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ABSTRACT

This dissertation studies the data-driven modeling and control problem of nonlinear systems by

exploiting the linear operator theoretic framework involving Koopman and Perro-Frobenius operator.

A systematic linear-operator based controller design procedure has been established, which can be

used to solve a variety of nonlinear control problems, including feedback stabilization using control

Lyapunov functions, optimal quadratic regulation using Koopman eigenfunctions and convex opti-

mization formulation of optimal control problem using P-F and Koopman operator approximation.

As the core of data-driven modeling, we first propose a new algorithm for the finite-dimensional

approximation of the linear transfer Koopman and Perron-Frobenius operator from time-series data.

We argue that the existing approach for the finite-dimensional approximation of these transfer oper-

ators such as Dynamic Mode Decomposition (DMD) and Extended Dynamic Mode Decomposition

(EDMD) does not capture two important properties of these operators, namely positivity and Markov

property. The algorithm we propose preserves these two properties. We call the proposed algorithm as

naturally structured DMD (NSDMD) since it retains the inherent properties of these operators. Nat-

urally structured DMD algorithm leads to a better approximation of the steady-state dynamics of the

system regarding computing Koopman and Perron- Frobenius operator eigenfunctions and eigenval-

ues. However, preserving positivity property is critical for capturing the real transient dynamics of the

system. This positivity property of the transfer operators and it’s finite-dimensional approximation

play an important role for controller and estimator design of nonlinear systems.

To solve the feedback stabilization problem for nonlinear control systems, we tried to take ad-

vantage of the Koopman operator framework. The Koopman operator approach provides a linear

representation for a nonlinear dynamical system and a bilinear representation for a nonlinear control

system. The problem of feedback stabilization of a nonlinear control system is then transformed to

the stabilization of a bilinear control system. We propose a control Lyapunov function (CLF)-based

approach for the design of stabilizing feedback controllers for the bilinear system. The search for



x

finding a CLF for the bilinear control system is formulated as a convex optimization problem. This

leads to a schematic procedure for designing CLF-based stabilizing feedback controllers for the bi-

linear system and hence the original nonlinear system. Another advantage of the proposed controller

design approach outlined in this dissertation is that it does not require explicit knowledge of system

dynamics. In particular, the bilinear representation of a nonlinear control system in the Koopman

eigenfunction space can be obtained from time-series data.

Next, we study the optimal quadratic regulation problem for nonlinear systems. The linear op-

erator theoretic framework involving the Koopman operator is used to lift the dynamics of nonlinear

control system to an infinite-dimensional bilinear system. The optimal quadratic regulation problem

for nonlinear system is formulated in terms of the finite-dimensional approximation of the bilinear sys-

tem. A convex optimization-based approach is proposed for solving the quadratic regulator problem

for bilinear system. We applied a variety of examples and compared the simulation results between

our framework and conventional LQR control using linearized model.

For more general optimal control problems, finally we provide a density-function based convex

formulation for the optimal control problem of the nonlinear system. The convex formulation relies on

the duality result in the stability theory of a dynamical system involving density function and Perron-

Frobenius operator. The optimal control problem is formulated as an infinite-dimensional convex

optimization program. The finite-dimensional approximation of the optimization problem relies on

the recent advances made in the data-driven computation of the Koopman operator, which is dual to

the Perron-Frobenius operator. Simulation results are presented to demonstrate the application of the

developed framework.
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CHAPTER 1. INTRODUCTION

With the increasing complexity of modern industrial processes, aerospace systems, transportation

systems, power grid systems, modeling the accurate physical system model could be a difficult or even

impossible task for researchers and engineers. Even in the case an accurate physical system model

can be established, the mathematical formulation still could be too complex to apply the classical

controller design procedure, and impossible for the system monitoring and performance evaluation.

For this reason, traditional nonlinear control system design methodologies, including the Lyapunov

based method, backstepping method and feedback linearization, which depend on an accurate model

of the plant, has become impractical for control issues in these kinds of enterprises.

In the meantime, based on the establishment and development of the IoT(Internet of Things)

technology, a large amount of diversified time-series data(Big Data) can be generated at high speed by

industrial equipment and collected both in the form of stored historical data from prior measurements

and online data in real-time during process runs. Using these data, both on-line and off-line, to

directly design controllers, predict and assess system states, evaluate performance, make decisions, or

even diagnose faults, would be very significant, especially under the lack of accurate process models.

Hence, the data-driven control(DDC) or model-free control method is introduced for the identification

of the process model and the design of the controller based entirely on experimental data collected

from the plant.

1.1 Literature Survey

In this section, we will first go through the history of the data-driven control theory (DDC) and

the Linear operator theory, including Koopman and Perron-Frobenius operator, and their application

to data analysis. Then a detailed literature review on the Koopman operator identification and Perron-

Frobenius operator identification will be given.
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The term “data-driven” was first proposed in computer science and has only entered the vocab-

ulary of the control community in recent years. The concept of Big Data Yin and Kaynak (2015)

has been well-developed in meteorology, genomics, complex physics simulations, biological and en-

vironmental research, finance, and business to healthcare. In the era of Big Data, the data acquiring,

storing, computing, and communicating have become much easier, and a large amount of data could

be analyzed and explored online by merits of the advanced hardware and software technologies. All

of these enable DDC to be necessary and possible technologically.

In general, the definition of Data-driven control Hou and Wang (2013); Van Helvoort (2007);

Heusden (2010) is given by all control theories and methods in which the controller is designed by

directly using on-line or off-line I/O data of the controlled system or knowledge from the data process-

ing but not any explicit information from mathematical model of the controlled process, and whose

stability, convergence, and robustness can be guaranteed by rigorous mathematical analysis under

certain reasonable assumptions.

The standard approach to control systems design can be divided into two steps, system identifica-

tion and controller design for the required performance. According to the controller design procedure,

the data-driven control method can be classified as indirect and direct methods.

The direct method, e.g., Formentin et al. (2013), is to map the experimental data directly onto the

controller without any model to be identified in between. The SPSA-based DDC method (SPSA) is a

direct controller approximation method based on SPSA (simultaneous perturbation stochastic approx-

imation) proposed by Spall in Spall et al. (1992). This method uses only closed-loop measured data

rather than a mathematical model of the controlled plant to tune the parameters of the controller Spall

and Cristion (1993); Spall and Chin (1997); Spall and Cristion (1998); Spall (2009). Iterative feed-

back tuning (IFT) was proposed by Hjalmarsson in 1994 Hjalmarsson et al. (1994). It is a typical

data-driven control scheme involving iterative optimization of the parameter of the fixed controller

according to an estimated gradient of a control performance criterion. At each iteration, the estimate

is constructed from a finite set of data obtained partly from the normal operating condition of the

closed-loop system and partly from a special experiment in which the output of the plant is fed back

in the reference signal of the closed loop.
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The indirect method, however, is still retaining the standard two-step approach, first identify a

model, then find a controller based on such a model. Hence the typical objective of the system iden-

tification step is to have the approximated model as close as possible to the physical model. In the

history of data-driven and nonlinear control area, there already exists a wide range of approaches in

the literature, including model-free adaptive control Krstic et al. (1995), extremum-seeking Ariyur and

Krstić (2003), gain scheduling Rugh and Shamma (2000), feedback linearization Charlet et al. (1989),

describing functions Vander Velde (1968), sliding mode control Edwards and Spurgeon (1998), singu-

lar perturbation Kokotovic et al. (1976), geometric control Brockett (1976), back-stepping Kokotovic

(1992), model predictive control Camacho et al. (2003); Mayne et al. (2000), reinforcement learn-

ing Sutton and Barto (2018), and machine learning control Hansen et al. (2008); Brunton and Noack

(2015). The subspace approach is an important branch of the indirect methods in DDC methodolo-

gies, including the subspace approach Huang and Kadali (2008); Katayama (2006); Van Overschee

and De Moor (2012), the data space approach Fujisaki et al. (2004); Ikeda et al. (2001); Park and

Ikeda (2009), and the data-driven simulation approach Markovsky et al. (2005, 2006); Markovsky

and Rapisarda (2008). The subspace approaches exploit the idea that system dynamics are repre-

sented as a subspace of a finite-dimensional vector space, which consists of the time series data of

input/state/output or input/output. The Approximate dynamic programming(ADP) has been proposed

in Werbos et al. (1990); Werbos (1992) as a solution to optimal control problems forward-in-time.

ADP combines reinforcement learning using adaptive critic structures with dynamic programming.

ADP includes four main schemes: heuristic dynamic programming, dual heuristic dynamic program-

ming, action-dependent heuristic dynamic programming, i.e., Q-learning WATKINS (1989); Watkins

and Dayan (1992); Weissensteiner (2009), and action-dependent dual heuristic dynamic program-

ming. Iterative learning control (ILC) was first proposed by Uchiyama in Japanese in 1978 Uchiyama

(1978), which did not get much attention. After one critical report Arimoto et al. (1984) was published

in 1984, ILC was extensively studied and significant progress was made in both theory and application

in many fields. For a system that repeats the same task in a finite interval, ILC is an ideal technique

to learn from the repetitive dynamics to achieve better control performance. ILC has a very simple

controller structure and requires little prior knowledge of the system. It can guarantee learning error
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convergence as the number of iterations approaches infinity. A more comprehensive and systematic

summary of the ILC research can be found in Chen and Wen (1999); Moore (2012).

However, most of the above existing methods are generally tailored to a specific class of prob-

lems, require considerable mathematical and computational resources, or don’t readily generalize to

new applications. The Koopman operator and Perron-Frobenius operator approximations are play-

ing a more and more important role in the generalized data-driven system identification and control

methodology.

The Koopman operator formalism was first proposed in the early work of Koopman (1931), where

he introduced the linear transformation called Koopman operator, U, and realized that this transfor-

mation is unitary for the Hamiltonian dynamical system (the U notation comes from the unitary

property). This observation by Koopman inspired John von Neumann to give the first proof for

a precise formulation of ergodic hypotheses, known as mean ergodic theorem Halmos (1973). In

1932, Koopman and von Neumann wrote a paper together, where they introduced the notion of the

spectrum of a dynamical system, i.e. the spectrum of the associated Koopman operator, and noted the

connection between chaotic behavior and the continuous part of the Koopman spectrum Koopman

and Neumann (1932). For several decades after the work of Koopman and Von Neumann, the notion

of Koopman operator was mostly limited to the study of measure-preserving systems as the unitary

operator in the proof the mean ergodic theorem or discussions on the spectrum of measure-preserving

dynamical systems Petersen (1989); Mane and Levy (1987). It seldom appeared in other applied fields

until it was brought back to the general scene of dynamical system by two articles in Mezić and Ba-

naszuk (2004); Mezić (2005). Both papers discussed the idea of applying Koopman methodology to

capture the regular components of data in systems with a combination of chaotic and regular behavior.

In 2009, the concept of Koopman modes was applied to a complex fluid flow in Rowley et al.

(2009), where the Koopman Mode Decomposition(KMD) is shown promising in capturing the dy-

namically relevant structures in the flow and associated time scales. This work also showed that KMD

could be computed by a numerical decomposition technique known as Dynamic Mode Decomposition

(DMD) in Schmid (2010). Since then, KMD and DMD have been massively used in analyzing the

nonlinear flows Schmid et al. (2011); Pan et al. (2011); Seena and Sung (2011); Muld et al. (2012);
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Hua et al. (2016); Bagheri (2013); Sayadi et al. (2014). A review of the Koopman theory in the

context of fluid flows can be found in Mezić (2013). The other applications of KMD include model

reduction and fault detection in energy systems for buildings Georgescu and Mezić (2015); Georgescu

et al. (2017), coherency identification and stability assessment in power networks Susuki and Mezic

(2011); Susuki and Mezić (2013), extracting spatio-temporal patterns of brain activity Brunton et al.

(2016a), background detection and object tracking in videos Kutz et al. (2015); Erichson et al. (2016)

and design of algorithmic trade strategies in finance Mann and Kutz (2016).

Parallel to the applications, the identification of the Koopman spectrum from data has also seen a

lot of progress in recent years. For post-transient systems, the Koopman eigenvalues lie on the unit

circle and Fourier analysis techniques can be used to find the Koopman spectrum and modes Mezić

and Banaszuk (2004). For dissipative systems, the Koopman spectral properties can be computed

using a theoretical algorithm known as Generalized Laplace Analysis Mohr (2014); Mohr and Mezić

(2014). For the system application with transient behavior, DMD is the popular technique for Koop-

man identification. The idea of Extending DMD was introduced for numerical computation of the

Koopman spectrum by sampling the state space and using a dictionary of observables. The linear

algebraic properties of the algorithm are discussed, and new variations are suggested in Chen et al.

(2012); Tu et al. (2013). Other new variants of DMD, e.g., Multi-resolution DMD Kutz et al. (2015)

and DMDc Proctor et al. (2016), are also introduced in to unravel multi-time-scale phenomena and

account for linear input to the system. Considering the scalability of the available data, improvements

of DMD are also devised to handle larger data sets Hemati et al. (2014); Guéniat et al. (2015), dif-

ferent sampling techniques Brunton et al. (2013); Tu et al. (2013) and noise Dawson et al. (2016);

Hemati et al. (2017). The convergence of DMD-type algorithms for Koopman identification was dis-

cussed in Arbabi and Mezic (2017); Korda and Mezić (2018b); Mezic and Arbabi (2017). Once the

system information is obtained by Koopman operator identification, these techniques can be widely

applied to the data-driven prediction and control. An example of optimal controller is designed based

on finite-dimensional Koopman linear expansion of nonlinear dynamics in Brunton et al. (2016b).

In Surana (2016); Surana and Banaszuk (2016), a system identification framework is developed to

build state estimators for nonlinear systems. More recent works have shown successful application of
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Koopman linear predictors for nonlinear systems Korda and Mezić (2018a), and optimal controllers

of Hamiltonian systems designed based on Koopman eigenfunctions Kaiser et al. (2017). The feed-

back control of fluid flows using Koopman linear approximation is demonstrated in a model-predictive

control framework Peitz and Klus (2019); Peitz (2018); Arbabi et al. (2018).

Another important component in the operator-theoretic methods, the Transfer operator P or known

as Perron-Frobenius(P-F) operator, which is the left ad-joint to the Koopman operator, also attracted

a lot of attention lately for problems involving dynamical system analysis and design. In particular,

transfer operator-based methods are used for identifying steady-state dynamics of the system from

the invariant measure of transfer operator, identifying almost invariant sets, and coherent structures

Dellnitz and Junge (2006); Froyland and Dellnitz (2003); Froyland and Padberg (2009). The spectral

analysis of transfer operators is also applied for reduced-order modeling of dynamical systems with

applications to building systems, power grid, and fluid mechanics Budisic et al. (2012); Surana and

Banaszuk (2016); Arbabi (2017). Similar to the Koopman operator, the P-F operator is also a linear

operator defined on the functional space. Hence the operator-theoretic methods can always provide a

linear representation of a nonlinear system by shifting the focus from the state space to the space of

measures and functions. In particular, the transfer operator methods are used for almost everywhere

stability verification Vaidya and Mehta (2008a); Rajaram et al. (2010a), controller design Vaidya et al.

(2010b), nonlinear estimation Vaidya (2007); Mehta and Vaidya (2005) and for solving optimal sensor

placement problem Sinha et al. (2016); Sharma et al. (2019a). By exploiting the linearity and positiv-

ity properties of the P-F operator, a systematic linear programming based approach involving transfer

P-F operator has been developed by the long series of work. Besides the novel work in this disserta-

tion, a transfer operators-based method is proposed to obtain global optimal stabilizing control for the

stochastic system in Das et al. (2017), and four different optimal control examples are demonstrated

further in Das et al. (2018).

The main motivation for our work is to come up with a complete systematic data-driven system

identification and control framework, based on the operator-theoretic methods involving Koopman and

P-F operators. Moreover, it would also be expected if the machine learning techniques can be used

for the Koopman operator identification to handle large datasets and improve the scalability of the



7

algorithm. In that case, the sample complexity of the algorithm can also be computed and compared

with the existing deep learning algorithms in the data-driven control area, e.g., reinforcement learning.

1.2 Our Contribution

As stated in the previous section, the ultimate goal of our work is to establish a complete data-

driven system identification and control framework, which could handle the large scale data set from

a general nonlinear real-world system. However, most of the existing data-driven modeling and con-

trol methods are generally tailored to a specific class of problems, require considerable mathematical

and computational resources, or don’t readily generalize to new applications. Especially for the Re-

inforcement Learning model-free control, we can only provide guarantees in special cases that the

state/action space is finite, while in a general nonlinear real-world case, the neural network is used to

approximate the value function, and there are no guarantees on how the learned model relates to the

physical model. Currently, there is no overarching framework for nonlinear control as exists for lin-

ear systems. Our proposed framework Huang et al. (2019), based on the Operator-theoretic methods

hence delivers unique advantages in both the system identification and controller design procedure, as

shown in Fig. 1.1.

Nonlinear 
control system

Time series 
Data

Bilinear lifting using 
Koopman operator

Linear lifting 
via P-F operator

Duality between 
P-F and Koopman

Figure 1.1: Data-Driven Identification and Control framework of Nonlinear Systems
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The first step of the Operator-theoretic data-driven control framework is implemented by the Nat-

urally Structured DMD (NSDMD) algorithm Huang and Vaidya (2018) or the Extending DMD al-

gorithm Williams et al. (2015). Compared with the existing data-driven nonlinear control methods,

especially the reinforcement learning control, our Koopman operator-based approximations formulate

a linear operator formulation on the space of functions given the data generated from the nonlinear

system, which carry over our intuition from linear systems to nonlinear systems. Besides that, our

NSDMD algorithm for the finite-dimensional approximation of linear operator constructs a connec-

tion between the Koopman operator approximation and the P-F operator approximation, the additional

constraints in the NSDMD algorithm also explicitly accounts for the positivity and Markov property

in the finite-dimensional approximation. In Chapter 3, we show that preserving these properties al-

lows one to better approximate the steady-state dynamics as captured by the spectrum (eigenvalue

and eigenfunctions) of these operators but is essential to obtain the actual transient behavior of the

system. We show that the problem of finding the finite-dimensional approximation of the Koopman

operator using NSDMD is a least-square optimization problem with constraints and is convex. Us-

ing the adjoint property between the two transfer operators, we also construct the finite-dimensional

approximation of the P-F transfer operator. The P-F transfer operator is used to compute the finite-

dimensional approximation of the eigenfunction with eigenvalue one of the P-F operator capturing

the steady-state invariant dynamics of the system. Structure preserving the property of our proposed

NSDMD algorithm makes this possible. Furthermore, DMD and EDMD algorithm does not lead to

stable finite-dimensional Koopman matrix since the largest eigenvalue of the Koopman matrix is not

guaranteed to be one. Since the Koopman operator obtained using NSDMD preserves the Markov

property, the largest eigenvalue is always one leading to a stable finite-dimensional approximation.

The second step consists of the controller design algorithms based on the bilinear control system

model obtained from Koopman operator approximation. In Huang et al. (2019), we present a data-

driven approach for feedback stabilization of a nonlinear system. Refer to Fig. 1.1 for the schematic of

data-driven nonlinear stabilization. We first show that the nonlinear control system can be identified

from the time-series data generated by the system for two different input signals, namely zero input

and a constant input. For this identification, we make use of a linear operator theoretic framework
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involving the Fokker Planck equation. Furthermore, sample complexity results developed in Chen

and Vaidya (2019) are used to determine the data required to achieve the desired level for the ap-

proximation. This process of identification leads to a finite-dimensional bilinear representation of the

nonlinear control system in Koopman eigenfunction coordinates. This finite-dimensional approxima-

tion of the bilinear system is used for the design of a stabilizing feedback controller. While the control

design for a bilinear system is, in general, a challenging problem, we propose a systematic approach

based on the theory of control Lyapunov function (CLF) and inverse optimality for feedback control

design Khalil (1996). The search for CLFs for a general nonlinear system is a difficult problem. We

exploit the bilinear representation of the nonlinear control system in the Koopman eigenfunction space

to search for a CLF for the bilinear system. By restricting the search of CLFs to a class of quadratic

Lyapunov functions, we can provide a convex programming-based systematic approach for determin-

ing the CLF Boyd et al. (1994). It is important to emphasize that while the CLF is quadratic in the

lifted eigenfunction space, it is, in fact, non-quadratic and contains higher-order nonlinear terms in

the original state space coordinates. The principle of inverse optimality allows us to connect the CLF

to an optimal cost function. The controller designed using CLF also optimizes an appropriate cost.

Using this principle, we comment on the optimality of the controller designed using CLF.

1.3 Organization of This Dissertation

This dissertation is organized as follows. In Chapter 2, we develop the basic concepts and defi-

nitions of Transfer operator and Koopman operator theory, some existing Koopman and P-F operator

identification methods are also discussed in details. In Chapter 3, we proposed a new data-driven op-

erator identification method, namely, Naturally Structured Dynamic Mode Decomposition(NSDMD),

and discussed the advantage of the proposed algorithm compared to the existing Koopman identifi-

cation algorithms. Chapter 4 is dedicated to finding the nonlinear stabilization control in nonlinear

dynamical control systems using the Koopman operator, and we demonstrate three examples where

we use the Operator-based method to design the nonlinear stabilization control and quadratic regula-

tor based on the time-series data generated from the nonlinear system. In Chapter 5 is dedicated to

further exploit an iterative method to find an optimal quadratic regulator for a nonlinear system using
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Koopman operator. In Chapter 6, we provide a convex formulation for the optimal control problem

of the nonlinear system. The convex formulation relies on the duality result in the stability theory of

a dynamical system involving density function and Perron-Frobenius operator. Finally, we conclude

this dissertation in Chapter 7 by summarizing the results.
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CHAPTER 2. PRELIMINARIES

In this chapter, we review the basics of transfer operator theory. We introduce the formal defini-

tion of the Koopman operator and Perron-Frobenius operators for discrete-time and continuous-time

deterministic and stochastic system.

2.1 Linear Perron-Frobenius and Koopman Operators: Discrete-time Dynamics

Consider a discrete time dynamical system

xt+1 = T(xt) (2.1)

where T : X ⊂ Rn → X is assumed to be invertible and smooth diffeomorphism. Furthermore, we

denote by B(X) the Borel-σ algebra on X,M(X) vector space of bounded complex valued measure

on X, and F the space of complex valued functions from X→ C. Associated with this discrete time

dynamical systems are two linear operators namely Koopman and Perron-Frobenius (P-F) operator.

These two operators are defined as follows.

Definition 1 (Perron-Frobenius Operator). P : F → F is defined as

[Pψ](x) = ψ(T−1(x))

∣∣∣∣∂T−1(x)

∂x

∣∣∣∣
where | · | stands for the determinant. More generally, the P-F operator can also be defined on the

measure spaceM(X) as follows1:

[Pµ](A) =

∫
X
δT (x)(A)dµ(x) = µ(T−1(A))

for all sets A ∈ B(X) and where δT (x)(A) is stochastic transition function which measures the

probability that point x will reach the set A in one time step under the system mapping T. Note that

the more general definition of P-F operator on the space of measure does not require invertibility
1With some abuse of notation we will use the same notation to denote the P-F operator on the space of measures and

functions
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or differentiable property of the mapping T, we only require the mapping T to be continuous. The

noninvetible case the T−1(A) is defined as T−1(A) := {x ∈ X : T(x) ∈ A}.

Definition 2. [Invariant measures] are the fixed points of the P-F operator P and hence satisfies

Pµ̄ = µ̄

Under the assumption that the state space X is compact, it is known that the P-F operator admits

at least one invariant measure.

Definition 3 (Koopman Operator). U : F → F is defined as follows:

[Uϕ](x) = ϕ(T(x))

Properties 4. The following properties for the Koopman and Perron-Frobenius operators can be

stated.

a). For invariant measure µ (Definition 2), it easily follows that

‖ Uϕ ‖2=

∫
X
|ϕ(T(x))|2dµ̄(x)

=

∫
X
|ϕ(x)|2dµ̄(x) =‖ ϕ ‖2

This implies that Koopman operator is unitary.

b). For any ϕ ≥ 0, we have [Uϕ](x) ≥ 0 and hence Koopman is a positive operator.

c). For invertible system T, the P-F operator for the inverse system T−1 : X → X is given by P∗

and P∗P = PP∗ = I . Hence, the P-F operator is unitary.

d). For ψ(x) ≥ 0, [Pψ](x) ≥ 0.

e). The P-F and Koopman operators are dual to each other as follows

〈Uϕ,ψ〉 =

∫
X

[Uϕ](x)ψ(x)dx =

∫
X
ϕ(y)ψ(T−1(y))

∣∣∣∣∂T−1

∂y

∣∣∣∣ dy = 〈ϕ,Pψ〉
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f). Let µ ∈M(X) be a positive measure but not necessarily the invariant measure of T : X→ X,

then the P-F operator satisfies following Markov property.∫
X

[Pψ](x)dµ(x) =

∫
X
ψ(x)dµ(x)

The linearity of the P-F operator combined with the properties 4 (e) and 4 (f), makes the P-F

operator a particular case of Markov operator Lasota and Mackey (2013). This Markov property of the

P-F operator has significant consequences on its finite-dimensional approximation. We will discuss

this in the next chapter on set-oriented numerical methods for finite-dimensional approximation of P-F

operator. To study the connection between the spectrum of these two operators, we refer the interested

readers to Mezić and Banaszuk (2004) and Mehta and Vaidya (2005) (Theorem 5 and Corollary 6) for

results connecting the spectrum of transfer Koopman and P-F operator both in the infinite-dimensional

and finite-dimensional setting.

2.2 Linear Perron-Frobenius and Koopman Operators: Continuous-time Dynamics

Consider a continuous-time dynamical system of the form

ẋ = F (x), (2.2)

where x ∈ X ⊂ Rn and the vector field F is assumed to be continuously differentiable. Let S(t,x0)

be the solution of the system (2.2) starting from initial condition x0 and at time t.

Definition 5 (Koopman semigroup). The Koopman semigroup of operators Ut : F → F associated

with system (2.2) is defined by

[Utϕ](x) = ϕ(S(t,x)). (2.3)

It is easy to observe that the Koopman operator is linear on the space of observables although the

underlying dynamical system is nonlinear. In particular, we have

[Ut(αϕ1 + ϕ2)](x) = α[Utϕ1](x) + [Utϕ2](x).
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Under the assumption that the functionϕ is continuously differentiable, the semigroup [Utϕ](x) =

p(x, t) can be obtained as the solution of the following partial differential equation

∂p

∂t
= F · ∇p =: Lp.

with initial condition p(x, 0) = ϕ(x). From the semigroup theory it is known Lasota and Mackey

(2013) that the operator L is the infinitesimal generator for the Koopman operator, i.e.,

Lp = lim
t→0

Utp− p
t

.

The definition of the semigroup of Perron-Frobenius operator is given by,

Definition 6 (Perron-Frobenius semigroup). The Perron-Frobenius semigroup of operators Pt : F →

F associated with system (2.2), for each A ∈ B(X)∫
A
Ptψ(x)µ(dx) =

∫
S−t(A)

ψ(x)µ(dx) (2.4)

where S−t(A) : {x ∈ X : S(t,x) ∈ A}. Making use of the fact that the Perron-Frobenius

and Koopman operators are adjoint, that is, 〈Ptψ, ϕ〉 = 〈ψ, Utϕ〉, hence 〈(Ptψ − ψ)/t, ϕ〉 =

〈ψ, (Utϕ − ϕ)/t〉. The semigroup Ptψ(x) = ρ(x, t) can also be obtained as the solution of the

following partial differential equation,

∂ρ

∂t
= −∇(ρ · F ) =: L̃ρ

The infinitesimal generator for the Perron-Frobenius operator, L̃ satisfying,

L̃ρ = lim
t→0

Ptρ− ρ
t

2.3 Linear Operator for Continuous-time Stochastic Systems: Fokker Planck

Equation

Consider a nonlinear dynamical system perturbed with white noise process

ẋ = F (x) + ω. (2.5)

where ω is the white noise process with mean µ = 0 and standard deviation σ = 1. The addition of

noise term allows us to use the sample complexity results discovered in Chen and Vaidya (2019) to



15

determine minimum data requirement for the data-driven approximation of nonlinear dynamics. The

following assumption is made on the vector function F .

Assumption 7. Let F = (F 1, . . . ,F n)>. We assume that the functions F i i = 1, . . . n are C4

functions.

We assume that the distribution of x(0) is absolutely continuous and has density ρ0(x). Then we

know that x(t) has a density ρ(x, t) which satisfies the following Fokker-Planck (F-P) equation also

known as Kolomogorov forward equation

∂ρ(x, t)

∂t
= −∇ · (F (x)ρ(x, t)) +

1

2
∇2ρ(x, t). (2.6)

Following Assumption 7, we know the solution ρ(x, t) to F-P equation exists and is differentiable

(Theorem 11.6.1 Lasota and Mackey (2013)). Under some regularity assumptions on the coefficients

of the F-P equation (Definition 11.7.6 Lasota and Mackey (2013)) it can be shown that the F-P admits

a generalized solution. The generalized solution is used in defining stochastic semigroup of operators

{Pt}t≥0 such that

[Ptρ0](x) = ρ(x, t). (2.7)

Furthermore, the right hand side of the F-P equation is the infinitesimal generator for stochastic semi-

group of operators Pt i.e., let ψ be a density function,

Aψ = lim
t→0

(Pt − I)ψ

t
. (2.8)

where

Aψ := −∇ · ((F (x)ψ)) +
1

2
∇2ψ.

Let ϕ(x) ∈ C2(Rn) be an observable. We have

d

dt

∫
ρ(x, t)ϕ(x)dx =

∫
Aρ(x, t)ϕ(x)dx =

∫
ρ(x, t)A∗ϕ(x)dx. (2.9)

where A∗ is adjoint to A and is defined as

A∗ϕ = F · ∇ϕ+
1

2
∇2ϕ. (2.10)
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The semigroup corresponding to the operator A∗ is given by

A∗ϕ = lim
t→0

(Ut − I)ϕ

t
. (2.11)

where

[Utϕ](x) = E[ϕ(x(t)) | x(0) = x]. (2.12)

For the deterministic dynamical system ẋ = F (x), i.e., in the absence of noise term, the above

definitions of generators and semigroups reduces to Perron-Frobenius and Koopman operators. In

particular, the propagation of probability density function capturing uncertainty in initial condition is

given by the Perron-Frobenius (P-F) operator and is defined as follows.

Definition 8. The P-F operator for a deterministic dynamical system ẋ = F (x) is defined as follows

[Ptρ0](x) = ρ0(S(−t,x))

∣∣∣∣∂S(−t,x)

∂x

∣∣∣∣ . (2.13)

where S(t,x) is the solution of the system (2.2) starting from initial condition x and at time t, and |·|

stands for the determinant.

The infinitesimal generator for the P-F operator is given by

Aψ := −∇ · (F (x)ψ) = lim
t→0

(Pt − I)ψ

t
. (2.14)

2.4 Spectrum of Linear Operators

The spectrum, i.e., eigenvalues and eigenfunctions, of the linear Koopman and P-F operator carry

useful information about the system dynamics. However, given the infinite-dimensional nature of

these operators the spectrum of these operators could be very complicated consisting of discrete and

continuous part. The spectrum of the Koopman operator is far more complex than the simple point

spectrum and could include a continuous spectrum Mezić (2005).

Definition 9 (Koopman eigenfunctions). The eigenfunction of the Koopman operator is a function φλ

that satisfies

[Utφλ](x) = eλtφλ(x). (2.15)

for some λ ∈ C. The value λ is the associated eigenvalue of the Koopman eigenfunction.
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The eigenfunctions can also be expressed in terms of the infinitesimal generator of the Koopman

operator L as follows

Lφλ = λφλ.

The eigenfunctions of the Koopman operator corresponding to the point spectrum are smooth func-

tions and can be used as coordinates for the linear representation of nonlinear systems.

The spectrum of the Perron-Frobenius operator can also be defined in a similar manner.

Definition 10 (Perron-Frobenius eigenfunctions). The eigenfunction of the Perron-Frobenius operator

is a function φ̃λ that satisfies

[Ptφ̃λ](x) = eλtφ̃λ(x). (2.16)

for some λ ∈ C. The value λ is the associated eigenvalue of the Perron-Frobenius eigenfunction.

The eigenfunction with eigenvalue one of the P-F operator captures the steady state dynamics of

the system. In particular, the steady state dynamics is supported on eigenfunction or eigenmeasure

with eigenvalue one of the P-F operator. Unlike the eigenfunctions of the Koopman operator, the

eigenfunctions of the P-F operator are not smooth. In fact the eigenmeasure of the P-F operator will

be dirac-delta function when the steady state dynamics is a single point attractor. The connection

between the spectral properties of the P-F operator and the stability of dynamical system is explored

in Vaidya and Mehta (2008b) and this corresponding connection between Koopman spectrum and

stability is explored in Mauroy and Mezic (2013).
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CHAPTER 3. DATA-DRIVEN APPROXIMATION OF LINEAR OPERATORS:

NATURAL STRUCTURE PRESERVING APPROXIMATION OF LINEAR

OPERATORS

In this chapter, we first reviewed some existing approximation methods for the P-F operator and

Koopman operator, e.g., Set-oriented method, Dynamic Mode Decomposition(DMD) and Extending

DMD. Then we provide a new algorithm for the finite-dimensional approximation of the Koopman

and P-F operator that preserves some of the properties of these two operators. In particular, we develop

an algorithm that preserves the positivity property of the Koopman operator. Furthermore, the adjoint

nature of Koopman and P-F operator is used to impose additional constraints on the entries of the

Koopman operator. These structural properties are not considered in the existing algorithms involving

DMD and EDMD for the finite-dimensional approximation of the Koopman operator.

We show using examples that preserving these properties leads to a better approximation of eigen-

functions and eigenvalues of the transfer operators, but these features are essential to capture the cor-

rect transient behavior of the system. Capturing real transient dynamics is of particular importance to

the applications of the transfer operator for data-driven control and estimation problems.

3.1 Set-oriented numerical methods

Set-oriented numerical methods are primarily developed for the finite-dimensional approximation

of the Perron-Frobenius operator for the case where system dynamics are known as Dellnitz and

Junge (2002); Dellnitz et al. (2001). However, these algorithms can be modified or extended to the

case where system information is available in the form of time-series data. The basic idea behind

set-oriented numerics is to partition the state space, X, into the disjoint set of boxes Di such that

X = ∪∞i=1Di. Consider a finite partition X
′

= {D1, . . . , DK}. Now, instead of a Borel σ-algebra,

consider a σ-algebra of all possible subsets of X. A real-valued measure µj is defined by ascribing

to each element Dj a real number. This allows one to identify the associated measure space with a
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finite-dimensional real vector space RK . A given mapping T : X→ X defines a stochastic transition

function δT(x)(·). This function can be used to obtain a coarser representation of P-F operator denoted

by P : RK×K → RK×K as follows: For µ = (µ1, . . . , µK) we define a measure on X as

dµ(x) =
K∑
k=1

µkχDk(x)
dm(x)

m(Dk)

where χDk(x) is the indicator function of Dk and m is the Lebesgue measure. The finite dimensional

approximation of the P-F matrix, P, can now be obtained as follows:

νi = [Pµ](Di) =

K∑
j=1

∫
Dj

δT(x)(Di)µj
dm(x)

m(Dj)

=
K∑
j=1

µkPij (3.1)

where

Pij =
m(T−1(Dj) ∩Di)

m(Dj)

The resulting matrix P is a Markov matrix and is row stochastic if we consider state µ to be a row

vector multiplying from the left of P. The individual entries of this Markov matrix can be obtained

by Monte-Carlo approach by running simulation over short time interval starting from different initial

conditions. Typically individual boxes Di will be populated with M uniformly distributed initial

conditions. The entry Pij is then approximated by fraction of initial conditions that are in box Dj

in one forward iteration of the mapping T. The Monte Carlo based approach can be extended for

computation of the P-F transfer operator from time series data. Let {x0,T(x0), . . . ,TK−1(x0)} be

the time series data set. The number of initial conditions in box i is then given by

K−1∑
k=0

χi(T
k(x0))

where χi is the indicator function of box i. The (i, j) entry for P-F matrix Pij is then given by the

fraction of these initial conditions from box i that ends up in box j after one iterate of time and is

given by following formula.

Pij =
1∑K−1

k=0 χi(Tk(x0))

K−1∑
k=0

χi(T
k(x0))χj(T

k+1(x0)).
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3.2 Dynamic mode decomposition (DMD) and Extending DMD

Dynamic Mode Decomposition method (DMD) has been introduced Schmid (2010) for the dy-

namical analysis of the fluid flow field data. In the context of this dissertation, DMD can be viewed as

a computation algorithm for approximating the spectrum of Koopman operator Rowley et al. (2009).

Extension of the DMD is presented in the form of Extending DMD (EDMD) Williams et al. (2015)

which does a better job in approximating the spectrum of Koopman operator for both linear and non-

linear underlying system. In the following, we briefly explain the EDMD algorithm and show how the

solution of DMD algorithm can be derived as a special case of EDMD. Consider snapshots of data set

obtained from simulating a discrete time dynamical system or from an experiment

X = [x1,x2, . . . ,xM ], Y = [y1,y2, . . . ,yM ] (3.2)

where xi ∈ X and yi ∈ X. The two pair of data sets are assumed to be two consecutive snapshots

i.e., yi = T(xi). Now let D = {ψ1, ψ2, . . . , ψN} be the set of dictionary functions or observables.

The dictionary functions are assumed to belong to ψi ∈ L2(X,B, µ) = G, where µ is some positive

measure not necessarily the invariant measure of T. Let GD denote the span of D such that GD ⊂ G.

The choice of dictionary functions are very crucial and it should be rich enough to approximate the

leading eigenfunctions of Koopman operator. Define vector valued function Ψ : X→ CN

Ψ(x) :=

[
ψ1(x) ψ2(x) · · · ψN (x)

]>
(3.3)

In this application, Ψ is the mapping from physical space to feature space. Any function φ, φ̂ ∈ GD

can be written as

φ =
N∑
k=1

akψk = Ψ>a, φ̂ =
N∑
k=1

âkψk = Ψ>â (3.4)

for some set of coefficients a, â ∈ CN . Let

φ̂(x) = [Uφ](x) + r,

where r ∈ G is a residual function that appears because GD is not necessarily invariant to the action

of the Koopman operator. To find the optimal mapping which can minimize this residual, let K be
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the finite dimensional approximation of the Koopman operator. Then the matrix K is obtained as a

solution of least square problem as follows

min
K
‖ GK−A ‖F (3.5)

G =
1

M

M∑
m=1

Ψ(xm)Ψ(xm)>

A =
1

M

M∑
m=1

Ψ(xm)Ψ(ym)>, (3.6)

with K,G,A ∈ CN×N . The optimization problem (3.5) can be solved explicitly to obtain following

solution for the matrix K

KEDMD = G†A (3.7)

where G† is the pseudoinverse of matrix G. Hence, under the assumption that the leading Koopman

eigenfunctions are nearly contained within GD, the subspace spanned by the elements of D. The

eigenvalues of K are the EDMD approximation of Koopman eigenvalues. The right eigenvectors

of K generate the approximation of the eigenfunctions in (3.8). In particular, the approximation of

Koopman eigenfunction is given by

φj = Ψ>vj (3.8)

where vj is the j-th right eigenvector of K, φj is the eigenfunction approximation of Koopman oper-

ator associated with j-th eigenvalue.

DMD is a particular case of EDMD, and it corresponds to the case where the dictionary functions

are chosen to be equal to D = {e>1 , . . . , e>N}, where ei ∈ Rn is a unit vector with 1 at ith position

and zero elsewhere. With this choice of dictionary function, it can be shown the approximation of the

Koopman operator using DMD approach can be written as

KDMD = Y X
†
,

where X and Y are dataset as defined in (3.2).
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Table 3.1: A table with some commonly used sets of trial functions, and the application where they
are most suited.

Name Suggested Context
Hermite Polynomials Problems defined on Rn

and Monomials
Radial Basis Functions General problems defined on irregular domains
Discontinuous Spectral Elements Large problems where a block-diagonal G

is beneficial/computationally important

3.3 Naturally Structured Dynamic Mode Decomposition

In our proposed numerical algorithm for finite dimensional approximation of transfer operators

from data we start with the choice of dictionary functions D = {ψ1, . . . , ψN}, where ψi(x) ∈ G =

L2(X,B, µ). As already stated the choice of dictionary function is crucial and should be rich enough

to approximate the Koopman eigenfunctions. Similarly, the data set generated by the dynamics should

be rich enough to carry the information about the inherent dynamics of the system. We believe that the

proper choice of dictionary function and dataset are intimately connected. Some experimental rules

has been summarized in Table. 3.1 based on Williams et al. (2015) and our experience.

We make the following assumptions on the choice of dictionary function.

Assumption 11. We assume that the dictionary function ψi(x) ≥ 0 for i = 1, . . . , N and the inner

product Λ of the dictionary functions, Λ = 〈Ψ(x),Ψ(x)〉 with [Λ]ij = 〈ψi, ψj〉 is symmetric positive

definite matrix.

Remark 12. Gaussian radial basis function (RBF) given by e−
‖x−xi‖
σ2 , serves as a good approximation

for the choice of dictionary functions satisfying the above assumption.

Let GD be the span of these dictionary functions. Now consider any function φ and φ̂ in GD, we

can express these functions as

φ =

N∑
k=1

akψk = Ψ>a, φ̂ =

N∑
k=1

âkψk = Ψ>â (3.9)

Again function φ and φ̂ are related as follows

φ̂(x) = [Uφ](x) + r
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where r ∈ G and represents the error and arise because of the fact that GD is not necessarily invariant

under the action of Koopman operator. The extending DMD seeks to find the matrix K ∈ RN×N

that does the best job in mapping a to â. The matrix K is obtained as a solution of the least square

problem as outlined in Eqs. (3.7) and (3.14). Now consider a case where φ(x) ≥ 0. Then under

Assumption 11, we know that ai ≥ 0. Using the positivity property of the Koopman operator, we

know that [Uφ](x) ≥ 0. The vector a is mapped to â by the finite dimensional matrix K. To preserve

the positivity property of the Koopman operator (i.e., property 4b) we require that coefficient âi are

also positive. This, in turn, implies that the mapping K should satisfy the property

Kij ≥ 0, for i, j = 1, . . . , N. (3.10)

Let P be the finite dimensional approximation of the P-F operator. Since P-F is Markov operator, its

finite dimensional approximation constructed on the dictionary function satisfying Assumption 11 has

some properties. In particular, consider any density function, ϕ, expressed as linear combinations of

dictionary functions

ϕ =
N∑
k=1

bkψk, bk ≥ 0.

We have

[Pϕ](x) = ϕ̂(x) + r =

N∑
k=1

b̂kψk + r,

where r ∈ G is the residual term which arise because GD is not invariant under the action of the P-F

operator. The finite dimensional approximation of the P-F operator, P maps coefficient vector b to b̂,

i.e., b̂ = Pb.

We are interested in approximating P-F operator such that the Markov property 4(f) of the infinite

dimensional P-F operator is preserved. Since [Pϕ](x) ≥ 0 we have bk ≥ 0 for all k. Hence for

preserving the Markov property we require that

b>1 = b̂
>
1, (3.11)

where 1 is a vector of all ones.

Based on the adjoint property of Koopman and P-F operators, we have

〈Uφ, ϕ〉 = 〈φ,Pϕ〉
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Writing ϕ and φ as linear combinations of basis function and using the definition of inner product

from Assumption 11, we can approximate the adjoint relationship as follows:

〈Uφ, ϕ〉 ∼= (Ka)>Λb , 〈φ,Pϕ〉 ∼= a>ΛPb

a>K>Λb = a>ΛPb (3.12)

Since above is true for all a and b, we have K>Λ = ΛP. Combining (3.10), (3.11) and the adjoint

property of P-F and Koopman operator (i.e., P> = ΛKΛ−1), it follows that for the finite-dimensional

approximation of the transfer operator to preserve the positivity and Markov properties of its infinite-

dimensional counterpart then K should satisfy following conditions.

[ΛKΛ−1]ij ≥ 0,

N∑
j=1

[ΛKΛ−1]ij = 1, i, j = 1, . . . , N.

This leads to the following optimization based formulation for the computation of matrix K

min
K

‖ GK−A ‖F (3.13)

subject to Kij ≥ 0

[ΛKΛ−1]ij ≥ 0

ΛKΛ−11 = 1

where G and A are defined as follows:

G =
1

M

M∑
m=1

Ψ(xm)Ψ(xm)>

A =
1

M

M∑
m=1

Ψ(xm)Ψ(ym)>, (3.14)

with K,G,A ∈ CN×N and the data set snapshots {xm, ym} as defined in (3.2). The optimization

problem (3.13) is a convex and can be solved using one of the standard optimization toolbox for

solving convex problem.

It is important to emphasize that the matrix K serves two purposes; a) approximation of Koopman

operator if we multiply vector from right; b) approximation to P-F operator if we multiply vector from

left.

Koopman operator vt+1 = Kvt
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P− F operator ut+1 = utP

where P> = ΛKΛ−1, vt ∈ RN is column vector and ut ∈ RN is row vector, and t is the time index.

Since P is row stochastic, it is guaranteed to have at least one eigenvalue one. Let, ū1 be the left

eigenvector with eigenvalue one of the P matrix. Then the approximation to the invariant density for

the dynamical system, T, i.e., ϕ̄1(x), can be obtained using following formula

ϕ̄1(x) = Ψ(x)>ū>1 .

Eigenfunction with eigenvalue λ can be obtained as ϕ̄λ = Ψ(x)ū>λ , where ū>λ is the left eigenvector

with eigenvalue λ of matrix P. Koopman eigenfunction with eigenvalue λ. We will refer to these

eigenfunctions obtained using the left eigenvector of the P matrix as P-F eigenfunction. Similarly,

approximate eigenfunctions of Koopman operator can be obtained using the right eigenvector of the

K matrix. Let v̄λ be the right eigenvector with eigenvalue λ of the K matrix then the approximate

Koopman eigenfunction ϑ̄λ can be obtained as follows:

ϑ̄λ(x) = Ψ(x)>v̄λ.

We show that NSDMD preserves the stability property of the original system, and this is one of

the main advantages of the proposed algorithm. In particular, that certificate in the form of Lyapunov

measure can be computed using the K matrix. Vaidya and Mehta (2008a) introduced the Lyapunov

measure for almost everywhere stability verification of general attractor set in the nonlinear dynamical

system. The Lyapunov measure is computed using a transfer operator-based framework. Vaidya and

Mehta (2008a) utilized set-oriented numerical methods for the finite-dimensional approximation of the

P-F operator from system dynamics. However, a data-driven approach for verifying the stability of the

attractor set will involve making use of matrix K for computing Lyapunov measure. The procedure

for calculating the Lyapunov measure will remain the same; the only change is that instead of using

the P-F matrix constructed using a set-oriented numerical method, one can use the K build from time-

series data. In the simulation section, we present results for the computation of the stability certificate.

Different optimization problems can be formulated based on the main optimization formulation in Eq.

(3.13). These different optimization formulations will try to preserve one or all the properties of these

two operators. In particular, we have the following different cases.
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Case I: With positivity constraint on K only

min
K

‖ GK−A ‖F (3.15)

subject to Kij ≥ 0

Case II: With positivity and Markov constraint on P only

min
K

‖ GK−A ‖F (3.16)

subject to [ΛKΛ−1]ij ≥ 0

ΛKΛ−11 = 1

Both the optimization formulation (3.15) and (3.16) are convex formulations.

Case III: This case corresponds to combining both Case I and Case II and the optimization for-

mulation corresponding to this case is given in Eq. (3.13).

3.4 Examples and Applications

The simulation results in this section are obtained by solving the optimization problems using

GUROBI solver coded in MATLAB.

2D system: For this example we use optimization formulation from Case I. A simple 2D nonlinear

system is considered first. The differential equation of the system is given as follows,

ẋ = x− x3 + y

ẏ = 2x− y (3.17)

This continuous time system has 2 stable equilibrium points, located at (±
√

3,±2
√

3) and one

saddle point at (0, 0). To generate time-series data of T = 10, 1000 initial conditions from [−5, 5]×

[−5, 5] are randomly chosen and propogated using ode23t solver in MATLAB, sampled by ∆t = 0.1.

The naturally structured dynamic mode decomposition (NSDMD) algorithm is then implemented

with Gurobi solver. The following simulation results are obtained with 500 dictionary functions and

σ = 0.45.
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In Fig. 3.1 and Fig. 3.2, we plot the Koopman eigenfunctions associated with eigenvalue 1 using

NSDMD algorithm. The eigenfunction with eigenvalue one is clearly shown to separate the two

domains of attraction. The separatrix region separating the two domains of attractions is captured by

the eigenfunction with the second dominant eigenvalue.
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Figure 3.1: CASE-I: Koopman eigenfunction for eigenvalue 1 for system (3.17) using NSDMD

Duffing Oscillator: The simulation results for this example is obtained using formulation of Case

I. The duffing oscillator is given by following differential equation.

ẍ = −0.5ẋ− (x2 − 1)x (3.18)

The time step for the continuous-time system is chosen to be equal to ∆t = 0.25 with a total

period of T = 2.5 and 1000 randomly chosen initial conditions. We solve the differential equation in

MATLAB with ode45 solver. We use 500 Gaussian radial basis functions to form the dictionary set

with σ = 0.1. In Fig. 3.3 and Fig. 3.4, we plot the first two dominant eigenfunctions of the Koopman

operator obtained using NSDMD algorithm. Similar to example 1, we notice the first two dominant

Koopman eigenfunctions carry information about the domain of attraction of the two equilibrium

points.
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Figure 3.2: CASE-I: Koopman eigenfunction for eigenvalue 0.97 for system (3.17) using NSDMD
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Figure 3.3: CASE-I: Koopman eigenfunction for eigenvalue 1 for Duffing oscillator
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Figure 3.4: CASE-I: Koopman eigenfunction for eigenvalue 0.93 for Duffing oscillator using NSDMD

Henon Map: Consider a following discrete-time system for the Henon map

xt+1 = 1− ax2
t + yt

yt+1 = bxt (3.19)

with a = 1.4 and b = 0.3. Time series data starting from one initial condition over 5000 time

step is generated. Dictionary set is constructed using 500 Gaussian radial basis functions. K-means

clustering method is used for selecting the centers of these Gaussian radial basis functions over the

data set with σ = 0.005. In Fig. 3.5 we show the eigenfunction with eigenvalue one of the matrix P

capturing the chaotic attractor of Henon map.

Van der Pol Oscillator: The next step of simulation results is performed with Van der Pol Oscilla-

tor.

ẍ = (1− x2)ẋ− x. (3.20)

Time-domain simulation are performed by using discretization time-step of ∆t = 0.1 over total time

period of T = 10. The differential equation is solved in MATLAB with ode45 solver. Simulation

results from 100 different randomly chosen initial conditions are generated. For dictionary set we

choose 500 dictionary functions with centers of the dictionary functions determined using k-means

clustering algorithm with σ = 0.1.
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Figure 3.5: CASE-II: P-F eigenfunction for eigenvalue 1 for Henon map using NSDMD

In Fig. 3.6, we show the P-F eigenfunctions corresponding to eigenvalue one of the P matrix

obtained using NSDMD algorithm capturing the limit cycling dynamics of the Vanderpol oscillator.
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Figure 3.6: CASE-II: P-F eigenfunction λ = 1 for Van der Pol oscillator using NSDMD
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CHAPTER 4. DATA-DRIVEN IDENTIFICATION AND STABILIZATION OF

CONTROL DYNAMICAL SYSTEM

In this chapter, we will first give the preliminaries on the feedback stabilization and control lya-

punov functions, then we will discuss the application of the linear Operator-theoretic framework for

the identification of nonlinear dynamical systems in the Koopman eigenfunctions space. A fully de-

tailed controller design algorithm procedure would be provided and explained step by step.

4.1 Feedback Stabilization and Control Lyapunov Functions

For the simplicity of the presentation, we will consider only the case of single input in this section.

All the results carry over to the multi-input case in a straightforward manner. Consider a single input

control affine system of the form

ẋ = F (x) +G(x)u, (4.1)

where x(t) ∈ Rn denotes the state of the system, u(t) ∈ R denotes the single input of the system, and

F ,G : Rn → Rn are assumed to be continuously differentiable mappings. We assume that F (0) = 0

and the origin is an unstable equilibrium point of the uncontrolled system ẋ = F (x).

The state feedback stabilization problem associated with system (4.1) seeks a possible feedback

control law of the form

u = k(x).

with k : Rn → R such that x = 0 is asymptotically stable within some domain D ⊂ Rn for the

closed-loop system

ẋ = F (x) +G(x)k(x). (4.2)

One of the possible approaches for the design of stabilizing feedback controllers for the nonlinear

system (4.1) is via control Lyapunov functions that are defined as follows.
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Definition 13. Let D ⊂ Rn be a neighborhood that contains the equilibrium x = 0. A control

Lyapunov function (CLF) is a continuously differentiable positive definite function V : D → R+ such

that for all x ∈ D \ {0} we have

inf
u

[
∂V

∂x
· F (x) +

∂V

∂x
·G(x)u

]
:= inf

u

[
VxF (x) + VxG(x)u

]
< 0.

It has been shown in Artstein (1983); Sontag (1989) that the existence of a CLF for system (4.1) is

equivalent to the existence of a stabilizing control law u = k(x) which is almost smooth everywhere

except possibly at the origin x = 0.

Theorem 1 (see Astolfi (2015), Theorem 2). There exists an almost smooth feedback u = k(x),

i.e., k is continuously differentiable for all x ∈ Rn \ {0} and continuous at x = 0, which globally

asymptotically stabilizes the equilibrium x = 0 for system (4.1) if and only if there exists a radially

unbounded CLF V (x) such that

1. For all x 6= 0, VxG(x) = 0 implies VxF (x) < 0;

2. For each ε > 0, there is a δ > 0 such that ‖x‖ < δ implies the existence of a |u| < ε satisfying

VxF (x) + VxG(x)u < 0.

In the theorem above, condition 2) is known as the small control property, and it is necessary to

guarantee continuity of the feedback at x 6= 0. If both conditions 1) and 2) hold, an almost smooth

feedback can be given by the so-called Sontag’s formula

k(x) :=


−VxF+

√
(VxF )2+(VxG)4

VxG
if VxG(x) 6= 0

0 otherwise.
(4.3)

Besides Sontag’s formula, we also have several other possible choices to design a stabilizing

feedback control law based on the CLF given in Theorem 1. For instance, if we are not constrained to

any specifications on the continuity or amplitude of the feedback, we may simply choose

k(x) := −K sign
[
VxG(x)

]
(4.4)

k(x) := −KVxG(x). (4.5)
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with some constant gain K > 0. Then, differentiating the CLF with respect to time along trajectories

of the closed-loop (4.2) yields

V̇ = VxF (x)−K
∣∣VxG(x)

∣∣
V̇ = VxF (x)−K(VxG(x))2.

Hence, by the stabilizability property of condition 1), there must exist some K large enough such that

V̇ < 0 for all x 6= 0, because whenever VxF (x) ≥ 0 we have VxG(x) 6= 0.

On the other hand, the CLFs also enjoy some optimality property using the principle of inverse

optimal control. In particular, consider the following optimal control problem

minimize
u

∫ ∞
0

(q(x) + u>u)dt (4.6)

subject to ẋ = F (x) +G(x)u

for some continuous, positive semidefinite function q : Rn → R. Then the modified Sontag’s formula

k(x) :=


−VxF+

√
(VxF )2+q(x)(VxG)2

VxG
if VxG(x) 6= 0

0 otherwise.
(4.7)

builds a strong connection with the optimal control. In particular, if the CLF has level curves that

agree in shape with those of the value function associated with cost (4.6), then the modified Sontag’s

formula (4.7) will reduce to the optimal controller Freeman and Primbs (1996); Primbs et al. (1999).

4.2 Infinite Dimensional Bilinear Representation

Consider the control dynamical system perturbed by stochastic noise process

ẋ = F (x) +G(x)u+ ω, (4.8)

where ω ∈ Rn is the white noise process. As already discussed the presence of noise term will allow

us to use sample complexity bounds from Chen and Vaidya (2019) to determine data requirement for

the approximation. Sample complexity bounds can also be discovered without the additive noise term

and is the topic of our current investigation.
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Assumption 14. Let F = (F 1, . . . ,F n)> and G = (G1, . . . ,Gn)>. We assume that the functions

F i andGi for i = 1, . . . n are C4 functions.

The objective is to identify the nonlinear vector fields F and G using the time-series data gener-

ated by the control dynamical system and arrive at a continuous-time dynamical system of the form

ż = Λz + uBz, (4.9)

where z ∈ RN withN ≥ n. We now make the following assumption on the control dynamical system

(4.8).

Assumption 15. We assume that all the trajectories of the control dynamical system (4.8) starting

from different initial conditions for control input u = 0 and for constant input remain bounded.

Remark 16. This assumption is essential to ensure that the control dynamical system can be identified

from the time-series data generated by the system for two different input signals.

The goal is to arrive at a continuous-time bilinear representation of the nonlinear control system

(4.8). Towards this goal we assume that the time-series data from the continuous time dynamical

system (4.8) is available for two different control inputs namely zero input and constant input. The

discrete time-series data is generated from the continuous time dynamical system with sufficiently

small discretization time step ∆t and this time-series data is represented as

(xsk+1,x
s
k). (4.10)

The subscript s signifies that the data is generated by a dynamical system of the form

ẋ = F (x) +G(x)s+ ω. (4.11)

so that s = 0 and s = 1 corresponds to the case of zero input and constant input respectively. Let

Ψ = [ψ1, . . . , ψN ]>

be the set of observables with ψi : Rn → R. The time evolution of these observables under the

continuous time control dynamical system with no noise can be written as

dΨ

dt
= F (x) · ∇Ψ + uG(x) · ∇Ψ

= AΨ + uBΨ, (4.12)
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whereA and B are linear operators. The objective is to construct the finite dimensional approximation

of these linear operators, A and B respectively from time-series data to arrive at a finite dimensional

approximation of control dynamical system as in Eq. (4.9).

With reference to Eq. (2.10), let A∗1 and A∗0 be the generator corresponding to the control dynam-

ical system with constant input i.e., s = 1 and s = 0 respectively in Eq. (4.11). We have

(A∗1 − A∗0)ψ = G(x) · ∇ψ. (4.13)

Under the assumption that the sampling time ∆t between the two consecutive time-series data point

is sufficiently small, the generators A∗s can be approximated as

A∗s ≈
Us∆t − I

∆t
. (4.14)

Substituting for s = 1 and s = 0 in (4.14) and using (4.13), we obtain

U1
∆t − U0

∆t

∆t
≈ G(x) · ∇ = B. (4.15)

and

U0
∆t − I
∆t

≈ F (x) · ∇ = A. (4.16)

Using the time-series data generated from dynamical system (4.11) for s = 0 and s = 1, it is possible

to construct the finite dimensional approximation of the operators U0
∆t and U1

∆t respectively thereby

approximating the operatorsA and B respectively. In the following we explain the extending dynamic

mode decomposition-based procedure for the approximation of these operators from time-series data.

4.3 Finite Dimensional Approximation

We use Extending Dynamic Mode Decomposition (EDMD) algorithm for the approximation of

U1
∆t and U0

∆t thereby approximating A and B in Eqs. (4.14) and (4.15) respectively Williams et al.

(2015). For this purpose let the time-series data generated by the dynamical system (4.11) be given

by

X = [xs1,x
s
2, . . . ,x

s
M ], Y = [ys1,y

s
2, . . . ,y

s
M ]. (4.17)
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where ysk = xsk+1 with s = 0 or s = 1 i.e., zero input and constant input. Furthermore, let H =

{ψ1, ψ2, . . . , ψN} be the set of dictionary functions or observables and GH be the span of H. The

choice of dictionary functions is very crucial and it should be rich enough to approximate the leading

eigenfunctions of the Koopman operator. Define vector-valued function Ψ : X → CN

Ψ(x) :=

[
ψ1(x) ψ2(x) · · · ψN (x)

]>
. (4.18)

In this application, Ψ is the mapping from state space to function space. Any two functions f and

f̂ ∈ GH can be written as

f =
N∑
k=1

akψk = Ψ>a, f̂ =
N∑
k=1

âkψk = Ψ>â. (4.19)

for some coefficients a and â ∈ CN . Let

f̂(x) = [Us∆tf ](x) + r,

where r is a residual function that appears because GH is not necessarily invariant to the action of

the Koopman operator. To find the optimal mapping which can minimize this residual, let K be the

finite dimensional approximation of the Koopman operator U s∆t. Then the matrix Ks is obtained as a

solution of least-squares problem as follows

minimize
Ks

‖GsKs −As‖F (4.20)

where

Gs =
1

M

M∑
m=1

Ψ(xsm)Ψ(xsm)>, As =
1

M

M∑
m=1

Ψ(xsm)Ψ(ysm)> (4.21)

with Ks,Gs,As ∈ CN×N . The optimization problem (4.20) can be solved explicitly with a solution

in the following form

Ks = (Gs)†As. (4.22)

where (Gs)† denotes the pseudoinverse of matrixGs.

Under the assumption that the leading Koopman eigenfunctions are contained within GH, the

eigenvalues of K are approximations of the Koopman eigenvalues. The right eigenvectors of Ks=0
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can be used then to generate the approximation of Koopman eigenfunctions. In particular, the approx-

imation of Koopman eigenfunction is given by

φj = Ψ>vj , j = 1, . . . , N (4.23)

where vj is the j-th right eigenvector of K0, and φj is the approximation of the eigenfunction of

Koopman operator corresponding to the j-th eigenvalue, λj ∈ C.

The bilinear representation of nonlinear control dynamical system can be constructed either in the

space of basis function Ψ or the eigenfunctions of the Koopman operator Φ, where

Φ(x) := [φ1(x), . . . , φN (x)]>.

In this work, we constructed the bilinear representation in the Koopman eigenfunctions coordinates

Sootla et al. (2018); Mauroy and Mezić (2016) Towards this goal, we define

Φ̂(x) := [φ̂1(x), . . . , φ̂N (x)]>.

where φ̂i := φi if φi is a real-valued eigenfunction and φ̂i := 2Re(φ), φ̂i+1 := −2Im(φi), if i and

i+ 1 are complex conjugate eigenfunction pairs. Consider now the transformation Φ̂ : Rn → RN as

z = Φ̂(x).

Then in this new coordinates system Eq. (4.1) takes the following form

ż = Λz + uBz. (4.24)

where the matrix Λ has a block diagonal form where the block corresponding to the eigenvalue λ̂i,

such that Λ(i,i) = λ̂i if φi is real, and Λ(i,i) Λ(i,i+1)

Λ(i+1,i) Λ(i+1,i+1)

 = |λi|

 cos(∠λ̂i) sin(∠λ̂i)

− sin(∠λ̂i) cos(∠λ̂i)

 . (4.25)

if φi and φi+1 are complex conjugate pairs. The value λ̂i associated with the continuous time system

dynamics. The relationship between discrete-time Koopman eigenvalues λi and continuous time λ̂i

can be written as λ̂i = log(λi)/∆t.
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Similarly data generated using constant input for the control dynamical system is used to generate

time-series data {x1
k} and for the approximation of K1. The approximation of the operator B in the

coordinates of basis functions, Ψ(x) denoted by B̄, and the eigenfunction coordinates Φ̂(x) denoted

by B can be obtained as follows:

B̄ =
K1 −K0

∆t
, B = V >B̄(V >)−1 (4.26)

where each column of V , vj is the jth eigenvector of K0.

There exist two sources of error in the approximation of Koopman operator and its spectrum,

and both of them will be reflected in the bilinear representation of nonlinear system, namely Λ and B

matrices. The first source of error is due to a finite number of basis functions used in the approximation

of the Koopman operator. Under the assumption that the choice of basis functions is sufficiently rich

and N is large, this approximation error is expected to be small. However, the selection of basis

functions is an active research topic with no agreement on the best choice of basis functions for

general nonlinear systems. The second source of error, which is more relevant to this work, arise due

to the finite length of data used in the approximation of the Koopman operator. Sample complexity

results for nonlinear stochastic dynamics using linear operator theory is developed in Chen and Vaidya

(2019). These results provide error bounds for the approximation of the Koopman operator as the

function of finite data length under the assumption that the action of the Koopman operator is closed

on the space of finite basis functions. In particular, for any given ε > 0 and T > 2M + 2, with

probability at least 1 − ε, the least square estimator Ks in (4.22) will reconstructs the true Koopman

operator Ktrue with following error bound

‖Ks −Ks
true‖F ≤

c

ε
√
T

√
E{Tr(Gs)}E{‖(Gs)−1‖2F }. (4.27)

where c is constant and is a function of the additive noise variance, and ‖ · ‖F stands for Frobenius

norm. These sample complexity results are used to determine the data required to achieve the desired

level of accuracy of the approximation.
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4.4 Feedback Controller Design

The control Lyapunov function provides a powerful tool for the design of a stabilizing feedback

controller, which also enjoys some optimality property using the principle of inverse optimality. How-

ever, one of the main challenges is to provide a systematic procedure to find CLFs. For a general

nonlinear system finding a CLF remains a challenging problem. We exploit the bilinear structure

of the nonlinear system in the Koopman eigenfunction space to provide a systematic procedure for

computing control Lyapunov function. We restrict the search for the control Lyapunov function to the

class of quadratic Lyapunov function of the form V (z) = z>Pz. It is important to emphasize that

although the Lyapunov function is restricted to be quadratic in Koopman eigenfunctions space z, the

Lyapunov function contains higher-order nonlinearities in the original state space x. Theorem 2 can

be stated for the quadratic stabilization of the following bilinear control system

ż = Λz + uBz. (4.28)

In the sequel, if there exists a quadratic CLF for the bilinear system (4.28), then we will say that the

system (4.28) is quadratic stabilizable.

Theorem 2. System (4.28) is quadratic stabilizable if and only if there exists an N × N symmetric

positive definite P1 such that for all non-zero z ∈ RN with z>(PΛ+Λ>P)z ≥ 0, we have z>(PB+

B>P)z 6= 0.

Proof. Sufficiency (⇐): Suppose there is a symmetric, positive definite P that satisfies the condition

of Theorem 2. We can use it to construct V (z) = z>Pz as our Lyapunov candidate function, and the

derivative of V with respect to time along trajectories of (4.28) is given by

V̇ = z>Pż + ż>Pz

= z>(PΛ + Λ>P)z + uz>(PB + B>P)z.

1In this Chapter 4 and Chapter 5, the notation P is used to denote the positive definite matrix used in the construction of
quadratic Lyapunov function. The notation is not to be confused with the same notation, P used for the finite dimensional
matrix representation of the P-F operator in Chapter 3.
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Since for all z 6= 0 we have z>(PB + B>P)z 6= 0 when z>(PΛ + Λ>P)z ≥ 0, we can always find

a control input u(z) such that

V̇ < 0, ∀z ∈ RN \ {0}.

Therefore, V (z) is indeed a CLF for system (4.28).

Necessity (⇒): We will prove this by contradiction. Suppose that system (4.28) has a CLF in the

form of V (z) = z>Pz, where P does not satisfy the condition of Theorem 2. That is, there exists

some z̄ 6= 0 such that z̄>(PΛ + Λ>P)z̄ ≥ 0 but z̄>(PB + B>P)z̄ = 0. In this case, we have

V̇ (z̄) = z̄>(PΛ + Λ>P)z̄ ≥ 0.

for any input u, which contradicts the definition of a CLF. This completes the proof.

The following convex optimization formulation can be formulated to search for quadratic Lya-

punov function for bilinear system without uncertainty in Eq. (4.28)

minimize
t>0, P=P>

t− γTrace(PB)

subject to tI − (PΛ + Λ>P) � 0

cmaxI � P � cminI (4.29)

where cmax > cmin > 0, respectively, are two given positive scalars forming bounds for the largest

and the smallest eigenvalues of P . The variable t here represents an epigraph form for the largest

eigenvalue of PΛ + Λ>P.

Optimization (4.29) has combined two objectives. On the one hand, we minimize the largest

eigenvalue of PΛ + Λ>P. On the other hand, we try to maximize the smallest singular value of

PB + B>P at the same time. Noticing that it may be difficult to maximize the smallest singular

value of PB + B>P directly, we maximize the trace of PB instead and employ a parameter γ > 0

to balance these two objectives.

Remark 17. When an optimal P? is solved from (4.29), we still need to check whether it satisfies

the condition of Theorem 2 or not. So if a matrix P? fails the condition check, then we may tune the

parameter γ and solve the above optimization again until we obtain a correct P?. Nevertheless, we
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observe from simulations (see the multiple examples in our simulation section) that when we choose

a value γ = 2, optimization (4.29) will always yield an optimal P ? that satisfies the condition of

Theorem 2.

Remark 18. We also need to point out that, compared to searching for a nonlinear CLF for the

original nonlinear system (4.1), the procedure for seeking a quadratic CLF for the bilinear system

(4.28) becomes quite easier and more systematic. Furthermore, a quadratic CLF for the bilinear

system is, in fact, non-quadratic (i.e., contains higher-order nonlinear terms) for the system (4.1).

Once a quadratic control Lyapunov function V (z) = z>Pz is found for bilinear system (4.28),

we have several choices for designing a stabilizing feedback control law. For instance, applying the

control law (4.4) or (4.5) we can construct

k(z) = −βk sign
[
z>(PB + B>P)z

]
. (4.30)

k(z) = −βkz>(PB + B>P)z. (4.31)

Moreover, given a positive semidefinite cost q(z) ≥ 0, we may also apply the inverse optimality

property to design an optimal control via Sontag’s formula (4.7) to obtain

k(z) =


−z>(PΛ+Λ>P)z+

√
(z>(PΛ+Λ>P)z)2+q(x)(z>(PB+B>P)z)2

z>(PB+B>P)z
if z>(PB + B>P)z 6= 0

0 otherwise.

(4.32)

The controller design framework is outlined in Algorithm 1 for the design of stabilizing feedback

controller from time-series data.

4.5 Simulation results

In this section, we look at three different applications of our proposed operator-theoretic data-

driven stabilizing controller design framework. One application is in the 2D duffing oscillator system,

where we studied the spectrum of identified Koopman and P-F operator to capture the invariant set of

the nonlinear system and demonstrate how the closed-loop trajectories globally stabilized to the origin

by the designed controller. In the second example, we pick the 3D chaotic system, Lorenz attractor,
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Algorithm 1: Data-Driven Stabilizing Controller Design Framework
Data: Given open-loop time-series data {x0

k} = {x0
0,x

0
1, . . . ,x

0
M}, and {x1

k} with s = 1 in
(4.11) both with Gaussian process noise added

Result: Feedback control u = k(z)

1 Phase I: Modeling and Identification
2 Choose N dictionary functions Ψ(x) :=

[
ψ1(x) ψ2(x) · · · ψN (x)

]>
.

3 for xi, i = 0, 1, 2, . . . ,M do
4 Ψ(xi) :=

[
ψ1(xi) ψ2(xi) · · · ψN (xi)

]>
5 end
6 ObtainG0 andA0 matricesG0 = 1

M

∑M
m=1 Ψ(xm)Ψ(xm)>;

A0 = 1
M

∑M−1
m=0 Ψ(xm)Ψ(xm+1)>.

7 Compute K0 = (G0)†A0, and its eigenfunctions φj = Ψ>vj , where vj is the jth
eigenvector of K0 with respect to eigenvalue λj , j = 1, 2, . . . , N .

8 Convert to continuous time eigenvalues λ̂i = log(λi)/∆t

9 Get Λ = diag(λ̂1, λ̂2, . . . , λ̂N ) by block diagonalization of eigenvalues λi, use (4.25) if i,
i+ 1 complex conjugate.

10 Obtain the new eigenfuntion Φ̂(x) similarly, where φ̂i := φi if φi is a real-valued and
φ̂i := 2Re(φ), φ̂i+1 := −2Im(φi), if i and i+ 1 are complex conjugate.

11 Replace the dictionary function Ψ(x) with z = Φ̂(x) and repeat Step 2 to 7 with the
datasets {x0

k} and {x1
k} to get Ū0 and Ū1.

12 Get B = (Ū
1 − Ū0

)/∆t

13 end
14 Phase II: Optimization
15 Solve the following convex problem for optimal P∗ with Λ and B,

minimize
t>0, P=P>

t− γTrace(PB)

subject to tI − (PΛ + Λ>P) � 0

cmaxI � P � cminI

where cmax > cmin > 0, γ > 0 are chosen properly.
16 end
17 Feedback control u = k(z) = −βkz>(PB + B>P)z or modified Sontag’s formula,

k(z) =

−
z>(PΛ+Λ>P)z+

√
(z>(PΛ+Λ>P)z)2+q(x)(z>(PB+B>P)z)2

z>(PB+B>P)z
if z>(PB + B>P)z 6= 0

0 otherwise.18
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and use the designed controller to stabilize the system to one of the attractors. In the third example,

we use the developed framework to implement the nonlinear stabilization of the IEEE 9bus system.

4.5.1 Application to 2D Duffing Oscillator

The first example we present is the stabilization of Duffing oscillator. The controlled Duffing

oscillator equation is written as follows.

ẋ1 = x2 (4.33)

ẋ2 = (x1 − x3
1)− 0.5x2 + u.

The uncontrolled equation for Duffing oscillator consists of three equilibrium points, two of the equi-

librium points at (±1, 0) are stable, and one equilibrium point at the origin is unstable. For identifica-

tion of the control system dynamics, we excite the system with white noise with zero mean and 0.01

variance. The continuous time control equation is discretized with a sampling time of ∆t = 0.25s. In

Fig. 4.2a, we show the sampling complexity plot for the approximation error as the function of data

length. As proved in Chen and Vaidya (2019), the error for the approximation of the Λ and B matrix

decreases as 1√
T

, where T is a data length. The error plot in Fig. 4.2a satisfies this rate of decay.

The sample complexity results in Fig. 4.2a are obtained using ten randomly chosen initial conditions

and generating time-series data over the different lengths of time ranging from six-time steps to 30-

time steps. For each fixed time step we compute the Λ and B matrices. The error ‖ Λ − Λ̄ ‖2 and

‖ B − B̄ ‖2 is computed at each fixed time step where Λ̄ and B̄ are computed using data collected

over 50 time steps. The dictionary function used in the approximation of the Koopman operator has

a maximum degree of five, i.e., 21 basis functions, N = 21. In particular, the following choice of

dictionary function is made in the approximation

Ψ(x) = [1, x1, x2, x1x2, . . . , x
5
1, x

4
1x2, x

3
1x

2
2, x

2
1x

3
2, x1x

4
2, x

5
2].

For control design, we use an approximation of Λ and B matrices computed over 30 time steps.

The controller is designed using the Algorithm 2. For this Duffing oscillator example, we use a control

design formula in Eq. (4.31). To verify the effectiveness of the designed controller we simulate the

closed-loop system with the ode15s solver in MATLAB starting from 10 randomly chosen initial
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conditions within the region [−1.5, 1.5]× [−1, 1]. In Fig. 4.2d, we show the closed-loop trajectories in

red starting from different initial conditions overlaid on the open-loop trajectories in blue. We notice

that the controller forces the trajectories of the closed-loop system along the stable manifold of the

open-loop system before the trajectories slide to the origin. The time trajectories and control plots

from different initial conditions are shown in Fig. 4.2b and Fig. 4.2c, respectively.
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Figure 4.2: Data-driven stabilization of Duffing oscillator. a) Sample complexity error bounds for
the approximation of Λ and B matrices as the function of data length; b) Closed-loop trajectories
vs time from multiple initial conditions; c) Control value vs time from different initial conditions;
d) Comparison of closed loop and open loop trajectories in state space.
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4.5.2 Application to 3D Lorenz System

The second example we pick is that of Lorenz system. The control Lorenz system can be written

as follows

ẋ1 = σ(x2 − x1) (4.34)

ẋ2 = x1(ρ− x3)− x2 + u

ẋ3 = x1x2 − βx3.

where x ∈ R3 and u ∈ R is the single input. With the parameter values ρ = 28, σ = 10, β = 8
3 , and

control input u = 0 the Lorenz system exhibits chaotic behavior. In this 3D example, we generated the

time-series data from 1000 random chosen initial conditions and propagate each of them for Tfinal =

10s with sampling time ∆t = 0.001s. For the purpose of identification the system is excited with

white noise input with zero mean and 0.01 variance. The dictionary functions Ψ(x) consist of 20

monomials of most degree D = 3

Ψ(x) = [1, x1, x2, x3, . . . , x
3
1, x

2
1x2, x

2
1x3, x1x2x3, . . . x

3
3].

The objective is to stabilize one of the critical points (
√
β(ρ− 1),

√
β(ρ− 1), ρ − 1) of the Lorenz

system. The system is stabilized using the control formula in Eq. (4.31). To validate the closed-loop

control designed using the Algorithm 2, we perform the closed-loop simulation with five randomly

chosen initial conditions in the domain [−5, 5] × [−5, 5] × [0, 10] and solve the closed-loop system

with ode15s solver in MATLAB. In Fig. 4.4a, we show the open-loop and closed-loop trajecto-

ries starting from five different initial conditions, and the closed-loop trajectories are converging to

the critical point. The time trajectories in Fig. 4.4(b-d) shows that all the initial conditions can be

stabilized to the desired point within 4s.

4.5.3 Application to Power System

In the last example, we consider the IEEE 9 bus system, the line diagram of which is shown in

Fig. 4.6a. The model we are using is based on the modified nine bus test system in Sauer and

Pai (1997). The system consists of 3 synchronous machines(generators) with IEEE type-I exciters,
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Figure 4.4: Feedback Stabilization of Lorenz system. a) Comparison of open loop and closed
loop trajectories in state space; b) x(t) vs time, open loop (blue) and closed loop (red); c) y(t) vs

time, open loop (blue) and closed loop (red); d) z(t) vs time, open loop (blue) and closed loop
(red).
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Table 4.1: 9 bus system: Bus data at base case loading

Bus Number V0 PL0 QL0 PG0 Vmax Vmin
p.u. MW MVar MW p.u. p.u.

1 1.04 0 0 71.61 1.1 0.9
2 1.025 0 0 163 1.1 0.9
3 1.025 0 0 85 1.1 0.9
4 1 0 0 0 1.1 0.9
5 1 125 50 0 1.1 0.9
6 1 90 30 0 1.1 0.9
7 1 0 0 0 1.1 0.9
8 1 100 35 0 1.1 0.9
9 1 0 0 0 1.1 0.9

loads, and transmission lines. The synthetic data is generated using PST (Power System Toolbox) in

MATLAB Chow and Cheung (1992). The 9 bus power system network can be described by a set of

differential algebraic equations (DAE). Consider a power system model with ng generator buses and

nl load buses, the closed-loop generator dynamics for the ith generator bus can be represented as a

2nd order dynamical model with the control u:

dδi
dt

= ωi − ωs

dωi
dt

=
1

Mi

Pmi −∑
j∈Ni

EiEj
Xij

sin(δi − δj)−Di(ωi − ωs)

+ ui.
(4.35)

where δi, ωi are the dynamic states of the generator and correspond to the generator rotor angle and

the angular velocity of the rotor. The values for the other parameters are chosen as follows: ωs = 1,

the generator massMi = 23.64, 6.4, 3.1, the internal dampingDi = 0.05, 0.95, 0.05, the generator

power Pmi = 0.719, 1.63, 0.85 for i = 1, 2, 3. The values of Xij are taken from the PST in

MATLAB.

The 3 generator, 9 bus system’s parameters are summarized in the Table. 4.1 and Table. 4.2.

For the approximation of Koopman operator and eigenfunctions, the time-series data are generated

from 100 initial conditions. Each initial condition is propagated for Tfinal = 10s and ∆t = 0.01s.

The dictionary functions H(x) in this example are chosen as 84 monomials of most degree D = 3.

The data-driven stabilizing control is designed using modified Sontag’s formula control in Eq. (4.7),

where q(x) = 10x>x. The simulation results for this example are shown in Fig. 4.6. We notice that
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Table 4.2: 9 bus system: Line data at base case loading

Bus Number Bus Number R X B

From To p.u. p.u. p.u.
1 4 0 0.0576 0
2 7 0 0.0625 0
4 6 0.017 0.092 0.158
5 4 0.01 0.085 0.176
7 5 0.032 0.161 0.306
7 8 0.0085 0.072 0.149
8 9 0.0119 0.1008 0.209
9 3 0 0.0576 0
9 6 0.039 0.17 0.358

the open-loop system is marginally stable with sustained oscillations. The objective of the stabilizing

controller is to stabilize to frequencies to ωs = 1, and the point for the stabilization of δ dynamics

is determined by Pmi . Simulation results in Fig. 4.6c and 4.6d show that the data-driven stabilizing

controller is successful in stabilizing the power system dynamics.
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Figure 4.6: Stabilization of IEEE nine bus system. a) Line diagram for IEEE nine bus system;
b) Control value vs time; c) Comparison of open loop and closed loop trajectory for phase angle
δ1(t) of generator 1; d) Comparison of open loop and closed loop trajectory for frequency ω1(t)

of generator 1.
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CHAPTER 5. OPTIMAL QUADRATIC REGULATION OF NONLINEAR

SYSTEM USING KOOPMAN OPERATOR

In this chapter, we study the optimal quadratic regulation problem for nonlinear systems. The opti-

mal quadratic regulation problem for nonlinear system is formulated in terms of the finite-dimensional

approximation of the bilinear system. A convex optimization-based approach is proposed for solving

the quadratic regulator problem for bilinear system.

Consider a following single input nonlinear dynamics

ẋ = F(x) + G(x)u. (5.1)

where x ∈ Rn is the state and u ∈ Rp is control input. For the simplicity of presentation we discuss

results for the single input case i.e., p = 1. Let ψt(x) be the solution of autonomous (uncontrolled)

dynamical system,

ẋ = F(x). (5.2)

5.1 Control System Representation in Koopman Eigenfunction Space

The eigenfunctions of Koopman operator corresponding to the point spectrum are smooth func-

tions and can be used as coordinates for linear representation of nonlinear systems. Let

Φ(x) = [φ1(x), . . . , φN (x)]>

be the firstN dominant Koopman eigenfunctions with associated eigenvalues λi ∈ C for i = 1, . . . , N

and hence φi’s are in general complex-valued functions. Utilizing the technique from Surana and

Banaszuk (2016), we can transform these complex eigenfunctions to real as follows. Define

Φ̂(x) := [φ̂1(x), . . . , φ̂N (x)]>

where φ̂i := φi if φi is a real-valued eigenfunction and φ̂i := 2Re(φ), φ̂i+1 := −2Im(φi), if i and

i+ 1 are complex conjugate eigenfunction pairs. Consider now the transformation as Φ̂ : Rn → RN
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as

z = Φ̂(x).

Then in this new coordinates system Eq. (5.1) takes the following form

ż = Λz +
∂Φ̂

∂x
G(x)u. (5.3)

where the matrix Λ has following form: in bilinear system (5.3), Λ ∈ RN×N can be written as a

block diagonal matrix of Koopman eigenvalues λ1, λ2, . . . , λN such that Λ(i,i) = λi if φi is real, and Λ(i,i) Λ(i,i+1)

Λ(i+1,i) Λ(i+1,i+1)

 = |λi|

 cos(∠λi) sin(∠λi)

− sin(∠λi) cos(∠λi)


if φi and φi+1 are complex conjugate pairs. Next we assume that the control input u in (5.1) is of the

form

u = α>(t)z =
N∑
k=1

αk(t)φ̂k(x). (5.4)

Note that although the control input is assumed to be linear in eigenfunction coordinates, it is in

fact nonlinear as the function of state variable x.

Remark 19. By assuming the above form of control input u, the new effective control is αk(t). Fur-

thermore, by assumption, the above form of the input, we are restricting the new control input to be

either time-dependent or constant in time, i.e., parametric input. In this chapter, we are interested in

solving infinite horizon problems, and hence the choice of αk is restricted to be parametric and hence

constant.

Substituting for the control input u into (5.3), we obtain

ż = Λz +
∑
k

αk(t)
∂Φ̂

∂x
G(x)φ̂k(x)

We now make the following assumption.

Assumption 20. We assume that ∂Φ̂
∂x G(x)φ̂k(x) lies in the span of Φ̂(x) i.e., there exists a matrix

Bk ∈ R

∂Φ̂

∂x
G(x)φ̂k(x) = BkΦ̂(x). (5.5)
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Remark 21. In general, Assumption 20 may or may not hold true and will depend upon the specific

structure of function G and the choice of basis functions used in the approximation of the Koopman

operator. More generally, one can also consider functions other than φ̂k in the determination of matrix

Bk in Eq. (5.5). For the case where the Assumption 20 is not true, a least-squares problem can be

formulated for the approximation of matrix Bk as we do in Section 5.3.

Using Assumption 20, the system (5.3) is transformed to system of the form

ż = Λz +
∑
k

αk(t)Bkz (5.6)

αk(t) are restricted to be function of time or static value but are not allowed to be function of state z.

5.2 Optimal Quadratic Regulation

The quadratic cost function for the single input nonlinear system (5.1) can be written as

∫ ∞
0

x>(t)Q̄x(t) + ru2(t)dt (5.7)

The quadratic in control and state cost function in state space can be approximated in the Koopman

eigenfunction space as follows. Transforming the quadratic cost function associated with control from

state space to Koopman eigenfunction space is straight forward. In particular, using (5.4), we have

ru(t)>u(t) = rz>(t)α(t)α>(t)z(t).

To transform the cost associated with the state, we let Ψ be the choice of basis functions used in the

approximation of the Koopman eigenfunctions, z = Φ̂(x). We have following relation between Ψ(x)

and Φ̂(x), z := Φ̂ = V>Ψ, where V = [v1, . . . ,vN ] with vi is the ith right eigenvector of the finite

dimensional approximation of the Koopman operator. We discuss more on this in Section 5.3 on finite

dimensional approximation of Koopman eigenfunction. Under the assumption that the choice of basis

function Ψ is of the form ψ1(x) = 1 and ψ2(x) = x, we can write x>Q̄x = Ψ>QΨ, where matrix

Q is of the form
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Q = diag{0, Q̄, 0, . . . , 0}

Now combining Φ̂ = V>Ψ, Ψ = (V>)−1Φ̂, and x>Q̄x = Ψ>QΨ, we obtain

x>Qx = Φ̂V−1Q(V>)−1Φ̂ (5.8)

With the above transformation, we have following infinite horizon optimal quadratic regulation

problem in Koopman eigenfunction space.

min
α∈Rn

J :=

∫ ∞
0

z(τ)>
(
V−1Q(V>)−1 + αα>

)
z(τ)dτ

subject toż =
(
A +

n∑
i=1

αiBi

)
z := Ac(α)z

z(0) = z0 (5.9)

where Q = Q> � 0 is a given positive definite matrix and Ac(α) denotes the closed-loop system as

a function of the control input α ∈ Rn.

Assumption 22. We assume that problem (5.9) is feasible and has a finite optimal cost.

Suppose that α ∈ Rn is any feasible point to problem (5.9). In other words, α stabilizes the

closed-loop system. Then the integral cost J evaluated at α equals to

J = z>0 Pz0

for some symmetric positive definite P = P> � 01 which satisfies the Lyapunov equation

Ac(α)>P + PAc(α) + Q + αα> = 0. (5.10)

A>P + PA +
∑
i

αi(B
>
i P + PBi) + Q + αα> = 0 (5.11)

To see this, let us express the state trajectory z(t) of the closed-loop system as z(t) = eAc(α)tz0.

Substituting it into the integral cost J yields

J = z>0

[∫ ∞
0

eA
>
c (α)τ

(
Q + αα>

)
eAc(α)τdτ

]
z0.

1In this chapter P denotes the quadratic matrix for Lyapunov function only.
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Let us further define

P :=

∫ ∞
0

eA
>
c (α)τ

(
Q + αα>

)
eAc(α)τdτ

then it is easy to show that P satisfies

Ac(α)>P + PAc(α) = −Q− αα>.

According to the argument above, the optimal control (5.9) can be equivalently rewritten as

minimize
α,P=P>

z>0 Pz0

subject to P � 0 and (5.10). (5.12)

We notice that problem (5.12) is non-convex due to the equality constraint (5.10), which contains

quadratic terms in both α and P. Below, we will design an ADMM-like iterative algorithm to solve

problem (5.12).

Let us define the augmented Lagrangian associated with problem (5.12) as

Lρ(α,P,W) := z>0 Pz0 + Ipd(P)

+ tr
{

W
[
Ac(α)>P + PAc(α) + Q + αα>

]}
+
ρ

2

∥∥∥Ac(α)>P + PAc(α) + Q + αα>
∥∥∥2

fro
(5.13)

where ρ > 0 is a given parameter that scales the augmented term, W = W> is the matrix Lagrange

multiplier associated with equality constraint (5.10), and ‖ · ‖fro denotes the matrix Frobenius norm.

Moreover, the indicator function Ipd(·) is defined as

Ipd(Z) :=


0 if Z = Z> � 0

∞ otherwise.

Then we propose the iterative algorithm in Algorithm 2.

We present below the details about how to implement steps 1) and 2) in Algorithm 2.

For step 1), we note that even when Pk and Wk are fixed, Lρ(α,Pk,Wk) is not convex in α.

Therefore, we propose the following relaxation problem to search for an “argmin” of Lρ with respect
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Algorithm 2: An iterative algorithm for problem (5.12)

1 initialize (α0,P0,W0) with P0 = P>0 � 0, W0 = W>
0 , ρ > 0, and a tolerance ε > 0

2 repeat for k = 0, 1, 2, · · ·
3 1) αk+1 := argmin

α∈Rn
Lρ(α,Pk,Wk)

4 2) Pk+1 := argmin
P=P>

Lρ(αk+1,P,Wk)

5 3) Wk+1 := Wk + ρ
[
Ac(αk+1)>Pk+1 + Pk+1Ac(αk+1)

6 + Q + αk+1α
>
k+1
]

7 quit if ‖(αk+1,Pk+1,Wk+1)− (αk,Pk,Wk)‖ < ε.

to α, which is

minimize
α, Z=Z>

tr(WkZ) +
ρ

2
‖Z‖2fro

subject to Ac(α)>Pk + PkAc(α) + Q + αα> � Z (5.14)

where constraint (5.14) can be further rewritten as an LMI Z −Ac(α)>Pk −PkAc(α)−Q α

α> 1

 � 0. (5.15)

For step 2), fortunately, we observe that Lρ(αk+1,P,Wk) is convex in P when αk+1 and Wk are

both given. Hence, the “argmin” of Lρ with respect to P can be computed by

minimize
P=P>

Lρ(αk+1,P,Wk)

subject to P � 0. (5.16)

We would like to point out that when we are solving problem (5.16), we can ignore the indicator

function Ipd(·) since we have already focused our search of P within the positive definite cone P =

P> � 0. Under these circumstances, the indicator function always turns out to be zero.

5.3 Approximation of Koopman eigenfunctions

In this section, we will use Extending Dynamic Mode Decomposition (EDMD) algorithm for the

approximation of Koopman eigenfunctions Williams et al. (2015). Given the continuous time system,
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ẋ = f(x), one can generate the time-series data from the simulation or the experiment as follows

X = [x1,x2, . . . ,xM ], Y = [y1,y2, . . . ,yM ] (5.17)

where xi ∈ X and yi = T (xi) = f(xi)∆t + xi ∈ X. Now let H = {ψ1, ψ2, . . . , ψN} be the

set of dictionary functions or observables. The dictionary functions are assumed to belong to ψi ∈

L2(X,B, µ) = G, where µ is some positive measure, not necessarily the invariant measure of T . Let

GH denote the span of H such that GH ⊂ G. The choice of dictionary functions is very crucial and

it should be rich enough to approximate the leading eigenfunctions of the Koopman operator. Define

vector-valued function Ψ : X→ CN

Ψ(x) :=

[
ψ1(x) ψ2(x) · · · ψN (x)

]>
. (5.18)

φ =
N∑
k=1

akψk = Ψ>a, φ̂ =
N∑
k=1

âkψk = Ψ>â (5.19)

for some coefficients a and â ∈ CN . Let φ̂(x) = [U∆tφ](x) + r, where r ∈ G is a residual function

that appears because GH is not necessarily invariant to the action of the Koopman operator. To find

the optimal mapping which can minimize this residual, let K be the finite dimensional approximation

of the Koopman operator U∆t. Then the matrix K is obtained as a solution of least square problem as

follows

minimize
K

‖GK−A‖F (5.20)

G =
1

M

M∑
m=1

Ψ(xm)Ψ(xm)>, A =
1

M

M∑
m=1

Ψ(xm)Ψ(ym)>.

with K,G,A ∈ CN×N . The optimization problem (5.20) can be solved explicitly with a solution in

the following form

KEDMD = G†A (5.21)

where G† denotes the psedoinverse of matrix G2. The eigenvalues of K are approximations of the

Koopman eigenvalues. The right eigenvectors of K can be used then to generate the approximation
2With some abuse of notations, here G is different from the control matrix G(x)
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of Koopman eigenfunctions. In particular, the approximation of Koopman eigenfunction is given by

φj = Ψ>vj , j = 1, . . . , N (5.22)

where vj is the j-th right eigenvector of K, and φj is the approximation of the eigenfunction of Koop-

man operator corresponding to the j-th eigenvalue λj . Λ ∈ RN×N can be written as a block diagonal

matrix of Koopman eigenvalues depending upon real or complex conjugate pair of eigenvalues.

For the computation of Bk matrix in (5.6), we formulate a least-square problem based on the

assumption 20. Suppose that from the time-series data we can evaluate

J :=

[
∂Φ̂

∂x

∣∣∣∣
x1

·G(x1)
∂Φ̂

∂x

∣∣∣∣
x2

·G(x2) · · · ∂Φ̂
∂x

∣∣∣∣
xM

·G(xM )

]

and H :=
[
Φ̂(x1) Φ̂(x2) · · · Φ̂(xM )

]
∈ RN×M

at the points x1,x2, · · · ,xM , then the least-squares problem for the estimation of the B matrix can

be formulated as

minimize
B∈RN×N

‖J −BH‖F .

The error in the approximation of the B matrix can be explicitly accounted for by formulating a

robust optimization problem for optimal control. The formulation of robust optimization problem for

optimal control where the error from the B matrix approximation as well as error due to finite data

length Chen and Vaidya (2019) is beyond the scope of this dissertation.

5.4 Simulation Results

In this section, we will present the simulation results for the Koopman-based optimal quadratic

regulation for affine in input control system.

5.4.1 2D linear system

Consider a controlled 2D unstable linear system given as follows

ẋ1 = −x1 + 2x2 (5.23)

ẋ2 = 0.1x2 + u
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where x ∈ R2 and u ∈ R is the single input. The nonlinear system without control has a unique

unstable equilibrium point at the origin. In this example, we will use the the proposed Koopman-

based quadratic regulation (KQR) controller design algorithm to find the optimal controller within

the neighborhood of (0, 0). By choosing the monomial basis function of the most degree less than or

equal to 5, one can shift the state space to the 21-dimensional monomial basis space, as follows,

Ψ(x) = [1, x1, x2, x
2
1, x1x2, x

2
2, . . . , x1x

4
2, x

5
2].

The Koopman eigenfunction approximation Λ, Bk matrices are obtained from 10s time series data,

which are generated using 100 random initial conditions within [−2, 2]× [−2, 2].

For the closed-loop simulation, we choose initial point at (1, 2) and solve the closed-loop system

with ode45 solver in MATLAB. To verify the optimality of the proposed controller, we compare

the closed-loop simulation result with the infinite horizon Linear quadratic regulator (LQR) con-

troller. For the infinite horizon LQR controller, J(x) =
∫∞

0

(
x(τ)>Q̄x(τ) + u>Ru

)
dτ , where

both Q̄ and R matrices have been chosen as identity matrix, hence the designed feedback gain

K = [0.3815, 1.3394].

In Fig. 5.1 ∼ Fig. 5.3, the closed-loop trajectories with both controllers are converging to the

origin, In the Fig.5.1, it can be observed that the proposed KQR controller follows a similar shape of

converging path while the LQR control consumes the minimum energy.

5.4.2 Van der Pol oscillator

The first example, we choose the Van der Pol oscillator to obtain the time series dataset. The

nonlinear dynamics of the Van der Pol oscillator, F(x), is shown in equation (5.24).

ẋ1 = x2 (5.24)

ẋ2 = (1− x2
1)x2 − x1 + u

In order to obtain a good approximation of the Koopman eigenfunction associated with the nonlinear

system, we generate the time series data with ten randomly chosen initial conditions within [−2, 2]×

[−4, 4], and each trajectory has a length of T = 10s,∆t = 0.01s.
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Figure 5.1: Koopman-based quadratic regulation controller(KQR) and LQR controller closed-loop
and open-loop trajectories for the 2D linear system

Figure 5.2: Closed-loop(blue, green) and open-loop(red) time trajectories of state x1, and control
input u(black) for the 2D linear system
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Figure 5.3: Closed-loop(blue, green) and open-loop(red) time trajectories of state x2, and control
input u(black) for the 2D linear system

The 21 monomial basis function of the most degree less than or equal to 5 will again be chosen

as the basis function for the Koopman eigenfunction. For the Koopman-based quadratic regulation

control, we still use the same quadratic regulation cost, such that the Q̄ and R to be identity. By

applying Algorithm 2 to the optimization (5.12) with 527 iteration steps, one can get the optimal

solution and apply the optimal u∗ = α∗z to the Van der Pol oscillator.

To start with, we apply the designed Koopman-based quadratic regulation (KQR) controller to

the closed-loop system with one initial condition (x0, y0) = (9,−2). To verify the improvement of

the proposed controller, we compare the closed-loop simulation result with the infinite horizon Linear

quadratic regulator (LQR) controller using the model linearized at the origin. With Q̄ to be identify

and R = 1, the optimal feedback gain K = [0.4142 2.6818]. The closed-loop simulation results

from t = 0 to t = 50s are shown in Fig. 5.4 ∼ Fig. 5.5. It can be observed that the Koopman-based

controller is stabilizing the trajectories to the origin within the 20s, while the LQR control trajectories

are following the open-loop trajectories for the first 10s, and takes more than 30s to converge to the

origin. Furthermore, the controller designed using our proposed approach can obviously be as data-

driven control, whereas the control based on linearization requires the knowledge of system dynamics.
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Figure 5.4: Closed-loop and open-loop trajectories for the Van der Pol oscillator
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Figure 5.5: Closed-loop(blue, green) and open-loop(red) time trajectories of state x1 for the Van der
Pol oscillator
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5.4.3 Duffing oscillator

Another prototype of 2D nonlinear dynamics is the duffing oscillator. The corresponding differ-

ential equation with the control input u is written as follows

ẋ1 = x2 (5.25)

ẋ2 = (x1 − x3
1)− 0.5x2 + u.

The open-loop system has two stable equilibrium points (±1, 0) and one unstable equilibrium

point at the origin. For the approximation we are using 1000 randomly chosen initial conditions

where x0 ∈ [−2, 2] and y0 ∈ [−5, 5], and each trajectory has length of T = 10s,∆t = 0.025s. The

21 monomials of most degree D = 5 are chosen as the basis functions. For control cost function, we

use Q̄ to be identity and R = 1.

To solve the quadratic regulation control problem formulated in (5.12), we apply the algorithm (2)

with 684 iteration steps to get the optimal solution α∗ and P.

Starting from the initial point at (x0, y0) = (2, 1), the closed-loop simulation results from t = 0

to t = 10s are shown in Fig. 5.6 ∼ Fig. 5.8. Even the open-loop trajectory has crossed the x = 0 and

arrived at the other equilibrium point (−1, 0), the closed-loop trajectory using KQR control can still

converge to the origin within 4s. For the comparison with the LQR controller designed based on the

linearized model around the origin, which generates the feedback gain K = [2.4142 1.9654]. From

Fig. 5.6, we can observe that the control path using KQR is shorter than the LQR, and also the control

effort uKQR has shorter time integral than uLQR, which is showing improvement of the data-driven

controller than the classic LQR control.

In this section, the simulation results show the effectiveness of the developed optimal control

strategy. In the next chapter, the results of the comprehensive controller design framework will be

demonstrated in detail and applied to some industrial examples.
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Figure 5.6: Closed-loop and open-loop trajectories for the Duffing oscillator
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Figure 5.7: Closed-loop(blue, green) and open-loop(red) time trajectories of state x2 for the Duffing
oscillator
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Figure 5.8: Control input u trajectories using KQR and LQR for the Duffing oscillator
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CHAPTER 6. A CONVEX APPROACH TO DATA-DRIVEN OPTIMAL CONTROL

VIA PERRON-FROBENIUS AND KOOPMAN OPERATOR

Bowen Huang and Umesh Vaidya

Department of Electrical and Computer Engineering, Iowa State University

Modified from a manuscript submitted to in IEEE Transactions on Automatic Control

6.1 Abstract

The paper is about the data-driven computation of optimal control for a class of control affine

deterministic nonlinear system. We assume that the control dynamical system model is not available,

and the only information about the system dynamics is available in the form of time-series data. We

provide a convex formulation for the optimal control problem of the nonlinear system. The convex

formulation relies on the duality result in the stability theory of a dynamical system involving density

function and Perron-Frobenius operator. The optimal control problem is formulated as an infinite-

dimensional convex optimization program. The finite-dimensional approximation of the optimization

problem relies on the recent advances made in the data-driven computation of the Koopman operator,

which is dual to the Perron-Frobenius operator. Simulation results are presented to demonstrate the

application of the developed framework.

6.2 Introduction

The data-driven control of the dynamical system is a problem that has attracted tremendous in-

terest from various research communities. The interest is partly due to easy access to the data and

increased complexity of engineered systems where analytical models are challenging to obtain or

unknown. The optimal control problem (OCP) is particularly difficult when the underlying system

dynamics is nonlinear even for the case where the underlying system models are known. The solution

to the OCP involves solving an infinite-dimensional nonlinear partial differential equation, namely
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Hamilton Jacobi Bellman (HJB) equation. The HJB equation is also at the heart of the variety of

reinforcement learning (RL) algorithm, one of the popular approaches for solving data-driven OCP

Sutton and Barto (2018). The nonlinear and infinite-dimensional nature of the HJB equation makes

the OCP challenging. There have been increased research efforts towards the extension of systematic

model-based methods for controlling linear and nonlinear systems to a data-driven setting.

Progress is made for a class of linearly solvable OCP using alternate Kullback-Leibler (KL) based

formulation of OCP for stochastic dynamical system and path integral-based numerical scheme Kap-

pen (2007); Todorov (2009); Theodorou et al. (2010); Williams et al. (2017). In this paper, we pro-

vide a convex approach for the data-driven optimal control for a class of control affine deterministic

nonlinear system using a linear operator theoretic framework involving Perron-Frobenius (P-F) and

Koopman operators. For designing the data-driven optimal control, it is assumed that the analytical

model of the system dynamics is not known, and the only information about the system dynamics is

available in the form of time-series data from single or multiple trajectories. In particular, we assume

that data can be collected from the control dynamical system for zero input and unit step input.

The linear P-F and Koopman operators are used to lift nonlinear dynamics from state space to

linear, albeit infinite-dimensional, dynamics in the space of functions. More recently, the data-driven

approach for the approximation of Koopman operator has attracted a lot of attention for the analysis

of nonlinear systems with applications to power systems Susuki et al. (2016); Sharma et al. (2019b),

fluid dynamics Mezić (2013), and robotics system Bruder et al. (2019). There have also been efforts

for the use of Koopman operator for control Kaiser et al. (2017); Huang et al. (2018); Arbabi et al.

(2018); Ma et al. (2019); Korda and Mezic (2020); Mauroy and Mezic (2013); Huang et al. (2020).

However, unlike an autonomous dynamical system, lifting of control affine nonlinear system leads to

a bilinear control system, which is hard to control. On the other hand, the application of linear P-F

operator for nonlinear control was proposed in Vaidya et al. (2010a); Raghunathan and Vaidya (2013).

The P-F based control makes use of duality in the stability theory result discovered in Rantzer (2001)

and later generalize using linear operator theoretic framework in Vaidya and Mehta (2008b); Rajaram

et al. (2010b). At the heart of the P-F control result is the convexity property enjoyed in the co-design

problem of jointly finding the dual stability certificate in the form of density function or Lyapunov
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measure and the controller Prajna et al. (2004); Vaidya et al. (2010a). This convexity property is

exploited for the design of data-driven stabilization control in Choi et al. (2020). The proposed convex

formulation for the OCP also draws some parallel with the dual formulation involving occupation

measure for the OCP Henrion and Korda (2013); Korda (2016); Korda et al. (2017). The detailed

comparison between these two approaches is beyond the scope of this paper.

In this paper, we discover a systematic framework based on the linear operator theory for the data-

driven optimal control of a class of control affine deterministic nonlinear systems. The computation

framework itself exploits the recent advances in the data-driven approximation of the Koopman op-

erator and the duality between Koopman and P-F operator for the finite-dimensional approximation

of the P-F operator and its generator. In particular, the computational framework makes use of the

Naturally Structured Dynamic Mode Decomposition (NSDMD)Huang and Vaidya (2018) algorithm

for the approximation preserving positivity and Markov properties of the linear operators. Time-series

data from single or multiple trajectories corresponding to a system with zero input and unit step input

are used in the training process for the approximation. The theoretical framework relies on the P-F

operator and the density-based formulation of the OCP in the dual density space. In the density-based

approach, the nonlinear control system is lifted using a P-F operator. The P-F lifting is instrumental

in the convex formulation of the OCP in the dual space. There are two main contributions of this

paper. First, it provides convex formulation to the OCP in the dual density space. The second main

contribution is in providing a computational framework for the data-driven approximation of optimal

control using linear P-F and Koopman operators.

The paper is organized as follows. In Section 6.3, we present some preliminaries on the linear

operator theory and NSDMD algorithm for the finite-dimensional approximation of the Koopman and

P-F operators. The main results on the formulation of the convex optimization problem for optimal

control are presented in Section 6.4. The computational framework for the finite-dimensional ap-

proximation of the OCP is presented in Section 6.5. Simulation results are presented in Section 6.6

followed by remark and conclusion in Section 6.7.
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6.3 Preliminaries and Notations

In this section, we discuss some preliminaries and introduce some notations, which are used in

deriving the main results on data-driven optimal control. Consider a dynamical system

ẋ = f(x), x ∈ X ⊆ Rn. (6.1)

We denote by φt(x) the solution of the system (6.1) and N be the neighborhood of the equilibrium

point at the origin. Let M(X) be the space of measure supported on X, F be the space of scalar

valued functions from X→ R, and L1(X) the space of integrable functions on X. The inner product

between functions will be denoted by 〈ϕ,ψ〉X :=
∫
X ϕ(x)ψ(x)dx.

Definition 23 (Equivalent Measures). Two measures µ1 and µ2 are said to be equivalent i.e., µ1 ≈ µ2

provided µ1(B) = 0 if and only if µ2(B) = 0 for all set B ⊂ X.

6.3.1 Perron-Frobenius and Koopman Operator

One can associate two linear operators with (6.1) namely Perron-Frobenius and Koopman oper-

ators. These two operators lift the nonlinear dynamics from the finite dimensional state space to the

infinite dimensional space of functions.

Definition 24 (Koopman Operator). Ut : F → F is defined as

[Utϕ](x) = ϕ(φt(x)) (6.2)

Definition 25 (Perron-Frobenius Operator). Pt : F → F is defined as

[Ptψ](x) = ψ(φ−t(x))

∣∣∣∣∂φ−t(x)

∂x

∣∣∣∣ (6.3)

where | · | stands for determinant.

These two operators are dual to each other and the duality is expressed as
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∫
Rn

[Utϕ](x)ψ(x)dx =

∫
Rn

[Ptψ](x)ϕ(x)dx (6.4)

The generator for the P-F operator is defined as

lim
t→0

(Pt − I)ψ

t
= −∇ · (f(x)ψ(x)) =: Pfψ (6.5)

The generator for the Koopman operator is given by

lim
t→0

(Ut − I)ϕ

t
= f(x) · ∇ϕ(x) =: Kfϕ (6.6)

Property 26. These two operators enjoy positivity and Markov properties which are used in the

approximation.

1. Positivity: The P-F and Koopman operators are positive operators i.e., for any 0 ≤ ϕ(x) ∈ F

and 0 ≤ ψ(x) ∈ F , we have

[Ptψ](x) ≥ 0, [Ktϕ](x) ≥ 0, ∀t ≥ 0 (6.7)

2. Markov Property: The P-F operator satisfies Markov property i.e.,

∫
X

[Ptψ](x)dx =

∫
X
ψ(x)dx (6.8)

6.3.2 Almost everywhere stability and stabilization

The formulation for the OCP we present in the dual space is intimately connected to density

function and Lyapunov measure introduced for verifying the almost everywhere notion of stability

defined below.

Definition 27. The equilibrium point at x = 0 is said to be almost everywhere stable w.r.t. measure,

µ, if

µ{x ∈ X : lim
t→∞

φt(x) 6= 0} = 0
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Following theorem from Rantzer (2001) provide condition for almost eveywhere stability with

respect to (w.r.t.) Lebesgue measure.

Theorem 28. Given the system ẋ = f(x), where f is continuous differentiable and f(0) = 0, suppose

there exists a nonnegative ρ is continuous differentiable for x 6= 0 such that ρ(x)f(x)/|x| is integrable

on {x ∈ Rn : |x| ≥ 1} and

[∇ · (ρf)](x) > 0 for almost all x. (6.9)

Then, for almost all initial states x(0), the trajectory x(t) tends to zero as t→∞.

The density ρ serves as a stability certificate and can be viewed as a dual to the Lyapunov function

Rantzer (2001). Applying Theorem 28 to control system, ẋ = f(x) + g(x)u, we arrive at

∇ · (ρ(f + gu)) > 0 for almost all x. (6.10)

The control synthesis problem becomes searching for a pair (ρ,u) such that (6.10) holds. Even though

(6.10) is again bilinear, it becomes linear in terms of (ρ, ρu). Thus, the density function based method

for control synthesis is a convex problem.

6.3.3 Data-Driven Approximation: Naturally Structured Dynamic Mode Decomposition

Naturally structured dynamic mode decomposition (NSDMD) is a modification of Extended Dy-

namic Mode Decomposition (EDMD) algorithm Williams et al. (2015), one of the popular algorithm

for Koopman approximation from data. The modifications are introduced to incorporate the natu-

ral properties of these operators namely positivity and Markov. For the continuous-time dynamical

system (6.1), consider snapshots of data set obtained as time-series data from single or multiple tra-

jectories

X = [x1,x2, . . . ,xM ], Y = [y1,y2, . . . ,yM ] (6.11)

where xi ∈ X and yi ∈ X. The pair of data sets are assumed to be two consecutive snapshots i.e.,

yi = φ∆t(xi), where φ∆t is solution of (6.1). Let Ψ = [ψ1, . . . , ψN ]> be the choice of basis func-
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tions. The popular Extended Dynamic Mode Decomposition algorithm provides the finite dimensional

approximation of the Koopman operator as the solution of the following least square problem.

min
K
‖ GK−A ‖F (6.12)

where

G =
1

M

M∑
m=1

Ψ(xm)Ψ(xm)>,A =
1

M

M∑
m=1

Ψ(xm)Ψ(ym)> (6.13)

with K,G,A ∈ RN×N , ‖ · ‖F stands for Frobenius norm. The above least square problem admits

an analytical solution

KEDMD = G†A. (6.14)

In this paper, we work with Gaussian Radial basis function (RBF) for the finite dimensional approx-

imation of the linear operators. Under the assumption that the basis functions are positive, like the

Gaussian RBF, the NSDMD algorithm propose following convex optimization problem for the ap-

proximation of the Koopman operator that preserves positivity and Markov property in Property 26.

min
K
‖ GK−A ‖F (6.15)

s.t. [ΛKΛ−1]ij ≥ 0, ΛKΛ−11 = 1

where Λ =
∫
X ΨΨ>dx is a constant matrix, 1 is a vector of all ones, and G, A are as defined in

Eq. (6.13). The first and second constraints in (6.15) ensure that finite-dimensional approximation

preserves the positivity property and Markov property respectively. The approximation for the P-F

operator and its generator is given by

P∆t ≈ Λ−1K>Λ =: P, PF ≈
P− I

∆t
=: M (6.16)

Since the basis function are assumed to be positive Gaussian, the constant Λ matrix can be computed

explicitly as

Λi,j = (
πσ2

2
)n/2e

−‖ci−cj‖
2

2σ2 , i, j = 1, 2, . . . , N
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6.4 Convex Formulation of Optimal Control Problem

We consider optimal control problem for control affine system of the form

ẋ = f(x) + g(x)u (6.17)

where, x ∈ X ⊂ Rn is the state, u ∈ Rp is the control input and g(x) = (g1(x), . . . ,gp(x)) with

gi ∈ Rn is the input vector field. We make following assumption for (6.17).

Assumption 29. We assume that the system (6.17) has locally stable equilibrium point at the origin

when u = 0. We denote by N the local domain of attraction of the stable equilibrium point at the

origin. Furthermore, the linearization of system dynamics at the origin is assumed to be controllable

i.e., pair ( ∂f
∂x(0),g(0)) is controllable.

Remark 30. The assumption 29 is not restrictive. The local stabilizing controller can be designed

again using data if the equilibrium point for the uncontrolled system is not stable to begin with. In

fact we outline a procedure for the design of data-driven locally optimal control for all the simulation

examples, where the assumption is not satisfied.

We denote by X1 := X \ N , where N is the neighborhood of the origin (Definition 29). In the

following, we assume that the measure µ ∈ M(X) is equivalent to Lebesgue and that there exists a

density function 0 < h(x) ∈ L1(X) such that dµdx = h(x). Consider the cost function of the form

J(µ) =

∫
X1

∫ ∞
0

q(x) + u>Ru dtdµ(x) (6.18)

The q : X → R+ is a positive function such that q(0) = 0 and R > 0 is positive definite. The

objective is to minimize the cost starting from all initial condition x ∈ X1 and weighted by measure

dµ. The reason for restricting the initial condition to set X1 will be clarified later in Section 6.4.1. We

now make following assumption on the optimal control.

Assumption 31. We assume that the optimal control input is feedback i.e., u = k(x) and system

(6.17) with feedback control input is almost everywhere stable w.r.t. µ, (Definition 27).

We next prove a theorem, the proof of which can be derived using results reported in Vaidya and

Mehta (2008b); Rajaram et al. (2010b), however we prove it here for the sake of completeness.
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Lemma 32. If the feedback control system ẋ = f(x) + g(x)k(x) =: fc(x) satisfies Assumption 31

then

lim
t→∞

[Pcth](x) = 0 (6.19)

where, h = dµ
dx and Pct is P-F operator for system ẋ = fc(x).

Proof. For any set B ⊂ X1, let Bt := {x ∈ X : φt(x) ∈ B}, then

χBt(x) = χB(φt(x)) = [KtχB](x).

Furthermore,

0 = lim
t→∞

χBt(x) = lim
t→∞

χB(φt(x)) = lim
t→∞

[KtχB](x)

for all point x such that φt(x) → 0. Since the system is a.e. stable w.r.t. measure dµ(x) = h(x)dx,

we have

0 =

∫
X

lim
t→∞

[KtχB](x)h(x)dx =

∫
X
χB(x) lim

t→∞
[Pth](x)dx.

The above is true for arbitrary set B ⊂ X1, hence we have limt→∞[Pth](x) = 0.

Remark 33. The condition in Eq. (6.19) is also sufficient for almost everywhere stability. However,

to prove the main result, we only use necessity. In fact, the main result of this paper on the convex

formulation of the OCP can be proven without Assumption 31. However, given the data-driven compu-

tational focus of this paper, we will present the more technical results with less restrictive assumptions

in later publication.

With the assumed feedback form of the control input, the OCP can be written as

min
k

∫
X1

[∫∞
0 q(x) + k(x)>Rk(x) dt

]
dµ(x)

s.t. ẋ = f(x) + g(x)k(x) (6.20)

We now state the main theorem on the convex formulation of the OCP.
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Theorem 34. Under the Assumption 31, the OCP (6.20) can be written as following infinite dimen-

sional convex optimization problem

min
ρ≥0,ρ̄

∫
X1

q(x)ρ(x) +
ρ̄(x)>Rρ̄(x)

ρ
dx

s.t. ∇ · (fρ+ gρ̄) = h (6.21)

and the optimal feedback control input recovered from the solution of the above linear program as

k(x) =
ρ̄(x)

ρ(x)
(6.22)

Proof. With the feedback control input the cost can be written as

J(µ) =

∫
X1

∫ ∞
0

q(x(t)) + k(x(t))>Rk(x(t))dtdµ (6.23)

where x(t) is the solution of feedback control system

ẋ = f(x) + g(x)k(x) =: fc(x). (6.24)

Let Kc
t and Pct be the Koopman and P-F semigroup for the feedback control system (6.24). The cost

function can be written in terms of the Koopman operator as

J(µ) =
∫
X1

∫∞
0 [Kc

t(q + k>Rk)](x) dtdµ (6.25)

=
∫∞

0

〈
Kc
t(q + k>Rk), h

〉
X1
dt (6.26)

where 〈·, ·〉X1
stands for inner product between functions and we have used the fact that dµ = hdx.

Using the duality property between the P-F and Koopman operator, we obtain

J =

∫ ∞
0

〈
q + k>Rk,Pcth

〉
X1

dt =
〈
q + k>Rk, ρ

〉
X1

where we have exchanged the integral over time with integral over space and defined

ρ(x) :=

∫ ∞
0

[Pcth](x)dt, x ∈ X1 (6.27)

It follows that ρ(x) is a solution to the following equation

∇ · (fc(x)ρ(x)) = h(x), x ∈ X1 (6.28)
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Substituting (6.27) in (6.28), we obtain

∇ · (fc(x)ρ(x)) =

∫ ∞
0
∇ · (fc(x)[Pcth](x))dt

=

∫ ∞
0
− d

dt
[Pcth](x)dt = −[Pcth](x)

∣∣∣∞
t=0

= h(x) (6.29)

where we have used the infinitesimal generator property of P-F operator Eq. (6.5) and the fact that

limt→∞[Pcth](x) = 0 from Lemma 32. Furthermore, since h > 0, it follows that ρ > 0 from the

positivity property of P-F semigroup Pct . The OCP can then be written as

min
k,ρ≥0

∫
X1

(q(x) + k(x)>Rk(x))ρ(x)dx

s.t. ∇ · ((f + gk)ρ) = h. (6.30)

Using the fact that ρ > 0, we can write above problem as

min
ρ̄,ρ≥0

∫
X1

q(x)ρ(x) +
ρ̄>Rρ̄

ρ
dx

s.t. ∇ · (fρ+ gρ̄) = h (6.31)

where ρ̄(x) = k(x)ρ(x). Once we solve for ρ̄ and ρ, k can be recovered as k(x) = ρ̄(x)
ρ(x)

We next consider the optimization problem with L1 norm on control input.

min
k

∫
X1

[∫∞
0 q(x) + β|k(x)| dt

]
dµ(x)

s.t. ẋ = f(x) + g(x)k(x) (6.32)

The solution to the above optimization problem can be obtained by solving the following infinite-

dimensional linear program.

Theorem 35. Under the Assumption 31, the OCP (6.32) can be written as following infinite dimen-

sional linear optimization problem

min
ρ≥0,ρ̄

∫
X1

q(x)ρ(x) + |ρ̄(x)|dx

s.t. ∇ · (fρ+ gρ̄) = h (6.33)

and the optimal feedback control input recovered from the solution of the above linear program as

k(x) = ρ̄(x)
ρ(x) .

Proof. The proof of this theorem follows along the lines of proof of Theorem 34.
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6.4.1 Local Optimal Controller

The density function ρ for the solution of optimization problem satisfy

ρ(x) =

∫ ∞
0

[Pcth](x)dt

where Pct is the P-F operator for the closed-loop system ẋ = f(x) + g(x)k(x) and hence ρ serves

as an occupancy measure i.e.,
∫
A ρ(x)dx =

〈∫∞
0 [KtχA]dt, h

〉
signifies the amount of time closed-

loop system trajectories spend in the set A with initial condition supported on measure µ. Because

of this, ρ(x) has singularity at the equilibrium point stabilized by the closed-loop system. Due to

this singularity at the origin, we need to exclude the small neighborhood around the origin for the

proper parameterization of the density function ρ in the computation of optimal control. In particular,

the optimization problem (6.40) and (6.41) is solved excluding the small neighborhood around the

origin. To ensure optimality at the origin, we design local optimal control based on the data-driven

identification of linear dynamics around the origin. The data-driven procedure for local control is

outlined in Section 6.5.1.

6.4.2 Nonlinear Stabilization Using Density Function

The constraints in the optimization problem can be used for the designing of stabilizing feedback

controller. In particular, almost everywhere stabilizing feedback controller, u = k(x), for system

ẋ = f(x) + g(x)u, can be obtained by solving following linear inequalities for ρ and ρ̄

∇ · (fρ+ gρ̄) > 0. (6.34)

The stabilizing feedback controller can be recovered as k(x) = ρ̄(x)
ρ(x) . On the other hand solving

following equation

∇ · (fρ+ gρ̄) = h. (6.35)

for some positive function h leads to the design of almost everywhere stabilizing feedback controller

w.r.t. measure µ with density function h i.e., dµ = h(x)dx.
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6.5 Data Driven Approximation of Optimal Control

For the data-driven computation of optimal control, we need to provide finite dimensional approx-

imation of the infinite dimensional linear program (6.21) and (6.33). Towards this goal we need the

data-driven approximation of the generator corresponding to vector field f and g i.e., ∇ · (fρ) and

∇ · (gρ̄).

Assumption 36. We assume that the basis functions, ψk(x) for k = 1, . . . , N are positive and let

Ψ(x) = [ψ1(x), . . . , ψN (x)]>.

Remark 37. In this paper, we use Gaussian RBF to obtain all the simulation results i.e., ψk(x) =

exp−
‖x−ck‖
σ2 . where ck is the center of the kth Gaussian RBF.

Let K0 ∈ RN×N be the finite-dimensional approximation of the Koopman operator corresponding

to uncontrolled dynamical system ẋ = f(x). Similarly, let Kj for j = 1, . . . , p be the Koopman

operator for the system with unit step applied to ith input with all other inputs zero i.e., u = ej and

ẋ = f(x) + g(x)ej . These Koopman operator are obtained using NSDMD algorithm from section

6.3.3 with time series data generated from the dynamical system with discretization time-step of ∆t.

Corresponding to these Koopman operator, we can compute the P-F operator as

Pj = Λ−1K>j Λ, j = 0, 1, . . . , p. (6.36)

The Λ matrix can be computed explicitly since the basis functions are chosen to be Gaussian RBF,

with entires Λi,j = (πσ
2

2 )n/2e
−‖ci−cj‖

2

2σ2 , i, j = 1, 2, . . . , N . The approximation of the P-F generator

corresponding to the vector field f is

Pf ≈
1

∆t
(P0 − I) =: M0 (6.37)

Using linearity property of the generator it follows that

Pgj = Pf+gj − Pf ≈
Pj −P0

∆t
= Mj , j = 1, . . . , p (6.38)

Let ρ(x), and ρ̄(x) be expressed in terms of the basis function

ρ(x) ≈ Ψ(x)>v, ρ̄j(x) ≈ Ψ(x)>wj , j = 1, . . . , p (6.39)



78

With the above approximation of the generators Pf and Pgi and ρ, ρ̄ we can approximate the

equality constraints in the optimization problem (6.21) as finite dimensional equality constraints.

−Ψ(x)>

M0v +

p∑
j=1

Mjwj

 = Ψ(x)>m

We now proceed with the approximation of the cost function.∫
X1

q(x)ρ(x)dx ≈
∫

X
q(x)Ψ>dxv = d>v

where the vector d :=
∫
X q(x)Ψdx can be pre-computed.

Remark 38. We now assume that the Gaussian radial basis functions have essentially disjoint sup-

port. This will be true if the centers for the Gaussian RBF are chosen such that their centers are 3σ

distance apart.

With this assumption we can approximate
ρ̄j
ρ = Ψ>

wj

v , where we assume element-wise division,

hence
ρ̄>Rρ̄

ρ
=
∑
i

∑
j

rijρ̄i
ρ̄j
ρ
≈
∑
i,j

rijw
>
i ΨΨ>

wj

v

where rij = rji. ∫
X1

ρ̄>Rρ̄

ρ
dx ≈

∑
i,j

w>i Dij
wj

v

where, Dij =
∫
X1
rijΨΨ>dx. We have the following approximation to the optimization problem

(6.21)

minΨ>v≥0,wj
d>v +

∑
ij rijw

>
i Dij

wj

v

s.t. −Ψ(x)>

(
M0v +

p∑
j=1

Mjwj

)
= Ψ(x)>m

Since the basis functions are assumed to be positive, (Assumption 36), the approximation for the

ρ and ρ̄ in (6.39) can be obtained by solving following finite-dimensional problem.

minv≥0,wj d>v +
∑

ij rijw
>
i Dij

wj

v

s.t. −

(
M0v +

p∑
j=1

Mjwj

)
= m (6.40)
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The optimal control is then approximated as u = Ψ>(x)w
v , where the division is element-wise. Sim-

ilarly, the finite dimensional approximation of the OCP (6.33) corresponding to L1 norm on control is

given by

minv≥0,wj d>v + βc
p∑
j=1
|wj |

s.t. −

(
M0v +

p∑
j=1

Mjwj

)
= m (6.41)

where c =
∫
X1
ψi(x)dx =

∫
X1
ψj(x)dx is a positive constant.

6.5.1 Computation of Local Optimal Controller

For the computation of local optimal controller, we identify local linearized dynamics from data.

For the identification of the linearized dynamics, we again use the same time series data used in the

approximation of the global P-F except that the basis functions are chosen to be identity function

i.e., Ψ(x) = x and instead of using NSDMD algorithm we use EDMD algorithm for the Koopman

approximation. In particular, let A and B = [b1, . . . ,bp] are the identified matrix, then following

(6.12)-(6.14)-(6.37)-(6.38), we have

A =
K>0 − I

∆t
, bj =

K>j −K>j
∆t

, j = 1, . . . , p (6.42)

where Kj for j = 0, 1, . . . , p are the Koopman approximation obtained using EDMD algorithm

with Ψ(x) = x basis function and for control input zero and unit step input ej respectively. Once

we have the above local approximation of the system matrices, the linear quadratic regulator based

local controller is obtained using MATLAB command lqrd(A,B,Q,R). The existence of local

optimal controller is guaranteed based on Assumption 29. The detailed algorithm is summarized in

Algorithm 3.

6.6 Simulation results

All the simulation results in this paper are obtained using Gaussian RBF. Following the rule of

thumb are abided in the selection of centers and σ parameters for the Gaussian RBF. The centers of

the RBF are chosen to be uniformly distributed in the state space at distance d. The σ for the Gaussian
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RBF is chosen such that d ≤ 3σ ≤ 1.5d. The number of basis functions along each dimension is

chosen to be 15× 15 for 2D example and 8× 10× 10 for 3D examples.

6.6.1 Controlled Van der Pol oscillator

ẋ1 = x2, ẋ2 = (1− x2
1)x2 − x1 + u (6.43)

where x ∈ R2 and u ∈ R is the single input. For this example we consider the OCP with quadratic cost

on state, q(x) = x>x and quadratic cost on control. The finite dimensional optimization formulation

in Eq. (6.40) is applied for the design of optimal control.

For the approximation of P-F operator, we applied NSDMD algorithm using one-step time-series

data with 10000 initial conditions, ∆t = 0.01 (i.e., 104 time-series data samples). In this example, we

are using 225 Gaussian radial basis functions as the basis functions Ψ(x), with the radius σ = 0.2,

and the centers of basis functions are distributed uniformly within the range of [−2, 2]× [−3, 3]. In

Fig. 6.2 and Fig. 6.3 we show the successful simulation results for the comparison of the open loop

and closed trajectories starting from five different initial conditions in the domain [−2, 2]× [−2, 2].

6.6.2 Controlled Lorenz system

The control Lorenz system can be written as follows

ẋ1 = σ(x2 − x1) (6.44)

ẋ2 = x1(ρ− x3)− x2 + u

ẋ3 = x1x2 − βx3.

where x ∈ R3 and u ∈ R is the single input. With the parameter values ρ = 28, σ = 10, β = 8
3 , and

control input u = 0 the Lorenz system exhibits chaotic behavior. In this 3D example, we generated

the time-series data from 50000 random chosen initial conditions from [−15, 15]× [−20, 20]× [0, 40]

and propagate each of them for one time step with sampling time ∆t = 0.01s. For this example, we

consider optimal control formulation given in Eq. (6.32) with state cost q(x) = x>x and 1-norm cost
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Figure 6.4: Van der Pol oscillator optimal control
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on control. The finite dimensional approximation for this case is given in Eq. (6.41). We are using

800 Gaussian radial basis functions Ψ(x), with σ = 2.5. To validate the closed-loop control designed

using the Algorithm 3, we perform the closed-loop simulation with L1 norm control cost in (6.32). In

Fig. 6.6 and Fig. 6.7, we show the open-loop and closed-loop trajectories starting from five different

initial conditions and the closed-loop trajectories are converging to the origin, The time trajectories in

Fig. 6.6 show that all the initial conditions can be stabilized to the origin within 3s with a minimized

control and state-dependent cost.

6.6.3 3-D integrator system

The next example is an unstable 3-D integrator. The control 3-D system can be written as follows

ẋ1 = x2
1 − x3

1 + x2 (6.45)

ẋ2 = x3

ẋ3 = u.

where x ∈ R3 and u ∈ R is the single input. With the control input u = 0 the system will go

to infinity obviously. In the 3-D integrator example, we generated the time-series data from 30000

random chosen initial conditions from [−5, 5] × [−5, 5] × [−5, 5] and propagate each of them for 1

time step with sampling time ∆t = 0.01s.

From the optimal control side, we want to see if the controller will be able to stabilize the strongly

unstable system to the origin. We are using 800 Gaussian radial basis functions as the basis functions

Ψ(x), with the radius σ = 0.5, and the centers of basis functions are distributed uniformly within the

range of [−5, 5]× [−5, 5]× [−5, 5]. In this example, we still use the quadratic cost q(x) = x>x on

the state and 1-norm cost on the control.

For the validation of the closed-loop optimal control designed using the Algorithm 3, we per-

form the closed-loop simulation with five randomly chosen initial conditions in the domain [−5, 5]×

[−5, 5] × [−1, 1]. In Fig. 6.10 and Fig. 6.11, since the open-loop system dynamics are known to be

strongly unstable, we show only the closed-loop trajectories starting from five different initial condi-

tions, and all the trajectories are converging to the origin, The time trajectories in Fig. 6.10 shows that

all the initial conditions can be stabilized to the origin within 20s successfully.
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6.6.4 3D system with nonlinear g(x)

The other 3-D example we pick hereKhalil (1996) is with nonlinear control matrix g(x). The

control 3-D system can be written as follows

ẋ1 = −x1 +

(
2 + x2

3

1 + x2
3

)
u, ẋ2 = x3, ẋ3 = x1x3 + u. (6.46)

where x ∈ R3 and u ∈ R is the single input, and g(x) = [
2+x23
1+x23

, 0, 1]> is nonlinear control matrix

for u. In the 3-D nonlinear control example, we generated the time-series data from 50000 random

chosen initial conditions from [−5, 5]× [−5, 5]× [−5, 5] and propagate each of them for 1 time step

with sampling time ∆t = 0.01s.

The objective of this example is stabilization. We are using 800 Gaussian radial basis functions as

the basis functions Ψ(x), with σ = 0.5, and the centers of basis functions are distributed uniformly

within the range of [−5, 5] × [−5, 5] × [−5, 5]. In this example, we will apply the stabilization

controller design, i.e., solving the convex optimization problem as a feasibility problem. For the

validation of the closed-loop stabilization control designed using the Algorithm 3, we perform the

closed-loop simulation with five randomly chosen initial conditions in the domain [−5, 5]×[−5, 5]×

[−2.5, 2.5]. In Fig. 6.14 and Fig. 6.15, we show both the open-loop and the closed-loop trajectories

starting from five different initial conditions and all the controlled trajectories are converging to the

origin while the uncontrolled trajectories go to infinity. The time trajectories in Fig. 6.14 shows that

all the initial conditions can be stabilized to the origin within 10s successfully.

6.7 Conclusion

In this paper, we have provided a convex optimization-based formulation for the optimal control

problem in the dual density space. We provided a data-driven approach based on the approximation

of the P-F and Koopman operator for the finite-dimensional approximation of the convex optimiza-

tion problem for optimal control design. Future research efforts will focus on the development of

a computationally efficient numerical scheme and the choice of appropriate basis function for the

implementation of the developed algorithm to a large dimensional system.
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Algorithm 3: Data-Driven Optimal Control

Data: Generate open-loop time-series data {x0
k}Mk=0, and {xjk}

M
k=0 with unit step for input

u = ej , j = 1, . . . , p in (6.17)
1 , Cost: State cost:q(x), Control Cost: R. Result: u = k(x)

2 Phase I: PF Approximation
3 Choose N Gaussian Radial basis functions with centers uniformly distributed in the

domain and σ chosen to satisfy d ≤ 3σ ≤ 1.5d

4 Let x0
i be the data with zero input and xji is data with step input u = ej ,

i = 1 . . .M, j = 1 . . . p.
5 ObtainGj andAj matrices with equation (6.13).
6 Solving the NSDMD optimization in (6.15) for the P-F approximation P0 = ΛK0Λ−1

and M0.
7 Repeat line 4 to 6 with j = 1, 2, . . . , p to get Pj and Mj

8 end
9 Phase II: Convex Optimization

10 Pick ` = argmini=1,...,N‖ci − xd‖, where xd is the desired equilibrium point.
11 Compute d =

∫
X q(x)Ψ>dx and c = (πσ2)(n/2).

12 Remove the `th row and `th column from Pj ,Mj and Λ to obtain P̄j , M̄j Λ̄ for
j = 1, . . . , p. Remove `th element from d.

13 Solve the convex problem (6.40) or (6.41) for data-driven approximation of ρ, ρ̄, v,w.
14 Insert 0 as `th element such that v,w ∈ RN .
15 For the ith basis function, find the optimal feedback weight kji = wi

vi
, i 6= `, and kj` = 0,

j = 1, . . . , p.
16 end
17 Phase III: Local Stabilization Control
18 Use time series data from zero input {x0

k}Mk=0 and unit step input {xjk}
M
k=0 for the

identification of local linear system dynamics.
19 Compute the local linear approximation (A,B) by applying EDMD with Ψ(x) = x as

basis function using formula (6.42).
20 Obtain the LQR controller Klqr, using MATLAB command lqrd(A,B,Q,R), where

Q = ∂2q(0)
∂x2 .

21 end
22 Feedback control u = k(x) = [k1(x), . . . , kp(x)]>, where

kj(x) =

{ ∑N
i=1 k

j
iψi(x), ‖x− c`‖ > 3σ

−Klqrx ‖x− c`‖ ≤ 3σ
, j = 1, . . . , p.
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CHAPTER 7. CONCLUSION

In this dissertation, we successfully applied the linear operator theory to identify and design sta-

bilizing and optimal feedback controllers for a nonlinear control system. The proposed framework

is data-driven and relies on the use of time-series data generated from the control dynamical system

for identification and control design. We employ two dual Koopman and Perron-Frobenius (P-F)

operators in our proposed data-driven modeling and control framework.

The modeling and control framework involving the Koopman operator relies on the bilinear lifting

of control dynamical system for identification and control of the nonlinear system. In particular, the

finite-dimensional bilinear representation in the lifted function space is used to design stabilizing feed-

back control and optimal control. The stabilizing control relies on the concept of control Lyapunov

function for control design. Simultaneously, the optimal control problem using bilinear representation

is formulated as a nonconvex optimization problem.

In our second framework involving the P-F operator, we provide a convex formulation to the stabi-

lizing control and optimal control design. The convex formulation was made possible by formulating

the control design problem in the dual space of densities. In particular, the duality results in the sta-

bility theory of the dynamical system involving the Lyapunov function, and Lyapunov measures or

density are exploited for this purpose. The P-F operator is involved in lifting the stability condition

and optimal control problem to the dual space of density. This linear lifting using the P-F operator is

in contrast to the Koopman-based lifting of control dynamical system leading to the bilinear represen-

tation of the control system. Time-series data generated by the control dynamical system is used in the

finite-dimensional approximation of P-F operator and associated convex formulation of the stabiliza-

tion and optimal control problem. This approximation of the P-F operator leads to finite-dimensional

convex optimization formulation to approximate optimal control for a nonlinear system.
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Mezić, I. and Banaszuk, A. (2004). Comparison of systems with complex behavior. Physica D:
Nonlinear Phenomena, 197(1-2):101–133.

Mohr, R. and Mezić, I. (2014). Construction of eigenfunctions for scalar-type operators via laplace
averages with connections to the koopman operator. arXiv preprint arXiv:1403.6559.

Mohr, R. M. (2014). Spectral Properties of the Koopman Operator in the Analysis of Nonstationary
Dynamical Systems. University of California, Santa Barbara.

Moore, K. L. (2012). Iterative learning control for deterministic systems. Springer Science & Business
Media.



95

Muld, T. W., Efraimsson, G., and Henningson, D. S. (2012). Flow structures around a high-speed train
extracted using proper orthogonal decomposition and dynamic mode decomposition. Computers &
Fluids, 57:87–97.

Pan, C., Yu, D., and Wang, J. (2011). Dynamical mode decomposition of gurney flap wake flow.
Theoretical and Applied Mechanics Letters, 1(1):012002.

Park, U. S. and Ikeda, M. (2009). Stability analysis and control design of lti discrete-time systems by
the direct use of time series data. Automatica, 45(5):1265–1271.

Peitz, S. (2018). Controlling nonlinear pdes using low-dimensional bilinear approximations obtained
from data. arXiv preprint arXiv:1801.06419.

Peitz, S. and Klus, S. (2019). Koopman operator-based model reduction for switched-system control
of pdes. Automatica, 106:184–191.

Petersen, K. E. (1989). Ergodic theory, volume 2. Cambridge University Press.

Prajna, S., Parrilo, P. A., and Rantzer, A. (2004). Nonlinear control synthesis by convex optimization.
IEEE Transactions on Automatic Control, 49(2):1–5.

Primbs, J. A., Nevistić, V., and Doyle, J. C. (1999). Nonlinear optimal control: A control Lyapunov
function and receding horizon perspective. Asian Journal of Control, 1(1):14–24.

Proctor, J. L., Brunton, S. L., and Kutz, J. N. (2016). Dynamic mode decomposition with control.
SIAM Journal on Applied Dynamical Systems, 15(1):142–161.

Raghunathan, A. and Vaidya, U. (2013). Optimal stabilization using lyapunov measures. IEEE Trans-
actions on Automatic Control, 59(5):1316–1321.

Rajaram, R., Vaidya, U., Fardad, M., and Ganapathysubramanian, B. (2010a). Stability in the almost
everywhere sense: A linear transfer operator approach. Journal of Mathematical Analysis and
Applications, 368(1):144 – 156.

Rajaram, R., Vaidya, U., Fardad, M., and Ganapathysubramanian, G. (2010b). Stability in the almost
everywhere sense: a linear transfer operator approach. Journal of Mathematical Analysis and
Applications, 368:144–156.

Rantzer, A. (2001). A dual to Lyapunov’s stability theorem. Systems & Control Letters, 42:161–168.
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