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ABSTRACT

Intruder detection and border surveillance are some of the many applications of sensor

networks. In these applications, sensors are deployed along the perimeter of a protected area

such that no intruder can cross the perimeter without being detected. The arrangement of

sensors for this purpose is referred to as the barrier coverage problem in sensor networks. A

primary question centering such a problem is: “How to achieve barrier coverage?” On the other

hand, sensor nodes are usually battery-powered and have limited energy. It is critical to design

energy-efficient barrier construction schemes while satisfying the coverage requirement.

First, we studied how to achieve strong barrier coverage with mobile sensors. We leverage

the mobility of sensors and relocate them to designated destinations to form a strong horizon-

tal barrier after the random deployment. Algorithms were proposed to calculate the optimal

relocating destinations such that the maximum moving distance of sensors is minimized. De-

pending on the number of sensors on the final barrier, two problems were investigated: (1)

constructing a barrier with the minimum number of sensors on the final barrier, and (2) con-

structing a barrier with any number of sensors on the final barrier. For both problems, we

optimized the barrier location instead of fixing it a priori as other works. We proposed algo-

rithms which first identify a set of discrete candidates for the barrier location, then check the

candidates iteratively. Both problems could be solved in polynomial time.

Second, we investigated how to achieve strong barrier coverage by selectively activating

randomly deployed static sensors. We aimed to select the minimum number of sensors to

be active to achieve barrier coverage under a practical probabilistic model. The system false

alarm probability and detection probability were jointly considered, and a (Pmin
D , Pmax

F )-barrier

coverage was defined where Pmin
D is the minimum system detection probability and Pmax

F is

the maximum system false alarm probability. Our analysis showed that with the constraint on

the system false alarm probability, the number of active sensors affects the detection capability
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of sensors, which would bring new challenges to the min-num sensor selection problem. We

proposed an iterative framework to solve the sensor selection problem under the probabilistic

model. Depending on whether the decision fusion was applied, different detection capability

evaluation methods were used in the iterative framework.

Finally, we studied how to achieve strong barrier coverage in a hybrid network with a mix of

mobile and static sensors. A two-step deployment strategy was adopted where static sensors are

first randomly deployed, and then mobile sensors are deployed to merge the coverage gap left

by the static sensors. We aimed to find the proper coverage gaps to deploy mobile sensors such

that (Pmin
D , Pmax

F )-barrier coverage is achieved, and the total cost of the barrier is minimized.

Under the probabilistic model, we solved the problem by iteratively trying multiple assumptions

of the number of active sensors, and obtained the min-cost deployment strategy with the help

of graph algorithms.
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CHAPTER 1. INTRODUCTION

1.1 Coverage in Sensor Networks

Coverage is one of the fundamental and underlying functionalities of sensor networks. Al-

most all the applications of sensor networks require some level of coverage to support other

functionalities. Various coverage problems have been investigated. These coverage problems

differ from each other regarding the coverage types, coverage models, coverage qualities, sensor

types and deployment strategies. In the following, we will discuss the various coverage problems

in detail, with an emphasis on the barrier coverage problems.

1.1.1 Coverage Type

According to the goals of coverage, coverage in sensor networks can be classified into three

categories: area coverage, point coverage, and barrier coverage.

1.1.1.1 Area Coverage

Area coverage aims to cover every point in the area of interest, as shown in Fig. 1.1.

Figure 1.1 Area coverage.

The research works for area coverage have been focusing on (1) the optimal determinis-

tic deployment pattern, (2) the relationship between sensor density and coverage ratio, and

(3) energy-efficient sensor selection and scheduling algorithms. Kershner in [Kershner (1939)]

proved that the optimal deterministic deployment pattern for area coverage which uses the
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minimum number of sensors is the triangular lattice. Liu in [Liu and Towsley (2004)] revealed

the relationship between the sensor density and the area coverage ratio, which can be used to

estimate the number of sensors required to achieve a certain level of coverage. When sensors

are randomly deployed, redundant sensors exist. Sensor selection and scheduling algorithms are

then needed to achieve area coverage energy efficiently. In [Xing et al. (2005)] and [Zhang and

Hou (2005)], the authors proposed distributed sensor scheduling algorithms with redundancy

check and sleeping strategies to achieve area coverage.

1.1.1.2 Point Coverage

Point coverage aims to cover target points in the area of interest instead of the entire region,

as shown in Fig. 1.2. These target points may be the locations of critical facilities or resources.

target

Figure 1.2 Point coverage.

Research works for point coverage have been focusing on (1) optimal placement of sensors,

and (2) energy/cost-efficient sensor selection and scheduling algorithms. In [Chakrabarty et al.

(2002); Wang and Zhong (2006); Xu and Sahni (2007)], the authors studied the sensor placement

problem with the objective of minimizing the cost of sensors. If there are multiple sensor sets

with each set itself can cover all the targets, scheduling algorithms which alternatively activate

these sets are needed to maximize the coverage time. The authors in [Cardei et al. (2005a)] and

[Wu et al. (2012)] investigated this problem under the disk and probabilistic model, respectively.
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1.1.1.3 Barrier Coverage

Barrier coverage aims to cover the intruder paths which traverse the perimeter of the area

of interest. If the perimeter of the area of interest is well protected by sensors, any intruder

crossing the perimeter will be detected by the sensors placed along the perimeter. This kind

of applications is referred as barrier coverage, and the sensors along the perimeter are called

barrier. Fig. 1.3(b) shows a small part of the sensor barrier along the perimeter of the protected

area. As we can see, any intruder who attempts to cross the perimeter will be detected by at

least one sensor.

intruder
path

(a) Weak barrier coverage.

intruder path

(b) Strong barrier coverage

Figure 1.3 Barrier coverage.

There are two kinds of barrier coverage, weak barrier coverage and strong barrier coverage.

In weak barrier coverage, the intruders are unaware of the sensor locations and hence will take

the shortest path to traverse the perimeter of the area of the interest, as shown in Fig. 1.3(a).

In strong barrier coverage, the intruders are aware of the sensor locations and may take any

path to transverse the perimeter of the area of the interest, as shown in Fig. 1.3(b). It is easy

to conclude that weak barrier coverage does not guarantee strong barrier coverage, while strong

barrier coverage always guarantees weak barrier coverage.

Research works for barrier coverage have been focusing on (1) the critical sensor density to

achieve barrier coverage (2) sensor selection and scheduling algorithms, and (3) constructing

barriers with mobile sensors. Kumar and Liu investigated the critical sensor density problem

for weak barrier coverage and strong barrier coverage in [Kumar et al. (2005)] and [Liu et al.

(2008)], respectively. When sensors are randomly deployed, sensor selection and scheduling

algorithms are needed to selectively activate redundant sensors to conserve energy. Kumar in
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[Kumar et al. (2005)] showed that finding k barriers is equivalent to finding k node-disjoint

paths in a graph. Liu in [Liu et al. (2008)] then proposed a more practical barrier construction

algorithm based on divide-and-conquer. In [Kumar et al. (2007)], Kumar presented a barrier

scheduling algorithm which maximizes the barrier lifetime. A comprehensive literature review

for the sensor movement problems will be given in Chapter 2.

1.1.2 Coverage Models

Coverage model describes the coverage capability of a sensor. There are mainly two coverage

models: the disk model and the probabilistic model.

1.1.2.1 Disk Model

In the disk model, the coverage region of a sensor is modeled as a disk centered at that

sensor with coverage radius R, as shown in Fig. 1.4. By reason of its simplicity, the disk model

is widely adopted by researchers. In the disk model, a target will be detected by a sensor if

and only if the distance from the target to the sensor is no more than R.

Figure 1.4 Disk model.

1.1.2.2 Probabilistic Model

In the probabilistic model, the coverage capability of a sensor is characterized by the prob-

ability that a target is detected by the sensor. For any point in the surrounding area of a

sensor, if a target is locating at that point, then it can be detected by the sensor with a certain

probability. The further the target from the sensor, the lower the probability that the target is

detected by the sensor. As shown in Fig. 1.5, with the sensor locating at the center, a target
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locating at the inner circle has a detection probability of 0.95, while a target locating at the

outer circle has a detection probability of 0.9. Compared with the disk model, the probabilistic

model is more realistic and approximates the real detection capability of a sensor better.

0.9

D=0.95

Figure 1.5 Probabilistic model.

Various probabilistic models have been proposed. In [Zou and Chakrabarty (2004), Zou and

Chakrabarty (2005)], the detection probability is directly defined as a function of the distance

between the target and the sensor. In [Clouqueur et al. (2004), Wang et al. (2007), Xing et al.

(2009)], the detection probability is derived from the distribution of the sensor reading, whose

average is determined by a signal attenuation model with the distance from the target to the

sensor as a parameter. Detailed probabilistic models will be discussed in Chapter 3.

1.1.3 Quality of Coverage

For barrier coverage, coverage quality defines how well the perimeter of the area of interest

is protected from intruders. Sorting by the coverage quality from low to high, there is partial

coverage, full coverage and redundant k-coverage.

1.1.3.1 Partial Coverage

Partial coverage means only some intruder paths are covered. Breaches exist on the sensor

barrier, and hence an intruder can penetrate the barrier without being captured. Nevertheless,

only the paths which are rarely chosen by intruders are left uncovered so that partial coverage

can prevent most of the intruders. For example, in [Chen et al. (2007)], Chen designed a

scheme to provide partial barrier coverage which just covers paths expanding less than length l



6

horizontally. Partial coverage trades off the coverage quality against the number of the sensors

required to achieve coverage.

1.1.3.2 Full Coverage

Full coverage means all intruder paths are covered. No breach exists on the sensor barrier

and any intruder penetrating the barrier will be captured. Most of the applications aim to

provide full barrier coverage. Under the disk model, this requires the coverage regions of

adjacent sensors on the barrier overlap with each other.

1.1.3.3 Redundant k-coverage

Redundant k-coverage means all intruder paths are covered by k sensors. No breach exists

on the sensor barriers and any intruder penetrating the barriers will be captured by at least

k sensors. k-coverage is more robust than full coverage and resists to node failure. It trades

off the coverage cost against coverage quality. With random deployed sensors, k-coverage can

be achieved by finding k node-disjoint paths in a graph [Kumar et al. (2005)]. When more

than k barriers exist, scheduling algorithms are needed to provide k-barrier coverage in an

efficient way. In [Kumar et al. (2007)], the authors proposed such a scheduling algorithm which

maximizes the coverage time.

1.1.4 Sensor Type

1.1.4.1 Homogeneous vs. Heterogeneous

Sensors may differ in many aspects, like coverage radius, power consumption, cost, and

mobility. Coverage can be achieved with either homogeneous sensors or heterogeneous sensors.

While it is much easier to achieve coverage with homogeneous sensors, heterogeneous sensors

provide diverse sensing capabilities and are more flexible [Cardei et al. (2005b), Lazos and

Poovendran (2006), Ammari and Giudici (2009)]. Sometimes we may need different types of

sensors to sense various physical signals. We may want to cover some critical points with

expensive but fine-grained sensors and cover the rest of a barrier with cheaper sensors. We can

also use mobile sensors to enhance the coverage provided by static sensors.



7

1.1.4.2 Mobile vs. Static

Coverage can be achieved with mobile sensors, static sensors, or a combination of them.

Static sensors have a lower cost while they cannot adjust their locations once deployed. Mobile

sensors have a higher cost while they can relocate themselves to build a barrier or move con-

stantly to patrol the perimeter of the area of interest. Usually, sensors are deployed randomly,

if only static sensors are used, a large amount of sensors are required to fully cover an area or

all intruder paths [Kumar et al. (2005), Liu et al. (2008)]. If mobile sensors are used, they can

relocate themselves to achieve area or barrier coverage. Research works have been focusing on

how to relocate mobile sensors energy-efficiently, for example, minimizing the moving distance

of sensors. A third and better option might be utilizing both static and mobile sensors to

achieve coverage. Mobile sensors can relocate themselves to merge the coverage holes left by

static sensors.

1.1.4.3 Omnidirectional vs. Directional

Most sensor network applications use omnidirectional sensors like seismic sensor and micro-

phone. An omnidirectional sensor has the same detection capability for all directions. Some

sensor network applications may use directional sensors. A typical kind of directional sensors

is the camera. The coverage area of a directional sensor can be described by a three-tuple

composed of the coverage radius, the expanding angle, and the sensing direction [Wang et al.

(2014b), Han et al. (2008)]. There are many differences between designing coverage schemes

with directional sensors and designing coverage schemes with omnidirectional sensors. First,

the method of determining whether two directional sensors overlap is more complicated than

that of omnidirectional sensors. Second, when considering sensor movement, directional sensors

can rotate while staying at the same location.
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1.1.5 Deployment Strategies

1.1.5.1 Deterministic Deployment

Deterministic deployment can place sensor nodes at the exact desired locations, but it is

labor-intensive. For area coverage, the optimal deterministic deployment pattern of using the

minimum number of sensors is equilateral triangle tessellation [Kershner (1939)]. For barrier

coverage, to minimize the number of sensors, we can place the sensors along the barrier, or the

convex hull of the area of interest, without any overlap between sensor coverage regions.

1.1.5.2 Random Deployment

Random deployment is favored by most network designers. Sensor nodes can be dropped

by an airplane which does not need much labors. Another reason is that in some harsh envi-

ronments like battlefield and desert, it is even impossible to deploy sensor nodes manually and

deterministically. However, random deployment usually requires a significant amount of sensors

to be deployed to achieve full barrier coverage due to the randomness of sensor landing points

[Kumar et al. (2005), Liu et al. (2008)]. In order to utilize the deployed sensors efficiently,

strategies are designed to select and schedule subsets of sensors to be active to achieve barrier

coverage [Kumar et al. (2007)].

1.1.5.3 Relocation and Patrolling

If sensors have the moving capability, then sensors can move to the desired locations to

achieve barrier coverage. There are mainly two movement strategies: one-time relocation [Wang

et al. (2004), Saipulla et al. (2010), Li and Shen (2015), Zhang et al. (2015)] and consistent

patrolling [Liu et al. (2005), Yang et al. (2007), He et al. (2012)]. In the one-time relocation

strategy, sensors are first randomly deployed; then they relocate to the desired locations to

form a barrier. Once the sensors reach the destinations, they will stay there until the energy

runs out. In the consistent patrolling strategy, sensors are scheduled to move constantly with

objectives such as maximizing the intruder detection probability.
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1.2 Research Main Contributions and Organization of the Dissertation

This dissertation focuses on barrier coverage. We will investigate three problems arisen

when achieving barrier coverage: sensor movement problem, static sensor selection problem

and sensor placement problem in a hybrid network.

Chapter 2 will study two sensor movement problems under the disk model. We aim to

achieve strong barrier coverage with homogeneous mobile sensors. Sensors are omnidirectional.

Mobile sensors are first randomly deployed in the area of interest, and then they relocate

themselves to form a barrier. Our objective is to minimize the maximum moving distance

of sensors and hence to prolong the lifetime of the barrier. Section 2.2 will study a sensor

movement problem where only the minimum number of sensors are allowed on the barrier.

Section 2.3 will relax the above constraint and allow any number sensors on the barrier to get

a smaller moving distance.

Chapter 3 will investigate two sensor selection problems under a probabilistic model. We

aim to select the minimal set of randomly deployed static sensors to achieve (Pmin
D , Pmax

F )-

barrier coverage. This means an intruder will be detected with a probability of at least Pmin
D

and the system false alarm probability will be no more than Pmax
F . Sensors are omnidirectional.

Section 3.2 will study a sensor selection problem without data fusion. Section 3.3 will study a

sensor selection problem with decision fusion applied among neighboring sensors and sampling

points along intruder paths.

Chapter 4 will study how to achieve barrier coverage with a mix of mobile and static

sensors, under a probabilistic model. Static sensors are first dropped, and then mobile sensors

are deployed and relocate themselves to merge the coverage gaps left by the static sensors. The

coverage gaps to be merged are carefully selected to minimize the overall cost of active sensors

and achieve (Pmin
D , Pmax

F )-barrier coverage.

Chapter 5 will conclude this dissertation and provide future research directions.
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CHAPTER 2. ON MINIMIZING THE MAXIMUM SENSOR

MOVEMENT FOR STRONG BARRIER COVERAGE UNDER DISK

MODEL

2.1 Literature Review

2.1.1 Overview

Many research works focus on achieving barrier coverage with mobile sensors. Fig. 2.1

summarizes all the sensor movement problems in the area of barrier coverage under the disk

model.

Figure 2.1 Sensor movement problems under the disk model. The “given-x, opt-y” problem

was studied in Section 2.2. The “opt-x, opt-y” problem was studied in Section 2.3.

Sensors can move to form either strong or weak barriers. According to the dimensions of

sensor deployment regions, the sensor movement problems can be classified into two categories:
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1-dimensional (1D) sensor movement problems and 2-dimensional (2D) sensor movement prob-

lems. In 1D sensor movement problems, the sensors deployment and movement regions are

restricted to a 1-dimensional line. In 2D sensor movement problems, the sensors deployment

and movement regions are a 2-dimensional region. Centralized and distributed schemes have

been proposed for the sensor movement problems. While the distributed schemes mainly focus

on constructing barriers in a distributed manner, the centralized schemes have been focusing

on constructing barriers energy-efficiently. To reduce the energy consumption on movements

and therefore prolong the lifetime of the barrier, researchers have designed movement strate-

gies with the objective of minimizing the maximum moving distance (min-max) or minimizing

the total moving distance (min-sum) of sensors. In each sub-problem, sensors can either be

homogeneous or heterogeneous.

Our work focused on building a strong horizontal barrier with homogeneous mobile sensors

in a 2D rectangular region, with the objective of minimizing the maximum moving distance of

sensors. In this branch, depending on whether the x-coordinates or y-coordinates of sensor final

positions are given or optimized, there are four variants of such a problem as shown in Fig. 2.1.

We studied and solved the “given-x, opt-y” and “opt-x, opt-y” problems in Section 2.2 and

Section 2.3, respectively. Centralized algorithms were proposed to construct a strong horizontal

barrier in the “given-x, opt-y” and “opt-x, opt-y” problems. We assume there is a central unit

in the sensor network to which sensors send their initial positions. The proposed algorithms

are run on the central unit. After obtaining the optimized final positions of sensors, the central

unit disseminates them to sensors. In a multi-level hierarchical network, the workload of initial

position collection, algorithm execution and final position dissemination can be divided and

performed on lower-level central units, the higher-level central units are then responsible for

merging the barriers formed by the lower-level central units.

In the following, we will give a comprehensive literature review for all the problems listed

in Fig. 2.1.
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2.1.2 Strong 1D Barrier Coverage

In the strong 1-D barrier coverage problems, sensors are initially deployed on a line, and

they move along the line to form a barrier. Let L be the length of the line and N be the number

of sensors deployed.

2.1.2.1 Centralized Solutions for the Min-max Problems

The maximum moving distance of sensors is minimized to maximize the lifetime of the

barrier. Assuming all sensors have the same initial energy, the sensor with the maximum

moving distance will die first and consequently breach the barrier, therefore, minimizing the

maximum moving distance of sensors is equivalent to maximize the lifetime of the barrier.

Homogeneous Sensors Let R denote the identical coverage radius of sensors, and Nmin

denote the minimum number of sensors required to cover the line. Nmin should be dL/2Re.

Depending on the relationship between N and Nmin, we have the following variants of the

min-max problem.

• N = Nmin Bhattacharya in [Bhattacharya et al. (2009)] proposed an O(N) algorithm to

relocate Nmin sensors to (2i − 1)R where 1 ≤ i ≤ Nmin. The key of the algorithm is

that the sensor final positions will preserve the order of the sensor initial positions on the

barrier. Czyzowicz gave the same solution for this problem in [Czyzowicz et al. (2009)].

• N < Nmin Czyzowicz in [Czyzowicz et al. (2009)] investigated the case when there are

not enough sensors. Two objectives were considered: constructing the longest continu-

ous barrier and constructing the longest non-continuous barrier. Both can be solved in

O(N) time.

• N > Nmin This case has been extensively studied. Czyzowicz gave an O(N2) optimal,

O(N) 2-approximation, and O
(
N log(C/g)

log(1+ε)

)
(1 + ε)-approximation solution in [Czyzowicz

et al. (2009)], where C and g are parameters related to the sensor initial positions and

the line length L. Chen in [Chen et al. (2013a)] improved the time complexity of the

optimal solution from O(N2) to O(N logN).
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Heterogeneous Sensors Two kinds of heterogeneous sensor movement problems have

been explored. In one set of problems, sensors have different coverage radii. In the other set of

problems, the moving distances of sensors are multiplied with different weights, because sensors

may have distinctive power consumption for movements.

Czyzowicz in [Czyzowicz et al. (2009)] showed that a variation of the min-max problem with

heterogeneous coverage radii is NP-complete, in which one sensor is assigned a predetermined

position. It was open according to Czyzowicz’s paper that whether the original min-max

problem with heterogeneous coverage radii is NP-complete.

Chen in [Chen et al. (2013a)] claimed that the min-max problem with heterogeneous cov-

erage radii is not NP-complete and provided an O(N2 logN log logN) solution for it.

Wang in [Wang and Zhang (2015)] solved a weighted min-max movement problem where

the moving distances of sensors are multiplied with different weights. An O(N2 logN log logN)

solution was given.

2.1.2.2 Centralized Solutions for the Min-sum Problems

The sum of the moving distances of sensors is minimized to reduce the overall energy

consumption for movement and hence to prolong the lifetime of the barrier.

Homogeneous Sensors Let R denote the identical coverage radius of sensors, and Nmin

denote the minimum number of sensor required to cover the line. Depending on the relationship

between N and Nmin, we have the following variants of the min-sum problem.

• N = Nmin Same as the min-max problem, the order of sensor final positions is the same

as the order of sensor initial positions in the min-sum problem. Based on this fact,

Czyzowicz in [Czyzowicz et al. (2010)] gave an O(N) solution.

• N < Nmin Similar to the min-max problem, Czyzowicz in [Czyzowicz et al. (2010)] inves-

tigated the case when not enough sensors are provided. Two objectives were considered:

constructing the longest continuous barrier and constructing the longest non-continuous

barrier. Both can be solved in O(N) time.
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• N > Nmin An optimal O(N2) solution was proposed by Czyzowicz in [Czyzowicz et al.

(2010)]. Andrew in [Andrews and Wang (2017)] improved the time complexity of the

optimal solution from O(N2) to O(N logN).

Heterogeneous Sensors Similar to the min-max problem, two kinds of heterogeneous

sensor movement problems have been explored. One kind of heterogeneous min-sum problem

dealt with sensors with different coverage radii. The other one weighed the moving distances

of sensors differently.

Czyzowicz in [Czyzowicz et al. (2010)] proved that the heterogeneous min-sum problem

with different coverage radii is NP-complete, with the restriction that sensors initially locate

on the line to be covered.

Benkoczi in [Benkoczi et al. (2015)] proved the heterogeneous min-sum problem with dif-

ferent coverage radii remains NP-complete when the initial sensor coverage ranges are disjoint

from the line. They then proposed a (1 + ε)-approximation algorithm with a time complexity

of O(N
7

ε3
).

Benkoczi in [Benkoczi et al. (2016)] proposed a greedy-based 2-approximation algorithm to

solve the weighted min-sum problem with arbitrary coverage radii, which runs in O(N) time.

2.1.2.3 Centralized Solutions for the Min-num Problems

Mehrandish in [Mehrandish et al. (2011)] investigated both the homogeneous and hetero-

geneous min-num problem, where the number of moving sensors is minimized.

Homogeneous Sensors For the homogeneous case, two problems were considered: achiev-

ing the maximum coverage on an infinite line and achieving the maximum coverage on a finite

line. For the infinite line coverage, the covered line segment can either be continuous or non-

continuous. An O(N) algorithm was proposed to achieve non-continuous maximum coverage,

and an O(N2) algorithm was proposed to achieve continuous maximum coverage. For the finite

line coverage, when N < Nmin, an O(N3) algorithm was proposed to achieve non-continuous

maximum coverage, and an O(N2) algorithm was proposed to achieve continuous maximum
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coverage. When N = Nmin, an O(N) algorithm was proposed to achieve the maximum cover-

age. When N > Nmin, an O(N3) algorithm was proposed to achieve the maximum coverage.

Heterogeneous Sensors Similar to the heterogeneous case, achieving the maximum

coverage on an infinite and finite line were studied. For the infinite line coverage, an O(N logN)

algorithm was proposed to achieve non-continuous maximum coverage. In contrast, it is NP-

complete to achieve the continuous maximum coverage. For the finite line coverage, all cases

were proved to be NP-complete with a reduction to a partition problem.

2.1.2.4 Distributed Solutions

Unlike the centralized solutions, most of the distributed solutions do not have a specific

objective other than forming a barrier. They aim to form a barrier in a distributed manner

with communications between neighboring sensor nodes.

Eftekhari in [Eftekhari et al. (2013)] presented two simple distributed algorithms which

achieve barrier coverage with N ≥ Nmin homogeneous sensors. The algorithms are synchro-

nized. Sensors have limited visibility and can only move constant distance in a time slot. One

algorithm is stateless where sensors do not know the moving direction in the previous time

slot and converges in O(N2) time. The other algorithm is stateful where sensors memorize the

moving directions in the previous time slot and converges in O(N) time.

2.1.3 Strong 2D Barrier Coverage

In the strong 2D barrier coverage problems, sensors are initially deployed in a 2-dimensional

long belt region and they move in the 2-dimensional region to form a barrier. In the following,

we use L to denote the length of the belt region and W to denote the width of it. The coverage

radius of sensors is R if all sensors are homogeneous.

2.1.3.1 Centralized Solutions for the Min-max Problems

Homogeneous Sensors Assume the x axis is along the length of the belt, the y axis

is along its width. We classify the 2D min-max barrier coverage problems to four categories
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depending on whether the x-coordinates and y-coordinates of final sensor positions are given.

“Given-x” and “Given-y” mean the x or y coordinates of final sensor positions are known as a

priori, respectively. “Opt-x” and “Opt-y” mean the x or y coordinates of final sensor positions

are unknown and optimized by the algorithm, respectively.

• Given-x, given-y In [Saipulla et al. (2010)], an algorithm was proposed to relocate the

minimum number of sensors to form a horizontal barrier with the min-max objective

function. Since only the minimum number of sensors are used, the x-coordinates of final

sensor positions can be pre-calculated as {R, 3R, 5R, ...}, as shown in Fig. 2.2. The

barrier location, i.e., the identical y-coordinate of final sensor positions, is assumed to

be fixed and given. Note although the set of x-coordinates of final sensor positions are

known, the match between the sensor initial and the final positions is unknown.

× × × × × × × 
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s13 s14
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given

Figure 2.2 Given x, given y.

The proposed algorithm combined the bipartite matching algorithm and the binary search

framework. Bipartite matching is used to get a match between the sensor initial and final

positions given a limited maximum moving distance; binary search is employed to adjust

the maximum moving distance.

• Opt-x, given-y The authors of [Li and Shen (2015)] also proposed an algorithm to relocate

sensors to form a horizontal barrier with the min-max objective function. Compared with

[Saipulla et al. (2010)], any number of sensors can be on the final barrier in [Li and Shen

(2015)], as shown in Fig. 2.3. In consequence, the x-coordinates of final sensor positions

are unknown, and they are optimized by the algorithm so that the maximum moving

distance is minimized. On the other hand, same as [Saipulla et al. (2010)], the barrier

location is assumed to be fixed and given.
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Figure 2.3 Optimized x, given y.

The essential of the solution in [Li and Shen (2015)] is a greedy algorithm which solves

a feasibility problem, that is, whether there is a sensor movement strategy to achieve

barrier coverage with a limited maximum moving distance. The greedy algorithm covers

the horizontal barrier from the left to the right. In each step of the greedy algorithm, a

sensor is selected and assigned a final position so that the total coverage length to the

left is maximized.

• Given-x, opt-y In our work [Zhang et al. (2015)], we proposed an algorithm to relocate

the minimum number of sensors (hence known x-coordinates of final sensor positions)

to form a horizontal barrier with the min-max objective function without, however, a

pre-decided barrier location, as shown in Fig. 2.4. Compared with the “given x, given

y” problem, we optimized the barrier location, and hence the maximum moving distance

will be smaller.
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Figure 2.4 Given x, optimized y.
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To solve the problem, we first identified a discrete set of candidates for the final barrier

location, and then proposed an iterative algorithm to search over the discrete set to find

the optimal one. The detailed algorithm will be introduced in Section 2.2.

• Opt-x, opt-y In this problem, the goal is to relocate sensors to form a horizontal barrier

with the min-max objective function, without either pre-decided x-coordinates of the

final sensor positions or pre-decided barrier location, as shown in Fig. 2.5. Any number

of sensors can be on the final barrier. This problem was studied in Section 2.3.
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Figure 2.5 Optimized x, optimized y.

Heterogeneous Sensors In [Dobrev et al. (2015)], Dobrev proved that with the objec-

tive of minimizing the maximum moving distance, to cover one or more given barriers with

heterogeneous sensors which have different coverage radii is NP-complete.

2.1.3.2 Centralized Solutions for the Min-sum Problems

Homogeneous Sensors Shen in [Shen et al. (2008)] studied a 2D min-sum sensor move-

ment problem without knowing either the x or y coordinates of final sensor positions. Instead,

they assumed the final barrier is a straight line, and the final sensor positions distribute evenly

along the barrier line, and the sensors preserve their order along the x-axis. With all these

assumptions, the min-sum problem could be modeled as a convex optimization problem.

Ban in [Ban et al. (2010)] proved the 2D min-sum sensor movement problem is NP-hard.

Alternatively, they constructed a horizontal barrier with given x-coordinates of final sensor

positions. The barrier location is optimized heuristically to reduce the total moving distances
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of sensors. The match between the sensor initial and final positions on the barrier is obtained

by solving a bipartite weighted problem with Hungarian method.

Heterogeneous Sensors In [Dobrev et al. (2015)], Dobrev proved that with the ob-

jective of minimizing the sum of moving distances, to cover one or more given barriers with

heterogeneous sensors which have different coverage radii is NP-complete.

2.1.3.3 Distributed Solutions

A set of classical distributed algorithms to achieve barrier coverage in 2D region are “virtual

force” based. The concept of virtual force was proposed by Shen in [Shen et al. (2008)]. They

assume the sensors on the 2D plane have attractive forces along the y axis and repulsive forces

along the x axis to each other. The sensors move based on the virtual forces from their

neighbors. Finally, sensors will distribute evenly on a line parallel to the x-axis.

Cheng in [Cheng and Savkin (2009)] proposed a distributed algorithm based on consensus

theory which relocates sensors from the two ends of a line to the line. By communicating with

the immediate adjacent sensors only, sensors eventually distribute evenly along the line.

2.1.4 Weak Barrier Coverage

Weak barrier coverage covers the shortest intruder paths traversing the area of interest. For

a long belt region, weak barrier coverage covers just the paths which are perpendicular to the

length of the belt. As long as the projections of sensor coverage regions cover the length of the

belt, the belt is weak barrier covered. Since the y-coordinates of sensors have no effect on the

position of the projections of sensor coverage regions, achieving 1D/2D weak barrier coverage

is equivalent to achieving 1D strong barrier coverage. If sensors are initially deployed in a 2D

region, sensors need to move along the x-axis only to achieve weak barrier coverage.
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2.2 On Minimizing the Maximum Sensor Movement for Horizontal Barrier

Construction with the Minimum Number of Sensors

2.2.1 Introduction

In this work, we will study a strong barrier construction problem in a 2D rectangular

region. Homogeneous mobile sensors are employed to construct the barrier. After the random

deployment of mobile sensors, the minimum number of sensors relocate to form a strong barrier

along a horizontal line that spans the length of the deployment region. We aim to minimize

the maximum moving distance of sensors.

Since only the minimum number of sensors are utilized, the x-coordinates of the sensors

on the final barrier can be pre-calculated as {R, 3R, 5R, ...} where R is the coverage radius

of sensors. The y-coordinates of the sensors on the final barrier are identical yet unknown.

We define the identical y-coordinates as the barrier location. The unknown barrier location

distinguishes this problem from the strong barrier construction problem studied in [Saipulla

et al. (2010)] where the barrier location was given.

We will present a centralized algorithm that decides the optimal barrier location and iden-

tifies a minimal subset of sensors to move to their corresponding destinations so that the

maximum moving distance of sensors is minimized. Our algorithm first discretizes the search

space for the barrier location, then quickly iterates over the entire search space by identifying

the subset of barrier location candidates that need to be checked.

The proposed algorithm was evaluated regarding the sensor maximum moving distance

and time complexity. Simulation results showed that our algorithm outperforms the algorithm

proposed [Saipulla et al. (2010)] regarding the maximum moving distance since we optimized

the barrier location.

2.2.2 Model and Problem Statement

2.2.2.1 System Model

Sensor Network We study a network of N mobile sensors deployed in a long rectangular

region of size L ×W , where L � W , as shown in Fig. 2.6. Sensors are named s1 to sN from
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left to right of the deployment region, and the initial position of sensor si is denoted by (xi, yi).

The set of all the sensors is denoted by S. We adopt the widely used disk coverage model and

denote the coverage radius as R. An intruder can be detected by a sensor if and only if it is

within R of the sensor. In addition, we assume sensors can acquire their locations from GPS

or other localization schemes.

× × × × × × × × 
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s4 s5
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s3
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...
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t1 t2 t3 t4
t5 t6 t47 t48 t49 t50

Entrance side

Exit side

0

w

Figure 2.6 An example sensor network of 50 mobile sensors.

Intruder and Barrier We assume that intruders may take any path to cross the de-

ployment region from bottom to top, as shown in Fig. 2.6. In order to detect such intruders,

strong barrier coverage is required. This is in contrast to weak barrier coverage, which assumes

intruders take only paths perpendicular to the x-axis of the deployment region.

The minimum number of sensors needed to form a strong barrier is Nmin = d L2Re. For

simplicity, and without loss of generality, we assume that L is a multiple of 2R; hence, Nmin =

L
2R . To form a strong barrier with Nmin sensors, which is the focus of our study, these sensors

must be aligned along a horizontal line parallel to the x-axis of the deployment region. In other

words, the destination positions of these sensors (denoted by tj , 1 ≤ j ≤ Nmin) must have the

coordinates of (αj , wj), where αj = (2j − 1)R, 1 ≤ j ≤ Nmin, and w1 = w2 = · · · = wNmin . We

use T to denote the set of destination positions, and use w to denote their common y-coordinate,

called the barrier location.

System We assume that the sensor network remains connected during sensor movement,

and that there is a central processing unit which collects information from sensors, executes

the proposed algorithm, and disseminates the movement strategy to sensors.
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2.2.2.2 Problem Statement

Our ultimate goal is to maximize the lifetime of the barrier. We assume all sensors have

the same amount of energy initially, which is Etotal. We also assume the sensor which has

the least remaining energy after movement runs out of energy first, and consequently breaches

the barrier. To maximize the lifetime of the barrier, we need to maximize the minimum

remaining energy, i.e., min
si∈S,M(i) 6=0

(
Etotal − Pm

√(
xi − αM(i)

)2
+ (yi − w)2

)
, where Pm is the

energy consumed for moving one unit and M is a mapping function from S to T . In general, a

mapping function M : S → T is defined as follows: M(i) = j 6= 0 means that sensor si moves

to destination tj , while M(i) = 0 means that sensor si remains stationary. Sensors not used in

the initial barrier may participate in forming future barriers after the operational lifetime of

the current barrier has expired. The above problem is equivalent to minimizing the maximum

moving distance of sensors, i.e., max
si∈S,M(i)6=0

√(
xi − αM(i)

)2
+ (yi − w)2.

To minimize the maximum moving distance of mobile sensors that form a strong barrier,

with selected Nmin from N (N ≥ Nmin) sensors with known initial positions, our algorithm

must decide (1) where the barrier shall be formed, i.e., the optimal barrier location, denoted

by wopt; and (2) how to form the barrier at wopt, i.e., the optimal sensor movement strategy

Mopt from S to T . Formally, the problem we try to address is described as follows:

Given:

• rectangular deployment region: L×W

• sensing range: R

• total number of deployed sensors: N

• initial sensor positions: (xi, yi) for each si ∈ S

• x-coordinate of the destinations: αj for each tj ∈ T

Output:

• optimal barrier location wopt and sensor movement strategy Mopt: {wopt,Mopt} =

arg min
{w,M}

D(M,w) where

D(M,w) = max
si∈S,M(i) 6=0

√(
xi − αM(i)

)2
+ (yi − w)2.
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Constraint: 0 ≤ wopt ≤W

We use D(M,w) to denote the maximum moving distance of the sensors when they follow

strategy M to form a barrier at location w. We restrict the barrier location between 0 and W .

2.2.3 Proposed Scheme

2.2.3.1 Overview of the Proposed Scheme

To determine the optimal barrier location wopt, we first reduce its search space from a

continuous range [0,W ] to a discrete set with less than N2N2
min points, which is then called

candidate barrier locations. Afterwards, we propose an efficient iterative algorithm to search

over this discrete set. Even though in the worst case we may need O(N2N2
min) iterations to

complete the search, in practice, the number of iterations is approximately O(NNmin).

2.2.3.2 Identification of Candidate Barrier Locations

The candidate barrier locations are derived from the minimum and intersection points of a

group of functions defined below.

DEFINITION 2.1 (Function of Moving Distance). Suppose a sensor si moves to a destination

tj, the moving distance of si can be represented as a function of the barrier location w, i.e.,

fi,j(w) =
√

[xi − (2j − 1)R]2 + (yi − w)2 (2.1)

where 0 ≤ w ≤W .

We use F to denote the set of all the functions of moving distance associated with a sensor

network of N sensors, i.e.,

F = {fi,j(w)|1 ≤ i ≤ N, 1 ≤ j ≤ Nmin, 0 ≤ w ≤W}. (2.2)

For simplicity, we also define fi,0(w) = 0, ∀i,∀w.

DEFINITION 2.2. [Candidate Barrier Locations] The set of candidate barrier locations is Φ =

Φmins ∪ Φints, where
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• Φmins =
⋃

∀fi,j∈F
{w| arg min

w
fi,j(w)} includes all the w values that yield a minimum value

for at least one of the fi,j functions in F ;

• Φints =
⋃

∀fi,j∈F,fm,n∈F
{w|fi,j(w) = fm,n(w)} includes all the w values where two functions

in F intersect with each other.

Let |Φ| denote the total number of candidates in Φ. We sort these candidates in an ascending

order and name them as: {Ki| i = 1, · · · , |Φ|}. Let |Φmins| and |Φints| denote the number of

candidates in Φmins and Φints, respectively. Then we have:

|Φ| = |Φmins|+ |Φints| ≤ NNmin +

(
NNmin

2

)
= O(N2N2

min) = O(N4). (2.3)

Fig. 2.7 plots all the functions in F corresponding to a sensor network shown in Fig. 2.8. In

this example, |Φints| = 10, |Φmins| = 3, and |Φ| = 13.
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Figure 2.8 An example sensor network of 3 mobile sensors.
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The optimal barrier location wopt is guaranteed to be at one of the candidate barrier lo-

cations, as Theorem 2.1 below proves that any movement strategy M for a particular barrier

location w (between two adjacent candidate locations) can always yield a smaller maximum

moving distance by setting the barrier location instead to one of these two candidates.

THEOREM 2.1. ∀M , ∀w ∈ (Kj ,Kj+1), where 1 ≤ j ≤ |Φ|−1, D(M,w)>min {D (M,Kj) , D (M,Kj+1)}.

Proof: Let si∗ denote the sensor that has the maximum moving distance in M at w.

This means

∀i, fi,M(i)(w) ≤ fi∗,M(i∗)(w). (2.4)

Since Kj and Kj+1 are adjacent candidate locations, no other functions in F intersect

between them. Therefore, (2.4) implies that
fi,M(i)(Kj) ≤ fi∗,M(i∗)(Kj), ∀i,

fi,M(i)(Kj+1) ≤ fi∗,M(i∗)(Kj+1), ∀i.
(2.5)

In other words, 
fi∗,M(i∗)(Kj) = max

1≤i≤N
fi,M(i)(Kj),

fi∗,M(i∗)(Kj+1) = max
1≤i≤N

fi,M(i)(Kj+1).

(2.6)

Moreover, according to the definition of candidate barrier locations, all the functions in F

are monotone between two adjacent candidates such as Kj and Kj+1. Therefore, we have:

D(M,w) = max
1≤i≤N

fi,M(i)(w) = fi∗,M(i∗)(w) (Definition)

> min
{
fi∗,M(i∗)(Kj), fi∗,M(i∗)(Kj+1)

}
(Monotone)

= min

{
max

1≤i≤N
fi,M(i)(Kj), max

1≤i≤N
fi,M(i)(Kj+1)

}
= min {D (M,Kj) , D (M,Kj+1)} . (2.7)

2.2.3.3 Iterative Algorithm

With the candidate barrier locations being identified, we further reduce the search complex-

ity by proposing an iterative algorithm in which only a small portion of candidates are checked.

Fig. 2.9 shows the flowchart of our iterative algorithm, which is explained in detail next.
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Initialization: wcurr = 0,
wopt = wcurr, M

opt = ∅, Dopt = ∞

G(V,E) :
V = S ∪ T , E = {(si, tj)|si ∈ S, tj ∈ T },
Weight(si, tj) = fi,j(w

+
curr)

M∗=Bottleneck Bipartite Matching(G)

i∗ = argmax
i

fi,M∗(i)(w
+
curr)

D(M∗, wcurr) = max
1≤i≤N

fi,M∗(i)(wcurr)

D(M∗, wcurr) < Dopt?

Update:
wopt = wcurr,
Mopt = M∗,
Dopt = D(M∗, wcurr)

wnext = min{Kj|Kj > wcurr,Kj ∈ Φi∗,M∗(i∗)}

Does wnext exist?

STOP,
output Mopt, wopt

wcurr = wnext

yes

no

yes

no

Customized Bottleneck Bipartite Matching

Continue with the Next Candidate

Figure 2.9 Flowchart of the iterative algorithm (note that w+
curr = wcurr + δw).

The algorithm starts with wcurr = 0. After initialization, with the optimal minimax moving

distance Dopt set to infinity, the Bottleneck Bipartite Matching (BBM) algorithm [Punnen and

Nair (1994)] is applied to determine the best movement strategy for the current barrier location

as follows. The input to BBM is a weighted bipartite graph G(V,E):

• V = S ∪ T where S is the set of sensors, T is the set of destinations along wcurr;

• E = {(si, tj)| si ∈ S, tj ∈ T};

• Weight(si, tj) = fi,j(w
+
curr) where w+

curr = wcurr + δw and δw is a positive offset which is

sufficiently small so that w+
curr does not reach the next candidate in Φ. Recall that fi,j is

the function of moving distance for sensor si to reach destination tj .

BBM returns a max-cardinality matching whose maximum edge weight is minimized. In other

words, it produces a movement strategy which minimizes the maximum moving distance of

sensors from their initial positions to the destination positions along wcurr.
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In this customized BBM algorithm, the offset δw is used as a tie breaker in case there

are multiple movement strategies that all yield the same minimax moving distance at wcurr.

For example, in Fig. 2.10, at wcurr = K2, there exist two such movement strategies: M1 =

{1→2, 2→1, 3→ 3} and M2 = {1→1, 2→2, 3→3}. By adding a small offset, the tie is broken

and M2 is chosen which yields a smaller maximum moving distance than M1 at K+
2 . This is

important as it serves as the basis for the next round of iteration. In detail, the start of the

next iteration is determined based on the minimax matching at w+
curr, which is introduced and

proved in the following.
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Figure 2.10 The iterative algorithm starts with wcurr = 0. Iteration #1: The minimax match-

ing at w+
curr is {1→2, 2→1, 3→3}, in which s3 has the maximum moving distance

at w+
curr. The next candidate to check is the first candidate location along f3,3

after wcurr = 0, which is K2. Iteration #2: The minimax matching at K+
2 is

{1→1, 2→2, 3→3}, in which s3 has the maximum moving distance at K+
2 . The

next candidate to check is the first candidate along f3,3 after K2, which is K6.

The same process repeats for Iteration #3 and Iteration #4 till the algorithm

terminates.

As shown in the flowchart, we record the output of the customized BBM algorithm as

follows:

• M∗: the minimax matching at w+
curr;

• i∗: the index of the sensor that has the maximum moving distance in M∗ at w+
curr;

• D(M∗, wcurr): the minimax moving distance at wcurr.
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The next candidate location to check is

wnext = min{Kj |Kj > wcurr,Kj ∈ Φi∗,M∗(i∗)}, (2.8)

where Φi∗,M∗(i∗) is the set of candidates along fi∗,M∗(i∗) which is formally defined below.

DEFINITION 2.3 (Candidate Barrier Locations along fi,j). The set of candidate barrier loca-

tions along the fi,j function is Φi,j = Φmins
i,j ∪ Φints

i,j , where

• Φmins
i,j = {w| arg min

w
fi,j(w)} includes the w value where fi,j achieves its minimum;

• Φints
i,j =

⋃
∀fm,n∈F

{w|fi,j(w) = fm,n(w)} includes all the w values where fi,j intersects with

another function in F .

Note that wnext is the first candidate location along the fi∗,M∗(i∗) function after wcurr.

There might exist other candidate locations between wcurr and wnext but belong to a different

f function, which are skipped in our iterative algorithm to reduce the search complexity. For

example, in Fig. 2.10, the next candidate to check after K2 is K6. It is determined with the

following steps: (1) the minimax matching at K+
2 is M∗ = {1→1, 2→2, 3→3}; (2) the sensor

that has the maximum moving distance in M∗ at K+
2 is s3; (3) the first candidate along f3,3

after K2 is K6. (Note here if we choose a minimax matching at K2 instead of K+
2 , which may

be M = {1→2, 2→1, 3→3}, then by following the above three steps, we may search along a

wrong function f1,2 to find the next candidate.) Comparing Fig. 2.10 with Fig. 2.7, we can

see that candidate locations K3, K4, and K5 are skipped. The reason why these candidate

locations can be skipped is that, as we will show in Theorem 2.2, at any w between wcurr and

wnext, the maximum moving distance of any movement strategy is always larger than or equal

to that of M∗ at wcurr or wnext.

THEOREM 2.2. ∀M ′, ∀w ∈ [wcurr, wnext], where wcurr is the current candidate location in the

iterative algorithm, and wnext is the next candidate location to check as defined in (2.8), we al-

ways have D(M ′, w) ≥ min {D(M∗, wcurr), D(M∗, wnext)}, where M∗ is the minimax matching

at w+
curr.
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Proof: Recall that i∗ is the index of the sensor that has the maximum moving distance

in M∗ at w+
curr, i.e.,

i∗ = arg max
i
fi,M∗(i)(w

+
curr). (2.9)

Therefore, the following inequality holds for all i:

fi∗,M∗(i∗)(w
+
curr) ≥ fi,M∗(i)(w+

curr). (2.10)

As wnext is the first candidate location along the fi∗,M∗(i∗) function after wcurr, no other func-

tions in F intersect with fi∗,M∗(i∗) between wcurr and wnext. Consequently, we have:

∀w ∈ [wcurr, wnext],∀i, fi∗,M∗(i∗)(w) ≥ fi,M∗(i)(w). (2.11)

Hence, we have:

∀w ∈ [wcurr, wnext], fi∗,M∗(i∗)(w) = D(M∗, w). (2.12)

On the other hand, let i′ denote the index of the sensor that has the maximum moving

distance in M ′ at w+
curr, i.e.,

i′ = arg max
i
fi,M ′(i)(w

+
curr). (2.13)

As M∗ is the minimax matching at w+
curr, we have:

fi′,M ′(i′)(w
+
curr) ≥ fi∗,M∗(i∗)(w+

curr). (2.14)

Similarly, due to the fact that no other functions in F intersect with fi∗,M∗(i∗) between wcurr

and wnext, we have:

∀w ∈ [wcurr, wnext], fi′,M ′(i′)(w) ≥ fi∗,M∗(i∗)(w). (2.15)

As the definition of D(M ′, w) implies:

D(M ′, w) = max
1≤i≤N

fi,M ′(i)(w) ≥ fi′,M ′(i′)(w), (2.16)

we have:

∀w ∈ [wcurr, wnext], D(M ′, w) ≥ fi∗,M∗(i∗)(w). (2.17)

Furthermore, as the fi∗,M∗(i∗) function is monotone between wcurr and wnext, (2.17) implies:

∀w ∈ [wcurr, wnext], D(M ′, w) ≥ min{fi∗,M∗(i∗)(wcurr), fi∗,M∗(i∗)(wnext)}. (2.18)
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Combining (2.12) with (2.18), we have:

∀w ∈ [wcurr, wnext], D(M ′, w) ≥ min{D(M∗, wcurr), D(M∗, wnext)}. (2.19)

Finally, the algorithm terminates when wnext cannot be found, meaning that we have com-

pleted the search over the entire range [0,W ]. Fig. 2.10 illustrates the iterative algorithm with

an example and the iteration process is explained in the caption of the figure.

2.2.3.4 Complexity Analysis

In theory, there is a total ofO(N2N2
min) candidates in Φ, which means that, in the worst case,

we may need O(N2N2
min) number of iterations to complete the search. However, in practice,

the number of iterations is more comparable to O(NNmin). This is because our algorithm

essentially checks the candidate barrier locations iteratively along a single continuous function

that is composed of multiple sections from different f functions. Thus, the total number of

checked locations is on the same order as the number of candidate locations along a single

f function, which is O(NNmin). In Section 2.2.4, we validate this complexity analysis by

simulation.

2.2.4 Evaluation Results

We evaluate our algorithm by simulating two types of sensor deployment: random uniform

deployment, and line-based deployment. Random uniform deployment is adopted by most of

the studies of wireless sensor networks [Kumar et al. (2005); Liu et al. (2008); Yang and Qiao

(2009); Saipulla et al. (2010); Chen et al. (2013b); Wang et al. (2014a); Mostafaei (2015); Li

and Shen (2015)]. While line-based deployment was investigated in [Saipulla et al. (2009)] to

model the sensors dropped by an airplane. In both scenarios, we compare the optimal minimax

moving distance found by our algorithm to that of a naive algorithm that fixes the barrier

location to W
2 , which is the average sensor initial y-coordinates in both deployment strategies.

We refer to our algorithm as “Opt” and the naive algorithm as “Mid”. The time complexity

of our algorithm is also evaluated in terms of the number of checked candidate locations.
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2.2.4.1 Uniform Deployment

We first evaluate our algorithm with a random uniform deployment of N sensors in an

L×W region.

Minimax Moving Distance Fig. 2.11 shows the minimax moving distances of the two

algorithms varying with N in the uniform case. We test different sizes of deployment region.

For each size, the effect of redundant sensors on the minimax moving distance is also tested.
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Figure 2.11 Minimax moving distance when N sensors are uniformly deployed in an L ×W
region. The coverage radius of each sensor is R = 10 m.

We first note that, regardless of the size of the deployment region, the minimax moving

distance of both algorithms decreases as the number of sensors increases. This is an intuitive

result, as more sensors deployed in the area means a higher chance that one or more sensors

will already be close to each final destination. We also note that, regardless of the size of

the deployment region, Opt outperforms Mid more when N is larger. This is because the

horizontal moving distance tends to dominate the overall 2D moving distance as L� W , but

as the number of sensors increases, the horizontal moving distance decreases. Therefore, the

benefit of optimizing vertical moving distance becomes relatively larger. Finally, we note from

Fig. 2.11(b) that, given the same L and N , the difference between Opt and Mid is larger when

W is larger. This is again due to the increased proportion of vertical distance in the total

moving distance.
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Fig. 2.11 shows the average minimax moving distances of Opt and Mid. To further illustrate

the improvement of Opt over Mid, Fig. 2.12 presents the cumulative distribution function

(CDF) of the absolute and relative improvement of Opt over Mid in terms of minimax moving

distance, which is a result of 1000 trials for each of three different setups shown in the figure.
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Figure 2.12 CDF of the absolute and relative improvement of Opt over Mid in terms of min-

imax moving distance.

In the scenario where N = 150, Opt has a minimax moving distance which is on average 2.5

m or 11.2% less than that of Mid, but in around 40% of the trials, the improvement is greater.

In the most extreme case, Opt reduces the minimax moving distance by 9.4 m or 38%. Similar

observations can be made for the other two setups.

Number of Checked Candidate Locations Table 2.1 shows the number of total and

checked candidate locations of selected experiments from the uniform scenario. “Total” is the

number of candidates in Φ, which is up to N2N2
min, while “check” is the number of candidates

checked in our iterative algorithm. When N , L, or W increases, the number of total and checked

candidates increases accordingly. However, in any scenario, only a small portion of candidates

are checked, with a number even less than NNmin, which indicates that our algorithm is efficient

and scalable. For example, when L = 2000 m, W = 100 m, Nmin = 100, given N = 300 sensors,

NNmin = 30000, but only 1783 candidates are checked.
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Table 2.1 Total and checked candidates for the uniform deployment case. R = 10 m and

Nmin = L/2R.

L=1000,W=50,Nmin=50 L=2000,W=50,Nmin=100 L=2000,W=100,Nmin=100

N total check N total check N total check

50 31656 38 100 156114 54 100 512099 208

100 128167 306 200 629182 591 200 2062666 1286

150 288983 469 300 1422913 959 300 4663225 1783

2.2.4.2 Line-based Deployment

The second deployment scenario is the line-based sensor deployment strategy proposed in

[Saipulla et al. (2009)], where N sensors are deployed in an L ×W region along the line of

y = W
2 . Each sensor si is deployed at its final position [(2j − 1)R, W2 ] with a random x-axis

error δxi and y-axis error δyi , where δxi , δ
y
i ∼ N(0, σ). In practice, this error could be the result

of wind or other environmental conditions during an air drop. When redundant sensors are

deployed, sensors are assumed to be dropped in groups, e.g., for N = 2Nmin, two sensors are

dropped at each position.

Minimax moving distance Figure 2.13(a) shows the minimax moving distances of Opt

and Mid with varying σ. As σ increases, the minimax moving distances of both Opt and Mid

increase, because the sensors tend to be initially deployed farther from their final positions.

Also, as σ increases, Opt outperforms Mid more. This is because when σ is larger, the sensors

will be scattered in a wider region. It is more necessary to optimize the vertical moving distance

in this case. Interestingly, when σ is fixed, the difference between Opt and Mid is larger when

N is smaller, which is the opposite of the observations in the uniform deployment case. This

is due to the following reasons. Firstly, when N increases and multiple sensors are dropped at

each point, we tend to have a combination of sensors that yields an optimal barrier location

close to W
2 ; therefore, the difference between the vertical moving distance of Opt and Mid is

smaller. Secondly, the vertical and horizontal moving distances are comparable in the line-
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based deployment case; hence, the reduction of the vertical moving distance can be reflected in

the overall 2D moving distance.
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(a) Mimimax moving distance vs. σ given three differ-
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(b) CDF of the absolute improvement of Opt over Mid
in terms of minimax moving distance.

Figure 2.13 The minimax moving distance for the line-based deployment strategy, with

L = 1000 m, W = 50 m, R = 10 m, and Nmin = 50.

Similar to before, we plot in Figure 2.13(b) the CDF of the improvement of Opt over Mid

in four different setups. We can see that when σ = 20 m and N = 50, on average, the minimax

moving distance of Opt is 4.6 m or 8.7% less than Mid. In the most extreme case, the minimax

moving distance of Opt may be up to 19.3 m or 36% less than Mid. Similar observations can

be made for the other setups.

Number of Checked Candidate Locations Table 2.2 shows the number of total and

checked candidate locations of selected experiments from the line-based deployment scenario.

Similar to before, when N or σ increases, the number of total and checked candidates increases,

but only a small proportion of the total candidates are checked in any scenario.

Table 2.2 Total and checked candidates for the line-based deployment case. L = 1000 m,

W = 50 m, R = 10 m, and Nmin = 50.

N
σ = 5 σ = 20

total check total check

50 6997 83 39561 197

100 30833 104 161154 338

150 72210 159 363082 495



35

2.3 On Minimizing the Maximum Sensor Movement for Horizontal Barrier

Construction

2.3.1 Introduction

In this work, we will study a more practical strong barrier construction problem in a 2D

rectangular region, with homogeneous mobile sensors. Our goal is to identify an optimal sensor

relocation strategy to build a horizontal barrier so that the maximum sensor moving distance is

minimized. There is no requirement on the number of sensors on the final barrier, or any prior

knowledge of either the barrier location or the final x-coordinates of the sensors on the barrier.

The only assumption in this work is that the formed barrier shall be horizontal – parallel to

the sides of the region. In contrast, the solutions in [Saipulla et al. (2010)] and Section 2.2

were based on the assumption that the final horizontal barrier shall be constructed with the

minimum number of sensors (hence their final x-coordinates can be calculated a priori). While

the solutions in [Saipulla et al. (2010); Li and Shen (2015)] were based on the assumption that

the final barrier location is fixed and known a priori.

To achieve our goal, we proposed an iterative algorithm to apply a binary search over all

possible maximum moving distances. During each iteration, a particular maximum moving

distance is considered, and we first identified a discrete set of candidate barrier locations that

may be possible with this maximum moving distance. Then, a fast polynomial-time algorithm

is used to determine the feasibility of forming a barrier at each of these barrier locations while

satisfying the maximum moving distance. Base on the feasibility checking results, the search

space for the maximum moving distance and the barrier location is reduced and thus may

expedite the search process at the next iteration.

Finally, we evaluated the proposed algorithm regarding the maximum moving distance and

the time complexity, with various deployment regions and different number of deployed sensors.

Evaluation results show that the algorithm in this section can get a smaller maximum moving

distance than the algorithms in [Li and Shen (2015)] and Section 2.2. Moreover, our algorithm

is efficient and scalable as a benefit of the binary search algorithm.
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2.3.2 Model and Problem Statement

2.3.2.1 System Model

Sensor Network We study a network of N mobile sensors deployed in a long rectangular

region of size L×W , where L�W , as shown in Fig. 2.14.
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Figure 2.14 System model.

Sensors are named s1 to sN from the left to right of the deployment region, and the initial

position of sensor si is denoted by (xi, yi). The set of all the sensors is denoted by S. We adopt

the widely-used disk coverage model and denote the sensor coverage radius as R. An intruder

can be detected by a sensor if and only if it is within R of the sensor. In addition, we assume

sensors can acquire their positions from GPS or another localization scheme.

Intruder and Barrier We assume that intruders may take any path to cross the deploy-

ment region, as shown in Fig. 2.14. In order to detect such intruders, strong barrier coverage is

required. For simplicity, in the following when we say barrier coverage we mean strong barrier

coverage. The focus of our study is to identify a subset of sensors Sb out of S to form a hori-

zontal barrier parallel to the sides of the deployment region. In other words, the final positions

of sensors on the barrier, denoted by (x′i, y
′
i), must satisfy: ∀si, sj ∈ Sb, y′i = y′j = w. We use w

to denote the final barrier location.

System We assume that the sensor network remains connected during sensor movement,

and that there is a central processing unit which collects information from sensors, executes

the proposed algorithm, and disseminates the movement strategy to sensors.
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2.3.2.2 Problem Statement

Our ultimate goal is to maximize the lifetime of the barrier. We assume all sensors have

the same amount of energy initially, which is Etotal. We also assume the sensor which has the

least remaining energy after movement runs out of energy first, and consequently breaches the

barrier. To maximize the lifetime of the barrier, we need to maximize the minimum remaining

energy, i.e., min
si∈Sb

(Etotal − Pm
√

(xi − x′i)2 + (yi − y′i)2), where Pm is the energy consumed by

moving one unit and Sb is the set of sensors forming the barrier. This is equivalent to minimizing

the maximum moving distance of sensors in Sb, i.e., max
si∈Sb

√
(xi − x′i)2 + (yi − y′i)2. Sensors not

used to form the barrier will remain at their initial positions and may participate in forming

future barriers after the operational lifetime of the current barrier has elapsed. Formally, the

problem addressed in this work is described as follows:

Given:

• Rectangular deployment region: L×W

• Sensor coverage radius: R

• Total number of deployed sensors: N

• Initial sensor positions: (xi, yi), ∀si ∈ S

Constraint:

• ∃ Sb ⊆ S, where the final positions of sensors in Sb form a strong barrier.

• ∀si ∈ Sb, y′i = w, where 0 ≤ w ≤W is the final barrier location.

Output:

• Sb and the final positions of sensors in Sb such that max
si∈Sb

√
(xi − x′i)2 + (yi − y′i)2 is

minimized.

2.3.3 Proposed Scheme

2.3.3.1 Overview

The key challenge in solving our barrier coverage problem is to determine the final barrier

location. If it is known, then we can apply the algorithm in [Li and Shen (2015)] to find the

optimal x-coordinates of final sensor positions. Fig. 2.15 gives an overview of the proposed
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scheme. The scheme takes the initial sensor positions, the dimensions of the deployment region,

and the sensor coverage radius as the input, and outputs the optimal maximum moving distance,

optimal barrier location, and the final sensor positions. The scheme reduces the solution space

iteratively till the final solution is identified.

Figure 2.15 An overview of the proposed scheme.

2.3.3.2 Initialization

The initialization module initializes the solution space. It is represented by a four-tuple

{λmin, λmax, wl, wh}, where λmin is a lower bound of the optimal maximum moving distance,

λmax is an upper bound of the optimal maximum moving distance, wl is the lowest possible

barrier location, and wh is the highest possible barrier location. Initially, wl = 0, wh = W ,

λmin = 0, and λmax is set to:

λmax = min(λopt−x, λopt−y), (2.20)

where λopt−x and λopt−y are the minimized maximum moving distance yielded by the barrier

coverage schemes in [Li and Shen (2015)] and [Zhang et al. (2015)], respectively. In [Li and

Shen (2015)], the barrier coverage problem was solved based on an assumption that the barrier

location is known while optimizing the final sensor x-coordinates along the barrier. λopt−x can
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be obtained by setting the barrier location to W
2 . In [Zhang et al. (2015)], we solved the barrier

coverage problem by assuming minimal number of sensors on the barrier (hence, the final sensor

x-coordinates are known) while optimizing the barrier location. Both schemes would produce

a feasible solution to our problem, thus providing an upper bound of the optimal maximum

moving distance.

The lowest possible barrier location wl is set to 0, and the highest possible barrier location

wh is set to W .

2.3.3.3 Main Scheme

Our scheme is an iterative scheme. It takes the initial λmin, λmax, wl, and wh as the input,

and then updates them in each iteration, till the difference between λmax and λmin is less than

a small positive value e.

The binary search technique is adopted to reduce the solution space iteratively. In each

iteration, the findFeasible algorithm checks whether it is possible to form a horizontal barrier

with a maximum sensor moving distance no larger than λ = λmin+λmax
2 , and then updates λmin,

λmax, wl, and wh according to the result. Before we explain the details of our scheme, we first

examine the relation between a barrier location w and the min-max sensor moving distance.

Min-max Moving Distance Function We use function f∗(w) to represent the min-

max moving distance of sensors that form a barrier at location w. It has the following two

properties.

LEMMA 2.1. Function f∗(w) is a piecewise function composing of segments from functions

f i,k1 (w), f i,k2 (w), f i,j,k3 (w), and f i4(w), where

1. f i,k1 (w) =
√
{xi − [L− (2k − 1)R]}2 + (yi − w)2,

2. f i,k2 (w) =
√

[xi − (2k − 1)R]2 + (yi − w)2,

3. f i,j,k3 (w) =
√
aw2 + bw + c where a = c2

1/c
2
0 + 1, b = −2yi − c1 − c2

1c2/c
2
0, c = y2

i + (c2
0 +

c1c2)2/4c2
0, c0 = xi − xj + 2kR, c1 = yj − yi, c2 = yj + yi,

4. f i4(w) = |yi − w|,

where 1 ≤ i, j ≤ N , i 6= j, and k = 1, · · · , d L2Re.



40

Proof: To form a barrier at location w, the min-max moving distance must occur to

sensors that belong to one (but not necessarily all) of the following cases. which are illustrated

in Fig. 2.16 and will be explained in detail below. It has been proved in [Li and Shen (2015)]

that the maximum sensor moving distance can always be reduced further by rearranging the

sensors so that one of these four possible cases occurs.

L-R
w

L-3RL-5R

si

f*(w)

(a)

5R

f*(w)

3RR

si
w

(b)

f*(w)

4R

si sj
w

f*(w)

(c)

f*(w)

si

w

(d)

Figure 2.16 Four possible cases when the min-max moving distance may occur, in order to

form a barrier at location w.

• Case a). The min-max moving distance may occur to a sensor si, which (1) relocates to

the final barrier, and (2) all sensors to its right along the final barrier are in attaching

positions, meaning that the coverage regions of these sensors are right next to each other,

without any overlap or gap between them. In this case, the moving distance of si can be

represented with one of the following functions at some k ∈ [1, d L2Re]:

f i,k1 (w) =
√
{xi − [L− (2k − 1)R]}2 + (yi − w)2. (2.21)

• Case b). The min-max moving distance may occur to a sensor si, which relocates to the

final barrier and all sensors to its left along the final barrier are in attaching positions.

Similar to Case a), the moving distance of si can be represented with one of the following
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functions at some k ∈ [1, d L2Re]:

f i,k2 (w) =
√

[xi − (2k − 1)R]2 + (yi − w)2. (2.22)

• Case c). The min-max moving distance may occur to two sensors si and sj , where (1)

both sensors relocate to the final barrier, (2) the moving distances of both sensors are the

same, and (3) all sensors between them along the final barrier are in attaching positions.

In this case, if we use f i,j,k3 (w) to denote the equal moving distance of si and sj , the

following condition holds for some k ∈ [1, d L2Re]:

xi +

√
f i,j,k3 (w)2 − (yi − w)2 + 2kR = xj −

√
f i,j,k3 (w)2 − (yj − w)2. (2.23)

Rewriting (2.23), we have

f i,j,k3 (w) =
√
aw2 + bw + c, (2.24)

where a = c2
1/c

2
0 + 1, b = −2yi − c1 − c2

1c2/c
2
0, c = y2

i + (c2
0 + c1c2)2/4c2

0, and c0 =

xi − xj + 2kR, c1 = yj − yi, c2 = yj + yi.

• Case d). The min-max moving distance may occur to a sensor si that moves perpendic-

ularly to the final barrier. In this case, the moving distance of sensor si is:

f i4(w) = |yi − w|. (2.25)

Regardless of the barrier location w, the min-max sensor moving distance must occur in

one of these four cases. In other words, f∗(w) must be composed of segments from f i,k1 (w),

f i,k2 (w), f i,j,k3 (w), and f i4(w).

LEMMA 2.2. f∗(w) is a continuous function.

Proof: Let x′i,w and x′i,w+∆w denote the x-coordinate of sensor si’s optimal final position

when the barrier is formed at location w and w + ∆w, respectively. Then, we have:

lim
∆w→0

f∗(w + ∆w) = lim
∆w→0

max
1≤i≤N

{(xi − x′i,w+∆w)2 + (yi − w −∆w)2}

= max
1≤i≤N

{(xi − x′i,w+∆w)2 + (yi − w)2}

≥ max
1≤i≤N

{(xi − x′i,w)2 + (yi − w)2}

= f∗(w).

(2.26)
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The “≥” in (2.26) holds because x′i,w is the x-coordinate of si’s optimal final position when

the barrier is formed at location w; therefore, any other values including x′i,w+∆w will result a

larger or equal maximum moving distance.

Similarly, we have:

f∗(w) = max
1≤i≤N

{(xi − x′i,w)2 + (yi − w)2}

= lim
∆w→0

max
1≤i≤N

{(xi − x′i,w)2 + (yi − w −∆w)2}

≥ lim
∆w→0

max
1≤i≤N

{(xi − x′i,w+∆w)2 + (yi − w −∆w)2}

= lim
∆w→0

f∗(w + ∆w)

(2.27)

Therefore, f∗(w) = lim
∆w→0

f∗(w + ∆w), meaning that f∗(w) is a continuous function.

Let F denote the set of all f i,k1 (w), f i,k2 (w), f i,j,k3 (w), and f i4(w) functions. Fig. 2.17 plots

all the functions in F for the example scenario in Fig. 2.18(a), where λmin = 0, λmax = 2.25,

wl = 0, and wh = 10. f∗(w) is highlighted as bold; it is a continuous function and composed

of segments from functions f1
4 and f3,4,1

3 .
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Figure 2.17 Functions in F corresponding to the example scenario in Fig. 2.18(a). Each curve

is labeled with the name of the function. f∗(w) is highlighted as bold. The final

solution found by the proposed scheme is marked with � and will be discussed

in detail in Section 2.3.3.3, Termination Criteria.
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Figure 2.18 An example scenario, where four sensors are deployed in a rectangular region

with L = 20 and W = 10. The sensor coverage radius is 5. The optimal move-

ment strategy is shown in (b) and will be discussed in detail in Section 2.3.3.3,

Termination Criteria.

Identification of Candidate Barrier Locations Based on the properties of the min-

max moving distance function, we design a polynomial-time algorithm to check the feasibility

of λ. λ is deemed feasible if there exists a sensor movement strategy to form a horizontal barrier

between wl and wh, with the maximum sensor moving distance no larger than λ.

To determine the feasibility of λ, we first discretize the continuous solution space of the

possible barrier locations. In other words, we first identify a discrete set of candidate barrier

locations between wl and wh, denoted by Φλ
[wl,wh]. Candidate barrier locations are the barrier

locations where a horizontal line at λ intersects with any of the functions in F . In other words:

Φλ
[wl,wh] =

⋃
1≤i,j≤N,i6=j,1≤k≤d L

2R
e

{
{w|f i,k1 (w) = λ,wl ≤ w ≤ wh}

∪ {w|f i,k2 (w) = λ,wl ≤ w ≤ wh}

∪ {w|f i,j,k3 (w) = λ,wl ≤ w ≤ wh}

∪ {w|f i4(w) = λ,wl ≤ w ≤ wh} ∪ wl ∪ wh
}
. (2.28)

Then, we check whether λ is feasible at each candidate in Φλ
[wl,wh]. We will prove later, if λ is

feasible at a barrier location between [wl, wh], then λ must be feasible at one of the candidate

barrier locations in Φλ
[wl,wh].

Fig. 2.19 gives an example of how to identify the candidate barrier locations.
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Figure 2.19 Example of the identification of candidate barrier locations. In the first iteration,

λ is set to 1.125. 16 barrier location candidates are identified along the line

λ = 1.125 and are marked with solid dots.

Continue with the example shown in Fig. 2.17, in the first iteration, λmin = 0, λmax = 2.25,

and hence λ is set to 1.125. The candidate barrier locations are identified by intersecting the

functions in F with the horizontal line λ = 1.125. 16 candidate barrier locations are identified,

which are marked with solid dots in the figure.

Next, we prove that we can determine the feasibility of λ by checking only the w values in

the discrete set Φλ
[wl,wh], instead of all the w values in the continuous range [wl, wh].

THEOREM 2.3. If there exists a barrier location w ∈ [wl, wh] where λ is feasible, then there

must exist a barrier location w′ ∈ Φλ
[wl,wh] at which λ also is feasible.

Proof: If λ is feasible at wl, then the statement is obviously true because wl ∈ Φλ
[wl,wh].

Therefore, in the following we only consider the situation when λ is not feasible at wl, i.e.,

f∗(wl) > λ.

Suppose λ is feasible at some w ∈ (wl, wh], meaning that f∗(w) ≤ λ. Because f∗(wl) >

λ and we know that f∗(w) is a continuous function (from Lemma 2), there must exist a

w′ ∈ (wl, w] such that f∗(w′) = λ. Considering the fact that f∗(w) is composed of segments

of the functions in F (from Lemma 1), one of the following four equations must hold for

some k ∈ [1, d L2Re]: f i,k1 (w′) = λ, f i,k2 (w′) = λ, f i,j,k3 (w′) = λ, or f i,k4 (w′) = λ. Therefore,

w′ ∈ Φλ
[wl,wh].
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Determine the Feasibility of λ and Update the Solution Space After identifying

the candidate barrier locations Φλ
[wl,wh], we determine the feasibility of λ by only checking

whether λ is feasible at any w ∈ Φλ
[wl,wh], and then update the solution space accordingly.

Details are shown in Algorithm 2.1.

Algorithm 2.1: findFeasible()

Input: λ, Φλ
[wl,wh]

Output: feasible, λmin, λmax, wl, wh
1 feasible = false;

2 Sort w ∈ Φλ
[wl,wh] in ascending order;

3 length = |Φλ
[wl,wh]|;

/* Determine the feasibility of λ, and update wl */

4 for i from 1 to length do

5 if isFeasible(λ, w[i]) then

6 feasible = true;

7 λmax = λ;

8 wl = w[i];

9 break;

10 end

11 end

/* Update wh */

12 for i from length to 1 do

13 if isFeasible(λ, w[i]) then

14 wh = w[i];

15 break;

16 end

17 end

18 if not feasible then λmin = λ;

The feasibility of λ at a particular candidate barrier location w is determined by applying

a feasibility checking algorithm proposed in [Li and Shen (2015)], which is called isFeasible(λ,

w). It is a simply greedy algorithm that selects sensors to achieve the maximal coverage from

left to right along the barrier in each step. In addition to the feasibility result, the isFeasible

algorithm also outputs the final sensor positions if λ is feasible, which are not included in

Algorithm 2.1 for ease of presentation.

Lines 1 - 3 of Algorithm 2.1 initialize the algorithm. From line 4 to line 11, we check the

candidate barrier locations, starting from wl in an ascending order. Once a candidate w has
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been found so that λ is feasible at barrier location w, we mark λ as feasible, and update the

upper bound λmax to λ and wl to w. The reason for such an update is as follows. Because λ

is not feasible at any candidates in Φλ
[wl,w), according to Theorem 2.3, λ also is not feasible for

any barrier location between wl and w. Since we have already identified a feasible solution at

w where the maximum sensor moving distance is no larger than λ, it is therefore unnecessary

to check [wl, w) in future iterations. Similarly, from line 12 to line 17, we check the candidate

barrier locations from another direction, starting from wh in a descending order. Once a

candidate w has been identified so that λ is feasible, we update wh to w.

On the other hand, If λ is not feasible for any of the candidate barrier locations in Φλ
[wl,wh],

λmin is increased to λ, and wl and wh remain the same. For example, in the first iteration

shown in Fig. 2.20, given the 16 candidate barrier locations identified, we first check them

from wl = 0. w = 2.4 is the first candidate barrier location found feasible with λ = 1.125.

Therefore, we update λmax to 1.125 and wl to 2.4. We then check the candidate barrier locations

from wh = 10. The first candidate barrier location found feasible with λ = 1.125 is w = 3.7.

Therefore, we update wh to 3.7.

Figure 2.20 Iteration 1: Initially, λmin = 0, λmax = 2.25, wl = 0, wh = 10. After the

feasibility check, they are updated to λmin = 0, λmax = 1.125, wl = 2.4, wh = 3.7.

Candidate barrier locations are marked with × (infeasible) or ◦ (feasible).



47

In the second iteration shown in Fig. 2.21, initially, wl = 2.4 and wh = 3.7, and λ is set to

0.5625. Five candidate barrier locations are identified along the horizontal line at λ = 0.5625.

As all of them are found infeasible with λ = 0.5625, we increase λmin to 0.5625, wl and wh

remain at 2.4 and 3.7, respectively.

Figure 2.21 Iteration 2: Initially, λmin = 0, λmax = 1.125, wl = 2.4, wh = 3.7, and five

candidate barrier locations are identified. After the feasibility check, the solution

space is updated to λmin = 0.5625, λmax = 1.125, wl = 2.4, wh = 3.7. Candidate

barrier locations are marked with × (infeasible) or ◦ (feasible).

Termination Criteria The proposed scheme reduces the solution space iteratively, till

the difference between λmax and λmin is less than e. Continue with the example shown in

Fig. 2.21, we set e to 0.01. The scheme terminates when λmax = 0.7645 and λmin = 0.7557.

The optimal barrier location wopt is 2.7914 and the maximum moving distance is λopt = 0.7645,

which are marked in Fig. 2.17. The corresponding optimal sensor movement strategy is shown

in Fig. 2.18(b), where sensors s3 and s4 move the maximum distance, and they attach to each

other on the final barrier. This conforms with the fact that, when w = 2.7914, a segment of

f3,4,1
3 is part of f∗(w), as shown in Fig. 2.17. In this example, the min-max sensor moving

distance occurs under Case c) of Lemma 2.1.
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2.3.3.4 Complexity Analysis

The total number of iterations is O(log λmax−λmin
e ) where λmax and λmin are the initial

upper and lower bound of the maximum moving distance, respectively. In each iteration, the

candidate identification process has a time complexity of O(|F|) = O(N2d L2Re). In reality,

|F| is much smaller than N2d L2Re, since we only consider the functions that intersect with

the solution space identified by the initial λmin, λmax, wl, and wh values. The findFeasible

algorithm has a time complexity of O(|F|N logN) where O(N logN) is the time complexity of

the isFeasible algorithm. Overall, the time complexity is O(log λmax−λmin
e N3d L2Re logN).

2.3.4 Evaluation Results

We use Matlab simulations to evaluate the proposed scheme in terms of the maximum

moving distance and the time complexity. All mobile sensors are deployed in an L ×W rect-

angular region uniformly at random, which is consistent with most of the studies of wireless

sensor networks [Kumar et al. (2005); Liu et al. (2008); Yang and Qiao (2009); Saipulla et al.

(2010); Chen et al. (2013b); Wang et al. (2014a); Mostafaei (2015); Li and Shen (2015)]. The

default sensing radius is R = 10, and the default termination criteria e is 0.01. All values which

represent distance have a unit of meter. All results are averaged over 50 experiments.

2.3.4.1 Maximum Moving Distance

Fig. 2.22 and Fig. 2.23 plot the maximum moving distance of the proposed scheme, labeled

as λopt, and compare with λopt−x, λopt−y, λ
lower
curve. λopt−x is the optimized maximum moving

distance obtained by the scheme in [Li and Shen (2015)], which attempts to optimize the x-

coordinates of the sensors that form the final barrier at location W
2 . λopt−y is the optimized

maximum moving distance obtained by the scheme in [Zhang et al. (2015)], which attempts

to optimize the final barrier location under the assumption that the x-coordinates of the final

sensor positions are known. λlowercurve is a lower bound of the maximum moving distance of sensors

when forming a curve strong barrier, in contrast to the horizontal strong barrier in this work.

We use the minimized maximum moving distance of sensors in achieving weak barrier coverage
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as λlowercurve, which can be obtained with the algorithms proposed in [Czyzowicz et al. (2009)].

Since sensors move only horizontally when achieving weak barrier coverage, λlowercurve is a value

unrelated to the width of the deployed region W . We compare λopt with λlowercurve to evaluate the

sub-optimality of the min-max moving distance when enforcing a horizontal barrier.

Figure 2.22 Simulation results with W = 50 and varying L.

Figure 2.23 Simulation results with L = 500 and varying W .
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In Fig. 2.22, the width of the deployment region is fixed but the length varies, while in Fig.

2.23, the length is fixed but the width varies. As we can see from the figures, our scheme always

yields a smaller maximum moving distance than λopt−x and λopt−y under all scenarios, with

the total number of deployed sensors varying from Nmin to 5Nmin. This verifies the correctness

of our scheme.

Another observation is that, when the width to length ratio of the deployment region gets

larger, λopt and λopt−y outperform λopt−x more, because the vertical moving distance of sensors

contributes more in the overall sensor moving distance and thus we benefit more from optimizing

the barrier location. We also observe that, when N gets larger, λopt outperforms λopt−y more.

This is because λopt is the result of utilizing all sensors to form a barrier, while λopt−y is the

result of utilizing only the minimum number of sensors.

Additionally, for all scenarios, when only the minimum number of sensors are provided,

λopt is very close to λlowercurve. This is because in this case we can only form a horizontal barrier

and λopt is the optimal maximum moving distance when forming a horizontal barrier. When

more than the minimum number of sensors are available, it is possible to construct a curve

barrier. In an extreme scenario with large number of sensors provided, a strong barrier may

have already formed without any movement. Forcing sensors to form a horizontal barrier would

involve additional movements and hence result a larger maximum moving distance.

2.3.4.2 Time Complexity

We evaluate the time complexity of our scheme by investigating the number of functions,

iterations, and feasibility-checks. By default, the termination criteria e is set to 0.01 m.

Number of Functions Table 2.3 lists the number of functions in F under various de-

ployment scenarios. The number of functions affects the number of candidate barrier locations

and consequently the maximum number of feasibility-checks in each iteration. In the worst

case, the number of functions, i.e., the size of F , is N2d L2Re. In reality, as listed in the table,

the number of functions is far less than N2d L2Re, since we only consider the functions that

intersect with the initial solution space identified by λmin, λmax, wl and wh.
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Table 2.3 Number of functions

L=200, W=50 L=500, W=50 L=500, W=100

N=20 N=40 N=50 N=100 N=50 N=100

N2d L2Re 4000 16000 62500 250000 62500 250000

# of functions 275 481 2508 4475 2818 4741

Number of Iterations Table 2.4 lists the number of iterations under various deployment

scenarios. As we can see, the number of iterations in all scenarios is small, as a result of the

adopted binary search strategy. Interestingly, the more sensors are deployed, the less iterations

are needed. This is because, when more sensors are deployed, there are more opportunities for

schemes in [Li and Shen (2015); Zhang et al. (2015)] to produce better λopt−x and λopt−y, which,

in turn, results in a smaller upper bound of the maximum moving distance (λmax). Thus, less

number of iterations are required.

Table 2.4 Number of iterations

L=200, W=50 L=500, W=50 L=500, W=100

N=20 N=40 N=50 N=100 N=50 N=100

# of iterations 11.3 10.6 11.7 10.9 12.1 11.3

Number of Feasibility-checks Table 2.5 shows the total number of feasibility-checks

in all iterations. We expect that the total number of feasibility-checks is less than the product

of the corresponding number of iterations and the number of functions. This is validated in

Table 2.5. The main reason is that in an iteration where λ is feasible, the feasibility-checks are

performed only on a fraction of the candidate barrier locations.

Table 2.5 Number of feasibility-checks

L=200, W=50 L=500, W=50 L=500,W=100

N=20 N=40 N=50 N=100 N=50 N=100

# of checks 2360 2549 18921 20995 26318 24131
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2.3.4.3 Effect of the Termination Criteria e

Table 2.6 shows the number of iterations, feasibility-checks and the code running time

under different values of e. As we can see, when e decreases, the maximum moving distance

decreases. As a tradeoff, the number of iterations and feasibility-checks, as well as the running

time increase. In particular, when e decreases from 0.01 to 0.001, the maximum moving distance

decreases but the improvement is almost negligible, while the complexity increases considerably.

This justifies the choice of e = 0.01 in the implementation of our algorithm.

Table 2.6 Effect of e (L = 500,W = 50, N = 50)

e 0.001 0.01 0.1 1

λopt 22.9847 22.9879 23.0191 23.2777

# of iterations 15.1 11.7 8.3 5.1

# of feasibility-checks 20532 18921 16983 13341

Total running time (s) 7.0933 6.4111 5.5685 3.7649

2.4 Conclusions

In this chapter, we explored two sensor movement problems arisen when constructing strong

barrier coverage in a 2D rectangular region. First, we studied a sensor movement problem which

only allows the minimum number of sensors on the final barrier. Then we studied an extended

sensor movement problem which allows any number of sensors on the final barrier. Different

from the previous works, we assume the barrier location is unknown and proposed efficient

strategies to find the optimal one. Both problems can be solved in polynomial time and the

effectiveness of our solutions is supported by simulation results.
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CHAPTER 3. ON MINIMIZING THE NUMBER OF ACTIVE

SENSORS FOR STRONG BARRIER COVERAGE UNDER

PROBABILISTIC MODEL

3.1 Literature Review

3.1.1 Overview

A probabilistic model describes the sensing capability of a sensor better than the disk

model. In a probabilistic model, the sensing capability of a sensor is represented by continuous

probabilities instead of the binary values 0 and 1. With a probabilistic model, new challenges

will arise regarding the definition of coverage, the interaction between the false alarm probability

and detection probability, and sensor collaboration strategies. Fig. 3.1 summarizes the barrier

coverage problems under a probabilistic model, with an emphasis on the sensor selection and

deployment problems when achieving strong barrier coverage.

Figure 3.1 Research problems for barrier coverage under the probabilistic model. The

min-num static sensor selection problem without data fusion was studied in Sec-

tion 3.2. The same problem with decision fusion was studied in Section 3.3. The

min-cost sensor deployment problem in a hybrid network without data fusion was

studied in Chapter 4.
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Strong or weak barriers can be formed under a probabilistic model. Strong barrier coverage

guarantees a minimum level of detection probability for the intruders who may take any crossing

paths. While weak barrier coverage guarantees a minimum level of detection probability for

the intruders who take orthogonal crossing paths. Strong and weak barriers can be formed

with static or mobile sensors or a combination of them. Data fusion may be applied under

a probabilistic model. There are two data fusion methods: decision fusion and value fusion.

We studied a fundamental sensor selection problem in this chapter, selecting the minimum

number of static sensors to achieve strong barrier coverage under a probabilistic model. We

started from the min-num sensor selection problem without data fusion and then studied an

extended min-num sensor selection problem with decision fusion. In Chapter 4, we would

study another extended problem, constructing strong barrier under the probabilistic model in

a hybrid network, with mobile and static sensors.

For all problems, centralized algorithms were proposed to identify a subset of sensors to

form a strong barrier under the probabilistic model. We assume there is a central unit in the

sensor network to which sensors send their initial positions. The proposed algorithms are run

on the central unit. After obtaining the activating information of sensors, the central unit

disseminates it to sensors, and then sensors can choose to sleep or be active accordingly. In a

multi-level hierarchical network, the workload of initial position collection, algorithm execution

and activation information dissemination can be divided and performed on lower-level central

units, the higher-level central units are then responsible for merging the barriers formed by the

lower-level central units.

3.1.1.1 Probabilistic Model

In a probabilistic model, the coverage capability of a sensor is characterized by probability,

rather than the binary values 0 and 1 in the disk model. Typically, a probabilistic model defines

two probabilities, the detection probability and the false alarm probability. The detection

probability is the probability that a sensor alarms when there is a target. It attenuates as

the distance between the sensor and the target increases. The false alarm probability is the
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probability that a sensor alarms when there is no target, and it holds the same value for the

entire field around the sensor.

Various probabilistic models have been proposed. These models can be classified to two

categories. In one category, the detection probability is defined explicitly as a function of the

distance from the target to the sensor [Zou and Chakrabarty (2004), Zou and Chakrabarty

(2005)]. A classical definition of such a detection probability function is given in [Zou and

Chakrabarty (2004)], as shown below,

Pd(t) =


1 ds,t ≤ d1

e−λ(ds,t−d1)β d1 < ds,t < d2

0 d2 ≤ ds,t

(3.1)

where ds,t is the distance from the sensor s to the target t, d1 and d2 are parameters which

control the start and end points of the probability approximation, λ and β are parameters

which control the shape of the probability function. However, this probabilistic model does not

define a false alarm probability.

In the other category, the detection probability is calculated based on the distribution of

the sensor reading and the decision threhold of sensors. The sensor reading follows a signal

attenuation model where the distance from the target to the sensor is a parameter. In [Xing

et al. (2009)], Xing gave such a probabilistic model. First, a model for the sensor reading xi is

defined, as shown below,

xi =


Ω

1+dαs,t
+ n, if target exists,

n, otherwise,

(3.2)

where Ω is the signal amplitude at the target, ds,t is the distance from the sensor s to the

target t, α is the path loss exponent, n is the noise. Each sensor sets a decision threshold T .

If the sensor’s reading exceeds T , then the sensor alarms the existence of a target. Thus, the

detection probability of the sensor for the target is the probability that xi = Ω
1+dαs,t

+n ≥ T , and

the false alarm probability is the probability that xi = n ≥ T . Similiar probabilistic models

can be found in [Ahmed et al. (2005), Clouqueur et al. (2004), Wang et al. (2007)].
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In the probabilistic model, the coverage region of a sensor can be defined as the set of points

whose detection probability is larger than a pre-defined threshold Pmin
d , and the false alarm

probability is less than a pre-defined threshold Pmax
f .

3.1.1.2 Data Fusion

Another advantage of the probabilistic model over the disk model is that data fusion may

be applied among sensors. Data fusion can enhance the detection capability of sensors and

may expand the coverage regions of sensors. If there is no fusion among sensors, then the

coverage region of multiple sensors as a whole is the geometric union of the coverage regions of

all sensors. In the following, we name the set of sensors applying data fusion as a virtual sensor.

There are two data fusion methods: decision fusion and value fusion.

Decision Fusion In the decision fusion model, each sensor makes its own decision; then

the decisions are fused at a sink sensor. The decisions can be fused according to the ”or” rule

or by averaging all decisions and then comparing with a threshold [Clouqueur et al. (2004)]. If

the ”or” rule is applied, the detection probability of the virtual sensor composed of sensors in

S for a point is,

Pd(t) = 1−
∏
si∈S

(1− Pd(si, t)) . (3.3)

With decision fusion, a point which is not covered by any physical sensor in a virtual sensor

may be covered by the virtual sensor.

Value Fusion In the value fusion model, each sensor sends its sensing reading to the

fusion center where the sensing readings of multiple sensors are fused. The fusion center can

use the sum rule or the l2 rule [Xing et al. (2009), Wang and Zhong (2006)] to fuse the sensing

readings. If the sum rule is applied, the detection probability of a virtual sensor composed of

sensors in S for a point is,

Pd(t) = P (
∑
si∈S

xi ≥ Tf ), (3.4)

where Tf is the decision threshold of the virtual sensor. The value of Tf depends the distribution

of the sensing noise, and the number of sensors in the virtual sensor.
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3.1.2 Strong Barrier Coverage under Probabilistic Model

3.1.2.1 Static Sensor Selection Problem

No Fusion When no fusion is applied in the probabilistic model, the coverage region of

multiple sensors as a whole is the geometric union of the coverage region of each sensor, which is

the same as that in the disk model. Under the disk model, selecting the minimal set of sensors

to achieve barrier coverage is equivalent to finding the node-disjoint paths with the minimal

weight in a graph [Kumar et al. (2005)]. Though the way to calculate the coverage region of

multiple sensors is the same as that of the disk model, in the probabilistic model the sensor

coverage radius is affected by the number of active sensors, in contrast to the fixed coverage

radius in the disk model. This is because in the probabilistic model the sensors have to adjust

their decision threshold based on the number of active sensors to keep the system false alarm

probability below a threshold. This brings new challenges to the sensor selection problem.

We will discuss the minimal static sensor selection problem when no fusion is considered in

Section 3.2.

Decision Fusion Chen proposed a scheme in [Chen et al. (2013b)] to achieve strong

barrier coverage under the decision fusion model, where the decisions of neighboring sensors

and the decisions at multiple sampling points along the intruding path are fused. However, their

scheme only considers the detection probability and ignores the system false alarm probability.

In contrast, we in Section 3.3 proposed a more practical scheme to achieve strong barrier

coverage, which considers both the detection probability and the system false alarm probability

with decision fusion applied.

Value Fusion Though there is a lack of research works in achieving barrier coverage

under the value fusion model, there are some research works in achieving area coverage under

the value fusion model, which may provide insights into the barrier coverage problem. Xing

[Xing et al. (2009)] analyzed the impact of value fusion on area coverage from a statistical

perspective. They found with value fusion significant fewer sensors are required to achieve full

area coverage. Wang [Wang et al. (2007)] investigated the coverage region of sensors under the
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value fusion model and proposed a greedy algorithm to select the minimum number of sensors

to achieve full area coverage. The analysis of the coverage regions of sensors under the value

fusion model can be applied to barrier coverage.

3.1.2.2 Hybrid Sensor Deployment Problem

No Fusion Hybrid networks have been adopted in many sensor network applications. For

barrier coverage, Wang in [Wang et al. (2014b)] considered how to achieve k-barrier coverage

with the minimum number of mobile directional sensors which fill the gaps left by static sensors,

under the directional non-probabilistic model. In Chapter 4, we will study how to achieve 1-

barrier coverage with a combination of static and mobile sensors under a probabilistic model.

We consider constraints on both the system detection probability and false alarm probability.

Additionally, we consider a more general sensor cost instead of minimizing the number of mobile

sensors. In [Kim et al. (2017)], Kim tried to maximize the lifetime of the barriers by scheduling

mobile sensors to move around among partial barriers composed of static sensors. Xu [Xu

et al. (2014)] investigated the problem of allocating mobile sensors to fortify weak points in a

barrier, where intruders may have a higher probability of visiting. The objective was to provide

a minimum level of coverage, instead of minimizing the cost.

Decision Fusion & Value Fusion There is no research work in this area so far, though

it is an interesting and promising topic. Data fusion will bring new challenges to the hybrid

sensor deployment problem. The biggest challenge might be how to form the best sensor

fusion pairs or clusters to facilitate the deployment and movement of mobile sensors. Different

sensor pairing or clustering schemes will result in different coverage gaps and thus different

arrangements for mobile sensors. Dedicated strategies need to be designed to achieve barrier

coverage in the most energy/cost-efficient way.

3.1.3 Weak Barrier Coverage under Probabilistic Model

Yang proposed a scheme in [Yang and Qiao (2009)] to achieve weak barrier coverage under

the value fusion model with a system false alarm probability constraint. Yang first derived the
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projection of two value-fusing sensors and then designed a greedy algorithm to achieve weak

barrier coverage.

3.2 Min-num Strong Barrier Coverage under Probabilistic Model without

Data Fusion

3.2.1 Introduction

In this work, we will investigate a min-num sensor selection problem arisen when achieving

strong barrier coverage with randomly deployed static sensors, under a the probabilistic model.

We will jointly consider the detection probability and system false alarm probability and define

(Pmin
D , Pmax

F )-barrier coverage. Dealing with the detection probability without considering the

false alarm probability makes little sense under a probabilistic sensing model, as we can simply

lower the decision threshold of sensors to get a higher detection probability, which may result

an unacceptable false alarm probability.

To minimize the cost and maximize the energy efficiency, we seek the minimum number

of sensors for building a barrier. However, this is not as easy as that under the disk model

where the minimal set of sensors can be identified with one run of the shortest path algorithm

on a graph. With the constraint on the system false alarm probability, the number of active

sensors affects the decision threshold of sensors, which then influences the detection capability

of sensors. The detection capability of sensors, in turn, determines the number of active sensors

in the system. One run of the shortest path algorithm may not find a set of sensors satisfying

both the constraints on the system false alarm probability and detection probability.

To address the strong barrier coverage problem under the practical constraints of minimum

detection probability and maximum false alarm probability, we propose a novel iterative algo-

rithm, to identify a minimal set of active sensors from a given deployment to build a barrier.

The proposed scheme assumes the number of active sensors and adjusts the decision threshold

of sensors iteratively to find a compromise between detection probability and system false alarm

probability.
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3.2.2 Model and Problem Statement

3.2.2.1 System Model

We consider a network of N sensors randomly and uniformly deployed to monitor a long

rectangular region with two parallel sides: an entrance side and a destination side. The size

of the region is L (length) by W (width). Let S denote the set of N sensors. We assume that

sensors in S know their locations in the region and that they have an identical communication

range Rc. An intruder, or target, may take any path traversing the region from the entrance

side to the destination side.

3.2.2.2 Sensing Model

We use a probabilistic sensing model, in which sensor readings are affected by randomly

varying noise and sensor nodes use a decision threshold to determine if an intruder is present

or not. The model consists of a source model, a detection model, and a false alarm model.

Source Model: We assume either the target or its motion produces a physical signal,

such as sound, electromagnetic waves, or vibrations. We assume the strength of the signal

decays according to the power law, meaning that if the target is at point t, the signal strength

at the location of sensor si is [Xing et al. (2009); Tan et al. (2011)]:

ωi(t) =
Ω

1 +
(
d (si, t)

)α , (3.5)

where Ω is the signal amplitude at the target, α is a known decay exponent, and d(·, ·) denotes

the distance between two points.

Detection Model: We assume that background noise affects sensor readings. When a

target is present at point t, a sensor si observes a signal xi that depends on (3.5) and the

background noise n, as follows:

xi = ωi(t) + n. (3.6)
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When no target is present, xi = n. Let FN (n) denote the cumulative distribution function of

noise, and assume that it is identical and independent for all sensors. We also assume that FN

is known by the base station.

To detect a target, sensors use a decision threshold T . When a sensed reading exceeds

T , the sensor generates an alarm to report the presence of a target. Therefore, given T , the

probability that sensor si detects a target at point t is:

Pd(si, t) = 1− FN
(
T − ωi(t)

)
. (3.7)

False Alarm Model: Due to excessive noise, a sensor may generate an alarm and report

the presence of a target when no target is present. This type of alarm is called a false alarm.

The probability of false alarms should be bounded in order to avoid burdening the end user.

For each sample taken, the probability of a particular sensor generating a false alarm is:

Pf = 1− FN (T ) . (3.8)

Considering the fact that a single sensor reporting a false alarm constitutes a system false

alarm, we define the system false alarm probability PF as the probability that any sensor

produces a false alarm, as follows:

PF = 1− (1− Pf )|SA| , (3.9)

where |SA| is the total number of active sensors. This definition of PF is consistent with the

system false alarm probability defined in [Yang and Qiao (2009)] and [Xing et al. (2009)] and

the network false alarm rate in [Tan et al. (2011)].

3.2.2.3 Problem Statement

We then define strong (Pmin
D , Pmax

F )-barrier coverage under the probabilistic models pre-

sented above as follows: strong (Pmin
D , Pmax

F )-barrier coverage is achieved if and only if

1. the detection probability of a target taking any intruding path is at least Pmin
D , and

2. the system false alarm probability is at most Pmax
F .
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In this work, we study how to achieve strong (Pmin
D , Pmax

F )-barrier coverage with the mini-

mum number of sensors from a given set S of static sensors in an L×W region. We seek the

minimum number of sensors for cost-effectiveness and energy efficiency.

3.2.3 Proposed Scheme

3.2.3.1 Overview

In this section, we present an iterative design to achieve strong (Pmin
D , Pmax

F )-barrier coverage

while minimizing the number of active sensors. The main idea our scheme is to first assume a

number of active sensors NA, which is used to set the decision threshold T under the constraint

of Pmax
F . Then, given that T , we check whether the Pmin

D constraint can be achieved with NA

sensors. If not, we update our assumption for NA and iterate.

The scheme is divided into four modules, shown in Fig. 3.2. The setup module takes

NA as input and provides T as output. The mapping and solution modules then identify a

minimized set of active sensors SA that satisfies the Pmin
D constraint. The iteration controller

either terminates the algorithm or starts the next iteration, depending on whether the Pmax
F

constraint is met by SA.

Setup
Module

N
A
←

1

NA ← |SA|

Pmax
F

Input
Mapping
Module

Ω, α, Rc

Solution
Module

Pmin
D

Iteration
Controller

|SA| > NA?

|S
A
|=

N
A

?
o
r
@S

A
?

Output

T

Graph G

SA

|SA|

SA

Figure 3.2 Overview of the proposed scheme. The dashed lines indicate parameter entry.

Inputs are labeled with the action taken upon receiving the input. Outputs are

labeled with any applicable decision criteria.
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3.2.3.2 Setup Module

The setup module calculates the decision threshold T using two inputs, NA and Pmax
F . In

the first iteration, we set NA = 1, starting with a small NA because we want to minimize |SA|,

the size of the set of active sensors. For all other iterations, NA is set to the |SA| found in the

previous iteration. This influences T , as follows.

According to (3.9), to satisfy PF ≤ Pmax
F , we need

Pf ≤ 1− (1− Pmax
F )1/NA . (3.10)

Using (3.8), we then have

T = F−1
N (1− Pf ) ≥ F−1

N

(
(1− Pmax

F )1/NA
)
. (3.11)

According to (3.7), to maximize the probability of detection, we minimize T ; therefore, we use

T = F−1
N

(
(1− Pmax

F )1/NA
)

(3.12)

as the output of the setup module.

3.2.3.3 Mapping Module

The mapping module maps the sensor network to an undirected graph G, which consolidates

the detection probability and the network connectivity information. As shown in Fig. 3.2, the

mapping module takes T as input, as well as several system-related parameters introduced in

Section 3.2.2. These inputs determine the edges of G. Fig. 3.3 provides an example of the

mapping procedure, which is composed of the steps described below.

The mapping procedure takes the following steps:

Vertex Identification The vertices in G include (a) all physical sensors in S, and (b)

two virtual sensors sl and sr, which represent the left and right boundary of the monitored

region, respectively.
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Figure 3.3 Example of the mapping procedure. Ten sensors are deployed in a 20 × 5 m region.

The inputs are T = 1.64 mW, Ω = 30 mW, α = 2, and Rc = 6 m. Sensors sl and

sr are virtual sensors which represent the left and right boundary of the monitored

region, respectively. The circles are the coverage regions of sensors. The dash lines

between sensors are the edges of G.

Edge Identification To identify the edges in G, a sensor’s coverage region under the

probabilistic model must be determined in advance. In probabilistic model, a target at point t

is covered if it can be detected by a sensor with a probability no less than Pmin
D , and the system

false alarm probability is no more than Pmax
F . Given the decision threshold T which satisfies

PF ≤ Pmax
F , the coverage region of a sensor is the region around a sensor where the detection

probability is no less than Pmin
D . That is,

Pd(si, t) = 1− FN
(
T − ωi(t)

)
≥ Pmin

D =⇒ ωi(t) ≥ T − F−1
N (1− Pmin

D ). (3.13)

According to (3.5), we have the coverage region of sensor si,

A =

t|d(si, t) ≤
(

Ω

T − F−1
N (1− Pmin

D )
− 1

) 1
α

≡ R

 , (3.14)

which is a disk centered at si with radius R as shown in Fig. 3.3.

For any two physical sensors, if their coverage regions overlap and they are in the communi-

cation range of each other, then an edge exists between them. For the edge between a physical

sensor and sl or sr, we require the coverage region of the physical sensor intersect the left or

right boundary of the monitored region.

3.2.3.4 Solution Module

Given the graph G, the solution module finds a minimum set of sensors whose detection

probability for any intruding path is no less than Pmin
D . Such a set of sensors can be found by
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applying the shortest path algorithm on G, with source node as sl, and destination node as sr.

The sensors on the path from sl to sr form the barrier. For any intruder traversing the barrier,

it will be detected with a probability higher than or equal to Pmin
D .

3.2.3.5 Iteration Controller

To understand the iteration controller, we first give an overview of iterations in our scheme.

In the first iteration, NA = 1. At the end of any iteration, if |SA| == NA, or if SA does not

exist, we terminate. Otherwise, we set NA = |SA| and iterate. Given these rules, we have the

following property.

THEOREM 3.1. Let SA be the output of the solution module, given NA as the input of the

setup module. In each iteration of the proposed scheme, if SA exists, then |SA| ≥ NA.

Proof: We will prove this with induction. Let N
(k)
A and S

(k)
A denote the input and output

of iteration k, respectively. Let G(k) denote the graph created in iteration k. In the proposed

scheme, N
(1)
A = 1, so we have the following base case.

Base case: |SA|(1) ≥ N
(1)
A = 1. This is obvious, because if a solution exists, it must have

at least one sensor.

Inductive step: If |SA|(k−1) ≥ N
(k−1)
A , then |SA|(k) ≥ N

(k)
A for k > 1. This is true because,

in the proposed scheme, if we do not terminate in iteration k−1, then we set N
(k)
A = |SA|(k−1).

Therefore,

N
(k)
A = |SA|(k−1) ≥ N (k−1)

A . (3.15)

From (3.12), we can then conclude that T (k) ≥ T (k−1). Next, from (3.14), we know that a

higher T for a sensor si leads to a smaller coverage radius for si, that is,

T (k) ≥ T (k−1) =⇒ R(k) ≤ R(k−1). (3.16)

Consequently, the set of sensors S
(k)
A which can form a barrier in Gk can also form a barrier

in G(k−1). However, there may exist a better solution in G(k−1). Therefore, |SA|(k) ≥ |SA|(k−1),

and since N
(k)
A = |SA|(k−1) according to our iteration rule, we have

|SA|(k) ≥ |SA|(k−1) = N
(k)
A .
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Given this property, we discuss the iteration controller in more detail. The iteration con-

troller takes SA as input from the solution module and decides if another iteration is required,

according to the relationship between |SA| and NA, as follows.

|SA| = NA Terminate and output SA. The assumption for NA has been validated, mean-

ing that SA is a feasible solution because it meets the requirements for both the detection

probability (from the solution module) and system false alarm probability (from the setup

module). Note |SA| = NA means PF = Pmax
F . Furthermore, SA is the best feasible solution

that can be found by our scheme, because NA is the smallest valid assumption. Thus, the itera-

tion controller terminates the algorithm and outputs SA. Note that |SA| < NA also means that

SA is a feasible solution. However, this case will not occur, as demonstrated by Theorem 3.1.

SA does not exist Terminate. The solution module could not find an SA that meet the

requirement on detection probability. Further iterations would also not produce a solution,

because S′A would not exist for any N ′A > NA, as all the coverage radius would be smaller for

a larger NA, using reasoning similar to that of the proof of Theorem 3.1. This means that the

proposed scheme cannot find a solution for strong (Pmin
D , Pmax

F )-barrier coverage with the given

sensor deployment.

|SA| > NA Set NA = |SA| and iterate. The assumed NA has not been validated and

the solution SA violates the Pmax
F constraint. The iteration controller outputs |SA| to the

setup module, which sets NA = |SA| and starts the next iteration. Thus, our scheme does not

exhaustively try all values of NA. The proof of correctness for skipping the values between NA

and |SA| is detailed as follows.

THEOREM 3.2. For any N ′A ∈ [NA, |SA|), the solution module cannot find a path from sl to

sr in G′ which satisfies P ′F ≤ Pmax
F , where G′ is the output of the mapping module when N ′A

sensors are assumed to be active, and P ′F is the system false alarm probability of S′A.

Proof: Suppose there exists an N ′A with NA ≤ N ′A < |SA| that creates the graph G′

and produces a feasible solution S′A, meaning that N ′A ≥ |S′A|.
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Using reasoning similar to that of the proof of Theorem 3.1, we know that

N ′A ≥ NA ⇒ R′ ≤ R. (3.17)

Therefore, any solution S′A that is feasible on G′ is also feasible on G, but there may exist

a better solution in G. Thus, |S′A| ≥ |SA|. Combining this with the assumption that S′A is a

feasible solution for the input N ′A < |SA|, we have

|SA| > N ′A ≥ |S′A| ≥ |SA|, (3.18)

which is a contradiction.

3.2.4 Evaluation Results

3.2.4.1 Trace Study

An example of the iterations in the proposed scheme is shown in Fig. 3.4.
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(a) Iteration 1: NA = 1, SA = {s2, s4, s5, s8, s9}, |SA| = 5.
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(b) Iteration 2: NA = 5, SA = {s1, s3, s4, s5, s8, s9}, |SA| = 6.
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(c) Iteration 3: NA = 6, SA = {s1, s3, s4, s5, s8, s9}, |SA| = 6.

Figure 3.4 An illustration of iterations in the proposed scheme. Pmin
D = 0.95 and Pmax

F = 0.05.

The red edges compose the shortest path.



68

In the first iteration, NA = 1 and the shortest path from sl to sr contains five physical

sensors {s2, s4, s5, s8, s9}. In the second iteration, NA = 5. We can see due to the shrinking

of sensor coverage region, the edges in G become less. Now the shortest path from sl to sr

contains six physical sensors {s2, s4, s5, s8, s9}. In the third iteration, NA = 6. The edges in

G keep reducing. But the shortest path in the last iteration is still a shortest path in current

iteration, and hence |SA| = NA, the scheme terminates.

3.2.4.2 Number of Active Sensors

In this section, we show the variation of the number of active sensors when varying Ω, Pmin
D

and Pmax
F , to verify the correctness of the proposed scheme. 200 sensors are randomly deployed

in 200 m× 10 m region, the communication range of sensors is 20 m, the decay factor α is 2.

We assume the noise follows Gaussian distribution with a mean of 0 and standard variance of

1. By default, Pmin
D = 0.9 and PmaxF = 0.05.

The Effect of Signal Amplitude Ω As we can see in Fig. 3.5, when the amplitude

of the target emitted signal increases, the number of active sensors decreases. This is because

a larger Ω will increase the coverage radius of sensors, less sensors are needed to reach the

coverage level.
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Figure 3.5 Number of active sensors vs. amplitude of the target emitted signal Ω.

The Effect of PminD and PmaxF As predicted, in Fig. 3.6(a), when PminD increases, the

number of active sensors increases, since the coverage radius of sensors decreases. In Fig.
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3.6(b), when PmaxF increases, the number of active sensors decreases. This is because a higher

PmaxF allows a sensor to choose a lower decision threshold, which will result an increase of sensor

coverage radius.
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Figure 3.6 The effect of PminD and PmaxF on the number of active sensors.

3.3 Min-num Strong Barrier Coverage under Probabilistic Model with

Data Fusion

3.3.1 Introduction

In this section, we will investigate a similar min-num sensor selection problem as in Sec-

tion 3.2. The minimum number of randomly deployed static sensors are selected to achieve

(Pmin
D , Pmax

F )-barrier coverage under a probabilistic model. The difference between this work

and the work in Section 3.2 is that data fusion is employed in this work. Data fusion can en-

hance the detection capability of sensors and hence expanding the coverage regions of sensors.

We adopted decision fusion over value fusion in this work because it is relatively light-weight

compared to value fusion. Decision fusion was applied to neighboring sensors and the sequence

of sampling points along an intruder’s path. A system false alarm probability was considered

as in Section 3.2, which distinguishes our work from other works such as [Chen et al. (2013b)]

with decision fusion applied, where only the probability of detecting a target was considered.

Under a probabilistic model, when the system false alarm probability and the detection

probability are jointly considered, the number of active sensors and the detection capability of
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sensors affect each other. Therefore, we still need the iterative framework proposed in Section

3.2 to test the assumptions on the number of active sensors and adjust the decision threshold.

However, the detection capability evaluation method in Section 3.2 will underestimate the

detection capability of sensors with decision fusion. In this section, to address the min-num

sensor selection problem under the decision fusion model, we applied the detection capability

evaluation method proposed in [Chen et al. (2013b)] within the iterative framework proposed in

Section 3.2. Moreover, we improved the method of finding the minimal set of sensors proposed

in [Chen et al. (2013b)]. We name the proposed scheme as BaCo.

3.3.2 Model and Problem Statement

3.3.2.1 System Model

We consider a network of N sensors randomly and uniformly deployed to monitor a long

rectangular region with two parallel sides: an entrance side and a destination side. The size

of the region is ` (length) by h (width). Let S denote the set of N sensors. We assume that

sensors in S know their locations in the region and that they have an identical communication

range Rc. We also assume the sensors have a finite sampling rate f and are synchronized in

their sensing activities. An intruder, or target, may take any path traversing the region from the

entrance side to the destination side. A target is assumed to move continually at its maximum

speed vmax in order to minimize the probability of being detected.

3.3.2.2 Sensing Model

We use a probabilistic sensing model, in which sensor readings are affected by randomly

varying noise and sensor nodes use a decision threshold to determine if an intruder is present

or not. The model consists of a source model, a detection model, and a false alarm model.

Source Model We assume either the target or its motion produces a physical signal, such

as sound, electromagnetic waves, or vibrations. We assume the strength of the signal decays

according to the power law, meaning that if the target is at point t, the signal strength at the
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location of sensor si is [Xing et al. (2009); Tan et al. (2011)]:

ωi(t) =
Ω

1 +
(
d (si, t)

)α , (3.19)

where Ω is the signal amplitude at the target, α is a known decay exponent, and d(·, ·) denotes

the distance between two points.

Detection Model We assume that background noise affects sensor readings. When a

target is present at point t, a sensor si observes a signal xi that depends on (3.19) and the

background noise n, as follows:

xi = ωi(t) + n. (3.20)

When no target is present, xi = n. Let FN (n) denote the cumulative distribution function of

noise, and assume that it is identical and independent for all sensors. We also assume that FN

is known by the base station.

To detect a target, sensors use a decision threshold T . When a sensed reading exceeds

T , the sensor generates an alarm to report the presence of a target. Therefore, given T , the

probability that sensor si detects a target at point t is:

Pd(si, t) = 1− FN
(
T − ωi(t)

)
. (3.21)

We apply the “OR” rule to fuse the decisions made by all active sensors. Under the “OR”

rule, a target is said to have been detected if at least one active sensor reports its presence.

Thus, given SA, the set of active sensors, the overall probability of detecting a target at a point

t is:

PD,t = 1−
∏
si∈SA

(
1− Pd (si, t)

)
. (3.22)

For the purpose of detection, a target’s intruding path ϕ is composed of a set Q of discrete,

evenly-spaced points qj that correspond to the points on ϕ where the target is when the sensors

take samples. The target only needs to be detected at one qj , so we apply the “OR” rule over

all qj ∈ Q as well. Thus, given Q, the probability of detecting a target traveling along ϕ is:

PD,ϕ = 1−
∏
qj∈Q

(1− PD,qj ), (3.23)

where PD,qj is calculated according to (3.22).
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Given an intruding path ϕ, the set Q depends on the target’s maximum speed vmax, the

sensors’ sampling rate f , and the sampling phase relative to the arrival of the target at the

entrance side. Since we want to place a lower bound on the probability of detection, we are

interested in the Q that yields P lD,ϕ, the minimum detection probability for a target taking the

path ϕ. For a given f and vmax, we define P lD,ϕ as follows:

P lD,ϕ = min
Q

PD,ϕ, (3.24)

where the choice of points qj ∈ Q is constrained as described above.

We extend this minimum detection probability concept to all possible intruding paths and

define PD as the system’s overall minimum detection probability, as follows:

PD = min
ϕ
P lD,ϕ = min

ϕ
min
Q

(
1−

∏
qj∈Q

∏
si∈SA

(
1− Pd (si, qj)

))
. (3.25)

False Alarm Model Due to excessive noise, a sensor may generate an alarm and report

the presence of a target when no target is present. This type of alarm is called a false alarm.

The probability of false alarms should be bounded in order to avoid burdening the end user.

For each sample taken, the probability of a particular sensor generating a false alarm is:

Pf = 1− FN (T ) . (3.26)

Since we use the “OR” rule for target detection, a single sensor reporting a false alarm for

any given sample constitutes a system false alarm. Therefore, we define the system false alarm

probability PF as the probability that any sensor produces a false alarm for a particular sample,

as follows:

PF = 1− (1− Pf )
|SA| , (3.27)

where |SA| is the total number of active sensors. This definition of PF is consistent with the

system false alarm probability defined in [Yang and Qiao (2009)] and [Xing et al. (2009)] and

the network false alarm rate in [Tan et al. (2011)].

3.3.2.3 Problem Statement

To summarize, we define strong (Pmin
D , Pmax

F )-barrier coverage under the probabilistic mod-

els presented above as follows: strong (Pmin
D , Pmax

F )-barrier coverage is achieved if and only if
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1. the system’s minimum probability of detecting a target taking any intruding path is at

least Pmin
D , and

2. the system false alarm probability is at most Pmax
F .

In this work, we study how to achieve strong (Pmin
D , Pmax

F )-barrier coverage with the min-

imum number of sensors from a given set S of static sensors in an ` × h region, given Rc, f ,

and vmax. We seek the minimum number of sensors for cost-effectiveness and energy efficiency.

Formally, our problem is to minimize |SA|, subject to PD ≥ Pmin
D , PF ≤ Pmax

F , and SA ⊆ S.

3.3.2.4 Transformed Problem

In order to simplify the calculation of detection probability along a path, we transform the

problem by adopting the concept of detection gain introduced in [Chen et al. (2013b)]. The

detection gain G(p) associated with a probability p is defined as follows:

G(p) = − log(1− p). (3.28)

G(p) is a monotonically increasing function of p, with G(0) = 0 and G(1) = ∞.

We apply the gain concept by first substituting (3.22) into (3.23) and rearranging to obtain:

1− PD,ϕ =
∏
qj∈Q

∏
si∈SA

(
1− Pd (si, qj)

)
. (3.29)

By applying the log function to both sides of (3.29), we obtain an expression for Gϕ, the total

detection gain for a target that takes intruding path ϕ, as follows:

Gϕ =
∑
qj∈Q

∑
si∈SA

G (si, qj) , (3.30)

where G (si, qj) is the detection gain of sensor si on a target located at qj . We then define GD
as the minimum detection gain for all ϕ, analogous to our definition of PD, as follows:

GD = min
ϕ

min
Q

(∑
qj∈Q

∑
si∈SA

G (si, qj)
)
. (3.31)

We also define Gmin
D = G

(
Pmin
D

)
. Then our equivalent transformed problem is to minimize |SA|,

subject to GD ≥ Gmin
D , PF ≤ Pmax

F , and SA ⊆ S. The following section presents a practical

method for obtaining a best-effort feasible solution to this problem.
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3.3.3 Proposed Scheme

In this section, we present BaCo’s iterative design that allows it to achieve strong (Pmin
D , Pmax

F )-

barrier coverage while minimizing the number of active sensors. The main idea of BaCo is to

first assume a number of active sensors NA, which is used to set the decision threshold T . Then,

given that T , we check whether strong (Pmin
D , Pmax

F )-barrier coverage can be achieved with NA

sensors. If not, we update our assumption for NA and iterate.

BaCo is divided into four modules, shown in Fig. 3.7. The setup module takes NA as input

and provides T as output. The mapping and solution modules then identify a minimized set

of active sensors SA that satisfies the Pmin
D , or equivalently, Gmin

D , constraint. The iteration

controller either terminates the algorithm or starts the next iteration, depending on whether

the Pmax
F constraint is met by SA.

Setup

ModuleN
A
←

1

NA ← |SA|

Pmax
F

Input
Mapping

Module

Ω, vmax, f, Rc

Solution

Module
Pmin
D

Iteration

Controller
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A
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=
N
A

o
r
@S

A
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T

Weighted graph G

SA

|SA|

SA

Figure 3.7 Overview of BaCo. The dashed lines indicate parameter entry. Inputs are labeled

with the action taken upon receiving the input. Outputs are labeled with any

applicable decision criteria.

3.3.3.1 Setup Module

The setup module calculates the decision threshold T using two inputs, NA and Pmax
F . In

the first iteration, we set NA = 1, starting with a small NA because we want to minimize |SA|,

the size of the set of active sensors. For all other iterations, NA is set to the |SA| found in the

previous iteration. This influences T , as follows.
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According to (3.27), to satisfy PF ≤ Pmax
F , we need

Pf ≤ 1− (1− Pmax
F )

1/NA . (3.32)

Using (3.26), we then have

T = F−1N (1− Pf ) ≥ F−1N

(
(1− Pmax

F )
1/NA

)
. (3.33)

According to (3.21), to maximize the probability of detection, we minimize T ; therefore, we

use

T = F−1N

(
(1− Pmax

F )
1/NA

)
(3.34)

as the output of the setup module.

3.3.3.2 Mapping Module

The mapping module maps the sensor network to an undirected weighted graph G, which

consolidates the detection gain and the network connectivity information. As shown in Fig. 3.7,

the mapping module takes T as input, as well as several of the system-related parameters

introduced in Section 3.3.2. These inputs determine the edges and edge weights of G. Fig. 3.8

provides an example of the mapping procedure, which is composed of the steps described below.
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Figure 3.8 Example of the mapping procedure. Eight sensors are deployed in a 20 × 5 m

region. The inputs are T = 1.64 mW, Ω = 10 mW, vmax = 1 m/s, f = 2 Hz, and

Rc = 6 m. Sensors sl and sr are virtual sensors which represent the left and right

boundary of the monitored region, respectively. The dashed lines are the Voronoi

diagram of the sensors. The solid lines between sensors are the edges of G, labeled

with their weights.
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Vertex Identification The vertices in G include (a) all physical sensors in S, and (b)

two virtual sensors sl and sr, which represent the left and right boundary of the monitored

region, respectively.

Edge Identification The edges of G are all the edges of the Delaunay triangulation of

S whose lengths are shorter than the communication range Rc. The Delaunay triangulation

is used because, according to the conclusion in [Chen et al. (2013b)], from all the possible

intruding paths, the path with the minimum detection gain is composed of Voronoi edges.

Each edge in G thus corresponds to a section of a possible worst-case intruding path.

If a section of the left or right boundary is contained within the Voronoi cell of a physical

sensor si ∈ S, and si is within Rc of the boundary, then an edge between si and a virtual sensor

is added to G.

Weight Assignment The weight of the edge sisj in G is the minimum accumulative

detection gain of si and sj for a target traveling along the Voronoi edge between si and sj ,

Vor(si, sj). According to [Chen et al. (2013b)], when an intruder travels along the perpendicular

bisector of the line segment sisj , sensors si and sj will have the minimum accumulative detection

gain if the sampling points

• are symmetrically distributed on the two sides of the line segment sisj , and

• the distance between two adjacent sampling points is vmax/f .

These requirements are illustrated in Fig. 3.9, where the crosses show the worst-case sampling

points for a target traveling between s3 and s4 in the example in Fig. 3.8. The points are

vmax/f apart, and they are symmetrically distributed on either side of the line segment s3s4.

For an intruder traveling between a physical sensor si and a virtual sensor sl or sr, the

worst-case sampling points are found along the section of boundary that is within si’s Voronoi

cell, and they are symmetrically distributed on either side of the horizontal line between si and

the boundary.

Once the worst-case sampling points are identified, we can obtain the minimum accumula-

tive detection gain of si and sj on an intruder traveling along Vor(si, sj). We use this value as
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Figure 3.9 The worst-case sampling points for a target traveling between s3 and s4. The

crosses represent the sampling points and the dashed line is the Voronoi edge

between the two sensors.

wij , the weight of the edge sisj in G. From (3.30), we have

wij =

m∑
k=1

(
G(si, qk) + G(sj , qk)

)
, (3.35)

where qk is a sampling point, m is the number of sampling points along Vor(si, sj), and G(si, qk)

and G(sj , qk) are the detection gains of si and sj on qk. Note that only the detection gains

of si and sj are considered, while in reality, other sensors may also provide detection gain for

an intruder traveling along Vor(si, sj). Therefore, wij is a lower bound of the actual detection

gain from all si ∈ S.

3.3.3.3 Solution Module

Given the weighted graph G, the solution module finds a minimum set of sensors whose

minimum detection gain for any intruding path is larger than Gmin
D . With the edge weight

defined in the mapping module as the capacity of each edge, the minimum detection gain GD
of the system for any intruding path, assuming that all sensors are active, is equal to the

maximum flow from sl to sr in G. Therefore, our goal is to find a minimum subset of sensors

in S whose maximum flow is larger than Gmin
D . However, selecting the minimum number of

sensors in a graph which can deliver a certain amount of flow is NP-hard [Chen et al. (2013b)].

Therefore, in BaCo, we use a two-phase heuristic solution.

Phase 1 Prune all edges in G whose weights are no more than Gmin
D and call the resulting

graph G̃. Run Dijkstra’s algorithm on G̃ to find the shortest path, in terms of number of hops,
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from sl to sr. If a path is found, then SA is composed of the physical sensors on that path,

and the solution module is done. Otherwise, continue to Phase 2.

Phase 2 If Dijkstra’s algorithm cannot find a path, then sl is disconnected from sr in G̃,

meaning that no single path can deliver Gmin
D flow from sl to sr. In this case, we look for a flow

network that can deliver Gmin
D flow by running the maximum-flow based algorithm proposed

in [Chen et al. (2013b)] on G. Briefly, in this algorithm, the edge weight in G becomes the

capacity of each edge, and the algorithm heuristically searches for an SA which can deliver at

least Gmin
D flow. The algorithm attempts to minimize the number of nodes in the flow network,

but the solution found is likely sub-optimal.

We try Dijkstra’s algorithm prior to the max-flow based algorithm because a solution with

a single path tends to use less sensors than a solution with multiple branches, due to the

sub-optimal nature of Phase 2’s algorithm. This intuition is verified by simulation. However,

we include Phase 2 as a backup, because when Phase 1 fails due to the pruning operation

disconnecting the graph, the max-flow based algorithm of Phase 2 may still produce a solution.

If Phase 2 does not produce a solution, then for the purposes of BaCo, SA does not exist.

Fig. 3.10 illustrates the heuristic two-phase algorithm with three example graphs (see the

next section for an explanation of these graphs as iterations). In these examples, Gmin
D =

3, which corresponds to Pmin
D = 0.95. In Fig. 3.10(a), G̃ is identical to G, as all the edge

weights are larger than Gmin
D . Dijkstra’s algorithm finds a shortest path in G̃ that yields

SA = {s1, s3, s4, s6, s8}, so the solution module does not run Phase 2. In Fig. 3.10(b), three

edges are pruned in Phase 1, but Dijkstra’s algorithm still works, so Phase 2 is again not used.

In the graph in Fig. 3.10(c), edges s1s3, s1s2, s2s3, s4s6 and s6s8 are all pruned in Phase 1,

disconnecting sl from sr. Therefore, this graph requires Phase 2, which produces the solution

shown in the figure, SA = {s1, s2, s3, s4, s5, s7, s8}.
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(a) Iteration 1: NA = 1, SA = {s1, s3, s4, s6, s8}, |SA| = 5.
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(b) Iteration 2: NA = 5, SA = {s1, s2, s3, s4, s5, s7, s8}, |SA| = 7.
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(c) Iteration 3: NA = 7, SA = {s1, s2, s3, s4, s5, s7, s8}, |SA| = 7.

Figure 3.10 An illustration of iterations in BaCo. The minimum detection gain Gmin
D = 3,

which corresponds to Pmin
D = 0.95, and Pmax

F = 0.05. The thick edges compose

the path or flow network which can deliver Gmin
D flow. The dotted edges are

pruned in G̃.

3.3.3.4 Iteration Controller

To understand the iteration controller, we first give an overview of BaCo’s iterations. In

the first iteration, NA = 1. At the end of any iteration, if |SA| == NA, or if SA does not

exist, we terminate. Otherwise, we set NA = |SA| and iterate. Given these rules, we have the

following property.
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THEOREM 3.3. Let SA be the output of the solution module, given NA as the input of the

setup module. In each iteration of BaCo, if SA exists, then |SA| ≥ NA.

Proof: We will prove this with induction. Let N
(k)
A and S

(k)
A denote the input and

output of iteration k, respectively. Let G(k) denote the graph created in iteration k. In BaCo,

N
(1)
A = 1, so we have the following base case.

Base case: |SA|(1) ≥ N
(1)
A = 1. This is obvious, because if a solution exists, it must have

at least one sensor.

Inductive step: If |SA|(k−1) ≥ N
(k−1)
A , then |SA|(k) ≥ N

(k)
A for k > 1. This is true because,

in BaCo, if we do not terminate in iteration k − 1, then we set N
(k)
A = |SA|(k−1). Therefore,

N
(k)
A = |SA|(k−1) ≥ N (k−1)

A . (3.36)

From (3.34), we can then conclude that T (k) ≥ T (k−1). Next, from (3.21) and (3.28), we

know that a higher T for a sensor si leads to a lower detection probability and gain for si, given

an intruder at any point t:

T (k) ≥ T (k−1) ⇒ P
(k)
d (si, t) ≤ P (k−1)

d (si, t)

⇒ G(k)(si, t) ≤ G(k−1)(si, t), ∀i,∀t. (3.37)

From (3.35), we see that this leads to the weight of any particular edge in the graph G(k) being

lower than the weight of the corresponding edge in G(k−1):

G(k)(si, t) ≤ G(k−1)(si, t)

G(k)(sj , t) ≤ G(k−1)(sj , t)

⇒ w
(k)
ij ≤ w

(k−1)
ij . (3.38)

Consequently, the set of sensors S
(k)
A which can deliver Gmin

D amount of flow in G(k) can also

deliver at least Gmin
D amount of flow in G(k−1). However, there may exist a better solution

in G(k−1), because its edges can deliver more flow. Therefore, |SA|(k) ≥ |SA|(k−1), and since

N
(k)
A = |SA|(k−1) according to our iteration rule, we have

|SA|(k) ≥ |SA|(k−1) = N
(k)
A .

Given this property, we discuss the iteration controller in more detail. The iteration con-

troller takes SA as input from the solution module and decides if another iteration is required,

according to the relationship between |SA| and NA, as follows.
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|SA| = NA Terminate and output SA. The assumption for NA has been validated, meaning

that SA is a feasible solution because it meets the requirements for both GD (from the solution

module) and PF (from the setup module). Note |SA| = NA means PF = Pmax
F . Furthermore,

SA is the best feasible solution that can be found by BaCo, because NA is the smallest valid

assumption. Thus, the iteration controller terminates the algorithm and outputs SA. Note

that |SA| < NA also means that SA is a feasible solution. However, this case will not occur in

BaCo, as demonstrated by Theorem 3.3.

SA does not exist Terminate. The solution module could not find an SA that satisfies

Gmin
D . Further iterations would also not produce a solution, because S′A would not exist for

any N ′A > NA, as all the edge weights in G′ would be less than the edge weights in G, using

reasoning similar to that of the proof of Theorem 3.3. This means that BaCo cannot find a

solution for strong (Pmin
D , Pmax

F )-barrier coverage with the given sensor deployment.

|SA| > NA Set NA = |SA| and iterate. The assumed NA has not been validated and the

solution SA violates the Pmax
F constraint. The iteration controller outputs |SA| to the setup

module, which sets NA = |SA| and starts the next iteration. Thus, BaCo does not exhaustively

try all values of NA. The proof of correctness for skipping the values between NA and |SA| is

detailed as follows.

THEOREM 3.4. For any N ′A ∈ [NA, |SA|), the solution module cannot find a set of sensors S′A

which satisfies P ′F ≤ Pmax
F and G′D ≥ Gmin

D , where G′D and P ′F are the minimum detection gain

and the system false alarm probability of S′A.

Proof: Suppose there exists an N ′A with NA ≤ N ′A < |SA| that creates the graph G′

and produces a feasible solution S′A, meaning that N ′A ≥ |S′A|.

Using reasoning similar to that of the proof of Theorem 3.3, we know that

N ′A ≥ NA ⇒ w′ij ≤ wij . (3.39)

Therefore, any solution S′A that is feasible on G′ is also feasible on G, but since G’s edges

can deliver more flow, there may exist a better solution in G. Thus, |S′A| ≥ |SA|. Combining
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this with the assumption that S′A is a feasible solution for the input N ′A < |SA|, we have

|SA| > N ′A ≥ |S′A| ≥ |SA|, (3.40)

which is a contradiction.

An example of BaCo’s iterations is shown in Fig. 3.10. Fig. 3.11 illustrates the iteration

progress for this example, showing |SA| versus NA. The algorithm terminates the first time

it finds a solution on the line |SA| = NA, and since we start with NA = 1 and |SA| increases

with each iteration (Theorem 3.3), BaCo thus attempts to minimize |SA|. The circled crosses

and arrows in Fig. 3.11 show the iterations in Fig. 3.10, starting with NA = 1 in the first

iteration. This iteration outputs |SA| = 5, which becomes the new NA for the second iteration.

The second iteration yields |SA| = 7 and with an input of NA = 7, the third iteration yields

|SA| = 7, and the algorithm terminates.
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Figure 3.11 Illustration of iteration progress for the example shown in Fig. 3.10. The crosses

show the output |SA| value corresponding to each input NA. The arrows show

the progression of the three iterations from Fig. 3.10. Only the circled crosses are

checked by BaCo.

3.3.4 Evaluation Results

In this section, we evaluate the importance of considering system false alarm probability,

the performance of BaCo in terms of the number of active sensors, and BaCo’s convergence

speed. In our simulations, 200 sensors are uniformly randomly deployed in a 100 × 10 m belt

region, similar to the simulation setups in other barrier coverage papers [Kumar et al. (2005);

Liu et al. (2008); Yang and Qiao (2009); Saipulla et al. (2010); Chen et al. (2013b); Wang et al.
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(2014a); Mostafaei (2015); Li and Shen (2015)]. The default simulation parameters are shown

in Table 3.1.

Table 3.1 Default simulation parameters

Parameter Meaning Default value

Pmin
D Detection probability constraint 0.95

Pmax
F System false alarm probability constraint 0.05

Rc Communication range 20 m

vmax Target’s maximum moving speed 1 m/s

Ω Source signal strength 30 mW

α Source signal decay exponent 2

f Sensor sampling rate 5 Hz

FN CDF of noise distribution CDF of Gaussian

µ Noise mean 0 mW

σ Noise standard deviation 1 mW

3.3.4.1 System False Alarm Probability

We first demonstrate the importance of considering system false alarm probability PF when

designing a scheme. We compare BaCo to a non-iterative version of itself, which we call NiB,

that is based on MWBA [Chen et al. (2013b)]. NiB uses BaCo’s source and detection model,

but like MWBA, it does not consider system false alarm probability PF . Therefore, it uses

a fixed decision threshold T and only runs BaCo’s solution algorithm once, selecting a set of

active sensors SA that satisfies the detection probability constraint PD ≥ Pmin
D . The PF for

NiB is then calculated according to (3.26) and (3.27).

Fig. 3.12(a) shows PF and the decision threshold T versus σ, the standard deviation of

the background noise, for BaCo and NiB. By design, BaCo’s PF is constant at Pmax
F = 0.05.

To achieve this, BaCo automatically increases T as σ increases, effectively dealing with the

larger fluctuations in noise. In contrast, NiB’s PF grows quickly with σ, reaching over 0.2 when

σ = 2 mW. The PF of NiB is lower than that of BaCo when σ is small, but as a tradeoff, NiB’s
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number of active sensors |SA| is larger at small σ, as can be seen in Fig. 3.12(b). BaCo balances

this tradeoff using its iterative algorithm, achieving smaller |SA| when the PF constraint allows,

and sacrificing |SA| for PF when needed.
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Figure 3.12 Comparison of schemes with and without the PF constraint.

3.3.4.2 Number of Active Sensors

We now evaluate BaCo’s performance in terms of the number of active sensors |SA| versus

the source signal strength Ω and the sampling frequency f . Since BaCo’s performance cannot

be fairly compared to schemes without the PF constraint, we compare BaCo to two reduced

versions of itself: Path, in which the solution module utilizes only the shortest-path based

algorithm (Phase 1 of the solution module), and Flow, in which the solution module utilizes

only the flow-based algorithm of [Chen et al. (2013b)] (Phase 2 of the solution module). The

full BaCo scheme utilizes both, as described in Section 3.3.3.3. The results are collected from

500 runs of each scheme, with random deployments for each run. If a scheme cannot achieve

barrier coverage for a run, an |SA| of ∞ is recorded.

The Effect of Signal Strength Ω Fig. 3.13(a) shows the CDF of |SA| when Ω = 12

mW, a weak source signal, and Fig. 3.13(b) shows the CDF of |SA| when Ω = 50 mW, a strong

source signal. The curve of BaCo overlaps that of the Path scheme for |SA| < 51 in Fig. 3.13(a)
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and completely in Fig. 3.13(b). Note the left shift in the CDFs between Fig. 3.13(a) and Fig.

3.13(b), indicating that |SA| is smaller when the source signal is stronger. This is because, with

a stronger signal, each sensor has a higher probability of detecting the target, so fewer sensors

are needed.
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Figure 3.13 CDFs of |SA| for two Ω values.

When Ω is low (Fig. 3.13(a)), the Path scheme can only obtain a feasible solution 83.6% of

the time, while the other two schemes can achieve coverage 95% of the time. This is because

the Path scheme limits the search space to a single path. However, when the Path scheme does

produce a feasible solution, it tends to use less sensors than the Flow scheme. At the highest

percentile for which the Path scheme produces a feasible solution, BaCo uses 51 sensors, the

Path scheme uses 53 sensors, and the Flow scheme uses 58 sensors. Thus, BaCo achieves the

performance of Path and the coverage percentile of Flow by combining the two.

When Ω is high (Fig. 3.13(b)), all schemes are able to achieve coverage in 100% of the

runs. The Flow scheme activates more sensors than both BaCo and the Path scheme, due to

the sub-optimal nature of the flow-based algorithm. BaCo and the Path scheme use at most 38

sensors, while the Flow scheme uses at most 56 sensors. Therefore, BaCo performs well with

both large and small Ω values.
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The Effect of Sampling Rate f Fig. 3.14(a) shows the CDF of |SA| when f = 0.5

Hz and Fig. 3.14(b) shows the CDF of |SA| when f = 10 Hz. Again, BaCo largely overlaps

the Path scheme. Comparing the two figures, we see that the number of active sensors of all

three schemes is smaller for the higher sampling frequency. This is because a higher sampling

frequency gives each sensor more chances to detect the target, so fewer sensors are required to

achieve the same PD.
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Figure 3.14 CDFs of |SA| for two sampling rates.

When f is low (Fig. 3.14(a)), BaCo and the Flow scheme achieve a higher coverage per-

centile than the Path scheme. The BaCo scheme achieves coverage in 97.2% of the runs, with

the Path scheme at 94% and the Flow scheme between the two. The lower coverage percentile

of Flow than BaCo implies that the Path scheme (Phase 1 of BaCo) sometimes finds a valid

solution when the Flow scheme does not. This can happen because the Flow scheme generally

finds a solution with a larger |SA| in each iteration. Then in the next iteration the Flow scheme

may not be able to find a feasible solution using the larger |SA| as NA, because the threshold

T will be higher and the gains will be lower. We again see that BaCo performs the best in

terms of |SA| and that, in the cases where the Path scheme achieves coverage, the Path scheme

uses less sensors than the Flow scheme. Therefore, BaCo’s two-phase algorithm again proves

advantageous in terms of both coverage percentile and the number of activated sensors.



87

When f is higher (Fig. 3.14(b)), all schemes have a coverage percentile of 100, and BaCo

and the Path scheme activate fewer sensors than the Flow scheme. Thus, BaCo also performs

well for varied sampling rates.

3.3.4.3 Convergence Speed

We also verified that BaCo’s iterative algorithm converges quickly, regardless of the number

of sensors. We found that an average of around three iterations were required with N = 200

in our test scenario. This low number of iterations is explained as follows. Since each iteration

outputs an SA that would be a feasible solution if false alarm probability was not considered,

|SA| from the first iteration is relatively large. BaCo then skips from NA = 1 to this relatively

large value for the second iteration. At relatively large values of NA, small changes in NA have

little impact on the threshold T , as can be seen in (3.34). Therefore, the detection gains do

not change much. An example of the gain change can be seen in Fig. 3.10, where the decrease

of the gain from Fig. 3.10(b) to Fig. 3.10(c) is smaller than that from Fig. 3.10(a) to Fig.

3.10(b). So as the iterations continue, with increasing probability, the solution in the previous

iteration is still available in the next iteration, and hence the algorithm settles quickly.

3.4 Conclusions

In this chapter, we studied two min-num sensor selection problems under the probabilistic

model. Static sensors are first randomly deployed and then selected to achieve (Pmin
D , Pmax

F )-

barrier coverage. Section 3.2 investigated the min-num sensor selection problem without data

fusion. From our analysis, we learned that the sensor coverage radius is affected by the number

of active sensors under the probabilistic model, if considering both the system false alarm

probability and detection probability. To tackle this new challenge, we proposed an iterative

framework to check the possible number of active sensors selectively. Section 3.3 studied the

min-num sensor selection problem with decision fusion applied. The concept of detection gain

was introduced to evaluate the detection capability of sensors. The detection gain is also

affected by the number of active sensors in the system. A similar iterative algorithm was

proposed to solve the min-num sensor selection problem with decision fusion.
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CHAPTER 4. ON MINIMIZING THE COST OF ACTIVE SENSORS

FOR STRONG BARRIER COVERAGE UNDER PROBABILISTIC

MODEL

4.1 Introduction

To achieve barrier coverage, sensors can be manually deployed at desired positions, which

is labor-intensive and may be dangerous in some scenarios, such as a battlefield. Alternatively,

sensors can be dropped from an airplane or helicopter, resulting in a random deployment that

may have coverage gaps. If the sensors are mobile, they can relocate themselves to the desired

positions to form a barrier. However, mobile sensors typically cost more, and an all-mobile

sensor barrier would be expensive. A potential compromise is to deploy a hybrid network, with

both static and mobile sensors, to achieve barrier coverage.

In our scenario, static sensors are first deployed, potentially leaving coverage gaps. Then,

mobile sensors are deployed to fill the gaps and form a barrier. Our goal is to select a subset of

static sensors to use in the barrier and then determine the number of mobile sensors needed to

fill any gaps. Our objective is to minimize the total cost of the active sensors, meaning those

used to build the barrier. We leave the task of optimizing the actual sensor movement to other

work, e.g. [Saipulla et al. (2010); Li and Shen (2015); Zhang et al. (2015)].

We consider strong barrier coverage, in which intruders may take any path to cross the

monitored region. Unlike previous work such as [Wang et al. (2014b)] studying the hybrid sen-

sor deployment problem under the disk model, we employ a probabilistic model that allows us

to consider the practical constraints of system detection probability and false alarm probability

in our solution. As the work presented in Chapter 3, we face the same challenge: the number

of active sensors affects the decision threshold required to meet the false alarm probability con-

straint, which in turns affects the density of sensors required to meet the detection probability

constraint.
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Summarizing, this work provides the following contributions:

• We define the min-cost strong barrier problem under a probabilistic model, and transform

the barrier construction problem with probabilistic constraints to a graph problem.

• We propose an efficient iterative algorithm to solve the problem, including speed-up

strategies that skip some iterations and prune the graph in each iteration.

The chapter is organized as follows: Section 4.2 presents the probabilistic model and the

problem statement. Section 4.3 describes the proposed scheme. Section 4.4 presents results

from our evaluation of the proposed scheme. Finally, Section 4.5 concludes the chapter.

4.2 Model and Problem Statement

4.2.1 System Model

We consider a hybrid network of static and mobile sensors deployed to monitor a rectangular

region with length L and width W , with the goal of detecting any intruders traversing the width

of the region. We consider strong barrier coverage, meaning that an intruder, or target, may

take any path to traverse the width of the region.

4.2.2 Sensing Model

We use a probabilistic sensing model, in which sensor readings are affected by randomly

varying noise and sensor nodes use a decision threshold to determine if an intruder is present

or not. Our model consists of a source model, a detection model, and a false alarm model.

4.2.2.1 Source Model

We assume either the target or its motion produces a physical signal, such as sound, elec-

tromagnetic waves, or vibrations. We assume the strength of the signal decays according to

the power law, meaning that if the target is at point t, the signal strength at the location of

sensor si is [Xing et al. (2009); Tan et al. (2011)]:

ωi(t) =
Ω

1 +
(
d (si, t)

)α , (4.1)
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where Ω is the signal amplitude at the target, α is a known decay exponent, and d(·, ·) is the

distance between two points.

4.2.2.2 Detection Model

In our detection model, we assume that background noise affects sensor readings. When

a target is present at point t, a sensor si observes a signal xi that depends on (4.1) and the

background noise n, as follows:

xi = ωi(t) + n. (4.2)

When no target is present, xi = n. Let FN (n) denote the cumulative distribution function of

noise, and assume that it is identical and independent for all sensors. We also assume that FN

is known by the base station.

To detect a target, sensors set a decision threshold T . When a sensed reading xi exceeds

T , the sensor generates an alarm to report the presence of a target. Therefore, given T , the

probability that sensor si detects a target at point t is:

Pd(si, t) = 1− FN
(
T − ωi(t)

)
. (4.3)

Given a traversing path ϕ, we define PD(ϕ) as the maximum probability of detection, by any

active sensor, for any point along the path. In other words, PD(ϕ) is the detection probability

of the most well-monitored point in path ϕ. If we use SA to denote the set of active sensors,

then:

PD(ϕ) = max
t∈ϕ

max
si∈SA

Pd(si, t). (4.4)

Strong barrier coverage assumes that the target may take any traversing path ϕ. Thus, the

worst-case probability of detecting any given intruder is PD(ϕ) of the least-monitored ϕ. We

call this worst-case probability the system detection probability, PD, and define it as follows:

PD = min
ϕ
PD(ϕ) = min

ϕ
max
t∈ϕ

max
si∈SA

Pd(si, t). (4.5)

4.2.2.3 False Alarm Model

Due to excessive noise, a sensor may generate an alarm and report the presence of a target

when no target is present. This type of alarm is called a false alarm. The probability of false
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alarms should be bounded in order to avoid burdening the end user. The probability of a

particular sensor generating a false alarm is:

Pf = 1− FN (T ) . (4.6)

We then define the system false alarm probability PF as the probability that any sensor

produces a false alarm, as follows:

PF = 1− (1− Pf )|SA| , (4.7)

where |SA| is the total number of active sensors. This definition of PF is consistent with system

false alarm probability in [Xing et al. (2009)] and [Yang and Qiao (2009)] and network false

alarm rate in [Tan et al. (2011)].

4.2.3 Problem Statement

We define strong (Pmin
D , Pmax

F )-barrier coverage as a barrier coverage that requires PD ≥

Pmin
D and PF ≤ Pmax

F for any traversing path through the region. In this work, we consider

a two-phase deployment strategy to achieve this coverage. First, N total
s static sensors are

randomly deployed in the monitored region, potentially leaving some coverage gaps. Then,

mobile sensors are deployed to fill the coverage gaps between static sensors, ultimately forming

a barrier. Mobile sensors usually are more expensive than static sensors, and we use ν to

represent the mobile-to-static sensor cost ratio and we assume ν ≥ 1.

The goal is to minimize the overall cost of sensors used to achieve strong (Pmin
D , Pmax

F )-

barrier coverage. Any static sensors not chosen to be active in the barrier remain in the

monitored region. These inactive sensors may participate in construction of future barriers

and are therefore not included in the cost of the current barrier. Let Ns be the number of

static sensors selected to be active, and Nm be the number of mobile sensors needed to fill the

coverage gaps between active static sensors. Formally, our problem is to minimize (νNm+Ns),

subject to PD ≥ Pmin
D , PF ≤ Pmax

F , and Ns ≤ N total
s .
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4.3 Proposed Scheme

4.3.1 Overview

To solve our min-cost barrier coverage problem, we propose a scheme that iterates over the

assumed number of active sensors, NA. The basic idea is to first assume a value for NA, which

is used to set the decision threshold T and calculate the sensing radius Rs. Then, we check

whether the minimum cost for strong (Pmin
D , Pmax

F )-barrier coverage can be achieved with NA

sensors. If not, we update our assumption for NA and iterate.

The scheme is composed of four modules, shown in Fig. 4.1. The initialization module

determines the NA value for the iteration and accelerates the scheme by skipping NA values

that will not produce a valid solution, meaning that Pmin
D and Pmax

F will not be satisfied. The

initialization module also outputs the sensing radius corresponding to the value of NA. The

mapping module transforms the original problem into a graph problem by generating, updating,

and pruning a weighted graph G, which is used in the next two modules.

Initialization Module
Mapping Module

Min-cost Algorithm

- update lower bound

Cl = cost(Sc)

- generate Sc

Hop-restricted Algorithm

- generate Sh with

- update upper bound on cost :

S∗
h = cost(Sh)<cost(S∗

h)?Sh : S∗
h

Cu = cost(S∗
h)

Y

weighted graph G

Input: NA = 1, Pmax
F , Pmin

D , static sensors and their positions

Pmax
F , Pmin

D

NA, Rs

NA = 1

Nu
m

Output : Sfinal = S∗
h

C
l
<
C

u
?

N
Y

NA = NA + 1

- update the lower bound on NA

NA active sensors

- update upper bound on mobile sensors
in future iterations :

- update best solution :

Nu
m = min{Nu

m, Nm(S∗
h)− 1}

on cost :

C
l
<
C

u
?

N

static sensors

- calculate the sensing radius Rs

Figure 4.1 Overview of proposed scheme. The solid lines indicate iteration flow and the dashed

lines indicate parameter flow.
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The min-cost algorithm finds the cost lower bound Cl by identifying the min-cost set of

sensors, denoted by Sc. The hop-restricted algorithm finds the cost upper bound Cu by identi-

fying the best strategy with exactly NA sensors, denoted by Sh. S∗h represents the best feasible

solution if the current NA assumption is correct, and it is stored as a potential output. The

number of mobile sensors in S∗h is used to update Nu
m, the upper bound on the number of

mobile sensors for future iterations. Nu
m is provided to the mapping module in order to prune

G in each iteration. If the upper and lower bounds on cost meet (i.e., Cl ≥ Cu), the scheme

terminates and outputs a set of active sensors Sfinal as the final optimal deployment strategy.

Otherwise, NA is updated and iterations continue. Next, we introduce each module in detail.

4.3.2 Initialization Module

The initialization module, shown in Fig. 4.2, initializes each iteration. It determines the

assumption of NA to use for the iteration. The initialization module accelerates the scheme by

skipping NA values which will not produce a valid solution. The module takes a tentative NA

as input, and outputs the next value of NA that has a valid solution.

NA Rs NA < ⌈ L
2Rs

⌉?

NA = ⌈ L
2Rs

⌉

Pmax
F , Pmin

DNA = 1

NA = NA + 1

updated NA, RsN

Y

Figure 4.2 Initialization module.

As shown in Fig. 4.2, when entering this module, NA is set to one for the first iteration,

and NA + 1 in subsequent iterations. Given NA, Pmin
D , Pmax

F and other sensing model-related

parameters, this module performs the following steps.

1. Calculate the sensing threshold T . A sensed reading greater than T shall trigger an

alarm. From (4.6) and (4.7), to satisfy PF ≤ Pmax
F , T is calculated as:

T ≥ F−1
N

(
(1− Pmax

F )1/NA
)
. (4.8)
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To maximize the coverage region, we choose the minimum value for T .

2. Calculate the sensing radius Rs. Intruders within this radius of a sensor shall be detected

by that sensor with probability Pmin
D . Combining (4.1) and (4.3), we obtain:

Rs =

(
Ω

T − F−1
N (1− Pmin

D )
− 1

)1/α

. (4.9)

3. Compute the minimum number of sensors required to achieve barrier coverage, d L
2Rs
e.

4. If d L
2Rs
e is larger than NA, then NA = d L

2Rs
e and repeat the above steps; otherwise, the

module outputs the current NA.

The first three steps may need to be repeated because the value of NA affects T , which

affects Rs. When d L
2Rs
e > NA, the potential values of NA between NA and d L

2Rs
e are skipped

because they will not lead to valid solutions, as proved in Theorem 4.1.

THEOREM 4.1. If d L
2Rs
e > NA, then for any N ′A ∈ [NA, d L

2Rs
e), all deployment strategies with

the assumption of N ′A active sensors would yield a PF larger than Pmax
F , making them invalid

solutions.

Proof: Since N ′A ≥ NA, we have R′s ≤ Rs, because Rs is a decreasing function of NA

according to (4.9). This leads to d L
2R′s
e ≥ d L

2Rs
e. Let T ′ denote the sensor decision threshold

and S′A denote the set of active sensors in any deployment strategy corresponding to N ′A. Since

|S′A| ≥ d L
2R′s
e, we have

PF = 1− FN
(
T ′
)|S′A| ≥ 1− FN

(
T ′
)d L

2R′s
e

≥ 1− FN
(
T ′
)d L

2Rs
e
> 1− FN

(
T ′
)N ′A = Pmax

F .

As an example of how the initialization module works, suppose we want to build a barrier in

an area of length L = 14 m. The signal amplitude emitted by the target, Ω, is 30 mW and the

standard deviation of the environmental noise is σ = 1 mW. Given Pmax
F = 0.05, Pmin

D = 0.95,

and NA = 1, we obtain Rs = 2.85 m in Step 2 and d L
2Rs
e = 3 in Step 3. Since d L

2Rs
e > NA, we

return to Step 1 with NA = 3. In the following steps, we obtain Rs = 2.64 m and d L
2Rs
e = 3.

Now d L
2Rs
e = NA, so we output NA = 3 and Rs = 2.64 m.
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4.3.3 Mapping Module

The mapping module maps the sensor network to an undirected weighted graph G to allow

our scheme to use graph-based algorithms for optimization. G is initialized during the first

iteration, and updated and pruned during the following iterations. Initially, G is constructed

as follows.

• Vertices: There is a vertex for each static sensor. Two additional vertices, sl and sr,

represent the left and right boundaries of the region, respectively.

• Edges: There is an edge between any two vertices.

• Weight: The weight of an edge is the cost of mobile sensors required to fill the gap

between them, plus the cost of the static sensor at one end of the edge. In detail, the

weights are listed below. Rs is the coverage radius corresponding to the NA assumed for

this iteration.

– Between two physical, static sensors si and sj :

wi,j = dmax{dist(si, sj)− 2Rs, 0}
2Rs

e ∗ ν + 1. (4.10)

– Between a physical sensor si and a boundary:

wsl,i = dmax{xi −Rs, 0}
2Rs

e ∗ ν + 1. (4.11)

wi,sr = dmax{L− xi −Rs, 0}
2Rs

e ∗ ν. (4.12)

– Between the left and right boundaries:

wsl,sr = d L
2Rs
e ∗ ν. (4.13)

Continuing with the example from the previous section, let the input to the mapping module

be NA = 3 and Rs = 2.64 m, with the static sensors shown in Fig. 4.3(a). The graph G is then

constructed as shown in Fig. 4.3(b).

We have two observations regarding G. First, any path from sl to sr in G represents a

possible deployment strategy, and the sum of the weights of the edges in the path is the cost
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(a) Sensor deployment. The circles are the coverage
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Figure 4.3 The graph initially constructed by the mapping module.

of the corresponding strategy. However, if this corresponding strategy requires more than NA

active sensors, then it is not necessarily valid with respect to Pmax
F and Pmin

D .

For instance, in Fig. 4.3(b), {sl, s1, s2, s3, s4, sr} is a possible deployment strategy that uses

one mobile sensor between s4 and sr. But this strategy uses five sensors in total, which violates

the assumption of NA = 3, so this strategy may not be a valid solution. As another example,

{sl, s1, sr} is a valid strategy with three sensors and a cost of 1 + 2ν; it uses two mobile sensors

between s1 and sr.

The second observation is that G initially is constructed as a fully connected graph. This

is necessary because, in the optimal solution, mobile sensors may be deployed to fill the gap

between any pair of static sensors, and not necessarily the smallest gap between two static

sensor clusters. Although a barrier built by only filling the shortest gaps between static sensor

clusters may use fewer mobile sensors, it also may use many more static sensors, possibly at a

higher cost. To increase efficiency, our scheme prunes edges from the graph in future iterations.

This pruning process will be discussed in Section 4.3.6.

4.3.4 Min-cost Algorithm to Update Cost Lower Bound

The goal of the min-cost algorithm is to find the solution that minimizes the active sensor

cost. We achieve this by finding a minimum cost path from sl to sr on G using Dijkstra’s
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algorithm. The output of this algorithm is a set of active sensor nodes, Sc, that correspond to

the vertices in the path, plus any mobile sensors that need to be added.

As an example, Fig. 4.4(a) shows the min-cost path Sc from the example in Fig. 4.3(b)

when ν = 3. This path is {sl, s1, s3, s4, sr}. Three static sensors, s1, s3, and s4, are used. One

mobile sensor is required to fill the gap between s4 and the right boundary sr. The total cost

of Sc is cost(Sc) = 6.
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(a) Output of the min-cost algorithm when NA = 3
and ν = 3.
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(b) Output of the hop-restricted algorithm when
NA = 3 and ν = 3.

Figure 4.4 Example outputs of the graph algorithms. An edge between two sensors means

that both sensors are active. A solid edge means their coverage regions overlap,

requiring no mobile sensors. A dashed edge means mobile sensors are needed to

fill the coverage gap between the sensors. In (a), one mobile sensor is required

between s4 and sr, and in (b), two are required between s1 and sr.

Sc is the min-cost solution on G, but if |Sc| > NA, the Pmax
F requirement may not be

satisfied by this solution. Therefore, Sc may be an invalid solution. However, even in this case,

cost(Sc) can still serve as a valid lower bound on the cost for future iterations. This is because,

in future iterations, (1) the assumed number of active sensors increases, the sensor coverage

radius decreases, and the edge weights on G increase; (2) the edge set of G is smaller because

it is pruned in each iteration. Thus, any solution found in future versions of G would yield a

higher cost than that of the current Sc.

Accordingly, the lower cost bound Cl is updated to cost(Sc). The updated Cl is then

compared to the cost upper bound, Cu. If Cl < Cu, a better solution may be found in future

iterations, so the scheme continues to the hop-restricted algorithm. Otherwise, the scheme

terminates and outputs the best valid solution yet found (from the hop-restricted algorithm
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in a previous iteration). Cu is initialized to infinity, so in the example in Fig. 4.4(a), Cl =

cost(Sc) = 6 < Cu =∞ and we continue to the hop-restricted algorithm.

4.3.5 Hop-restricted Algorithm to Update Cost Upper Bound

The hop-restricted algorithm identifies the best path Sh from sl to sr that has exactly

NA physical sensors. This restriction ensures that Sh is a valid solution, distinguishing the

hop-restricted algorithm from the min-cost algorithm in the previous module, which does not

restrict hops and thus may not find a valid solution. The hop-restricted algorithm tracks the

best valid solution found so far, and updates the cost upper bound Cu, terminating the scheme

if the termination criterion is met. This algorithm also outputs the upper bound on the number

of mobile sensors, Nu
m, which is used for graph pruning in the next iteration.

4.3.5.1 Hop-restricted Path Sh and Cost Upper Bound Cu

Sh is obtained by running a dynamic programming-based algorithm on G. For the algo-

rithm, two sets of weights are needed:

• wi,j : the cost of active sensors to fill the gap between si and sj , as defined in Section

4.3.3, and

• wti,j : the number of active sensors to fill the gap between si and sj , obtained by setting

the cost ratio ν in wi,j to one.

Let cki denote the minimum cost of the path from sl to si with k physical sensors. For

k ≥ 1,

cki = min
j∈Γi
{ck−w

t
i,j

j + wi,j}, for i = [1, 2, ..., sr], (4.14)

where Γi is si’s neighborhood set. For k ≤ 0, we define:

c0
sl

= 0, (4.15)

c0
i =∞, for si 6= sl, (4.16)

cki =∞, for any i if k < 0. (4.17)

The hop-restricted algorithm iterates over k and terminates when cNAsr is obtained. Sh is then

the path that reaches sr with cost cNAsr . We define S∗h as the best solution found so far. If
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cost(Sh) is less than cost(S∗h), we store Sh as S∗h and update the cost upper bound Cu to

cost(S∗h).

Fig. 4.4(b) shows the hop-restricted path Sh for the example in Fig. 4.3(b). With NA = 3

and ν = 3, Sh is {sl, s1, sr}. One static sensor, s1, is used. Two mobile sensors are needed to fill

the gap between s1 and the right boundary. The cost of Sh is 7, which is less than cost(S∗h) =∞

(as no S∗h has previously been stored). Sh is then stored as S∗h, and Cu is updated to 7.

Once Cu is updated, it is compared with Cl. If Cl < Cu, the scheme continues to the next

iteration, with NA = NA + 1 as the input to the initialization module. Otherwise, the optimal

solution has been found, and the scheme terminates and outputs S∗h. In the above example,

after executing the hop-restricted algorithm with NA = 3, Cl = 6 < Cu = 7. Therefore, we

continue with the next iteration and pass NA = 4 to the initialization module.

4.3.5.2 Upper Bound on the Number of Mobile Sensors Nu
m

Another output of the hop-restricted algorithm is Nu
m, the upper bound of the number of

mobile sensors for any solution in future iterations that has a lower cost. Nu
m is set as follows:

Nu
m = min{Nu

m, N
∗
m − 1}, (4.18)

where N∗m is the number of mobile sensors in S∗h, shown as Nm(S∗h) in Fig. 4.1. For a solution

Sh in any future iteration, we have

THEOREM 4.2. cost(Sh) > cost(S∗h) if Nm ≥ N∗m.

Proof: Since NA increases as the scheme iterates, we have |Sh| > |S∗h|, where |Sh| and

|S∗h| are the number of active sensors on Sh and S∗h, respectively. Then, we have

Nm +Ns > N∗m +N∗s =⇒ Ns > N∗m +N∗s −Nm.

Further,

cost(Sh) = νNm +Ns > νNm +N∗m +N∗s −Nm

= (ν − 1)Nm +N∗m +N∗s

≥ (ν − 1)N∗m +N∗m +N∗s

= νN∗m +N∗s = cost(S∗h).
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Theorem 4.2 shows that a solution Sh in future iterations with N∗m or more sensors will

have a higher cost than the current best solution S∗h. Therefore, N∗m − 1 is the upper bound of

the number of mobile sensors in any solution in future iterations that has a lower cost.

4.3.6 Mapping Module Revisited

In the mapping module, after the first iteration, G only needs to be updated and pruned.

G’s vertex set remains the same for all iterations, while G’s edge weights are updated and the

edge set is pruned, using the following procedure:

1. Update: With the updated NA and Rs in a new iteration, the number of mobile sensors

needed to fill the gaps between static sensors is recalculated, and the edge weights of G

are updated correspondingly.

2. Prune: After updating the weights of G, the edges of G that need more than Nu
m mobile

sensors to fill the coverage gap are pruned.

Returning to the example, the solution shown in Fig. 4.4(b) was stored as S∗h and Nu
m was

updated to Nu
m = N∗m−1 = 1. Fig. 4.5 shows the sensor deployment and graph of this example

in the following iteration, with NA = 4. Comparing with Fig. 4.3, we can see that the weights

of some edges have been updated. For example, a coverage gap has appeared between s3 and

s4 due to the decreased Rs, and the weight of the edge has increased by ν to reflect that a

mobile sensor is now required. Additionally, several edges have been pruned, such as the edge

from s3 to sr.
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(b) Pruned weighted graph with Nu
m = 1.

Figure 4.5 The graph updated and pruned by the mapping module.
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4.3.7 Terminating Condition

The scheme terminates when the upper and lower bounds for the cost meet or cross, meaning

Cl ≥ Cu. This can occur in either the min-cost algorithm or the hop-restricted algorithm. In

our example, the min-cost algorithm is run on the newly pruned G in Fig. 4.5(b). The min-cost

path in G is {sl, s1, s2, s4, sr}, shown in Fig. 4.6.
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Figure 4.6 Output of the min-cost algorithm and hop-restricted algorithm when NA = 4 and

ν = 3. The output consists of three static sensors (s1, s2, and s4) and one mobile

sensor to fill the gap between s4 and the right boundary.

Its cost is 6, so Cl is updated to 6. Since Cl is still less than Cu, the hop-restricted

algorithm is run on G, producing the same path. This path is saved as S∗h. The cost upper

bound Cu is then updated to 6 and now equals Cl, so the scheme terminates and outputs

Sfinal = S∗h = {sl, s1, s2, s4, sr}. This solution consists of three static sensors (s1, s2, and s4)

and one mobile sensor to fill the gap between s4 and the right boundary.

4.3.8 Complexity Analysis

Now let us do a complexity analysis. The total number of iterations will not be more than

|Sfinal|, since we skip some NA values in the initialization module. In an iteration with the

assumed number of active sensors as NA, the min-cost algorithm has a worst-case complexity

of O((N total
s )

2
), and the hop-restricted algorithm has a worst-case complexity of O(NA|E|) =

O(NA(N total
s )

2
) where |E| is the number of edges on the weighted graph G. Sum up all the

iterations, the worst-case complexity should be O(|Sfinal|2(N total
s )

2
). In practice, the scheme
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performs far more better than the worst case due to the skipping of NA and the graph pruning

strategy which is verified by simulation.

4.4 Evaluation Results

We evaluate the performance of the proposed scheme by varying the mobile-to-static sensor

cost ratio (ν), the total number of deployed static sensors (N total
s ), and the Pmax

F and Pmin
D

parameters. We also demonstrate the effectiveness of NA skipping and the graph pruning

strategy. In our simulations, sensors are uniformly randomly deployed in a 100 × 10 m

rectangular region. The random uniform deployment of sensors is consistent with most of the

studies of wireless sensor networks [Kumar et al. (2005); Liu et al. (2008); Yang and Qiao

(2009); Saipulla et al. (2010); Chen et al. (2013b); Wang et al. (2014a); Mostafaei (2015); Li

and Shen (2015)]. The default simulation parameters are shown in Table 4.1, which are chosen

according to the real-world data mentioned in [Xing et al. (2009)]. All the simulation results

are an average of 50 experiments.

Table 4.1 Default simulation parameters

Parameter Meaning Default value

Pmin
D Minimum system detection probability 0.95

Pmax
F Maximum system false alarm probability 0.05

Ω Source signal strength 30 mW

α Source signal decay exponent 2

FN CDF of noise distribution Gaussian

µ Noise mean 0 mW

σ Noise standard deviation 1 mW

ν Mobile-to-static sensor cost ratio 5

N total
s Total number of deployed static sensors 100
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4.4.1 Effect of Cost Ratio

Fig. 4.7 demonstrates the effect of cost ratio on the number of active mobile and static

sensors. When the cost ratio is one, meaning mobile sensors and static sensors have the same

cost, the scheme only uses mobile sensors. This is because, in this case, a barrier between

the left and right boundaries can be formed at minimum cost with a horizontal line of mobile

sensors. At higher cost ratios, meaning more expensive mobile sensors, the scheme favors static

sensors over mobile sensors. Additionally, as the cost ratio increases, the total number of active

sensors also increases. This is because the scheme must seek out solutions that are more indirect

and winding, requiring more static sensors, in order to reduce coverage gaps and the number

of mobile sensors.
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Figure 4.7 Effect of cost ratio.

4.4.2 Effect of the Total Number of Deployed Static Sensors

Fig. 4.8(a) shows the effect of the total number of deployed static sensors on the number

of active mobile and static sensors. As more static sensors are deployed, fewer mobile sensors

are utilized, because the static sensor deployment is better able to form a barrier at less cost

on its own. When the number of deployed static sensors reaches a threshold (in this case 200),

mobile sensors are no longer needed. Above this threshold, deploying more static sensors slowly

reduces the total number of active sensors required. This is because more static sensors leads

to more possible strategies that satisfy the barrier coverage requirements, and some of these

additional strategies may use fewer active static sensors.
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(a) Number of active sensors vs. total number

of deployed static sensors.
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Figure 4.8 Effects of the total number of deployed static sensors.

Fig. 4.8(b) shows sensor costs as the total number of deployed static sensors increases. Two

costs are evaluated. “Cost of active sensors” is the total cost of the active sensors, both mobile

and static. “Cost of deployed sensors” is the total cost of all deployed sensors, both active and

inactive. Note that the mobile sensors are deployed as needed and hence all of them are active.

In Fig. 4.8(b), the cost of deployed sensors first decreases and then increases. In the scenario

demonstrated in Fig. 4.8(b), the minimum cost is reached on average when deploying 30 static

sensors. When the number of deployed static sensors is below 30, more mobile sensors must

be used, increasing the cost. When the number of deployed static sensors is higher than 30,

the increased cost of deployed static sensors outweighs the decreased number of mobile sensors.

Overall, we observe that the total number of deployed static sensors should be carefully chosen

to minimize the total cost. On the other hand, the cost of active sensors, which is minimized

by the proposed scheme, strictly decreases with the number of deployed static sensors. This

aligns with the results in Fig. 4.8(a).

4.4.3 Effects of Pmin
D and Pmax

F

Fig. 4.9 shows the number of active sensors and their costs with different values of Pmin
D .

The higher Pmin
D is, the more sensors are needed to reach the required coverage level. The cost

increases correspondingly.
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Figure 4.9 Effect of Pmin
D .

Fig. 4.10 shows the number of active sensors and their costs with different values of Pmax
F .

The higher Pmax
F is, the fewer mobile and static sensors are needed. This is intuitive, as

increasing Pmax
F relaxes the constraint.
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Figure 4.10 Effect of Pmax
F .

4.4.4 Effectiveness of NA Skipping and Graph Pruning

Table 4.2 shows the number of iterations of different setups, compared with the number of

sensors in the final solution |Sfinal|. As we can see, the number of iterations is less than |Sfinal|
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since we skip some NA values in the initialization module. The simulation results demonstrate

the effectiveness of the skipping strategy.

Table 4.2 Number of iterations with different L and N total
s (W = 10 m)

L = 100 m L = 250 m L = 500 m

N total
s 50 100 200 50 100 200 50 100 200

|Sfinal| 26.6 28.9 27.1 61.3 66.2 73.7 118.3 124.7 135

# Iterations 8.7 10.9 9.1 10.4 15.3 22.8 10.3 16.9 27.1

Fig. 4.11 shows the number of edges in G throughout the iterations of the scheme, a measure

of the effectiveness of the pruning process. Results are shown for 50 and 200 deployed static

sensors. The number of edges is normalized to the number of edges in the initial, fully-connected

graph. As the scheme iterates, the edges in G are gradually pruned. When the number of

deployed static sensors is higher, more edges are pruned because fewer mobile sensors are used

in the solutions, providing a tighter upper bound on the number of mobile sensors that can be

included in an edge. Overall, the graph pruning process is shown to be effective. This helps

expedite the scheme by reducing the computational complexity as the scheme runs.
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Figure 4.11 Number of edges in graph G, normalized to the initial, fully-connected graph, vs.

iteration.
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4.5 Conclusions

In this chapter, we proposed a scheme to solve the min-cost hybrid sensor deployment

problem. We aimed to achieve (Pmin
D , Pmax

F )-barrier coverage with a combination of mobile and

static sensors while minimizing the total cost of active sensors. The problem was solved under

an iterative framework, with the transformation to the hop-constrained shortest path problem

in a graph. Simulation results show the proposed scheme can effectively choose the deployment

strategy that achieves strong barrier coverage at a minimum cost.
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CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

5.1 Research Contributions

This dissertation explored the min-max sensor movement, min-num sensor selection, and

min-cost hybrid sensor deployment problems arisen when providing barrier coverage in sensor

networks. Main contributions of this dissertation are summarized as follows.

5.1.1 Min-max Sensor Movement Problem under Disk Model

We explored two min-max sensor movement problems under the disk model. We assumed

mobile sensors were first randomly deployed in a 2D rectangular region, and then they relo-

cated to designated destinations to form a strong horizontal barrier. With N mobile sensors

available, the first problem selects the minimum number of sensors to form the barrier. The

second problem may select any number out of the N available sensors to move to form the

barrier. The challenge of the above two problems is the y-coordinate of sensor final positions,

i.e., the barrier location, is unknown. To obtain the optimal barrier location, we proposed

algorithms which first identify a set of discrete candidates for barrier locations, then check

the candidates iteratively. For the first problem, our algorithm requires O(N4) iterations in

the theoretical worst case, but in practice, it requires less than O(N2) iterations, as confirmed

by simulation. For the second problem, our algorithm has a worst case time complexity of

O(log λmax−λmin
e N3d L2Re logN) where λmin and λmax are the initial lower and upper bound of

the optimal maximum moving distance.

5.1.2 Min-num Sensor Selection Problem under Probabilistic Model

We further investigated the min-num static sensor selection problem under the probabilistic

model. The system false alarm probability and detection probability were jointly considered,

and a (Pmin
D , Pmax

F )-barrier coverage was defined. Our analysis showed that with the constraint



109

on the system false alarm probability, the number of active sensors affects the detection capabil-

ity of sensors. This distinguishes the min-num sensor selection problem under the probabilistic

model from the min-num sensor selection problem under the disk model. Specifically, we stud-

ied two sensor selection problems under the probabilistic model, without and with decision

fusion, respectively. Both of them were solved under an iterative framework where the number

of active sensors is assumed and validated iteratively, while with different evaluation methods

for the detection capabilities.

5.1.3 Min-cost Barrier Coverage in Hybrid Network under Probabilistic Model

Finally, we studied the min-cost barrier construction problem in a hybrid network under

the probabilistic model. Hybrid network means the network is composed of mobile and static

sensors. We considered a two-step deployment strategy; first, the static sensors are randomly

deployed, and then the mobile sensors are deployed and relocate to merge the coverage gaps left

by static sensors. We aimed to find the proper coverage gaps to deploy mobile sensors such that

(Pmin
D , Pmax

F )-barrier coverage is achieved, and the total cost of the barrier is minimized. Under

the probabilistic model, we solved the problem by iteratively trying multiple assumptions of

the number of active sensors, and for each assumed number of active sensors, the min-cost

deployment strategy is obtained by solving a hop-constrained shortest path problem.

5.2 Future Works

5.2.1 Sensor Movement Problems

5.2.1.1 Min-sum Sensor Movement Problems under Disk Model

Though we investigated two 2D min-max sensor movement problems under the disk model,

the corresponding 2D min-sum sensor movement problems are left unexplored. If considering

constructing a horizontal strong barrier, similar to the min-max problems, the min-sum prob-

lems can be classified into several categories according to whether the final x-coordinates and

y-coordinates of sensors are given. The corresponding “given-x, given-y” problem has been

solved in [Ban et al. (2010)], while the other three problems lack research. The objective of
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min-max and min-sum can also be jointly considered to prolong the total barrier lifetime in

multi-round barrier construction.

5.2.1.2 Curve Barrier Construction with Mobile Sensors under Disk Model

For the two 2D min-max sensor movement problems solved in Chapter 2, the final barrier

has to be horizontal. However, since the randomly deployed sensors scatter anywhere in the

deployed region, they would move shorter distances if the final barrier is not required to be

horizontal. There is a lack of research works for constructing curve barriers with mobile sensors

with the objective of min-max or min-sum.

5.2.1.3 Sensor Movement Problems under Probabilistic Model

Since data fusion under a probabilistic model can expand the coverage regions of sensors, it

is worth investigating the sensor movement problems under the data fusion model. Data fusion

would help to reduce the sensor moving distances. However, since data fusion requires extra

energy for data communication over the lifetime of the barrier, while the energy consumption

for sensor relocation is an one-time expense, we can not conclude that data fusion will prolong

the lifetime of the barrier and the problem needs further investigation.

5.2.2 Sensor Selection and Deployment Problems

5.2.2.1 Energy/Cost-efficient Sensor Selection with Value Fusion

We investigated the min-num sensor selection problem under the probabilistic model with

and without decision fusion in Chapter 3. The other data fusion method, value fusion, out-

performs decision fusion regarding the detection capability of sensors [Clouqueur et al. (2004)],

but it requires more data to be transferred among sensors. It is valuable to compare value

fusion with decision fusion regarding the overall cost and energy consumption of sensors when

achieving barrier coverage. To do the comparison, the foremost thing might be finding a way to

evaluate the detection capability of sensors for an intruder path under the value fusion model.
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5.2.2.2 Barrier Coverage in Hybrid Network with Data Fusion

Similar to the static sensor selection problem, achieving barrier coverage in a hybrid network

with mobile and static sensors under the data fusion model lacks investigation. The problem

becomes complicated when it involves movement, sensor selection, and data fusion at the same

time. The selection of active static sensors affects the locations of coverage gaps. To merge

the coverage gaps, we can utilize either data fusion or mobile sensors. Schemes should be

designed to find the best sensor selection and deployment strategy by weighing the various

sensor collaboration and movement choices.
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