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ABSTRACT 

          During the spraying seasons of 2014 and 2015, wind velocity and solar radiation 

(2014 only) were collected at a one meter height above the ground to simulate conditions 

affecting droplets near a ground-based spray boom. This instrumentation was placed in 

a cross pattern with sensors at the four cardinal directions (north, south, east, and west) 

with a fifth sensor in the center (2015 only). Data were collected at 10 Hz to measure the 

turbulent properties of the wind near the ground.  

          Measurements of wind velocity profiles moving from upwind sensors to downwind 

sensors were used to evaluate correlation between the wind measurements. Two periods 

in which wind direction, on average, was collinear with multiple sensors were investigated. 

The first period contained five hours of data in which the average wind speed was 3.6 m/s 

(8 mi/h), while the second period contained 1.5 hours of data with an average wind speed 

of 1.5 m/s (3.4 mi/h). For the five hour dataset, correlation coefficients of 0.29 and 0.27 

were found for wind direction and wind speed measured at two sensors respectively. This 

value fell when the five hours were broken up into multiple one minute periods. The 

correlation coefficients rose from less than 0.03 to greater than 0.14 once a lag term was 

introduced to the data. These results were not observed in the 1.5 hour dataset. Over the 

1.5 hour period, the correlation coefficients were found to be less than 0.03. The 

introduction of a lag term had no clear effect.  

          The entirety of the datasets that were collected in 2014 and 2015 were investigated 

to see under what conditions large wind change events were more likely to occur. The 

datasets suggest that low wind speeds lead to higher probability of large wind changes. 

As solar radiation increased so did the probability of large changes in wind. As a tolerance 
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on the wind shift was tightened, the probability of wind changes became uniform.  

          In models that predict spray drift, a popular method to simulate turbulent wind 

conditions in which the droplet is entrained, is to update the current wind velocities with a 

random process to achieve new wind velocities. This type of process is known as a 

random walk. The random walk hypothesis was tested using data collected at 10 Hz, and 

the average of the collected data to simulate data recorded at 0.5 s, 1 s, 5 s, 10 s, 30 s, 

1 min, 5 min, and 10 min. For all tests below five minute averages, the test rejected the 

hypothesis that wind velocity updates can be independent of previous measurements at 

greater than 95% confidence. Indicating that updates to the current wind velocity is 

dependent on previous velocities.  

          To help reduce the chances of spray drift, prediction models were developed and 

tested to predict wind direction 30 seconds into the future utilizing current and past 

measurements. The models tested included a kernel filter that is used for prediction of 

wind speeds for wind turbines, an autoregressive process (AR), a full ARIMA process, 

and a hybrid model that includes ideas from ARIMA and Taylor series expansions. The 

listed models were tested against a “No Model” model in which the predicted value was 

simply the current observed value. Models were trained over a one hour dataset and 

tested over a four hour data set. The AR and hybrid models lowered the RMS error value 

by 9% over the “No Model” model. The AR and hybrid models were outside of a 20 degree 

tolerance about 12% of the time. 

          The correlation values between an upwind and downwind sensors indicate that little 

correlation exists. Along with the predictive models yielding limited results indicate that 

the wind changes rather randomly. However, results from testing the time series against 
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the random walk hypothesis indicate that wind’s random fluctuations are correlated with 

one another, but these correlations are not seen using linear correlations. Further effort 

is needed to better model the wind process. 
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CHAPTER 1. INTRODUCTION 

          Agricultural sprayers are used to provide agricultural chemicals that protect and 

improve crop plant health. As agricultural chemicals improved, so have yields (Stone, 

2008). While these chemicals may protect and/or keep the crop plant healthy, they may 

be detrimental to adjacent crops or other forms of life by the off target spray drift. The 

Environmental Protection Agency (EPA) defines spray drift as; “the physical movement 

of pesticide through air at the time of application or soon thereafter, to any site other than 

that intended for application” (EPA, 2014). The EPA has set rules and regulations to which 

chemical manufacturers must adhere, i.e. the manufacturer must pass several risk 

assessments, such as aggregate risks, cumulative risks, and occupational risks (EPA, 

2015). It is then up to the applicator to adhere to the manufacturer’s label when spraying. 

Not doing so results in fines, lawsuits, and suspensions. It is in the applicator’s best 

interest to understand what factors contribute most to spray drift.   

          Many factors affect how spray droplets are transported over a field surface such as 

topography of the surrounding land, current weather conditions (Nuyttens, et al., 2006; 

Stull, 2009), size droplet distribution, nozzle pressure, and the height that the droplets are 

released (Nordby & Skuterud, 1974; Smith, et al., 1982; Spray Drift Task Force, 1997). 

To mitigate spray drift, models are available that predict the movement of the droplet 

across the field. Popular models include Gaussian diffusion, plume, regression, random 

walk, and computational fluid dynamics (Baetens, et al., 2007; Frederic, et al., 2009; 

Holterman, et al., 1997; Teske, et al., 2002; Thompson & Ley, 1983; Zhu, et al., 1995). 

These models all have differing degrees of accuracy that depend on model assumptions 

and ability to measure or estimate parameters. An example is the plume model that has 
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poor performance at distances close to the nozzle but does agree with observations, once 

the plume of droplets has propagated some distance away from the point of release 

(Craig, 2004). 

Regression Models  

          Regression models are statistical models developed from the data collected in the 

field or in a wind tunnel (Smith, et al., 1982). Smith developed regression models in which 

95% and 99% of the spray was deposited as a function of multiple variables, such as 

horizontal wind velocity, nozzle height, nozzle tilt angle, and droplet kinetic energy. 

Smith’s regression models produced high coefficients of determination, ranging from 

65.6% to 90.2%. Regression can be very accurate when similar weather and operational 

conditions are present. If current conditions are not similar to when the model was 

developed, estimates/interpolation can be done to relate the current conditions to the 

conditions present during model development. However, accuracy can be limited when 

conditions fall outside of those associated with the original dataset. 

Plume Models 

          Plume models approximate spray drift by treating individual droplets as a cloud of 

gas that follow Gaussian diffusion principles. Plume models were first introduced to 

describe air pollutants from factories in the 1930’s (Bosanquet & Pearson, 1936). Plume 

models perform well for aerial applications and can also be used for ground sprayers. 

Models can predict spray drift up to 10 km away, but since models do not take into account 

conditions at the sprayer, they are not suitable for short range prediction (Kruckeberg, 

2011). 
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Random Walk Models 

          Random walk models were first introduced when the botanist Brown described his 

Brownian Motion (Brown, 1828). From this beginning, random walk models have spread 

to multiple disciplines in biology, chemistry, physics, and economics (Codling, et al., 

2008). A simple example of a one-dimension random walk is to stand in a hallway and 

flip a coin. If heads take a step forward, else take a step back. Random walks are used 

commonly for ground sprayers and track individual droplets until the water within the 

droplet completely evaporates or the droplet is deposited. A random walk model only 

incorporates a droplets’ current conditions to update the droplets’ position and speed. 

These droplets are tracked in a Lagrangian manner (meaning the droplets position and 

velocity are tracked) along short time steps in which physical phenomenon (gravity, air 

resistance, evaporation, etc.) act upon the droplet plus an additional statistical property 

that introduces random fluctuations. Random walks begin to be no longer useful when 

the time step is large and when there is high turbulence. The random walk model has 

been used to develop both AgDRIFT and DRIFTSIM (Teske, et al., 2002; Zhu, et al., 

1995) which are commonly used models to predict or estimate spray drift. 

          Though the random walk model has been in use for some time, a method to test if 

a time series past values play no role in the updating process, by the variance of the 

series, was not available until the late 1980’s (Charles & Darné, 2009; Lo & MacKinlay, 

1988). Before this approach, time series models had to be simulated and compared to 

the original dataset (Lo & MacKinlay, 1988). The variance ratio test is a statistical test that 

has been prominently used in finance to test if financial markets could be predicted, 

specifically if current knowledge of the market can be useful to predict future changes. 
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The model is especially well-crafted to test whether a process is mean reverting, (if the 

process steps away from the mean path, it will eventually return to the mean path). Lo’s 

and MacKinlay’s (1988) variance ratio test can be used for both homoscedastic (the error 

terms are identically and independently distributed (the error terms come from the same 

distribution with same mean and variance)) and heteroscedastic (the error terms are 

independently distributed).  

Computational Fluid Dynamics (CFD)     

          CFD models make use of the physical mathematical description of a droplet and 

the fluid in which it is entrained and integrates the first principle equations describing the 

two phase flow numerically. Examples of equations used are the Navier-Stokes equations 

and the Reynolds-averaged Navier-Stokes equations. These models can be very 

accurate dependent upon model assumptions, and the method used to solve the 

differential equation (Baetens, et al., 2007; Burden & Faires, 2011; Griffiths & Higham, 

2010; Haberman, 2013). A computational problem exists when solving the equations at 

very high precisions. As the grid spacing is reduced, computational time increases. The 

integration time steps and spatial gridding must be small to insure all interactions are 

calculated properly. This can lead to a very high computational burden leading to long 

simulation times. To get around this challenge, simplifications of the mathematical 

description of the droplet/fluid can be made to simplify the computational complexity of 

the solver (Stull, 2009). A popular method used to simplify the integration step, is to use 

Forward Euler integration (Baetens, et al., 2007). To see how this affects the simulation, 

a popular program used to solve ordinary differential equations (ODE) is MATLAB 

(MathWorks). MATLAB’s default ODE solver is “ode45” (MathWorks, 2015) which uses 
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the Dormand-Prince Runge-Kutta method (Griffiths & Higham, 2010). This method must 

evaluate the function(s) being integrated at least six times per step, whereas the Forward 

Euler method only evaluates the function once per step. This could reduce the 

computation time by a factor of six at the cost of more error being introduced.  

Wind Turbulence Updating 

          Models that incorporate wind velocities do so either by collecting data at a single 

location and using its value throughout the simulation (Frederic, et al., 2009; Tsai, et al., 

2005), or an averaged wind velocity is given random disturbances to simulate the 

turbulent nature of wind (Holterman, et al., 1997). These recordings are also done at 

intervals much greater than what the simulations use, (simulation at sub-second time 

steps using data recorded once per minute). This can introduce more error for the 

simulation. Little data currently exists that accurately represents what a droplet would 

experience at boom height (one-meter above the ground) and at sub-second sample 

times.  

Prediction Methods  

          There is potential to use sprayer models and on-board computers on the sprayer, 

to perform simulations in real-time, and estimate spray drift potential. This gives the 

machine the means to mitigate spray drift (Brown, et al., 2004; Craig, 2004; Kruckeberg, 

2011).  The models listed have varying degrees of accuracy, but all rely on knowledge of 

current conditions. A sudden and unforeseen shift in wind velocity may defeat this 

strategy of reducing spray drift, if the shift occurs after the droplet has left the nozzle. 

However, if wind velocities could be predicted to some degree into the future from the 

time of droplet release, real-time predictive methods could be used to reduce spray drift 
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with a low probability of drift into sensitive areas.  

         Prediction methods are currently being used in the wind power industry to provide 

energy companies estimates of total power output. These methods are not directly 

transferrable to agricultural sprayers, because the prediction methods predict hours into 

the future (Giebel, 2003). For use in agriculture, prediction times less than one minute are 

desirable. One of the popular methods in the wind power industry is the Nadaraya-Watson 

kernel-weighted average (Chan, et al., 2010). This statistical method is used due to its 

ability to accept multiple inputs, such as wind speed, wind direction, solar radiation, 

pressure, and humidity, to predict the future wind velocity. Another time dependent model 

that is implemented in wind industries is the Autoregressive Integrated Moving Average 

(ARIMA) (Giebel, 2003). ARIMA suffers from the same flaws as a regression model, in 

that similar conditions for the model calibration and prediction are a tacit assumption of 

the ARIMA model. Wind velocity prediction using a Taylor series expansion, of wind 

direction, would not require similar conditions; however, the Taylor series technique 

requires an understanding of how the derivatives of wind velocity behave.            

Research Objectives 

          Understandings of how wind behaves/interacts near an agricultural field surface 

over short time periods is limited, nor are the turbulent properties of wind well understood. 

This knowledge gap provided the motivation to pursue the following research objectives: 

 Understand changes in transient wind velocity (direction and speed) at a 

typical ground sprayer boom height off the field surface, 

 Evaluate under what conditions wind may be most likely to have a 

significant velocity change or be more turbulent, 



7 
 

 

 Evaluate the randomness of measured transient wind velocity changes for 

use in random walk models as applied to ground sprayers, and 

 Determine the probability of a significant wind direction change up to 30 

seconds into the future that impacts unforeseen spray drift in ground based 

sprayers 

Thesis organization 

          Chapter Two describes some of the mathematical background for the methods 

used in the subsequent chapters. Specifically, variable interpolation methods are 

described, as is criteria for interpolation method viability. The development of 

ARIMA/ARIMAX models are outlined, starting with autoregressive and moving average 

methods, showing how they are complementary to each other. Finally, the Quasi-

Newton’s Method for unconstrained optimization is introduced by first sketching Newton’s 

Method for finding a zero of a function with one variable. It is then shown the transition 

from finding the zero of a function to finding the maxima/minima of a function, and then 

how the method operates with multiple variables (higher dimensions).  

          Chapter Three which describes research focusing on the experimental design in 

which wind velocity measurements were acquired in an agricultural field at boom heights. 

Also included are investigations into the relationship between wind measured at an 

upwind sensor and a downwind sensor, and if the wind speed can indicate the amount of 

turbulence present. The chapter also describes the process that was used to investigate 

under what conditions wind changes may occur. Chapter Four describes the tests of 

whether wind velocity measurements have the statistical properties associated with a 

random walk. The random walk model is tested at time intervals ranging from 0.1 seconds 
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to 10 minutes to see how time steps affect the Random Walk Hypothesis. In Chapter Five, 

multiple prediction models are developed and tested. These models are compared 

against the default case in which the prediction value is simply the last recorded value. 

Chapter Six contains the overall conclusions of the thesis, along with recommendations 

for future research.   
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CHAPTER 2. MATHEMATICAL CONCEPTS 

Interpolation 

          Interpolation is extensively used throughout the data analysis, and multiple methods 

are available to accomplish this task. Interpolation was needed for sensor synchronization 

and to create fixed time steps between observed values. The methods listed will 

interpolate the data set 𝑌(𝑥) which is the image of 𝑋, where 𝑋 is contained in the interval 

[a,b], which mathematically can be represented as: 

(𝑋 ∈ [𝑎, 𝑏] ∈ 𝑅 = (𝑎 = 𝑥0, 𝑥1, … , 𝑥𝑛−1, 𝑥𝑛 = 𝑏)). 𝑋 will contain as many points needed to 

carry out the interpolation method. For the research in this thesis, 𝑋 represents time and 

𝑌 is a wind property, such as wind direction and wind speed. There are several 

interpolation methods including Linear, PCHIP, and the Cubic Spline which are described 

in the following sections.   

Linear Interpolation  

          Linear Interpolation takes the form: 

 𝑌𝑖𝑛𝑡(𝑥) = 𝑚(𝑥 − 𝑥0) + 𝑏 (1) 

where  

 𝑥0 is the x-axis value from the set 𝑋, 

 𝑥 is any value contained in the interval [𝑥0, 𝑥1], 

 𝑚 is the slope between the points (𝑥0, 𝑦𝑜) and (𝑥1, 𝑦1), and 

 𝑏 is the y-intercept 

Linear interpolation’s constraint is that at the two endpoints, (𝑥0 and 𝑥1), the interpolation 

must be equal to the y-values 𝑦0 and 𝑦1 respectively, (𝑌𝑖𝑛𝑡(𝑥0) = 𝑌(𝑥0) and 𝑌𝑖𝑛𝑡(𝑥1) =
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𝑌(𝑥1)). This constraint makes the method zeroth order continuous, 𝐶0, indicating that the 

interpolant is continuous but not the interpolant’s derivatives (MathWorks, 2015). 

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)  

          PCHIP is a higher order method compared to linear interpolation. PCHIP 

interpolates between the points 𝑥0 and 𝑥1, same as linear interpolation, and requires at 

least two points with both 𝑌-values and the first derivative of 𝑌, ((𝑥0, 𝑦0), (𝑥0, 𝑦0
′ ), (𝑥1, 𝑦1), 

and (𝑥1, 𝑦1
′ )), or four points, so the derivatives can be calculated numerically using forward 

and backward differences, ((𝑥−1, 𝑦−1), (𝑥0, 𝑦0), (𝑥1, 𝑦1), and (𝑥2, 𝑦2)) to solve the equation: 

 𝑌𝑖𝑛𝑡 = 𝑎 + 𝑏(𝑥 − 𝑥0) + 𝑐(𝑥 − 𝑥0)2 + 𝑑(𝑥 − 𝑥0)3 (2) 

Since information of the derivatives are available, PCHIP obtains 𝐶1,(the interpolation and 

its derivative is continuous, but not necessarily its further derivatives), making it a 

smoother approximation than linear interpolation at the cost of being slightly more 

complicated (Burden & Faires, 2011; MathWorks, 2015).  

Cubic Spline Interpolation  

          Cubic spline interpolation produces a smoother interpolant than PCHIP, with both 

continuous first and second derivatives making it 𝐶2 (the interpolation, the interpolant’s 

derivative and its second derivative are continuous but not necessarily its further 

derivatives are continuous). Unlike linear and PCHIP interpolants, cubic splines use all of 

the data (i.e., the entire range) supplied to produce the interpolation function (the Cubic 

Spline does not interpolate between only two values, like linear and PCHIP interpolation, 

but it interpolates every point at the same time).  Cubic splines have the same form as 

PCHIP (Equation 2) but includes the extra requirement of continuous second derivatives. 

Calculating the cubic spline interpolation function involves solving a tridiagonal system of 
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linear equations. Because of increased complexity, cubic spline interpolation is more 

costly in terms of computer resources and computer time than PCHIP or linear methods. 

The cubic spline interpolant does not have quite enough information to compute a unique 

interpolant. The interpolant must be supplied two extra conditions supplied by the user. 

Popular methods used to supply the last two conditions (that are user assumed) are the 

Natural Spline which assumes that the second derivatives at the beginning and end of 

the data set are zero (𝑑2𝑌𝑖𝑛𝑡(𝑎) = 𝑑2𝑌𝑖𝑛𝑡(𝑏) = 0), the Clamped Spline which sets the 

values of the first derivative at the beginning and end of the data set (𝑑𝑌𝑖𝑛𝑡(𝑎) =

𝑐, 𝑑𝑌𝑖𝑛𝑡(𝑏) = 𝑑), and the Not-a-Knot Spline (function is continuous at 𝑑3𝑌𝑖𝑛𝑡(𝑥1) and 

𝑑3𝑌𝑖𝑛𝑡(𝑥𝑛−1)). This relationship assumes that the points 𝑥1and 𝑥𝑛−1 are not true points in 

the data set. Since a cubic polynomial’s third derivative is a constant, there is no break in 

the spline in these locations. Cubic splines produce a smoother function of interpolated 

values, however there are limitations.  Use of a cubic spline, assumes the second 

derivative of the data is continuous. Ideally, the third derivative needs to be bounded so 

that the error of the interpolating function can also be bounded (Burden & Faires, 2011; 

MathWorks, 2015).  

Example using different interpolation methods 

          The function, 𝑌(𝑥) = sin(𝑥) 𝑒𝑥 , as an example, is interpolated from 15 points in the 

interval [0,2] using four different interpolation methods (Linear, PCHIP, Clamped Cubic 

Spline and Not-a-Knot Cubic Spline Interpolants). Figure(1a) shows the function values 

and the sampled data points that the methods used for interpolation. The interpolants are 

not show in a figure because they lie on top of each other and are difficult to separate. 

The function is infinitely differentiable (derivatives of all orders) and thus all methods can 
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be used and the Not-a-Knot end conditions for the cubic spline are applicable. 

          Figure(1b) shows the error associated using each method with respect to the true 

function value. Linear interpolation yields the worst error. PCHIP yields a better 

approximation than the clamped cubic spline, while the Not-a-Knot yielded the least error. 

In this case, the clamped spline did poorly due to the numerical method used to calculate 

the derivative. As higher order methods to calculate the derivatives are used, better 

approximations can be made (Figure 2a and 2b). In figure 2b, it is shown that if the user 

knows the true derivatives at the end points, the clamped spline yields the best 

approximation. However, the user may not know these values. In these cases it is advised 

to use the Not-a-Knot method, if it can be assumed that the data being interpolated is 𝐶2. 

ARIMA/ARIMAX 

          In statistics, time dependent variables cannot use the same tools that are used for 

time independent variables because the currently observed value is often dependent on 

past values. Two popular methods that are used to analyze time dependent variables 

include the autoregressive and moving average functions. An autoregressive function 

takes a linear combination of constant coefficients multiplied by past observed values and 

a random white noise error term, to give an estimate of the next value (Equation 3). 

 𝑌𝑡+1 = 𝜙0𝑌𝑡 + 𝜙1𝑌𝑡−1 + ⋯ + 𝜙𝑛𝑌𝑡−𝑛 + 𝜖𝑡 (3) 
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Figure 1: a) The function that is being interpolated and showing which points will be used for 
interpolation, b) the error of multiple interpolations 
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Figure 2: a) Comparison of first, second, and third order methods to find derivatives at the end 
points for use in clamped splines b) comparison of a third order method to find the derivative at 

the endpoints, and the true derivative at the endpoints for use in clamped splines versus the Not-
a-Knot end conditions  
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A moving average uses the mean of a process and adds additional white noise error 

terms to predict the next value (Equation 4).  The white noise error terms (𝜃𝑘𝜖𝑘) are the 

product of a constant coefficient (𝜃𝑘) and the random error in predictions of a series of 

terms in the immediate past.   

 𝑌𝑡 = 𝛿 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑛𝜖𝑡−𝑛 (4) 

Combining equations 3 and 4, an ARMA(P,Q) (Autoregressive Moving Average) model is 

formed (Equation 5). 

  

(1 − ∑ 𝜙𝑘𝐿𝑘

𝑃

𝑘=1

) 𝑌𝑡 = 𝛿 + (1 + ∑ 𝜃𝑘𝐿𝑘

𝑄

𝑘=1

) 𝜖𝑡 (5) 

where 

 P and Q are the number of autoregressive and moving average coefficients, 

 𝐿𝑛 is the nth order lag operator (𝐿𝑛𝑌𝑡 ≡ 𝑌𝑡−𝑛), 

 𝛿   is the drift term, 

 𝜖𝑡  is the time varying error term, 

 𝜙𝑘 are coefficients for previous observed data points for which it must be solved, 

and 

 𝜃𝑘 are coefficients for previous error terms for which it must be solved, 

          There are times when the time series cannot be modeled as is and the time series 

difference is needed to be taken, giving the Autoregressive Integrated Moving Average 

(ARIMA(p,d,q)) model (Equation 6). This differencing function can be thought of taking 

𝑑𝑡ℎ derivative of the time series. 
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(1 − ∑ 𝜙𝑘𝐿𝑘

𝑝

𝑘=1

) (1 − 𝐿)𝑑𝑌𝑡 = 𝛿 + (1 + ∑ 𝜃𝑘𝐿𝑘

𝑞

𝑘=1

) 𝜖𝑡 (6) 

where 

 𝑌𝑡 is the time varying data, 

 𝐿𝑛 is the nth order lag operator (𝐿𝑛𝑌𝑡 ≡ 𝑌𝑡−𝑛), 

 𝛿   is the drift term, 

 𝜖𝑡  is the time varying error term, 

 𝜙𝑘 are coefficients for previous observed data points for which it must be solved, 

 𝜃𝑘 are coefficients for previous error terms for which it must be solved, 

 𝑝   is the number of autoregressive terms, 

 𝑞   is the number of moving average terms, and 

 𝑑 is the number of times the difference of the data is taken 

ARMA(P,Q) models can be made from ARIMA(p,d,q) if the d in ARIMA is set to zero. 

Some examples of ARIMA(p,d,q), (that is an ARIMA model utilizing p autoregressive 

terms, d differencing terms, and q moving average terms), models include the 

Random Walk with drift (ARIMA(0,1,0)) 

 

(1 − ∑ 𝜙𝑘𝐿𝑘

0

𝑘=1

) (1 − 𝐿)1𝑌𝑡 = 𝛿 + (1 + ∑ 𝜃𝑘𝐿𝑘

0

𝑘=1

) 𝜖𝑡 

(1 − 0)(1 − 𝐿)𝑌𝑡 = 𝛿 + (1 + 0)𝜖𝑡 

𝑌𝑡 = 𝛿 + 𝐿𝑌𝑡 + 𝜖𝑡 

𝑌𝑡 = 𝛿 + 𝑌𝑡−1 + 𝜖𝑡 

(7) 
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ARIMA(1,0,1) 

 

(1 − ∑ 𝜙𝑘𝐿𝑘

1

𝑘=1

) (1 − 𝐿)0𝑌𝑡 = 𝛿 + (1 + ∑ 𝜃𝑘𝐿𝑘

1

𝑘=1

) 𝜖𝑡 

(1 − 𝜙1𝐿)𝑌𝑡 = 𝛿 + (1 + 𝜃1𝐿)𝜖𝑡 

𝑌𝑡 = 𝛿 + 𝜙1𝐿𝑌𝑡 + 𝜃1𝐿𝜖𝑡 + 𝜖𝑡 

𝑌𝑡 = 𝛿 + 𝜙1𝑌𝑡−1 + 𝜃1𝜖𝑡−1 + 𝜖𝑡 

(8) 

          In practice, the autoregressive, moving average, and drift coefficients are found by 

maximizing the log-likelihood function instead of minimizing the error norm. By 

maximizing the log-likelihood function using a training dataset, statistical properties of the 

coefficients can be found, including a t-statistic that represents if a certain coefficient is 

needed or not. The log-likelihood is maximized using the Quasi-Newton’s Method. The 

ARIMA(p,d,q) model can incorporate other terms to create an ARIMAX model (Equation 

9).  

 

(1 − ∑ 𝜙𝑘𝐿𝑘

𝑝

𝑘=1

) (1 − 𝐿)𝑑𝑌𝑡 = 𝛿 + (1 + ∑ 𝜃𝑘𝐿𝑘

𝑞

𝑘=1

) 𝜖𝑡 + 𝛼0𝑋0 + ⋯ + 𝛼𝑛𝑋𝑛 (9) 

This allows additional terms outside of the time series to be accounted for in the prediction 

of the next value in the time series (MathWorks, 2015). For example, utilizing an ARIMAX 

model for wind direction (𝑊𝑑) could incorporate current wind speed (𝑊𝑠) (Equation 10). 

 

(1 − ∑ 𝜙𝑘𝐿𝑘

𝑝

𝑘=1

) (1 − 𝐿)𝑑𝑊𝑑𝑡
= 𝛿 + (1 + ∑ 𝜃𝑘𝐿𝑘

𝑞

𝑘=1

) 𝜖𝑡 + 𝛼0𝑊𝑠𝑡
 (10) 
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Quasi-Newton Method: Unconstrained Optimization 

          When solving for a variable, there are times in which no closed solution can be 

reached. An example of such an equation is: 

 cos(𝑥) = 𝑥3 (11) 

In which the exact solution cannot be found. Such solutions can be found through the use 

of non-linear solvers, in particular, Newton’s Method. Newton’s Method searches for a 

function’s zero, this implies that equation 11 will need to be altered to equation 12. 

 cos(𝑥) = 𝐺(𝑥), 𝑥3 = 𝐻(𝑥) 

𝐹(𝑥) = 𝐺(𝑥) − 𝐻(𝑥) = 0 

(12) 

The method’s procedure consists of the following steps: 

1. Guess an initial x-value (𝑥0) close to where 𝐹(𝑥) = 0 

2. Compute the tangent line at this point (𝐹′(𝑥0)) 

3. Update the solution (Equation 13) 

 
𝑥1 = 𝑥0 −

𝐹(𝑥0)

𝐹′(𝑥0)
 (13) 

4. Repeat until zero is found 

Equation 13 is derived from solving for a linear function to find the x-intercepts: 

 𝑦 = 𝑚(𝑥 − 𝑥0) + 𝑏 

𝑚 = 𝐹′(𝑥0), 𝑏 = 𝐹(𝑥0) 

0 = 𝐹′(𝑥0)(𝑥1 − 𝑥0) + 𝐹(𝑥0) 

𝑥1 = 𝑥0 −
𝐹(𝑥0)

𝐹′(𝑥0)
 

(14) 
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          Using Newton’s Method to find the x-value that satisfies equation 11, the method 

is repeated five times to find that 𝑥 ≈ 0.865474033101614, which is correct to 15 decimal 

places. 

Finding a local minimum or maximum is finding where a functions first derivative equals 

zero. In the case of this thesis, the function that is being minimized is the RMS-error 

between a model and the observed data. These models utilize multiple constant 

coefficients (the variables of the model) that must be solved for. Newton’s Method can 

now be applied on the first derivative of the function (Equation 15). 

 
𝑥𝑛+1 = 𝑥𝑛 −

𝐹′(𝑥𝑛)

𝐹′′(𝑥𝑛)
 (15) 

This can easily be altered to allow for multiple variable functions. The process shown in 

Equation 14 is altered to allow vectors of first derivative functions (Equation 16). 

 0 = �⃑�′′(𝑥𝑛)(𝑥𝑛+1 − 𝑥𝑛) + �⃑�′(𝑥𝑛) 

− (�⃑�′′(𝑥𝑛))
−1

�⃑�′(𝑥𝑛) = 𝑥𝑛+1 − 𝑥𝑛 

𝑥𝑛+1 = 𝑥𝑛 − (�⃑�′′(𝑥𝑛))
−1

�⃑�′(𝑥𝑛) 

𝑥𝑛+1 = 𝑥𝑛 − 𝐻(𝑥𝑛)−1𝐽(𝑥𝑛) 

(16) 

The vector of first derivatives is called a Jacobian (𝐽(𝑥𝑛)) and the matrix of second 

derivatives is called the Hessian (𝐻(𝑥𝑛)). For Newton’s Method to succeed, the Jacobian 

vector and Hessian matrix must be calculated for every iteration.  

          When the Jacobian and Hessian are not supplied, they are estimated using 

numerical approximations. Newton’s Method is called the Quasi-Newton’s Method when 

numerical derivatives are used. The methods used for finding these numerical 

derivatives are, in practice, limited to first and second order methods, i.e. forward, 
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backward, or central methods. This is done to reduce computational time. At times, 

computing numerical Hessians becomes too costly and iterative methods are needed 

(Burden & Faires, 2011; MathWorks, 2015).     
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Abstract 

          Agricultural spray drift is affected by many factors including current weather 

conditions, topography of the surrounding area, fluid properties at the nozzle, and the 

height at which the spray is released. During the late spring/summer spray seasons of 

2014 and 2015, wind direction, speed, and solar radiation (2014 only) were measured at 

10 Hz. Instrumentation was placed at a one meter height above the ground to simulate 

conditions affecting droplets near a spray boom. Measurements of wind velocity as wind 

moved from an upwind sensor to a downwind sensor were used to evaluate under what 

conditions wind may be most likely to have a significant direction or speed change 

affecting droplet trajectory. 

          Linear correlations coefficients between the upwind and downwind sensors during 

a five hour period with 3.6 m/s (8 mi/h) mean wind speed were 0.29 for wind direction and 

0.27 for wind speed. During a 1.5 hour period with 1.5 m/s (3.4 mi/h) mean wind speed, 

linear correlation coefficients fell to less than 0.03. Over one-minute time periods, 

correlation coefficients between upwind and downwind sensors were less than 0.03. The 

introduction of a lag value increased correlation coefficient for the data set with greater 

wind speed.   
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          For the dataset with greater wind speed, over a 5 hour period, the probability that 

wind direction at the downwind sensor would be greater than 20 degrees different from 

the upwind sensor was 30%, and probability of greater than 1 m/s, (one quarter of the 

mean speed), different than the upwind sensor was 50% of the time. For the dataset with 

lesser wind speed, over a 1.5 hour period, probability of a reading of greater than 20 

degrees different at the downwind sensor was 65%, and probability of a reading of greater 

than 0.25 m/s, (one quarter of the mean speed), was 80%.  

          Using data across of a range of dates, changes in wind direction of exceeding 25 

degrees occurred most frequently at wind speeds less than 3 m/s (6.7 mi/h), rather than 

at higher wind speeds. As the day progressed and/or as the solar radiation increased, so 

did the chances of a wind change. 

Keywords. sprayers, spray drift, data collection, wind effects, turbulence, simulation 

parameters  
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Introduction 

          Agricultural sprayers are used to provide agricultural chemicals that protect and 

improve crop plant health. However, off-site drift of these chemicals can be detrimental 

to adjacent crops or other forms of life. Many factors affect spray drift ranging from the 

topography of the land, current weather conditions, size droplet distrobution, and the 

height at which the droplets are released. The EPA defines spray drift as follows, 

“Pesticide spray drift is the physical movement of a pesticide through air at the time of 

application or soon thereafter, to any site other than that intended for application” (EPA, 

2014). Spray technology includes capabilities to mitigate spray drift by affecting droplet 

size for wind conditions (Nordby & Skuterud, 1974; Smith, et al., 1982). Boom height, air 

temperature, relative humidity, droplet size, droplet release pressure, air pressure, and 

wind conditions are just some of the factors that control spray drift with droplet size being 

the biggest contributing factor (Spray Drift Task Force, 1997). The sprayer can control 

only some of these factors  Instrumentation placed on a sprayer may be used to control 

droplet size dependent upon current weather conditions giving extra control over spray 

drift, but this strategy may be defeated by unforeseen changes in wind direction or speed 

after the droplet has left the nozzle.    

          To better understand how spray drift propagates down wind, simulation models 

have been developed. Popular methods include Lagrangian, Gaussian, Random Walk, 

Regression, and CFD models (Holterman, et al., 1997; Baetens, et al., 2007; Teske, et 

al., 2002; Tsai, et al., 2005; Frederic, et al., 2009; Smith, et al., 1982).  Through the use 

of such models, applicators gain knowledge of when drift potential is high and can adjust 

buffer zones to minimize the risk for spray drift (Craig, 2004; Brown, et al., 2004). Attention 
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is given to the development and progression of the droplets, but less attention is devoted 

to the random nature of weather surrounding the droplet, such as the distribution of wind 

speed and direction with which the droplet interacts. The models include wind turbulence 

interactions by either using real data collected at one physical location that is used for the 

entire range of the simulation (Tsai, et al., 2005; Frederic, et al., 2009), or by using the 

averaged wind velocity and updating the velocity at every time step with a random 

fluctuation to simulate the turbulent nature of wind (Holterman, et al., 1997). 

          Previous research has attempted to incorporate the random nature of wind speed 

and wind direction, but little work was found seeking to characterize the wind conditions 

that a droplet experiences from release to deposition. Data recorded for short-term wind 

velocity changes near the ground’s surface are needed to better understand their effects 

on spray droplet trajectories. 

Objectives 

          The objective of this research was to: 

 Understand changes in transient wind velocity (direction and speed) at a typical 

ground sprayer boom height off the field surface, and 

 Evaluate under what conditions wind may be most likely to have a significant 

velocity change or be more turbulent 

Methods and Materials 

Experimental Design and Apparatus  

          Field measurements of wind speed and direction were collected during the late 

spring/summer spraying season of 2014 and throughout the 2015 season using 
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instrumentation set into a field of growing oats. The fields were located at the Iowa State 

University Research Farm’s Bruner Farm fields F1 and F3 (respectively for 2014 and 

2015) near Ames, Iowa (Figure 3). The field dimensions were 268 m long (north to south) 

by 105 m wide (east to west) (880 by 348 ft) for field F1 and 107 m long by 201 m wide 

(350 by 660 ft).  

 

Figure 3: Bruner Farm field F1 (Northern most, 2014) and F3 (Southern most, 2015) (42.014911 N 
93.731241 W) (Google, 2015) 
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          Wind speed and solar radiation measurements were acquired at 10 samples per 

second using ultrasonic anemometers (model: WindMaster 3d, Gill Instruments, 

Lymington, Hampshire, UK) and a pyranometer (model: SP-212, Apogee Instruments, 

Logan, UT). The anemometers measured the wind speed in the north-south, east-west, 

and vertical directions (Figure 4). Open source microcontrollers equipped with a GPS 

module (model: Arduino Uno, Arduino Inc; Ultimate GPS Shield, Adafruit, New York, 

USA) were used to log data to micro SD data cards. Using the GPS’s PPS (Pulse per 

Second) output, time correction was able to be done to ensure ok time synchronization 

of the wind velocity measurements among the microcontrollers. To reduce influences to 

wind speed, the microcontrollers and power supplies were located separate from the 

anemometers at a distance of approximately 2-3 meters away. Sensors were placed in a 

cross pattern with 15.2 m (50 ft) spacing from a center point (Figure 5). Sensor 5 was 

only used for the 2015 season. Anemometers were placed one meter above the ground’s 

surface to collect wind measurements. The pyranometer was placed on the west most 

sensor’s (Sensor 1) charging station near the anemometer.   

 

Figure 4: Ultrasonic Anemometer measuring velocity in U, V, and W component directions 
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Figure 5: Sensor Positioning 

Data Analysis   

          Wind speed was converted to wind direction using trigonometric relationships. A 

wraparound method was used to produce a semi-continuous wind direction data set. 

Wraparound refers to the convention of allowing the wind direction to go above 359 

degrees and below 0 degrees, i.e. 12 degrees = 372 degrees.  

          Because of small amounts of drift in the actual recording time of wind velocity at 

each sensor location, a form of interpolation was used to estimate wind velocity at points 

between 10 Hz collection times. This need comes from the data recorders not staying 

exactly in sync with one another. MATLAB (Version 8.3 (R2014a), MathWorks), used for 

analysis in this project, offered many different schemes for interpolation ranging from 

discontinuous to second derivative continuity (𝐶2). MATLAB’s cubic spline offered the 
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smoothest fit to the data, however the assumption that wind speed and direction have 

continuous first and second derivatives cannot be confirmed. For this reason MATLAB’s 

pchip (Piecewise Cubic Hermite Interpolating Polynomial) was also not used due to its 𝐶1 

(first derivative) continuity. Ultimately, a piecewise linear polynomial was chosen. For 

linear interpolation, no assumption was needed on the derivatives of the data (Faires, 

2011). 

          To find if wind measurements recorded at an upwind sensor were correlated to 

measurements at a downwind sensor, shorter length datasets were taken in which the 

wind direction, on average, would move a particle over multiple sensors. The first dataset 

consists of a 5 hour period (7:30 am to 12:30 pm) in which the average wind speed was 

3.6 m/s (8 mi/h). The second dataset is from a 1.5 hour long period (12:50 pm to 2:20 pm) 

with a mean wind speed of 1.5 m/s (3.4 mi/h). The entire recorded dataset was then used 

to determine conditions more likely to be present during significant wind directional 

changes. This analysis was divided into 2014 and 2015 datasets. 

Results and Discussion 

Linear correlation 

          Relationship at individual 0.1 s intervals between sensors over 5 hour period (2014) 

          Initial analysis checked for a linear correlation between the upwind and downwind 

sensors. Figure 6 shows the data collected. The average wind speed during this time was 

3.6 m/s (8 mi/h). Due to the large number of points, it is unclear graphically if there is a 

correlation (Figure 7) but the linear correlation of individual 10 Hz measurements between 

the sensors, for the five hour period, was 0.29 and 0.27 for wind direction and speed, 

respectively.  
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          To graphically see the structure of the data better, two-dimensional natural 

logarithmic histograms were used (Figure 8). This was done by creating a two-

dimensional mesh of cells of all possible combinations of upwind and downwind sensor 

data values and then counting the number of data points occurring within each cell of the 

mesh.  Using the natural logarithm of counts inside the mesh reduced the wide range of 

individual counts in each cell and was done to see smaller structures in the data.  To 

accommodate cell locations with a count of one (natural log of one equals zero), one was 

added to the value of all cells after the natural log transformation.  This step allowed 

differentiation between cells with an original count of one and cells with no observed 

(zero) values. The bar graph to the right of the graphs show the shading equivalents to 

the natural log values. Data grouped around the mean with no apparent linear 

dependency structure.  

          Relationship at individual 0.1 second intervals between sensors over 1.5 hour 

period (2015) 

          This analysis was also done for a data sample with average wind speed of 1.5 m/s 

(3.4 mi/h) from 12:50 to 2:20 p.m. during which wind generally came from the south and 

passed over the southern, central, and northern sensors (Figure 9). The correlation 

coefficients for wind direction and wind speed for all combinations of two of the three 

sensors were all below 0.03. Figure 10 shows the logarithmic histograms for the central 

and northern sensors. Similar figures were attained at the other sensors.  An absence of 

change in general wind direction and speed during the shorter time period in 2015 

resulted in the area of highest frequency of values in the histograms being more circular 

(less elliptically elongated) than in 2014.  
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Figure 6: Five hour period of upwind/downwind sensors for both wind speed and wind direction 
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Figure 7: Scatter plot showing downwind direction (a) and downwind velocity (b) as a function of 
upwind conditions 
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Figure 8: Density plots of point grouping for downwind direction (a) and downwind speed (b) as a 
function of upwind conditions. The range was divided into sectors (e.g., for wind direction, grid 
spacing of 1x1 degree were used) and the number of points were then counted for each sector. 
The natural log was then applied to the counts to show underlying structure. Since ln(1) = 0, a 

value of 1 was added to all sectors that originally had a value of at least one. 
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Figure 9: One and a half hour period of wind speed and wind direction at the center sensor 
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Figure 10: Histograms of wind direction (degrees) and wind speed (m/s) at the central and 
northern sensors 
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          Short Term Relationships during one minute intervals (2014) 

          Significant flight path changes of small, drift-prone spray droplets take place over 

much shorter time periods, on the order of a minute rather than five hours.  The five hour 

period was broken into shorter, one minute long data sets. Linear correlation coefficients 

were then calculated for each one minute period in the five hour (300 minute) long data 

set using the 10 Hz data. Averaging these 300 linear correlation coefficients yielded 

adjusted correlation coefficient values to compare velocity relationships between upwind 

and downwind sensors during one-minute time periods. For wind direction and wind 

speed, the adjusted average correlation coefficients were 0.01 and 0.02 respectively. This 

result gives insight of the highly variable nature of wind during short term measurements. 

When the correlation was calculated for the entire five hour period, there was time for the 

wind speed and direction to shift sufficiently to show long term correlation. This is not the 

case during short time periods when the droplet is in the air. 

          Short Term Relationships during one minute intervals (2015) 

          The one and a half hour period was split into multiple one minute long data sets. 

The linear correlation coefficients were then calculated as before. To reduce confusion, 

when discussing interactions between two sensors, the first letter of the sensor location 

is used with the second letter denoting the upwind sensor. For example, if discussing a 

process at the central sensor that came from the south sensor, this process would be 

given the name CS. The linear correlation coefficient for wind speed for NC was 0.02, 

and the coefficient for CS was 0.01. The wind direction linear correlation coefficients for 

NC and CS were 0.003 and 0.005 respectively.   
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          Max Correlation using lag adjustment (2014) 

          Using smaller one-minute segments of data, the time it takes for the wind change 

to travel to the next sensor can be included. During the five hour period, there was a 3.6 

m/s (8 mi/h) average wind speed and the sensors were spaced 30.5 m (100 ft) apart. 

Average wind speed implies a lag of about 8.5 seconds, (taking the distance separated 

by the sensors and dividing by the average wind speed), before similar conditions would 

be observed downwind if the wind moved smoothly over the field. However, maximum 

correlation occurs at 12 seconds (Figure 11). This could be caused by turbulent 

interactions across the top of the oat crop canopy. 

          From investigating the five hour segment of data, wind direction and wind speed 

cannot be considered to remain constant at a downwind location after leaving the upwind 

sensor. Taylors Hypothesis of Frozen Turbulence states that turbulence can be 

considered “frozen” as eddies (turbulent motion of wind) advects pass a sensor(s) (Stull, 

2009). The lack of correlation between upwind and downwind sensors, even after 

adjusting for lag in wind conditions shown in Figure 11 implies that turbulence is not frozen 

on these small length and time scales.  

          Lag was also checked for the 2015 data. There was no set lag time that gave the 

highest correlation value unlike the 2014 data.  Mean wind speed of 2015 data was slower 

than 2014 data, and the inability to identify a lag period may have been related to the light 

and variable nature of slower wind speeds. 



39 
 

 

 

Figure 11: Correlation plot as a function of lag between the sensors for both wind direction and 
speed with 2014 data 

 

Figure 12: Correlation plot as a function of lag between the different sensors for both wind 
direction and speed with 2015 data 
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Probability that downwind velocity is within range of upwind velocity 

          To anticipate an unexpected change in wind direction or speed after spray is 

released from the nozzle, it would be desirable to know what the probability is of the 

downwind sensor being within a given tolerance range of an upwind sensor. Multiple 

sensors were used again utilizing the higher wind speed dataset. From Figure 11, an 

adjusted lag value of 12 seconds was used in this analysis of the 10 Hz data. The 

percentage of time that the downwind sensor is outside a given tolerance of the upwind 

sensor is shown in Figure 13. This probability analysis was done by comparing the 

difference between the upwind and downwind sensors and counting how many data 

points fell outside of a tolerance. This count was then divided by the total number of 

points. For example, if the speed tolerance was set to ± 1 m/s, then about 50% of the 

time the absolute value of the difference between the upwind and downwind sensor would 

be greater than 1 m/s. If the directional tolerance was set at ± 20 degrees, then about 

30% of the time the absolute value of the difference between the sensors would be greater 

than the set tolerance. Figure 13 gives insight on the probability of random finite 

fluctuations in both wind velocity and direction.  

          Figurer 14 shows this analysis for the low wind speed dataset for wind direction 

and wind speed. The wind speed was scaled to 1 m/s to better match the scaling of the 

2015 data. Due to the lack of a peak lag for all sensors, no lag time was used in figure 

14. Figure 14 shows that the sensors followed similar curves with one another. This result 

shows that the probability that a downwind measurement will be within an upwind 

measurement is similar within at least 30 meters of the upwind sensor. Due to the low 

wind speed and the lack of a group lag time, the variability at downwind sensors is higher 
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leading to higher degrees of uncertainty. As an example, if a tolerance of 20 degrees was 

set, the downwind sensor would be outside of the tolerance about 65% of the time. 

 

Figure 13: Probability that the downwind sensor will be outside a given tolerance to the upwind 
sensor for wind direction and wind speed 
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Figure 14: Probability that the downwind sensor is within a tolerance of an upwind sensor 
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Parameters related to wind changes 

          To gain greater insight as to what meteorological weather conditions are present 

when transient wind velocity changes occur that may affect trajectory after the droplet has 

left the spray boom, data collected over a range of 36 days (greater than 100 million data 

points) in the late spring/summer spraying seasons of 2014 and 2015 were analyzed to 

see when it was more likely to see a change in the wind direction 30 seconds into the 

future. As data were processed, if the value for wind direction at a sensor, thirty seconds 

into the future, was greater than a given tolerance (45, 25, or 5 degrees), the current wind 

direction, speed, solar radiation, and time of day were recorded. Figures 15, 16, and 17 

show the percentage of occurrences when wind direction changed by more than 45, 25, 

or 5 degrees for each individual finite segment of solar radiation, time of day, and wind 

speed, respectively, when comparing wind direction at a specific time and 30 seconds 

later at individual wind sensors. For example, at a tolerance of 45 degrees, out of the total 

time in which the day was between the hours of 1:30 am and 4:30 am, about 5% of that 

time had a large wind change that was greater than the allowed tolerance. 

          The figures 15, 16, and 17 show how wind change events are distributed. As the 

sun heats the earth, increasing the surface energy, the weather becomes turbulent (Stull, 

2009) as is seen in Figure 15. As the tolerance is tightened, to 25 degrees and 5 degrees 

in Figures 16 and 17 the distributions for Time of Day and Solar Radiation become more 

uniform. However, the tendency for wind directional shifts to occur more frequently at 

lower wind speeds remains relatively unchanged. This shows that most unstable events 

occur below 1 m/s (2.2 mi/h) winds. Application at these wind speeds is often 

recommended and may limit the distance of off-target drift even if the likelihood of 
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unforeseen wind directional shift is greater. 

 

Figure 15: Percentage of data within a certain range in which a wind change 30 seconds in the 
future was greater than 45 degrees 
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Figure 16: Percentage of data within a certain range in which a wind change 30 seconds in the 
future was greater than 25 degrees 
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Figure 17: Percentage of data within a certain range in which a wind change 30 seconds in the 
future was greater than 5 degrees 
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Conclusion 

Wind velocity data taken during late spring/summer conditions that are suitable for ground 

based spraying support the following conclusions: 

 During a five hour period (7:30 am to 12:30 pm) with an average wind speed of 3.6 

m/s (8 mi/h) and general wind direction of due north 

o Random fluctuation of wind direction and speed at upwind and downwind 

sensors, 30 m (100 ft) apart, had correlation coefficients of 0.29 and 0.27 

o Correlation was less during shorter one-minute periods in which a spray 

droplet may travel, but improved to a coefficient of 0.15 if a lag time was 

used between the two sensors 

o Using a lag time, downwind direction was greater than 20 degrees different 

than the upwind sensor 30% of the time while wind speed was greater than 

1 m/s (about a quarter of the mean wind speed) different than the upwind 

speed about 50% of the time 

 During a 1.5 hour period (12:50 pm to 2:20 pm) with an average wind speed of 1.5 

m/s (3.3 mi/h) and general wind direction of due north 

o Correlation coefficients between the downwind and upwind sensors either 

15 or 30 m (50 or 100 ft) apart had lower values < 0.03 

o Downwind direction was greater than 20 degrees different than the upwind 

direction 65% of the time, while the downwind speed was greater than 0.25 

m/s (about a quarter of the mean wind speed) different than the upwind 

speed 80% of the time 

 Across a range of late spring/summer days in which suitable conditions for ground 
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spraying were present, significant change in wind direction 30 seconds later was 

more likely to occur during wind speeds in the range of 0-3 m/s (0-6.7 mi/h) with 

all tolerances  

 Solar radiation and time of day seemed to have a greater effect on wind changes 

when investigating tolerances of 45 degrees, as the tolerance tightened to 5 

degrees, solar radiation and time of day became more uniformly distributed 
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CHAPTER 4. A NOT-SO-RANDOM WALK WITH WIND: A LOOK 

AT RANDOM FLUCTUATIONS IN WIND VELOCITIES FOR USE 

IN MODELS OF AGRICULTURAL SPRAY DRIFT 

A Paper to be submitted to Transactions of the ASABE 

Matt Schramm1, Mark Hanna1, Matt Darr1, Steven Hoff1, Brian Steward1 

Agricultural and Biosystems Engineering, Iowa State University1  

Abstract 

          The notion that wind speed and direction can be approximated by adding a random 

fluctuation to the previous value was investigated. The data were recorded at one meter 

above a field to simulate conditions that are present at a ground sprayer’s boom. Variance 

ratio tests were carried out to test the null hypothesis that wind process similar properties 

to a random walk versus the alternative that wind does not. More specifically, that the 

random fluctuations are auto correlated with one another in time. This process was done 

to a 10 Hz sample and averages of the measured wind data at 1/2 s, 1 s, 5 s, 10 s, 30 s, 

1 min, 5 min, and 10 min. It was found that for all tests, except for the 5 and 10 min data 

samples, the null hypothesis was rejected at greater than 99.9% certainty. Indicating that 

there is evidence of autocorrelation in the measurements of wind speed and direction, 

associated with each other in time.   

Keywords: Random Walk, Spray Drift Model Validation, Spray Drift  
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Introduction 

          Agricultural sprayers provide agricultural chemicals that protect and improve crop 

plant health, but the chemicals can be detrimental to adjacent crops or other forms of life. 

Understanding how spray propagates (through the use of models) is essential to provide 

the industry with the necessary information to keep the chemicals in the field. The EPA 

defines spray drift as follows, “Pesticide spray drift is the physical movement of a pesticide 

through air at the time of application or soon thereafter, to any site other than that intended 

for application” (EPA, 2014). Multiple models are available to calculate the physics of 

droplet movement including Lagrangian, Gaussian, Random Walk, Regression, and 

Computational Fluid Dynamic (CFD) models (Frederic, et al., 2009; Holterman, et al., 

1997; Baetens, et al., 2007; Milton E. Teske, 2002; Ming-Yi Tsai, 2005; Frederic, et al., 

2009; Smith, et al., 1982). Models apply random fluctuations to the mean wind to simulate 

the wind’s turbulent nature. Essentially, the wind takes a random walk. A popular 

application of random walks, is to use averaged wind velocities acquired from 

measurements and introduce random fluctuations to simulate turbulence (Holterman, et 

al., 1997; Thompson & Ley, 1983). Wind fluctuations may appear random but little 

information exists of short term, transient wind velocity changes that can confirm this 

property accurately near the surface in the vicinity of a ground sprayer boom. 

          A statistical method to test the random walk hypothesis that is used primarily for 

financial predictions is the variance ratio test (MathWorks, 2015; Ostasiewicz, 2000). The 

variance ratio test investigates the “random fluctuations” of a time series dataset and tests 

if changes in the time series are statistically independent or if these changes are 

correlated with one another. The variance ratio test has been primarily used to test the 



52 
 

 

random walk hypothesis for market efficiencies in finance (Charles & Darné, 2003). The 

test is particularly useful for testing if the process eventually returns to the average (mean 

reversion) (Charles & Darné, 2003). The random walk model was first introduced in 1828 

when the botanist Brown described his Brownian motion. Since then the model has 

gained ground in multiple fields from biology, physics, and finance (Codling, et al., 2008). 

The test devised by Lo and MacKinlay (1988) was directed at financial markets, though 

no assumptions were ever made that limit the test to only financial random walks (Lo & 

MacKinlay, 1988).   

Objectives 

The objectives of this research were to: 

 Investigate changes in transient wind velocity near the ground surface at a 

typical ground sprayer boom height, and 

 Evaluate the randomness of measured transient wind velocity changes for use 

in random walk models  as applied to ground sprayers 

Methods and Materials 

Experimental Design and Apparatus  

          Field measurements of wind speed and direction were collected during the late 

spring/summer spraying season of 2014 using instrumentation set into a field of growing 

oats. The field was located at the Iowa State University Research Farm’s Bruner Farm 

field F1 near Ames, Iowa (Figure 18). The field dimensions were 268 m long by 105 m 

wide (880 by 348 ft).  
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Figure 18: Bruner Farm field F1 (42.014911 N 93.731241 W) (Google, 2015) 

          Wind speed and solar radiation measurements were acquired at 10 samples per 

second using ultrasonic anemometers (model: WindMaster 3d, Gill Instruments, 

Lymington, Hampshire, UK) and a pyranometer (model: SP-212, Apogee Instruments, 

Logan, UT). The anemometers measured the wind speed in the north-south, east-west, 

and vertical directions (Figure 19). Open source microcontrollers equipped with a GPS 

module (model: Arduino Uno, Arduino Inc; Ultimate GPS Shield, Adafruit, New York, 

USA) were used to log data to a micro SD data card. Using the GPS’s PPS (Pulse per 

Second) output, time correction was done to ensure accurate time recording of wind 

velocity measurements on the microcontroller. To reduce influences to wind velocity, the 
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microcontrollers and their power supplies were located separate from the anemometers 

at a distance of approximately 2-3 meters. Anemometers were placed one meter above 

the ground’s surface to collect wind measurements. The pyranometer was placed on the 

charging station near the anemometer. 

 

Figure 19: Ultrasonic Anemometer measuring velocity in U, V, and W component directions 

Data Analysis 

          The data from a single sensor shown in figure 20 is from a five hour period, between 

7:30 am to 12:30 pm during typical daytime spraying conditions, and will be used for the 

study. Wind direction was calculated from the wind speeds using trigonometric 

relationships. A wraparound method was used to produce a semi-continuous wind 

direction dataset. The wraparound method allowed wind direction to go above 359 

degrees and below 0 degrees, e.g. 12 degrees = 372 degrees. 
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Figure 20: Data collected over a five hour period. (a) North-South, (b) East-West, (c) Vertical Wind, 
(d) Wind Magnitude, (e) Wind Direction 
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          The variance ratio test was used to test the null hypothesis (ℎ0) that a random walk 

(Equation 17) faithfully represents the statistical properties of the measured wind 

fluctuations. Specifically, the test is used to measure if the values of 𝜖𝑡 are correlated. 

 𝑦𝑡 = 𝑐 + 𝑦𝑡−1 + 𝜖𝑡 (17) 

where  

 𝑦𝑡 are the time series process 

 𝑐 is a drift constant for the random walk model 

 𝜖t are random independent processes and are distributed with mean zero and 

variance 𝜎2 (Box, et al., 1994; Enders, 1995; MathWorks, 2015; Ostasiewicz, 

2000) 

          This test was done for the wind speeds traveling in the north-south direction 

(Uwind), the east-west direction (Vwind), the vertical direction (Wwind), the magnitude of 

the north-south and east-west winds (MWind), and wind direction (DWind). In addition to 

testing individual readings each 0.1 s, multiple averages (1/2 s, 1 s, 5 s, 10 s, 30 s, 1 min, 

5 min, and 10 min) were tested to determine if longer-term averaged readings were 

eventually possessed properties of the random walk. 

          Variance ratio test statistics are calculated based upon the ratio of variance 

estimates from the time series’ m-period returns (MathWorks, 2015; Box, et al., 1994; 

Enders, 1995; Ostasiewicz, 2000). The returns are calculated from the difference of terms 

in the series (Equation 18) 

 𝑟𝑚 = 𝑦𝑡 − 𝑦𝑡−𝑚−1 (18) 
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The variance ratio for period m is:  

 
𝑉𝑎𝑟𝑅𝑎𝑡𝑖𝑜𝑚 =

1

𝑚 + 1

var(𝑟𝑚)

var(𝑟0)
  (19) 

The m parameter determines the period of the time difference. For example if the model 

that was being tested used the third previous value to predict the next value, m would 

equal 3. For the purposes of this paper, m will equal one to signify that the use of the 

previous step is used to predict the next step. This matches the form of the wind model 

shown in equation 17. This ratio indicates how the individual measurements behave, 

either by propagating to the mean (ratio less than one), away from the mean (ratio 

greater than one).           

         With the variance ratio calculated, the test statistic is then calculated using Lo and 

MacKinlay’s heteroscedasticity method (Charles & Darné, 2003) (Equation 20). 

Heteroscedasticity is needed because the assumption that 𝜖𝑡 are independently and 

identically distributed is not required for this test.  

 

 
𝑇𝑣𝑟 =

𝑉𝑎𝑟𝑅𝑎𝑡𝑖𝑜𝑚 − 1

√𝜙𝑚
∗

 

𝜙𝑚
∗ = ∑ [

2(𝑚 + 1 − 𝑗)

𝑚 + 1
]

2𝑚

𝑗=1
𝛿(𝑗), 𝜙1

∗ = 𝛿(1) 

𝛿(𝑗) =
∑ (𝑦𝑖 − �̂�)2(𝑦𝑖−𝑗 − �̂�)

2𝑇
𝑖=𝑗+1

(∑ (𝑦𝑖 − �̂�)2𝑇
𝑖=1 )2

 

(20) 

Where 𝑦𝑖 is the ith observed value in the time series, �̂� is the average value in the time 

series, and T is the length of the time series, and as T approaches infinity, this test 

statistic approaches a normal distribution (Charles & Darné, 2003). Test statistics are 

used to calculate the p-values.  
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Results and Discussion 

          Table 1 summarizes the test results of all tests done. The statistical method was 

done at a 95% confidence level to determine if the null hypothesis was accepted or 

rejected.  

Table 1: Variance Ratio Test results at multiple averaging values in which the null hypothesis is 
accepted or rejected. (Uwind is the north-south wind speed, Vwind is the east-west wind speed, 
Wwind is the vertical wind speed, Mwind is the magnitude of the wind speed, and Dwind is the 

direction of wind) 

 

From table 1 the null hypothesis of random data is rejected with greater than 99.9% 

certainty, except for longer periods when data is averaged over 5 or 10 minutes. This 

shows that the wind fluctuations are correlated with one another at short time steps, at 

one meter height near the ground surface, but may be considered to be randomly 

independent as the time between each step increases. Droplet sizes greater than 50 µm 

contain a larger total fraction of driftable spray volume than tinier droplets and unless 

displaced vertically upward a significant distance would be expected to deposit in these 

shorter time periods with non-random wind velocity.  For models that incorporate random 

fluctuations, greater care is needed and simply adding a random fluctuation to the 
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previous wind conditions is not completely correct. The exact relationship that should be 

used for modeling turbulent fluctuations is currently unknown. 

Conclusions 

          It was found that wind velocity changes at one meter (near the height of a ground 

sprayer’s boom) are not purely random when using sampling periods of less than five 

minutes. Greater care is needed in models that implement random numbers to simulate 

turbulence for ground spray applications. All tests below five minute averages yielded 

greater than a 99.9% confidence level that the pattern of wind velocity do not follow the 

model of a Random Walk. Exactly how these wind velocity values are correlated are 

currently unknown.  
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CHAPTER 5. PREDICTING WIND DIRECTION FOR 

AGRICULTURAL GROUND SPRAYERS 

A Paper to be submitted to Transactions of the ASABE 

Matt Schramm1, Mark Hanna1, Matt Darr1, Steven Hoff1, Brian Steward1 

Agricultural and Biosystems Engineering, Iowa State University1  

Abstract 

          Multiple prediction schemes to predict wind direction 30 seconds into the future are 

presented for use with ground sprayers. Data were recorded during the late 

spring/summer spraying season of 2014. A five hour sample was taken from this to 

provide a one hour training and four hour testing dataset. A kernel filter, (commonly used 

to predict future wind changes for wind turbines), autoregressive, ARIMA, and hybrid 

models, (containing aspects of ARIMA and Taylor Series expansion), were compared to 

a default model (the prediction value was the value that was last observed) in their 

performance of predicting the win direction 30 seconds into the future. The autoregressive 

model yielded the lowest RMS error, when used on test data, followed by the hybrid 

model. These models improved prediction 9% over the default. 

Keywords: Prediction methods, spray drift reduction, ground sprayer application, 

turbulence model  
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Introduction 

          Agricultural sprayers are used to provide agricultural chemicals that protect and 

improve crop plant health. The off-site drift of these chemicals is an environmental hazard 

and can be detrimental to adjacent crops or other forms of life. Many factors affect spray 

drift ranging from the topography of the land, current weather conditions, droplet size 

distribution, and the height in which the droplets are released. The EPA defines spray 

drift as the physical movement of a pesticide through air at the time of application or soon 

thereafter, to any site other than that intended for application (EPA, 2014). Spray 

technologies include capabilities to mitigate spray drift by altering droplet size dependent 

on wind conditions (Nordby & Skuterud, 1974; Smith, et al., 1982). A popular method to 

reduce spray drift is through the use of drift reduction nozzles which aim to decrease the 

number of droplets smaller than 150 µm. This is typically done either by a pre-orifice which 

reduces the exit velocity at the nozzle, or by an air induction nozzle that mixes air into the 

droplet thus making the diameter of said droplet larger (Kruckeberg, 2011).  

          To mitigate spray drift, models are available that predict the movement of the 

droplets across the field. Popular methods to model the physics of droplets or understand 

the distribution of spray deposition, include Gaussian, Plume, Random Walk, Regression 

and Computational Fluid Dynamic (CFD) models (Baetens, et al., 2007; Frederic, et al., 

2009; Holterman, et al., 1997; Kruckeberg, 2011; Smith, et al., 1982; Teske, et al., 2002; 

Tsai, et al., 2005). Through the use of a model, real time buffer zones can be calculated 

to reduce the risk of spray drift (Brown, et al., 2004; Craig, 2004).  

          There is potential to use sprayer models and on-board computers on the sprayer, 

to perform simulations in real-time, and estimate spray drift potential. Kruckeberg (2011) 
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has shown that spray drift can be mitigated by changing to different nozzles automatically, 

utilizing simulation (DRIFTSIM) models (Zhu, et al., 1995). This strategy can be defeated 

by unforeseen changes in wind direction and wind speed after the droplet has left the 

nozzle. The wind power industry currently uses wind velocity predictions to forecast wind 

power outputs (Giebel, 2003; Zhu & Genton, 2012). A popular method used for these 

predictions is the kernel filter (Chan, et al., 2010). Wind power predictions are usually 

predicated hours in advance (Giebel, 2003). 

Objective 

The objective of this research was: 

 Investigate the performance of statistical models in predicting wind direction in 

the future based on current measurements 

Methods and Materials 

Experimental Design and Apparatus  

          Field measurements of wind speed and direction were collected during the late 

spring/summer spraying season of 2014 using instrumentation set into a field growing 

oats. The field was located at the Iowa State University Research Farm’s Bruner Farm 

field F1 near Ames, Iowa (Figure 21). The field dimensions were 268 m long by 105 m 

wide (880 by 348 ft).   
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Figure 21: Bruner Farm field F1 (42.014911 N 93.731241 W) (Google, 2015) 

 

          Wind speed and solar radiation measurements were acquired at 10 samples per 

second using ultrasonic anemometers (model: WindMaster 3d, Gill Instruments, 

Lymington, Hampshire, UK) and a pyranometer (model: SP-212, Apogee Instruments, 

Logan, UT). The anemometers measured the wind speed in the north-south, east-west, 

and vertical directions (Figure 22). Open source microcontrollers equipped with GPS 

modules (model: Arduino Uno, Arduino Inc; Ultimate GPS Shield, Adafruit, New York, 

USA) were used to log data to a micro SD. Using the GPS’s PPS (Pulse per Second) 

output, time correction was able to be done to ensure accurate time recording of wind 

velocity measurements among the microcontrollers. To reduce influences to wind speed, 

the microcontrollers and power supplies were located separate from the anemometers at 
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a distance of approximately 2-3 meters. Anemometers were placed one meter above the 

ground’s surface to collect wind measurements. The pyranometer was placed on the 

charging station near the anemometer.  

 

Figure 22: Ultrasonic Anemometer measuring velocity in U, V, and W component directions 

Data Analysis   

          Wind direction was calculated using the north-south and east-west wind speeds 

with trigonometric relationships. A wraparound method was used to produce a semi-

continuous wind direction dataset. Wraparound refers to the convention of allowing wind 

direction to go above 359 degrees and below 0 degrees, i.e. 12° = 372°.  

          For the use of simplifying the modeling, a fixed time step (0.1 s unless otherwise 

noted) was assumed. From this assumption, an interpolation method was used to 

estimate these interior values to provide a fixed time step dataset. For example, the 

microcontroller may have data at 1.14, 1.23, and 1.34, but for the models interpolation is 

needed to give data at the times 1.1, 1.2, and 1.3. MATLAB (MathWorks), used for 
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analysis, offered multiple interpolation schemes ranging from discontinuous (𝐶0) to 

second order continuity (𝐶2) methods. MATLAB’s cubic spline (𝐶2) offers the smoothest 

fit to the data, however the assumption that first and second derivatives are continuous 

in the wind speed data could not be confirmed. For this reason MATLAB’s Piecewise 

Cubic Hermite Interpolating Polynomial (pchip) was not used. Ultimately, a piecewise 

linear interpolating spline was chosen.  

          A mean value smoothing function was carried out on the wind speeds to smooth 

out fluctuations leaving the lower frequency data that has more of an effect on spray 

droplets (Kruckeberg, 2011). Figure 23 shows this process during a 10 minute period on 

the north-south wind speed. This process is done by utilizing the nine values centered on 

the current data point and taking an average of the data present (Equation 21). 

 

𝑌𝑚 =

𝑋
𝑚−

𝑛−1
2

+ ⋯ + 𝑋𝑚 + ⋯ + 𝑋
𝑚+

𝑛−1
2

𝑛
 (21) 

   where 

 n is the number of data points being used to smooth the data,  

 𝑋𝑚 is the mth observed data point, and 

 𝑌𝑚 is the mth averaged value 

After smoothing the data, the data was averaged at one second intervals. This dataset 

was then split into a training dataset and a testing dataset. The training dataset contains 

the first hour of the original data set and the testing dataset is the last four hours. 
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Figure 23: Smoothing function example in which the raw data (a) is smoothed using the 9-nearest 
neighbors to generate a new smoothed dataset (b) 
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Model Development 

          Multiple models were developed and tested. Differing models included kernel 

filtering, auto regressive, autoregressive integrated moving average (ARIMA), and a 

hybrid model using aspects of median filtering, Taylor Series Expansion, and ARIMA. The 

models will be compared to a default model (the “No Model”) in which the current recorded 

value for wind direction was used as the prediction value (Equation 22). 

 �̂�𝑛+30 = 𝑌𝑛 (22) 

Kernel Filter 

          For a kernel filter, the predicted value is calculated by fitting a probability of existing 

values that is dependent on past observed values. As the process is carried out, the 

current observations are compared to past values to determine how different these 

observations are. A weight is then calculated that depends on this difference of observed 

values (Equations 24 and 25). Finally, to calculate the variable that is being predicted, 

past values are summed with corresponding weights (Equation 23). This sum is then 

divided by the sum of the weights. The process used is known as the Nadaraya-Watson 

kernel-weighted average (Hastie, et al., 2009; Chan, et al., 2010) (Equations 23-25). 

Chan gives an excellent description of this process using multiple inputs, but the basis of 

the model is given as follows. 
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�̂�(𝑥1, 𝑥2, … , 𝑥𝑘) =
∑ (𝑦𝑗(∏ 𝐾𝜆𝑖

(𝑥𝑖 − 𝑥𝑖,𝑗)𝑘
𝑖=1 ))𝑁

𝑗=1

∑ (∏ 𝐾𝜆𝑖
(𝑥𝑖 − 𝑥𝑖,𝑗)𝑘

𝑖=1 )𝑁
𝑗=1

 (23) 

 
𝐾𝜆𝑖

(𝑥𝑖 , 𝑥𝑖,𝑗) = 𝐷 (
|𝑥𝑖 − 𝑥𝑖,𝑗|

𝜆𝑖
) (24) 

 
𝐷(𝜉) = {

3

4
(1 − 𝜉2), 𝑖𝑓 |𝜉| ≤ 1

0                , Otherwise
 (25) 

 

where 

 �̂�(𝑋) is the new predicted value based on the 𝑋 observations, 

 𝑦𝑖 are the past observed target values that �̂� tries to predict, 

 𝑋 contains the inputs to the kernel (𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑘]), 

 The summation goes over the N past observations for all inputs 𝑋 with observed 

target value 𝑦𝑗, and 

 𝐾𝜆(𝑥𝑖 , 𝑥𝑖,𝑗) is the kernel being used with constant 𝜆 and weighting function D 

          For kernel filtering, past wind speed, wind direction, solar radiation, changes of 

wind direction, and changes in wind speed were given their own 𝜆. The 𝜆 values were 

changed to find the minimum RMS error (Equation 26) to optimize the model’s predictive 

ability using the training dataset. 

 

𝑅𝑀𝑆𝑒𝑟𝑟𝑜𝑟 = √
∑ 𝐸𝑟𝑟𝑜𝑟𝑊𝑑

2𝑁
𝑖=1

𝑁
 (26) 

where 

 𝐸𝑟𝑟𝑜𝑟𝑊𝑑 = 𝑊𝑑𝑝 − 𝑊𝑑𝑎 

 𝑊𝑑𝑝 is the predicted value of wind direction  
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 𝑊𝑑𝑎 is the actual wind direction 

This minimization was done using MATLAB’s fminunc function (unconstrained 

minimization) using the Quasi-Newton’s Method.  

Autoregressive 

          The prediction utilizing autoregressive method took a simpler form to predict wind 

direction 30 seconds into the future (Equation 27). With this method, the past 30 seconds 

of data were used to predict the next value. 

 �̂�𝑛+30 =  𝑎0𝑌𝑛 + 𝑎1𝑌𝑛−1 + ⋯ + 𝑎𝑁𝑌𝑛−𝑁 + 𝑎𝑁+1 (27) 

where  

 𝑌𝑛 is the observed wind direction at time n, 

 𝑎0, 𝑎1, … , 𝑎𝑁+1 are constants used to weight the observations, and 

 𝑁 = 30 

 For the auto-regressive prediction scheme, the constants were optimized to reduce the 

RMS error on the training dataset. 

ARIMA  

          ARIMA takes the previous prediction scheme (auto-regressive) and expands onto 

it (Equation 28). 

 
(1 − ∑ 𝜙𝑘𝐿𝑘

𝑝

𝑘=1
) (1 − 𝐿)𝑑𝑌𝑡 = 𝛿 + (1 + ∑ 𝜃𝑘𝐿𝑘

𝑞

𝑘=1
) 𝜖𝑡 (28) 

where 

 𝑌𝑡 is the next observed value, 

 𝛿 is a drift constant which was set to zero, 

 𝜙𝑘 is an auto-regressive constant that acts on the observed value 𝑌𝑡−𝑘, 

 𝜃𝑘 is a moving average constant that acts on 𝜖𝑡, 
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 𝐿𝑘 is a lag operator, e.g. 𝐿𝑘𝑌𝑡 ≡ 𝑌𝑡−𝑘, 

 𝜖𝑡 the error of the prediction value and the observed value and is distributed with 

mean zero and standard deviation of 𝜎, 

 p and q are the number of auto-regressive and moving average terms (p = q = 40), 

and 

 d is the number of times the difference of the data is taken (d = 0) 

          For the prediction scheme described, the first 30 constants for the auto-regressive 

and the moving average terms were taken to be zero. This insured the next observed 

value would be the prediction of wind direction, 30 seconds into the future. For ARIMA, 

the error was not minimized to find the constants 𝜙𝑘 and 𝜃𝑘, but the log-likelihood function 

was maximized (Box, et al., 1994; Enders, 1995; MathWorks, 2015) while using the 

training dataset.  

Hybrid 

          The hybrid method takes the form (Equation 29). This method is the result of trial 

and error, incorporating different ideas of modeling. 

 �̂�𝑛+30 = 𝑊1
𝑎1  𝑊2

𝑎2  𝑊3
𝑎3 (29) 

Where 𝑊𝑖 have the following structures (Equation 29-32) 

 𝑊1 = 𝑎4𝑌𝑛 + 𝑎5𝑌𝑛−1 + ⋯ + 𝑎10𝑌𝑛−6 + 𝑎11𝑋𝑛 (30) 

 𝑊2 = 𝑌𝑛 + 𝑎12(𝑌𝑛 − 𝑌𝑛−1) + 𝑎13(2𝑌𝑛−1 − 𝑌𝑛 − 𝑌𝑛−2)

+ 𝑎14(𝑌𝑛 − 𝑌𝑛−3 + 3(𝑌𝑛−2 − 𝑌𝑛−1)) 

(31) 

 𝑊3 = 𝑎15𝑚𝑒𝑑𝑖𝑎𝑛(𝑌𝑛: 𝑌𝑛−30) (32) 

Where equation 26 takes the form of an ARIMAX model using the auto-regressive terms 

of the standard ARIMA model with the addition of an X term (Equation 33) (Box, et al., 
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1994; MathWorks, 2015). 

 
𝑋𝑛 =

𝑊𝑠𝑛 − 𝑊𝑠𝑛−1

𝑚𝑒𝑎𝑛(𝑊𝑠𝑛: 𝑊𝑠𝑛−30)
 (33) 

where 

 𝑊𝑠𝑛 is the wind speed at time n, and 

 The mean is taken from time n to time n-30 

          Equation 31 contains the first four terms of a Taylor Series expansion utilizing 

numerical backward differences to estimate the first, second, and third derivatives with 

differing constants to better estimate the future wind direction. Equation 32 is a median 

filtering function over the past 30 seconds with an arbitrary constant. The constants were 

found by minimizing the RMS error using quasi-newton unconstrained minimization on 

the training dataset.  

          All models were developed on the training data set by running multiple times 

starting at different initial values. The training dataset contains the first hour of data of the 

five hour dataset shown in Chapter Three. These starting values were chosen at random 

from a uniform distribution to find the lowest RMS error values. The process searched for 

the coefficients that would minimize RMS error. After coefficients were found, the models 

were applied to the testing dataset and the RMS error was calculated. The testing dataset 

contained the remaining four hours of the five hour dataset. 

Results and Discussion 

          Table 1 shows these RMS errors along with the 2-norm errors (Equation 34). 

 
𝐿2 = √∑ 𝐸𝑟𝑟𝑜𝑟𝑊𝑑

2  (34) 

 The 2-norm is used as an addition metric of the error that is often used in numerical 
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analysis. Table 1 shows No Model performed the worst, with other methods, notably 

Autoregressive and Hybrid, having lower errors.   

Table 2: RMS and Norm 2 Errors for the differing prediction methods 

Error 
Method 

Kernel Autoregressive ARIMAX Hybrid Default 

RMS (Degrees) 14.19 12.97 17.10 13.01 14.30 

2-Norm (Degrees) 1,681 1,552 3,248 1,556 1,692 

Percent Out of 
Tolerance (20°) 

15.15% 11.73% 12.28% 11.90% 15.65% 

 

          From table 2, the autoregressive model yielded the lowest RMS and 2-Norm errors 

with the hybrid model following close behind. The ARIMAX model does do poorly for the 

measures of RMS and Norm error but does do better using the percent out of tolerance 

metric, however it does not do better than the Autoregressive nor Hybrid models. Figure 

24 shows how each method did predicting values within a certain tolerance of the testing 

dataset. The ARIMAX model is not shown due to the model needing many simulations to 

get an estimate of the average path. Here there is tight grouping for both the 

autoregressive and hybrid model to the point it is hard to distinguish between the two. 

This is also the case for the no model and kernel models. The hybrid model is the most 

general model due to the constants not depending on an average wind direction.   
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Figure 24: Percent outside of tolerance for differing methods 

 

          Figure 25 shows the results of the ARIMAX model after running 1,000 simulations 

and finding the average path taken. Figure 25 shows the last 10 minutes of training data 

along with the first 10 minutes of the simulations and testing data. The ARIMAX method 

that was used was a ARIMAX(40,0,40) method with two additional x terms (the change 

in wind direction and the change in wind speed). Note, the first 30 coefficients for both the 

autoregressive and moving average are zero. Like the hybrid model, the ARIMAX model 

did not contain a constant value. 
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Figure 25: 1000 Simulations of an ARIMAX(40,0,40) model with x containing information on 

changes in wind direction and wind speed. The simulation holds the average path taken (black 

line) contained by a 93.34% of possible paths (red dashed lines). 

 

          The bounds that are in figure 25 (dashed lines) represent a 20° spread in the data. 

With this spread a comparison can be made with the other methods. As seen in figure 25, 

the method bounds the testing data well and contained the testing dataset all but 12.28% 

of the time. However, if each path is tracked separately, the ARIMAX model does do 

poorly as reflected in table 2.   

Conclusion 

          Four prediction schemes (Kernel, Autoregressive, ARIMAX, and Hybrid) were 

investigated and compared to a default. All models did achieve RMS errors lower than 

the default with the Autoregressive model yielding the lowest error, and the ARIMAX 
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model also reducing the number of times predictions varied from actual values by more 

than 20 degrees. The hybrid model yielded the most universal results due to the model 

needing no information of the averaged wind speed. Models were trained and tested on 

a dataset during a period of wind moving generally south to north. It is unknown how 

models would react to more turbulent conditions. 
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CHAPTER 6. CONCLUSIONS 

From the research described in this thesis, we can draw the following conclusions: 

 Chapter 3. Measuring Sub-Second Wind Velocity Changes at One Meter 

o During a five hour period with an average wind speed of 3.6 m/s 

 Correlation Coefficients of 0.29 (0.27) between an upwind and 

downwind sensor, separated by 30m), were found for wind direction 

(speed). 

 Correlation was less during shorter one-minute periods in which a 

spray droplet may travel, but improved to a coefficient of 0.15 if a lag 

time was used between the two sensors. 

 Using a lag time, downwind direction was greater than 20 degrees 

different than the upwind sensor 30% of the time while wind speed 

was greater than 1 m/s (about a quarter of the mean wind speed) 

different than the upwind speed about 50% of the time. 

o During a 1.5 hour period with an average wind speed of 1.5 m/s 

 Correlation Coefficients less than 0.03 were found between upwind 

and downwind sensors, separated by 15 or 30 m. 

 Downwind direction was greater than 20 degrees different than the 

upwind direction 65% of the time, while the downwind speed was 

greater than 0.25 m/s (about a quarter of the mean wind speed) 

different than the upwind speed 80% of the time. 

o Across a range of late spring/summer days in which suitable conditions for 

ground spraying were present, significant change in wind direction 30 
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seconds later was more likely to occur during wind speeds in the range of 

0-3 m/s (0 -6.7 mi/h)  

 Chapter 4. A Not-so-Random-Walk with Wind: A Look at Random Fluctuations in 

Wind Velocities for use in Models of Agricultural Spray Drift 

o Wind speed in the north-south, east-west, and vertical directions, wind 

magnitude, and wind direction were found to not follow the random walk 

model at 99.9% certainty for time averaged values less than five minutes. 

o Model that accurately describes wind is currently unknown. 

 Chapter 5. Predicting Wind Direction for Agricultural Ground Sprayers 

o An autoregressive model, utilizing 30 seconds of past values, and a hybrid 

model, utilizing ideas from ARIMA and Taylor series expansions, produced 

the lowest RMS values when compared over a four hour testing period. 

o The above models lowered the error RMS value by 9% over the “No Model” 

model. 

Correlation values between sensors were low, indicating little linear correlation, and the 

prediction models had limited success. Although lack of correlation and difficulty with 

prediction suggests random variation, results of chapter 4, indicate the changes in wind 

velocity are not purely random and that changes in the velocity are related. Chapter 3 

showed that a greater likelihood of significant wind directional change occurs during 

periods of lower wind speeds. Wind speeds seem to have greater effect on wind direction 

change than time of day or solar radiation.    
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Recommendations for further research 

 Reevaluate existing predictive spray drift models utilizing the updated information 

about downwind velocity distributions. This will provide better approximations the 

droplet sees during a simulation, thus the model should have better agreement 

with observations. 

In chapter 4, it was shown than an assumption that the next wind velocity measurement 

can be predicted from the current measurement plus some random fluctuation, did not 

agree with observations. It is suggested that differing models/tests in time series 

statistics be investigated. MATLAB and R, an open source statistical package, offer 

many time series statistical functions that test many aspects of said time series. This 

may provide a deeper understanding into how to better approximate wind velocities. An 

example of a test is the Leybourne-McCabe stationarity test that tests the null 

hypothesis that the time series can be described by some autoregressive process 

(AR(p)), versus the alternative hypothesis that the time series is some nonstationary 

ARIMA(p,1,1) process. It is also suggested that other ARIMA models be tried in place of 

the Random Walk model, and tested. It is currently beyond the scope of this work to 

determine if there exists a way to test if a time series can be modeled by a general 

ARIMA model. An example of a model to test is the ARIMA(0,0,0), in which the wind 

velocities are modeled by some mean wind speed plus some random process.

 


