.9 -45.2 79.6 
6 77.3 86.1 94.7 74.9 79.7 
7 80.8 88.0 84.2 79.8 76.9 
A 84.9 - 93.9 83.5 48.5 -94.7 
B 85.8 - 97.7 97.4 67.9 -85.7 
C 70.8 - 96.2 81.3 72.3 -79.7 
D 74.7 -117.0 -85.4 78.0 91.8 
E 87.6 -107.0 -81.3 81.0 101.7 

D. Discussion 

Careful examination of the measured data reveals a number of 

interesting features. 

1. The variation of the natural frequencies of undamaged plates 

Three identical trapezoidal plates were used in the experiment. 

Theoretically, the natural frequencies should be the same for all three 

plates. However, the measured results show that the first five 

frequencies vary from one plate to another. Table 3-7 is a compilation 

of the measured natural frequencies from Tables 3-2 through 3-4 for the 

three undamaged plates. The last column shows the standard deviation as 

a percentage of the measured natural frequencies with respect to the 

mean. It shows that the lowest frequency has the largest deviation. 
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Table 3-7. Comparison of measured natural frequencies for 
three undamaged plates (Hz) 

frequency No. 1 No. 2 No. 3 Mean Deviation (%) 

fl 344 332 330 335 2 
f2 630 634 628 631 0.5 
f3 754 742 750 749 1 
f4 1030 1022 1020 1024 1 
f5 1076 1100 1090 1089 1 

There are several potential reasons for the deviation, including 

differences in the dimensions of the plates and measurement errors. The 

most significant reason is probably the tension caused by mounting the 

plate in the frame. Since the test plates are very thin, the assembling 

tension may cause changes in the natural frequencies. In order to 

reduce the effect of the assembling stress on the natural frequency, the 

measurements of undamaged and damaged plates were made under the same 

mounting conditions. That is, after the test plate was fixed in the 

frame, the natural frequencies for the undamaged plate were measured. 

Then, the slot was cut without dismounting the plate, and the 

frequencies for the slotted plate were measured. Thus, the influence of 

the mounting condition on the natural frequencies was minimized. The 

results that are contained in Table 3-7 suggest that the natural 

frequencies of the plate can be measured with a repeatability within 1 

to 2 percent. 
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2. Changes in the natural frequencies of the plate with a horizontal 

slot 

Table 3-8 summarizes the changes in measured natural frequencies 

for a plate with different length horizontal slots. The changes were 

calculated from data presented in Table 3-2. The relative changes, 

expressed as a percentage of the undamaged natural frequencies, are also 

listed. The results show that frequency f3 exhibits the largest 

relative change. Frequency fl also changes considerably, but the 

frequencies f2, f4, and f5 show no significant change. The data also 

indicate that f3 decreases rapidly with increasing slot length. 

Unexpected increases in natural frequencies f2 and f5 may be caused by 

the partial release of the assembling stress when a slot is cut, or by 

the measurement errors in the determination of natural frequency. 

Table 3-8. Changes in the natural frequencies of a 
plate with a horizontal slot 

without 2.0" slot 2.5" slot 3.0" slot 
slot in % in % in % 

ûfl 0 -25 -7 -26 -8 -36 -10 
Ûf2 0 10 2 6 1 2 < 1 
Af3 0 -47 -6 -85 -11 -149 -20 
6f4 0 -2 0 -10 -1 -26 - 3 
Af5 0 14 1 9 1 -7 - 1 
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3. Changes in the natural frequencies of the plate with a 45 

degree slot 

Table 3-9 summarizes the changes and relative changes in natural 

frequencies of a plate with different length 45 degree slots. The 

changes were calculated from data presented in Table 3-3. The data show 

that all five frequencies exhibit considerable change for this case. 

For the 2.0 and 2.5 inch slots, fl has the largest change. The second 

frequency, f2, also has a large change. The changes in the other 

frequencies are also significant. As slot length increases, the second 

natural frequency decreases rapidly, and for a 3.0 inch slot, f2 has the 

largest change. 

Table 3-9. Changes in the natural frequencies of a 
plate with a 45 degree slot 

without 2.0" slot 2.5" slot 3.0" slot 
slot in % in % in % 

ûfl 0 -26 -8 -29 -9 -33 -10 
ùfl 0 -26 -4 -48 -7 -92 -15 
Af3 0 -22 -3 -36 -5 -47 - 6 
Af4 0 -60 -6 -80 -8 -105 -10 
Af5 0 -44 -4 -50 -5 -55 -5 

4. Changes in the natural frequencies for the plate with a vertical 

slots 

Table 3-10 summarizes the changes and relative changes in measured 

natural frequencies of a plate with different length vertical slots. 

The changes were calculated from data presented in Table 3-4. The data 
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show that the second and fifth frequencies exhibit the largest changes. 

The first frequency also has considerable change, but frequencies three 

and four show little change. The data also show that the second 

frequency decreases more rapidly than fifth. 

Table 3-10. Changes in the natural frequencies of a 
plate with a vertical slot 

without 2.0" slot 2.5" slot 3.0" slot 
slot in % in % in % 

Afl 0 -6 - 2 -14 - 4 -21 - 6 
Ûf2 0 -30 - 5 -52 - 8 - 107 -17 
Af3 0 0 0 -14 - 2 -22 - 3 
Ûf4 0 0 0 0 0 -44 - 4 
6f5 0 -130 - 11 -143 -13 -162 -15 

5. Association of natural frequency and modal shape 

The modal shape corresponding to a natural frequency can be 

determined roughly from the measured phase information. For example, 

the modal shape of f4 for an undamaged plate can be estimated as 

follows. From Table 3-5, the measured phase indicates that points 1 

through 3 are moving out of phase with points 5 through 7, while points 

A and B are moving out of phase with points D and E. By using the 

symmetry of the structure, the modal shape of f4 can be estimated as 

sketched in Fig. 3-11, which is consistent with the modal shape given by 

Maruyama et al. [10]. 

This method is useful for finding the change in natural frequency. 
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By carefully comparing the last two columns of Tables 3-5 and 3-6, it 

vill be found that the modal shape of f4 for a 3.0" slot is similar to 

the modal shape of f5 for a plate with no slot. Thus, the fourth 

natural frequency of the plate with a 3.0 inch slot corresponds to the 

fifth natural frequency of the same plate without a slot. When 

calculating changes in natural frequency, it is important to associate 

natural frequencies with modal shape rather than numerical order. 

The experimental results indicate that the presence of a slot 

influences the natural frequencies of a plate in a measurable way. The 

results also suggest that the length and orientation of the slot have a 

significant effect on changes in natural frequency. The results 

presented in this chapter will be compared with numerical predictions 

obtained using a finite element model and discussed more extensively in 

the following chapter. 
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Figure 3-11. Estimated modal shape for an undamaged plate 
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IV. FINITE ELEMENT MODEL 

A. Introduction 

The natural frequencies and modal shapes of the tested plates can 

be predicted using the finite element method. The governing 

differential equation of motion for transverse vibrations of a thin 

isotropic plate is 

E is the Young's modulus, v is Poisson's ratio, p is the mass density, 

and h is the thickness of the plate (for further discussion of 

Eq. 4-1 see, for example, ref. 27). 

Equation (4-1) cannot be solved analytically for the natural 

frequencies and modal shapes for most boundary conditions. Thus, the 

finite element method is often used to estimate the natural frequencies 

and modal shapes. The usual finite element strategy is to determine the 

frequency and modal shape from the eigenvalue equation 

DV̂ w + ph3̂ w/3t̂  = 0 (4-1) 

where D is the flexural rigidity, defined by 

D = Eĥ /12(l-v̂ ) 

det ([K] - «?[M]) = 0 (4-2) 



58 

The stiffness matrix [K] is obtained from the strain energy expression 
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Finite element analysis is used in connection with this research 

for two reasons. One is to obtain independent estimates for the natural 

frequencies and modal shapes to compare with the experimental results. 

A numerical corroboration of the experimental results is desirable 

because there are a number of potential measurement errors. A second 

reason for using the finite element method is to facilitate parameter 

studies. In the experimental work, the slot width used is 5/64 inch, 

the smallest milling cut that can be made in the ERI workshop. In order 

to study the influence of a narrower slot on the natural frequency, a 

finite element analysis was carried out. There is no limitation on the 

slot width for a finite element model. The finite element model is more 

flexible than the experimental method, and it is also more efficient and 

convenient for parameter studies. 

In this research, the ADINA [28] package of finite element software 

was used to extract the natural frequencies and modal shapes for a 
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trapezoidal plate. The finite element model for an undamaged plate 

consisted of 335 3-node thin plate triangular elements spanning 195 

nodes. The total number of degrees of freedom for this model was 525. 

Figures 4-1 and 4-2 show the meshes for typical undamaged and damaged 

plates. 

Figure 4-1. Finite element mesh for an undamaged plate 
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Figure 4-2. Finite element mesh for a plate with a 2.0 in. by 
5/64 in. vertical slot 

The finite element analysis that was conducted in connection with 

this research can be divided into three phases. Phase 1 was a test of 

the finite element model by comparison of the finite element results 

with numerical and experimental results given by Maruyama et al. [10]. 

Phase 2 consisted of a comparison between finite element and 

experimental results obtained as part of this research. Finally, phase 

3 was a parameter study of the effect of slot width on natural 

frequency. The parameter study consisted of numerical estimates of 
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frequencies and modal shapes for four different slot widths. The 

results for each phase will be presented in the next section. The 

effects of the length, orientation, and width of the slot on natural 

frequencies will also be discussed. 

B. Finite Element Results and Discussion 

The finite element analysis was carried out on a NAS/9 main frame 

computer using the ADINA finite element package. Only the natural 

frequencies and modal shapes were calculated. 

1. Comparison of finite element results with Maruyama's results 

The finite element model was tested by comparing the finite element 

results with the numerical results given by Maruyama for an undamaged 

plate. In order to facilitate the comparison, the dimensions of the 

plate for this analysis were chosen to be exactly the same as 

Maruyama's. The first seven natural frequencies of a test plate were 

calculated using the ADINA package. Table 4-1 contains a comparison of 

the calculated natural frequencies with Maruyama's results. The 

comparison shows that the natural frequencies were slightly 

overestimated by the finite element model relative to Maruyama's 

numerical predictions, but the difference is at most 2%. The agreement 

between the two sets of results is good, and on this basis the finite 

element model is assumed to be reliable. 
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Table 4-1. Comparison of the natural frequencies of an 
undamaged plate vith Maruyama's numerical result 

frequency (Hz) 
h 2̂ 3̂ 4̂ 6̂ 4 

Finite element 
results 326 587 728 964 1004 1319 1387 
Maruyama's 
results 318 579 714 960 990 1315 1365 
Difference 
in % 2 1 2 1 1 1 2 

2. Comparison of calculated natural frequencies with experimental 

results 

The finite element model vas used to calculate the natural 

frequencies and modal shapes for each experimental case. The actual 

plate dimensions were used in this analysis, and the slot width for 

damaged plates was 5/64 inch. For each experimental case, a 

corresponding finite element analysis was carried out. 

As an initial check of the experimental results, a comparison was 

made between experimental and numerical results for undamaged plates. 

Table 4-2 contains the first five natural frequencies obtained by both 

methods. In this table, the mean of the measured natural frequencies 

for three plates was used as the experimental result. As shown by 

Table 4-2, there is a good agreement, with differences of 3% or less, 

between experimental and numerical results. 
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Table 4-2. Comparison between experimental and numerical results 
for natural frequencies of undamaged plates 

frequency experimental numerical difference 
results(H z) results(Hz) in Z 

f- 335 342 -2 
f, 631 617 3 
f, 749 765 -2 
ff 1024 1013 1 
f̂  1089 1055 3 

Table 4-3 contains the first five calculated natural frequencies 

for plates with horizontal slots, corresponding to the experimental 

results presented in Table 3-2. 

Table 4-3. Calculated natural frequencies of a plate 
with horizontal slot 

frequency(Hz) 2.0" slot 2.5" slot 3.0" slot 

f. 325 316 308 
f, 618 614 610 
f, 727 687 628 
ff 1017 1012 1000 
f̂  1045 1042 1030 
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Table 4-4 contains the first five calculated natural frequencies 

for plates with 45 degree slots, corresponding to experimental results 

presented in Table 3-3. 

Table 4-4. Calculated natural frequencies of a plate 
with 45 degree slot 

frequency(Hz) 2.0" slot 2.5" slot 3.0" slot 

f. 325 318 311 
f, 605 588 556 
f, 744 720 698 
ff 967 938 915 
fg 1033 1033 1025 

Table 4-5 contains the calculated natural frequencies for plates 

with vertical slots, corresponding to the experimental results presented 

in Table 3-4. 

Table 4-5. Calculated natural frequencies of a plate 
with vertical slot (Hz) 

frequency(Hz) 2.0" slot 2.5" slot 3.0" slot 

f. 329 324 316 
fi 599 576 517 
f, 659 757 725 
ff 1010 1003 946 
f̂  961 932 897 
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Tables 4-6 through 4-8 compare relative changes in the natural 

frequencies between the experimental and numerical results for plates 

with horizontal, 45 degree, and vertical slots, respectively. 

Table 4-6. Comparison of relative changes in the natural 
frequencies of a plate with a horizontal slot (%) 

2.0" slot 2. .5" slot 3.0" slot 

FEM̂  MTM̂  FEM MTM FEM MTM 

Afi/fi -5 -7 -8 -8 -10 -10 

Afg/fg 0 2 -1 1 - 1 0 

-5 -6 -10 -11 -18 -20 

Af/fA 0 0 -1 -1 -1 -3 

Afg/fg -1 1 -1 1 -3 -1 

F̂EM Finite Element Model. 
M̂TM Modal Testing Method. 

Table 4-7. Comparison of relative changes in the natural 
frequencies of a plate with a 45 degree slot (%) 

2.0" slot 2.5" slot 3.0" slot 
FEM MTM FEM MTM FEM MTM 

Afi/f̂  -5 -8 -7 -9 -10 -10 

-2 -4 -5 -8 -10 -15 

Af̂ /f, -3 -3 -6 -5 - 9 - 6 

-5 -6 -7 -8 -10 -10 

Af5/f5 -2 -4 -2 -5 -3 - 5 
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Table 4-8. Comparison of relative changes in the natural 
frequencies of a plate with a vertical slot (%) 

2.0" slot 2.5" slot 3.0" slot 
FEM MTM FEM MTM FEM MTM 

Mi/fi -4 -2 -5 -4 -8 -6 

Af/f, -3 -5 -6 -8 -16 -17 

Afg/f, -1 0 -1 -2 -5 -3 

0 0 -1 0 -7 -4 

Afc/f- -9 -11 -12 -13 -15 -15 
5 3 

The comparisons reveal that experimental and finite element results 

are in good agreement. In all but one case, the differences in the 

relative changes in natural frequencies are 3% or less. The conclusion 

is that both the natural frequencies measured by modal testing and 

predicted by the finite element method are reliable. The results also 

suggest that a near field microphone is a suitable response transducer 

for the experimental determination of natural frequencies. 

3. Effects of slot length on the changes in natural frequency 

Both the finite element estimates and the experimental results 

listed in Tables of 4-6 through 4-8 show that slot length has a 

significant influence on changes in natural frequency. Furthermore, the 

effects of slot length are not uniform for the five natural frequencies. 

Some of the natural frequencies are very sensitive to changes in slot 
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length, and some are relatively insensitive to changes in slot length. 

For example, the natural frequency fg decreases rapidly, with increasing 

slot length for the horizontal slot case. The decrease in f̂  goes from 

6% to 20%, as slot length increases from 2.0 to 3.0 inches. On the 

other hand,the relative changes in the natural frequency fĵ  are 

relatively insensitive to change in slot length. Similar behavior also 

occurs for other slot orientations. The results also indicate that in 

some cases higher natural frequencies are more sensitive to damage. 

4. Effects of slot orientation on the changes in natural frequency 

Three different slot orientations; horizontal, 45 degree, and 

vertical with respect to the base of the plate, were studied both 

experimentally and numerically. Relative changes in natural frequencies 

for each case were summarized in Tables 4-6 through 4-8. Table 4-9 

contains a comparison of relative changes in natural frequencies of 

plates with 2.5 by 5/64 inch slots for three orientations. The results 

show that the orientation of the slot has a significant effect on 

changes in natural frequency. For instance, the natural frequency fg 

exhibited a large change for a horizontal slot, but changed very little 

for an identical vertical slot. There was also a considerable change in 

fg for a 45 degree slot. Careful examination of the results revealed 

relationships among the orientation, modal shapes, and changes in 

natural frequencies of the plates. Parts (a) through (f) of Figure 4-3 

are sketches of the first five modal shapes of an undamaged plate that 

were obtained using the finite element method. In this figure the heavy 
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line represents the node line corresponding to the modal shape. The 

results reveal that when the slot is perpendicular to the node line of a 

modal shape, the natural frequency associated with the modal shape will 

have little change. On the other hand, if the slot coincides with the 

node line of a modal shape, the frequency corresponding to the modal 

shape will have a large reduction. When the slot is in a 45 degree 

direction with respect to the node line of a modal shape, the frequency 

may also have considerable change. 

Table 4-9. Comparison of relative changes in the natural 
frequencies for a 2.5 in. slot at three orientations 

horizontal 45 degree vertical 

Afl/fl -8 -7 -5 

Afg/f, -1 -5 -6 

Af̂ /f, -10 -6 -1 

-1 -7 -1 

Af5/f5 -1 -2 -12 

5. Effects of slot width on natural frequency 

In order to study the effect of slot width on the natural 

frequencies, four different slots having the same length and 

orientation, but different width, were simulated numerically. Centered, 

vertical slots were studied for 0.02, 0.05, 0.078, and 0.1719 inch slot 

widths. 
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Figure 4-3. The first five modal shapes of an undamaged plate 
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Table 4-10 contains the calculated natural frequencies for plates 

with four different slot widths. The results shown reveal that when the 

slot width increases by a factor of 9 from 0.02 to 0.1719 in., relative 

changes in the predicted natural frequencies are less than 1 percent. 

This is true for even the most sensitive frequency, fg. The results 

indicate that slot width has little effect on natural frequency for 

vertical slots, and it is assumed that similar results would be obtained 

for other slot orientations. 

Table 4-10. Calculated natural frequencies of four 
plates with different slot widths 

without width of slot (in. ) 
frequency slot 0.02 0.05 0.078 0.1719 

f. 342 329 329 329 330 
fo 617 602 600 599 596 

4 765 759 759 759 759 
1013 1011 1011 1010 1006 

4 1055 959 961 961 966 
f! 1386 1378 1378 1378 1377 

4 
1457 1428 1429 1429 1413 

6. Changes in modal shapes 

The modal shapes for each damaged plate were investigated 

numerically. Figures 4-4 (a) through (f) are sketches of the first five 

modal shapes of a plate with a 2.0 by 5/64 inch vertical slot. 

Figures 4-5 (a) through (f) are sketches of the modal shapes of a plate 

with a 3.0 by 5/64 inch 45 degree slot. Comparing Figs. 4-3, 4-4, and 
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4-5, reveals that the predicted modal shapes are almost unchanged for 

2.0 in. slot. For 3.0 a in. slot, the modal shapes also show little 

change. The presence of a centered slot appears to have little 

influence on the modal shapes, although it does affect the natural 

frequencies considerably. 
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Figure 4-4. The first five modal shapes of a plate with a 2.0 in. 
vertical slot 
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Figure 4-5. The sketch of modal shapes for plate with 
slot of 3.0" length at 45 degrees direction 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. Conclusions 

The objective of the research described in this dissertation was to 

investigate methods for the detection, location, and characterization of 

a flaw or damage in a structure or machine by modal analysis techniques. 

Damage considered in this work was restricted to narrow, rectangular 

slots in symmetric trapezoidal plates. Both modal testing and finite 

element methods were used to investigate changes in natural frequencies 

of a clamped trapezoidal plate for all combinations of three slot 

lengths and three slot orientations. In modal testing, an impulse 

hammer was used to excite the plate vibration, while a near field 

microphone was used to measure the response of the test plates. The 

finite element analysis was carried out using the ADINA finite element 

package. The changes in natural frequencies obtained by the two methods 

were in good agreement for all cases studied. Moreover, the numerical 

results agree well with Maruyama's work for an undamaged plate. The 

results suggest that impact vibrational analysis using a near field 

microphone as the response transducer can produce satisfactory 

experimental results. They also indicate that finite element analysis 

can be used to study the effects of damage on the change in natural 

frequencies. 

The results contain a number of interesting features concerning the 

detection, location, and characterization of existing damage or flaws. 

1. The presence of a slot can be detected from the shift in natural 
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frequency of the test structure or machine. Natural frequencies 

associated vith some higher modes were found to be more sensitive to 

the presence of a slot. 

2. Slot width has no significant effect on natural frequencies. 

3. Slot length has a significant effect on natural frequencies. The 

influence of slot length on natural frequencies is not uniform. 

Depending upon the orientation and location of the slot, some of the 

natural frequencies may exhibit substantial reduction while others 

may show little change. 

4. Slot orientation also has a significant effect on natural 

frequencies. The relative orientation of a nodal line with respect 

to the slot is an important parameter in determining the effect of a 

slot on natural frequency. 

5. The presence of a slot has little effect on the modal shapes, 

although it does influence the natural frequencies considerably. 

6. The presence of a slot can change the numerical order of natural 

frequencies associated with adjacent modes. 

All of the features listed are useful for characterizing the damage 

or flaw from the measured frequency change. They also indicate that the 

modal analysis technique is a potential method for macroscopic 

non-destructive evaluation. 
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B. Recommendations 

In the research reported here, all slot lengths investigated have 

been large compared to the plate thickness. Both experimental and 

numerical results suggest that it may be possible to detect a short 

slot. For detecting short slots, changes in higher frequencies need to 

be measured. The impact hammer used in this research may be too heavy 

to excite the higher frequency range. Other excitation methods such as 

swept-sine or limited bandwidth random excitation should be considered. 

The Zooming techniques may also be useful for improving resolution. 

Finite element analysis for small damage may involve refinement of 

the mesh. That may increase computer time considerably. This problem 

can be solved by using Eq. (1-1) to estimate the change in natural 

frequency, recalling that Eq. (1-1) connects the change in natural 

frequency to the change in stiffness from knowledge of the modal shapes 

and mass matrix for the undamaged structure. By means of Eq. (1-1), the 

change in natural frequency for a damaged structure can be estimated by 

reforming the stiffness matrix without repeating the computationally 

intensive dynamic analysis. 

Only rectangular slots were investigated in this research. In 

another preliminary investigation, a number of centered circular holes 

were simulated numerically. It was found that the changes in the first 

five natural frequencies were very small, about 2%, even for a 1.2 inch 

diameter hole. This result suggests that the shape of the damage may 

have considerable effect on the natural frequencies. Other types of 
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damage encountered in practice, including a variety shapes and 

combinations of shapes should be studied. 
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APPEKDIZ A. MEASURED FE2QUENCY RESPONSE FUNCTION 

Appendix A consists of two parts. Part A contains graphs of 

measured phase and magnitude of the frequency response function for 

plates with different horizontal slot lengths. Part B contains graphs 

of frequency response function measured at different points on a plate 

with a 2.5 by 5/64 in. vertical slot. 

A. Measured Frequency Response Function of Plate with Various 

Horizontal Slot Lengths 

Figures A-1 through A-4 show the measured phase and magnitude of 

the frequency response function for a plate without slot, and with a 2.0 

inch, 2.5 inch, and 3.0 inch slot, respectively. 

"200 : : 
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iii,. iB m 
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frequency (Hz) 

Figure A-1. Measured phase and magnitude of the frequency 
response function for an undamaged plate 
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Figure A-2. Measured phase and magnitude of the frequency response 
function for a plate with a 2.0 by 5/64 in. horizontal slot 
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Figure A-3. Measured phase and magnitude of the frequency response 
function for a plate with a 2.5 by 5/64 in. horizontal slot 
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frequency (Hz) 

Figure A-4. Measured phase and magnitude of the frequency response 
function for a plate with a 3.0 by 5/64 in. horizontal slot 

B. Frequency Response Function Measured at Different Points on a 

Plate with Vertical Slot 

Figures A-5 through A-11 show the frequency response function measured 

at points 1 through 7 of Fig. 3-6 for a plate with a 2.5 by 5/64 in. 

vertical slot. 
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Figure A-5. Phase and magnitude of frequency response function 
measured at point No. 1 
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Figure A-6. Phase and magnitude of frequency response function 
measured at point No. 2 
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Figure A-7. Phase and magnitude of frequency response function 
measured at point No. 3 
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Figure A-8. Phase and magnitude of frequency response function 
measured at point No. 4 
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Figure A-9. Phase and magnitude of frequency response function 
measured at point No. 5 
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Figure A-10. Phase and magnitude of frequency response function 
measured at point No. 6 
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Figure A-11. Phase and magnitude of frequency response function 
measured at point No. 7 
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APPENDIX B. INPUT DATA SAMPLE 

A. Input Data File 

Appendix B is a listing of a input data file and calculated natural 
frequencies using the finite element package ADINA. This data file is for 
a plate vith a 2.0 by 11/64 in. centered vertical slot. 

C*** ADINA INPUT DATA SAMPLE * 
C*** This is a input data list which shows the input format. * 
C*** This data file is for solving eigenvalue problem of a * 
C*** plate with 2.0 by 11/64 inch centered slot using three * 
C*** node plate element. The total nodal number is 213, and * 
C*** element number is 365. * 
C*** The following is the input data file. * 
C********************************************************************* 

C***The following is the HEADING card 
MODAL ANALYSIS OF PLATE WITH 2.0" BY 11/64 " VERTICAL SLOT 
C***The following is the master control card No. 1. 
C***For eigenvalue problem NSTE = 0, DT = TSTART = ANY positive 
C***number. 
213000001 1 1 0 1.0 1.0 1 

C***The following is master control card No. 2. JNPORT = 1 means 
C***that the porthole data file that is used for ADINA-plot is created. 

1 
C*** The following is master control card No. 3 which is for specifying 
C***the loadings, for this problem all parameters are zero. 

C***The following is mass and damping control card. IMASS = 1 means 
C***the lumped mass matrix is used. 

1 
C***The following is frequency solution control card. 

1 1 7 0 7 1 
C***The following is for time integration method. 

1 0 0.0 7 
C***The following input is for non-linear analysis. 

0 0 1 0 
C***Next card is the print-out control card. 

1 1 1 1 0  1  
C***The following card is for creating porthole data file used for 
C***ADINA-plot. 

I l l  1 0 0  
C***The following is the Block Definition Cards for print-out time 
C***step (see III-3). 

I l l  
C***The following card is Block Definition Cards for nodal 
C***quantities print out (see III-4). 

1 213 1 
C***The following two cards are for saving the response on porthole. 
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1 1 1  
1 1 1  

C***The following is time function control card, for eigenvalue 
C***problem (NSTE= 0), all the parameters are zero. 

C***The 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

following 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 

group 

0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 

s NODAL POINT DATA CARDS. 
1 1 1 1 -3.9375 0.0 0.0 

1 1 1 1 -3.87236 0.5 0.0 
1 1 1 1 -3.80722 1.0 0.0 

1 1 1 1 -3.74211 1.5 0.0 
1 1 1 1 -3.6118 2.5 0.0 

1 1 1 1 -3.54666 3.0 0.0 
1 1 1 1 -3.48152 3.5 0.0 
1 1 1 1 -3.41638 4.0 0.0 
1 1 1 1 -3.35124 4.5 0.0 
1 1 1 1 -3.28610 5.0 0.0 
1 1 1 1 -3.22095 5.50000 0.0 

1 1 1 1 -3.16667 5.91667 0.0 
1 1 1 1 -3.50 0.0 0.0 
0 0 0 1 -3.5 0.5 0.0 
0 0 0 1 -3.5 1.0 0.0 

1 1 1 1 -3.0 0.0 0.0 
0 0 0 1 -3.0 0.5 0.0 
0 0 0 1 -3.0 1.0 0.0 
0 0 0 1 -3.0 1.5 0.0 
0 0 0 1 -3.0 2.0 0.0 
0 0 0 1 -3.0 2.5 0.0 

0 0 0 1 -3.0 3.0 0.0 

0 0 0 1 -3.0 3.5 0.0 
0 0 0 1 -3.0 4.0 0.0 
0 0 0 1 -3.0 4.5 0.0 
1 1 1 1 -2.5 0.0 0.0 
0 0 0 1 -2.5 0.5 0.0 
0 0 0 1 -2.5 1.0 0.0 
0 0 0 1 -2.5 1.5 0.0 
0 0 0 1 -2.5 2.0 0.0 
0 0 0 1 -2.5 2.5 0.0 
0 0 0 1 -2.5 3.0 0.0 
0 0 0 1 -2.5 3.5 0.0 
0 0 0 1 -2,5 4.0 0.0 
0 0 0 1 -2.5 4.5 0.0 
0 0 0 1 -2.5 5.0 0.0 
0 0 0 1 -2.5 5.5 0.0 
1 1 1 1 -2.5 5.91667 0.0 
1 1 1 1 -2.0 0.0 0.0 
0 0 0 1 -2.0 0.5 0.0 
0 0 0 1 -2.0 1.0 0.0 
0 0 0 1 -2.0 1.5 0.0 
0 0 0 1 -2.0 2.0 0.0 
0 0 0 1 -2.0 2.5 0.0 
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151 
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160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
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G 0 0 0 G 1 3.0 0.5 0.0 

G 0 0 0 G 1 3.0 1.0 0.0 

G 0 0 0 G 1 3.0 1.5 O.G 

G 0 0 0 G 1 3.0 2.0 0.0 
G 0 0 0 G 1 3.0 2.5 0.0 
G 0 0 0 G 1 3.0 3.0 0.0 
G 0 0 0 G 1 3.0 3.5 0.0 

G G 0 0 G 1 3.0 4.0 0.0 

G 0 0 0 G 1 3.0 4.5 0.0 

1 1 1 1 1 1 3.50 0.0 0.0 
G 0 0 0 G 1 3.5 0.5 0.0 

G 0 0 0 G 1 3.5 1.0 0.0 
1 1 1 1 1 1 3.9375 0.0 0,0 
1 1 1 1 1 1 3.87236 0.5 0.0 
1 1 1 1 1 1 3.80722 1.0 0.0 
1 1 1 1 1 1 3.74211 1.5 0.0 

1 1 1 1 1 1 3.67694 2.0 0.0 

1 1 1 1 1 1 3.6118 2.5 0.0 

1 1 1 1 1 1 3.54666 3.0 0.0 
1 1 1 1 1 1 3.48152 3.5 0.0 

1 1 1 1 1 1 3.41638 4.0 0.0 
1 1 1 1 1 1 3.35124 4.5 0.0 

1 1 1 1 1 1 3.28610 5.0 0.0 

1 1 1 1 1 1 3.22095 5.5G000 0.0 

1 1 1 1 1 1 3.16667 5.91667 0.0 
G 0 0 0 G 1 -1.0 2.0 0.0 
G 0 0 0 G 1 -1.0 2.5 0.0 

G G 0 0 0 1 -1.0 3.0 0.0 

G 0 0 0 0 1 -1.0 3.5 0.0 
G 0 0 • 0 G 1 -1.0 4.0 0.0 
G G 0 0 G 1 -0.5 2.0 0.0 
G 0 0 0 0 1 -0.5 2.5 0.0 
G 0 0 0 0 1 -0.5 3.0 O.G 
G G 0 0 G 1 -0.5 3.5 0.0 
G 0 0 0 G 1 -0.5 4.0 0.0 
G 0 0 0 G 1 -0.085938 2.0 0.0 
G 0 0 0 0 1 -0.085938 2.5 0.0 
G 0 0 0 0 1 -0.085938 3.0 O.G 
G G 0 0 G 1 -0.085938 3.5 0.0 
G 0 0 0 G 1 -0.085938 4.0 0.0 
G 0 0 0 0 1 0.5 2.0 0.0 
G G 0 0 G 1 0.5 2.5 O.G 
G 0 0 0 0 1 0.5 3.0 O.G 
G 0 0 0 0 1 0.5 3.5 0.0 
G 0 G 0 0 1 0.5 4.0 0.0 

G 0 0 0 0 1 1.0 2.0 O.G 
G 0 0 0 0 1 1.0 2.5 O.G 
G 0 0 0 0 1 1.0 3.0 O.G 
G 0 0 0 0 1 1.0 3.5 0.0 
G 0 0 0 0 1 1.0 4.0 0.0 
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195 0 0 0 0 0 1 0.0 4.15 0.0 
196 0 0 0 0 0 1 0.0 1.85 0.0 
197 0 0 0 0 0 1 -0.2 1.7 0.0 

198 0 0 0 0 0 1 0.2 1.7 0.0 

199 0 0 0 0 0 1 -0.2 2.0 0.0 

200 0 0 0 0 0 1 0.0859375 2.0 0.0 

201 0 0 0 0 0 1 0.0859375 2.5 0.0 

202 0 0 0 0 0 1 0.0859375 3.0 0.0 
203 0 0 0 0 0 1 0.0859375 3.5 0.0 
204 0 0 0 0 0 1 0.0859375 4.0 0.0 
205 0 0 0 0 0 1 0.2 2.0 0.0 

206 0 0 0 0 0 1 -0.2 2.2 0.0 
207 0 0 0 0 0 1 0.2 2.2 0.0 
208 0 0 0 0 0 1 -0.2 3.8 0.0 
209 0 0 0 0 0 1 0.2 3.8 0.0 
210 0 0 0 0 0 1 -0.2 4.0 0.0 

211 0 0 0 0 0 1 0.2 4.0 0.0 

212 0 0 0 0 0 1 -0.2 4.2 0.0 

213 0 0 0 0 0 1 0.2 4.2 0.0 
C***The following is initial condi ion control card 

C***The following is element group control card. 
6 365 0 1 

C***The following two cards are the material property data. 
1 0.0002588 

data cards. 
10.6E06 0.325 

C***The following group is the element 
1 4 2 
1 1 1 0.0397 
1 13 2 
2 1 1 0.0397 
2 13 14 
3 1 1 0.0397 
2 14 3 
4 1 1 0.0397 
3 14 15 
5 1 1 0.0397 
3 15 4 
6 1 1 0.0397 
13 16 14 
7 1 1 0.0397 
14 16 17 
8 1 1 0.0397 
14 17 15 
9 1 1 0.0397 
15 17 18 
10 1 1 0.0397 
15 18 19 
11 1 1 0.0397 
4 15 19 



12 
4 
13 
4 
14 
5 
15 
5 
16 

6 
17 

6 
18 
7 
19 
7 

20 
8 
21 

8 
22 
9 
23 
9 
24 
10 
25 
10 
26 
10 
27 
11 
28 
12 
29 
16 
30 
17 
31 
17 
32 
18 
33 
18 
34 
19 
35 
19 
36 
20 

1 1 0.0397 
19 20 
1 1 0.0397 
20 5 
1 1 0.0397 
20 21 
1 1 0.0397 
21 6 
1 1 0.0397 
21 22 
1 1 0.0397 
22 7 
1 1 0.0397 
22 23 
1 1 0.0397 
23 8 
1 1 0.0397 
23 24 
1 1 0.0397 
24 9 
1 1 0.0397 
24 25 
1 1 0.0397 
25 10 
1 1 0.0397 
25 36 
1 1 0.0397 
36 37 
1 1 0.0397 
37 11 
1 1 0.0397 
37 12 
1 1 0.0397 
37 38 
1 1 0.0397 
26 17 
1 1 0.0397 
26 27 
1 1 0.0397 
27 18 
1 1 0.0397 
27 28 
1 1 0.0397 
28 19 
1 1 0.0397 
28 29 
1 1 0.0397 
29 20 
1 1 0.0397 
29 30 



37 
20 
38 
21 
39 
21 
40 
22 
41 
22 
42 
23 
43 
23 
44 
24 
45 
24 
46 
25 
47 
25 
48 
26 
49 
27 
50 
27 
51 
28 
52 
28 
53 
29 
54 
29 
55 
30 
56 
30 
57 
31 
58 
31 
59 

1 1 0.0397 

30 
1 

21 
1 0.0397 

30 
1 

31 
1 0.0397 

31 
1 

22 
1 0.0397 

31 
1 

32 
1 0.0397 

32 
1 

23 
1 0.0397 

32 
1 

33 
1 0.0397 

33 
1 

24 
1 0.0397 

33 
1 

34 
1 0.0397 

34 
1 

25 
1 0.0397 

34 
1 

35 
1 0.0397 

35 
1 

36 
1 0.0397 

39 
1 

27 
1 0.0397 

39 
1 

40 
1 0.0397 

40 
1 

28 
1 0.0397 

40 
1 

41 
1 0.0397 

41 
1 

29 
1 0.0397 

41 
1 

42 
1 0.0397 

42 
1 

30 
1 0.0397 

42 
1 

43 
1 0,0397 

43 
1 

31 
1 0.0397 

43 
1 

44 
1 0.0397 

44 
1 

32 
1 0.0397 

44 
1 

45 
1 0.0397 

45 
1 

33 
1 0.0397 

45 46 



65 
35 
66 
35 
67 
36 
68 
36 
69 
37 
70 
37 
71 
38 
72 
39 
73 
40 
74 
40 
75 
41 
76 
41 
77 
42 
78 
42 
79 
43 
80 
43 
81 
44 
82 
44 
83 
45 
84 
45 
85 
46 
86 
46 

1 1 0.0397 
46 34 
1 1 0.0397 
46 47 
1 1 0.0397 
47 35 
1 1 0.0397 
47 48 
1 1 0.0397 
48 36 
1 1 0-0397 
48 49 
1 1 0.0397 
49 37 
1 1 0.0397 
49 50 
1 1 0.0397 
50 38 
1 1 0.0397 
50 51 
1 1 0.0397 
52 40 
1 1 0.0397 
52 53 
1 1 0.0397 
53 41 
1 1 0.0397 
53 54 
1 1 0.0397 
54 42 
1 1 0.0397 
54 55 
1 1 0.0397 
55 43 
1 1 0.0397 
55 56 
1 1 0.0397 
56 44 
1 1 0.0397 
56 57 
1 1 0.0397 
57 45 
1 1 0.0397 
57 58 
1 1 0.0397 
58 46 
1 1 0.0397 
58 59 
1 1 0.0397 
59 47 



91 
49 
92 
49 
93 
50 
94 
50 
95 
51 
96 
52 
97 
53 
98 
53 
99 
54 

100 
54 

101 
55 
102 
61 
103 

62 
104 
62 
105 
63 
106 
63 
107 
64 
108 
65 
109 

66 
110 

66 
111 
67 

98 

1 1 0.0397 
59 60 
1 1 0.0397 
60 48 
1 1 0.0397 
60 61 
1 1 0.0397 
61 49 
1 1 0.0397 
61 62 
1 1 0.0397 
62 50 
1 1 0.0397 
62 63 
1 1 0.0397 
63 51 
1 1 0.0397 
63 64 
1 1 0.0397 
65 53 
1 1 0.0397 
65 66 
1 1 0.0397 
66 54 
1 1 0.0397 
66 67 
1 1 0.0397 
67 55 
1 1 0.0397 
67 68 
1 1 0.0397 
69 62 
1 1 0.0397 
69 70 
1 1 0.0397 
70 63 
1 1 0.0397 
70 71 
1 1 0.0397 
71 64 
1 1 0.0397 
71 72 
1 1 0.0397 
73 66 
1 1 0.0397 
73 74 
1 1 0.0397 
74 67 
1 1 0.0397 
74 75 



112 
67 
113 
68 
114 
69 
115 
70 

116 
70 
117 
71 

118 
72 
119 
72 

120 
73 
121 
74 
122 
75 
123 
75 
124 
76 
125 
76 
126 
78 
127 
78 
128 
79 
129 
79 
130 

80 
131 

80 
132 
81 
133 

82 
134 

82 
135 
83 
136 
83 

1 1 0.0397 
75 
1 

68 
1 0.0397 

75 
1 

76 
1 0.0397 

77 
1 

70 
1 0.0397 

77 
1 

78 
1 0.0397 

78 
1 

71 
1 0.0397 

78 
1 

79 
1 0.0397 

71 
1 

79 
1 0.0397 

79 
1 

80 
1 0.0397 

81 
1 

74 
1 0.0397 

81 
1 

82 
1 0.0397 

74 
1 

82 
1 0.0397 

82 
1 

83 
1 0.0397 

75 
1 

83 
1 0.0397 

83 
1 

84 
1 0.0397 

77 
1 

85 
1 0.0397 

85 
1 

86 
1 0.0397 

78 
1 

86 
1 0.0397 

86 
1 

87 
1 0.0397 

79 
1 

87 
1 0.0397 

87 
1 

88 
1 0.0397 

89 
1 

90 
1 0.0397 

81 
1 

90 
1 0.0397 

90 
1 

91 
1 0.0397 

82 
1 

91 
1 0.0397 

91 92 



137 
84 
138 
85 
139 

86 
140 

86 
141 
87 
142 
87 
143 

88 
144 
89 
145 
90 
146 
90 
147 
91 
148 
91 
149 
92 
150 
93 
151 
94 
152 
94 
153 
95 
154 
95 
155 
96 
156 
97 
157 
98 
158 
98 
159 
99 

160 
99 

161 

1 1 0.0397 
83 
1 

92 
1 0.0397 

93 
1 

94 
1 0.0397 

85 
1 

94 
1 0.0397 

94 
1 

95 
1 0.0397 

86 
1 

95 
1 0.0397 

95 
1 

96 
1 0.0397 

87 
1 

96 
1 0.0397 

97 
1 

58 
1 0.0397 

89 
1 

98 
1 0.0397 

98 
1 

99 
1 0.0397 

90 
1 

99 
1 0.0397 

99 
1 

100 
1 0.0397 

91 
1 

100 
1 0.0397 

101 
1 

102 
1 0.0397 

93 
1 

102 
1 0.0397 

102 
1 

103 
1 0.0397 

94 
1 

103 
1 0.0397 

103 
1 

104 
1 0.0397 

95 
1 

104 
1 0.0397 

105 
1 

106 
1 0.0397 

97 
1 

106 
1 0.0397 

106 
1 

107 
1 0.0397 

98 
1 

107 
1 0.0397 

107 
1 

108 
1 0.0397 

99 108 



162 
101 
163 
101 
164 
102 
165 
102 
166 
103 
167 
104 
168 
105 
169 
106 
170 
106 
171 
107 
172 
107 
173 
108 
174 
108 
175 
109 
176 
109 
177 
110 
178 
110 
179 
111 
180 
111 
181 
112 
182 
112 
183 
113 
184 
113 
185 
114 
186 

1 1 0.0397 
114 
1 

115 
1 0.0397 

115 
1 

102 
1 0.0397 

115 
1 

116 
1 0.0397 

116 
1 

103 
1 0.0397 

116 
1 

117 
1 0.0397 

103 
1 

117 
1 0.0397 

118 
1 

119 
1 0.0397 

105 
1 

119 
1 0.0397 

119 
1 

120 
1 0.0397 

106 
1 

120 
1 0.0397 

120 
1 

121 
1 0.0397 

107 
1 

121 
1 0.0397 

121 
1 

122 
1 0.0397 

108 
1 

122 
1 0.0397 

122 
1 

123 
1 0.0397 

109 
1 

123 
1 0.0397 

123 
1 

124 
1 0.0397 

110 
1 

124 
1 0.0397 

124 
1 

125 
1 0.0397 

111 
1 

125 
1 0.0397 

125 
1 

126 
1 0.0397 

112 
1 

126 
1 0.0397 

126 
1 

127 
1 0.0397 

113 
1 

127 
1 0-0397 

127 128 



115 
188 
115 
189 
116 
190 
116 
191 
117 
192 
118 
193 
119 
194 
119 
195 
120 
196 
120 
197 
121 
198 
121 
199 
122 
200 
122 
201 
123 
202 
123 
203 
124 
204 
124 
205 
125 
206 
125 
207 
126 
208 
126 
209 
127 
210 
127 
211 
128 

1 1 0.0397 
114 
1 

128 
1 - 0.0397 

128 
1 

129 
1 0.0397 

115 
1 

129 
1 0.0397 

129 
1 

130 
1 0.0397 

116 
1 

130 
1 0.0397 

131 
1 

132 
1 0.0397 

118 
1 

132 
1 0.0397 

132 133 
1 1 0.0397 

119 
1 

133 
1 0.0397 

133 
1 

134 
1 0.0397 

120 
1 

134 
1 0.0397 

134 
1 

135 
1 0.0397 

121 
1 

135 
1 0.0397 

135 
1 

136 
1 0.0397 

122 
1 

136 
1 0.0397 

136 
1 

137 
1 0.0397 

123 
1 

137 
1 0.0397 

137 
1 

138 
1 0.0397 

124 
1 

138 
1 0.0397 

138 
1 

139 
1 0.0397 

125 
1 

139 
1 0.0397 

139 
1 

140 
1 0.0397 

126 
1 

140 
1 0.0397 

140 
1 

141 
1 0.0397 

127 141 



212 1 1 
128 141 142 
213 1 1 
129 128 142 
214 1 1 
129 142 143 
215 1 1 
130 129 143 
216 1 1 
131 144 145 
217 1 1 
132 131 145 
218 1 1 
132 145 146 
219 1 1 
133 132 146 
220 1 1 
133 146 147 
221 1 1 
134 133 147 
222 1 1 
134 147 148 
223 1 1 
135 134 148 
224 1 1 
135 148 149 
225 1 1 
136 135 149 
226 1 1 
136 149 150 
227 1 1 
137 136 150 
228 1 1 
137 150 151 
229 1 1 
138 137 151 
230 1 1 
138 151 152 
231 1 1 
139 138 152 
232 1 1 
139 152 153 
233 1 1 
140 139 153 
234 1 1 
141 140 153 
235 1 1 
141 153 167 
236 1 1 
141 167 142 

103 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 

0.0397 



237 
142 
238 
142 
239 
143 
240 
144 
241 
145 
242 
145 
243 
146 
244 
147 
245 
154 
246 
155 
247 
155 
248 
156 
249 
156 
250 
147 
251 
147 
252 
148 
253 
148 
254 
149 
255 
149 
256 
149 
257 
150 
258 
151 
259 
151 

104 

1 1 0.0397 

167 
1 

168 
1 0.0397 

168 
1 

169 
1 0.0397 

142 
1 

169 
1 0.0397 

154 
1 

155 
1 0.0397 

144 
1 

155 
1 0.0397 

155 
1 

156 
1 0.0397 

145 
1 

156 
1 0.0397 

146 
1 

156 
1 0.0397 

157 
1 

158 
1 0.0397 

154 
1 

158 
1 0.0397 

158 
1 

159 
1 0.0397 

155 
1 

159 
1 0.0397 

159 
1 

160 
1 0.0397 

156 
1 

160 
1 0.0397 

160 
1 

161 
1 0.0397 

147 
1 

161 
1 0.0397 

161 
1 

162 
1 0.0397 

148 
1 

162 
1 0.0397 

162 
1 

163 
1 0.0397 

163 
1 

150 
1 0.0397 

163 
1 

164 
1 0.0397 

150 
1 

164 
1 0.0397 

164 
1 

165 
1 0.0397 

151 
1 

165 
1 0.0397 

165 166 



55 
265 
56 

266 
56 
267 
56 

268 
57 
269 
58 
270 
58 
271 
59 
272 
59 
273 

60 
274 
69 
275 
61 
276 

68 
277 
170 
278 
170 
279 
171 
280 
171 
281 
172 
282 
172 
283 
173 
284 
179 
285 
174 
286 
77 

1 1 0.0397 
152 
1 

166 
1 0.0397 

166 
1 

167 
1 0.0397 

68 
1 

170 
1 0.0397 

55 
1 

170 
1 0.0397 

170 
1 

171 
1 0.0397 

57 
1 

171 
1 0.0397 

171 
1 

172 
1 0.0397 

57 
1 

172 
1 0.0397 

172 
1 

173 
1 0.0397 

58 
1 

173 
1 0.0397 

173 
1 

174 
1 0.0397 

59 
1 

174 
1 0.0397 

60 
1 

174 
1 0.0397 

60 
1 

69 
1 0.0397 

76 
1 

175 
1 0.0397 

68 
1 

175 
1 0.0397 

175 
1 

176 
1 0.0397 

170 
1 

176 
1 0.0397 

176 
1 

177 
1 0.0397 

171 
1 

177 
1 0.0397 

177 
1 

178 
1 0.0397 

172 
1 

178 
1 0.0397 

173 
1 

178 
1 0.0397 

173 
1 

179 
1 0.0397 

174 179 



287 
69 

288 
76 
289 
175 
290 
175 
291 
176 
292 
176 
293 
177 
294 
183 
295 
178 
296 
208 
297 
179 
298 
77 
299 
77 
300 
198 
301 
205 
302 
207 
303 
201 
304 
202 
305 
202 
306 
203 
307 
203 
308 
209 
309 
209 

1 1 0.0397 
174 
1 

77 
1 0.0397 

197 
1 

175 
1 0.0397 

197 
1 

199 
1 0.0397 

206 
1 

176 
1 0.0397 

206 
1 

181 
1 0.0397 

181 
1 

182 
1 0.0397 

176 
1 

182 
1 0.0397 

177 
1 

182 
1 0.0397 

177 
1 

183 
1 0.0397 

178 
1 

183 
1 0.0397 

178 
1 

208 
1 0.0397 

179 
1 

212 
1 0.0397 

212 
1 

85 
1 0.0397 

92 
1 

185 
1 0.0397 

198 
1 

185 
1 0.0397 

185 
1 

186 
1 0.0397 

207 
1 

186 
1 0.0397 

201 
1 

186 
1 0.0397 

186 
1 

187 
1 0.0397 

202 
1 

187 
1 0.0397 

187 
1 

188 
1 0.0397 

203 
1 

188 
1 0.0397 

188 
1 

189 
1 0.0397 

189 
1 

93 
1 0.0397 

213 93 



314 
186 
315 
186 
316 
187 
317 
187 
318 
188 
319 
188 
320 
189 
321 
189 
322 
93 
323 
93 
324 
100 
325 
190 
326 
191 
327 
191 
328 
192 
329 
192 
330 
192 
331 
193 
332 
194 
333 
194 
334 
101 
335 
101 
336 
76 

1 1 0.0397 
100 185 
1 1 0.0397 

100 190 
1 0.0397 

185 190 
1 1 0.0397 

190 191 
1 1 0.0397 

186 191 
1 1 0.0397 

191 192 
1 1 0.0397 

187 192 
1 1 0.0397 

192 193 
1 1 0.0397 

188 193 
1 1 0.0397 

193 194 
1 1 0.0397 

189 194 
1 1 0.0397 

194 101 
1 1 0.0397 

108 190 
1 1 0.0397 

108 109 
1 1 0.0397 

190 109 
1 1 0.0397 

109 110 
1 1 0.0397 

191 110 
1 1 0.0397 

110 111 
1 1 0.0397 

111 193 
1 1 0.0397 

111 112 
1 1 0.0397 

193 112 
1 1 0.0397 

112 113 
1 1 0.0397 

194 113 
1 1 0.0397 

113 114 
1 1 0.0397 
84 197 



337 
84 
338 
197 
339 
196 
340 
199 
341 
205 
342 
180 
343 
180 
344 
200 
345 
206 
346 
206 
347 
180 
348 
201 
349 
207 
350 
207 
351 
208 
352 
204 
353 
179 
354 
210 
355 
204 
356 
209 
357 
179 
358 
212 
359 
212 
360 
184 
361 
204 

108 

1 1 0.0397 

92 
1 

198 
1 0.0397 

84 
1 

196 
1 0.0397 

84 
1 

198 
1 0.0397 

197 
1 

196 
1 0.0397 

196 
1 

198 
1 0.0397 

199 
1 

196 
1 0.0397 

196 
1 

200 
1 0.0397 

196 
1 

205 
1 0.0397 

175 
1 

199 
1 0.0397 

199 
1 

180 
1 0.0397 

181 
1 

206 
1 0.0397 

200 
1 

207 
1 0.0397 

200 
1 

205 
1 0.0397 

205 
1 

185 
1 0.0397 

183 
1 

184 
1 0.0397 

203 
1 

209 
1 0.0397 

208 
1 

210 
1 0.0397 

208 
1 

184 
1 0.0397 

209 
1 

211 
1 0.0397 

189 
1 

211 
1 0.0397 

210 
1 

212 
1 0.0397 

210 
1 

184 
1 0.0397 

184 
1 

195 
1 0.0397 

204 
1 

195 
1 0.0397 

213 195 



109 

362 1 1 0.0397 
204 213 195 
363 1 1 0.0397 
213 211 189 
364 1 1 0.0397 
85 212 195 
365 1 1 0.0397 
85 195 213 

C***The last input data is the frequency calculation card. 
C*** All the parameter are zero for this problem. 

STOP 

B. The Calculated Natural Frequencies 

FREQUENCIES 

FREQUENCY NUMBER FREQUENCY (RAD/SEC) FREQUENCY (CYCLES/SEC) 
1 
2 
3 
4 
5 
6 
7 

0.2075E+04 
0.3742E+04 
0.4767E+04 
0.6068E+04 
0.6322E+04 
0.8652E+04 
0.8878E+04 

0.3302E+03 
0.5955E+03 
0.7588E+03 
0.9658E+03 
0.1006E+04 
0.1377E+04 
0.1413E+04 


