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a b s t r a c t

We propose a flexible nonparametric estimation of a variance function from a one-
dimensional process where the process errors are nonstationary and correlated. Due to
nonstationarity a local variogram is defined, and its asymptotic properties are derived. We
include a bandwidth selection method for smoothing taking into account the correlations
in the errors. We compare the proposed difference-based nonparametric approach with
Anderes and Stein(2011)’s local-likelihood approach. Our method has a smaller inte-
grated MSE, easily fixes the boundary bias, and requires far less computing time than the
likelihood-based method.

© 2019 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

The prevalence of mobile devices and increase in storage capacity have brought about high demand for spatial data
analysis. Many spatial processes exhibit nonstationary features, such as non-constant mean, variance, and autocorrelation.
We encounter these features in many domains, and most commonly from sociology, ecology, geology, meteorology, and
astronomy. Even in one-dimensional processes nonstationarity is common. Consider estimating a range of travel times to
move from point A to point B. Themean and the variance of speed on each section of a road are non-constant, and the nearby
locations share similar features than further apart locations. Consider setting up a wind turbine facing an optimal direction:
the wind direction at a fixed location over time exhibits non-constant variance and is autocorrelated in short time span.
In such scenarios, it is useful to construct interval estimates of the trend and provide spatial prediction intervals using the
variance function estimation.

We propose a difference-based variance function estimator for a one-dimensional process where the errors are non-
stationary and correlated. Prior to our method, the differencing has been applied to data with independent errors.
Neumann, Kent, Bellinson, and Hart (1941) proposed using differences of successive observations to estimate the variance
of independent and identically distributed (i.i.d.) errors. Seifert, Gasser, and Wolf (1993) and Wang, Brown, Cai, and Levine
(2008) explored the reduction of the bias in the estimation of variancewhen differencing from skipping the estimation of the
mean function, which is a source of bias. Gasser, Sroka, and Jennen-Steinmetz (1986) proposed second-order differencing
to estimate variance functions when observations are irregularly spaced, and Hall, Kay, and Titterington (1990, 1991) used
a differencing approach in image processing to estimate the variance of two-dimensional processes with i.i.d. errors.
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In estimating the variance function of a one-dimensional spatial process where the mean and the variance functions are
smooth with additive correlated errors, Anderes and Stein (2011) proposed a likelihood-based method. This method can
handle irregularly spaced data and provide statistical efficiency when the Gaussian assumption is tenable for the observed
process. Still, when selecting a smoothing bandwidth using a local likelihood ratio test heuristic, the computational burden
is heavy as the covariance matrix of every simulated process must be inverted. The assumption of the Gaussian errors is
also stringent for many nonstationary processes. In signal processing, a band-pass filter provides a local variance estimation
assuming that the trend changes slowly. The method is suitable for a second-order stationary error process but not for a
nonstationary error process. Also, converting the output from the frequency domain back to time domain often introduces
bias, whereas applying the difference-based variance estimation in the time domain introduces less bias.

We assume an equidistant design for a one-dimensional process and consider an infill asymptotic framework for a
variance function estimator. Brown and Levine (2007) discussed the asymptotic properties of nonparametric variance
estimators formed by differencing non-constant and independent errors. Cai and Wang (2008) extended an adaptive
approach to a variance function estimation usingwavelet transforms. This article covers amethod applied to a nonstationary
correlated error process and considers general cross-validation for bandwidth selection. In addition to the estimation of a
variance function, the method estimates a short-range correlation structure in the data.

We define a local variogram in Section 2 and describe its the asymptotic properties of the local variogram estimator
in Section 3. Hall and Carroll (1989) discussed the asymptotic risk of the difference-based variance function estimator in
nonparametric regression with regard to the smoothness of variance and mean functions, and Wang et al. (2008) derived
the asymptotic minimax risk rate.

The paper is organized as follows. Section 2 defines a data model and local variogram as a product of variance and
variogram functions. Section 3 proposes the estimator of local variogram and describes its theoretical properties. Section 4
presents the algorithm for the variance function estimation. Section 5 evaluates the method through a simulation study and
discusses the advantages of the difference-based variance function estimator compared to the likelihood-based estimator.
Section 6 closes with possible extensions.

2. Data model and definitions

In this section, we define a Lipschitz condition and our nonstationary data model and introduce local variogram. A
Lipschitz condition on the mean and variance functions of the nonstationary data helps to define the estimable variance
functions.

Definition 1 (Lipschitz Condition). Let c1, c2 > 0. Denote q′ .
= q−⌊q⌋where ⌊q⌋ is the largest integer less than q. We say that

the function f (x) is in class ofΛq(cf ) if for all x, y ∈ (0, 1) ,
⏐⏐f (⌊q⌋)(x)− f (⌊q⌋)(y)

⏐⏐ ≤ c1 |x− y|q
′

,
⏐⏐f (k)(x)⏐⏐ ≤ c2 for k = 0, . . . , ⌊q⌋,

and cf = max(c1, c2).

Definition 2. If a function f (x) is in class Λq(cf ) and there exists δ > 0 such that f (x) > δ for all x ∈ [0, 1], we say the
function is in Λ+q (cf ).

Data Model Consider a nonstationary continuous process model

Z(s) = µ(s)+ σ (s)X(s) (1)

on 0 ≤ s ≤ 1 without loss of generality. We assume a smooth mean function µ(s) and an additive, correlated noise as
a product of a smooth standard deviation function σ (s) and a second-order stationary process {X(s)} where E(X(s)) = 0,
var(X(s)) = 1, and cov(X(s), X(s′)) = ρ(

⏐⏐s− s′
⏐⏐ ; θ ) for all pairs of s and s′ in the unit interval. Consider µ(s) ∈ Λq(cf ), q ≥ 0,

and σ 2(s) ∈ Λ+β (cf ) , β ≥ 2. The correlation function follows:

ρ(
⏐⏐s− s′

⏐⏐ ; θ ) =
⎧⎨⎩1 s = s′

1−

⏐⏐s− s′
⏐⏐α

θ
+ O(

⏐⏐s− s′
⏐⏐α+2) s ̸= s′

(2)

where θ > 0 and 0 < α < 2 for validity. This class of correlation function (2) encompasses linear, spherical, Matérn and
exponential models (Stein, 1999). For an equally spaced design, we define the location with si = (2i − 1)/(2n) indexed by
i = 1, . . . , n. As a shorthandwewrite Zi = Z (si) , µi = µ (si) , σi = σ (si) , ρh = ρ (h/n) and specify a parametric correlation
function ρs;θ = ρ (s; θ). Let σ 2(j)(s) = djσ 2(x)/dxj

⏐⏐
x=s denote the jth-order derivative of a function σ 2(s).

We expand the definition of a variogram, introduced by Matheron (1962), since differencing a nonstationary process
depends on its local properties. Using a 0-mean nonstationary process as a data model from (1), the variance at s of a lag- hn
first-order differenced process is

var
(
Z
(
s−

h
2n

)
− Z

(
s+

h
2n

))
= 2σ 2(s) (1− ρh)+ 2

(
σ (1)(s)

)2
(1+ ρh)

(
h
2n

)2

+ o
(
n−2

)
. (3)
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The first term contains the product of a variogram and a local variance. The second and following higher order terms are
comprised of the derivatives of the local variance function and the power of lag.

Definition 3. The local variogram 2γL (s, h; θ) is defined as the leading term of (3), i.e.

γL(s, h; θ ) = σ 2(s)
(
1− ρ

(
h
n
; θ

))
. (4)

Local variogram in (4) is a product of a variance function and the variogram of a stationary process. While a variogram
represents spatial dispersion by taking lagged differences of a stationary process, a local variogram describes the spatial
dispersion about a specific neighborhood. When the lag size h is small in comparison to the number of observed points n in
mixed-domain asymptotic, the higher order terms in (3) vanish. With an increasing domain, the variance function is better
estimated. With an infill asymptotic, the correlation is better described.

3. Theoretical results

To estimate a variance function, we first define an estimator for local variogram in Section 3.1. The bias and the variance
of the local variogram estimator are derived in Sections 3.2 and 3.3 respectively. In Section 3.4, the asymptotic rate of
convergence of the point-wise mean square error is shown and is compared to that of the standard nonparametric variance
estimator with i.i.d. errors.

3.1. Local variogram estimator

For an equally-spaced, nonstationary process {Zi} in (1), consider taking a simple differencing of lag h
n . Let Di,h =

Z(si)−Z(si+h)
√
2

. We normalize the simple differenced process such that var(Di,h) matches var(Zi) as if {Zi} were an independent
process. We refer to the sequence {Di,h}

n−h
i=1 as pseudo-residuals, borrowing the term from Brown and Levine (2007). The

shape of squared pseudo-residuals at different lags resemble a variogram cloud.
Let Kλ represent a Gasser–Müller kernel with bandwidth λ

Kλ,s0 (s) =
k−2∑
i=0

ai

(
s− s0

λ

)i

where ai =

⎧⎨⎩0 (k+ i) odd
(−1)i/2(k)!(k+i)!k(k−i)

i!(i+1)22k+1+
(

k
2

)
!

(
k
2

)
!

(
k−i
2

)
!

(
k+i
2

)
!

(k+ i) even.

Since we directly estimate the variance function, select the order of derivative ν = 0 for the above Gasser–Müller kernel,
and set the polynomial order k to be greater than the degree differentiability β of a variance function. Gasser, Müller, and
Mammitzsch (1985) developed the kernel so that the moment conditions simplify the calculation of high-order terms in
nonparametric estimators and that the edge effect be easily removed by adjusting the kernels at the boundaries of the
domain.

Define the Gasser–Müller kernel estimator of local variogram at location s and lag h
n as

γ̂L λ(s, h) =
n−h∑
i=1

Kλ,i+h/2(s)D2
i,h. (5)

Note that the ith squared difference D2
i,h is associated with the kernel weight centered at si+h/2 since the ith pseudo-residual

is positioned directly between si and si+h. It is possible to consider higher-order differencing, but the first-order differencing
introduces the least bias and variance in local variogram estimation due to the reduced number of correlated terms involved.
We also suggest using the smallest lag in differencing because it reduces correlation among the sequence of pseudo-residuals
{D2

i,h}.

3.2. Bias in the local variogram estimator

Let Di,h = (Zi − Zi+h) /
√
2, δi,h = µi − µi+h, and gi,h = σ 2

i + σ 2
i+h − 2σiσi+hρh for i = 1, . . . , n− h. The expected value of

the local variogram estimator is

E
(
γ̂L λ(s, h)

)
=

n−h∑
i=1

K
λ,i+ h

2
(s)E

(
D2
i,h

)
=

1
2

n−h∑
i=1

K
λ,i+ h

2
(s)
{
(µi − µi+h)2 + σ 2

i + σ 2
i+h − 2σiσi+hρh

}
.
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The bias of the local variogram estimator is

bias(γ̂λ(s, h)) = E(γ̂λ(s, h))− (1− ρh)σ 2(s)

=

n−h∑
i=1

K
λ,i+ h

2
(s)
{
1
2
(δ2i,h + gi,h)− (1− ρh)σ 2(s)

}
. (6)

Note that (1− ρh) = O(n−α) and 0 < α < 2.

Theorem 3.1. Assume a nonstationary data model (1) and the correlation function (2). The mean and the variance functions
µ(s) and σ 2(s) are continuously differentiable Lipschitz functions (see Definitions 1 and 2) where µ(s) ∈ Λq(cf ), q ≥ 0 and
σ 2(s) ∈ Λ+β (cf ), β ≥ 2. Using the Gasser–Müller kernel, the local variogram estimator (5) at location s and lag h

n has an asymptotic
bias of order

bias(γ̂λ(s, h)) =

⎧⎨⎩
O(n−2 + n−2q + n−α−1) where q, β < m
O(n−2 + n−2q + n−α−1)+ O(n−αλm) where q < m ≤ β

O(n−2 + n−2q + n−α−1)+ O(λm) where m ≤ q.
(7)

where m is the order of kernel.

Proof. To calculate an asymptotic bias we split (6) into two parts. The first term is δ2i,h whose expansion is in (20) for q ≥ 1
and in (21) for 0 ≤ q < 1. Convolved with a Gasser–Müller kernel of orderm (Gasser et al., 1985), the higher order terms in
δ2i,h cancel when the number of derivatives of the mean function q ≤ m and shows

n−h∑
i=1

K
λ,i+ h

2
(s)δ2i,h =

{
O(n−2)+ O

(
n−2q

)
where q < m

O(n−2)+ O
(
n−2q

)
+ O(λm) where q ≥ m.

(8)

The second part of the bias is 1
2gi,h − σ 2(s)(1 − ρh). The leading term in the expansion of gi,h about s is the local variogram

σ 2(s)(1− ρh). See Eq. (22) in Appendix for the Taylor expansion. Applying the Gasser–Müller kernel to the high order terms
of gi,h, we have the following:

n−h∑
i=1

K
λ,i+ h

2
(s)
{
1
2
gi,h − σ 2(s)(1− ρh)

}

=

n−h∑
i=1

K
λ,i+ h

2
(s)

{
(1− ρh)

(
σsσ

(1)
s

h
n
+

σsσ
(2)
s

2
h2

n2

)
+

1
2

(
σ (1)
s

h
n

)2
}

+

n−h∑
i=1

K
λ,i+ h

2
(s)(1− ρh)

⌊β⌋∑
j=1

{(
σ 2
s

)(j)
j!
+

(
σ 2
s

)(j+1)
2(j+ 1)!

(
1+

h
n

)
h
n

}
(si − s)j

+

n−h∑
i=1

K
λ,i+ h

2
(s)

h2

2n2

⌊β⌋∑
k=1

k+1∑
j=1

ckσ (j)
s σ (k−j+2)

s (si − s)k +
n−h∑
i=1

K
λ,i+ h

2
(s)O(|si − s|β )

=

{
O
(
n−α−1

)
+ O

(
n−2

)
where β < m

O
(
n−α−1

)
+ O

(
n−2

)
+ O(n−αλm) where β ≥ m.

(9)

Combine the results in (8) and (9), and we have the asymptotic bias of the local variogram. □

The order of bias is dependent on the differentiability of the mean and the variance functions q and β respectively, the
order m of the kernel, and the smoothness α of the nonstationary process. When m is greater than both q and β , which is
Case A in Remark 4 of the Appendix, the asymptotic bias is the smallest. Therefore, we recommend choosing a high order
kernel function since q and β are unknown. See Remark 4 for other conditions.

3.3. Variance of the local variogram estimator

The variance of the local variogram estimator at location s and lag h
n is

var(γ̂λ(s, h)) =
n−h∑
i=1

n−h∑
j=1

K
λ,i+ h

2
(s)K

λ,j+ h
2
(s)cov(D2

i,h,D
2
j,h). (10)

Recall that Di,h = (δi + σiXi − σi+hXi+h) /
√
2 where Xi is a stationary process with mean 0, variance 1, and a correlation

function cov(Xi, Xi+h) = ρh. Let {Xi}
n
i=1 be a Gaussian process. Then (σiXi − σi+hXi+h) is distributed Normal

(
0, gi,h

)
, and its
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fourth moment is E (σiXi − σi+hXi+h)
4
= 3g2

i,h. The variance of the squared pseudo-residual is

var(D2
i,h) = E(D4

i,h)− E2(D2
i,h)

=
1
4

{
δ4i,h + 6δ2i,hgi,h + 3g2

i,h −
(
δ2i,h + gi,h

)2}
= δ2i,hgi,h +

1
2
g2
i,h.

The covariance between the ith and the jth squared differences is

cov(D2
i,h,D

2
j,h)

=
1
4

{
E((Zi − Zi+h)2

(
Zj − Zj+h

)2)− (δ2i,h + gi,h)(δ2j,h + gj,h)
}

= δi,hδj,h{ρ|i−j|(σiσj + σi+hσj+h)− ρ|i−j−h|σiσj+h − ρ|i−j+h|σi+hσj}

+
1
2
{(ρ|i−j|σiσj − ρ|i−j−h|σiσj+h)2 +

(
ρ|i−j+h|σi+hσj − ρ|i−j|σi+hσj+h

)2
}

+ (ρ2
|i−j| + ρ|i−j−h|ρ|i−j+h|)σiσi+hσjσj+h − ρ|i−j|σiσi+h(ρ|i−j+h|σ 2

j + ρ|i−j−h|σ
2
j+h)

= δi,hδj,hPij +
1
2
P2
ij .

where Pij = ρ|i−j|
(
σiσj + σi+hσj+h

)
− ρ|i−j−h|σiσj+h − ρ|i−j+h|σi+hσj for i ̸= j and Pii = gi,h for i = j. The Taylor expansion of

Pi,j about si for any i ̸= j is

Pij =
h2

n2

(
σ

(1)
i

)2
−

2h2

(nθ )2
σ 2
i + o

(
n−3

)
. (11)

The next theorem shows the asymptotic rate of convergence of the variance of local variogram estimator.

Theorem 3.2. Assume the same conditions as in Theorem 3.1 and a Gaussian process for {Zi}. The variance (10) of the local
variogram estimator γ̂L,λ(s, h) in (5) is asymptotically

var(γ̂λ(s, h)) = O
(

1
nλ

)
O
(
n−2q−α

+ n−2α
)
. (12)

Proof. Use the Taylor expansions of δi,h, gi,h, and Pij in (11) (further details are in Eqs. (20) and (22) in the Appendix), and
obtain the Taylor expansion of the variance about s at fixed lag h

n :

var(γ̂λ(s, h)) =
n−h∑
i=1

K 2
λ,i+ h

2
(s)
(

δ2i gi +
g2
i

2

)
+ 2

n−h−1∑
i>j=1

K
λ,i+ h

2
(s)K

λ,j+ h
2
(s)

(
δiδjPij +

P2
ij

2

)

= 2
n−h∑
i=1

K 2
λ,i+ h

2
(s)
{
δ2i (1− ρh)O (1)+ (1− ρh)2O (1)

}
+ 2

n−h−1∑
i>j=1

K
λ,i+ h

2
(s)K

λ,j+ h
2
(s)
{
δiδjO(n−2)+ O(n−4)

}
= 2(1− ρh)

n−h∑
i=1

K 2
λ,i+ h

2
(s)
{
O(n−2 + n−2q)+ (1− ρh)O(1)

}
+ 2

n−h−1∑
i>j=1

K
λ,i+ h

2
(s)K

λ,j+ h
2
(s)O(n−4) (13)

Use the fact that K
λ,i+ h

2
= O

( 1
nλ

)
and

∑
K 2

λ,i+ h
2
= O

( 1
nλ

)
and reduce the last line (13) to (12). □

The correlation between D2
i,h and D2

j,h, where i ̸= j, is

cor(D2
i,h,D

2
j,h)

=
cov(D2

i,h,D
2
j,h)√

var(D2
i,h)var(D

2
j,h)
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=
δi,hδj,hPij + 1

2P
2
ij√

(δ2i,hgi,h +
1
2g

2
i,h)(δ

2
j,hgj,h +

1
2g

2
j,h)

=

h4

n4

[
2σ 2

i

θ2

{
σ 2
i

θ2 −

(
σ

(1)
i

)2
− δi,hδj,h

n2

h2

}
+

{
δi,hδj,h

n2

h2
+

1
2

(
σ

(1)
i

)2}(
σ

(1)
i

)2
+ o

(
n−1

)]
√(

δ2i,hgi,h +
1
2g

2
i,h

) (
δ2j,hgj,h +

1
2g

2
j,h

)
=

O(n−4)
O(n−2α)

= O(n−2(2−α)).

The correlation model of {Zi} in (2) sets 0 < α < 2. Note that the correlation between the squared pseudo-residuals D2
i,h

and D2
j,h converges to 0 as n→ ∞ and the distance |i−j|n shortens. The speed of convergence is slower where α approaches

2, which translates to a very smooth process, which is a rarity in any physical process, assuming that {Zi} is a Gaussian
process (Stein, 1999).

3.4. Asymptotic risk

Let the point-wise risk of the local variogram estimator be the point-wise sum of the squared bias in (6) and the variance
in (13). The asymptotic point-wise risk combines the results of Theorems 3.1 and 3.2. We use ≍ to represent the order of
bandwidth, λ, in n.

Theorem 3.3. Consider estimating the variance function of a one-dimensional nonstationary process with n equally-spaced
observations, whose data model follows (1), (2), and a Gaussian distribution. Assume that µ(s) ∈ Λq, q ≥ 0, σ 2(s) ∈ Λβ , β ≥ 2
and that the bandwidth λ = O

(
n−x
)
where 0 < x < 1. When the order of Gasser–Müller kernel m is 1 < m < β regardless of q,

or β < m < q, the point-wise risk of the estimator of local variogram in (5) is

Risk(γ̂λ(s, h)) =

{
O
(
n−4q

)
where λ ≍ n−1−2α+4q

O
(
n−4

)
where λ ≍ n3−2α

(14)

given α < 2q < min(α +
1
2
, 2) for the top case and q ≥ 1 and α >

3
2

for the bottom case. When the order of Gasser–Müller
kernel m is greater than either q > 1 or β , the point-wise risk is

Risk(γ̂λ(s, h)) =

{
O
(
n−2m(1+2α)/(1+2m)

)
where λ ≍ n−(1+2α)/(1+2m)

O
(
n−2α−2m/(1+2m)

)
where λ ≍ n−1/(1+2m)

(15)

given α < min
(
2q,

3
2

)
for the top and α < 2q for the bottom.

Proof. The asymptotic bias and variance are derived in (7) and (12) respectively. Combining the two yields

Risk
(
γ̂λ(s, h), γ (s, h)

)
= bias(γ̂λ(s, h))2 + var

(
γ̂λ(s, h)

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O
(
n−4 + n−4q

)
+ O

(
1
nλ

)
O
(
n−2α

)
where q, β < m

O
(
n−4 + n−4q + n−2αλ2m

)
+ O

(
1
nλ

)
O
(
n−2α + n−2q−α

)
where q < m ≤ β,

O(n−4 + n−4q + λ2m)+ O
(

1
nλ

)
O
(
n−2α + n−2q−α

)
where m ≤ q.

(16)

We break down the above three scenarios as A, B, and C below.

A. Assume thatm > q and m > β .

(i) When q ≥ 1, α < 2q holds true because 0 < α < 2, and (12) reduces to O
(
n−2α−1λ−1

)
. When the asymptotic

bias is O(n−2), the bandwidth condition is met and λ ≍ n3−2α , which suggests 3
2 < α.

(ii) When 1
2 < q < 1, the asymptotic order of bias is O

(
n−2q

)
. With α < 2q, the asymptotic variance of

O
(
n−2α−1λ−1

)
. Then, λ ≍ n−1−2α+4q.
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B. Assume q < m ≤ β .

• When α < 2q, the asymptotic variance is O
(
n−2α−1λ−1

)
.

(i) The bias is O(n−αλm) when α < 2q, and it gives λ ≍ n−1/(1+2m).
(ii) The bias is O(n−2) when q > 1, α > 2−

m
1+ 2m

, and λ ≍ n3−2α .

(iii) The bias is O
(
n−2q

)
when q ≤ 1, α >

1
2q− m

1+2m
, and λ ≍ n−1−2α+4q.

• When α ≥ 2q, the case does not hold. The asymptotic variance is O
(
n−2q−α−1λ−1

)
, yet the conditions of the bias

contradict the assumption.

C. Assumem ≤ q.

(i) Assuming that the bias is O(λm), we have λ ≍ n−(1+2α)/(1+2m) when α < 2q; and λ ≍ n−(1+α+2q)/(1+2m) when
α ≥ 2q. Detailing further conditions,

- O(λm) > O(n−2)⇐⇒
m(1+ 2α)
1+ 2m

< 2. This implies m <
2

2α − 3
when α >

3
2
.

- O(λm) > O(n−2q)⇐⇒
m(1+ 2α)
1+ 2m

< 2q. This holds true since
1+ 2α
1+ 2m

<
1+ 4q
1+ 2m

<
2q
m

where the second
inequality holds whenm < 2q.

(ii) When the bias is O(n−2), the case is the same as A(i) and B(ii), and λ ≍ n3−2α . □

Remark 1. In (14) of Theorem 3.3, the order of risk and bandwidth are the same for the top and bottom cases when the
mean function is once differentiable (q = 1).

Givenm = β and as α→ 0 (which suggests an independent process), the risk converges to O
(
n−2β/(1+2β)

)
in both cases

of (15). The rate of convergence of the risk is consistent with the nonparametric estimation of a continuous, β-differentiable
function (Tsybakov, 2009).

Remark 2. In (15) of Theorem 3.3 where the order of Gasser–Müller kernel is greater than the degree differentiability of
the mean or the variance function, as long as α < 3/2 with m > 1 or as long as m > 3/2 the risks are in a similar order of
magnitude:

O
(
n−2m(1+2α)/(1+2m)

)
O
(
n−2α−2m/(1+2m)

) = O
(
n2α/(1+2m)) .

Remark 3. There is a divergence of risk when (i) q ≥ β or (ii) the process is very smooth with α ≳ 3/2, as it is hard to
distinguish the mean function from a nonstationary noise process.

4. Bandwidth selection

It is well known in the nonparametric statistics literature that with correlation in underlying data, a cross-validation for
bandwidth selection requires an adjustment to the data or a penalty term included in an objective function. Opsomer,Wang,
and Yang (2001) compiled several proposals of bandwidth selection in nonparametric regression with correlated errors and
addressed recent developments on the theoretical front. We choose a generalized cross-validation to minimize the mean
square prediction errors of local variogram.

Recall that D2
i.h denotes the ith squared difference of lag- hn process. Let d2i,h represent a realization of D2

i,h, and define a
deviance of local variogram estimation at si+h/2 as

ϵ̂i = d2i,h − γ̂L

(
si+ h

2
, h
)

. (17)

Let the covariancematrix of the deviances be Cϵ whose (i, j) element is cov
(
ϵi, ϵj

)
.Wede-correlate the sequence of deviances,

residϵ̂ = (ϵ̂1, . . . , ϵ̂n), of the local variogram estimation and denote the de-correlated residuals as

ξ = C−1/2
ϵ̂

residϵ̂ . (18)

The choice of a covariance model and parameter values are not sensitive to the bandwidth estimation when the correlation
in residϵ̂ is weak with a small lag in differencing.
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Difference-based variance function estimation including a bandwidth selection:

1. Take a simple difference of lag h
n from {Zi}. Create a set of bandwidths {λk}whose values do not exceed 1/2 the range

of the sample domain [s1, sn]. Estimate the local variogram using Eq. (5) for each λk.
1

2. Calculate the residϵ̂ in (17) for each λk and derive a sample covariance Cϵ̂ of residϵ̂ .
3. Select a bandwidth using a generalized cross-validation, minimizing the overall mean squared error

λ̂∗ ← argλ min
n−1∑
i=1

(
ξi

1−M(i,i)

)2

,

where M is an (n− h)× (n− h) smoothing matrix of D2
i,h and the (i, i) element ofM is M(i,i) = Kλ(0) and ξ in (17).

4. Estimate the trend µ(s) of {Zi} and normalize the nonstationary process with µ̂(s) and the local variogram using λ̂∗

from 3:{
Z∗i
}n
i=1
←

{
Zi − µ̂i

}n
i=1{√

γ̂L λ̂∗ (si, h)
}n
i=1

.

5. Fit a covariance model for
{
Z∗i
}
and estimate its variance σ̂ 2

∗
and the correlation function at lag h

n . Adjust the local
variogram estimation by the ratio between the first two, σ̂ 2

∗
and 1− ρ̂Z∗ (h; θ̂ ), and derive the variance function of {Zi}:

σ̂ 2(s)←
γ̂L λ̂∗ (s; h) σ̂

2
∗

1− ρ̂Z∗ (h; θ̂ )
.

The result of our simulation study is in the next section. The generalized cross-validation is an approximation to the
leave-one-out cross-validation. In Step 3, we use a de-correlated series to measure the risk, mean squared error. In Step 4,
the estimation of the trend is needed when {Zi} is comprised of both the nonstationary error process and the trend. In Step
5, the parameters may be estimated either nonparametrically or parametrically. The bandwidth selection takes a few steps
for optimization (from Step 1 to 3), whereas in the likelihood-based method (Anderes & Stein, 2011) it requires compute-
intensive simulations to rank the given nonstationary process amongst conditioned, stationary processes.

5. Simulation study

We compare the difference-based method and the likelihood-based method in terms of statistical and computational
efficiencies. We also examine the size of dependence in correlated errors on the functional estimations. To start, define
oracle bandwidth as the bandwidth that yields the minimum discretely integrated mean square error (DMSE), which is the
sum of the MSEs at a set of evaluation points. To provide equal footing on the difference- and likelihood-based estimations,
we assume that the correlation functions and the parameter values are known. We label the oracle bandwidths for each
method as ‘Diff-λO’ and ‘Like-λO’.

5.1. Set-up

Assume a data model Z(s) = µ(s) + σ (s)X(s) as in (1) and set µ(s) = 0 to test the method directly on a correlated error
process {σ (s)X(s)}. We set the stationary error process {X(s)} as a Gaussian process for analytical tractability. A Gaussian
process is easy to simulate and fits the assumed data model for the likelihood-based approach, while it provides little favor
towards the difference-based approach. The dependent structure is generated using an exponential correlation function
with a range parameter set at two levels θ = 0.01 and 0.1. The latter, in fact, refers to an independent error process. The
observations are taken from an equally spaced grid over a unit interval, s ∈ [0, 1]. Four sample sizes n = 100, 200, 500, and
1000 are used. The standard deviation functions are chosen to examine the effect of differentiability of the variance functions
especially for the bandwidth selections. Here is the summary of experimental set-up. Note that Anderes and Stein (2011)
used σ (s) in 2(a), and we add 2(b).

1. n = 100, 200, 500 and 1000
2. σ (s) : [0, 1] → R+ and set s ∈

{
0, 1

n−1 , . . . ,
n−2
n−1 , 1

}
.

(a) an infinitely-differentiable function: σ (s) = 2 sin(s/0.15)+ 2.8,
(b) a step function: σ (s) = 1+ 1{1/3<s≤1}.

1 An important consideration in both local variogram and a variance function estimation is that they are non-negative everywhere. When a bandwidth
is small, the smoothing may result in negative values often near the boundaries. When estimating near the boundary, we suggest fixing the bandwidth.
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Fig. 1. A comparison of the difference-based method (first row) and the likelihood-based method (third row) using their respective proposed bandwidth
selections. The middle row has the difference-based estimations using the bandwidth that minimizes the DMSE. The true standard deviation function is in
thick red line, and the sample estimations are in thin gray lines. As the sample size increases from n = 200 to n = 1000, the overall estimation becomes
more precise.

3. For a stationary error process, {Xs}, the correlation function is

cor
(
X(s), X

(
s+

h
n

))
=

{
0 where θ = 0
exp

(
−

1
θ

h
n

)
where θ > 0,

and set θ = 0.01, 0.1 for h≪ n and 0 ≤ s ≤ 1− h
n .

4. Draw 100 random processes for each experimental setting.

Define DMSE(σ̂ 2
λ̂
) =

∑n
i=1(σ̂i,λ̂ − σi)2/n and L∞(σ̂ 2

λ̂
) = maxi

{
|σ̂ 2

i,λ̂
− σ 2

i |

}
. We estimate the variance functions at 100

equally spaced locations on [0,1] and evaluate using discretely integrated mean square error (DMSE) as an overall measure
of functional estimation and the supremum norm L∞, i.e. the maximum absolute deviation (MAX), to measure the worst
discrepancy.

5.2. Experiments

Fig. 1 shows a series of results from the variance function estimation. The thick red line represents the true standard
deviation function and the thin gray lines the estimations. The first row shows the proposed difference-basedmethod (from
here on notedDiff ) including bandwidth and covariance parameter estimation; the second row applied the difference-based
method with oracle bandwidths and known covariance parameters (noted Diff -λO); and the last row used the likelihood-
based method (Anderes & Stein, 2011) (noted Like-λO) with oracle bandwidths and known covariance parameters. As
expected in an infill design, the estimation becomes more precise as the number of observations increases from 200 to
500 to 1000. Comparing the second and third rows of Fig. 1, we see that the likelihood-based variance function estimations
are more wavy than the difference-based ones. It suggests that the oracle bandwidths, that minimized the DMSE, for the
likelihood-based method are underestimated. Had we selected a larger bandwidth for Like-λO to correct the shape of the
functional estimations, the DMSE should only increase.

5.3. Numerical results

Figs. 2 and 3 display the estimation results of the sinusoidal σ (·) function with the discretely integrated mean square
error (DMSE) and the maximum absolute deviation (MAX) respectively. The colors of the boxplots represent the estimation
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Fig. 2. Summary of the difference-based method (white) with correlation and bandwidth estimations, the same method with oracle correlation and
bandwidths (red), and the likelihood-based method with oracle correlation bandwidths (blue) using DMSE. The sample size n is varied from 100 to 1000
on a fixed unit interval, and the strength of the error correlation is set weak (left) and strong (right) for each sample size. The y-axis is displayed in log-scale
. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Summary of three methods using the L∞ norm, maximum absolute deviation. The detailed descriptions are the same as in Fig. 2.

methods where Diff is in white, the Diff -λO in red, and the Like-λO in blue. There are two sets of tri-colored boxplots for each
sample size n = 100, 200, 500, and 1000 (demarcated by vertical dashed lines), where the left set corresponds to weakly
correlated errors with θ = 0.01 and the opposite set to strongly correlated errors with θ = 0.1.

With oracle bandwidths, there is little difference between the difference-based and likelihood-basedmethods where n is
less than 200. However,with larger sample sizes the difference-basedmethod showsmore consistency overall demonstrated
by smaller DMSE and the supremumnorm. The likelihood-basedmethodwith oracle bandwidth resulted in under-smoothed
estimations of the variance function and exhibited the boundary effect (Fig. 1). The proposed difference-basedmethodwith a
bandwidth estimation fares comparably to the difference-based estimationwith an oracle bandwidth in the L∞ norm (Fig. 3),
but the risk of the estimation does not converge at the same rate as the applied method with an oracle bandwidth due to
the variability resulting from the correlation estimation. In other words, the rate of convergence in the variance function
estimator follows that of the local variogram estimator in Section 3 when the correlation structure is accurately estimated.

Considering that the sinusoidal σ (·) ranges from 0.8 to 4.8 in Fig. 1, the spread of summary values by both DMSE and the
supremumnorm is reasonable. In Fig. 2 the DMSEs aremostly less than 0.5, and in Fig. 3 the L∞ norms are generally less than
1.5. Also note that the strength of the dependency in the error process or the effective range of correlation does not affect
the asymptotic risk as displayed by similar distributions of the summary measures in the left and right triplets for each n.

5.4. Bandwidth selection

Table 1 contains the summary of bandwidth selections for estimating a smooth sinusoidal and piece-wise linear σ (·)
functions. For smoothing kernelswe use a degree six Gasser–Müller kernel for the differenced-basedmethod and aGaussian-
based higher order kernel for the likelihood-based method. When we estimate both the variance and correlation functions,
the bandwidth selection results in a large value in comparison to the oracle bandwidths with known correlation parameters.
When there are more unknowns in the form of a process, a larger bandwidth smooths the relative instability in the
estimation.
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Table 1
Bandwidth selections for estimating (a) sine and (b) step σ (·) functions. Oracle bandwidths, λO , are defined to provide the minimum DMSE for difference-
based and likelihood-based methods; bandwidth selections using our method, λ∗, result in larger values than the oracle bandwidths. Bandwidths, marked
Levine, are derived assuming the underlying process is independent (Levine, 2006). In parentheses are the variability.
n Bandwidth (a) Sine (b) Step

Methods θ = 0.1 θ = 0.01 indep. θ = 0.1 θ = 0.01 indep.

100 Diff-λO 0.203 0.206 0.209 0.218 0.222 0.229
(.054) (.059) (.052) (.071) (.084) (.076)

Diff-λ∗ 0.262 0.281 0.266 0.405 0.415 0.434
(.074) (.079) (.069) (.126) (.087) (.074)

Levine 0.356 0.455 0.420 0.360 0.467 0.418
(.297) (.274) (.281) (.304) (.267) (.289)

Like-λO 0.165 0.168 0.154 0.137 0.138 0.133
(.054) (.055) (.033) (.032) (.030) (.030)

200 Diff-λO 0.170 0.171 0.177 0.191 0.185 0.203
(.034) (.037) (.046) (.050) (.060) (.066)

Diff-λ∗ 0.240 0.218 0.190 0.381 0.336 0.289
(.090) (.108) (.119) (.126) (.143) (.163)

Levine 0.234 0.380 0.347 0.248 0.369 0.334
(.248) (.224) (.229) (.249) (.230) (.217)

Like-λO 0.131 0.129 0.127 0.113 0.113 0.112
(.034) (.028) (.021) (.025) (.024) (.023)

500 Diff-λO 0.140 0.141 0.154 0.154 0.152 0.158
(.027) (.031) (.037) (.042) (.042) (.047)

Diff-λ∗ 0.217 0.205 0.180 0.357 0.329 0.260
(.107) (.117) (.111) (.143) (.147) (.159)

Levine 0.186 0.256 0.232 0.192 0.264 0.240
(.186) (.164) (.165) (.193) (.152) (.166)

Like-λO 0.098 0.098 0.100 0.091 0.090 0.094
(.016) (.016) (.016) (.019) (.016) (.017)

1000 Diff-λO 0.120 0.121 0.133 0.131 0.125 0.148
(.026) (.026) (.023) (.033) (.033) (.038)

Diff-λ∗ 0.209 0.186 0.170 0.329 0.300 0.255
(.121) (.117) (.109) (.159) (.157) (.165)

Levine 0.180 0.289 0.174 0.199 0.288 0.191
(.155) (.118) (.094) (.157) (.123) (.092)

Like-λO 0.086 0.084 0.086 0.078 0.076 0.078
(.013) (.011) (.013) (.015) (.013) (.014)

6. Summary

We developed a nonparametric variance function estimator for a one-dimensional nonstationary process using a
difference filter. We assumed that the error process is additive and second-order stationary after normalizing the variability.
We defined local variogram and derived infill asymptotic properties of the local variogram estimator dependent on the
relative smoothness of the mean and variance functions and the mean square differentiability of the process.

We have shown through a simulation study that the difference-based estimation overall has a smaller DMSE than a
likelihood-based approach. In nonparametric regression, the boundary bias can be easily fixed by adjusting the objective
function, whereas the likelihood-basedmethod adds generalized estimating equations to adjust the effect. Another contrast
between the two approaches is in computing time. The difference-based method may require a matrix inversion for the
correlation parameter estimation, when using a likelihood-based estimation, whereas the likelihood-based local variance
estimation proposes an ad hoc bandwidth selection that requires a matrix inversion for every simulated process generation.
The difference-based approach reduces the computing time by O(n−2) to that of the likelihood-based method.

We extend the difference-based variance function estimation of a one-dimensional error process to a two-dimensional
nonstationary random field (Kim & Zhu, 2017). The configurations for a difference filter in 2-D space are manifold with
considerations for direction, weight, and the spatial distribution of observational points. The area of applications is also
extensive for two-dimensional nonstationary random fields, and the feasibility is examined in a simpler, one-dimensional
nonstationary process scenario in this paper.

Appendix. Technical details

Here is the Taylor expansion of the local variance of an h
n -lagged nonstationary process with smooth mean and variance

functions. It details Eq. (3) to derive the local variogram (4) as the main term in the expansion.

var
(
Z
(
s−

h
2n

)
− Z

(
s+

h
2n

))
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= 2

(
σ 2(s)+

σ 2(2)(s)
2!

(
h
2n

)2

+
σ 2(4)(s)

4!

(
h
2n

)4

+ o
((

h
2n

)
5
))

− 2ρh

p∑
k=0

⎧⎨⎩
(

σ (k)(s)
k!

)2 ( h
2n

)2k

(−1)k + 2
∑

i+j=2k, i̸=j

σ (i)(s)
i!

σ (j)(s)
j!

(
h
2n

)2k
⎫⎬⎭

= 2(1− ρh)

{
σ 2(s)+

σ 2(2)(s)
2!

(
h
2n

)2

+
σ 2(4)(s)

4!

(
h
2n

)4

+ o
((

h
2n

)
5
)}

+ ρh

[(
σ 2(1)(s)

)2
σ 2(s)

(
h
2n

)2

+

{ (
σ 2(1)(s)

)4
32
(
σ 2(s)

)3 +
(
σ 2(1)(s)

)2
8
(
σ 2(s)

)2 − 3
(
σ 2(2)(s)

)2
8σ 2(s)

+
σ 2(1)(s)σ 2(3)(s)

6σ 2(s)

}(
h
2n

)4
]

= 2σ 2(s)(1− ρh)+

{
σ 2(2)(s)(1− ρh)+

(
σ 2(1)(s)

)2
σ 2(s)

ρh

}(
h
2n

)2

+ o

((
h
2n

)3
)

. (19)

δi,h ≤ c2µ(h/n)
q. Under the condition that µ(·) ∈ Λq(cf ) and q ≥ 0, the Taylor expansion of δi,h about location s when

q ≥ 1 is:

δi,h =

⌊q⌋∑
j=1

µ
(j)
s

j!

{
(si − s)j − (si+h − s)j

}
+ O

(
|si − s|q + |si+h − s|q

)
= −

h
n

⌊q⌋∑
j=1

µ
(j)
s

j!

j−1∑
a=0

(si − s)a(si+h − s)j−1−a + O(|si − s|q + |si+h − s|q); (20)

and when 0 ≤ q < 1, it is:

δi,h = c
(

i
n

)q

− c
(
i+ h
n

)q

= O
(
n−q

)
. (21)

A Taylor expansion of gi,h about location s is:

1
2
gi,h = (1− ρh)

⎡⎣σ 2
s + σs

⌊β⌋∑
j=1

σ
(j)
s

j!

{
(si − s)j + (si+h − s)j

}⎤⎦+ O(|si − s|β )

+

⌊β/2⌋∑
l=1

(
σ

(l)
s

l!

)2 {
(si − s)2l + (si+h − s)2l − ρh (si − s)l (si+h − s)l

}
+

⌊β⌋∑
m=3

m−1∑
j=1

[
cmσ

(j)
s σ

(m−k)
s

m!

{
(si − s)m + (si+h − s)m

}
− ρh

σ
(j)
s σ

(m−j)
s

j!(m− j)!
(si − s)j (si+h − s)m−j

]
(22)

under the condition that σ 2(·) ∈ Λ+β and β ≥ 2.

Remark 4. We detail Theorem 3.1 in the order we listed the results in (7).

A. Assume that m > q and m > β , in other words the order of kernel is greater than the degree differentiability of both
the mean and variance functions. Then, (A.i) when α < 1 and α+1

2 < q ≤ 1, the bias is O
(
n−α−1

)
; (A.ii) when α < 1

and 2q ≤ α + 1/2, the bias is O
(
n−2q

)
; and (A.iii) when α ≥ 1 and q ≥ 1, the bias is O

(
n−2

)
.

B. Assume that q < m ≤ β and that λ = O(n−x) where 0 < x < 1. Then O(n−αλm) is the order of bias in the following
three settings: (B.i) q ≥ 1, α ≤ 1, and x < 1/m; (B.ii) q ≥ 1, α ≥ 1, and x < (2− α)/m; and (B.iii) α < 1, 2q < α + 1,
and x < (2q− α)/m. The remaining scenarios should refer to Case A.

C. Assume that m ≤ q irrespective of β and that λ = O(n−x) where 0 < x < 1. Then the bias is O(λm) in the following
three settings: (C.i) q ≥ 1, α ≥ 1, and 2/m > x; (C.ii) q < min(1, α+1

2 ), and x < 2q/m; (C.iii) α < 1, α + 1 < 2q and
x < (α + 1)/m. The remaining scenarios should refer to Case A.
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