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ABSTRACT 

 

Campylobacter jejuni is an important zoonotic agent that is the leading cause of both 

human foodborne bacterial gastroenteritis worldwide, as well as ovine abortion in the United 

States. In particular, a single C. jejuni sheep abortion clone, of which IA 3902 is a 

prototypical isolate, has recently emerged as the dominant causative agent of sheep abortion 

due to Campylobacter sp. in the U.S. and has been increasingly identified in human 

outbreaks of disease. Multi-omics approaches to studying this hypervirulent strain have 

shown that it is remarkably similar to other common strains of C. jejuni such as 11168 that 

do not show the same ability to cause systemic clinical disease. Further work to elucidate the 

molecular mechanisms that allow for small changes in genomic structure to lead to large 

changes in virulence ability in this important zoonotic agent is warranted. A number of 

studies have demonstrated that the gallbladder of ruminants, as well as other domestic animal 

species, is often positive on culture for Campylobacter sp. following oral exposure, 

suggesting that this environment may serve as a chronic nidus of infection for maintenance of 

disease within populations. By utilizing a unique in vivo model of gallbladder infection, the 

work conducted within this dissertation has allowed identification of the preferred location of 

C. jejuni IA 3902 within the gallbladder host environment as well as demonstrated putative 

host factors that may play a role in its localization to that site. In addition, by utilizing 

emerging RNA sequencing technology, we were able to determine numerous protein coding 

genes and non-coding RNAs that were differentially expressed following exposure to the in 

vivo gallbladder host environment. One of these identified non-coding RNAs, CjNC110, was 

selected for further study. Inactivation of the CjNC110 non-coding RNA in IA 3902 allowed 
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us for the first time to identify transcriptomic and phenotypic changes associated with loss of 

function of a small RNA in any species of Campylobacter. The collective results of these 

experiments provide additional evidence to begin to elucidate the role of gallbladder 

colonization and small RNAs in the pathobiology of the important zoonotic pathogen, C. 

jejuni IA 3902.  
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CHAPTER 1 

LITERATURE REVIEW AND INTRODUCTION  

 

Specific Aims and Significance  

Colonization of the gallbladder by Campylobacter jejuni, as well as other enteric 

pathogens such as Salmonella typhi, Listeria monocytogenes, and Helicobacter pylori, is 

thought to play a key role in transmission and persistence of these important zoonotic agents, 

however, there is a fundamental knowledge gap in our understanding of the molecular 

mechanisms that these organisms utilize to establish infection in such a harsh environment. 

The long-term goal of our research is to improve the understanding of the pathogenic 

mechanisms utilized by enteric pathogens to colonize the mammalian gallbladder and to 

develop novel targets for prevention and control of these pathogens, particularly C. jejuni. To 

accomplish this goal, our objective for this dissertation was to begin to determine the 

molecular mechanisms responsible for C. jejuni colonization of the gallbladder as well as 

localize the site of colonization within the gallbladder. Our central hypothesis was that 

changes in expression of the C. jejuni transcriptome including both protein coding genes and 

non-coding RNAs allow it to adapt to the bile-rich environment and colonize the protective 

mucous lining of the gallbladder where it acts as a chronic nidus of pathogen shedding. The 

rationale for the proposed research is that once the genetic determinants of colonization of 

the bile-rich environment are known, novel vaccination or therapeutic strategies can be 

developed to prevent chronic carriage in ruminants, reduce shedding, and thereby decrease 

human and animal disease with C. jejuni and potentially other enteric pathogens. To 

accomplish these goals, the following specific aims were developed: 1) identify the location 
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of gallbladder colonization by C. jejuni, 2) identify specific bacterial elements responsible for 

adaptation of C. jejuni for survival in bile, and 3) select specific non-coding RNAs that are 

differentially expressed in the gallbladder environment for further study.  

 

Organization of the Dissertation 

 This dissertation is presents four sets of studies designed to address the specific aims 

listed above. The first chapter (Chapter 1) consists of a general introduction and literature 

review. The four chapters that follow (Chapters 2 – 5) are comprised of four groups of 

experiments addressing the specific aims of interest and include all relevant tables and 

figures. The final chapter (Chapter 6) contains general conclusions and suggestions for future 

research. A single reference list appears at the end of the dissertation. 

 

Literature Review 

Campylobacter jejuni: general biology 

 Campylobacter jejuni is a member of the Epsilon proteobacteria class and 

Campylobacterales family which includes the genera Campylobacter, Helicobacter and 

Wolinella. The primary habitat of these organisms is the gastrointestinal tract which requires 

special bacterial adaptations for survival. C. jejuni is a true microaerophile, which implies 

that while oxygen is required for growth, it is unable to grow at normal atmospheric oxygen 

levels (Kelly, 2001). Due to a lack of the 6-phosphofructokinase  (6-PPK) enzyme, C. jejuni 

is not able to catabolize glucose and thus utilizes catabolism of amino acids, particularly 

serine, aspartate, glutamate and proline which are commonly found in the chicken gut, as its 

most important energy source (Stahl et al., 2012). In addition to amino acids, recent studies 
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have shown that some strains do have the ability to utilize L-fucose for growth (Muraoka and 

Zhang, 2011; Stahl et al., 2011). Other species of Campylobacter, including C. coli and C. 

doylei, have also recently been demonstrated to house a plasticity region between the 16S 

and 23S genes that allows for utilization of glucose in the absence of 6-PPK (Vorwerk et al., 

2015). Campylobacter spp. typically possess polar flagella at either one or both ends of the 

cell and are helical in shape which allows for corkscrew-like motility (Debruyne et al., 

2008).  

  

Campylobacter species: broad host range and zoonotic risk 

The two thermophilic Campylobacter species, C. jejuni and C. coli, so named due to 

their optimal growth temperature being 42°C, are frequently found as commensals of the 

intestinal tract of both mammals and birds. The ability of C. jejuni and C. coli to survive in a 

variety of hosts and environments can be partly attributed to the wide variety of genetic 

variation observed both between and within strains; of the 37,351 isolates of C. jejuni that 

have been reported to the pubMLST database as of December 2015, there are 8084 distinct 

sequence type (ST) profiles (http://pubMLST.org/campylobacter/) (Jolley and Madden, 

2010). 

Worldwide, poultry are the most commonly colonized type of animals; the average 

reported prevalence of Campylobacter-positive poultry flocks ranges from 2 – 100% 

depending on the country, production system and time of year, with the majority of birds 

becoming colonized within a short period of time once it is introduced to a flock (Sahin et 

al., 2015). Colonization in poultry has been classically thought to be as a commensal with 

minimal observation of disease. While not as common as in poultry, colonization of the 

http://pubmlst.org/campylobacter/
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gastrointestinal tract of a wide variety of domestic mammals does occur. Prevalence of 

thermophilic Campylobacter found in the feces of domestic livestock has been reported to 

range from 21.9% to 66.7% in cattle (Oporto et al., 2007; Ogden et al., 2009), and from 26.7 

to 82.6% in pigs (Ogden et al., 2009; Burrough et al., 2013). Prevalence in sheep has been 

reported to range from 8.8% to 24.9% (Oporto et al., 2007; Ogden et al., 2009). With the 

exception of ovine campylobacteriosis, which is one of the most common causes of 

infectious abortion in sheep worldwide, induction of disease by Campylobacter in other 

species of domestic livestock occurs sporadically despite frequent exposure and colonization. 

Human exposure to Campylobacter, on the other hand, frequently leads to more 

serious consequences in the form of gastroenteritis. Of the approximately 600 million cases 

of foodborne illness in 2010, infectious agents that cause diarrheal disease accounted for 550 

million of those cases, with Campylobacter spp. being the leading bacterial cause of 

foodborne illness (WHO 2015). While not typically fatal, Campylobacter is also the leading 

bacterial foodborne illness agent in years lived with disability (YLDs) due to post-infection 

complications related to Guillean-Barre syndrome and other immune mediated sequealae. 

Poultry products are still considered the primary source of non-outbreak associated 

sporadic campylobacteriosis in humans, however, reports of outbreaks linked to ruminant 

exposure, particularly those associated with raw milk, occur on a fairly regular basis with 33 

outbreaks reported to the CDC from 2000 to 2006 (Oliver et al., 2009). This is not surprising 

given that the occurrence of C. jejuni in bulk tank milk in the United States has been reported 

to range from 2 to 9.2% (Jayarao et al., 2001; Jayarao et al., 2006). While the majority of 

outbreaks associated with ruminant exposure are related to raw milk, significant risks for 

sporadic infection due to carcass contamination, particularly in sheep, by thermophilic 
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Campylobacter exist as up to 91.7% of intestinal contents of lambs at slaughter have been 

shown to be positive on culture (Stanley et al., 1998). Indeed, reports of isolation from retail 

meat indicate that while isolation rates were much lower than that of poultry (89.1%), 6.9% 

of lamb and 3.5% of beef was positive for C. jejuni (Wong et al., 2007). 

  

Campylobacteriosis in the ovine species 

 Historically, clinical campylobacteriosis in the ovine species has been predominantely 

caused by infection with Campylobacter fetus subsp. fetus (formerly classified as Vibro 

fetus), and observation of abortion storms of close to 25% of a flock following exposure are 

not uncommon (Skirrow 1994). Occasionally, C. jejuni and C. coli were reported to account 

for a small percentage of diagnosed cases of abortion both in the U.S. and in other countries 

(Diker and Istanbulluoglu 1986; Diker et al., 1988; Mannering et al., 2006). Beginning in the 

late 1980’s, however, a shift in the species of Campylobacter isolated from sheep abortion 

outbreaks in the United States began to occur. A report compiling the diagnosed causative 

agents of ovine abortion from the South Dakota Veterinary Diagnostic Laboratory from 1980 

to 1989 revealed that while C. fetus subsp. fetus was the predominant cause of 

campylobacteriosis during the time period studied, beginning in 1983 the prevalence of C. 

jejuni associated abortions began to rise until it was the predominant cause of Campylobacter 

associated abortion by 1989 (Kirkbride 1993). Another report of abortion cases from the 

western U.S. (Idaho, Oregon, and Wyoming) also identified a similar shift in species as 

analysis from 15 abortion outbreaks associated with Campylobacter spp. revealed that 14 of 

the 15 were C. jejuni, represented by multiple strain types, and only one isolate was C. fetus 

subsp. fetus (Delong et al., 1996). Analysis of 46 isolates from the Iowa State Veterinary 
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Diagnostic Laboratory obtained from abortion outbreaks during 2003 to 2007 from 33 farms 

in Iowa indicated that 41 of the isolates were C. jejuni; pulsed-field gel electrophoresis 

(PFGE) fingerprinting of 33 of those isolates revealed that 32 were clonal (Sahin et al., 

2008). In addition, further analysis of C. jejuni isolates obtained from three other states 

revealed 18 of 19 Idaho isolates, 9 of 11 South Dakota isolates, and 7 of 8 California isolates 

to also exhibit the same PFGE type which was confirmed to match the ST-8 MLST type 

strain (Sahin et al., 2008). This strain of C. jejuni has since been referred to as sheep abortion 

(SA) clone, with the type strain being clinical isolate IA 3902 which has been utilized 

extensively for further study of this emerging pathogen including full genome sequencing 

(Wu et al., 2013).  

Further work to better elucidate the emergence of clone SA has determined that 

representative isolates of ST-8 were present in the United States during the 1990s but that 

they generally lacked tetracycline resistance (19%) and while they represented the majority 

of isolates (68%), they were not completely dominant (Wu et al., 2014). In contrast, isolates 

obtained after 2000 in the US consistently demonstrated tetracycline resistance (100%) and 

were the dominant isolate obtained from sheep abortions (91%) (Wu et al., 2014). 

Historically, antibiotics of the tetracycline class were the only type of antibiotic approved for 

use in prevention and control of ovine abortions in the United States (Giguere et al., 2013) 

and treatment or prevention of abortions storms related to Campylobacter species has relied 

heavily on the use of chlortetracycline or tetracycline in the feed, which is an approved non-

prescription use at 80 mg/head/day (Sahin et al., 2008). While use of tetracyclines, either oral 

or injectable, do not currently require a veterinary prescription in the United States, in 

contrast, all antimicrobials administered to food producing animals in the United Kingdom 
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require a veterinary prescription according to the Veterinary Medicines Regulations act of 

2005 (RUMA, 2005). In comparison, analysis of sheep abortion isolates of C. jejuni from the 

U.K. from 2002-2008, where it accounted for only 16% of isolates from sheep abortions, 

revealed no evidence of the  ST-8 strain type and exhibited normal genetic diversity 

comprising 19 different STs (Wu et al., 2014). Therefore, it has been speculated that 

antibiotic selection pressure may have played a role in the emergence of the sheep abortion 

clone in the United States, however, it is likely that other factors associated with the ST-8 

clone and husbandry practices in the United States have also played key roles in the rapid 

expansion of this clone (Wu et al., 2014).  

The ability of the SA clone to induce abortion was first confirmed using both oral and 

intravenous inoculation of pregnant guinea pigs; the results of this study demonstrated that 

clone (SA) IA 3902 was highly abortifacient compared to other C. jejuni strains such as 

11168, indicating the evolution of increased virulence in this clone when compared to other 

closely related strains (Burrough et al., 2009; Wu et al., 2013). Further work utilizing 

additional clinical isolates that matched the ST-8 type strain but were not IA 3902 

demonstrated the ability of ST-8 isolates to induce abortion in some but not all of the sheep 

inoculated either orally or intravenously, while no abortions were noted in the placebo or the 

common laboratory strain 81-176 inoculated groups (Sanad et al., 2014). These results help 

to partially fulfill Koch’s postulates to prove that the sheep abortion clone of C. jejuni is 

indeed the predominant causative agent of ovine campylobacteriosis in the United States 

today.  
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Pathogenesis of ovine campylobacteriosis 

The pathogenesis of ovine campylobacteriosis regardless of strain is thought to 

involve oral ingestion of contaminated material leading to intestinal colonization, mucosal 

invasion, bacteremia, and tropism for the fetoplacental unit leading to subsequent fetal death 

and abortion (Skirrow 1994). One of the key steps in the pathogenesis of Campylobacter-

associated abortion is invasion of the intestinal epithelium allowing access to the blood 

stream and systemic spread. For C. fetus subsp. fetus, systemic infection is dependent on the 

resistance to serum complement binding provided by the expression of high molecular 

weight proteins in the surface layer (S-layer) (Blaser et al., 1988; Blaser 1993; Grogono-

Thomas et al., 2000); however, these proteins are not expressed by C. jejuni. Recent work 

evaluating invasive C. jejuni strains in humans has shown that the capsule locus (kpsM) is 

critical for serum resistance in humans and survival of invasive C. jejuni (Keo et al., 2011). 

While the MLST typing of the strain utilized in that study does not match the sheep abortion 

clonal isolates, it does suggest that the capsular structure of various strains of C. jejuni may 

play a role in invasiveness.  

Ovine campylobacteriosis  typically manifests itself as a spectrum of clinical disease 

including late term abortions, still births, premature births, birth of weak lambs, and metritis 

(Hedstrom et al., 1987), with abortions typically occurring 1-3 weeks following exposure 

(Mearns et al., 2007). Infection of the fetoplacental unit is characterized by a placentitis 

focused on the placentomes and with infection of the fetus yielding variable non-specific 

lesions including edema, bronchopneumonia and necrotizing hepatitis with characteristic 

target lesions (Schlafer and Miller, 2007).  
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Gallbladder colonization has been reported to be a key feature following infection 

with both C. fetus subsp. fetus (Firehammer et al., 1962; Storz et al., 1964; Bryner et al., 

1971; Clark et al., 1979) and C. jejuni (Ertas et al., 2003; Acik and Cetinkaya, 2006; Milnes 

et al., 2008; Sahin et al., 2012) and may play a key role in maintenance of infection within 

populations of animals. Indeed, abattoir surveys of C. jejuni carriage in ruminants 

demonstrated that up to 34% of sheep gallbladders were positive for C. jejuni with 66% of 

sheep gallbladders positive for Campylobacter species (Ertas et al., 2003). Recent studies 

have also demonstrated that while there remains a substantial level of genetic diversity in 

isolates of C. jejuni collected from sheep gallbladders, isolates belonging to the ST-8 sheep 

abortion clone can readily be found in otherwise healthy animals (Sahin et al., 2012). This 

indicates that the gallbladder may serve as an important reservoir for the sheep abortion clone 

within populations in the United States.  

 

Bacterial colonization of the gallbladder 

Multiple instances of cholecystitis in humans due to Campylobacter species have 

been previously reported, indicating that colonization of the gallbladder by C. jejuni is not 

unique to ruminant species (Dakdouki et al., 2003; Vaughan-Shaw et al., 2010). Other 

intestinal pathogens such as Salmonella typhi and Listeria monocytogenes have also been 

shown to have the unique ability to colonize the gallbladder in both humans and animals 

where they can establish a chronic carrier state in their host (Dowd et al., 2011; Gonzalez-

Escobedo et al., 2011). In addition, the DNA of the closely related H. pylori has also been 

demonstrated to be frequently present in the gallbladder of patients with cholelithiasis 

(Guraya et al., 2015). 
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The gallbladder environment is typically thought of as “harsh” with few bacteria able 

to survive under the conditions present. Bile acids (salts) are the main component of bile, 

along with cholesterol, phospholipids and bilirubin. Their amphipathic nature allows them to 

act as a detergent which plays a key role in lipid solubilzation and emulsification leading to 

digestion of fats within the intestinal tract (Baptissart et al., 2013). Studies have 

demonstrated that sheep bile, along with ox and pig bile, has a relatively high percentage of 

bile salts which constitute 10% w/v of the total contents of bile and have been proven to be 

very damaging to cellular membranes (Coleman et al., 1979). In particular, the detergent 

property of bile has been demonstrated to have potent antimicrobial activity (Begley et al., 

2005). Recent rapid expansion of the use of metagenomics and microbiome research has 

proven that many sites previously thought to be inhospitable to bacterial colonization, such as 

the monogastric stomach, are now known to be home to a unique ecological community of 

bacteria (Yang and Suerbaum 2013). Recently, the first report of the characterization of the 

microbiome of the gallbladder in any species was published investigating the microbiota of 

the swine gallbladder (Jimenez et al., 2014). The diversity of bacterial species identified 

within the gallbladder was much lower than reported for most other locations in the 

mammalian body that have been studied to date, and considerably lower than the diversity 

observed in the gut microbiota of the same species (Lamendella et al., 2011).  

 

Bacterial factors associated with virulence and survival in bile  

The highly motile nature of C. jejuni plays an important role in its ability to cause 

disease. Critical to this ability is the presence of polar flagella which allow it to migrate 

through viscous layers of mucus within the intestinal tract, undergo chemotaxis towards areas 
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more opportune for survival, and adhere to and invade epithelial cells (Guerry et al., 2007). 

The flagella of C. jejuni have also been shown to secrete virulence proteins (Konkel et al., 

1999; Rivera-Amill et al., 2001;Konkel et al., 2004). The flagella of Campylobacter are also 

heavily glycosylated (Guerry et al., 2006) which has been shown to mediate 

autoagglutination, an important preliminary step in the formation of biofilms and 

microcolonies (Misawa and Blaser 2000; Golden and Acheson 2002).  

While flagella control the ability of C. jejuni to migrate towards certain substances, 

chemotaxis provides the signal to direct the migration and is critical for pathogenesis within 

the host. The CheA-CheY phosphor-relay pathway has previously been shown to act as the 

master switch to control taxis by altering the direction of flagellar rotation from a swimming 

phenotype (counter-clockwise rotation) to a tumbling phenotype (clockwise rotation) 

(Lertsethtakarn et al., 2011). The cheY gene has also been shown to be required for adhesion 

and invasion as well as virulence, without which colonization can occur but disease cannot 

be induced (Yao et al., 1997). Once C. jejuni reaches its target destination, several studies 

have demonstrated critical genes that are necessary for adherence and invasion to host cells 

to allow colonization. The fibrinonectin-binding outer membrane protein CadF has been 

demonstrated to mediate cell adhesion by binding to the cell matrix protein fibrinonectin 

(Konkel et al., 1997). The periplasmic binding protein PEB1 has also been shown to act both 

as an aspartate/glutamate transporter as well as a major cell adherence molecule (Pei and 

Blaser, 1993).  

The ability to survive exposure to bile salts within the host intestinal tract is another 

key virulence trait associated with C. jejuni. Despite the importance of adaptation to bile 

exposure for Campylobacter survival both within the intestinal tract as well as in the 
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gallbladder environment, very little published work has focused on the exact molecular 

mechanisms by which Campylobacter is able to survive exposure to bile. The studies that 

have been performed frequently focused on the concentrations of bile salts typically found in 

the intestinal tract of humans (< 1% bile salts w/v) and not within the gallbladder of animals 

such as sheep (10% bile salts w/v) proposed to chronically harbor these pathogenic 

organisms. The efflux pumps CmeABC and CmeDEF are probably the most important genes 

demonstrated to play an important role in resistance of Campylobacter to bile salts in vitro 

(Lin et al., 2002; Akiba et al., 2006). Bile salts (cholate and taurocholate) have previously 

been show to induce expression of CmeABC in vitro in a time and dose dependent manner 

(Lin et al., 2005a). Expression of CmeABC has been demonstrated to be under the control of 

the transcription repressor CmeR, with exposure to bile salts in vitro inhibiting binding of 

CmeR to the promoter of cmeABC and allowing for increased transcription of the cmeABC 

operon (Lin et al., 2005b). The cmeDEF operon, on the other hand, has been shown to be 

unaffected by CmeR repression (Akiba et al., 2006), however, the expression of cmeDEF has 

been noted to be intrinsically lower than cmeABC, and inactivation of cmeF has been 

demonstrated to increase expression levels of cmeABC (Akiba et al., 2006).  

 The response regulator CbrR (Campylobacter bile response regulator) has been 

shown to be required for resistance to the effects of bile salts in vitro as mutants lacking it are 

unable to grow under sub-inhibitory concentrations of sodium deoxycholate (Raphael et al., 

2005). It is believed that CbrR is a response regulator that is part of a two-component 

regulatory system which typically also includes a sensor kinase; this cognate protein has yet 

to be identified in Campylobacter. The secretory protein CiaB (Campylobacter invasion 

antigen B) has also been suggested to play a role in bile tolerance and has been demonstrated 
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to be secreted upon co-cultivation of C. jejuni with intestinal cells and plays a role in the 

ability of C. jejuni to invade host cells (Konkel et al., 1999). Synthesis and secretion of the 

CiaB protein have been demonstrated to be independent events, with increased expression 

demonstrated upon exposure to bile salts suggesting that they might serve as the trigger for 

increased transcription (Rivera-Amill et al., 2001; Malik-Kale et al., 2008). An additional 

gene of interest previously described as important to the response of Campylobacter to 

exposure to bile is flaA (Alm et al., 1993), which is responsible for production of the FlaA 

protein, one of two protein subunits that form the flagellar filament. It has been previously 

demonstrated through the use of reporter fusions that the σ 28 promoter of flaA is upregulated 

when exposed to bovine bile, bile salts (deoxycholate), and L-fucose (Allen and Griffiths, 

2001).  

 Additional studies have attempted to assess the response of Campylobacter to bile on 

a more global scale. Microarray analysis of RNA extracted from C. jejuni strain F3011 

cultured with 0.1% deoxycholate for 12 hours allowed observation of a total of 156 

upregulated and 46 downregulated genes under these conditions (Malik-Kale et al., 2008). In 

addition to increased expression of the known bile-associated virulence genes ciaB and 

cmeABC, this study also specifically identified increased expression of two additional 

virulence factors, dccR, which has been shown to be part of a two-component system 

regulatory system that may play a role in the in vivo colonization ability of C. jejuni 

(MacKichan et al., 2004), and tlyA, a hemolysin that has been shown to be important for 

Helicobacter in vivo colonization ability (Martino et al., 2001). In a separate study, Fox et 

al., (2007) utilized protein expression following 18 hours of exposure to 2.5 to 5% oxbile 

added to rich media to identify 14 proteins with increased expression including the 
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previously identified FlaA, as well as proteins such as elongation factors, ferritin, 

chaperones, and ATP synthase components. 

   Intestinal colonization with C. jejuni has been demonstrated to be associated with the 

ability to colonize the mucin and L-fucose-containing mucous layer of the intestinal 

epithelium where it is protected from the mechanical and chemical milieu of the intestinal 

lumen (McSweegan and Walker 1986; Shigematsu et al., 1998). Unlike many other enteric 

pathogens that become trapped in this layer, C. jejuni is able to move freely within the mucin 

layer to inhabit the deep intestinal crypts (Lee et al., 1986) and from there potentially become 

internalized within eukaryotic cells (Babakhani and Joens 1993; Russell et al., 1993; van 

Spreeuwel et al., 1985).  This ability has also been demonstrated in the closely related H. 

pylori to allow colonization of the glands of the stomach (Yang and Suerbaum, 2013). 

Mucin, L-fucose, and bile have all been shown to be strong chemoattractants for C. jejuni 

(Hugdahl et al., 1988) and it has been demonstrated that some virulent strains of C. jejuni 

such as IA 3902 can utilize L-fucose as a substrate for growth due to possession of a specific 

genetic island (Stahl et al., 2011; Muraoka and Zhang, 2011). 

 

Unique attributes of the sheep abortion (SA) clone IA 3902 

As described above, Campylobacter jejuni SA (sheep abortion clone) IA 3902 was 

initially isolated from an outbreak of sheep abortion in Iowa during 2006 and has since been 

utilized as the prototypical isolate to study the current most common cause of sheep abortion 

due to Campylobacter species in the United States (Sahin et al., 2008). The genome of C. 

jejuni IA 3902 is compact and consists of only 1.6 Mb, similar to other commonly studied 

strains of C. jejuni such as 11168 and 81-176, and possesses the pVir plasmid (Wu et al., 



15 

 

2013). All of the isolates belonging to the SA clone type ST-8 that have been identified since 

2000 have been found to harbor tetracycline resistance via acquisition of a chromosomally 

encoded tetO gene (Wu et al., 2014). Although chromosomal insertion of tetO has been 

occasionally observed, tetO is usually located on conjugative plasmids such as pTet (Gibreel 

et al., 2004; Poly et al., 2008). Recent analysis of IA 3902 via a multi-omics approach 

revealed that IA 3902 is remarkably syntenic with the genome of C. jejuni type-strain 11168, 

and it does not harbor any additional pathogenicity islands or virulence factors known to be 

associated with abortion induced by C. fetus subsp. fetus (Grogono-Thomas et al., 2003; van 

Putten et al., 2009). However, comparison of the genomes did identify a large number of 

SNPs and indels, particularly within the promoter regions of 128 genes, as well as 25 genes 

specific to IA 3902 only; transcriptomic comparisons utilizing microarrays also revealed 108 

genes to be upregulated and 81 genes to be downregulated in IA 3902 when compared to 

11168 (Wu et al., 2013). Taken together, these data suggests that relative mild changes in 

genomic structure have led to significant changes in gene expression along with greatly 

enhanced ability to cause disease and warrants further investigation.  

Emergence of the SA clone in recent Campylobacter associated food borne illness 

outbreaks, particularly those related to raw milk (Sahin et al., 2012), heightens the 

importance of understanding the mechanisms that have allowed this clonal isolate to emerge 

and thrive particularly in ruminant species. Interestingly, humans are typically considered the 

only species to routinely become ill after oral ingestion of C. jejuni with the exception of 

abortion induced in sheep due to strains such as C. jejuni IA 3902 (Wagenaar et al., 2013). 

The reason for clinical disease in one species and absence of disease in other species is 
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mostly still unknown, however, the propensity for clinical disease in sheep by IA 3902 make 

them a useful animal model in which to study this important disease. 

 

Gene regulation in Campylobacter and the discovery of non-coding RNAs 

The fact that relatively mild changes in genomic structure have led to significantly 

enhanced ability to cause disease by Campylobacter jejuni strains such as IA 3902 as 

described above suggests that differences in gene regulation may play a key role in regulation 

of virulence. Campylobacter jejuni has only three known sigma factors identified within its 

genome to regulate transcription: σ70 (encoded by rpoD), σ54 (encoded by rpoN) and σ28 

(encoded by fliA) (Parkhill et al., 2000); this 1.6mb, low G/C content (31%) genome is only 

known to encode a total of 34 additional transcriptional regulators (Parkhill et al., 2000; 

Pearson et al., 2007). Besides transcriptional regulation, gene expression can occur at 

multiple levels, including post-transcriptional control via regulation of mRNA translation, 

stability, and processing; the primary players in post-transcriptional regulation are small non-

coding RNAs (sRNAs, ncRNAs) (Papenfort and Vogel, 2010; Storz et al., 2011; Caldelari et 

al., 2013). Prior to completion of the transcriptional start site map via high throughput RNA 

sequencing (RNAseq) of H. pylori (Sharma et al., 2010), the ε-proteobacteria were thought 

not to be capable of using small and antisense RNA as a regulatory mechanism, partly due to 

a lack of the small RNA chaperone Hfq (Valentin-Hansen et al., 2004). Indeed, attempts at 

computational approaches of identification of small RNAs in Campylobacter failed to 

identify any potential candidates, with only 3 potential loci being identified in Helicobacter 

(Livny et al., 2008). However, using differential RNAseq technology, Sharma et al., (2010) 

were able to discover for the first time an unexpectedly high number of small RNAs (~60) 
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including the ε-subdivision counterpart of the regulatory 6S RNA as well as potential cis- 

and trans-encoded regulators of target messenger RNAs in H. pylori.  

Recently, clear evidence that C. jejuni also has the capability to produce these 

important regulators has been published detailing identification of a wealth of small RNAs 

present in strains 11168, 81-176, 81116, and RM1221 (Chaudhuri et al., 2011; Dugar et al., 

2013; Porcelli et al., 2013; Taveirne et al., 2013; Butcher and Stintzi, 2013). Dugar et al., 

(2013), when comparing the transcriptomes of 4 different C. jejuni isolates, observed a large 

variation in transcriptional start sites (TSS) as well as expression patterns of both mRNA and 

non-coding RNA between strains. This suggests that variation between the existence and 

expression of small RNAs even among closely related strains may play a key role in the 

differences observed in virulence. Conservation analysis of the identified small RNAs in C. 

jejuni revealed that many are restricted to the Campylobacter genus only, and even the 

identified housekeeping RNAs show poor sequence conservation with other bacterial genera 

(Dugar et al., 2013). In closely related H. pylori, studies are just starting to emerge where 

ncRNAs have been shown to influence gene expression at the post-transcriptional level (Wen 

et al., 2013; Pernitzsch et al., 2014). The first report attempting to elucidate the role of non-

coding RNA just recently published in Campylobacter suggests that two recently identified 

ncRNAs may play a role in flagellar biosynthesis; however, they were unable to demonstrate 

phenotypic changes following inactivation of these non-coding RNAs (Le et al., 2015).  

  

Small RNA mechanisms of action 

 Small non-coding RNAs are derived from transcription of regions of the genome that 

typically do not encode an open reading frame for protein translation, thus leading to small 
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regions of untranslated RNA that can function as regulators of gene expression. Much of the 

work to elucidate the mechanisms of action of small RNAs to date has been performed in 

model organisms such as E. coli and Salmonella. Small RNAs typically use their ability to 

base pair with other single stranded RNA to directly interact with mRNA transcripts, leading 

to either repression or activation of translation (Papenfort and Vogel, 2009). In addition, 

some small RNAs have recently been shown to directly bind to proteins to modulate their 

activities (Waters and Storz, 2009). Dual function mRNAs have also been reported that can 

both be translated into proteins as well as act as regulatory RNAs themselves (Vanderpool et 

al., 2011; Mellin and Cossart, 2015). Not unlike the protein master regulators of 

transcription, small RNAs can act globally to regulate multiple genes or pathways involved 

in the pathogenesis of disease.    

 The majority of functional sRNAs that have been characterized to date interact with 

their target via direct base pairing interactions which can be divided into two primary 

categories based on the relationship of the small RNA to the target: cis-encoded or trans-

encoded. Because cis-encoded RNAs are located directly opposite of the target region of the 

mRNA, they often exhibit extensive complementarity with their targets (Wagner et al., 2002; 

Brantl, 2007). Additional regulatory elements such as riboswitches and RNA thermometers 

also fall under the category of cis-acting RNA elements (Roth and Breaker, 2009; Kortmann 

and Narberhaus, 2012). The originally identified cis-encoded RNAs were observed to be part 

of toxin-antitoxin systems whereby the antisense sRNA bases pairs with the mRNA of the 

toxin gene to prevent translation (Jahn and Brantl, 2013; Brantl and Jahn, 2015). Later, cis-

encoded sRNAs were found antisense to the 5’ or 3’ untranslated regions (UTRs) of mRNAs, 

or antisense to the coding region itself (Thomason and Storz, 2010; Georg and Hess, 2011). 
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Most recently, a large reservoir of potential sources of cis-encoded sRNAs in the form of 

pervasive antisense RNA (asRNA) transcription has been identified in a variety of bacteria 

via global transcriptome studies (Wade and Grainger, 2014). For example, at least one 

antisense transcriptional start site was identified in 46% of ORFs in H. pylori (Sharma et al., 

2010); in C. jejuni, 45% of all TSSs were antisense (Dugar et al., 2013). Potential 

mechanisms by which asRNAs could modulate gene expression include occlusion of the 

ribosomal binding site or targeting for RNase degradation (Wade and Grainger, 2014). 

Whether these are truly functional non-coding RNAs or just transcriptional noise remains to 

be determined.  

 In comparison to cis-encoded sRNAs, trans-sRNAs are transcribed at a location other 

than their target mRNAs, often, but not exclusively, within intergenic spaces. Due to a lack 

of exact complementarity, interaction regions of trans-sRNA with their targets are much 

more limited, often as short as only 6-8 nt and in multiple discontinuous stretches (Waters 

and Storz, 2009). This lack of exact complementarity is what often allows for more than one 

target mRNA to be regulated by the same sRNA. The majority of mRNA regulation 

controlled by known trans-encoded sRNAs is negative, meaning that base pairing often leads 

to repression of protein production either via inhibition of translation or increased 

degradation of the target mRNA (Gottesman et al., 2005). In many of the model organism 

species such as E. coli and Salmonella, the RNA chaperone protein Hfq is required for RNA-

RNA interactions between trans-encoded small RNAs and their target mRNAs (Aiba, 2007). 

As the ε-proteobacteria genomes do not encode for Hfq, it remains unclear whether another 

protein serves a similar role or if sRNAs function without a protein chaperone in these 

species of bacteria. While the prototypical trans-sRNA typically interacts with regions such 
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as the ribosomal binding site, interactions with target RNAs can occur at any location. 

Targeting of upstream sites such as ribosome stand-by sites or translational enhancer sites as 

been reported (Darfeuille et al., 2007), as has binding to the coding sequence of the mRNA 

to recruit RNases (Pfeiffer et al., 2009). Overall, non-coding RNAs have been demonstrated 

to exist in a wide variety of forms and perform an extensive array of bacterial functions, from 

controlling diverse aspects of bacterial physiology to mediating virulence.  
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CHAPTER 2 

HISTOPATHOLOGY AND SPATIAL DISTRIBUTION OF PUTATIVE GROWTH 

FACTORS IN THE OVINE GALLBLADDER FOLLOWING DIRECT INOCULATION 

WITH CAMPYLOBACTER JEJUNI IA 3902 

 

Abstract 

Campylobacter jejuni is an important zoonotic pathogen that is the leading cause of 

both human foodborne bacterial gastroenteritis worldwide, as well as ovine abortion in the 

United States. A number of studies have demonstrated that the gallbladder of ruminants as 

well as other domestic animal species is often positive on culture for Campylobacter sp., 

suggesting that this environment may serve as a chronic nidus of infection for maintenance of 

disease within populations. Previous studies have demonstrated the location of putative 

growth factors for C. jejuni in both the intestinal tract as well as the placental unit which may 

play a role in localization of the organism within these important environments; however, to 

date, no studies have been performed to assess for the presence of similar factors within the 

gallbladder. In this chapter, histochemistry was utilized to localize putative growth factors 

including neutral and acid mucins, along with L-fucose, within the deep glands of the ovine 

gallbladder as well as in aggregates along the mucosal surface. Direct gallbladder inoculation 

with C. jejuni IA 3902 followed by immunohistochemistry analysis and scanning electron 

microscopy allowed for identification of rapid accumulation of the organism in direct contact 

with the gallbladder mucosa and located within the deep gallbladder mucosal glands, 

suggesting that this is the preferred location of C. jejuni IA 3902 within the gallbladder host 

environment. Failure to occlude the common bile duct following direct gallbladder 
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inoculation led to a rapid loss of inoculum into the intestinal tract which was prevented via 

ligation of the duct. Taken together, this data suggests that to survive with the harsh 

environment of the gallbladder, colonization of the deep mucosal glands occurs to allow 

avoidance of the constant flushing action of bile release and the detergent activities of bile 

salts in the lumen. Further work to determine the significance of gallbladder colonization in 

pathogenesis of disease by C. jejuni IA 3902 is warranted.  

  

Introduction 

Campylobacter jejuni is the leading cause of foodborne bacterial gastroenteritis 

worldwide (WHO, 2015). In the United States alone, infection with Campylobacter causes 

over 1.3 million infections annually (CDC, 2013) and costs the U.S. economy an estimated 

1.9 billion dollars each year (ERS, 2014). Humans are typically considered the only species 

to routinely become ill after oral ingestion of C. jejuni with the exception of abortion in 

ruminants due to strains such as C. jejuni IA 3902 (Wagenaar et al., 2013). The reason for 

clinical disease in one species and absence of disease in other species is mostly still 

unknown, however, the propensity for clinical disease in sheep make them a useful animal 

model in which to study this important disease.  

 Historically, the primary causative agent of ovine abortion due to Campylobacter was 

C. fetus subsp. fetus, with only sporadic cases of C. jejuni of varying strain types reported 

(Kirkbride, 1993; Skirrow, 1994). Since the late 1980’s, however, there has been a steady 

increase in the percentage of ovine abortions attributed to C. jejuni in the U.S., and by the 

end of the 1990’s, isolates of C. jejuni outnumbered C. fetus subsp. fetus (Kirkbride, 1993; 

Delong et al., 1996). Between the end of the last century and the 2000’s, a single clonal 
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isolate, C. jejuni sheep abortion (SA) clone, was observed to become the predominant cause 

of ovine abortion in the United States (Sahin et al., 2008). Additionally, outbreaks of 

zoonotic transmission to humans of this hypervirulent strain, primarily related to raw milk 

consumption, have been reported (Sahin et al., 2012), highlighting the need for greater 

understanding of the mechanisms utilized by this virulent strain of C. jejuni to both cause disease 

and persist in animal hosts. 

Chronic colonization and shedding of organisms into the environment is thought to 

play a key role in maintenance of C. jejuni in the sheep population, but to date no one has 

determined the exact location of chronic colonization that allows it to be maintained within 

animal populations. The majority of the work done to detect chronic carriage of C. jejuni in 

other species such as chickens has been performed looking at chronic colonization of the 

intestinal environment (reviewed in Sahin et al., 2015); however, a positive culture from 

feces or intestinal contents does not necessarily prove that the intestines themselves are the 

home for chronic colonization. Constant bile secretion from the gallbladder into the intestinal 

tract provides an alternative location for chronic C. jejuni carriage that could lead to a 

positive fecal culture result.  

Abattoir studies of sheep and other ruminants have shown that the gallbladder is 

frequently positive for C. jejuni even in the absence of clinical disease (Ertas et al., 2003; 

Acik and Cetinkaya, 2006; Sahin et al., 2012). In order to decrease colonization and chronic 

shedding with C. jejuni in animal reservoirs, there is a critical need to understand the 

mechanisms utilized by this organism to colonize and survive in this harsh environment. 

While Campylobacter sp. can frequently be found within the gallbladder, it is unclear how 

the bacteria reach the gallbladder and whether they survive primarily as free-living in the bile 

or by colonizing the protective mucous layer as has been demonstrated to play an important 
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role in intestinal colonization in other species (Van Deun et al., 2008). Survival within the 

gallbladder itself, particularly within the mucus or mucosal layers may serve as a critical 

nidus for infection or shedding of C. jejuni into the environment. Previous studies have 

shown that mucins, L-fucose, and iron all can serve as chemoattractants for C. jejuni in other 

locations within the ovine host such as the placenta (Burrough et al., 2012). To date, no other 

studies have been published assessing other locations within the ovine host that may contain 

these chemoattractant compounds. 

 Based on this information, we hypothesized that the gallbladder serves as a natural 

reservoir for C. jejuni within the ruminant host, where the mucous layer of the gallbladder 

epithelium provides a protected niche for C. jejuni colonization. To test this hypothesis, we 

developed a unique in vivo model in the natural ovine host to determine if Campylobacter 

can survive when placed within the ovine gallbladder, as well as where within the gallbladder 

it prefers to survive. In addition, we utilized previously described histochemical methods to 

confirm that many of the compounds previously identified to be chemoattractive to C. jejuni 

are present within the mucosal lining and deep glands of the ovine gallbladder. Taken 

together, our findings suggest that the deep glands of the gallbladder mucosa may provide a 

protected niche where Campylobacter can survive and replicate to establish a chronic nidus 

of infection within the ruminant host.  

 

Materials and Methods 

Bacterial strains and preparation of animal inoculum 

A clinical isolate of the C. jejuni SA (sheep abortion) clone, IA 3902, was utilized for 

the entirety of this study. This isolate was obtained from a sheep abortion outbreak in Iowa in 
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2006 (Sahin et al., 2008) and clonal isolates of this strain have been identified from within 

the gallbladder of sheep in abattoir studies (Sahin et al., 2012). C. jejuni IA 3902 was 

routinely grown in Mueller-Hinton (MH) broth or agar plates (Becton-Dickinson, Franklin 

Lakes, NJ) at 42°C under microaerophilic conditions with the use of compressed gas (55% 

O2, 10% CO2, 85% N2). Specific culture conditions utilized for growth out of bile and the 

ovine gallbladder experiments are described below. 

For preparation of in vivo animal inoculum, 10 plates each containing 16 hours of 

overnight lawn growth were washed with 1 mL MH broth and collected into single sterile 50 

mL conical tubes (FisherScientific, Pittsburg, PA). The volume of broth in each vial was then 

standardized to 10 mL and gently mixed to ensure even distribution of bacteria within the 

solution. Following pooling and gentle mixing of the cultures, 500 µL of the collected culture 

was removed and processed immediately for RNA protection as described in Chapter 3. An 

additional 100 µL was then removed for a dilution series to accurately determine the amount 

of inoculum in CFU/mL. The remaining inoculum was then centrifuged at 3000 x g for 5 

minutes to pellet the cells and all but 1 mL of supernatant was removed. The remaining 1 mL 

of broth was then used to resuspend the cell pellet in each vial for a total inoculation volume 

of 1.5 mL per animal. The prepared inoculum was then placed under microaerophilic 

conditions and used within 3 hours of preparation.  

For preparation of the inoculum for the in vitro bile study, two sets of 6 plates each 

containing overnight lawn growth were washed and collected into sterile 50 mL conical tubes 

as described above and standardized to 5 mL rather than 10 mL. From this 5 mL of 

concentrated culture, 500 µL each was removed and processed immediately for RNA 

protection again as described in Chapter 3. The two sets of inoculum were then combined 
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and an additional 100 µL was removed for a dilution series to accurately determine the 

amount of inoculum in CFU/mL. The approximately 9 mL of remaining concentrated culture 

was then divided equally into four aliquots of 2.2 mL each and used directly for inoculation 

of the in vitro bile samples as described below. 

 

In vivo exposure of C. jejuni IA 3902 to the sheep gallbladder environment 

 All animal experiments were approved by the Iowa State University Institutional 

Animal Care and Use Committee (IACUC) prior to initiation and followed all appropriate 

animal care guidelines. Preliminary experiments utilizing one or two mixed breed female 

sheep obtained from local farms were performed to determine the best method to inoculate 

the gallbladder of sheep with C. jejuni and subsequently harvest enough viable bacteria for 

RNA isolation. The various methods studied included transcutaneous ultrasound guided 

inoculation, inoculation via laproscopy, and full laparotomy with direct visualization of the 

gallbladder for inoculation. Of the options attempted, full laparotomy with and without 

placement of a stainless steel medium-large Hemoclip® designed for vessels up to 10 mm 

(Weck, Research Triangle Park, NC) over the common bile duct were the only options to be 

successfully performed in a single animal each. Based on the results of this preliminary work, 

a final determination of the necessity of full laparotomy with placement of a Hemoclip® over 

the common bile duct was made, and thereafter all future inoculations were performed via 

this method.  

For the primary study, eight adult female mixed breed sheep were obtained from two 

local farms with no known history of C. jejuni related abortions. Sheep were held off feed for 

24 hours and off water for 12 hours prior to induction of anesthesia for inoculation of the 
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gallbladder. Assignment to either the 2 hour or 24 hour incubation group was randomly 

chosen via a random number generator (www.random.org). Immediately prior to induction of 

anesthesia, a jugular catheter was placed and patency maintained for the remainder of the 

study using heparinized saline flushes every 8 hours. General anesthesia was obtained using 

an intravenous triple drip solution consisting of 500 mL guaifenesin 5% + 500 mg ketamine 

+ 50 mg xylazine. Anesthesia was induced in 5 to 10 minutes by the rapid administration of 

0.5 to 2 mL/kg of this solution and maintained at a rate of 2 mL/kg/hour until the end of the 

procedure. Once fully anesthetized, the animals were placed in left lateral recumbency and 

the right paracostal region was clipped and aseptically prepared for surgery.  

 Entry into the abdomen was made via a right paracostal approach to allow for best 

visualization of and access to the gallbladder. Following visualization of the gallbladder, the 

common bile duct was located and a Hemoclip® was placed to prevent outflow of bile from 

the gallbladder following inoculation. Using a sterile 3 mL syringe and 20 gauge 1” needle, 1 

mL of bile was removed from the gallbladder of all animals prior to inoculation of C. jejuni 

IA 3902. Following removal of the pre-inoculation bile sample, 1.5 mL of MH broth 

containing approximately 1011 CFU/mL C. jejuni IA 3902 inoculum was then injected into 

the lumen of the gallbladder using a separate 3 ml syringe and 20 gauge 1” needle. The body 

wall incision was closed and the animals recovered uneventfully from surgery. Food and 

water were provided following recovery from anesthesia and animals were monitored for 

signs of pain or septicemia following the procedure.  

 At either 2 hours or 24 hours post-inoculation as previously determined via random 

assignment, the sheep were humanely euthanized via intravenous injection of 1 mL/10 lb 

body weight pentobarbital (Fatal Plus®; Vortech, Dearborn, MI). Immediately following 

http://www.random.org/
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euthanasia, a clean incision was made into the ventral midline of the abdomen to expose the 

liver and gallbladder. Using a 16 gauge 1” sterile needle and a 60 mL syringe, the entire 

amount of bile retained in the gallbladder was removed via gentle aspiration. The collected 

bile was immediately processed for RNA protection as described in Chapter 3 and 100 µL 

was used for a serial dilution in MH broth to determine viable counts of C. jejuni (CFU/mL) 

following exposure to bile. Following removal of the bile contents, the gallbladder was then 

removed in its entirety and further samples collected for histopathology, 

immunohistochemistry and electron microscopy as described below. Following collection of 

these samples, approximately half of the gallbladder wall remained; this tissue was rinsed 

with sterile saline to remove loose droplets of bile and then the entire mucosal surface was 

scraped with a straight edge sterile blade to remove the mucous layer and mucosal lining. 

This material was then collected via rinsing with sterile saline into 15 mL conical tubes 

(FisherScientific). Following collection, the volume in the vials was standardized to 3 mL 

each, the collected material was vortexed vigorously for 1 minute and 100 µl of this solution 

was used for a serial dilution in MH broth to provide a semi-quantitative estimate of the 

amount of C. jejuni contained within the mucus layer of the gallbladder. The amount 

estimated in CFU/mL was then multiplied by 3 mL based on the starting volume of the 

mucosal scraping solution; this value was again multiplied by 2 based on the fact that only 

half of the gallbladder wall was utilized for this purpose to determine an estimate of total 

bacterial numbers within the gallbladder mucosa.  
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In vitro bile inoculation and incubation 

 To compare the effect of exposure to the in vivo ovine gallbladder environment 

versus in vitro ovine bile exposure only, fresh bile and gallbladder samples were collected at 

necropsy of an additional group of eight sheep obtained from one of the same farms as above 

that were being utilized for an unrelated study. Again using a 16 gauge 1” sterile needle and a 

60 mL syringe, the entire amount of bile retained in the gallbladder at necropsy of each sheep 

was removed via gentle aspiration. Following removal of the bile contents, the gallbladder 

was then removed in its entirety and fixed in 10% neutral buffered formalin for histology and 

immunohistochemistry as non-inoculated controls; only samples confirmed to be free of 

culturable bacteria were used for this purpose. Following collection, the bile was cultured as 

described below to determine if it was free of culturable bacteria. While awaiting culture 

results, the bile was stored at 4°C in sterile 50 mL conical tubes. Following confirmation of 

culture-negative status, the entire collected amount of bile ranging in volume from 14 mL to 

33 mL from four of the animals confirmed to be culture-negative was pre-warmed to ovine 

body temperature (39.5°C) in an incubator for 20 minutes and then inoculated with 1011 C. 

jejuni IA 3902 suspended in 2.2 mL MH broth prepared as described above. Following 

inoculation, the bile was then incubated under microaerophilic conditions at 39.5°C in a 

static incubator. At 2 hours, half of the total amount of bile was removed and processed for 

CFU/mL using serial dilutions, as well as processed for RNA isolation as described in 

Chapter 3. The remaining bile was then incubated until 24 hours at which time it was also 

processed to determine CFU/mL and perform RNA isolation. To estimate the total number of 

bacteria remaining in the bile at each time point, the calculated CFU/mL value was 

multiplied by the total starting volume in mL.  
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Bacterial culture from bile and gallbladder mucosa 

All samples of bile to be inoculated with C. jejuni IA 3902 (either in vivo or in vitro) 

were processed identically to determine if culturable bacteria were present prior to 

inoculation. As previously described, 1 mL of bile was removed from the gallbladder of all 

animals prior to inoculation of C. jejuni IA 3902 during the in vivo model using a sterile 3 

mL syringe and 20 gauge 1” needle; this sample was stored at 4°C for less than 2 hours until 

processed. For the bile to be utilized for in vitro studies, the entire volume of collected bile 

was stored at 4°C for less than 2 hours until processed. To screen for growth, from all bile 

samples 100 µL was plated onto each of the following plates and incubated as described: MH 

plates – (1) straight bile and (1) 1:100 dilution plate, both incubated at 42ºC microaerophilic; 

blood agar plates (BAP) - (2) plates straight bile, one each incubated at 37ºC either aerobic or 

anaerobic using anaerobic packets and jars (GasPak EZ Anaerobe Pouch System; Becton-

Dickinson). Of the in vivo inoculated animals, one animal did not have any appreciable bile 

in its gallbladder at the time of inoculation, therefore fecal culture on MH plates 

supplemented with Preston Campylobacter selective supplement (Oxoid, Hampshire, United 

Kingdom) and Campylobacter growth supplement (Oxoid, Hampshire, United Kingdom) 

according to the manufacturer's recommendations for isolation of Campylobacter from fecal 

sources was utilized instead to screen for intestinal carriage of C. jejuni as a proxy for 

gallbladder carriage.  

Following inoculation and incubation of both in vivo and in vitro samples, 100 µL 

from each bile sample as well as 100 µl of mucosal scraping was set aside and used to 

determine the viable CFU/mL following exposure via serial dilution onto MH plates and 

incubation at 42°C microaerophilic using the drop-plate method as previously described 
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(Chen et al., 2003). Statistical analysis of differences in the amount of bacteria cultured 

between the bile and mucosal scrapings as well as between 2 and 24 hours of incubation was 

performed via a two-way ANOVA (not repeated measures) with Sidak’s multiple 

comparisons test (GraphPad, Prism). 

 

Gallbladder histology and histochemistry 

 Following removal of bile from the gallbladders of the inoculated and non-inoculated 

control sheep, samples of the gallbladder wall were collected and placed in 10% neutral 

buffered formalin and submitted to the Iowa State University College of Veterinary Medicine 

Comparative Pathology Core Service for histology, histochemistry, and immune-

histochemistry processing and evaluation.  

To prepare the samples for evaluation, serial sections of each formalin fixed sample 

of gallbladder wall were embedded in paraffin and sections cut to 5 µm thickness. Cut 

sections were then stained with hematoxylin and eosin (H & E) for routine histological 

examination. An additional subset of slides were stained with Perl’s iron stain, Alcian blue 

(pH 2.5), and the periodic acid-Schiff reaction with and without diastase pre-treatment to 

identify the presence or absence of material with staining characteristics consistent with iron, 

acid mucins, and neutral mucins, respectively.  

Lectin histochemistry to identify L-fucose containing glycans was performed as 

previously described (Burrough et al., 2012). In brief, serial sections of gallbladder were cut 

to 3 µm, placed on aminoalkylsilane-coated glass slides, and baked in a 56°C oven for 2 

hours. Sections were routinely deparaffinized in xylene and rehydrated in graded alcohol and 

water baths. Endogenous peroxidase was inhibited by immersing sections (2 immersions, 10 
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minutes each) in 3% hydrogen peroxide in water. Antigen was unmasked by treating sections 

with Tris-EDTA (pH 9.0) in a stream bath for 20 minutes; slides were then cooled to room 

temperature and rinsed 3 times in phosphate buffered saline (PBS) prior to placement in an 

automated cell staining system (BioGenex, Freemont, CA). The lectins used consisted of 

commercially available biotinylated Ulex europaeus agglutinin I (UEA-I; Vector, 

Burlingame, CA) and biotinylated Lotus tetragonolobus lectin (LTA; Vector) applied to 

sections at 20 µg/ml and incubated at 22°C for 30 minutes, followed by rinsing in a bath of 

PBS solution for 5 minutes. Lectin binding was visualized using a commercial kit (Vectastain 

Elite ABC; Vector) and chromogen (NovaRED; Vector) per the manufacturer’s instructions; 

the sections were then counterstained with hematoxylin and mounted routinely.  

 

Gallbladder immunohistochemistry 

To determine the location of C. jejuni bacteria within the sections of gallbladder, 

immunohistochemistry directed against the major outer membrane protein (MOMP) of C. 

jejuni was performed on a subset of randomly chosen gallbladder samples (two each from the 

2 hour and 24 hour inoculated sheep, and one uninoculated control) as previously described 

(Burrough et al., 2009). Sections of gallbladder were cut at 3 µm, mounted on 

aminoalkylsilane coated glass slides, and placed in an oven at 56°C for 2 hours and routinely 

deparaffinized in xylene and rehydrated in graded alcohol solutions and water baths. 

Endogenous peroxidase inhibition was achieved by immersion (2 immersions; 10 

min/immersion) in baths of 3% H2O2 in water. Slides were incubated with 0.1% protease in a 

Tris buffer (pH, 7.6) at 37°C for 15 minutes and rinsed 3 times in PBS solution. To inhibit 

non-specific binding, sections were incubated in 10% neutral goat serum at 22°C for 20 
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minutes. The primary antibody, which was directed against the major outer membrane 

protein of C. jejuni, was prepared as previously described (Zhang et al., 2000) and was used 

at a dilution of 1:300; slides were incubated at 22°C for 60 minutes followed by rinsing in a 

bath of PBS solution for 5 minutes. A commercially available biotinylated secondary 

antibody (MultiLink; Biogenex) was used at a dilution of 1:80; slides were incubated at 22°C 

for 15 minutes followed by rinsing in a bath of PBS solution for 5 minutes. Sections were 

then incubated with horse radish peroxidase–streptavidin (Zymed; Invitrogen, Grand Island, 

NY) conjugated at 22°C for 15 minutes followed by rinsing in a bath of PBS solution for 5 

minutes. The final reaction was developed by use of a commercial chromogen (NovaRED; 

Vector). Sections were rinsed and routinely counterstained with Shandon Harris hematoxylin 

(ThermoScientific) and Scott’s tap water. Sections were dehydrated through graded alcohol 

and xylene solutions prior to mounting. 

 

Scanning electron microscopy of ovine gallbladder inoculated with C. jejuni 

 Additional sections of gallbladder wall were also collected separately at necropsy and 

fixed in 2% paraformaldehyde and 3% glutaraldehyde in 0.1M cacodylate buffer at 4°C for 

24 hours then submitted to the Iowa State University Microscopy and NanoImaging Facility 

to be prepared for scanning electron microscopy (SEM). A single sample representative of 

each time point (2 hours and 24 hours) was selected for further processing based on evidence 

of normal mucosal architecture present in the histopathology examination. Fixed samples 

were rinsed in deionized water and post-fixed in 2% aqueous osmium tetroxide followed by 

dehydration in a graded ethanol series up to 100% ultra-pure ethanol and dried using a 

Denton DCP-2 critical point dryer  (Denton Vacuum, Moorestown, NJ). When dried, the 
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samples were placed onto adhesive coated aluminum stubs, sputter coated (Denton Desk II 

sputter coater, Denton Vacuum) with palladium/gold alloy, and imaged using a JEOL 

5800LV scanning electron microscope (Japan Electron Optics Laboratory, Peabody, MA) at 

10kV.  

 

Results 

Preliminary animal studies 

Preliminary experiments utilizing one or two mixed breed female sheep obtained 

from local farms were performed to determine the best method to inoculate the gallbladder of 

sheep with C. jejuni and subsequently harvest enough viable bacteria for RNA isolation. Of 

the options attempted, full laparotomy with and without placement of a Hemoclip® over the 

common bile duct was successfully performed in a single animal each. Transcutaneous 

ultrasound guided inoculation was unsuccessful as bile could not be aspirated to confirm 

needle placement within the gallbladder. Inoculation via laproscopy was also attempted, 

however, visualization of the gallbladder was challenging due to its location deep to the liver, 

and the length of the laproscopic instruments was determined to be insufficient to reach the 

gallbladder from the paracostal incisions. A full laparotomy with direct visualization of the 

gallbladder was the only method that allowed for good visualization and direct inoculation of 

the gallbladder. Initial attempts at collecting sufficient viable bacteria for RNA isolation 

following incubation in the gallbladder without Hemoclip® placement were unsuccessful due 

to extremely rapid turnover of bile within the gallbladder (Figure 1). Full laparotomy with 

placement of a Hemoclip® over the common bile duct to prevent secretion of bile into the 

intestinal tract finally yielded adequate numbers of viable bacteria recovered for isolation of 
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RNA of sufficient quality for next generation sequencing. Based on the results of this 

preliminary work, a final determination of the necessity of full laparotomy with placement of 

a Hemoclip® over the common bile duct was made, and thereafter all inoculations were 

performed via this method.  

 

Pre-screening of bile for carriage of C. jejuni 

Prior to inoculation of the gallbladder during the in vivo experiment, 1 mL of bile was 

removed from all animals to screen for the presence of culturable bacteria already inhabiting 

the gallbladder. Of the 7 animals that had bile that could be harvested from the gallbladder 

pre-inoculation, only 1 animal displayed any growth under the conditions studied; the 

remaining cultures were free of any bacterial colonization as detectable by these methods. 

The single animal that exhibited bacterial growth displayed a pure growth of colonies on MH 

agar at 42°C microaerophilic that was confirmed to be C. jejuni utilizing a MALDI-TOF 

mass spectrometry biotyper (Bruker Daltonics, Billerica, MA) for identification. Further 

strain typing was not performed; however, an aliquot of the isolate was frozen at -80°C in 

20% glycerol for future analysis if necessary. Screening of the feces from the single animal 

that did not have bile for collection pre-inoculation did not reveal the presence of C. jejuni.  

The bile utilized for the in vitro inoculation was also screened for the presence of 

culturable organisms prior to use. Of the eight sheep initially screened, four exhibited no 

growth detectable via microaerophilic incubation at 42°C on MH plates or via aerobic and 

anaerobic incubation at 37°C on BAP. One of the sheep exhibited heavy pure growth of 

white non-hemolytic mucoid colonies confirmed to be E. coli via MALDI-TOF, while two of 

the sheep exhibited a pure growth on MH plates of colonies suspected to be Campylobacter 
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sp; these colonies did not grow on subculture for MALDI-TOF analysis, therefore further 

identification was not possible. Another bile sample displayed growth of one single white 

colony on BAP; although growth of a single colony may be considered a contaminant, this 

sample was also considered positive for growth of bacteria. Any bile that exhibited growth 

was discarded for future use; therefore, the four “clean” bile samples (labeled 2, 3, 7, and 8) 

were utilized for the in vitro bile inoculation study.  

 

Recovery of viable C. jejuni from in vivo gallbladders and in vitro bile  

Figure 2 demonstrates the inoculated amount of C. jejuni IA 3902 compared with the 

amount that was recovered from both the bile and mucosal scrapings following incubation 

within the sheep gallbladder in vivo. The average inoculum after translation to log10 for ease 

of comparisons was 11.5 (6 x 1011 total bacteria). After 2 hours of incubation, an average of 

10.1 log10 bacteria were collected out of the bile, with an additional 6.9 log10 bacteria 

present in the gallbladder wall scrapings. Following 24 hours of incubation, an average of 8.4 

log10 bacteria were present in the bile, with an additional 7.3 log10 bacteria estimated to be 

located within the gallbladder wall scrapings. Interestingly, the amount of bacteria present 

within the gallbladder wall scrapings appears to have increased between the 2 hour and 24 

hour time points, while during the same timeframe the amount of viable bacteria present in 

bile in the lumen of the gallbladder decreased; statistical analysis via two-way ANOVA did 

not demonstrate statistical significance (Figure 3).  

In comparison, Figure 4 demonstrates the inoculated amount of C jejuni IA 3902 

compared with the amount that was estimated to be present at 2 and 24 hours when samples 

were recovered from in vitro incubated bile. The inoculum after translation to log10 for ease 
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of comparisons was again 11.5 (3.5 x 1011 total bacteria); this same inoculum was used for all 

replicates. On average, the amount of bacteria present within the bile was estimated to 

decrease by 0.9 log10 over the first 2 hours of incubation, with an overall decrease of 2.3 

log10 by the end of 24 hours of incubation.  

 

Routine histology findings  

 A summary of the routine histology findings of the sheep gallbladder samples is 

presented in Table 1 with representative images of 2 hour and 24 hour samples presented in 

Figures 5A and 5B. Briefly, at 2 hours post inoculation, there was a mild, diffuse infiltrate of 

low numbers of neutrophils and occasional eosinophils and Mott cells in the majority of 

slides examined. Multifocally, glands were observed to be expanded by neutrophils, cellular 

debris and/or mucus, which was also present within the lumen of the gallbladder. There were 

rare lymphoid nodules noted within the lamina propria, and multifocally blood vessels were 

noted to be congested.  

At 24 hours post inoculation, the severity of the observed histological lesions was 

observed to be substantially increased. The mucosa was noted to be diffusely necrotic and 

multifocally ulcerated with loss of cellular detail which was replaced by large amounts of 

eosinophilic cellular debris, moderate amounts of karyorrhectic and karyolytic nuclear 

material, moderate numbers of degenerate neutrophils, congested blood vessels and small 

amounts of hemorrhage. Glands were occasionally observed to be lined by flattened, 

attenuated epithelia and were dilated with basophilic to eosinophilic flocculent material, 

small amounts of necrotic cellular debris and a few degenerate neutrophils. Rarely, there 

were up to 4 cell layers (glandular hyperplasia) with the gland lumen not readily apparent 
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and interspersed by small amounts of pyknotic nuclear debris. The lamina propria was 

moderately expanded by clear space (edema), congested blood vessels, and moderate 

numbers of neutrophils, eosinophils and occasional Mott cells. The muscularis was markedly 

expanded and disrupted as previously described along with small amounts of hemorrhage. 

Many lymphatics were congested and prominently expanded by large numbers of neutrophils 

within the lumen and extravasating the vessel walls. The endothelium of many vessels was 

plump and reactive. The serosa and adjacent adipose were markedly expanded by large 

amounts of eosinophilic proteinaceous fluid, fibrin and congested blood vessels and 

multifocal areas were overlain by a thick mat of neutrophils and fibrin with hemorrhage. 

For the uninoculated culture negative gallbladders, there were occasional Mott cells 

present and rare lymphoid nodules noted within the lamina propria. Multifocally, blood 

vessels were noted to be mildly congested. No neutrophils or eosinophils were noted in any 

of the slides examined.  

 

Immunohistochemistry and SEM 

 To determine the preferred location of C. jejuni within the gallbladder environment, 

immunohistochemistry directed towards the major outer membrane protein (MOMP) of C. 

jejuni was performed on a portion of the sheep gallbladder samples. Immunohistochemistry 

of the selected samples identified dense accumulation of organisms deep within the glands of 

the gallbladder and as multifocal aggregates within clumps of luminal debris and mucus. By 

2 hours after inoculation both samples examined were observed to have C. jejuni located 

deep within many of the glands (Figure 6). By 24 hours, as much of the mucosal surface 

exhibited severe inflammation and necrosis, the majority of the C. jejuni was observed to be 
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present in aggregates adhered to mucin and inflammatory debris on the surface of the mucosa 

(Figure 7A), however, where glands were still visible, C. jejuni could still be observed to be 

located within them (Figure 7B). For all slides of inoculated gallbladders examined, there 

was also staining observed at the serosal surface indicative of leakage of inoculated bile from 

the puncture site. In contrast, the single uninoculated gallbladder sample that was confirmed 

via culture to be negative for C. jejuni did not exhibit any staining indicative of C. jejuni 

presence.  

 In addition to immunohistochemistry, scanning electron microscopy of a subset of the 

inoculated gallbladder samples (one each from the 2 hour and 24 hour time points) was also 

utilized in an attempt to locate C. jejuni on the surface of the gallbladder mucosa. Figure 8A 

demonstrates an aggregate of C. jejuni organisms at 2 hours post-inoculation closely adherent 

to the apical aspect of the mucosal surface located near a small focus of microvilli loss. The 

adjacent material within which the C. jejuni is located is likely made up of cellular debris and 

mucus. Figure 8B also taken at 2 hours post-inoculation demonstrates two C. jejuni 

organisms adherent to a focally extensive area of ulceration, again with adjacent material that 

is likely to be made up of cellular debris and mucus. These images demonstrate that within a 

relatively short amount of time post-inoculation, C. jejuni is able to migrate through the 

mucous layer to become intimately associated with the gallbladder mucosa. Additional 

organisms were observed within the spaces between villi; however, the microscope could not 

be focused to those regions to capture images.  
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Histochemistry  

 To determine if any factors previously known to be tropic for C. jejuni were present 

in the same locations in the ovine gallbladder as C. jejuni identified via 

immunohistochemistry, an additional subset of slides were stained with Perl’s iron stain, 

Alcian blue (pH 2.5), lectin staining, and the periodic acid-Schiff (PAS) reaction with and 

without diastase pre-treatment. Perl’s iron stain did not did not reveal appreciable staining 

within mucosa, submucosa, muscularis or serosa of sections examined, indicating that iron 

accumulation is not a feature of the gallbladder wall. 

Alcian blue staining was utilized to identify the presence of acid mucins within 

sections of gallbladder at both 2 hours and 24 hours. Both time points demonstrated marked 

stain uptake within the cells and lumen of the deep crypts, extending throughout the gland 

lumen space and multifocally dispersed among gallbladder debris (Figures 9A, 9B, and 9C). 

Staining via PAS was utilized to identify the presence of neutral mucins within sections of 

gallbladder at both 2 hours and 24 hours. Again, both timepoints displayed marked PAS 

staining multifocally at the deep aspect of glands and as aggregates and streaming bands 

within the gallbladder lumen (Figures 10A, 10B, and 10C).  

Lectin staining was also utilized to determine if L-fucose containing glycans were 

present within the gallbladder mucosa. Both time points displayed multifocal areas of 

variable to strong lectin staining within glands and on the surface of the epithelium (Figure 

11A and 11B). Based on the staining patterns for both acid and neutral mucins, as well as L-

fucose, the observed areas of MOMP immunohistochemistry correspond well to the same 

locations particularly deep within the glands of the gallbladder.  
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Discussion 

Previous work by our lab has demonstrated that C. jejuni IA 3902 can be isolated 

from the gallbladders of clinically normal sheep (Sahin et al., 2012) and that this strain can 

achieve similar in vitro growth in sheep bile as to that of rich media under normal laboratory 

growth conditions (Zhang lab, unpublished data). Additional studies in both sheep and other 

species of ruminants have also suggested that up to 34% of sheep may carry pathogenic C. 

jejuni within otherwise healthy bile with up to 66% of gallbladders positive for some species 

of Campylobacter (Acik and Cetinkaya, 2006; Ertas et al., 2003).  

The gallbladder environment is typically thought of as “harsh” with few bacteria able 

to survive under the conditions present. Bile acids (salts) are the main component of bile, 

along with cholesterol, phospholipids and bilirubin. Their amphipathic nature allows them to 

act as a detergent which plays a key role in lipid solubilzation and emulsification leading to 

digestion of fats within the intestinal tract (Baptissart et al., 2013). Studies have 

demonstrated that sheep bile, along with ox and pig bile, has a relatively high percentage of 

bile salts which constitute 10% w/v of the total contents of bile. The presence of high 

concentrations of bile salts have been proven to be very damaging to cellular membranes 

(Coleman et al., 1979), and the detergent properties of bile has been demonstrated to have 

potent antimicrobial activity (Begley et al., 2005). For evidence of the inhospitable nature of 

the gallbladder environment, one need not look farther than the exit of the common bile duct 

into the duodenum; while one location is home to a wide array of culturable bacterial species, 

the other, directly connected and separated by only a short distance, more often than not 

remains free of culturable bacteria.  
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Recent rapid expansion of the use of metagenomics and microbiome research has 

proven that many sites previously thought to be inhospitable to bacterial colonization, such as 

the monogastric stomach, are now known to be home to a unique ecological community of 

bacteria (Yang and Suerbaum, 2013). Therefore, it is likely naïve to assume that the 

gallbladder is completely free of a resident population of bacteria. Recently, the first report of 

characterization of the microbiome of the gallbladder in any species was published 

investigating the microbiota of the swine gallbladder (Jimenez et al., 2015). While the study 

was limited in that it only assessed the bacterial diversity of 4 adult animals from the same 

farm, some important conclusions could be drawn. The diversity of bacterial species 

identified within the gallbladder was much lower than reported for most other locations in the 

mammalian body that have been studied to date, and considerably lower than the diversity 

observed in the gut microbiota of the same species (Lamendella et al., 2011). All of the 

samples exhibited growth of culturable bacteria in the range of 3 to 20 unique species per 

sample which were also identified via DNA sequencing (Jimenez et al., 2015). The amount 

and variety of species cultured from the swine gallbladder appears to differ substantially for 

our data and from what has been reported in studies of ruminant gallbladders; it is unclear 

whether the gallbladders of swine are more frequently colonized by bacteria, or whether 

these animals represent a departure from the norm.  

The frequent isolation of C. jejuni from bile samples of multiple ruminant species 

suggests that the gallbladder may in fact serve as a protected niche for chronic colonization 

by certain bacteria adapted to survive within its walls. This phenomenon may not be limited 

to ruminants as multiple instances of cholecystitis in humans due to Campylobacter species 

have been reported (Dakdouki et al., 2003; Vaughan-Shaw et al., 2010). Other intestinal 



43 

 

pathogens such as Salmonella typhi and Listeria monocytogenes have also been shown to 

have the unique ability to colonize the gallbladder in both humans and animals where they 

can establish a chronic carrier state in their host (Dowd et al., 2011; Gonzalez-Escobedo et 

al., 2011). In addition, the DNA of the closely related H. pylori has also been demonstrated 

to be frequently present in the gallbladder of patients with cholelithiasis although direct 

culture has proven more challenging (Guraya et al., 2015). 

In this study, 15 gallbladders of otherwise healthy sheep were screened for carriage of 

culturable bacteria. Of those 15, three demonstrated heavy pure growth consistent in 

appearance with C. jejuni which was confirmed via MALDI-TOF identification for one of 

the isolates. An additional animal demonstrated pure growth of E. coli also identified via 

MALDI-TOF. These findings are consistent with reports of 11% carriage of C. jejuni within 

the gallbladders of healthy sheep performed in the same geographical area (Sahin et al., 

2012). In vivo and in vitro inoculation of bile in our study proved that C. jejuni IA 3902 in 

particular has the ability to survive within pure ovine bile both with and without interaction 

with the gallbladder mucosa. The high bacterial load utilized for inoculation in this study was 

not ideal to assess whether C. jejuni could replicate in bile or within the gallbladder as even 

within defined media C. jejuni frequently ceases replication prior to reaching a concentration 

of 10.0 log10. While not mimicking either the natural route of infection of the gallbladder 

(which is currently unknown), nor the likely infectious dose, the methods utilized provided 

several advantages to initiate studies into this important field. As one of the primary goals of 

the model was to be able to collect high enough levels of quality RNA for next generation 

sequencing as discussed in Chapter 3, high levels of inoculum were necessary to ensure that 

enough viable bacteria were available at the end of the study to obtain adequate amounts of 
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RNA. Indeed, for most of the 24 hour samples, all of the RNA collected was necessary to 

generate adequate amounts of library to be sequenced. High levels of inoculum placed 

directly at the site of interest also ensured that a rapid timeline for data collection could be 

utilized and increased the chance that measurable bacteria could be found within their 

protected niche of choice within the gallbladder environment. It is likely that the severity of 

histologic lesions observed within the inoculated gallbladders, particularly those observed at 

24 hours, is a direct result of the amount of bacteria inoculated along with concomitant levels 

of endotoxin release, and not solely due to the pathologic ability of the organism itself. In 

addition, perforation of the gallbladder wall using a 20 gauge needle to introduce the 

inoculum likely led to leakage of contaminated bile from the puncture site which was visible 

in the histologic sections as serositis.  Minimal reports in the literature exist of the normal 

histologic description of the ovine gallbladder with which to compare our findings. The 

presence of Mott cells and lymphoid nodules in the uninoculated healthy control samples, 

however, indicates that even in the absence of known pathogenic bacteria, the ovine 

gallbladder wall appears to normally have a resident population of immune cells present 

which suggests a chronic state of low grade inflammation or immune stimulation. 

   Prior to this study, the location within the gallbladder C. jejuni that typically prefers 

to be located was unknown. Knowledge of this important fact is critical for improved 

understanding of the mechanisms of virulence of this important pathogen and will lead to a 

greater understanding of how Campylobacter is able to survive within the harsh gallbladder 

environment. The unique in vivo method developed within this study has allowed us an 

unprecedented means by which to attempt to answer these questions utilizing the gallbladder 

environment of the natural ovine host. The large decrease in the concentration of viable 
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bacteria able to be recovered from the inoculated gallbladder of sheep when a Hemoclip® 

was not placed over the common bile duct for the initial preliminary trial suggests that the 

regular flushing action of frequent bile secretion, particularly in species like sheep where 

biliary secretion is tied to rumination which occurs throughout the day rather than simply 

during ingestion of meals which occurs at set intervals, should make chronic colonization of 

the gallbladder difficult for bacteria free-living within the gallbladder lumen. These findings 

are consistent with published data suggesting that sheep secrete up to 40 µl of bile per kg per 

minute which is seven times higher than the endogenous rate of bile flow in monogastrics 

such as dogs (Barnhart and Upson, 1979). Not all of this bile is stored within the gallbladder 

prior to release; however, it is reasonable to suggest that long-term survival by C. jejuni 

within the ovine gallbladder requires a mechanism to counteract the constant flushing action 

of bile release.  

Intestinal colonization with this organism is associated with the ability to colonize the 

mucin and L-fucose-containing mucous layer of the intestinal epithelium where it is 

protected from the mechanical and chemical milieu of the intestinal lumen (McSweegan and 

Walker, 1986; Shigematsu et al., 1998). Unlike many other enteric pathogens that become 

trapped in this layer, C. jejuni is able to move freely within the mucin layer to inhabit the 

deep intestinal crypts (Lee et al., 1986) and from there potentially become internalized within 

eukaryotic cells (van Spreeuwel et al., 1985; Babakhani and Joens, 1993; Russell et al., 

1993). This ability has also been demonstrated in the closely related H. pylori to allow 

colonization of the glands of the stomach (Yang and Suerbaum, 2013). Mucin, L-fucose, and 

bile have all been shown to be strong chemoattractants for C. jejuni (Hugdahl et al., 1988) 

and it has been demonstrated that some virulent strains of C. jejuni such as IA 3902 can 
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utilize L-fucose as a substrate for growth due to possession of a specific genetic island 

encoding a region for fucose metabolism (Stahl et al., 2011; Muroaka and Zhang, 2011). 

The studies of the growth and chemotaxis of Campylobacter spp described above, as 

well as additional studies evaluating tropism of C. jejuni IA 3902 within the guinea pig 

placenta (Burrough et al., 2012), provided potential target compounds to evaluate within the 

sheep gallbladder including mucins, L-fucose, and iron. The data presented in our work 

clearly demonstrates that many of the same factors thought to be chemotropic to C. jejuni in 

the guinea pig placenta, such as neutral and acid mucins and L-fucose, are also present in the 

ovine gallbladder. In addition, the location of MOMP staining indicative of C. jejuni antigens 

within the same locations at the chemoattractive mucins and L-fucose strongly suggests that 

C. jejuni has an affinity for these locations due to their enhanced presence in the same 

regions. The location of C. jejuni, as detected by immunohistochemistry, within the deeper 

aspects of the glands of the gallbladder mucosa was consistent, even in severely inflamed 

gallbladder mucosa. The large aggregates of C. jejuni organisms present within the deep 

aspects of the glands also suggest that replication of organisms may be occurring in those 

locations. These protected areas of the gallbladder would likely provide the most defense 

against the harsh luminal environment and constant flushing action of bile release, which 

would allow bacterial resources to be dedicated to replication rather than purely survival. 

Scanning electron microscopy also allowed us an unprecedented view of Campylobacter 

organisms in direct contact with the microvilli on the surface of the gallbladder epithelium; 

their location in association with what appears to be extracellular debris is also suggestive of 

an affinity for mucins. The culture data presented in this study is supportive of the likelihood 

of migration of C. jejuni from free-living with the gallbladder lumen towards the more 
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protected niche of the mucous layer and glands of the gallbladder wall. While not statistically 

significant, the amount of bacteria recovered from the bile decreased between the 2 hour and 

24 hour time points, and the estimated amount of bacteria collected from mucosal scrapings 

increased. This suggests that either migration of inoculated bacteria towards the mucosal 

surface is occurring, or that the protected niche of the glandular regions allow for replication 

of C. jejuni in those areas.  

To our knowledge, factors that may lead to tropism of C. jejuni to the gallbladder 

have not been described in any species. The effect of bile itself as a chemoattractant for 

Campylobacter has been variable depending on the species studied. Interestingly, while C. 

jejuni can be cultured out of the guinea pig gallbladder, the bile from guinea pigs has been 

shown to be chemorepellent (Burrough et al., 2009). In contrast, diluted bovine and chicken 

bile have been described as chemoattractive for certain C. jejuni strains isolated from 

chickens; when the mucin fraction of the bile was removed, however, the remaining bile salts 

were universally chemorepellent (Hugdahl et al., 1988). This suggests that biliary mucins 

may act as the chemoattractive fraction in bile. Our data which demonstrated aggregates of 

mucin staining within the lumen and deep glands of the gallbladder in conjunction with 

MOMP staining of C. jejuni within the same regions are supportive of the theory that mucins 

in bile may play a role in chemoattraction.  

The composition of bile salts varies greatly between species and may also play a role 

in observed differences in chemoattraction between bile from different species. Based on 

type of conjugation, the composition of bile salts between sheep, bovine and guinea pigs has 

previously been shown to be very different and this composition strongly affects the 

hydrophilicity of the solution. Within ovine bile, 100% of bile salts are tauroconjugated, 
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while only 16% of guinea pig bile is tauroconjugated with the rest being glycoconjugated; 

bovine bile is approximately a 50:50 split between the two (Alvaro et al., 1986). It is 

possible, therefore, that the composition of the bile salts, rather than only the mucin fraction, 

may also play a role in the affinity of C. jejuni to the gallbladder environment.  

 In summary, the data presented herein has demonstrated that C. jejuni IA 3902 

appears to have an affinity for neutral mucin, acid mucin and L-fucose in the ovine 

gallbladder based on observations that the organism localized in higher numbers to areas 

with increased staining for PAS, Alcian blue and lectin, including the deeper aspects of the 

mucosal glands of the gallbladder and in free-floating luminal debris composed of neutral 

and acid mucin aggregates. This data suggests that to survive with the harsh environment of 

the gallbladder, colonization of the deep mucosal glands occurs to allow avoidance of the 

constant flushing action of bile release and the detergent activities of bile salts in the lumen.  

 Future work in models utilizing natural methods of C. jejuni inoculation (i.e. – oral) is 

warranted to confirm the observed location of C. jejuni within the gallbladder environment as 

well as determine the route by which gallbladder colonization occurs. Investigation of 

histopathologic lesions and IHC staining for C. jejuni within the gallbladder of orally 

inoculated as well as naturally infected animals is warranted to confirm our observations that 

C. jejuni localizes to the deep glands of the gallbladder mucosa. In addition, future work 

combining oral inoculation with prior placement of a Hemoclip® over the common bile duct 

should also prove useful in determining whether the route of infection of the gallbladder is 

septicemia via the bloodstream, liver, and secretion into the bile, or retrograde through the 

common bile duct into the gallbladder directly from the intestinal tract. 

 



49 

 

Table 1.  Summary of histologic changes associated with direct inoculation of the ovine gallbladder with C. jejuni. 

  

Mucosal changes Eosinophils 
within the 

mucosa and 
lamina 
propria 

Mott cells 
within the 

mucosa and 
lamina 
propria 

Lymphoid 
nodules 

Neutrophilic 
infiltration 

Changes within the 
muscularis  Serosa 

  

Sample Ulceration  Gland 
abcesses 

Vascular 
congestion/  
lymphatic 
dilation 

Edema 

  

Serositis 

2 hours 

2 0 3 2 1 1 2 1 3 
 

1 
3a 0 1 2 1 0 2 1 2 

 
2 

6 0 3 0 3 1 1 3 2 
 

0 
8a,b 0 1 2 2 2 2 1 1 

 
0 

 
  

          

24 hours 

1a 1 2 1 0 1 3 3 2 
 

3 

4a 3 0 2 3 0 3 3 3 
 

1 
5 2-3 cm of transmural necrosis, demarcated by a band of degenerate neutrophils and cellular debris 
7b 0 2 1 1 2 2 1 1 

 
2 

 
  

          
Controlc bile 7 0 0 0 1 2 0 1 0 

 
0 

 bile 8a 0 0 0 1 1 0 1 0   0 

            
 

Legend: 0 = none/no lesion of that type present; 1 = mild lesion present; 2 = moderate lesion present; 3 = severe lesion present 
  

 

a = sample processed for immunohistochemistry 
       

 

b = sample processed for SEM 
        

 

c = gallbladder samples taken from uninoculated sheep 
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Figure 1. Comparison of recovery of bacteria with and without Hemoclip placement. 
Following direct inoculation of the ovine gallbladder, samples of bile were cultured to 
estimate total remaining bacterial (CFU/mL) using serial dilutions and the drop plate method 
of enumeration.  
 
 

  

Figure 2. Recovery of C. jejuni in bile and mucosal scrapings from in vivo inoculation. 
Samples of bile and mucosal scrapings following 2 and 24 hour incubation of C. jejuni 
inoculated directly into the ovine gallbladder were cultured to estimate total remaining 
bacterial (CFU/mL) using serial dilutions and the drop plate method of enumeration.  
 

2 hour incubation 24 hour incubation 



51 

 

 

Figure 3. Average recovery of bacteria between bile and mucosal scrapings (mean ± 
SEM). Samples of bile and mucosal scrapings following 2 and 24 hour incubation of C. 
jejuni inoculated directly into the ovine gallbladder were cultured to estimate total remaining 
bacteria (CFU/mL) using serial dilutions and the drop plate method of enumeration. The 
average of these results are presented to demonstrated that the number of bacteria within the 
gallbladder wall scrapings appears to have increased between the 2 hour and 24 hour 
timepoints while during the same timeframe the amount of viable bacteria present in bile in 
the lumen of the gallbladder decreased. No statistically significant difference was found. 
 

 

Figure 4. Recovery of C. jejuni from bile after 2 and 24 hours of incubation in vitro. 
Samples of bile following 2 and 24 hour incubation of C. jejuni inoculated in vitro were 
cultured to estimate total remaining bacteria (CFU/mL) using serial dilutions and the drop 
plate method of enumeration.  
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Figures 5A and 5B. Routine H & E staining of sheep gallbladders inoculated with C. 
jejuni IA 3902. At 2 hours post-inoculation (A), there is mild to moderate diffuse 
neutrophilic infiltration within the lamina propria mildly separating and surrounding glands. 
There is distension of the basal aspect of multifocal glands by neutrophils, cellular debris 
and/or mucus, which is also present within the lumen of the gallbladder. At 24 hours post- 
inoculation (B), mucosal architecture is diffusely disrupted, the apical aspect of gland 
mucosa are necrotic, moderate numbers of glands are lined by attenuated epithelium and are 
ectatic with mucus, degenerate neutrophils and pkynotic cellular debris. There is vascular 
congestion and hemorrhage, moderate transmural neutrophilic inflammation and moderate, 
multifocal, neutrophilic serositis. (Photos courtesy of Dr. Victoria Lashley) 
 

 

Figure 6. Gallbladder, 2 hours post-inoculation, major outer membrane protein 
(MOMP) immunohistochemistry. Photomicrograph of a section of ovine gallbladder tissue 
after immunohistochemical staining for C. jejuni. Notice the C. jejuni organisms (red stain) 
located deep within the luminal glands (arrows). (Photo courtesy of Dr. Victoria Lashley) 

A B 
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Figures 7A and 7B. Gallbladder, 24 hours post-inoculation, major outer membrane 
protein (MOMP) immunohistochemistry. Photomicrograph of a section of ovine 
gallbladder tissue after immunohistochemical staining for C. jejuni. Notice the C. jejuni 
organisms (red stain, arrows) located (A) as multifocal aggregates within clumps of luminal 
debris and as well as (B) deep within the remaining luminal glands. (Photos courtesy of Dr. 
Victoria Lashley) 

A 

B 
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Figures 8A and 8B. Gallbladder, 2 hours post-inoculation, scanning electron 
micrographs (SEM) of the surface of the gallbladder mucosa. SEM image of (A) an 
aggregate of a number of C. jejuni organisms (arrow) adherent to the apical aspect of the 
mucosa with loss of, clumping and blunting/ shortening of the adjacent microvilli, and (B) an 
area of focally extensive ulceration, with two C. jejuni organisms (arrows). 
 

 

A 

B 
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Figures 9A, 9B and 9C.  Gallbladder, 2 hours (A) and 24 hours (B, C) post-inoculation, 
Alcian blue (pH 2.5) staining for acid mucin. Photomicrographs of sections of ovine 
gallbladder tissue after Alcian blue staining (deep blue color) for acid mucin. (A) The 
mucosal surface and deep crypts are lined with moderate amounts of acid mucin at 2 hours 
post-inoculation. By 24 hours post-inoculation, acid mucin staining is still marked within the 
cells and lumen of the deep crypts (B), but is also seen to extend throughout the gland lumen 
space and is dispersed among gallbladder debris (C). (Photo courtesy of Dr. Victoria 
Lashley) 

A 

B C 
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Figures 10A, 10B, and 10C. Gallbladder, 2 hours (A) and 24 hours (B, C) post-
inoculation, PAS staining for neutral mucin. Photomicrographs of sections of ovine 
gallbladder tissue after PAS staining for neutral mucin (light purple color). (A) The mucosal 
surface and deep crypts are lined with marked amounts of neutral mucin at 2 hours post-
inoculation. By 24 hours post-inoculation, neutral mucin staining is still marked within the 
cells and lumen of the deep crypts (B), but is also seen to extend throughout the gland lumen 
space and is dispersed among gallbladder debris (C). (Photo courtesy of Dr. Victoria 
Lashley) 

A 

B C 
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Figures 11A and 11B.  Gallbladder, 2 hours (A) and 24 hours (B) post-inoculation, 
lectin staining for L-fucose containing glycans. Photomicrographs of sections of ovine 
gallbladder tissue after lectin staining for L-fucose (deep brown color). (A) The mucosal 
surface and deep crypts are lined with marked amounts of L-fucose at 2 hours post-
inoculation. By 24 hours post-inoculation (B), L-fucose staining is still present within glands 
and debris in remnant gallbladder mucosa. (Photos courtesy of Dr. Victoria Lashley) 

A 

B 
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CHAPTER 3 

THE TRANSCRIPTOME OF CAMPYLOBACTER JEJUNI SHEEP ABORTION CLONE 

IA 3902 FOLLOWING IN VIVO EXPOSURE TO THE OVINE GALLBLADDER  

 

Abstract 

Colonization of the gallbladder by enteric pathogens such as Salmonella typhi, 

Listeria monocytogenes, and Campylobacter jejuni is thought to play a key role in 

transmission and persistence of these important zoonotic agents; however, little is known 

about the molecular mechanisms that allow for bacterial survival within this harsh 

environment. The recent emergence of a highly virulent C. jejuni sheep abortion clone, which 

is represented by the clinical isolate IA 3902, as the dominant cause for sheep abortion in the 

United States, combined with its ability to cause gastroenteritis in humans, make further 

understanding of the molecular mechanisms that allow for colonization and virulence of this 

particular strain especially important. To begin to understand the molecular mechanisms 

associated with survival in the host gallbladder, C. jejuni IA 3902 was exposed for up to 24 

hours to both the natural ovine host in vivo gallbladder environment, as well as ovine bile in 

vitro. Following exposure, total RNA was isolated from the bile and high throughput deep 

sequencing of strand specific rRNA-depleted total RNA was used to characterize the 

transcriptome of IA 3902 under these conditions. Our results demonstrated for the first time 

the complete transcriptome of C. jejuni IA 3902 during exposure to an important host 

environment, the sheep gallbladder. Exposure to the host environment as compared to in 

vitro bile alone provided a more robust picture of the complexity of gene regulation required 

for survival in the host gallbladder. A subset of genes including a large number of protein 
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coding genes as well as seven previously identified non-coding RNAs were confirmed to be 

differentially expressed within our data, suggesting that they may play a key role in 

adaptation upon exposure to these conditions. This research provides valuable insights into 

the molecular mechanisms that may be utilized by C. jejuni IA 3902 to induce disease and 

develop a carrier state within the inhospitable gallbladder environment.  

 

Introduction 

 Campylobacter jejuni is now the leading cause of ovine campylobacteriosis in the 

United States, recently surpassing C. fetus subsp. fetus as the primary causative agent of 

bacterial abortion (Kirkbride, 1993; Delong, 1996). This change has been driven by the rapid 

emergence of a highly virulent sheep abortion (SA) clone that harbors chromosomally 

encoded tetracycline resistance (Sahin et al., 2008). Outbreaks of zoonotic transmission to 

humans related to raw milk consumption have been reported (Sahin et al., 2012), 

highlighting the need for greater understanding of the mechanisms utilized by this highly 

virulent strain of C. jejuni to both cause disease and persist in animal hosts. 

Chronic colonization and shedding of organisms into the environment is thought to 

play a key role in maintenance of C. jejuni in the sheep population. Abattoir studies of sheep 

and other ruminants have shown that the gallbladder is frequently positive for C. jejuni even 

in the absence of clinical disease (Ertas et al., 2003; Acik and Cetinkaya, 2006; Sahin et al., 

2012). In order to decrease colonization and chronic shedding with C. jejuni in animal 

reservoirs, there is a critical need to understand the mechanisms utilized by this organism to 

colonize and survive in this harsh environment. In Chapter 2, we demonstrated that survival 

within the gallbladder mucous layer and deep glands may serve as a critical nidus for chronic 
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infection or shedding of C. jejuni into the environment. Additional work is necessary to 

determine the molecular mechanisms that allow C. jejuni to survive exposure to bile and 

establish colonization of the gallbladder mucosa.  

Although multiple in vitro studies have shown expression of key virulence factors in 

the presence of bile salts (Gaynor et al., 2001; Lin et al., 2003; Lin et al., 2005a; Raphael et 

al., 2005; Fox et al., 2007; Malik-Kale et al., 2008; Dzieciol et al., 2011), the levels assessed 

in these studies were equivalent to intestinal not gallbladder conditions. Little is known about 

how Campylobacter adapts to the harsh environment of the gallbladder; however, the ability 

to survive in bile is likely critical to their survival and colonization of the rest of the 

gastrointestinal tract as well (Gunn, 2000). In addition to a basic lack of studies replicating 

gallbladder bile exposure in vitro, the use of in vitro studies alone does not fully capture the 

intricacies of the in vivo gallbladder environment, nor the ongoing interaction between host 

and bacteria that is likely to be encountered.  

Only three studies to date have been published assessing the in vivo transcriptome of 

C. jejuni under exposure to any host environment; two of the three utilized microarray 

technology to assess transcriptional changes, and both determined that there are marked 

differences in gene expression profiles between in vivo and in vitro samples (Stintzi et al., 

2005; Woodall et al., 2005). While microarray studies have been very useful in beginning to 

understand gene expression and regulation, they are limited in that they can only identify 

changes in known genes. The third in vivo Campylobacter transcriptome study published to 

date utilized the emerging technology of high throughput RNA sequencing (RNAseq) to 

assess the in vivo transcriptome of C. jejuni during colonization of the chick intestinal tract 

and was able to demonstrate differential expression of both protein coding genes as well as 
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identify numerous putative regulatory RNAs (Taveirne et al., 2013). The rapid advancement 

of high throughput deep sequencing technologies along with the ability to assess the entire 

transcriptome without prior knowledge of genome structure has allowed RNAseq to become 

the new method of choice for studying global gene expression (Croucher and Thomson, 

2010; van Vliet, 2010; van Opijnen and Camilli, 2013). The power of global transcriptome 

studies utilizing the RNAseq approach to rapidly increase the knowledge base related to a 

particular area of interest is immense, and also is currently the method of choice for 

identification of the novel class of gene expression regulators, small non-coding RNAs 

(ncRNA, sRNA) (Sharma and Vogel, 2009). Using RNAseq technology, a large number of 

previously unknown non-coding RNAs have already recently been identified in other strains 

of C. jejuni (Chaudhuri et al., 2011; Butcher and Stintzi, 2013; Dugar et al., 2013; Porcelli et 

al., 2013; Taveirne et al., 2013); thus far the small RNA repertoire of sheep abortion clone 

IA 3902 remains uncharacterized.  

The overall goal of this study was to utilize RNA sequencing technology to study the 

transcriptome of C. jejuni IA 3902 following exposure to both the in vivo gallbladder of a 

natural host species (sheep)  as well as ovine bile alone in vitro. We reasoned that assessing 

exposure to both bile in vitro and the sheep gallbladder in vivo would enable the most 

complete assessment of the complex gene expression and regulatory networks necessary for 

survival within the host gallbladder environment provided to date, however, we hypothesized 

that by utilizing the in vivo host environment we would be able to identify an increased 

number of candidate genes required for survival in the gallbladder environment when 

compared to utilization of an in vitro model of bile alone. In addition, we hypothesized that 

the newly identified class of regulators, non-coding RNAs, could be identified utilizing this 
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same approach and would be observed to play an important role in survival within the host 

gallbladder. By utilizing strand-specific total RNA sequencing on the Illumina HiSeq 

platform, we were able to identify 434 protein coding genes to be upregulated and as well as 

102 downregulated in the in vivo host environment following 24 hours of exposure. In 

addition, 89 known and putative non-coding RNA genes were observed to be upregulated 

with 12 downregulated under the same conditions. The number of genes identified in the in 

vivo host environment was demonstrated to be almost twice the number identified at the same 

time points in vitro. Overall, we identified for the first time expression patterns and potential 

regulatory mechanisms utilized by a highly virulent strain of C. jejuni, IA 3902, to survive 

within the harsh gallbladder environment which potentially serves as a chronic nidus of 

infection for spread of disease between animals and humans.  

 

Materials and Methods 

Bacterial strains and culture conditions 

A clinical isolate of the C. jejuni SA (sheep abortion) clone, IA 3902, was utilized for 

the entirety of this study. This isolate was obtained from a sheep abortion outbreak in Iowa in 

2006 (Sahin et al., 2008) and clonal isolates of this strain have been identified from within 

the gallbladder of sheep in abattoir studies (Sahin et al., 2012). C. jejuni IA 3902 was 

routinely grown in Mueller-Hinton (MH) broth or agar plates (Becton-Dickinson, Franklin 

Lakes, NJ) at 42°C under microaerophilic conditions with the use of compressed gas (55% 

O2, 10% CO2, 85% N2). Specific culture conditions utilized during individual experiments to 

prepare animal and bile inoculums are described below, while culture of C. jejuni from bile 

and gallbladder mucosal scrapings are described in Chapter 2.  



63 

 

 

For preparation of the in vivo animal inoculum, 10 plates each containing 16 hours of 

overnight lawn growth were washed with 1 mL MH broth and collected into single sterile 50 

mL conical tubes (FisherScientific, Pittsburg, PA). The volume of broth in each vial was then 

standardized to 10 mL and gently mixed to ensure even distribution of bacteria within the 

solution. Following pooling and gentle mixing of the cultures, 500 µL of the collected culture 

was removed and processed immediately for RNA protection as described below. An 

additional 100 µL was then removed for a dilution series to accurately determine the amount 

of inoculum in CFU/mL. The remaining inoculum was then centrifuged at 3000 x g for 5 

minutes to pellet the cells and all but 1 mL of supernatant was removed. The remaining 1 mL 

of broth was then used to resuspend the cell pellet in each vial for a total inoculation volume 

of 1.5 mL per animal. The prepared inoculum was then placed under microaerophilic 

conditions and used within 3 hours of preparation.  

For preparation of the inoculum for the in vitro bile study, two sets of 6 plates each 

containing overnight lawn growth were washed and collected into sterile 50 mL conical tubes 

as described above and standardized to 5 mL rather than 10 mL. From this 5 mL of 

concentrated culture, 500 µL each was removed and processed immediately for RNA 

protection again as described below. The two sets of inoculum were then combined and an 

additional 100 µL was removed for a dilution series to accurately determine the amount of 

inoculum in CFU/mL. The approximately 9 mL of remaining concentrated culture was then 

divided equally into four aliquots of 2.2 mL each and used directly for inoculation of the in 

vitro bile samples as described below. 
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In vivo exposure of C. jejuni IA 3902 to the sheep gallbladder environment 

 All animal experiments were approved by the Iowa State University Institutional 

Animal Care and Use Committee (IACUC) prior to initiation and followed all appropriate 

animal care guidelines. Preliminary experiments utilizing one or two mixed breed female 

sheep obtained from local farms were performed to determine the best method to inoculate 

the gallbladder of sheep with C. jejuni and subsequently harvest enough viable bacteria for 

RNA isolation. Based on the results of this preliminary work which are more fully described 

in Chapter 2, a final determination of the necessity of full laparotomy with placement of a 

Hemoclip® (Weck, Research Triangle Park, NC) over the common bile duct was made, and 

thereafter all inoculations were performed via this method.  

For the primary study, eight adult female mixed breed sheep were obtained from two 

local farms with no known history of C. jejuni related abortions. The sheep were randomly 

divided into two groups, either 2 hour or 24 hour incubation, via a random number generator 

(www.random.org) and were inoculated via full laparotomy with placement of a Hemoclip® 

as described in Chapter 2. At either 2 hours or 24 hours post-inoculation as previously 

determined via random assignment, the sheep were humanely euthanized via intravenous 

injection of 1 mL/10 lb body weight barbituates (Fatal Plus®; Vortech, Dearborn, MI). 

Immediately following euthanasia, a clean incision was made into the ventral midline of the 

abdomen to expose the liver and gallbladder. Using a 16 gauge 1” sterile needle and a 60 mL 

syringe, the entire amount of bile retained in the gallbladder was removed via gentle 

aspiration. The collected bile was then immediately processed for RNA protection and 

isolation as described below. 

 

http://www.random.org/
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 In vitro bile inoculation and incubation 

 To compare the in vivo gallbladder environment to only bile exposure in vitro, fresh 

bile was collected from an additional group of eight sheep obtained from one of the same 

farms as above that were being utilized for an unrelated study. Again using a 16 gauge 1” 

sterile needle and a 60 mL syringe, the entire amount of bile retained in the gallbladder was 

removed via gentle aspiration. Following collection, the bile was cultured as described in 

Chapter 2 to determine if it was free of culturable bacteria. While awaiting culture results, the 

bile was stored at 4°C in sterile 50 mL conical tubes. Following confirmation of culture 

negative status, the entire collected amount of bile ranging in volume from 14 mL to 33 mL 

from four of the animals confirmed to be culture-negative was pre-warmed to ovine body 

temperature (39.5°C) in an incubator for 20 minutes and then inoculated with 1011 C. jejuni 

IA 3902 suspended in 2.2mL MH broth prepared as described in Chapter 2. Following 

inoculation, the bile was then incubated under microaerophilic conditions at 39.5°C in a static 

incubator. At 2 hours, half of the total amount of bile was removed for RNA protection and 

isolation as described below. The remaining bile was then incubated until 24 hours at which 

time it was also processed for RNA protection and isolation. 

 

RNA extraction and DNase treatment  

The bacterial inoculum samples that were set aside during preparation of animal and 

bile inoculums were processed immediately for RNA protection to maintain integrity of the 

RNA transcripts present. To minimize the number of replicates necessary for sequencing yet 

maintain a representation of all of the inoculums utilized, the inoculums for the in vivo 

experiment were pooled in sets of two (total of four sets of samples) to yield 1 mL each of 



66 

 

bacterial culture for processing. The 500 µL of inoculum for the two samples collected from 

the in vitro bile were processed individually. The inoculum samples were then centrifuged at 

8000 x g for 2 minutes immediately following collection to rapidly pellet the cells while 

minimizing the time elapsed between collection and introduction of an RNA protection solution. 

Following pelleting of the cells, the supernatant was decanted and 1 mL QIAzol Lysis Reagent 

(QIAGEN, Germantown,  MD) was added to the cultures to quench further RNA production and 

protect the RNA present from degradation. To resuspend the pellet, the mixture was then pipetted 

up and down and vortexed at high speed for 1 minute. Following vortexing, the QIAzol-culture 

mixture was incubated at room temperature for 5 minutes. QIAzol-protected cultures were then 

stored at -80°C for up to two months prior to proceeding with total RNA isolation. 

For the bile samples inoculated with C. jejuni IA 3902, immediately following collection 

from either the in vivo gallbladder or from the samples incubating in vitro, the bile was 

transferred into 15 mL conical tubes (FisherScientific) with no more than 7 mL bile per tube. The 

tubes were then centrifuged at 8000 x g for 2 minutes to rapidly pellet the cells while minimizing 

the time elapsed between collection and introduction of an RNA protection solution. The bile 

supernatant was then decanted and the size of the pellet obtained used to determine the amount of 

QIAzol Lysis Reagent to add to the tube for RNA protection. For concentrated bile samples (less 

than 10 mL total recovered bile), 1 mL of QIAzol Lysis reagent was added to the cell pellet per 

1.5 mL of the starting bile amount. For dilute bile samples (greater than 10 mL total recovered 

bile), 1 mL QIAzol was added per 3mL of the starting bile amount. The samples were then 

processed identically to the description above for the inoculums and stored at -80°C for up to two 

months prior to proceeding with total RNA isolation.  

Total RNA isolation was performed using the miRNeasy Mini Kit (QIAGEN) according 

to the manufacturer’s instructions to isolate total RNA >18 nt. One column was used per 1 mL of 
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QIAzol utilized for RNA stabilization. On-column DNase treatment was performed using the 

RNase-free DNase set (QIAGEN). 10µg of extracted RNA was further treated with the TURBO 

DNA-free kit (Life Technologies, Carlsbad, CA) following RNA isolation to remove any residual 

DNA contamination. The total RNA was then purified using the RNeasy MinElute Cleanup kit 

(QIAGEN) with the following modifications as recommended by QIAGEN Technical Services to 

retain total RNA, including RNA <200nt in length. No more than 50 µL of RNA sample was 

utilized to enter the RNeasy MinElute Cleanup protocol at a time; to the RNA sample, 350 µL of 

Buffer RLT was added, followed by 600 µL of 100% ethanol. The RNA-RLT-ethanol mixture 

then proceeded with the standard bind/wash/elute steps of the protocol as provided by the 

manufacturer.  

RNA concentration was measured using the NanoDrop ND-1000 spectrophotometer 

(ThermoScientific, Wilmington, DE) and Qubit RNA BR Assay (ThermoFisher Scientific, 

Waltham, MA) and RNA quality was measured using the Agilent 2100 Bioanalyzer RNA 6000 

Nano kit (Agilent Technologies, Santa Clara, CA). Verification of complete removal of any 

contaminating DNA was performed via PCR amplification of a portion of the CjSA_1356 gene, 

which is part of the capsule locus and has previously been determined via comparative genomics 

to only be present in C. jejuni IA 3902, using primers SA1356F and SA1356R  (Luo et al., 

2012). A single 24 hour in vivo sample failed to isolate any RNA following extraction and 

purification; therefore, it it did not continue with the rest of the library preparation. 

 

RNAseq library preparation and sequencing 

For the preliminary RNA sequencing, the total RNA isolation was performed as 

described above except the RNeasy MinElute Cleanup step was omitted. Depletion of rRNA 

was performed on 5 µg each of gallbladder exposed and plate growth RNA using the Ribo-
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Zero rRNA Removal Kit for Gram Negative Bacteria (Epicentre, Madison, WI) according to 

the manufacturer’s instructions. A portion of RNA from each of the same samples was 

reserved and was not treated for rRNA removal. Following rRNA removal, rRNA removal 

efficiency was analyzed via the Agilent 2100 Bioanalyzer RNA 6000 Pico kit (Agilent 

Technologies).  RNA samples, both Ribo-Zero treated and non-Ribo-Zero treated, were then 

submitted to the Iowa State University DNA Facility for library preparation. Each of the 

samples submitted was then subjected to two separate library preparation methods. Strand-

specific cDNA libraries of both Ribo-Zero treated and non-treated total RNA from the in vivo 

and plate grown samples were generated using the ScriptSeq mRNA-seq Library prep kit 

(Epicentre) according to manufacturer’s instructions. In addition, non-strand specific cDNA 

libraries of both Ribo-Zero treated and non-treated total RNA from the in vivo and plate 

grown samples were generated using the TruSeq RNA Sample Preparation Kit (Illumina, San 

Diego, CA). All samples were barcoded using standard Illumina barcodes. The samples were 

then sequenced on a 100-cycle single lane of the Illumina HiSeq 2000.  

 For the full scale project, analysis of the in vivo collected RNA samples via the 

Agilent Bioanalyzer suggested that some samples likely contained host (ovine) RNA along 

with bacterial RNA; therefore, an rRNA removal kit suited to removal of both eukaryotic and 

prokaryotic rRNA was chosen for preparation of the RNAseq library. 2.5 µg of confirmed 

DNA-free total RNA was treated with Ribo-Zero Magnetic Gold rRNA Removal Kit 

(Epidemiology) according to the manufacturer’s instructions (Illumina). Following rRNA 

removal, the rRNA depleted total RNA was again purified using the RNeasy MinElute 

Cleanup kit using the same modifications as described above. Following clean-up, the RNA 

was eluted into 12 µl of sterile RNase-free water; quality, quantity, and rRNA removal 
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efficiency was then analyzed via the Agilent 2100 Bioanalyzer RNA 6000 Pico kit (Agilent 

Technologies).  

Library preparation for sequencing on the Illumina HiSeq platform was completed 

using the TruSeq stranded mRNA HT library preparation kit (Illumina) with some 

modifications. As this kit was designed for use with eukaryotic RNA with poly-A tails, the 

initial poly-A RNA purification step was omitted. To enter the protocol, 5 µl of the rRNA-

depleted RNA totaling approximately 200 ng was added to 13 µl of the “Fragment, Prime, 

Finish” mix. The remainder of the library preparation was carried out according to the 

manufacturer’s instructions and all 24 samples were barcoded using the high-throughput 

(HT) 96-well RNA Adapter Plate (RAP) as supplied by the manufacturer. Following 

enrichment of the cDNA fragments, the quality of the cDNA was validated using the Agilent 

2100 Bioanalyzer DNA 1000 kit (Agilent Technologies) and quantity was determined via the 

Qubit dsDNA BR Assay (ThermoFisher Scientific). Following library validation, the indexed 

cDNA samples were submitted to the Iowa State University DNA Facility where they were 

normalized and pooled according to the manufacturer’s instructions. The pooled library was 

then sequenced on an Illumina HiSeq 2500 machine in high-output single read mode with 

100 cycles. 

 

Differential gene expression analysis of RNAseq data 

 For the preliminary RNAseq experiment only, data analysis was performed by Dr. 

Andrew Severin of the Iowa State University Genome Informatics Facility. Differential gene 

expression between the in vivo gallbladder exposed and plate grown control samples was 

initially assessed via QuasiSeq using upper quartile normalization (Lund et al., 2012; Smyth, 
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2004). Following analysis, a change in gene expression was deemed significant when the Q-

value (false discovery rate) was below 5% and a >1.5 fold change in expression levels was 

present. Once the Rockhopper method of differential gene expression described below was 

available, this original data was also reanalyzed using the newer method as well.  

For the primary study, to analyze the differences in gene expression between the plate 

grown inoculum, in vivo gallbladder, and in vitro bile exposed strains C. jejuni IA 3902 at 

various time points, Rockhopper (http://cs.wellesley.edu/~btjaden/Rockhopper/), a freely 

available RNAseq analysis platform, was utilized as previously described using the standard 

settings of the program (McClure et al., 2013). Using this program, results of gene 

expression are normalized and reported by the program as expression of genes using reads 

per kilobase per million reads (RPKM), except that instead of dividing by the total number of 

reads, Rockhopper divides by the upper quartile of gene expression. 

Following computational analysis via Rockhopper, a change in gene expression was 

deemed significant when the Q-value (false discovery rate) was below 5% and a >1.5 fold 

change in expression levels was present. If in any condition being compared the expression 

level (RPKM) was “0”, it was changed to “1” to allow for statistical analysis to be 

performed. Any significant changes in 16S or 23S rRNA genes were ignored as these were 

determined to be due to differences in efficiency of rRNA removal by Ribo-Zero and not 

inherent differences between strains and conditions. Read count data was visually assessed 

using the Integrated Genome Viewer (IGV) (https://www.broadinstitute.org/igv/) (Robinson 

et al., 2011; Thorvaldsdóttir et al., 2013). Differentially expressed genes were then assessed 

for function using the Clusters of Orthologous Groups (COG) (Galperin et al., 2015) as 

previously described in IA 3902 (Wu et al., 2013). Venn diagrams depicting overlap of genes 

http://cs.wellesley.edu/~btjaden/Rockhopper/
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differentially regulated in multiple conditions were generated using the Venny website 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html) (Oliveros, 2007-2105). Metabolic 

pathway analysis was performed using the Kegg Pathways when appropriate  

(http://www.genome.jp/kegg/pathway.html) (Kanehisa et al., 2015).  

 

Validation of gene expression observed in RNAseq data with NanoString 

 To validate the results of the gene expression and antisense expression data generated 

in the preliminary RNAseq experiment, NanoString nCounter technology (Fortina and 

Surrey, 2008; Geiss et al., 2008) was utilized similar to previous reports in bacteria to 

validate sense and antisense transcription following RNAseq experiments (Passalacqua et al., 

2012). Briefly, a portion of the same RNA samples that were utilized for the preliminary 

Illumina sequencing along with other samples of interest previously generated within our lab 

were sent to NanoString at a concentration of 100 ng/µl. Strand specific probes of 100 bp in 

length were designed by NanoString to target genes, putative small RNAs, and areas of 

antisense transcription of interest identified in the RNAseq study, as well as known 

housekeeping genes (gyrA, lpxC, rrsA/rrsB/rrsC, and thiC) for normalization control. Twelve 

genes were selected to have probes designed to detect both sense and antisense transcripts; 

nine of these were observed to have high levels of antisense transcription in the RNAseq 

experiment, while three were observed to have minimal antisense transcription observed via 

RNAseq. Two intergenic regions that demonstrated reads suggestive of the presence of a 

non-coding RNA were selected to have probes designed for those regions. Three technical 

replicates were run on each sample submitted. To analyze the results, raw counts were 

adjusted using the geometric mean of the reference genes present in the codeset; the positive 

http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://www.genome.jp/kegg/pathway.html
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control probe normalization factors for all assays were within the range of 0.3-3, indicating 

minimal inter-assay technical variation. Reference gene normalization factors were also 

within the recommended range of 0.1-10, indicating very reproducible mRNA input between 

samples. The average background signal was then calculated for each sample, and this was 

subtracted from the experimental data to remove background noise. Following background 

normalization, the average of the three technical replicates was taken to result in an average 

signal for each area of interest. 

 

Results 

Preliminary animal studies, RNA sequencing, and NanoString validation 

Preliminary experiments utilizing one or two mixed breed female sheep obtained 

from local farms were performed to determine the best method to inoculate the gallbladder of 

sheep with C. jejuni and subsequently harvest enough viable bacteria for RNA isolation. A 

full laparotomy with placement of a Hemoclip® over the common bile duct to prevent 

secretion of bile into the intestinal tract finally yielded adequate numbers of viable bacteria 

recovered for isolation of RNA of sufficient quality for next generation sequencing. Based on 

the results of this preliminary work, a final determination of the necessity of full laparotomy 

with placement of a Hemoclip® over the common bile duct was made, and thereafter all 

inoculations were performed via this method.  

A preliminary Illumina sequencing run was made based on the RNA collected from 

this first animal to validate that quality data could be achieved using the proposed RNA 

isolation methods and to assess for the necessity of Ribo-Zero rRNA removal and strand 

specific libraries. Table 1a and 1b shows the results of this preliminary RNAseq run which 
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confirmed that Ribo-Zero depletion with strand specific library preparation yielded high 

quality data for further analysis. Early analysis using QuasiSeq to determine differentially 

expressed genes predicted 361 upregulated and 108 downregulated genes following 2 hour 

incubation in the gallbladder (data not shown). Included in the list of upregulated genes were 

cmeB and cmeDEF, all of which have been previously identified as being important in bile 

tolerance (Lin et al., 2003; Lin et al., 2005a).  Additional analysis for non-coding RNAs and 

antisense RNA revealed multiple areas of interest for putative non-coding RNAs, as well as 

significant amounts of antisense transcription genome-wide (data not shown). Reanalysis of 

the same data using Rockhopper yielded minimal identification of differentially expressed 

genes (12 protein coding genes and 7 non-coding RNAs predicted downregulated; 3 protein 

coding genes and 1 non-coding RNA predicted upregulated) likely due to a lack of replicate 

data. Of particular interest, however, a previously identified small RNA, CjNC110 (Dugar et 

al., 2013), was noted to exhibit a substantial difference in expression between the bile and 

control condition when analyzed via both QuasiSeq and Rockhopper (Figure 1).  

NanoString nCounter technology was utilized to valid the gene expression data 

observed in the preliminary experiment for a select number of genes either demonstrated as 

differentially expressed in the preliminary data or previously suggested to play a role in 

survival in exposure to bile. Table 2 demonstrates a comparison of the calculated fold 

change for these genes using both the NanoString and RNAseq data. While the exact levels 

of expression are not identical, the NanoString data confirms the direction of change present 

following exposure of C. jejuni to the host gallbladder environment in six of the seven genes 

assessed.  
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As a number of genes were observed to demonstrate significant antisense 

transcription in the dataset, NanoString probes designed to target antisense regions of the 

coding ORF as well as the coding strand itself were designed for 12 genes in an effort to 

determine if the antisense transcripts were real or an artificial byproduct of the library 

preparation process (Table 3). For six of the nine genes observed to have high antisense 

transcription in the RNAseq data, some level of antisense transcription was also observed via 

NanoString in the plate grown sample. Interestingly, for five of those six genes, antisense 

transcription was observed to be negligible in the gallbladder exposed sample; for the other 

gene, the presence of antisense transcription was noted to increase in the gallbladder 

environment. For the remaining three genes observed to have high levels of antisense 

transcription via RNAseq, no transcripts could be detected in the same region using 

NanoString under either condition. Interestingly, the rnpB gene was noted to exhibit 

extremely high levels of transcription only antisense to the annotated gene. Further analysis 

of this region of the genome for IA 3902 when compared to other annotated strains of C. 

jejuni indicated that the rnpB gene was annotated on the opposite (incorrect) strand for IA 

3902 as compared to all other sequenced strains of this species (Dugar et al., 2013) which 

explains the observed flipped levels of transcription. For the three genes observed to have 

low levels of antisense transcripts present in the RNAseq data, all three were noted to have 

negligible antisense transcripts present for the plate grown samples, however, some level of 

antisense transcripts were noted in two of the three the gallbladder exposed samples. 
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Summary of Illumina RNAseq results from primary study 

Overall, 21 barcoded libraries were sequenced in a single lane on the Illumina HiSeq 

2500 yielding over 74 million reads, with close to 67 million high quality reads aligning to 

either the genome or pVir plasmid of C. jejuni IA 3902 and averaging 3,176,824 reads per 

library (Tables 4A and 4B). The majority of reads (average of 72% of total reads), mapped to 

protein coding genes of the chromosome, with an average of 20% of reads mapping to 

ribosomal RNA following rRNA depletion with Ribo-Zero (median of 15%). Only four of 

the 21 libraries contained less than or equal to 5% ribosomal RNA reads, which would be 

consistent with the manufacturer’s predicted rRNA removal efficiency. The majority of the 

libraries (14 of 21) did not exhibit efficient rRNA removal (>10% rRNA reads) with one 

library completely failing to exhibit rRNA removal at all (93% of reads mapped to rRNA 

genes); the reason for this is unclear. An average of 1% of reads mapped to antisense regions 

of the annotated protein coding genome on both the chromosome and pVir plasmid. On the 

pVir plasmid, 91% of reads mapped to protein coding genes, while an average of 8% of reads 

were to unannotated regions.  

 

Differential gene expression analysis of RNAseq data  

 Rockhopper was utilized for analysis of differential gene expression between the in 

vivo and in vitro bile samples, IA 3902 plate growth for inoculum, and 2 and 24 hour time 

points. A summary of the differences in numbers of genes with increased and decreased 

expression under either in vivo or in vitro bile exposure when compared to unexposed IA 

3902 is given in Table 5. Overall, the in vivo samples consistently identified a larger number 

of genes when compared to the same time point in vitro. In addition, a larger number of 
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genes were identified at the 24 hour time point when compared to 2 hours both in vivo and in 

vitro. The in vivo sheep gallbladder exposed samples at 24 hours yielded the most 

differentially expressed genes of all the conditions and time points, therefore, Table 6A 

(down regulated) and 6B (up regulated) lists all of the genes differentially expressed with 

annotation to indicate which genes are part of multi-gene operons. Overall, 86 operons of the 

363 predicted by Rockhopper to exist on both the IA 3902 chromosome (350) and pVir 

plasmid (13) demonstrated at least 2 consecutive genes differentially upregulated, with 21 of 

those exhibiting changes in all of the genes predicted in the operon. Conversely, 21 of the 

363 predicted operons (19 chromosome, 3 pVir) were demonstrated to have at least 2 

consecutive genes downregulated, with 9 of those exhibiting changes in all of the genes 

predicted in that operon. Supplementary Tables S1, S2, and S3 list all of the genes that 

were determined to be differentially expressed when compared to the unexposed IA 3902 

inoculum for each of the other in vivo and in vitro conditions and time points. 

 To estimate the functional categories of genes affected by each condition and time 

point, the COG function for each gene was mapped and the totals compiled for each 

condition and time point; these totals were then compared to the total number of possible 

genes within each category in C. jejuni IA 3902 and the percentage of possible genes 

differentially expressed was then utilized to assessed for trends in the data (Figures 2A, 2B, 

2C, and 2D). For all conditions and time points studied, the “cell motility” category 

demonstrated either the highest or second highest percentage of total genes upregulated. 

“Secondary metabolites biosynthesis, transport and catabolism” was also one of the highest 

categories consistently upregulated under all conditions, and “intracellular trafficking and 

secretion” was also highly upregulated on a percentage basis. While not noted to be within 
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the top categories on a percentage basis, “cell wall/membrane biogenesis” was consistently 

noted to be the top category represented in all conditions and time points based on total 

number of genes upregulated rather than percentage. In contrast, the categories observed to 

have the highest percentage decreased in all comparisons and time points were “signal 

transduction mechanisms” and “amino acid transport and metabolism.”  In the in vivo 

conditions only, “energy production and conversion” was observed to be one of the top 

categories decreased at both time points. Based on total number of genes downregulated 

rather than percentage, “energy production and conversion” was again the highest category 

for both in vivo conditions, while “amino acid transport and metabolism” was consistently 

the highest category decreased for both in vitro conditions. 

  To compare the upregulated annotated genes that were identified for all four 

conditions with the unexposed IA 3902 inoculum, a Venn diagram was constructed to allow 

for visual comparisons (Figure 3). A total of 67 known genes were found to be upregulated 

in all 4 conditions, suggesting that these genes are required for survival following exposure 

to bile (Table 7). An additional 125 genes were identified that were upregulated in 3 of the 4 

conditions; the likelihood that these genes are also important to the response to bile is high. 

Table 8 demonstrates the 77 genes that were identified to be only upregulated in both in vivo 

conditions, suggestive of a role related to sensing of and interaction with the host 

environment unique from just exposure to bile. Conversely, a total of 10 genes (Table 9) 

were observed to be downregulated in all 4 conditions when compared to unexposed IA 3902 

again utilizing a Venn diagram for visual comparison (Figure 4), with an additional 23 genes 

observed to be downregulated in 3 of the 4 conditions.  
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 Table 10 demonstrates a summary of the number of genes found to be differentially 

expressed when the 2 hour and 24 hour time points for each condition were compared. 

Again, a greater number of genes were observed to be increased at the 24 hour time point as 

opposed to the 2 hour time point in vivo, suggesting continued evolution of the response to 

changes in the host environment over time. In contrast, very few genes were observed to be 

substantially different between the 2 and 24 hour time points in vitro. As the in vitro 

environment was static between the time points, it appears reasonable to suggest that little 

further adaptation was necessary between 2 and 24 hours for survival within bile alone.  

 

Identification of differentially expressed putative non-coding RNAs  

The Rockhopper program was utilized to parse the data from the primary experiment 

and construct a list of predicted novel non-coding RNAs that may play a role in survival of 

C. jejuni within the sheep gallbladder. A total of 91 potential non-coding RNA were 

predicted by the program, with 27 of the predictions indicating an antisense RNA, and the 

other 64 predictions being small RNAs primarily located within intergenic regions. 

Differential expression of these predicted non-coding RNAs was performed identically to the 

known annotated genes by the Rockhopper program and the results are included in the 

previously described supplementary tables (S1-S3) as well as Table 6. Figures 5A and 5B 

demonstrates a Venn diagram which allows visual comparison of all of the putative non-

coding RNAs that were identified for all four conditions when compared to unexposed IA 

3902. A total of 26 predicted non-coding RNAs were found to be upregulated in all 4 

conditions, as well as 3 noted to be downregulated in all conditions. These lists were then 

manually curated and the reads viewed via IGV and compared with the list of known genes 
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highly up and down regulated in the dataset. Many of these non-coding RNAs appear to be 

located in either the 5’ UTR or within intergenic regions of operons that were already 

determined to be either up or downregulated with the exception of one intergenic region, thus 

it is unlikely that the majority of them are truly unique non-coding RNAs (Supplemental 

Table S4).  

Manual examination of the entire list of non-coding RNAs did identify several 

previously validated non-coding RNAs (Dugar et al., 2013) as present and differentially 

regulated in our dataset; these are listed in Table 11A along with their differential expression 

between conditions in Table 11B. The CjNC110 small RNA previously identified within the 

preliminary dataset as differentially expressed in the gallbladder at 2 hours was not identified 

by Rockhopper in this study; therefore, a comparison of differential expression levels could 

not be made. Manual examination of the region via IGV did demonstrate reads aligning to 

this region, however, the level of expression was low in all conditions which likely explains 

why Rockhopper failed to identify it in this dataset. Additionally, the locations of the 

previously identified CjNC10, CjNC170, CjNC190, CjNC200 and tracrRNA, as well as 

reads antisense to CjSA_0158 (CJas_0168c), CjSA_0336 (CJas_0363c), CjSA_0668 

(CJas_0704) (Dugar et al., 2013), which were predicted to exist in IA 3902, all appeared to 

have expression in the same or similar location as these small RNAs, however, Rockhopper 

failed to identify them as well, also likely due to lower levels of expression.  

 

Discussion 

 The rapid advancement of high throughput deep sequencing technologies along with 

the ability to assess the entire transcriptome without prior knowledge of genome structure 
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have allowed RNA sequencing (RNAseq) to become the new method of choice for studying 

gene expression (Croucher et al., 2010; van Vliet, 2010; van Opijnen and Camilli, 2013). 

With the rapid increase in the quality of RNASeq data over the past several years and the use 

of replicates, this next-generation sequencing approach will likely soon be thought of to have 

the same reliability as RT-PCR experiments, the current gold standard for gene expression 

evaluation (de Sa et al., 2015). While RT-PCR can only be utilized to assess gene expression 

one gene at a time, the power of global transcriptome studies utilizing the RNAseq approach 

to rapidly increase the knowledge base related to a particular area of interest is immense, and 

also is currently the method of choice for identification of the novel class of gene expression 

regulators, small non-coding RNAs (ncRNA, sRNA) (Sharma and Vogel, 2009). Using 

RNAseq technology, a large number of previously unknown non-coding RNAs have already 

recently been identified in other strains of C. jejuni (Chaudhuri et al., 2011; Butcher and 

Stintzi, 2013; Dugar et al., 2013; Porcelli et al., 2013; Taveirne et al., 2013;). The data 

generated in our study represents the first report of the small RNA repertoire of the emergent 

and highly virulent C. jejuni sheep abortion clone IA 3902.  

 Overall, the dataset that was generated from this study provides a very robust 

assessment of the global transcriptome of C. jejuni within an important host environment. 

The method of RNA isolation utilized was able to maintain high quality total RNA despite 

the challenges associated with RNA extraction from bile. The use of strand-specific RNA 

sequencing on the Illumina HiSeq platform following rRNA depletion using Ribo-Zero 

yielded adequate numbers of high quality reads that successfully aligned to the genome of IA 

3902 albeit with a higher than anticipated number of reads mapping to the rRNA genes. The 

rRNA depletion kit utilized, Ribo-Zero Magnetic Gold rRNA Removal Kit (Epidemiology), 
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is specifically designed for use with eukaryotic (human/mouse/rat) and prokaryotic (gram 

positive and negative bacteria) mixed samples as would be encountered during in vivo 

experiments. This kit was chosen due to visual evidence of potential eukaryotic RNA 

presence observed in the RNA samples post-isolation, however, the drawback to utilizing a 

mixed population epidemiology kit is that a decreased number of probes were likely present 

to target gram negative rRNA. As the majority of the rRNA was still likely gram negative 

bacterial in this case, it is likely that the binding capacity of those probes was exceeded and 

thus increased the amount of bacterial rRNA  that remained in the sample despite the visual 

appearance of removal of all 16S and 23S rRNA via the Agilent Bioanalyzer. The overall 

percentage of reads that mapped to the C. jejuni genome was quite high, indicating that very 

little eukaryotic or other types of prokaryotic RNA were present in the samples. Only one 

sample failed to rRNA deplete, while an additional sample was observed to have a lower 

percentage of reads mapping to C. jejuni IA 3902. Analysis of differential gene expression 

via Rockhopper with and without the inclusion of these samples yielded minimal alterations 

in results; therefore it was elected to maintain the samples within the dataset. Despite the 

minor difficulties related to less than ideal rRNA depletion, the samples averaged over 3 

million high quality mapped reads per sample. Previous studies undertaken to assess the 

necessary amount of reads per prokaryotic sample to generate statistically significant data 

indicate that when data from well-correlated biological replicates are utilized, 2-3 million 

reads per sample enables a significant number of genes differentially expressed to be 

identified with high statistical significance (Haas et al., 2012). 

While our differential expression dataset cannot be utilized to necessarily measure 

genes associated with growth of C. jejuni IA 3902 in bile or in the gallbladder as the amount 
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of bacteria inoculated into each condition was already higher than the concentration typically 

observed during in vitro growth under laboratory conditions, it did allow for identification of 

genes associated with survival in both bile and within the in vivo gallbladder of the natural 

ovine host. A requirement of a false discovery rate (Q value) of less than 0.05 along with a 

fold change of greater than 1.5 was utilized to narrow the list of proposed differentially 

regulated genes to a complete yet hopefully biologically relevant list. The fact that a large 

number of operons were observed to be differentially regulated in our data adds increased 

confidence that the results obtained are likely to be statistically sound and biologically 

relevant.  

The presence of antisense transcripts within datasets such as this has garnered great 

debate and discussion over the past few years (Sharma et al., 2010; Dugar et al., 2013; 

Conway et al., 2014). To determine if the antisense expression present in our preliminary 

data was real, we utilized the NanoString nCounter technology as previously described to 

validate antisense transcription data (Passalacqua et al., 2012). Our results suggests that in 

some cases transcription antisense to annotated genes may be real and warrants further study, 

however, a portion of the observed antisense transcripts may be a spurious artifact of RNA 

library preparation. The observation that the overall number of reads mapping antisense to 

protein coding regions of the genome in the plate grown IA 3902 condition decreased from 

4% in the preliminary dataset to an average of less than 1% in the primary study with all 

other methods held the same supports this claim and would suggest that it is highly likely that 

strand specificity of library preparation technology has improved over the 3 year span 

between the preparation of the separate libraries. In addition, the use of NanoString 

technology to demonstrate that antisense transcripts could only be validated in a portion of 
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the genes where expression was observed via RNAseq supports this claim. Further work to 

continue improve detection of true versus spurious antisense transcripts within bacterial 

transcriptomes is warranted.   

To broadly assess the gene expression adaptations necessary for survival within both 

the in vivo and in vitro conditions, the COG function for each differentially expressed gene 

was mapped and the totals compiled for each condition and time point; these totals were then 

compared to the total number of possible genes within each COG category in C. jejuni IA 

3902 and the percentage of possible genes differentially expressed was then utilized to 

assessed for trends in the data. For all conditions and time points studied, the “cell motility” 

category demonstrated either the highest or second highest percentage of total genes 

upregulated. As motility has previously been demonstrated to be a requirement for in vivo 

colonization and virulence (Guerry et al., 2008), it seems reasonable that an increased 

production of genes associated with motility would be an important part of the response to 

the bile and gallbladder environments by C. jejuni. In addition, and as demonstrated in 

Chapter 2, it is highly likely that C.jejuni would seek out a location within the gallbladder 

such as the mucous layer and mucosal lining for chronic colonization. This behavior has 

already been described for C. jejuni in the small intestine (McSweegan and Walker, 1986; 

Shigematsu et al., 1998), and to be able to achieve this requires effective motility. 

“Secondary metabolites biosynthesis, transport and catabolism” was also one of the highest 

categories consistently upregulated under all conditions, however, a closer look reveals that 

while on a percentage basis this category is highly represented, only a very small number of 

genes are listed under this COG code for C. jejuni, therefore they represent a small 

percentage of the actual genes differentially expressed; the same can also be said about the 
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“intracellular trafficking and secretion” category. While not noted to be within the top 

categories on a percentage basis, “cell wall/membrane biogenesis” was consistently noted to 

be the top category represented in all conditions and time points based on total number of 

genes upregulated rather than percentage. Based on the strong detergent properties of bile 

salts that have been shown to be highly antibacterial as well as able to induce cellular lysis 

(Coleman et al., 1979; Begley et al., 2005), rapid repair and turnover of cell wall and 

membrane components is likely to be a key part of survival by C. jejuni when exposed to 

high concentrations of bile salts such as in bile or in the gallbladder.  

In contrast, the categories observed to have the highest percentage decreased in all 

comparisons and time points were “signal transduction mechanisms” and “amino acid 

transport and metabolism.”  In the in vivo conditions only, “energy production and 

conversion” was observed to be one of the top categories decreased at both time points. On 

the surface, it appears counterintuitive that expression for these categories of genes be down 

regulated as it would be expected that there would be increased need for transmission of 

extracellular signals into the cell and increased amino acid turnover to provide for increased 

protein production. When assessed more closely, in all cases there were a similar number of 

genes also upregulated within the same categories, which suggests a shift in the specific 

pathways utilized for these cellular processes rather than an overall decrease in these 

processes. Based on total number of genes downregulated rather than percentage, “energy 

production and conversion” was the highest category for both in vivo conditions; again, 

closer examination revealed that a large number of genes within this category were also 

upregulated, suggesting a shift in pathways and not an overall decline in energy production.  
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Despite the importance of adaptation to bile exposure for all bacteria surviving within 

the gastrointestinal tract, very little published work has focused on the exact molecular 

mechanisms by which Campylobacter survives exposure to bile. Even those studies that have 

been performed frequently focused on the concentrations of bile salts typically found in the 

intestinal tract (i.e. – 1% w/v), not within the gallbladder itself (i.e. – 10% w/v). As presented 

in Table 12, only 14 genes have been specifically reported to be involved in the bile 

tolerance response in Campylobacter, 2 of which are not present in strain IA 3902. The 

efflux pumps cmeABC and cmeDEF are probably the most important genes to have 

previously been shown to play an important role in resistance of Campylobacter to bile salts 

in vitro (Lin et al., 2002; Akiba et al., 2006). The observation of universally increased 

expression of cmeAB and cmeE in all conditions exposed to bile in our study when compared 

to plate growth confirms that these genes, while not expressed at high levels, are likely 

critical to survival when exposed to bile. As cmeC and cmeF are the last genes transcribed in 

each of the operons, it is reasonable to suggest that some decrease in the amount of full 

length transcript produced may occur as transcription moves across the operon, thus the 

reason that the fold change for those genes was always observed to be less than the 

corresponding gene at the start of the operon and significance was not reached in all 

conditions. Bile salts (cholate and taurocholate) have previously been show to induce 

expression of cmeABC in vitro in a time and dose dependent manner ranging from 6- to 16-

fold increases in expression (Lin et al., 2005a). A much lower magnitude of increase was 

observed when exposed to pure bile both in vivo and in vitro in our study. This suggests that 

the complexities of complete bile may blunt the response observed when only certain 

components such as bile salts are utilized under controlled settings. The expression of 
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cmeDEF has previously been noted to be intrinsically lower than cmeABC, and inactivation 

of cmeF has been demonstrated to increase expression levels of cmeABC (Akiba et al., 

2006). While overall expression levels for both operons were similar in our study, this 

suggests that the efflux pumps encoded by cmeABC and cmeDEF may work together to 

ensure the viability of Campylobacter under conditions of exposure to toxic substances such 

as bile. 

 Expression of cmeABC has also been previously shown to be under the control of the 

transcription repressor CmeR, with exposure to bile salts in vitro inhibiting binding of CmeR 

to the promoter of cmeABC and allowing for increased transcription of the cmeABC operon 

(Lin et al., 2005b). Exposure to cholate in vitro in that same study did not demonstrate an 

increased in expression of the cmeR gene. In our study, mild increases in cmeR expression 

were observed that were only found to be statistically significant in vitro at 24 hours. Based 

on the previously described interaction of CmeR with bile salts, it is likely that these mild 

increases in expression have minimal biological effect on cmeABC expression as CmeR-

mediated repression is likely to be inhibited under these conditions. The cmeDEF operon has 

been shown to be unaffected by CmeR repression (Akiba et al., 2006).  

 The response regulator CbrR (Campylobacter bile response regulator) has also been 

shown to be required for resistance to the effects of bile salts as mutants lacking it are unable 

to grow under sub-inhibitory concentrations of sodium deoxycholate (Raphael et al., 2005). 

It is believed that CbrR is a response regulator that is part of a two-component regulatory 

system which typically also includes a sensor kinase. Minimal changes in expression of this 

gene were noted in our data, with only the in vivo 24 hour condition found to have a 

statistically significant increase in expression. Because of the proposed role as a response 
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regulator, it seems reasonable that while its presence is necessary for survival when exposed 

to bile, its expression level may not need to change for its function to be fulfilled. The signal 

mediated by this system is likely to lead to downstream changes in the expression of multiple 

genes, however, that may affect the ability of Campylobacter to respond to exposure to bile.  

 The secretory protein CiaB (Campylobacter invasion antigen B) has also been 

suggested to play a role in bile tolerance and has been demonstrated to be secreted upon co-

cultivation of C. jejuni with intestinal cells and plays a role in the ability of C. jejuni to 

invade host cells (Konkel et al., 1999). As synthesis and secretion of the CiaB protein have 

been demonstrated to be independent events, Rivera-Amill et al., (2001) proposed that C. 

jejuni normally begins to synthesize the Cia proteins upon passage into the small intestine, 

accumulates them within the cell, and then secretes them upon contact with the host cells 

lining the gastrointestinal tract as a concentrated release may be necessary to evoke an effect 

on the host cells. Increased expression when exposed to the bile salt sodium deoxycholate in 

vitro was demonstrated via RT-PCR, which suggests that exposure to bile salts in the 

intestinal tract might normally be the trigger for increased expression (Rivera-Amill et al., 

2001). Interestingly, expression of ciaB was not demonstrated to be significantly altered in 

any of the conditions in our study. A tendency towards decreased expression was noted at 2 

hours both in vivo and in vitro, with levels above non-exposed controls slightly increased at 

24 hours in both conditions. There are several possibilities to explain these findings. It is 

possible that the response to the bile environment was rapid and thus not present by the time 

samples were taken at 2 hours, or occurred during the time between the 2 hour and 24 hour 

samples. Additional studies have shown that ciaB expression when exposed to deoxycholate 

was maximal at 12 hours and began to decline again by 15 hours (Malik-Kale et al., 2008). It 
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is also possible that the higher levels of bile salts encountered in the gallbladder do not have 

the same effect as low concentrations such as what would be found in the intestinal tract. 

Finally, as these RNA samples were taken from bacteria free within the lumen of the 

gallbladder, and not intimately in contact with host cells, it is conceivable that direct contact 

with host cells may play a role in expression in vivo. 

 The last gene of interest to be previously described as important in the response of 

Campylobacter to exposure to bile is flaA (Alm et al., 1993), which is responsible for 

production of the FlaA protein, one of two protein subunits that form the flagellar filament. It 

has been previously demonstrated through the use of reporter fusions that the σ 28 promoter 

of flaA is upregulated when exposed to bovine bile, bile salts (deoxycholate), and L-fucose 

(Allen and Griffiths, 2001). In our study, expression of flaA was not shown to be statistically 

different under any of the conditions studied. This was an unexpected finding given the 

previous work done in vitro; however, as the in vitro work looked at very specific conditions 

and did not actually measure gene transcripts, only promoter activity, it is possible that 

exposure to a complex host environment renders a different response, or again, that the 

increased expression response was missed in the time points studied.  

 A few additional works have attempted to assess the response of Campylobacter to 

bile on a more global scale. Microarray analysis of RNA extracted from C. jejuni strain 

F3011 cultured with 0.1% deoxycholate for 12 hours allowed observation of a total of 156 

upregulated and 46 downregualted genes under these conditions (Malik-Kale et al., 2008). In 

addition to increased expression of the known bile-associated virulence genes ciaB and 

cmeABC, they also specifically identified increased expression of two additional virulence 

factors: dccR, which has been shown to be part of a two-component system regulatory 
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system that may play a role in the in vivo colonization ability of C. jejuni (MacKichan et al., 

2004), and tlyA, a hemolysin that has been shown to be important for Helicobacter in vivo 

colonization ability (Martino et al., 2001). Expression levels of tlyA were minimal to non-

existent in all conditions examined in our work; this may be related to differences between 

strains of C. jejuni. Expression of dccR was observed to be increased 1.4 fold at 24 hours 

under both in vivo and in vitro conditions; therefore it is possible that during the time period 

between 2 and 24 hours significantly increased expression may have occurred.  In a separate 

study, Fox et al., (2007) utilized protein expression following 18 hours of exposure to 2.5 to 

5% oxbile added to rich media to identify 14 proteins with increased expression. Comparison 

of the proteins found to be increased to our work demonstrated no correlation with increased 

expression of the mRNA transcripts of those same exact proteins; however, some of the basic 

categories of upregulated genes were the same. While this previous work represents 

important information regarding exposure to differing levels of bile in vitro, it is possible that 

differences between the simplified in vitro environment and the complex in vivo environment 

presented in our study allowed for differing results. In addition, altered translation efficiency 

in the absence of increased presence of the mRNAs of the respective proteins may also play a 

role and lead to difficulty in comparing protein expression to transcriptomic data.  

 One of the biggest advantages and disadvantages of generating RNAseq 

transcriptomic data under multiple in vivo and in vitro conditions as we have demonstrated 

here is the sheer amount of data that is generated. Many other comparisons and conclusions 

can likely be drawn from this data and hopefully will be in the future; however, for the work 

presented here we have limited our analysis of the data to answering the original hypotheses 

of the study. As our focus was on what could be identified by utilizing a natural host in vivo 
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model, the gallbladder in vivo 24 hour time point was utilized for further data analysis to 

demonstrate important cellular pathways that are affected by exposure to the host 

environment. 

 Multiple genes responsible for chemotaxis were observed to be upregulated in the 

gallbladder condition only (Figure 6), including cheY, cheR, and a putative methyl-accepting 

chemotaxis protein (MCP) CjSA_0897. The CheA-CheY phosphor-relay pathway has 

previously been shown to act as the master switch to control taxis by altering the direction of 

flagellar rotation from a swimming phenotype (counter-clockwise rotation) to a tumbling 

phenotype (clockwise rotation) (Lertsethtakarn et al., 2011). The cheY gene has also been 

shown to be required for adhesion and invasion (Yao et al., 1997). CjSA_0897 is a putative 

methyl-accepting chemotaxis protein (MCP); MCPs have been shown to play an important 

role in sensing the environmental signals to activate the CheA-CheY system (Lacal et al., 

2010). As there would be minimal signals present in the in vitro environment from the host to 

direct chemotaxis nor host cells to adhere to or invade, it seems reasonable that these 

important genes would only be upregulated in the host environment where seeking out other 

host locations would be advantageous. Related to chemotaxis in the host environment, and 

based on our data presented in Chapter 2, we were surprised to find that the L-fucose 

permease, fucP, was not upregulated under any of the conditions in our data. As L-fucose 

staining was concentrated in areas intimately associated with the mucosal layer, and as the 

RNA for this study was collected from bacteria free within the gallbladder lumen or in bile 

alone, it is possible that the bacteria sampled had not yet encountered L-fucose in sufficient 

quantities to warrant upregulation of the genes related to its use as an energy source. The 

ability to seek out new environments relies heavily on cell motility, which was demonstrated 



91 

 

to be an overall area of increased gene expression in our data. Figure 7 demonstrates genes 

upregulated in the Kegg pathway for flagellar assembly at 24 hours in the in vivo gallbladder 

environment. While flaA was not observed to be upregulated in our data, the increased 

expression of these additional flagella-associated genes suggests that increased flagellar 

assembly is occurring.  

An additional finding of interest within the dataset is the upregulation of the twin 

arginine targeting (TAT) secretion system. Upregulation of tatC was demonstrated at 24 

hours both in in vivo and in vitro, and tatB was upregulated in all but the in vitro 2 hour 

condition. The TAT secretion system is widely distributed across bacteria genera and has 

been demonstrated to consist of a cytoplasmic pore that uses proton motive force to transport 

folded proteins across the cytoplasmic membrane (Berks et al., 2000). This system has been 

characterized in C. jejuni and is thought to play an important role in stress response and 

colonization (Rajashekara et al., 2009). As the primary role for this system is to secrete 

proteins across the cytoplasmic membrane, we compared our dataset to the list of 14 

predicted conserved proteins in C. jejuni generated by Rajashekara et al. (2009) with TAT 

targeting motifs; 6 of the 14 demonstrated increased expression under at least one condition, 

with 2 (NrfH and SdhA) exhibiting increased expression under all 4 conditions. The majority 

of the proteins predicted to contain a TAT motif are thought to be involved in cellular 

respiration, indicating an important role in generation of cellular energy.  

The sdhA (CjSA_0409) and sdhB (CjSA_0410 and CjSA_0411) genes were 

originally annotated as part of a succinate dehydrogenase complex (Sdh), however, further 

work in C. jejuni determined that this was a misannotation and that the correct annotation of 

this operon was Mfr as it was demonstrated to actually encode a methylmenaquinol:fumarate 



92 

 

reductase (MfrABE) (Guccione et al., 2010). Both MfrA and MfrB were demonstrated in that 

paper to be localized to the periplasm and upregulated under oxygen limiting conditions as 

would be experienced in vivo. Further work by Hitchcock et al. (2010) conclusively 

determined that the TAT secretion system is required for MfrA and MfrB localization to the 

periplasm, with MfrB being co-localized as it does not contain a TAT motif. Interestingly, 

sdhB (mrfB), was also demonstrated to be upregulated in all conditions examined within our 

study, suggesting that the function of the methylmenaquinol:fumarate reductase is critical to 

survival of C. jejuni within the bile environment.  

The other potential TAT-secreted protein identified upregulated in all conditions was 

NrfH, a membrane bound cytochrome-c type protein which is the sole electron donor to the 

periplasmic nitrite reductase NrfA; the two proteins are believed to form a tight complex 

within the periplasmic space (Pittman et al., 2007). Interestingly, nrfA was also demonstrated 

to be upregulated under all conditions examined in our study. NrfA has been shown to be the 

terminal enzyme in the reduction of nitrite to ammonia (Pittman and Kelly, 2005) and was 

demonstrated to play a key role in the resistance to reactive nitrogen species and nitric oxide 

(NO) in C. jejuni (Pittman et al., 2007). Resistance to nitric oxide is thought to be a key 

feature of C. jejuni pathogenesis as NO production within the intestinal tract has been shown 

to be increased in human patients with C. jejuni-induced diarrhea (Enocksson et al., 2004). 

While additional work by Hitchcock et al. (2010) suggests that NrfH is not in fact a TAT 

secreted protein, this does not lessen the fact that nrfH and nrfA appear to play an important 

role in survival following exposure to bile by C. jejuni.  

An additional pathway in the area of energy generation that also appears upregulated 

in the majority of conditions examined in our study is the F-type bacterial ATPase, of which 
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four components were identified as upregulated (atpF - all conditions; atpF’ and atpB – 3 of 

4 conditions; atpH –in vivo 24 hour only). The F-type ATP synthase has previously been 

shown to play a key role in the bile tolerance of other types of intestinal bacteria (Sanchez et 

al., 2006). In addition, some components of ATP synthase were also identified in C. jejuni by 

Fox et al. (2007) as increased proteins produced when exposed to bile. Based on the large 

number of other cellular processes that are upregulated during exposure to bile, it seems 

reasonable to suggest that the upregulation of the ATP synthase may aid in compensation for 

the increased energy needs of cellular processes such as increased efflux pump activity and 

chemotaxis, among others.  

 Of particular interest within the observed genes to be upregulated under all conditions 

examined, two hypothetical proteins (CjSA_0040 and CjSA_0528) exhibited extreme 

upregulation when compared to plate grown control samples; this response was particularly 

robust in the host environment for both genes. CjSA_0040 is predicted to be a 107 amino 

acid protein that appears to be well conserved across the Campylobacter genus but is not 

found in other genera of bacteria. Assessment for conserved structural domains was 

performed using NCBI Protein BLAST and yielded no predictions of conserved structure for 

CjSA_0040. CjSA_0528 is predicted to be a 309 amino acid protein that also appears to be 

well conserved across the Campylobacter genus but again the sequence does not appear to be 

conserved in other genera of bacteria. Assessment for conserved structural protein domains 

was performed using NCBI Protein BLAST and in this case did yield a prediction of 

conserved structure within the outer membrane channel domain for CjSA_0528. Proteins 

within this family are considered to be part of the porin superfamily and may be related to 

gram negative porins or ligand gated channels (Marchler-Bauer et al., 2015). Both 
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CjSA_0040 and CjSA_0538 were also noted to be increased in expression levels in our 

preliminary experiment, with CjSA_0538 one of only 14 protein coding genes that were 

considered significant by Rockhopper on reanalysis. The combination of data presented here 

provides strong evidence to support an important role for both of these genes in bile tolerance 

and suggests that, in particular, further work to determine the structure and function of 

CjSA_0538 may lead to important new insights in the mechanisms utilized by C. jejuni to 

survive in the bile rich gallbladder environment. In addition, if further analysis confirms that 

the location of CjSA_0538 is indeed in the outer membrane, it may prove to be immunogenic 

and a valuable target for vaccine research.  

 One of the primary goals in generating this data was to validate the hypothesis that 

small non-coding RNAs play a role in the adaptation to survival within bile and the 

gallbladder environment. Non-coding RNAs can be rapidly produced as they do not require 

translation to be active, and once produced in the cell they can rapidly be recycled if 

necessary (Papenfort and Vogel, 2010). Non-coding RNAs can also regulate multiple 

different targets within a cell in a variety of ways to coordinate rapid responses to changing 

environments (Waters and Storz, 2009). Based on the demonstrated ability of small RNAs to 

rapidly respond to changing environments and thus rapidly mediate altered translation of 

genes, it seemed reasonable that small RNAs should play a key role in adaptation to exposure 

to bile and the in vivo gallbladder. Analysis of expression data by Rockhopper and prediction 

of non-coding RNAs demonstrated expression of a number of previously identified non-

coding RNAs (7 identified by Rockhopper, with 9 additionally identified by manual curation) 

that were validated to exist in the closely related 11168 and predicted to exist in IA 3902 

based on sequence homology (Dugar et al., 2013). In contrast, of the predicted small RNAs 
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to have >80% nucleotide identity to regions within the IA 3902 genome in Dugar et al., 

(2013), 9 were not observed to have any transcription in the region of homology. This is 

consistent with observations in both Campylobacter as well as other species of bacteria such 

as Listeria where expression of conserved ncRNAs has been shown to be very divergent even 

among closely related strains (Wurtzel et al., 2012; Dugar et al., 2013). Differences in 

growth temperatures, library construction protocols, and prediction algorithms have also been 

shown to play a role in the ability to detect non-coding RNAs between separate experiments 

even within the same strain (Taveirne et al., 2013), thus these nuances also likely played a 

role in this case.  

Of the seven ncRNAs confirmed to be observed in IA 3902 by Rockhopper in our 

data, all exhibited differential gene expression, with six of the seven demonstrating increased 

expression in at least one of the conditions studied. CjNC140 and CjNC180 demonstrated 

differential expression in the majority of conditions and time points studied (three of four, 

and all four, respectively) and were observed to be consistently more increased in the in vivo 

rather than in vitro conditions. This suggests that these non-coding RNAs may play a key 

role in the ability of C. jejuni to sense the changing host environment and respond quickly to 

those changes. The exact mechanism by which these small RNAs exert their regulatory 

control cannot be determined at this time as it is quite possible that each could, for example, 

serve to both stabilize some mRNA transcripts for increased protein expression while at the 

same time targeting other mRNA transcripts for degradation and decreased protein 

expression. Interestingly, expression in the region of CjNC190, a small RNA reported 

antisense to CjNC180 was also observed but again, not at high enough levels to be identified 

by the Rockhopper program. No reads were observed in the region of CjNC190 in the plate 
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grown samples, with increased expression subjectively visible in all exposed conditions and 

time points, suggesting that both CjNC180 and CjNC190 may play a role either together or 

separately in adaptation to the bile environment. No additional publications describing the 

function of any of these small RNAs in Campylobacter have been published at this time; 

therefore, future work to elucidate the targets and mechanisms of action of these potent 

regulators is warranted.  

Of the identified non-coding RNAs, the only one to be observed to be downregulated, 

particularly within the in vivo host conditions, was CjNC130, which has been proven to be a 

6S RNA homologue. The 6S RNA has been shown in other model organisms to play an 

important role in regulating transcription on a global scale by competing with DNA 

promoters for binding to RNA polymerase (Wassarman and Storz, 2000). The coding 

sequence of 6S is not conserved across bacterial genera, however, computational searches 

based on secondary structure have allowed for its identification across much of the 

prokaryotic kingdom (Wehner et al., 2014). The formation of a secondary structure 

consisting of a large double stranded hairpin with a central bulge is essential as it resembles 

an open promoter complex that allows for binding to RNA polymerase (Barrick et al., 2005). 

It seems reasonable given the evidence of upregulation of expression of a large number of 

genes in our data at both time points in vivo that decreased expression of the 6S RNA may 

allow for an overall increase in gene expression due to decreased interference by the 6S RNA 

with RNA polymerase binding. While this change is likely to globally affect gene 

transcription due to a direct effect on RNA polymerase rather than individual gene 

transcription, the evidence presented here demonstrates that overall transcription regulation 

within the host is likely important for establishing colonization and induction of disease. 
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While we were unable to validate the differential expression of the CjNC110 small 

RNA as was observed in the preliminary experiment, visual observation of expression in that 

region suggests that a decrease in expression was observed in all conditions when compared 

to the plate grown C. jejuni as was shown in the preliminary experiment. The likely reason 

for a lack of recognition by Rockhopper was again the generally low expression levels 

overall, including in the plate grown samples. In the preliminary experiment, there was a 

very high level of expression of CjNC110 in the plate grown samples as well as the 

neighboring luxS gene, which allowed for obvious recognition by the program. The plate 

grown samples were prepared identically for each set of experiments, so it is unclear what led 

to the large difference in expression under normal growth conditions and this finding 

warrants further study.  

 In summary, this is the first report of the complete transcriptome of C. jejuni IA 3902 

during exposure to an important host environment, the sheep gallbladder. We have 

demonstrated that the transcriptional environment during direct interaction within the host, as 

displayed by utilizing in vivo inoculation of and RNA recovery from the sheep gallbladder 

environment, provides a more robust picture of the complexity of gene regulation required 

for survival when compared to in vitro exposure to ovine bile alone. A subset of genes were 

identified that are believed to play important role in survival within bile, as well as survival 

in the host environment, including two highly expressed hypothetical proteins that warrant 

further study. In addition to identification of important protein coding genes, seven 

previously identified non-coding RNAs were confirmed to be differentially expressed within 

our data, suggesting that they may also play a key role in rapid regulation of gene expression 

upon exposure to bile and the host environment. Additional work to validate the differential 
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expression of a subset of the genes and non-coding RNAs identified in this study, such as via 

the NanoString nCounter or RT-PCR, is warranted.  
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Table 1A. Summary of RNAseq results of the preliminary samples that were rRNA depleted and utilized strand specific library 
preparation.   
 

 

 
 
 
 
 
 
 

 

Table 1B. Summary of RNAseq mapping results of the preliminary samples presented in Table 1A. 

 

 
Percent mapped reads  

 
Chromosome 

 
pVir 

 

Protein coding 
genes 

 
Ribosomal RNA 

 
Other known RNA Unannotated  

 

Protein coding 
genes Unannotated  

Library Sense Antisense   Sense Antisense   Sense Antisense Regions   Sense Antisense regions 

IA 3902 plate growth 16hr     
preliminary run 

86 4  1 0  4 2 2  89 4 7 

   IA 3902 gallbladder 2hr  
preliminary run 

16 0  82 1  0 0 1  90 2 8 
      

AVERAGE 51 2  42 1  2 1 2  90 3 8 

 
Total Number of successfully aligned reads Percent 

Library  reads Chromosome pVir Total  mapped reads 

IA 3902 plate growth 16hr  10925096 7557580 50312 7607892 69.6% 
preliminary run 

IA 3902 sheep gallbladder 2 hr  11480013 6450502 5728 6456230 56.2% 
preliminary run 

AVERAGE 11202555 7004041 28020 7032061 62.9% 
TOTAL 22405109   14064122  
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Table 2. Comparison of the calculated fold change for genes known to be important in the 
response of C.jejuni to bile using both the NanoString and RNAseq data in the preliminary 
dataset. 
 

 
Fold Change 

 
  In vivo vs plate grown 

  Nanostring RNAseq 
CjNC110 -5.9 -13.1 
cbrR -1.7 -1.4 
cmeR -1.7 -1.1 
cmeA 1.4 1.7 
cmeB 1.3 1.7 
flaA -1.5 1.6 
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Table 3. Comparison of the average normalized signal for sense and antisense expression of 
genes observed to have either high or low antisense expression in the preliminaryRNAseq 
dataset as assessed by NanoString nCounter technology. 
 

 
Plate growth 16 hours 

 
In vivo gallbladder 2 hour 

 
NanoString target   NanoString target 

Target Gene  Sense (coding) Antisense   Sense (coding) Antisense 

      HIGH ANTISENSE EXPRESSION LEVELS on RNAseq 
cbrR 861 15 

 
506 1 

cmeA 1419 156 
 

1948 1 
cmeB 1347 283 

 
1697 1891 

flaA 42803 24 
 

29487 1 
peb1 28424 122 

 
5619 1 

ssrA  196652 55 
 

81034 1 

      rnpB 1 36592 
 

1325 17693 

      porA 166538 1 
 

45806 1 
purD 7630 1 

 
2770 1 

      LOW ANTISENSE EXPRESISION LEVELS on RNAseq 
cftA 1 1 

 
1 1 

chuA 1 1 
 

1 227 
nrfH 193 1 

 
1904 201 

            

      All counts reported as reference gene normalized background subtracted 
1 = signifies no expression present 
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Table 4A. Summary of RNAseq results from the primary study including 21 rRNA depleted 
strand specific libraries generated on a single lane of the Illumina HiSeq 2500.   
 

 Total 
 reads 

Number of successfully aligned reads Percent 

Library Chromosome pVir Total 
 mapped 

reads 

IA 3902 gallbladder 2 hr – 1 3213364 2405222 12658 2417880 75.2% 

IA 3902 gallbladder 2 hr – 2 2802472 1989859 7305 1997164 71.3% 

IA 3902 gallbladder 2 hr – 3 3977312 3843651 23073 3866724 97.2% 

IA 3902 gallbladder 2 hr – 4 3452608 3352807 7167 3359974 97.3% 

IA 3902 gallbladder 24 hr – 1 3625410 2859526 18047 2877573 79.4% 

IA 3902 gallbladder 24 hr – 2 4342702 4066527 14730 4081257 94.0% 

IA 3902 gallbladder 24 hr – 3 3016425 494901 3088 497989 16.5% 

IA 3902 bile in vitro 2 hrs – 1 3794841 3666255 22332 3688587 97.2% 

IA 3902 bile in vitro 2 hrs – 2 5389416 5195381 10339 5205720 96.6% 

IA 3902 bile in vitro 2 hrs – 3 3610288 3465827 7170 3472997 96.2% 

IA 3902 bile in vitro 2 hrs – 4 2654785 2577672 1094 2578766 97.1% 

IA 3902 bile in vitro 24 hrs – 1 3299251 3190727 22126 3212853 97.4% 

IA 3902 bile in vitro 24 hrs – 2 2753010 2670812 15853 2686665 97.6% 

IA 3902 bile in vitro 24 hrs – 3 3461969 3330945 16918 3347863 96.7% 

IA 3902 bile in vitro 24 hrs – 4 3362952 3233165 9087 3242252 96.4% 

IA 3902 plate growth 16hr – 1 3663245 3430105 15841 3445946 94.1% 

IA 3902 plate growth 16hr – 2 3241200 3123409 13195 3136604 96.8% 

IA 3902 plate growth 16hr – 3 3636647 3463128 18606 3481734 95.7% 

IA 3902 plate growth 16hr – 4 2753937 2653828 21870 2675698 97.2% 

IA 3902 plate growth 16hr – 5 3311668 3198827 25085 3223912 97.4% 

IA 3902 plate growth 16hr – 6 4319642 4184757 30393 4215150 97.6% 

AVERAGE 3508721 3161778 15047 3176824 89.8% 

MINIMUM 2654785 494901 1094 497989 16.5% 

MAXIMUM 5389416 5195381 30393 5205720 97.6% 

TOTAL 73683144   66713308 90.5% 
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Table 4B. Summary of RNAseq mapping results of the 21 samples from the primary experiment presented in Table 1A. 

 
Percent mapped reads  

 
Chromosome 

 
pVir 

 

Protein coding 
genes 

 
Ribosomal RNA 

 
Other known RNA Unannotated  

 

Protein coding 
genes Unannotated  

Library Sense Antisense   Sense Antisense   Sense Antisense regions   Sense Antisense regions 

IA 3902 gallbladder 2 hr - 1 72 1  21 0  2 1 3  90 1 9 

IA 3902 gallbladder 2 hr - 2 87 1  5 0  3 1 2  90 2 9 

IA 3902 gallbladder 2 hr - 3 85 1  7 0  3 2 3  91 1 8 

IA 3902 gallbladder 2 hr - 4 79 1  12 0  5 1 2  92 1 7 

IA 3902  gallbladder 24 hr - 1 90 2  2 0  2 1 4  81 2 17 

IA 3902 gallbladder 24 hr - 2 86 1  8 0  2 1 3  85 2 13 

IA 3902  gallbladder 24 hr - 3 79 1  12 0  2 2 4  89 2 9 

IA 3902 bile in vitro 2 hrs - 1 67 0 
 

27 0 
 

2 1 2 
 

92 0 7 

IA 3902 bile in vitro 2 hrs - 2 58 0 
 

33 0 
 

4 2 3 
 

94 1 5 

IA 3902 bile in vitro 2 hrs - 3 59 0  33 0  3 2 2  95 0 4 

IA 3902 bile in vitro 2 hrs - 4 6 0  93 0  0 0 0  91 1 9 

IA 3902 bile in vitro 24 hrs - 1 84 1  3 0  6 2 3  89 1 10 

IA 3902 bile in vitro 24 hrs - 2 89 1  3 0  2 2 3  92 1 7 

IA 3902 bile in vitro 24 hrs - 3 78 0  15 0  2 2 3  93 0 7 

IA 3902 bile in vitro 24 hrs - 4 55 0  35 0  5 1 3  91 1 8 

IA 3902 plate growth 16hr - 1 64 1  27 0  4 1 3  91 1 9 

IA 3902 plate growth 16hr - 2 65 0  26 0  5 1 2  94 1 6 

IA 3902 plate growth 16hr - 3 71 1  20 0  5 1 2  92 1 7 

IA 3902 plate growth 16hr - 4 85 1  6 0  5 1 2  92 0 7 

IA 3902 plate growth 16hr - 5 76 1  15 0  4 2 3  93 0 6 

IA 3902 plate growth 16hr - 6 76 0   14 0   4 2 3   93 0 6 

AVERAGE 72 1  20 0  3 1 3  91 1 8 
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Table 5. Summary of the differences in numbers of genes with increased and decreased expression under either in vivo or in vitro bile 
exposure when compared to unexposed IA 3902 at both 2 hours and 24 hours. 
 

 
Condition 

 
In vivo gallbladder   In vitro bile 

 
2 hours   24 hours 

 
2 hours   24 hours 

  Chromosome pVir   Chromosome pVir   Chromosome pVir   Chromosome pVir 

            Protein-coding genes 
           Number downregulated  105 7 

 
96 6 

 
10  4 

 
54 7 

Number upregulated 283 10 
 

420 14 
 

102 7 
 

248 11 

            Non-coding RNA genes 
          

 

Number downregulated [15] [1] 
 

[12] [0] 
 

[7] [0] 
 

[16] [1] 
Number upregulated [62] [1] 

 
[87] [2] 

 
[44] [1] 

 
[53] [1] 

                        

[ ] = signifies that this is a putative list generated by Rockhopper of predicted non-coding RNA as well as known non-coding RNA genes 
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Table 6A. Genes with decreased differential expression in the in vivo sheep gallbladder exposed samples at 24 hours with annotation 
to indicate which genes are a part of multi-gene operons.  
 

    

Expression 
(RPKM) 

 
Significance 

Name Synonym 
COG 
Code Product 

Plate   
16hr 

 GB       
in vivo 
24 hr 

 Q Value  Fold 
change   

         DECREASED EXPRESSION AT 24 HOURS EXPOSURE TO GALLBLADDER 
     

         - CJSA_0004a 
 

hypothetical protein 45 17 
 

2.9E-04 -2.6 
- CJSA_0005a R molybdopterin oxidoreductase family protein 45 21 

 
8.9E-03 -2.1 

gltD CJSA_0009 ER glutamate synthase subunit beta 114 31 
 

1.6E-08 -3.7 
- CJSA_0016 R ExsB protein 55 23 

 
6.0E-03 -2.4 

- CJSA_0025 R sodium/dicarboxylate symporter 151 50 
 

2.7E-05 -3.0 
- CJSA_0037 C cytochrome c family protein 239 69 

 
5.9E-07 -3.5 

- CJSA_0063 HJ hypothetical protein 627 181 
 

3.0E-04 -3.5 
- CJSA_0066b S hypothetical protein 409 98 

 
2.0E-11 -4.2 

- CJSA_0067b C iron-sulfur cluster binding protein 1024 210 
 

3.4E-06 -4.9 
- CJSA_0068b C putative oxidoreductase iron-sulfur subunit 991 168 

 
3.4E-15 -5.9 

lctP CJSA_0069 C L-lactate permease 1674 464 
 

3.0E-02 -3.6 
- CJSA_0082c R putative lipoprotein 213 82 

 
2.2E-03 -2.6 

- CJSA_0083c 
 

hypothetical protein 108 44 
 

5.8E-03 -2.5 
- CJSA_0084c M hypothetical protein 85 30 

 
7.4E-05 -2.8 

atpC CJSA_0099 C F0F1 ATP synthase subunit epsilon 278 119 
 

1.2E-02 -2.3 
- CJSA_0158 

 
hypothetical protein 1356 338 

 
1.4E-10 -4.0 

- CJSA_0216 C NifU family protein 790 233 
 

6.7E-04 -3.4 
cheW CJSA_0259 NT purine-binding chemotaxis protein CheW 516 218 

 
3.8E-02 -2.4 

peb3 CJSA_0265 R major antigenic peptide PEB3 560 236 
 

3.4E-02 -2.4 
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Table 6A continued       
panD CJSA_0270 H aspartate alpha-decarboxylase 116 54 

 
1.3E-02 -2.1 

modA CJSA_0277 P molybdate transport system substrate-binding protein 207 54 
 

1.1E-09 -3.8 
- CJSA_0301 J endoribonuclease L-PSP family protein 98 44 

 
1.4E-02 -2.2 

- CJSA_0335 S hypothetical protein 55 24 
 

2.1E-02 -2.3 
- CJSA_0388 E putative GMC oxidoreductase subunit 248 72 

 
7.9E-05 -3.4 

- CJSA_0399 
 

hypothetical protein 721 243 
 

1.8E-04 -3.0 
uxaA CJSA_0452d G putative altronate hydrolase N-terminus 79 34 

 
1.3E-02 -2.3 

uxaA CJSA_0453d G putative altronate hydrolase C-terminus 79 20 
 

2.1E-11 -4.0 
- CJSA_0459 S hypothetical protein 24 8 

 
1.7E-05 -3.0 

purQ CJSA_0484 F phosphoribosylformylglycinamidine synthase I 130 54 
 

4.8E-03 -2.4 
mdh CJSA_0499 C malate dehydrogenase 413 157 

 
1.3E-02 -2.6 

sucD CJSA_0501 C succinyl-coA synthetase alpha chain 824 265 
 

2.9E-03 -3.1 
oorB CJSA_0504e C 2-oxoglutarate-acceptor oxidoreductase subunit OorB 985 320 

 
6.8E-03 -3.1 

oorC CJSA_0505e C 2-oxoglutarate-acceptor oxidoreductase subunit OorC 966 227 
 

3.2E-07 -4.3 
- CJSA_0520f S hypothetical protein 95 33 

 
4.4E-05 -2.9 

- CJSA_0521f 
 

hypothetical protein 140 22 
 

2.7E-36 -6.4 
Fba CJSA_0565 G fructose-bisphosphate aldolase 831 293 

 
3.1E-02 -2.8 

hypE CJSA_0594 O hydrogenase expression/formation protein HypE 53 26 
 

2.5E-02 -2.0 
- CJSA_0620g E M24 family peptidase 410 107 

 
3.5E-05 -3.8 

- CJSA_0621g E MFS di-/tripeptide transporter 183 44 
 

6.0E-11 -4.2 
Pta CJSA_0652h C phosphate acetyltransferase 314 94 

 
6.1E-04 -3.3 

ackA CJSA_0653h C acetate kinase 386 95 
 

3.2E-07 -4.1 
glnA CJSA_0663 E glutamine synthetase, type I 463 116 

 
2.6E-05 -4.0 

rpsP CJSA_0674 J 30S ribosomal protein S16 452 203 
 

2.7E-02 -2.2 
- CJSA_0685 

 
hypothetical protein 109 48 

 
4.6E-03 -2.3 

- CJSA_0787i C Na+/H+ antiporter family protein 64 23 
 

2.8E-04 -2.8 
- CJSA_0788i R putative oxidoreductase 128 40 

 
5.8E-07 -3.2 

- CJSA_0849 E putative amino-acid transport protein 461 137 
 

5.0E-04 -3.4 
hupB CJSA_0858 L DNA-binding protein HU-like protein 5807 1691 

 
4.4E-02 -3.4 
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Table 6A continued       
- CJSA_0861j S hypothetical protein 147 38 

 
2.6E-10 -3.9 

cstA CJSA_0862j T carbon starvation protein A 293 60 
 

2.2E-09 -4.9 
- CJSA_0864k E amino acid ABC transporter permease 136 50 

 
1.3E-04 -2.7 

- CJSA_0865k E amino acid ABC transporter permease 594 127 
 

2.8E-10 -4.7 
peb1A CJSA_0866k ET bifunctional adhesin/ABC transporter aspartate/glutamate 3087 689 

 
4.0E-03 -4.5 

pebC CJSA_0867k E amino acid ABC transporter ATP-binding protein 584 175 
 

2.2E-04 -3.3 
argH CJSA_0876l E argininosuccinate lyase 134 59 

 
2.6E-02 -2.3 

pckA CJSA_0877l C phosphoenolpyruvate carboxykinase 292 125 
 

3.5E-02 -2.3 
- CJSA_0880 R putative sodium:amino-acid symporter family protein 22 8 

 
3.2E-04 -2.8 

purH CJSA_0898 F bifunctional formyltransferase/IMP cyclohydrolase 40 16 
 

4.5E-04 -2.5 
purL CJSA_0900 F phosphoribosylformylglycinamidine synthase II 42 18 

 
1.5E-02 -2.3 

cjaA CJSA_0925 ET putative amino-acid transporter periplasmic solute-binding protein 1299 311 
 

2.9E-05 -4.2 
hipO CJSA_0928 R hippurate hydrolase 90 22 

 
4.4E-13 -4.1 

- CJSA_0930 P putative MFS (Major Facilitator Superfamily) transport protein 75 18 
 

8.3E-12 -4.2 
- CJSA_0948 O putative membrane bound ATPase 31 15 

 
1.8E-02 -2.1 

- CJSA_0955m 
 

hypothetical protein 38 12 
 

1.1E-06 -3.2 
- CJSA_0956m O putative cytochrome C biogenesis protein 45 20 

 
2.0E-02 -2.3 

livM CJSA_0959m' E high affinity branched-chain amino acid ABC transporter permease 37 19 
 

5.1E-02 -1.9 
livH CJSA_0960m E high affinity branched-chain amino acid ABC transporter permease 91 40 

 
1.1E-02 -2.3 

- CJSA_1093 C cytochrome c553 2759 880 
 

5.0E-03 -3.1 
- CJSA_1102 S hypothetical protein 279 109 

 
3.2E-04 -2.6 

metF CJSA_1140 E 5,10-methylenetetrahydrofolate reductase 38 17 
 

1.5E-02 -2.2 
htrA CJSA_1166 O serine protease (protease DO) 319 118 

 
1.3E-02 -2.7 

hydD CJSA_1203n C putative hydrogenase maturation protease 259 116 
 

2.4E-02 -2.2 
hydC CJSA_1204n C Ni/Fe-hydrogenase B-type cytochrome subunit 635 223 

 
7.3E-03 -2.8 

acpP3 CJSA_1242 
 

putative acyl carrier protein 69 32 
 

3.0E-02 -2.2 
fldA CJSA_1316 C lavodoxin FldA 1818 428 

 
2.3E-06 -4.2 

- CJSA_1322 J putative endoribonuclease L-PSP 477 131 
 

1.6E-08 -3.6 
- CJSA_1408o 

 
hypothetical protein 211 69 

 
8.9E-06 -3.1 
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Table 6A continued        
- CJSA_1409o 

 
hypothetical protein 506 218 

 
1.5E-02 -2.3 

putP CJSA_1424p ER putative sodium/proline permease 451 50 
 

1.6E-63 -9.0 
putA CJSA_1425p C putative proline dehydrogenase/carboxylate dehydrogenase 399 95 

 
5.2E-04 -4.2 

moaE CJSA_1439 H putative molybdopterin converting factor,subunit 2 196 79 
 

2.4E-03 -2.5 
Acs CJSA_1453 I acetyl-coenzyme A synthetase 406 87 

 
2.2E-07 -4.7 

- CJSA_1456 H putative tungsten ABC-transport/periplamic substrate binding protein 450 129 
 

2.0E-05 -3.5 
- CJSA_1457 R hypothetical protein 115 38 

 
4.3E-06 -3.0 

- CJSA_1459 E putative allophanate hydrolase subunit 2 50 23 
 

1.1E-02 -2.2 
nuol CJSA_1483q C NADH dehydrogenase I subunit I 133 58 

 
1.1E-02 -2.3 

nuoH CJSA_1484q C NADH dehydrogenase I subunit H 83 36 
 

1.4E-02 -2.3 
hisA CJSA_1513 E phosphoribosylformimino-5-aminoimidazole carboxamide isomerase 52 24 

 
2.1E-02 -2.2 

kgtP CJSA_1531 G alpha-ketoglutarate permease 364 108 
 

3.9E-04 -3.4 
sdaA CJSA_1536r E L-serine dehydratase 533 151 

 
2.1E-04 -3.5 

sdaC CJSA_1537r E amino acid transporter 397 173 
 

4.7E-02 -2.3 
p19 CJSA_1570s' P periplasmic protein p19 1423 546 

 
4.6E-02 -2.6 

- CJSA_1572s M ABC transporter permease 54 24 
 

8.1E-03 -2.3 
- CJSA_1573s M ABC transporter permease 35 18 

 
4.8E-02 -1.9 

gltA CJSA_1592 C citrate synthase 1082 284 
 

5.6E-03 -3.8 
leuC CJSA_1626 E 3-isopropylmalate dehydratase large subunit 52 21 

 
8.2E-04 -2.5 

virB9 CJSA_pVir0002t 
 

VirB9 37 7 
 

1.4E-19 -5.3 
virB10 CJSA_pVir0003t 

 
VirB10 23 5 

 
1.2E-19 -4.6 

- CJSA_pVir0008u 
 

hypothetical protein 644 55 
 

5.9E-145 -11.7 
- CJSA_pVir0009u 

 
hypothetical protein 1372 130 

 
9.8E-63 -10.6 

- CJSA_pVir0050v 
 

hypothetical protein 128 17 
 

1.2E-56 -7.5 
- CJSA_pVir0051v 

 
hypothetical protein 40 8 

 
1.4E-17 -5.0 

- CJSA_CjSRP1 
 

- 18640 1476 
 

3.0E-74 -12.6 
- CJSA_t0030 

 
Ser tRNA 436 105 

 
3.0E-12 -4.2 

- predicted RNA 
 

antisense: CJSA_1568; 87nt length, 1577262 to 1577349 positive strand 216 30 
 

2.1E-51 -7.2 
- predicted RNA 

 
176nt length; 1331258 to 1331434 positive strand 198 37 

 
2.0E-24 -5.4 
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Table 6A continued       
- predicted RNA 

 
10nt length; 443535 to 443545 positive strand 147 39 

 
3.7E-07 -3.8 

- predicted RNA 
 

255nt length; 1457504 to 1457759 positive strand 277 77 
 

6.0E-09 -3.6 
- predicted RNA 

 
13nt length; 1183928 to 1183941 positive strand 961 278 

 
6.8E-09 -3.5 

- predicted RNA 
 

antisense: glnQ; 86nt length, 845047 to 844961 negative strand 179 52 
 

2.4E-08 -3.4 
- predicted RNA 

 
106nt length; 1331076 to 1331182 positive strand 233 100 

 
1.4E-02 -2.3 

- predicted RNA 
 

32nt length; 577201 to 577169 negative strand 312 136 
 

6.8E-03 -2.3 
- predicted RNA 

 
antisense: CJSA_0192; 299nt length, 198809 to 199108 positive strand 1528 667 

 
4.0E-02 -2.3 

- predicted RNA   antisense: CJSA_0215; 50nt length; 226428 to 226378 negative strand 136 69   4.4E-02 -2.0 

         a, b, aa, bb, ect = matching superscript signifies expression within the same operon 
      

 

Table 6B. Genes with increased differential expression in the in vivo sheep gallbladder exposed samples at 24 hours with annotation 
to indicate which genes are a part of multi-gene operons.  

    

Expression 
(RPKM) 

 
Significance 

Name Synonym 
COG 
Code Product 

Plate   
16hr 

 GB       
in vivo 
24 hr 

 Q Value  Fold 
change   

         INCREASED EXPRESSION AT 24 HOURS EXPOSURE TO GALLBLADDER 
     

         dnaA CJSA_0001 L chromosomal replication initiator protein DnaA 21 50 
 

2.2E-06 2.4 
dnaN CJSA_0002 L DNA polymerase III subunit beta 32 106 

 
7.2E-13 3.3 

dsbI CJSA_0017a O DsbB family disulfide bond formation protein 78 210 
 

1.0E-09 2.7 
Dba CJSA_0018a 

 
disulfide bond formation protein 46 301 

 
3.8E-84 6.5 

- CJSA_0030b 
 

hypothetical protein 2 70 
 

0.0E+00 35.0 
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Table 6B continued        
- CJSA_0031b 

 
hypothetical protein 1 35 

 
0.0E+00 35.0 

- CJSA_0035 G MFS family drug resistance transporter 15 49 
 

5.9E-17 3.3 
- CJSA_0040c 

 
hypothetical protein 15 783 

 
0.0E+00 52.2 

- CJSA_0041c 
 

hypothetical protein 62 379 
 

6.3E-65 6.1 
flgD CJSA_0042c N flagellar basal body rod modification protein 309 824 

 
5.0E-05 2.7 

flgE CJSA_0043c N flagellar hook protein 160 534 
 

6.8E-08 3.3 
- CJSA_0045 P putative iron-binding protein 39 208 

 
4.2E-40 5.3 

- CJSA_0049 
 

hypothetical protein 53 207 
 

3.7E-19 3.9 
fliM CJSA_0054d N flagellar motor switch protein FliM 61 158 

 
1.3E-08 2.6 

fliA CJSA_0055d K flagellar biosynthesis sigma factor 77 336 
 

3.1E-25 4.4 
- CJSA_0056d 

 
hypothetical protein 34 361 

 
7.6E-290 10.6 

folk CJSA_0059 H hydroxymethyldihydropteridine pyrophosphokinase 21 70 
 

3.5E-18 3.3 
- CJSA_0061 FR Chlorohydrolase 13 27 

 
5.0E-05 2.1 

- CJSA_0065 P hemerythrin family non-heme iron protein 7 33 
 

2.0E-24 4.7 
cdtC CJSA_0070 

 
cytolethal distending toxin C 19 29 

 
1.0E-02 1.5 

cydA CJSA_0074 C cytochrome d ubiquinol oxidase, subunit I 10 31 
 

1.3E-13 3.1 
- CJSA_0080 S putative lipoprotein 36 82 

 
9.2E-06 2.3 

obgE CJSA_0087 R GTPase ObgE 40 135 
 

1.9E-14 3.4 
proB CJSA_0088e E gamma-glutamyl kinase 23 69 

 
8.7E-14 3.0 

Fmt CJSA_0089e J methionyl-tRNA formyltransferase 11 27 
 

8.9E-09 2.5 
birA CJSA_0090e H biotin--protein ligase 20 44 

 
1.4E-06 2.2 

- CJSA_0091e D ParA family chromosome partitioning ATPase 73 153 
 

4.4E-05 2.1 
- CJSA_0092e K ParB family chromosome partitioning protein 29 62 

 
2.9E-05 2.1 

atpF' CJSA_0093e C F0F1 ATP synthase subunit B 67 276 
 

1.3E-22 4.1 
atpF CJSA_0094e C F0F1 ATP synthase subunit B 37 147 

 
1.1E-26 4.0 

atpH CJSA_0095e C F0F1 ATP synthase subunit delta 2 39 
 

0.0E+00 19.5 
- CJSA_0102e' 

 
TonB domain-containing protein 17 48 

 
4.3E-12 2.8 

tolB CJSA_0103e' U translocation protein TolB 73 146 
 

1.3E-05 2.0 
- CJSA_0105 S hypothetical protein 147 263 

 
8.9E-04 1.8 
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Table 6B continued        
- CJSA_0110f Q putative pyrazinamidase/nicotinamidase 18 52 

 
2.5E-13 2.9 

- CJSA_0111f 
 

putative recombination protein RecO 5 28 
 

5.8E-31 5.6 
- CJSA_0112f R putative metalloprotease 17 33 

 
1.2E-04 1.9 

- CJSA_0113f 
 

hypothetical protein 115 338 
 

6.8E-12 2.9 
- CJSA_0119 G inositol monophosphatase family protein 16 25 

 
4.6E-03 1.6 

- CJSA_0124g O putative glycoprotease family protein 10 39 
 

1.4E-19 3.9 
thrB CJSA_0125g E homoserine kinase 23 46 

 
2.9E-05 2.0 

- CJSA_0126g K hypothetical protein 19 83 
 

1.1E-25 4.4 
- CJSA_0142h 

 
hypothetical protein 5 28 

 
3.5E-43 5.6 

- CJSA_0143h 
 

hypothetical protein 56 136 
 

5.9E-07 2.4 
- CJSA_0144h J RNA methyltransferase 134 255 

 
4.3E-05 1.9 

- CJSA_0145h R tetrapyrrole methylase family protein 28 47 
 

6.6E-03 1.7 
- CJSA_0149i C cytochrome c family protein 31 50 

 
5.5E-03 1.6 

- CJSA_0150i H putative 6-pyruvoyl tetrahydropterin synthase 53 102 
 

7.5E-04 1.9 
- CJSA_0154 

 
hypothetical protein 7 35 

 
1.3E-28 5.0 

- CJSA_0161 QR hypothetical protein 38 93 
 

2.5E-08 2.4 
- CJSA_0166 

 
putative lipoprotein 14 173 

 
2.2E-219 12.4 

- CJSA_0167 S TonB-dependent colicin lipoprotein, putative 2 35 
 

3.1E-296 17.5 
- CJSA_0172 I putative transporter 21 51 

 
1.4E-06 2.4 

argC CJSA_0201 E N-acetyl-gamma-glutamyl-phosphate reductase 55 92 
 

4.0E-03 1.7 
- CJSA_0207j' H nicotinate phosphoribosyltransferase 20 38 

 
1.0E-03 1.9 

- CJSA_0209j S hypothetical protein 17 62 
 

1.4E-19 3.6 
pyrE CJSA_0210j F orotate phosphoribosyltransferase 272 407 

 
3.2E-02 1.5 

Frr CJSA_0211j J ribosome recycling factor 238 351 
 

1.1E-02 1.5 
secG CJSA_0212j U preprotein translocase subunit SecG 237 394 

 
8.2E-04 1.7 

cynT CJSA_0214k P carbonic anyhydrase 41 75 
 

1.7E-03 1.8 
- CJSA_0215k M mechanosensitive ion channel family protein 16 29 

 
4.9E-03 1.8 

- CJSA_0219 
 

hypothetical protein 1 37 
 

0.0E+00 37.0 
- CJSA_0228 

 
hypothetical protein 65 113 

 
5.5E-04 1.7 
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Table 6B continued        
- CJSA_0233l R Sulfatase 14 35 

 
7.8E-09 2.5 

dgkA CJSA_0234l M diacylglycerol kinase 10 49 
 

3.9E-32 4.9 
pyrC CJSA_0236l' F Dihydroorotase 13 36 

 
2.8E-11 2.8 

- CJSA_0238 H putative SAM-dependent methyltransferase 11 35 
 

2.3E-15 3.2 
- CJSA_0240 P zinc transporter ZupT 12 25 

 
6.2E-06 2.1 

mreC CJSA_0254 M rod shape-determining protein MreC 35 55 
 

1.5E-02 1.6 
- CJSA_0262 S hypothetical protein 17 37 

 
3.2E-06 2.2 

lpxB CJSA_0264 M lipid-A-disaccharide synthase 34 57 
 

9.9E-03 1.7 
surE CJSA_0267 R stationary phase survival protein SurE 27 42 

 
9.3E-03 1.6 

- CJSA_0283m P SMR family multidrug efflux pump 22 32 
 

2.6E-02 1.5 
- CJSA_0284m P SMR family multidrug efflux pump 13 39 

 
2.5E-10 3.0 

Pth CJSA_0286n J peptidyl-tRNA hydrolase 85 168 
 

2.6E-04 2.0 
- CJSA_0287n R hypothetical protein 2 28 

 
3.5E-244 14.0 

perR CJSA_0296 P FUR family transcriptional regulator 47 168 
 

1.2E-20 3.6 
ubiE CJSA_0298 H ubiquinone/menaquinone biosynthesis methyltransferase 15 30 

 
3.4E-05 2.0 

fabH CJSA_0302o I 3-oxoacyl-ACP synthase 39 115 
 

2.5E-10 2.9 
plsX CJSA_0303o I putative glycerol-3-phosphate acyltransferase PlsX 116 253 

 
2.4E-06 2.2 

- CJSA_0305o' 
 

hypothetical protein 124 603 
 

7.8E-33 4.9 
Ndk CJSA_0306o' F nucleoside diphosphate kinase 455 849 

 
8.0E-03 1.9 

flhB CJSA_0309 NU flagellar biosynthesis protein FlhB 85 202 
 

3.5E-08 2.4 
trpE CJSA_0319 EH anthranilate synthase component I 41 66 

 
1.0E-02 1.6 

trpF CJSA_0321 E N-(5phosphoribosyl)anthranilate isomerase 23 37 
 

4.7E-03 1.6 
- CJSA_0326 

 
putative transmembrane protein 11 35 

 
4.8E-14 3.2 

- CJSA_0327p FP Ppx/GppA family phosphatase 24 41 
 

6.8E-03 1.7 
fdxB CJSA_0328p C ferredoxin, 4Fe-4S 102 194 

 
5.0E-04 1.9 

- CJSA_0337 
 

hypothetical protein 2 36 
 

5.3E-255 18.0 
cmeC CJSA_0338q MU RND efflux system, outer membrane lipoprotein CmeC 62 92 

 
4.6E-03 1.5 

cmeB CJSA_0339q V RND efflux system, inner membrane transporter CmeB 82 138 
 

3.1E-02 1.7 
cmeA CJSA_0340q M RND efflux system, membrane fusion protein CmeA 102 269 

 
1.7E-09 2.6 

112 



113 

 

Table 6B continued        
- CJSA_0344 

 
hypothetical protein 151 233 

 
2.6E-03 1.5 

- CJSA_0348r 
 

putative lipoprotein 9 28 
 

2.2E-10 3.1 
- CJSA_0349r 

 
hypothetical protein 5 27 

 
2.9E-42 5.4 

- CJSA_0358 S integral membrane protein 16 26 
 

4.8E-03 1.6 
- CJSA_0370 

 
hypothetical protein 9 59 

 
5.8E-69 6.6 

- CJSA_0372 R colicin V production protein-like protein 93 140 
 

3.2E-02 1.5 
- CJSA_0384 R GTP-binding protein 10 26 

 
3.3E-07 2.6 

- CJSA_0389 
 

hypothetical protein 178 669 
 

4.2E-19 3.8 
- CJSA_0390 

 
hypothetical protein 30 62 

 
1.2E-05 2.1 

- CJSA_0394 
 

putative H-T-H containing protein 20 54 
 

3.7E-08 2.7 
- CJSA_0395 

 
hypothetical protein 14 25 

 
1.4E-02 1.8 

mraY CJSA_0405 M phospho-N-acetylmuramoyl-pentapeptide-transferase 13 34 
 

3.4E-09 2.6 
sdhA CJSA_0409s C succinate dehydrogenase, flavoprotein subunit 35 85 

 
2.8E-07 2.4 

sdhB CJSA_0410s C succinate dehydrogenase, iron-sulfur protein subunit 37 74 
 

2.6E-04 2.0 
- CJSA_0417 

 
NUDIX domain-containing protein 21 50 

 
1.3E-07 2.4 

Rpe CJSA_0421 G ribulose-phosphate 3-epimerase 33 73 
 

4.1E-06 2.2 
- CJSA_0424t 

 
hypothetical protein 10 27 

 
8.5E-09 2.7 

- CJSA_0425t 
 

hypothetical protein 10 33 
 

5.4E-13 3.3 
- CJSA_0426t 

 
hypothetical protein 12 125 

 
7.3E-275 10.4 

- CJSA_0427t S hypothetical protein 56 178 
 

3.0E-12 3.2 
- CJSA_0429t' 

 
hypothetical protein 94 216 

 
3.5E-06 2.3 

nusA CJSA_0430 K transcription elongation factor NusA 63 129 
 

3.0E-05 2.0 
Ctb CJSA_0435 R group III truncated hemoglobin 29 49 

 
7.0E-04 1.7 

paqP CJSA_0437 E amino-acid ABC transporter integral membrane protein 24 35 
 

2.0E-02 1.5 
rpmG CJSA_0441 J 50S ribosomal protein L33 367 857 

 
1.5E-06 2.3 

secE CJSA_0442 U preprotein translocase subunit SecE 583 947 
 

1.4E-03 1.6 
- CJSA_0465u 

 
hypothetical protein 21 68 

 
2.6E-12 3.2 

- CJSA_0466u R putative methyltransferase domain protein 4 27 
 

4.5E-54 6.8 
- CJSA_0467u R hypothetical protein 53 92 

 
1.1E-03 1.7 
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Table 6B continued        
- CJSA_0474v R Gfo/Idh/MocA family oxidoreductase 11 25 

 
2.0E-07 2.3 

- CJSA_0475v M DegT/DnrJ/EryC1/StrS aminotransferase family protein 41 76 
 

1.5E-03 1.9 
pbpB CJSA_0492w M penicillin-binding protein 15 77 

 
1.7E-34 5.1 

fliE CJSA_0493w NU flagellar hook-basal body protein FliE 287 885 
 

7.9E-14 3.1 
flgC CJSA_0494w N flagellar basal-body rod protein FlgC 461 1258 

 
3.4E-05 2.7 

flgB CJSA_0495w N flagellar basal-body rod protein FlgB 362 1355 
 

7.7E-15 3.7 
- CJSA_0506x 

 
hypothetical protein 23 100 

 
1.8E-26 4.3 

- CJSA_0507x 
 

hypothetical protein 23 74 
 

9.8E-17 3.2 
- CJSA_0508x H polyprenyl synthetase family protein 18 49 

 
3.3E-10 2.7 

- CJSA_0517 
 

hypothetical protein 172 299 
 

3.5E-03 1.7 
- CJSA_0528 

 
hypothetical protein 55 1172 

 
0.0E+00 21.3 

rib CJSA_0540 H bifunctional phosphate synthase/GTP cyclohydrolase II protein 82 132 
 

1.9E-03 1.6 
tatC CJSA_0546y U Sec-independent protein translocase TatC 17 46 

 
8.6E-11 2.7 

tatB CJSA_0547y U sec-independent translocase 36 114 
 

5.7E-16 3.2 
nidH CJSA_0549 LR dinucleoside polyphosphate hydrolase 68 162 

 
3.5E-06 2.4 

Nth CJSA_0563 L endonuclease III 11 43 
 

2.6E-21 3.9 
- CJSA_0572 S putative polyphosphate kinase 23 41 

 
8.6E-04 1.8 

- CJSA_0574z M putative secretion protein HlyD 34 73 
 

4.3E-05 2.1 
- CJSA_0575z V ABC-type transmembrane transport protein 15 30 

 
3.5E-04 2.0 

pstS CJSA_0581 P phosphate transport system substrate-binding protein 22 44 
 

7.5E-05 2.0 
- CJSA_0585 

 
hypothetical protein 29 54 

 
1.2E-04 1.9 

- CJSA_0596 L prophage Lp2 protein 6 72 171 
 

2.5E-07 2.4 
- CJSA_0600 S hypothetical protein 17 43 

 
1.6E-08 2.5 

Pnk CJSA_0608aa G inorganic polyphosphate/ATP-NAD kinase 20 51 
 

7.9E-09 2.6 
recN CJSA_0609aa L DNA repair protein RecN 15 26 

 
1.8E-03 1.7 

cbrR CJSA_0610bb T response regulator/GGDEF domain-containing protein 70 136 
 

3.3E-05 1.9 
- CJSA_0611bb L TatD family hydrolase 53 78 

 
4.6E-02 1.5 

- CJSA_0616bb' S OstA family protein 16 39 
 

4.9E-08 2.4 
- CJSA_0623 E MFS di-/tripeptide transporter 34 51 

 
4.2E-02 1.5 
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Table 6B continued        
- CJSA_0632 R putative ATP/GTP-binding protein 21 39 

 
1.9E-04 1.9 

rpoN CJSA_0634 K RNA polymerase factor sigma-54 14 29 
 

1.5E-05 2.1 
- CJSA_0636 

 
hypothetical protein 26 73 

 
1.2E-08 2.8 

- CJSA_0646cc 
 

hypothetical protein 109 215 
 

2.7E-04 2.0 
- CJSA_0647cc 

 
hypothetical protein 10 44 

 
8.2E-27 4.4 

priA CJSA_0648cc L primosome assembly protein PriA 6 28 
 

2.7E-37 4.7 
flgH CJSA_0651 N flagellar basal body L-ring protein 197 864 

 
1.2E-25 4.4 

- CJSA_0655 
 

hypothetical protein 16 79 
 

7.6E-44 4.9 
mraW CJSA_0657 M S-adenosyl-methyltransferase MraW 9 31 

 
5.6E-19 3.4 

- CJSA_0658 O hypothetical protein 44 140 
 

1.4E-13 3.2 
flgG2 CJSA_0661dd N flagellar basal-body rod protein 359 1124 

 
3.3E-07 3.1 

flgG CJSA_0662dd N flagellar basal-body rod protein FlgG 368 1069 
 

3.7E-06 2.9 
- CJSA_0664ee 

 
hypothetical protein 100 164 

 
3.0E-03 1.6 

- CJSA_0665ee O peptidase, U32 family 72 107 
 

5.3E-03 1.5 
- CJSA_0667ee' 

 
hypothetical protein 47 76 

 
1.4E-02 1.6 

- CJSA_0669ee S hypothetical protein 13 27 
 

3.6E-06 2.1 
- CJSA_0670ee R hypothetical protein 72 202 

 
2.4E-09 2.8 

kdtA CJSA_0671ee M 3-deoxy-D-manno-octulosonic-acid transferase 4 27 
 

7.1E-50 6.8 
- CJSA_0672ee J putative ribosomal pseudouridine synthase 22 42 

 
1.2E-04 1.9 

Ffh CJSA_0673ee U signal recognition particle protein 87 141 
 

2.2E-03 1.6 
rimM CJSA_0676ff J 16S rRNA processing protein RimM 83 160 

 
5.8E-04 1.9 

trmD CJSA_0677ff J tRNA (guanine-N(1)-)-methyltransferase 22 88 
 

1.9E-27 4.0 
rplS CJSA_0678ff J 50S ribosomal protein L19 307 546 

 
3.7E-04 1.8 

- CJSA_0681 P putative ArsC family protein 81 185 
 

5.9E-06 2.3 
- CJSA_0688 

 
hypothetical protein 96 144 

 
1.6E-02 1.5 

corA CJSA_0690 P magnesium and cobalt transport protein 88 162 
 

1.2E-04 1.8 
- CJSA_0699 

 
hypothetical protein 9 44 

 
1.0E-35 4.9 

- CJSA_0708 
 

hypothetical protein 3 126 
 

0.0E+00 42.0 
tonB3 CJSA_0710 M TonB transport protein 23 73 

 
7.2E-16 3.2 
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Table 6B continued        
cfrA CJSA_0712 P ferric enterobactin uptake receptor 22 95 

 
3.4E-23 4.3 

hcrA CJSA_0713gg K heat-inducible transcription repressor 265 1056 
 

9.3E-12 4.0 
grpE CJSA_0714gg O heat shock protein GrpE 346 885 

 
4.0E-05 2.6 

- CJSA_0716hh R hypothetical protein 64 177 
 

5.9E-10 2.8 
- CJSA_0717hh S hypothetical protein 40 114 

 
2.5E-12 2.9 

flgA CJSA_0725ii NO flagellar basal body P-ring biosynthesis protein FlgA 10 40 
 

7.5E-23 4.0 
- CJSA_0726ii P NLPA family lipoprotein 52 118 

 
6.5E-06 2.3 

- CJSA_0727ii P NLPA family lipoprotein 97 259 
 

1.8E-09 2.7 
- CJSA_0732 

 
hypothetical protein 43 92 

 
4.0E-05 2.1 

napL CJSA_0740jj 
 

hypothetical protein 11 31 
 

1.7E-13 2.8 
napD CJSA_0741jj P NapD protein-like protein 7 46 

 
1.1E-51 6.6 

- CJSA_0743jj' 
 

hypothetical protein 31 89 
 

6.4E-12 2.9 
- CJSA_0744jj 

 
hypothetical protein 33 96 

 
1.9E-12 2.9 

- CJSA_0745jj J polyA polymerase family protein 18 45 
 

5.8E-08 2.5 
purU CJSA_0746jj F formyltetrahydrofolate deformylase 22 48 

 
4.5E-06 2.2 

flgS CJSA_0749 T sensor histidine kinase 11 35 
 

1.3E-15 3.2 
murF CJSA_0751 M Mur ligase family protein 8 29 

 
2.1E-18 3.6 

- CJSA_0753 
 

prevent-host-death family protein 6 29 
 

1.2E-22 4.8 
- CJSA_0765 R metallo-beta-lactamase family protein 21 34 

 
3.3E-03 1.6 

- CJSA_0770 
 

hypothetical protein 3 30 
 

1.5E-147 10.0 
- CJSA_0773kk 

 
putative lipoprotein 47 185 

 
1.7E-27 3.9 

- CJSA_0774kk 
 

small hydrophobic protein 10 57 
 

3.1E-36 5.7 
- CJSA_0785 S hypothetical protein 11 107 

 
2.4E-167 9.7 

- CJSA_0794 
 

hypothetical protein 22 34 
 

3.7E-02 1.5 
mobB CJSA_0796 H molybdopterin-guanine dinucleotide biosynthesis protein MobB 5 43 

 
9.4E-89 8.6 

- CJSA_0801ll R Ser/Thr protein phosphatase family protein 22 51 
 

2.6E-06 2.3 
Psd CJSA_0802ll I phosphatidylserine decarboxylase 30 59 

 
1.7E-04 2.0 

- CJSA_0805 
 

putative MFS (Major Facilitator Superfamily) transport protein 12 53 
 

2.5E-32 4.4 
- CJSA_0809 

 
hypothetical protein 45 78 

 
1.5E-03 1.7 
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Table 6B continued        
fspA2 CJSA_0814 

 
FspA2 114 381 

 
9.0E-14 3.3 

- CJSA_0818mm 
 

hypothetical protein 109 175 
 

1.6E-02 1.6 
dsbB CJSA_0819mm O putative disulfide oxidoreductase 54 97 

 
2.5E-03 1.8 

- CJSA_0822nn C hypothetical protein 19 53 
 

1.7E-08 2.8 
- CJSA_0823nn C putative cytochrome C 90 166 

 
9.8E-04 1.8 

- CJSA_0825 
 

hypothetical protein 3 73 
 

0.0E+00 24.3 
flhA CJSA_0829oo NU flagellar biosynthesis protein FlhA 19 38 

 
3.7E-04 2.0 

- CJSA_0830oo K RrF2 family protein, putative 35 159 
 

5.9E-36 4.5 
rspO CJSA_0831 J 30S ribosomal protein S15 212 480 

 
4.5E-06 2.3 

ftsK CJSA_0832 D putative cell division protein 22 62 
 

2.8E-10 2.8 
flgL CJSA_0833 N flagellar hook-associated protein FlgL 155 817 

 
3.4E-20 5.3 

- CJSA_0846 
 

small hydrophobic protein 10 31 
 

4.0E-08 3.1 
Alr CJSA_0851 M alanine racemase 8 35 

 
2.0E-32 4.4 

- CJSA_0852 S hypothetical protein 30 126 
 

1.8E-23 4.2 
cheR CJSA_0868 NT putative MCP protein methyltransferase 25 66 

 
2.4E-10 2.6 

rpiB CJSA_0870pp G ribose 5-phosphate isomerase B 54 143 
 

3.5E-09 2.6 
- CJSA_0871pp 

 
hypothetical protein 25 81 

 
3.2E-16 3.2 

Apt CJSA_0872pp F adenine phosphoribosyltransferase 39 65 
 

3.4E-03 1.7 
Aas CJSA_0883qq IQ 2-acylglycerophosphoethanolamine acyltransferase 14 29 

 
1.0E-04 2.1 

- CJSA_0884qq 
 

hypothetical protein 1 60 
 

0.0E+00 60.0 
- CJSA_0894 E peptidyl-arginine deiminase family protein 24 41 

 
4.8E-03 1.7 

- CJSA_0897 
 

putative HAMP containing membrane protein 22 45 
 

1.6E-05 2.0 
- CJSA_0904rr S hypothetical protein 84 155 

 
1.6E-03 1.8 

rnpA CJSA_0905rr J ribonuclease P protein component 312 463 
 

5.0E-03 1.5 
- CJSA_0910 R putative acyl-CoA thioester hydrolase 31 85 

 
2.3E-11 2.7 

- CJSA_0920 Q hypothetical protein 521 1943 
 

1.3E-10 3.7 
rpoD CJSA_0944 K RNA polymerase sigma factor RpoD 83 239 

 
3.1E-08 2.9 

- CJSA_0952 S TrkA domain-containing protein 17 35 
 

1.4E-04 2.1 
Tgt CJSA_0953 J queuine tRNA-ribosyltransferase 15 28 

 
1.7E-04 1.9 
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Table 6B continued        
- CJSA_0964 

 
porin domain-containing protein 16 81 

 
3.1E-36 5.1 

flgR CJSA_0967ss T sigma-54 associated transcriptional activator 34 178 
 

3.8E-37 5.2 
- CJSA_0968ss 

 
hypothetical protein 82 438 

 
1.1E-40 5.3 

- CJSA_0971ss' R putative purine/pyrimidine phosphoribosyltransferase 28 49 
 

1.4E-03 1.8 
cmeD CJSA_0974tt MU outer membrane component multidrug efflux system CmeDEF 19 73 

 
6.9E-22 3.8 

cmeE CJSA_0975tt M membrane fusion component multidrug efflux system CmeDEF 23 45 
 

3.1E-05 2.0 
- CJSA_0977 O adenylosuccinate lyase 37 191 

 
3.5E-38 5.2 

- CJSA_0983uu P putative MFS (Major Facilitator Superfamily) transport protein 5 33 
 

1.9E-57 6.6 
- CJSA_0984uu 

 
putative periplasmic ATP/GTP-binding protein 20 32 

 
9.6E-03 1.6 

this CJSA_0990 H thiamine biosynthesis protein ThiS 29 43 
 

4.2E-02 1.5 
murC CJSA_0997 M UDP-N-acetylmuramate--L-alanine ligase 34 54 

 
2.1E-02 1.6 

rpsF CJSA_1012vv J 30S ribosomal protein S6 557 945 
 

2.7E-02 1.7 
Ssb CJSA_1013vv L single-stranded DNA-binding protein 392 700 

 
1.8E-02 1.8 

- CJSA_1016 R putative lipoprotein 70 126 
 

2.2E-03 1.8 
- CJSA_1017 S flagellar assembly factor FliW 137 372 

 
8.4E-09 2.7 

mfd CJSA_1027 LK transcription-repair coupling factor 23 44 
 

2.0E-04 1.9 
- CJSA_1029ww M M24/M37 family peptidase 60 142 

 
2.0E-06 2.4 

folC CJSA_1030ww H olylpolyglutamate synthase/dihydrofolate synthase 7 45 
 

7.9E-71 6.4 
- CJSA_1039xx E serine/threonine transporter SstT 14 35 

 
1.7E-09 2.5 

pyrB CJSA_1040xx F aspartate carbamoyltransferase catalytic subunit 19 33 
 

1.2E-03 1.7 
csrA CJSA_1045xx' T carbon storage regulator 89 162 

 
3.3E-04 1.8 

- CJSA_1046xx I 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase 13 35 
 

3.2E-10 2.7 
prmA CJSA_1059yy J 50S ribosomal protein L11 methyltransferase 82 201 

 
9.8E-08 2.5 

cheY CJSA_1060yy T chemotaxis protein CheY 470 791 
 

1.7E-02 1.7 
- CJSA_1086 

 
hypothetical protein 7 37 

 
1.0E-35 5.3 

gmhB CJSA_1092 E D,D-heptose 1,7-bisphosphate phosphatase 10 32 
 

2.2E-12 3.2 
- CJSA_1094 P putative cytochrome oxidase maturation protein, cbb3-type 6 28 

 
7.2E-25 4.7 

Rho CJSA_1096zz K transcription termination factor Rho 59 114 
 

8.2E-05 1.9 
dnaX CJSA_1097zz L DNA polymerase III subunits gamma and tau 17 39 

 
4.0E-06 2.3 
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Table 6B continued        
- CJSA_1100aaa 

 
putative heavy-metal-associated domain protein 14 50 

 
1.5E-14 3.6 

- CJSA_1101aaa P cation efflux family protein 41 77 
 

1.2E-03 1.9 
- CJSA_1104 S hypothetical protein 8 25 

 
4.2E-11 3.1 

omp50 CJSA_1108 
 

50 kda outer membrane protein precursor 112 172 
 

2.0E-02 1.5 
- CJSA_1111bbb P SMR family multidrug efflux pump 5 25 

 
1.3E-21 5.0 

- CJSA_1112bbb P SMR family multidrug efflux pump 5 34 
 

7.4E-41 6.8 
- CJSA_1116ccc 

 
hypothetical protein 59 99 

 
6.1E-04 1.7 

fliR CJSA_1117ccc NU flagellar biosynthesis protein FliR 3 47 
 

0.0E+00 15.7 
- CJSA_1118ccc V ABC transporter ATP-binding protein 33 128 

 
5.4E-24 3.9 

rpsB CJSA_1120ccc' J 30S ribosomal protein S2 374 750 
 

4.7E-03 2.0 
Cfa CJSA_1121 M cyclopropane-fatty-acyl-phospholipid synthase 57 135 

 
4.5E-07 2.4 

gidA CJSA_1126 D tRNA uridine 5-carboxymethylaminomethyl modification protein GidA 34 52 
 

1.1E-02 1.5 
- CJSA_1129 T putative PAS domain containing signal-transduction sensor protein 24 137 

 
2.1E-68 5.7 

- CJSA_1131 
 

hypothetical protein 5 26 
 

4.6E-35 5.2 
pyrC2 CJSA_1133 F Dihydroorotase 21 33 

 
1.4E-02 1.6 

atpB CJSA_1142 C F0F1 ATP synthase subunit A 67 176 
 

5.5E-08 2.6 
- CJSA_1146ddd H putative 5-formyltetrahydrofolate cyclo-ligase family protein 14 57 

 
4.1E-30 4.1 

- CJSA_1147ddd R Phosphodiesterase 54 103 
 

7.2E-05 1.9 
- CJSA_1148ddd S DedA family protein 18 37 

 
6.7E-06 2.1 

- CJSA_1153 M peptidase, M23/M37 family 37 56 
 

4.1E-02 1.5 
- CJSA_1162 P hemerythrin family non-heme iron protein 63 93 

 
5.0E-02 1.5 

cbpA CJSA_1167eee O co-chaperone protein DnaJ 107 344 
 

1.2E-15 3.2 
hspR CJSA_1168eee K heat shock transcriptional regulator 176 322 

 
4.8E-04 1.8 

kefB CJSA_1169eee P putative glutathione-regulated potassium-efflux system protein 24 59 
 

4.4E-07 2.5 
- CJSA_1180 

 
hypothetical protein 470 3330 

 
2.1E-69 7.1 

hemE CJSA_1181 H uroporphyrinogen decarboxylase 116 188 
 

2.1E-03 1.6 
uvrC CJSA_1184fff L excinuclease ABC subunit C 7 31 

 
6.1E-27 4.4 

- CJSA_1185fff 
 

hypothetical protein 1 29 
 

0.0E+00 29.0 
- CJSA_1186 

 
hypothetical protein 26 102 

 
2.5E-19 3.9 
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Table 6B continued        
- CJSA_1188 D hypothetical protein 16 25 

 
2.0E-02 1.6 

purD CJSA_1189ggg F phosphoribosylamine--glycine ligase 268 451 
 

2.4E-02 1.7 
- CJSA_1190ggg S hypothetical protein 78 161 

 
1.6E-04 2.1 

- CJSA_1191ggg M hypothetical protein 26 77 
 

2.0E-10 3.0 
- CJSA_1194 R putative isomerase 13 56 

 
1.9E-22 4.3 

racS CJSA_1201 T two-component sensor (histidine kinase) 42 83 
 

2.2E-04 2.0 
- CJSA_1215 

 
hypothetical protein 4 25 

 
2.5E-55 6.3 

- CJSA_1219 J putative ribosomal pseudouridine synthase 34 78 
 

1.4E-05 2.3 
ktrB CJSA_1221hhh P putative K+ uptake protein 5 29 

 
8.6E-54 5.8 

ktrA CJSA_1222hhh P putative K+ uptake protein 15 25 
 

1.6E-03 1.7 
pseB CJSA_1231iii MG UDP-GlcNAc-specific C4,6 dehydratase/C5 epimerase 301 729 

 
2.4E-04 2.4 

pseC CJSA_1232iii M C4 aminotransferase specific for PseB product 102 318 
 

1.4E-13 3.1 
- CJSA_1233iii R hypothetical protein 22 85 

 
4.4E-19 3.9 

acpP2 CJSA_1237iii' IQ putative acyl carrier protein 48 83 
 

6.9E-04 1.7 
- CJSA_1245 Q putative amino acid activating enzyme 22 34 

 
3.5E-02 1.5 

- CJSA_1248 
 

hypothetical protein 36 60 
 

8.2E-03 1.7 
hisF CJSA_1252 E imidazole glycerol phosphate synthase subunit HisF 78 117 

 
2.1E-02 1.5 

maf1 CJSA_1256 S motility accessory factor 19 63 
 

1.9E-13 3.3 
- CJSA_1262jjj J putative methyltransferase 24 69 

 
8.6E-13 2.9 

neuB2 CJSA_1263jjj M N-acetylneuraminate synthase 95 403 
 

6.6E-29 4.2 
neuC2 CJSA_1264jjj M putative UDP-N-acetylglucosamine 2-epimerase 13 78 

 
1.1E-64 6.0 

- CJSA_1265jjj MJ putative sugar-phosphate nucleotide transferase 12 40 
 

5.5E-19 3.3 
- CJSA_1266jjj R hypothetical protein 24 99 

 
5.4E-26 4.1 

ptmB CJSA_1267jjj M cylneuraminate cytidylyltransferase (flagellin modification) 122 316 
 

1.5E-09 2.6 
ptmA CJSA_1268jjj IQ flagellin modification protein A 94 178 

 
1.5E-04 1.9 

maf3 CJSA_1270jjj' S motility accessory factor 15 25 
 

1.2E-02 1.7 
maf4 CJSA_1271jjj S motility accessory factor 18 63 

 
3.0E-15 3.5 

Dxr CJSA_1281kkk I 1-deoxy-D-xylulose 5-phosphate reductoisomerase 41 79 
 

5.0E-04 1.9 
cdsA CJSA_1282kkk I phosphatidate cytidylyltransferase 55 110 

 
1.9E-04 2.0 
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Table 6B continued        
- CJSA_1283kkk 

 
putative coiled-coil protein 104 262 

 
2.9E-07 2.5 

- CJSA_1291 
 

hypothetical protein 46 101 
 

1.3E-05 2.2 
nrfA CJSA_1292lll P putative periplasmic cytochrome C 37 140 

 
6.9E-20 3.8 

nrfH CJSA_1293lll C putative periplasmic cytochrome C 16 177 
 

6.6E-294 11.1 
ruvB CJSA_1296 L Holliday junction DNA helicase RuvB 19 42 

 
7.6E-07 2.2 

- CJSA_1301 O putative nucleotidyltransferase 13 27 
 

8.5E-05 2.1 
- CJSA_1302 HR hypothetical protein 69 102 

 
1.4E-02 1.5 

- CJSA_1304mmm R putative nucleotide phosphoribosyltransferase 26 39 
 

9.6E-03 1.5 
- CJSA_1305mmm M putative periplasmic protein (VacJ-like protein) 24 37 

 
1.1E-02 1.5 

- CJSA_1306mmm Q putative periplasmic toluene tolerance protein 10 25 
 

2.3E-07 2.5 
- CJSA_1308 F RdgB/HAM1 family non-canonical purine NTP pyrophosphatase 9 40 

 
3.0E-23 4.4 

selA CJSA_1312 E selenocysteine synthase 16 25 
 

1.0E-02 1.6 
- CJSA_1317nnn 

 
hypothetical protein 4 46 

 
1.4E-216 11.5 

- CJSA_1318nnn S hypothetical protein 41 169 
 

9.6E-30 4.1 
katA CJSA_1319ooo P Catalase 76 405 

 
3.1E-46 5.3 

- CJSA_1320ooo R ankyrin repeat-containing protein 10 92 
 

4.0E-144 9.2 
- CJSA_1321 S helix-turn-helix containing protein 17 39 

 
2.6E-07 2.3 

- CJSA_1328 P putative ferrous iron transport protein 15 52 
 

2.2E-15 3.5 
- CJSA_1343ppp 

 
hypothetical protein 9 57 

 
2.2E-70 6.3 

kpsS CJSA_1344ppp M capsule polysaccharide export protein KpsS 11 48 
 

4.8E-32 4.4 
- CJSA_1348 R putative amidotransferase 17 43 

 
1.5E-09 2.5 

- CJSA_1354qqq 
 

capsular polysaccharide biosynthesis protein 9 42 
 

1.1E-32 4.7 
- CJSA_1355qqq 

 
capsule biosynthesis phosphatase 85 145 

 
6.8E-03 1.7 

- CJSA_1361qqq' R HAD superfamily hydrolase 8 46 
 

3.4E-49 5.8 
- CJSA_1362qqq C hypothetical protein 12 48 

 
2.2E-25 4.0 

kpsT CJSA_1371rrr GM capsular polysaccharide ABC transporter ATP-binding protein 49 143 
 

7.0E-10 2.9 
kpsM CJSA_1372rrr GM capsular polysaccharide ABC transporter permease 47 80 

 
6.3E-03 1.7 

- CJSA_1374 
 

putative ATP/GTP-binding protein 478 941 
 

7.3E-03 2.0 
- CJSA_1376 

 
hypothetical protein 6 28 

 
9.5E-22 4.7 
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Table 6B continued        
prfB CJSA_1379 J peptide chain release factor 2 30 56 

 
1.9E-03 1.9 

thiL CJSA_1382 H thiamine monophosphate kinase 7 27 
 

3.8E-20 3.9 
- CJSA_1383 

 
hypothetical protein 27 48 

 
4.9E-03 1.8 

flgI CJSA_1386sss N lagellar basal body P-ring protein 218 627 
 

8.8E-06 2.9 
- CJSA_1387sss 

 
hypothetical protein 89 441 

 
4.4E-34 5.0 

- CJSA_1389sss' 
 

hypothetical protein 572 2299 
 

8.0E-12 4.0 
flgK CJSA_1390sss N flagellar hook-associated protein FlgK 127 571 

 
3.8E-15 4.5 

- CJSA_1391sss 
 

hypothetical protein 8 36 
 

1.8E-28 4.5 
- CJSA_1392sss R hypothetical protein 12 28 

 
3.1E-08 2.3 

ctsR CJSA_1398 
 

hypothetical protein 18 38 
 

4.5E-05 2.1 
- CJSA_1406 

 
putative lipoprotein 20 43 

 
2.7E-06 2.2 

- CJSA_1415ttt T putative two-component sensor 47 101 
 

3.1E-05 2.1 
- CJSA_1416ttt S hypothetical protein 14 33 

 
7.0E-08 2.4 

carA CJSA_1417ttt EF carbamoyl phosphate synthase small subunit 103 191 
 

2.0E-04 1.9 
- CJSA_1418ttt S hypothetical protein 77 235 

 
1.5E-11 3.1 

- CJSA_1419ttt S hypothetical protein 56 87 
 

2.9E-02 1.6 
- CJSA_1422uuu R putative inner membrane protein 16 27 

 
3.5E-03 1.7 

- CJSA_1423uuu O hypothetical protein 16 37 
 

1.4E-05 2.3 
selD CJSA_1426 E putative selenide,water dikinase 27 51 

 
6.5E-04 1.9 

- CJSA_1427 O putative two-component response regulator (SirA-like protein) 31 87 
 

1.1E-11 2.8 
- CJSA_1434vvv 

 
Tat pathway signal sequence domain-containing protein 185 402 

 
3.9E-05 2.2 

- CJSA_1435vvv R hypothetical protein 56 291 
 

5.2E-38 5.2 
dapF CJSA_1447www E diaminopimelate epimerase 39 86 

 
4.1E-05 2.2 

- CJSA_1448www R hypothetical protein 12 31 
 

9.4E-10 2.6 
- CJSA_1449 R putative helix-turn-helix containing protein 30 165 

 
7.6E-42 5.5 

- CJSA_1462xxx K putative transcriptional regulator 6 29 
 

5.6E-21 4.8 
- CJSA_1463xxx M Blc protein-like protein 7 25 

 
6.7E-14 3.6 

- CJSA_1471 K putative transcriptional regulator 6 57 
 

1.1E-100 9.5 
pflA CJSA_1477 

 
paralysed flagellum protein 8 27 

 
5.9E-16 3.4 
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Table 6B continued        
- CJSA_1486 

 
hypothetical protein 25 37 

 
2.0E-02 1.5 

nuoA CJSA_1491 C NADH dehydrogenase I subunit A 36 90 
 

3.3E-09 2.5 
- CJSA_1496 E putative peptide ABC-transport periplasmic peptide-binding protein 13 32 

 
1.3E-08 2.5 

infA CJSA_1502 J translation initiation factor IF-1 32 94 
 

5.0E-12 2.9 
rpmJ CJSA_1503yyy 

 
50S ribosomal protein L36 466 1058 

 
6.4E-06 2.3 

rpsM CJSA_1504yyy J 30S ribosomal protein S13 448 775 
 

5.8E-03 1.7 
rpsK CJSA_1505yyy J 30S ribosomal protein S11 461 862 

 
5.7E-03 1.9 

- CJSA_1525 P putative pyridoxamine 5-phosphate oxidase 201 350 
 

2.9E-03 1.7 
chuA CJSA_1526zzz P hemin uptake system outer membrane receptor 32 74 

 
1.3E-06 2.3 

chuB CJSA_1527zzz P putative hemin uptake system permease protein 14 39 
 

3.3E-12 2.8 
chuD CJSA_1529zzz' P putative hemin uptake system periplasmic hemin-binding protein 10 28 

 
3.4E-11 2.8 

- CJSA_1533 
 

hypothetical protein 14 31 
 

7.0E-07 2.2 
ribD CJSA_1534^ H riboflavin-specific deaminase/reductase 3 100 

 
0.0E+00 33.3 

- CJSA_1535^ 
 

hypothetical protein 2 29 
 

8.4E-229 14.5 
exbB2 CJSA_1540* U exbB/tolQ family transport protein 59 112 

 
5.7E-04 1.9 

exbD2 CJSA_1541* U exbB/tolQ family transport protein 20 52 
 

1.6E-09 2.6 
- CJSA_1544 

 
hypothetical protein 26 174 

 
1.2E-70 6.7 

rnhA CJSA_1548# L ribonuclease H 24 35 
 

1.8E-02 1.5 
- CJSA_1549# G hypothetical protein 5 46 

 
4.2E-119 9.2 

dnaG CJSA_1550 L DNA primase 17 37 
 

2.7E-05 2.2 
- CJSA_1552 

 
hypothetical protein 18 60 

 
6.2E-19 3.3 

- CJSA_1554 S hypothetical protein 44 102 
 

2.9E-07 2.3 
- CJSA_1560 Q putative ABC transport system periplasmic substrate-binding protein 8 26 

 
7.9E-14 3.3 

- CJSA_1562 
 

hypothetical protein 77 343 
 

3.1E-27 4.5 
murL CJSA_1564^^ M glutamate racemase 11 28 

 
2.1E-08 2.5 

nlpC CJSA_1565^^ M putative lipoprotein nlpC 33 60 
 

5.5E-04 1.8 
nhaA2 CJSA_1566^^ P Na+/H+ antiporter 32 98 

 
1.7E-11 3.1 

nhaA1 CJSA_1567^^ P Na+/H+ antiporter 25 251 
 

9.6E-182 10.0 
- CJSA_1579 

 
hypothetical protein 26 165 

 
1.0E-83 6.3 
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Table 6B continued        
- CJSA_1590 

 
hypothetical protein 11 25 

 
1.5E-06 2.3 

- CJSA_1596 G putative MSF family efflux protein 23 93 
 

1.2E-21 4.0 
rplW CJSA_1614** J 50S ribosomal protein L23 259 487 

 
1.7E-04 1.9 

rplC CJSA_1616**' J 50S ribosomal protein L3 279 477 
 

6.0E-03 1.7 
rpsJ CJSA_1617** J 30S ribosomal protein S10 293 576 

 
2.0E-05 2.0 

ksgA CJSA_1620 J dimethyladenosine transferase 44 130 
 

3.6E-10 3.0 
- CJSA_1621 F hypothetical protein 8 27 

 
2.6E-12 3.4 

- CJSA_1624 R GNAT family acetyltransferase 15 110 
 

6.6E-112 7.3 
- CJSA_1631 R putative GTP cyclohydrolase I 12 167 

 
0.0E+00 13.9 

- CJSA_pVir0013 
 

hypothetical protein 6 55 
 

2.5E-103 9.2 
- CJSA_pVir0016 

 
hypothetical protein 12 31 

 
2.4E-08 2.6 

- CJSA_pVir0020 
 

hypothetical protein 14 25 
 

2.9E-03 1.8 
- CJSA_pVir0024## 

 
putative plasmid partioning ParA protein 33 135 

 
1.9E-26 4.1 

- CJSA_pVir0025## 
 

hypothetical protein 19 103 
 

1.7E-55 5.4 
repE CJSA_pVir0026 

 
putative replication protein RepE 26 283 

 
1.0E-263 10.9 

- CJSA_pVir0032 
 

hypothetical protein 18 33 
 

3.1E-04 1.8 
- CJSA_pVir0034 

 
hypothetical protein 1 47 

 
0.0E+00 47.0 

- CJSA_pVir0040^^ 
 

hypothetical protein 11 89 
 

1.0E-82 8.1 
- CJSA_pVir0041^^ 

 
hypothetical protein 27 138 

 
3.2E-35 5.1 

- CJSA_pVir0042 
 

hypothetical protein 8 124 
 

0.0E+00 15.5 
- CJSA_pVir0044 

 
hypothetical protein 5 112 

 
0.0E+00 22.4 

- CJSA_pVir0045*** 
 

hypothetical protein 66 178 
 

1.1E-10 2.7 
- CJSA_pVir0046*** 

 
putative RelE/StbE family addiction module toxin 16 55 

 
1.7E-13 3.4 

rnpB CJSA_CjrnpB1 
 

- 22 166 
 

3.4E-110 7.5 
- CJSA_t0001 

 
Ala tRNA 27 217 

 
3.0E-85 8.0 

- CJSA_t0002 
 

Ile tRNA 49 463 
 

9.1E-155 9.4 
- CJSA_t0004 

 
Ala tRNA 35 206 

 
8.2E-48 5.9 

- CJSA_t0005 
 

Ile tRNA 49 461 
 

9.0E-153 9.4 
- CJSA_t0006 

 
Thr tRNA 97 306 

 
3.0E-14 3.2 
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Table 6B continued        
- CJSA_t0008 

 
Gly tRNA 1429 2162 

 
4.7E-03 1.5 

- CJSA_t0009 
 

Thr tRNA 590 1716 
 

3.4E-10 2.9 
- CJSA_t0011 

 
Arg tRNA 92 248 

 
6.7E-10 2.7 

- CJSA_t0012 
 

Met tRNA 25 111 
 

3.3E-21 4.4 
- CJSA_t0014 

 
Ala tRNA 34 213 

 
2.7E-53 6.3 

- CJSA_t0015 
 

Ile tRNA 51 422 
 

2.7E-115 8.3 
- CJSA_t0018 

 
Leu tRNA 43 69 

 
2.7E-02 1.6 

- CJSA_t0019 
 

Asp tRNA 25 172 
 

5.0E-56 6.9 
- CJSA_t0020 

 
Val tRNA 46 167 

 
4.0E-16 3.6 

- CJSA_t0021 
 

Arg tRNA 243 529 
 

1.5E-06 2.2 
- CJSA_t0022 

 
Lys tRNA 223 589 

 
2.4E-10 2.6 

- CJSA_t0023 
 

Val tRNA 64 301 
 

1.8E-29 4.7 
- CJSA_t0024 

 
Lys tRNA 29 125 

 
9.1E-20 4.3 

- CJSA_t0032 
 

Gly tRNA 144 210 
 

1.3E-02 1.5 
- CJSA_t0033 

 
Leu tRNA 418 745 

 
3.0E-03 1.8 

- CJSA_t0034 
 

Cys tRNA 255 865 
 

1.2E-18 3.4 
- CJSA_t0035 

 
Ser tRNA 81 343 

 
3.2E-28 4.2 

- CJSA_t0037 
 

Arg tRNA 318 610 
 

3.3E-04 1.9 
- CJSA_t0038 

 
Arg tRNA 583 1123 

 
5.0E-04 1.9 

- CJSA_t0040 
 

Pro tRNA 81 139 
 

2.7E-03 1.7 
- CJSA_t0041 

 
Met tRNA 2 41 

 
0.0E+00 20.5 

- CJSA_t0043 
 

Ala tRNA 19 73 
 

8.7E-18 3.8 
- CJSA_t0044 

 
Val tRNA 53 260 

 
1.0E-33 4.9 

- predicted RNA 
 

99nt length; 250059 to 249960 negative strand 94 139 
 

1.1E-02 1.5 
- predicted RNA 

 
109nt length; 815016 to 815125 positive strand 52 77 

 
4.6E-02 1.5 

- predicted RNA 
 

825nt length; 1047424 to 1046599 negative strand 276 437 
 

4.6E-02 1.6 
- predicted RNA 

 
antisense: CJSA_0417; 44nt length, 419785 to 419741 negative strand 99 160 

 
2.1E-02 1.6 

- predicted RNA 
 

266nt length; 1630649 to 1630383 negative strand 187 310 
 

7.3E-03 1.7 
- predicted RNA 

 
54nt length; 388170 to 388224 positive strand 112 209 

 
6.1E-04 1.9 
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Table 6B continued        
- predicted RNA 

 
antisense: prfA; 96nt length, 1537068 to 1536972 negative strand 86 163 

 
1.1E-04 1.9 

- predicted RNA 
 

109nt length; 1630884 to 1630775 negative strand 117 237 
 

2.1E-05 2.0 
- predicted RNA 

 
antisense: CJSA_0136; 16nt length, 150574 to 150558 negative strand 65 140 

 
7.0E-05 2.2 

- predicted RNA 
 

34nt length; 1522668 to 1522702 positive strand 44 98 
 

9.2E-05 2.2 
- predicted RNA 

 
42nt length; 735002 to 735044 positive strand 26 60 

 
2.0E-05 2.3 

- predicted RNA 
 

39nt length; 1113972 to 1113933 negative strand 216 520 
 

2.0E-08 2.4 
- predicted RNA 

 
283nt length; 1046498 to 1046215 negative strand 80 212 

 
1.4E-09 2.7 

- predicted RNA 
 

61nt length; 809228 to 809167 negative strand 59 197 
 

9.2E-14 3.3 
- predicted RNA 

 
269nt length; 1555790 to 1555521 negative strand 95 326 

 
1.3E-15 3.4 

- predicted RNA 
 

101nt length; 726401 to 726300 negative strand 179 637 
 

5.2E-21 3.6 
- predicted RNA 

 
18nt length; 1463578 to 1463560 negative strand 22 80 

 
8.4E-14 3.6 

- predicted RNA 
 

antisense: CJSA_0921; 93nt length, 915128 to 915221 positive strand 45 164 
 

1.9E-16 3.6 
- predicted RNA 

 
13nt length; 1153787 to 1153800 positive strand 1007 3802 

 
5.1E-24 3.8 

- predicted RNA 
 

antisense: dccS; 116nt length, 1155464 to 1155580 positive strand 76 290 
 

4.6E-25 3.8 
- predicted RNA 

 
antisense: CJSA_0401; 61nt length, 395623 to 395684 positive strand 149 569 

 
1.8E-25 3.8 

- predicted RNA 
 

11nt length; 914526 to 914537 positive strand 61 234 
 

5.2E-16 3.8 
- predicted RNA 

 
16nt length; 71942 to 71926 negative strand 77 311 

 
7.6E-21 4.0 

- predicted RNA 
 

31nt length; 1386282 to 1386313 positive strand 119 533 
 

1.8E-27 4.5 
- predicted RNA 

 
22nt length; 1053999 to 1053977 negative strand 46 219 

 
9.1E-31 4.8 

- predicted RNA 
 

711nt length; 197103 to 197814 positive strand 41 199 
 

8.7E-33 4.9 
- predicted RNA 

 
10nt length; 1163099 to 1163109 positive strand 55 296 

 
5.4E-34 5.4 

- predicted RNA 
 

antisense: CJSA_0390; 81nt length, 388537 to 388618 positive strand 41 233 
 

5.2E-46 5.7 
- predicted RNA 

 
antisense: CJSA_0363; 359nt length, 362675 to 362316 negative strand 72 412 

 
2.7E-51 5.7 

- predicted RNA 
 

antisense: CJSA_0223; 161nt length, 231589 to 231750 58 386 
 

5.3E-96 6.7 
- predicted RNA 

 
9nt length; 198494 to 198503 positive strand 18 121 

 
5.5E-56 6.7 

- predicted RNA 
 

70nt length; 1175070 to 1175140 positive strand 106 766 
 

4.6E-105 7.2 
- predicted RNA 

 
23nt length; 197874 to 197897 positive strand 13 102 

 
3.6E-66 7.8 

- predicted RNA 
 

antisense: fliP; 78nt length, 771731 to 771809 positive strand 15 119 
 

1.3E-96 7.9 
- predicted RNA 

 
69nt length; 210449 to 210518 positive strand 17 143 

 
4.6E-105 8.4 
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Table 6B continued        
- predicted RNA 

 
antisense: ispG; 155nt length, 644706 to 644551 negative strand 32 272 

 
2.4E-118 8.5 

- predicted RNA 
 

37nt length; 198556 to 198593 positive strand 16 144 
 

3.6E-110 9.0 
- predicted RNA 

 
55nt length; 417148 to 417203 positive strand 20 185 

 
3.5E-145 9.3 

- predicted RNA 
 

antisense: pbpA; 61nt length, 479304 to 479243 negative strand 14 131 
 

5.9E-132 9.4 
- predicted RNA 

 
129nt length; 1193304 to 1193433 positive strand 23 227 

 
6.1E-162 9.9 

- predicted RNA 
 

antisense: CJSA_0390; 14nt length, 388983 to 388997 positive strand 8 102 
 

1.5E-190 12.8 
- predicted RNA 

 
antisense: CJSA_0826; 174nt length; 818541 to 818715 positive strand 13 166 

 
1.7E-273 12.8 

- predicted RNA 
 

20nt length; 409962 to 409982 positive strand 12 157 
 

2.4E-230 13.1 
- predicted RNA 

 
23nt length; 198048 to 198071 positive strand 10 135 

 
1.7E-253 13.5 

- predicted RNA 
 

34nt length; 1555303 to 1555269 negative strand 11 149 
 

6.0E-282 13.5 
- predicted RNA 

 
35nt length; 1259305 to 1259340 positive strand 37 601 

 
0.0E+00 16.2 

- predicted RNA 
 

52nt length; 959493 to 959441 negative strand 9 168 
 

0.0E+00 18.7 
- predicted RNA 

 
94nt length; 1572367 to 1572461 positive strand 13 258 

 
0.0E+00 19.8 

- predicted RNA 
 

antisense: CJSA_0401; 33nt length, 395896 to 395929 positive strand 6 120 
 

0.0E+00 20.0 
- predicted RNA 

 
10nt length; 1175229 to 1175929 positive strand 7 150 

 
0.0E+00 21.4 

- predicted RNA 
 

antisense: pseE; 274nt length, 1272527 to 1272253 negative strand 8 182 
 

0.0E+00 22.8 
- predicted RNA 

 
antisense: glnA; 123nt length, 660916 to 661039 positive strand 8 185 

 
0.0E+00 23.1 

- predicted RNA 
 

17nt length; 1465 to 1482 positive strand 6 140 
 

0.0E+00 23.3 
- predicted RNA 

 
19nt length; 59713 to 59732 positive strand 8 413 

 
0.0E+00 51.6 

- predicted RNA 
 

18nt length; 706803 to 706821 positive strand 2 162 
 

0.0E+00 81.0 
- predicted RNA 

 
13nt length; 645467 to 645454 negative strand 1 122 

 
0.0E+00 122.0 

- predicted RNA 
 

24nt length; 828765 to 828741 negative strand 2 245 
 

0.0E+00 122.5 
- predicted RNA 

 
antisense: pseE; 69nt length, 1271969 to 1271900 negative strand 0 110 

 
0.0E+00 110.0 

- predicted RNA 
 

25nt length; 31479 to 31504 positive strand pVir 47 108 
 

2.3E-05 2.3 
- predicted RNA   antisense: CJSA_pVir0033; 168 length, 25244 to 25412 positive strand  208 542   7.1E-08 2.6 

         a, b, aa, bb, ect = matching superscript signifies expression within the same operon 
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Table 7. List of annotated genes identified to be upregulated under all four conditions when compared with the unexposed IA 3902 
inoculum with a comparison of fold change under each category. 

 

   
Fold Change 

    
 GB            

in vivo      
2 hr 

 GB             
in vivo     
24 hr 

 Bile               
in vitro           

2 hr 

 Bile               
in vitro        
24 hr 

Name Synonym 

COG 
Code Product 

- CJSA_0035 G MFS family drug resistance transporter 3.5 3.3 2.0 3.7 
- CJSA_0040 

 
hypothetical protein 21.4 52.2 10.9 15.1 

- CJSA_0041 
 

hypothetical protein 3.1 6.1 1.6 2.2 
- CJSA_0045 P putative iron-binding protein 2.8 5.3 3.8 4.2 
- CJSA_0049 

 
hypothetical protein 1.9 3.9 1.5 1.6 

- CJSA_0056 
 

hypothetical protein 3.0 10.6 1.6 3.2 
folk CJSA_0059 H 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase 2.7 3.3 2.9 3.1 

atpF' CJSA_0093 C F0F1 ATP synthase subunit B 2.7 4.1 1.9 2.5 
- CJSA_0126 K hypothetical protein 2.5 4.4 2.3 2.9 
- CJSA_0166 

 
putative lipoprotein 4.8 12.4 2.2 3.5 

- CJSA_0305 
 

hypothetical protein 2.8 4.9 1.5 2.8 
cmeB CJSA_0339 V RND efflux system, inner membrane transporter CmeB 3.7 1.7 1.7 1.9 
cmeA CJSA_0340 M RND efflux system, membrane fusion protein CmeA 3.8 2.6 2.3 2.1 
- CJSA_0370 

 
hypothetical protein 3.2 6.6 2.6 5.0 

sdhA CJSA_0409 C succinate dehydrogenase, flavoprotein subunit 6.5 2.4 2.5 1.5 
sdhB CJSA_0410 C succinate dehydrogenase, iron-sulfur protein subunit 5.0 2.0 2.5 1.5 
- CJSA_0426 

 
hypothetical protein 3.5 10.4 1.8 3.8 

- CJSA_0528 
 

hypothetical protein 29.3 21.3 17.3 15.8 
Nth CJSA_0563 L endonuclease III 2.2 3.9 2.3 4.2 
- CJSA_0596 L prophage Lp2 protein 6 1.5 2.4 1.5 2.1 
- CJSA_0636 

 
hypothetical protein 2.2 2.8 1.5 2.3 

flgH CJSA_0651 N flagellar basal body L-ring protein 1.6 4.4 2.0 1.7 
- CJSA_0655 

 
hypothetical protein 2.4 4.9 1.6 3.9 
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Table 7 continued       
- CJSA_0716 R hypothetical protein 2.9 2.8 1.7 1.7 
- CJSA_0785 S hypothetical protein 2.8 9.7 2.3 6.2 
- CJSA_0818 

 
hypothetical protein 2.7 1.6 2.7 2.2 

dsbB CJSA_0819 O putative disulfide oxidoreductase 3.5 1.8 2.6 2.2 
flgL CJSA_0833 N flagellar hook-associated protein FlgL 2.2 5.3 1.9 1.9 
- CJSA_0852 S hypothetical protein 1.9 4.2 1.5 2.0 
- CJSA_0920 Q hypothetical protein 2.0 3.7 2.3 1.5 
rpoD CJSA_0944 K RNA polymerase sigma factor RpoD 1.7 2.9 1.7 1.9 
cmeE CJSA_0975 M membrane fusion component multidrug efflux system CmeDEF 1.9 2.0 1.5 1.5 
- CJSA_0977 O adenylosuccinate lyase 2.5 5.2 2.4 3.4 
Rho CJSA_1096 K transcription termination factor Rho 1.8 1.9 1.6 1.7 
- CJSA_1129 T putative PAS domain containing signal-transduction sensor protein 4.8 5.7 1.8 2.1 
- CJSA_1146 H putative 5-formyltetrahydrofolate cyclo-ligase family protein 1.6 4.1 1.6 2.3 

- CJSA_1180 
 

hypothetical protein 2.1 7.1 1.9 2.1 
pseC CJSA_1232 M C4 aminotransferase specific for PseB product 2.0 3.1 1.7 1.5 
- CJSA_1233 R hypothetical protein 2.7 3.9 1.6 1.7 
maf1 CJSA_1256 S motility accessory factor 2.3 3.3 2.4 2.2 
neuC2 CJSA_1264 M putative UDP-N-acetylglucosamine 2-epimerase 4.4 6.0 1.8 2.5 
- CJSA_1266 R hypothetical protein 1.6 4.1 1.6 2.3 
maf4 CJSA_1271 S motility accessory factor 2.5 3.5 2.3 2.3 
nrfA CJSA_1292 P putative periplasmic cytochrome C 3.4 3.8 3.2 3.3 
nrfH CJSA_1293 C putative periplasmic cytochrome C 6.1 11.1 7.8 6.3 
- CJSA_1304 R putative nucleotide phosphoribosyltransferase 1.8 1.5 1.5 2.1 
- CJSA_1387 

 
hypothetical protein 2.1 5.0 1.7 1.8 

infA CJSA_1502 J translation initiation factor IF-1 2.9 2.9 1.7 2.3 
- CJSA_1533 

 
hypothetical protein 1.8 2.2 1.9 2.2 

- CJSA_1544 
 

hypothetical protein 2.9 6.7 3.1 3.8 
- CJSA_1554 S hypothetical protein 1.8 2.3 1.5 2.2 
- CJSA_1562 

 
hypothetical protein 2.6 4.5 1.5 2.1 
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Table 7 continued       
- CJSA_1596 G putative MSF family efflux protein 3.9 4.0 3.1 4.0 
- CJSA_1624 R GNAT family acetyltransferase 3.0 7.3 1.7 2.5 
- CJSA_pVir0024 

 
putative plasmid partioning ParA protein 1.7 4.1 4.2 4.5 

- CJSA_pVir0025 
 

hypothetical protein 4.6 5.4 4.2 5.3 
repE CJSA_pVir0026 

 
putative replication protein RepE 3.4 10.9 4.3 6.5 

- CJSA_pVir0040 
 

hypothetical protein 3.5 8.1 2.5 3.9 
- CJSA_pVir0044 

 
hypothetical protein 5.4 22.4 6.0 13.8 

- CJSA_t0001 
 

Ala tRNA 6.1 8.0 2.2 3.4 
- CJSA_t0002 

 
Ile tRNA 8.1 9.4 1.9 3.2 

- CJSA_t0004 
 

Ala tRNA 5.0 5.9 1.5 2.1 
- CJSA_t0014 

 
Ala tRNA 4.6 6.3 2.0 2.5 

- CJSA_t0015 
 

Ile tRNA 7.7 8.3 1.7 3.0 
- CJSA_t0023 

 
Val tRNA 2.2 4.7 1.7 1.5 

- CJSA_t0043 
 

Ala tRNA 1.9 3.8 1.6 1.9 
- CJSA_t0044   Val tRNA 2.3 4.9 1.8 2.0 
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Table 8. List of annotated genes identified to be upregulated only in both in vivo conditions when compared with the unexposed IA 
3902 inoculum with a comparison of fold change under each category. 

    
Fold Change 

    
 GB            

in vivo      
2 hr 

 GB            
in vivo      
24 hr 

Name Synonym 

COG 
Code Product 

dsbI CJSA_0017 O DsbB family disulfide bond formation protein 2.1 2.7 
Dba CJSA_0018 

 
disulfide bond formation protein 3.0 6.5 

fliM CJSA_0054 N flagellar motor switch protein FliM 1.9 2.6 
fliA CJSA_0055 K flagellar biosynthesis sigma factor 2.0 4.4 
cydA CJSA_0074 C cytochrome d ubiquinol oxidase, subunit I 2.4 3.1 
- CJSA_0080 S putative lipoprotein 1.8 2.3 
obgE CJSA_0087 R GTPase ObgE 1.5 3.4 
- CJSA_0111 

 
putative recombination protein RecO 5.4 5.6 

- CJSA_0112 R putative metalloprotease 3.1 1.9 
thrB CJSA_0125 E homoserine kinase 2.2 2.0 
- CJSA_0149 C cytochrome c family protein 1.5 1.6 
- CJSA_0150 H putative 6-pyruvoyl tetrahydropterin synthase 1.8 1.9 
- CJSA_0228 

 
hypothetical protein 1.6 1.7 

- CJSA_0233 R Sulfatase 2.9 2.5 
dgkA CJSA_0234 M diacylglycerol kinase 3.6 4.9 
pyrC CJSA_0236 F Dihydroorotase 2.3 2.8 
- CJSA_0240 P zinc transporter ZupT 2.5 2.1 
mreC CJSA_0254 M rod shape-determining protein MreC 1.8 1.6 
lpxB CJSA_0264 M lipid-A-disaccharide synthase 1.6 1.7 
Ndk CJSA_0306 F nucleoside diphosphate kinase 1.8 1.9 
flhB CJSA_0309 NU flagellar biosynthesis protein FlhB 1.9 2.4 
- CJSA_0327 FP Ppx/GppA family phosphatase 1.8 1.7 
fdxB CJSA_0328 C ferredoxin, 4Fe-4S 1.6 1.9 
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Table 8 continued     
- CJSA_0358 S integral membrane protein 1.5 1.6 
- CJSA_0384 R GTP-binding protein 2.7 2.6 
- CJSA_0424 

 
hypothetical protein 3.1 2.7 

- CJSA_0425 
 

hypothetical protein 2.5 3.3 
rpmG CJSA_0441 J 50S ribosomal protein L33 1.5 2.3 
- CJSA_0467 R hypothetical protein 1.8 1.7 
- CJSA_0474 R Gfo/Idh/MocA family oxidoreductase 2.2 2.3 
- CJSA_0517 

 
hypothetical protein 2.1 1.7 

- CJSA_0572 S putative polyphosphate kinase 1.7 1.8 
- CJSA_0575 V ABC-type transmembrane transport protein 1.9 2.0 
recN CJSA_0609 L DNA repair protein RecN 1.5 1.7 
- CJSA_0699 

 
hypothetical protein 3.1 4.9 

- CJSA_0717 S hypothetical protein 2.6 2.9 
purU CJSA_0746 F formyltetrahydrofolate deformylase 1.5 2.2 

ftsK CJSA_0832 D putative cell division protein 2.1 2.8 
- CJSA_0894 E peptidyl-arginine deiminase family protein 2.1 1.7 
- CJSA_0897 

 
putative HAMP containing membrane protein 2.0 2.0 

- CJSA_0910 R putative acyl-CoA thioester hydrolase 2.2 2.7 
flgR CJSA_0967 T sigma-54 associated transcriptional activator 1.7 5.2 
- CJSA_0968 

 
hypothetical protein 2.1 5.3 

Ssb CJSA_1013 L single-stranded DNA-binding protein 1.6 1.8 
mfd CJSA_1027 LK transcription-repair coupling factor 1.9 1.9 
- CJSA_1086 

 
hypothetical protein 3.1 5.3 

- CJSA_1118 V ABC transporter ATP-binding protein 2.2 3.9 
- CJSA_1153 M peptidase, M23/M37 family 1.8 1.5 
kefB CJSA_1169 P putative glutathione-regulated potassium-efflux system protein 1.5 2.5 
uvrC CJSA_1184 L excinuclease ABC subunit C 3.3 4.4 
- CJSA_1190 S hypothetical protein 1.6 2.1 
racS CJSA_1201 T two-component sensor (histidine kinase) 1.5 2.0 
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Table 8 continued     
ktrA CJSA_1222 P putative K+ uptake protein 1.9 1.7 
hisF CJSA_1252 E imidazole glycerol phosphate synthase subunit HisF 2.3 1.5 
maf3 CJSA_1270 S motility accessory factor 2.1 1.7 
- CJSA_1305 M putative periplasmic protein (VacJ-like protein) 1.6 1.5 
- CJSA_1416 S hypothetical protein 1.9 2.4 
selD CJSA_1426 E putative selenide,water dikinase 1.7 1.9 
- CJSA_1448 R hypothetical protein 1.8 2.6 
rpsM CJSA_1504 J 30S ribosomal protein S13 1.7 1.7 
rnhA CJSA_1548 L ribonuclease H 1.7 1.7 
murL CJSA_1564 M glutamate racemase 2.5 2.5 
nlpC CJSA_1565 M putative lipoprotein nlpC 1.7 1.8 
nhaA2 CJSA_1566 P Na+/H+ antiporter 1.7 3.1 
- CJSA_1631 R putative GTP cyclohydrolase I 2.6 13.9 

- CJSA_pVir0016 
 

hypothetical protein 2.9 2.6 
- CJSA_pVir0020 

 
hypothetical protein 2.0 1.8 

- CJSA_t0009 
 

Thr tRNA 1.7 2.9 
- CJSA_t0011 

 
Arg tRNA 2.3 2.7 

- CJSA_t0012 
 

Met tRNA 1.6 4.4 
- CJSA_t0020 

 
Val tRNA 1.8 3.6 

- CJSA_t0033 
 

Leu tRNA 1.8 1.8 
- CJSA_t0034 

 
Cys tRNA 1.7 3.4 

- CJSA_t0035 
 

Ser tRNA 2.3 4.2 
- CJSA_t0037 

 
Arg tRNA 1.9 1.9 

- CJSA_t0038 
 

Arg tRNA 2.1 1.9 
- CJSA_t0040   Pro tRNA 1.5 1.7 
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Table 9. List of annotated genes identified to be downregulated in all conditions when compared with the unexposed IA 3902 
inoculum with a comparison of fold change under each category. 

    
Fold Change 

    GB            
in vivo      

2 hr 

GB             
in vivo     
24 hr 

Bile               
in vitro           

2 hr 

Bile               
in vitro        
24 hr Name Synonym 

COG 
Code Product 

- CJSA_0025 R sodium/dicarboxylate symporter -7.2 -3 -2.4 -7.6 
cjaA CJSA_0925 ET putative amino-acid transporter periplasmic solute-binding protein -5.3 -4.2 -3.5 -3.7 
metF CJSA_1140 E 5,10-methylenetetrahydrofolate reductase -2.7 -2.2 -4.2 -6.3 
putP CJSA_1424 ER putative sodium/proline permease -4.7 -9 -2.0 -2.9 
- CJSA_1573 M ABC transporter permease -2.1 -1.9 -2.9 -7 
- CJSA_pVir0008 

 
hypothetical protein -4.2 -11.7 -2.5 -2.7 

- CJSA_pVir0009 
 

hypothetical protein -3.8 -10.6 -2.4 -2.7 
- CJSA_pVir0050 

 
hypothetical protein -6.7 -7.5 -4.1 -5.3 

- CJSA_pVir0051 
 

hypothetical protein -5 -5 -4.4 -5 
  CJSA_t0030   Ser tRNA -7.4 -4.2 -3.6 -6.9 

 

134 



135 

 

Table 10. Summary of the number of genes found to be differentially expressed when the 2 
hour and 24 hour time points for each condition were compared.  
 

  
Condition 

  
2 hours vs 24 hours 

    GB in vivo  Bile in vitro  

    Protein-coding genes 
   Increased at 2  vs 24 hours 
 

38 16 
Increased at 24  vs 2 hours 

 
136 9 

    Non-coding RNA genes 
   Increased at 2  vs 24 hours 
 

[4] [8] 
Increased at 24  vs 2 hours 

 
[57] [3] 

        

    
[ ] = signifies that this is a putative list generated by Rockhopper of 
predicted non-coding RNA as well as known non-coding RNA genes 
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Table 11A. List of previously validated non-coding RNAs (Dugar et al., 2013) expressed and differentially regulated in our dataset 
with location, length, and orientation. 
 

Transcription 
Start 

Transcription 
Stop Length Strand Product LFG RFG Orientation Location 

INCREASED EXPRESSION  
     250059 249960 99 - CjNC20 CjSA_0232 CjSA_0233 <<< intergenic 

675392 675240 152 - CjNC60 CjSA_0681 dnaE ><> intergenic 
1155464 1155580 116 + CjNC120 groEL dccS >>< intergenic/antisense dccS 
1193304 1193433 129 + CjNC140 CjSA_1197 porA >>> intergenic 
1572367 1572461 94 + CjNC180 CjSA_1562 map >>< intergenic 
25244 25412 168 + CJpv2 CjSA_pVir0032 CjSA_pVir0032 >>< intergenic 
DECREASED EXPRESSION  

    

 

1183928 1183941 13 + CjNC130/6S CjSA_1188 CjSA_1188 >>> intergenic 
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Table 11B. Differential expression between conditions of previously validated non-coding 
RNAs (Dugar et al., 2013).  
 

  
Fold change 

Product  GB in vivo 
2 hr 

GB  in vivo 
24 hr 

Bile  in vitro 
2 hr 

Bile  in vitro 
24 hr   

INCREASED EXPRESSION  
 CjNC20 

 
1.1 1.5 2.8 1.7 

CjNC60 
 

0.8 1 1.3 1.7 
CjNC120 

 
1.3a 3.8 1.1a 1.2a 

CjNC140 
 

3.1 9.9 1.4a 4.6 
CjNC180 

 
6 19.8 1.8 4.8 

CJpv2 
 

-1.4 2.6 -1.2 -1.1 

      DECREASED EXPRESSION  
 CjNC130/6S   -5.7 -3.5 -1.8b -1.8b 

      a = Q value >0.05 but fold change <1.5 
b = fold change >1.5 but Q value <0.05 

   Bold indicates significant differential expression 
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Table 12. Fold change expression data for the 14 genes previously reported to be involved in the bile tolerance response in 
Campylobacter, 2 of which are not present in strain IA 3902. 
 

   
Fold Change 

    
  

Present in 
IA 3902 

Gallbladder  
 

Bile 
 

Expected 
change       2 hours 24 hours   2 hours 24 hours     Reference 

cmeA 
 

Yes 3.8 2.6 
 

2.3 2.1 
 

Increase 
 

Lin et al., 2002, 2005 
cmeB 

 
Yes 3.7 1.7 

 
1.7 1.9 

 
Increase 

 
Lin et al., 2002, 2005 

cmeC 
 

Yes 2.6 1.5 
 

1.2 1.8 
 

Increase 
 

Lin et al., 2002, 2005 
cmeD 

 
Yes 1.9 3.8 

 
1.4a 2.6 

 
Increase 

 
Akiba et al., 2005 

cmeE 
 

Yes 1.9 2 
 

1.5 1.5 
 

Increase 
 

Akiba et al., 2005 
cmeF 

 
Yes 1.9 1.5 

 
1.1 1.3 

 
Increase 

 
Akiba et al., 2005 

cmeR 
 

Yes 1.3a 1.1 
 

1.2a 1.7 
 

None 
 

Lin et al., 2005 
cbrR 

 
Yes 1.1 1.9 

 
1.0 1.4a 

 
None 

 
Raphael et al., 2005 

ciaB 
 

Yes 0.8 1 
 

0.9 1.4a 
 

Increase 
 

Rivera-Amill et al., 2001 
flaA 

 
Yes 0.9 1 

 
1.3 0.7 

 
Increase 

 
Allen and Griffiths, 2001 

tlyA 
 

Yes NE NE 
 

NE NE 
 

Increase 
 

Malik-Kale et al., 2008 
dccR 

 
Yes 1.2 1.4a 

 
1.0 1.4a 

 
Increase 

 
Malik-Kale et al., 2008 

hcp1 
 

No - - 
 

- - 
 

- 
 

Lertpiriyapong et al., 2012 
icmF1   No - -   - -   -   Lertpiriyapong et al., 2012 

            NE = not expressed under any conditions studied (<5 RMPK) 
a = Q value >0.05 but fold change <1.5 
Bold indicates significant differential expression 
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Figure 1. IGV screen capture from preliminary RNAseq experiment, luxS and 
CjNC110 region. Screen capture image of the expression levels of the luxS gene and the 
predicted CjNC110 small RNA observed during the preliminary RNAseq experiment, with 
significantly increased expression present in the in vitro plate grown inoculum when 
compared to the 2 hour in vivo gallbladder sample. 
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Figures 2A and 2B. Analysis of the differentially expressed genes based on COG function detected by RNAseq, gallbladder in 
vivo samples at 2 hours (A) and 24 hours (B). Clusters of Orthologous Groups (COG) categories are indicated on the x-axis, with 
the percentage of genes enriched shown on the y-axis; blue bars indicate increased expression, red bars indicate decreased expression. 
COG category codes: C - Energy production and conversion; D - Cell cycle control, mitosis and meiosis; E - Amino acid transport and 
metabolism; F - Nucleotide transport and metabolism; G - Carbohydrate transport and metabolism; H - Coenzyme transport and 
metabolism; I - Lipid transport and metabolism; J – Translation; K – Transcription; L - Replication, recombination and repair; M - 
Cell wall/membrane biogenesis; N - Cell motility; O - Posttranslational modification, protein turnover, chaperones; P - Inorganic ion 
transport and metabolism; Q - Secondary metabolites biosynthesis, transport and catabolism; R - General function prediction only; S - 
Function unknown; T - Signal transduction mechanisms; U - Intracellular trafficking and secretion; V - Defense mechanisms; W - 
Extracellular structures. 

A B 
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Figures 2C and 2D: Analysis of the differentially expressed genes based on COG function detected by RNAseq, bile in vitro 
samples at 2 hours (C) and 24 hours (D). Clusters of Orthologous Groups (COG) categories are indicated on the x-axis, with the 
percentage of genes enriched shown on the y-axis; blue bars indicate increased expression, red bars indicate decreased expression. 
COG category codes: C - Energy production and conversion; D - Cell cycle control, mitosis and meiosis; E - Amino acid transport and 
metabolism; F - Nucleotide transport and metabolism; G - Carbohydrate transport and metabolism; H - Coenzyme transport and 
metabolism; I - Lipid transport and metabolism; J – Translation; K – Transcription; L - Replication, recombination and repair; M - 
Cell wall/membrane biogenesis; N - Cell motility; O - Posttranslational modification, protein turnover, chaperones; P - Inorganic ion 
transport and metabolism; Q - Secondary metabolites biosynthesis, transport and catabolism; R - General function prediction only; S - 
Function unknown; T - Signal transduction mechanisms; U - Intracellular trafficking and secretion; V - Defense mechanisms; W - 
Extracellular structures. 

C D 
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Figure 3. Venn diagram depicting the overlap of upregulated annotated genes in all 
conditions compared to the unexposed IA 3902 inoculum. All known annotated genes 
including both protein coding and previously validated ncRNA were compared to each other 
utilizing the Venny program.  
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Figure 4. Venn diagram depicting the overlap of downregulated annotated genes in all 
conditions compared to the unexposed IA 3902 inoculum. All known annotated genes 
including both protein coding and previously validated ncRNA were compared to each other 
utilizing the Venny program.  
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Figures 5A and 5B. Venn diagrams depicting the overlap of upregulated (A) and 
downregulated (B) predicted non-coding RNA unannotated genes in all conditions 
compared to the unexposed IA 3902 inoculum. All putative ncRNA predicted by 
Rockhopper as differentially expressed under each condition were compared to each other 
utilizing the Venny program.  
 

 

 
Figure 6. KEGG Pathway for chemotaxis in C. jejuni. Multiple genes responsible for 
chemotaxis were observed to be upregulated in the gallbladder condition only, including 
cheY, cheR, and a putative MCP CjSA_0897 (increased differential expression denoted by 
red highlight).  
 

A B 
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Figure 7. KEGG Pathway for flagellar assembly in C. jejuni. Multiple genes responsible 
for flagellar assembly were observed to be upregulated in the gallbladder condition only; 
image depicts 24 hours in the in vivo gallbladder environment (increased differential 
expression denoted by red highlight).  
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CHAPTER 4 

THE TRANSCRIPTOME OF MUTANTS ∆CjNC110, ∆LUXS, AND ∆CjNC110∆LUXS IN 

THE CAMPYLOBACTER JEJUNI SHEEP ABORTION CLONE IA 3902  

 

Abstract 

Recent advances in the use of high throughput deep sequencing of RNA (RNAseq) 

have revolutionized the study of gene expression and identification of small non-coding 

RNAs in pathogenic microorganisms. Previous studies in Campylobacter jejuni have 

identified the presence of this important class of post-transcriptional gene regulators in the 

transcriptome of various strains of C. jejuni, however, few studies have been published to 

date that have attempted to elucidate the function of this emerging class of regulatory 

molecules. In the previous chapter, we demonstrated for the first time small RNAs 

differentially expressed in the zoonotic pathogen C. jejuni sheep abortion clone IA 3902 

under in vivo host conditions. One of these small RNAs, CjNC110, was selected for further 

study based on its location immediately downstream of the luxS gene which has been 

previously demonstrated to play an important role in the virulence of C. jejuni. Deletional 

mutagenesis was performed to create ∆CjNC110 in C. jejuni IA 3902, and this mutation was 

then transferred into the previously constructed IA 3902 ∆luxS mutant to create the double 

knockout mutant IA 3902 ∆CjNC110∆luxS. Evaluation of the complete transcriptome of the 

∆CjNC110, ∆luxS, and ∆CjNC110∆luxS mutants compared to wild type IA 3902 during 

both exponential and stationary growth utilizing strand specific RNAseq was observed to 

result in distinctly different transcriptomes in each mutant during both growth stages. This 

data was then utilized to generate a list of potential regulatory targets of the CjNC110 small 
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RNA in IA 3902 which was then compared to computational methods of mRNA target 

identification via TargetRNA2. Further evaluation of the transcriptome of the 

∆CjNC110∆luxS mutant suggests that previous studies describing the transcriptome of luxS 

only mutants may have unknowingly caused polar effects in the expression of CjNC110. This 

work provides for the first time valuable insights into the potential regulatory targets of the 

CjNC110 small RNA in the zoonotic pathogen C. jejuni. 

 

Introduction 

Campylobacter jejuni sheep abortion (SA) clone IA 3902 has recently emerged as an 

important pathogen of both ovine abortion and human gastroenteritis (Sahin et al., 2008; 

Sahin et al., 2012). Recent analysis of IA 3902 via a multi-omics approach revealed that IA 

3902 is remarkably syntenic with the genome of C. jejuni type-strain 11168 (Wu et al., 2013) 

and it does not harbor any additional pathogenicity islands or virulence factors known to be 

associated with abortion induced by C. fetus subsp. fetus (Grogono-Thomas et al., 2003; van 

Putten et al., 2009). The fact that relatively mild changes in genomic structure have led to 

significantly enhanced ability to cause disease by C. jejuni sheep abortion clone IA 3902 as 

described above suggests that differences in gene regulation may play a key role in the 

enhanced virulence of this strain.  

C. jejuni has only three known sigma factors identified within its genome to regulate 

transcription: σ70 (encoded by rpoD), σ54 (encoded by rpoN) and σ28 (encoded by fliA) 

(Parkhill et al., 2000). Besides control at the transcriptional level, regulation of gene 

expression can occur by post-transcriptional control via regulation of mRNA translation, 

stability and processing; the primary players in post-transcriptional regulation are small 
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RNAs (Papenfort and Vogel, 2010; Storz et al., 2011; Caldelari et al., 2013). Prior to 

completion of the transcriptional start site map via high throughput RNA sequencing 

(RNAseq) of H. pylori (Sharma et al., 2010), the ε-proteobacteria were thought not to be 

capable of using small and antisense RNA as a regulatory mechanism, partly due to a lack of 

the small RNA chaperone protein Hfq (Valentin-Hansen et al., 2004). Indeed, attempts at 

computational approaches of identification of small RNAs in Campylobacter failed to 

identify any potential candidates, with only 3 potential loci being identified in Helicobacter 

(Livny et al., 2008). Recently, clear evidence that C. jejuni also has the capability to produce 

these important regulators has been published detailing identification of a wealth of small 

RNAs present in strains 11168, 81-176, 81116, and RM1221 (Chaudhuri et al., 2011; 

Butcher and Stintzi, 2013; Dugar et al., 2013; Porcelli et al., 2013; Taveirne et al., 2013). 

Dugar et al. (2013), when comparing the transcriptomes of 4 different C. jejuni isolates, 

observed a large variation in transcriptional start sites (TSS) as well as expression patterns of 

both mRNA and non-coding RNA between strains. This suggests that variation between the 

existence and expression of small RNAs even among closely related strains may play a role 

in the differences observed in virulence.  

In closely related Helicobacter pylori, studies are just starting to emerge where 

ncRNAs have been shown to influence gene expression at the post-transcriptional level (Wen 

et al., 2013; Pernitzsch et al., 2014). The first report attempting to elucidate the role of two 

recently identified non-coding RNAs just recently published in C. jejuni suggests these 

ncRNAs may play a role in flagellar biosynthesis; however, they were unable to demonstrate 

phenotypic changes following inactivation of either non-coding RNA (Le et al., 2015). 

Beyond simply establishing the existence of non-coding RNA transcripts in Campylobacter, 
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there is strong need to begin to determine the functional role of these potential regulators in 

this important zoonotic pathogen.  

In Chapter 3, we demonstrated for the first time the expression of previously 

identified non-coding RNAs in C. jejuni sheep abortion clone IA 3902, including a number 

that were differentially expressed in the in vivo host environment. In particular, the conserved 

small RNA CjNC110 (Dugar et al., 2013) was strongly differentially expressed during our 

preliminary experiments, warranting further investigation. The location of this ncRNA in the 

intergenic region immediately downstream of the luxS gene was of particular interest to our 

group as previous work in our lab has already highlighted the importance of the luxS gene in 

the virulence of C. jejuni (Plummer et al., 2012), and experiments to improve understanding 

of the regulation of quorum sensing in C. jejuni related to luxS are ongoing in our lab. In 

addition, a recent article assessing the effect of various methods of mutation of the luxS gene 

in Campylobacter has suggested that certain methods of luxS mutation may have polar 

effects on this newly described ncRNA that have led to differences in the various reports of 

phenotypic and gene expression changes due to luxS mutation in Campylobacter (Adler et 

al., 2014). Based on these observations, we chose CjNC110 as our first attempt at 

characterizing the role a non-coding RNA might play in the virulence of C. jejuni IA 3902.  

In this study, we investigated the effect of deletional mutagenesis of CjNC110, 

insertional mutagenesis of luxS, and combined mutation of both genes on the transcriptional 

landscape during exponential and stationary stages of growth of C. jejuni IA 3902. We 

hypothesized that inactivation of the CjNC110 small RNA would lead to changes in the 

abundance of mRNAs of genes whose expression is regulated by CjNC110. Inactivation of 

CjNC110 and luxS, both independently and when combined, was observed to result in 
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distinctly different transcriptomes during both exponential and stationary growth. This 

information will help direct future studies focused on elucidating the role of both luxS and 

CjNC110 in the pathobiology and virulence of C. jejuni. 

 

Materials and Methods 

Bacterial strains, plasmids and culture conditions 

 C. jejuni SA (sheep abortion) clone IA 3902 was initially isolated from an outbreak of 

sheep abortion in Iowa during 2006 and has been utilized by our laboratory as the 

prototypical isolate of a set of clonal isolates now identified as the most common cause of 

sheep abortion due to Campylobacter species in the United States (Sahin et al., 2008). W7 is 

a highly motile variant of the commonly utilized laboratory strain C. jejuni 11168 (Plummer 

et al., 2012). C. jejuni strains and their isogenic mutants were routinely grown in Mueller-

Hinton (MH) broth or agar plates (Becton-Dickinson, Franklin Lakes, NJ) at 42°C under 

microaerophilic conditions with the use of compressed gas (55% O2, 10% CO2, 85% N2). For 

strains containing a chloramphenicol resistance cassette, 5 μg/mL chloramphenicol was 

added to either the broth or agar plates when appropriate. For strains containing a kanamycin 

resistance cassette, 30 μg/mL kanamycin was added to either the broth or agar plates when 

appropriate.  

 For genetic manipulations, Escherichia coli competent cells were grown at 37°C on 

Luria-Bertani (LB) agar plates or broth (Becton-Dickinson, Franklin Lakes, NJ) with shaking 

at 125 rpm. When appropriate, 50 μg/mL kanamycin, 20 μg/mL chloramphenicol or 100 

μg/mL ampicillin was added to the broth or agar plates for selection of colonies.  All strains 

used in this study are described in Table 1, with all relevant plasmids listed in Table 2 and 
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primer sequences in Table 3. All strains were maintained in 20% glycerol stocks at -80C and 

passaged from those stocks as needed for experimental procedures.  

 

Creation of C. jejuni ∆Cjnc110 and ∆Cjnc110∆luxS mutants in IA 3902 

 An isogenic CjNC110 mutant of C. jejuni IA 3902 was constructed via deletional 

mutagenesis utilizing a combination of synthetic double-stranded DNA (dsDNA) fragments 

and traditional cloning methods. Based on previously published data depicting the proposed 

transcriptional start site for CjNC110 (Dugar et al., 2013), the coding region of CjNC110 in 

IA 3902 and the prototypical C. jejuni strain 11168 were first confirmed to be identical. 

Then, a 200 bp section of the IA 3902 genome starting 20 bp upstream and including the 

entire 137 nt transcript of the CjNC110 sequence as predicted in Dugar et al. (2013) was 

replaced with 820 bp of the promoter and coding sequence of the chloramphenicol 

acetyltransferase (cat) gene of Campylobacter coli plasmid C-589 (Wang and Taylor, 

1990a). Synthetic dsDNA including approximately 500 bp upstream and 500 bp downstream 

of the region replaced with the cat cassette was then synthesized in 4 fragments of 500 bp 

each with overlapping homologous ends (Integrated DNA Technologies, Coralville, IA). The 

Gibson Assembly method was then utilized to assemble the synthetic dsDNA fragments 

(Gibson et al., 2009) using the Gibson Assembly Master Mix (New England Biolabs, 

Ipswich, MA). Following assembly, primers (CJnc110F2 and CJnc110R2) were designed to 

amplify a 1785 bp product of the assembled dsDNA; PCR amplification was achieved using 

TaKaRa Ex Taq DNA Polymerase (ClonTech, Mountain View, CA). This amplified PCR 

product was then cloned into the pGEM-T Easy Vector using T4 ligase (Promega, Madison, 

WI) resulting in the construction of pNC110::cat which was then transformed into chemically 
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competent E. coli DH5α (New England Biolabs, Ipswich, MA). Transformants were then 

selected on LB agar plates containing chloramphenicol (20 μg/ml), ampicillin (100 μg/ml), 

and ChromoMax IPTG/X-Gal Solution (Fisher Scientific, Pittsburgh, PA). pNC110::cat was 

purified from the transformed E. coli using the QIAprep Miniprep kit (QIAGEN, 

Germantown, MD) and confirmed by PCR to contain the construct again using the 

CJnc110F2 and CJnc110R2 primers.  

The pNC110::cat plasmid DNA was then introduced to C. jejuni W7 as a suicide 

vector and the deletion transferred into the genome of C. jejuni W7 via homologous 

recombination. Transformants were selected on MH agar plates containing chloramphenicol 

(5 μg/ml) and deletional mutagenesis was again confirmed via PCR analysis and Sanger 

sequencing to create C. jejuni W7 ∆CjNC110. Following confirmation, natural 

transformation was used to move the gene deletion into C. jejuni IA 3902 as previously 

described (Wang and Taylor, 1990b) to create C. jejuni IA 3902 ∆CjNC110. Natural 

transformation was again used to move the CjNC110 gene deletion into the previously 

created luxS insertional mutant C. jejuni IA 3902 ∆luxS (Plummer et al., 2012) to create the 

double mutant C. jejuni IA 3902 ∆CjNC110∆luxS. Transformants were selected on MH agar 

plates containing chloramphenicol (5 μg/mL) and kanamycin (30 μg/mL) and confirmed via 

PCR analysis and Sanger sequencing of the CjNC110 region along with the entire upstream 

(luxS) and downstream (CjSA_1137) genes. All colonies were screened for presence/absence 

of motility as described in Chapter 5, and only colonies with verified motility were used for 

future studies.  
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Growth curve 

The A600 of overnight cultures were adjusted to 0.5 using sterile MH broth on a 

Genesys 10S VIS spectrophotometer (ThermoScientific, Waltham, MA). Cultures were then 

diluted 1:10 for a final targeted starting A600 of 0.05 in 90 mL sterile MH broth and placed in 

a sterile 250 mL Erlenmeyer glass flask. Cultures were incubated at 42°C under 

microaerophilic conditions with shaking at 125 rpm for 30 hours. Samples were removed 

from the flasks at designated time points (3, 6, 9, 12, 24, and 30 hours) and processed as 

described below for RNA isolation as well as assessed for A600 and actual colony counts 

using the drop-plate method as previously described (Chen et al., 2003). All strains were 

assessed for growth via four independent experiments. The averages of the A600 of the four 

experiments over time were statistically analyzed using a two-way ANOVA (GraphPad 

Prism).  

 

RNA extraction and DNase treatment  

Culture samples collected from time points 3 and 6 hours (10 mL), and 9 and 12 

hours (6 ml), of the growth curve described above were centrifuged at 8000 x g for 2 minutes 

immediately following collection to rapidly pellet the cells while minimizing the time 

elapsed between collection and introduction of an RNA protection solution. Following 

pelleting of the cells, the supernatant was decanted and 1 mL QIAzol Lysis Reagent 

(QIAGEN, Germantown,  MD) was added to the cultures to quench further RNA production 

and protect the RNA present from degradation. To resuspend the pellet, the mixture was then 

pipetted up and down and vortexed at high speed for 1 minute. Following vortexing, the 

QIAzol-culture mixture was incubated at room temperature for 5 minutes. QIAzol-protected 
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cultures were then stored at -80°C for up to two months prior to proceeding with total RNA 

isolation. 

Total RNA isolation was performed using the miRNeasy Mini Kit (QIAGEN, 

Germantown, MD) according to the manufacturer’s instructions to isolate total RNA >18 nt. 

On-column DNase treatment was performed using the RNase-free DNase set (QIAGEN, 

Germantown, MD). 10 µg of extracted RNA was further treated with the TURBO DNA-free 

kit (Life Technologies, Carlsbad, CA) following RNA isolation to remove any residual DNA 

contamination. The total RNA was then purified using the RNeasy MinElute Cleanup kit 

(QIAGEN,Germantown, MD) with the following modifications as recommended by 

QIAGEN Technical Services to retain total RNA, including RNA <200nt in length. No more 

than 50 µL of RNA sample at a time was utilized to enter the RNeasy MinElute Cleanup 

protocol; to the RNA sample, 350 µl of Buffer RLT was added, followed by 600 µl of 100% 

ethanol. The RNA:RLT:ethanol mixture then proceeded with the standard bind/wash/elute 

steps of the protocol as provided by the manufacturer.  

RNA concentration was measured using the NanoDrop ND-1000 spectrophotometer 

(ThermoScientific) and Qubit RNA BR Assay (Thermo Fisher Scientific, Waltham, MA) and 

RNA quality was measured using the Agilent 2100 Bioanalyzer RNA 6000 Nano kit (Agilent 

Technologies, Santa Clara, CA). All RNA samples utilized for downstream library 

preparation had a RNA integrity number (RIN) of >9.0, indicating high quality RNA. 

Verification of complete removal of any contaminating DNA was performed via PCR 

amplification of a portion of the CjSA_1356 gene, which is part of the capsule locus and has 

previously been determined via comparative genomics to only be present in C. jejuni IA 

3902, using primers SA1356F and SA1356R  (Luo et al., 2012).  
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RNAseq library preparation and sequencing 

Based on analysis of the growth curve, the 3 hour (exponential phase) and 12 hour 

(stationary phase) timepoints were selected for RNAseq analysis (Figure 1). 2.5 µg of 

confirmed DNA-free total RNA was treated with Ribo-Zero rRNA Removal Kit for Bacteria 

according to the manufacturer’s instructions (Illumina, San Diego, CA). Following rRNA 

removal, the ribosomal depleted total RNA was again purified using the RNeasy MinElute 

Cleanup kit (QIAGEN) using the same modifications as described above. Following clean-

up, the RNA was eluted into 12 µL of sterile RNase-free water; quality, quantity, and rRNA 

removal efficiency was then analyzed via the Agilent 2100 Bioanalyzer RNA 6000 Pico kit 

(Agilent Technologies).  

Library preparation for sequencing on the Illumina HiSeq platform was completed 

using the TruSeq stranded mRNA HT library preparation kit (Illumina) with some 

modifications. As this kit was designed for use with eukaryotic RNA with poly-A tails, the 

initial poly-A RNA purification step was omitted. To enter the protocol, 5 µL of the rRNA-

depleted RNA totaling approximately 200 ng was added to 13 µL of the “Fragment, Prime, 

Finish” mix. The remainder of the library preparation was carried out according to the 

manufacturer’s instructions and all 24 samples were barcoded using the high throughput 

(HT) 96-well RNA adapter plate (RAP) as supplied by the manufacturer. Following 

enrichment of the cDNA fragments, the quality of the cDNA was validated using the Agilent 

2100 Bioanalyzer DNA 1000 kit (Agilent Technologies) and quantity was determined via the 

Qubit dsDNA BR Assay (Thermo Fisher Scientific). The indexed cDNA samples were then 

submitted to the Iowa State University DNA Facility where they were normalized and pooled 
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according to the manufacturer’s instructions. The pooled library was then sequenced on an 

Illumina HiSeq 2500 machine in high-output single read mode with 100 cycles.  

 

Differential gene expression analysis of RNAseq data 

 To analyze the differences in gene expression between strains and timepoints, 

Rockhopper (http://cs.wellesley.edu/~btjaden/Rockhopper/), a freely available RNAseq 

analysis platform, was utilized as previously described using the standard settings of the 

program (McClure et al., 2013). Using this program, results of gene expression are 

normalized and reported by the program as expression of genes using reads per kilobase per 

million reads (RPKM), except that instead of dividing by the total number of reads, 

Rockhopper divides by the upper quartile of gene expression. 

Following computational analysis via Rockhopper, a change in gene expression was 

deemed significant when the Q-value (false discovery rate) was below 5% and a >1.5 fold 

change in expression levels was present. Any significant changes in 16S or 23S rRNA genes 

were ignored as these were determined to be due to differences in efficiency of rRNA 

removal by Ribo-Zero and not inherent differences between strains and conditions. Read 

count data was visually assessed using the Integrated Genome Viewer (IGV) 

(https://www.broadinstitute.org/igv/) (Robinson et al., 2011; Thorvaldsdóttir et al., 2013). 

Differentially expressed genes were then assessed for function using the Clusters of 

Orthologous Groups (COG) (Galperin et al., 2015) as previously described in IA 3902  (Wu 

et al., 2013). Venn diagrams depicting overlap of genes differentially regulated in multiple 

mutant strains were generated using BioVenn (Hulson et al., 2008) 

http://cs.wellesley.edu/~btjaden/Rockhopper/
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(http://www.cmbi.ru.nl/cdd/biovenn/index.php). Metabolic pathway analysis was performed 

using Kegg Pathways (Kanehisa et al., 2015) (http://www.genome.jp/kegg/pathway.html).  

 

TargetRNA2 and RNAFold 

 To attempt to computationally determine potential targets for regulation by CjNC110 

for comparison to the RNAseq data, the freely available TargetRNA2 program 

(http://cs.wellesley.edu/~btjaden/TargetRNA2/) was utilized to predict potential targets of 

interest a priori (Kery et al., 2014). The standard program settings were utilized, which 

included searching the region 80 nt upstream and 20 nt downstream of the predicted 

translational start site of all genes in the IA 3902 genome. Both the 137 nt read length 

predicted from Dugar et al., (2013) and the 226 nt read length predicted from our data were 

analyzed via this method. 

To attempt to determine the secondary structure of the CjNC110 non-coding RNA, 

the standard settings of the RNAFold webserver was used for prediction analysis 

(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) (Gruber et al., 2008; Lorenz et al., 2011). 

Again, both the 137 nt read length predicted from Dugar et al., (2013) and the 226 nt read 

length predicted from our data were analyzed via this method.  

 

Results 

RNAseq data confirms mutant construction 

 The RNAseq data that was compiled for each of the mutants allowed visualization of 

the unique read signature related to the mutated regions via the Integrated Genome Viewer as 

presented in Figure 2A and as compared to the anticipated mutated gene structure (Figure 

http://www.cmbi.ru.nl/cdd/biovenn/index.php
http://www.genome.jp/kegg/pathway.html
http://cs.wellesley.edu/~btjaden/TargetRNA2/
http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
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2B). In all timepoints and replicates sequenced for the ∆CjNC110 and ∆CjNC110∆luxS 

mutants, no reads mapped to the reported location of the CjNC110 small RNA; this was 

anticipated based on the method of mutant construction which removed that entire region of 

the genome en bloc and replaced it with an antibiotic resistance marker. Interestingly, in the 

∆CjNC110 mutant only and not in the ∆CjNC110∆luxS, an obvious region of increased 

expression of the 3’ end of the upstream luxS gene was noted; in fact, the Rockhopper 

program assigned this region putative small RNA status. Expression for this region is present 

in the 3902 wild-type sequencing at lower levels than the rest of the luxS gene, suggesting 

that it is potentially a part of the luxS transcript that may under normal conditions be 

truncated. Rockhopper did fail to identify CjNC110 as a small RNA candidate in this dataset 

which was somewhat unexpected. Further analysis of the data revealed that expression levels 

of this transcript were relatively low in the wild type at both stages of growth, which may 

explain why it was not recognized by Rockhopper as a unique non-coding RNA.  

Downstream of the ∆CjNC110 deletion, additional reads above the wild-type values 

were also present immediately adjacent to the altered region but still within the intergenic 

region. This is likely due to read-through of the chloramphenicol resistance cassette due to 

lack of a strong transcription terminator related to insertion of the cassette; a similar 

phenomenon can also been seen immediately downstream of the insertion of the kanamycin 

resistance cassette in the ∆luxS and ∆CjNC110∆luxS mutants. Analysis of reads mapping to 

the annotated downstream gene, CjSA_1137, reveals no obvious changes in location of the 

transcriptional start site when comparing wild type to the mutant strains. Significantly 

different changes were present in the gene expression of CjSA_1137 in the ∆CjNC110 

mutant during both exponential and stationary phase, as well as in the ∆CjNC110∆luxS 
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mutant during stationary phase; additional analysis via computational methods suggests that 

CjSA_1137 may be a potential target of CjNC110.  

 For the ∆luxS and ∆CjNC110∆luxS mutants, the location of the insertion of the 

kanamycin resistance cassette into the coding sequence of the luxS gene can be directly 

observed as a sudden decrease in the amount of reads downstream of the location of the 

insert. In the ∆luxS mutant, reads mapping to CjNC110 can also be seen which indicates that 

the mutation does not interfere with ability of the downstream small RNA to be transcribed. 

In the ∆CjNC110∆luxS mutant, no reads are present that map to the CjNC110 coding region, 

confirming that both genes are inactivated in that strain.  

 

Summary of Illumina RNAseq results 

 Overall, 24 barcoded libraries were sequenced yielding over 109 million reads, with 

close to 100 million high quality reads aligning to either the genome or pVir plasmid of C. 

jejuni IA 3902 and averaging 4,553,847 reads per library (Tables 4A and 4B). The vast 

majority of reads (average of 83% of total reads), mapped to protein coding genes of the 

chromosome, with only 7% of reads mapping to ribosomal RNA on average following rRNA 

depletion with Ribo-Zero (median of 3%). Over half of the libraries contained less than or 

equal to 3% ribosomal RNA reads, which is consistent with the manufacturer’s predicted 

rRNA removal efficiency. One third of the libraries did not exhibit efficient rRNA removal 

(>10% rRNA reads); the reason for this is unclear. Interestingly, less than 1% of reads 

mapped to antisense regions of the annotated protein coding genome. This is in comparison 

to 2-7% of reads in a recent study completed in H. pylori, a closely related member of the 

epsilon-proteobacter family (Bischler et al., 2015). An average of 2% of reads mapped 
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antisense to known non-coding RNAs, however, the majority of this is due to an error in the 

IA 3902 genome that incorrectly annotates the rnpB (ribonuclease P) gene in the wrong 

direction, thus attributing all of the sense strand reads as antisense (see Chapter 4 for further 

discussion).  

 

Differential gene expression analysis of RNAseq data  

 Rockhopper was utilized for analysis of differential gene expression between 

timepoints and strains. A summary of the differences in numbers of genes with increased and 

decreased expression in the various strains and timepoints is given in Table 5. In the 

∆CjNC110 mutant strain, six genes were found to be downregulated and four genes were 

found to be upregulated when compared to the IA 3902 wild type strain during exponential 

growth (Table 6). In addition, a previously described non-coding RNA, CjNC140 (Dugar et 

al., 2013) was found to be upregulated in the mutant condition, as was a putative RNA 

predicted by Rockhopper to be present at the 3’ end of luxS. During the stationary phase, 16 

genes were found to be downregulated and seven genes were found to be upregulated in the 

mutant strain when compared to wild type. Of the regulated genes, three genes (neuB2, hisF, 

ptmA) were downregulated in the ∆CjNC110 mutant during both the exponential and 

stationary phases, and one hypothetical protein coding gene (CjSA_1261) was found to be 

upregulated in both conditions. Of the differentially expressed genes, five separate operons 

predicted by Rockhopper demonstrated multiple genes within the operon affected by the 

mutant condition (three operons upregulated, two operons downregulated). Analysis of 

functionality via the COG database revealed that multiple upregulated genes (luxS, cetA, 

cetB) were present in the “Signal transduction mechanisms” functional category; multiple 
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downregulated genes were also included in the “Cell wall/membrane biogenesis” (neuB2, 

ptmB, CjSA_1352) functional category and “Posttranslational modification, protein turnover, 

chaperones” (tpx, CjSA_0687) functional category. 

In the ∆luxS mutant strain, one gene was found to be downregulated and 14 genes 

were found to be upregulated when compared to the IA 3902 wild type strain during 

exponential growth (Table 7). Similar to the ∆CjNC110 mutant, the previously described 

non-coding RNA CjNC140 (Dugar et al., 2013) was also found to be upregulated in the 

mutant condition during exponential growth only. At 12 hours, six genes were found to be 

downregulated and six upregulated in the ∆luxS mutant strain when compared to wild type. 

Of the regulated genes, only one gene, CJSA_1350, a putative methyltransferase, was found 

to be downregulated in the ∆luxS mutant during both exponential and stationary phases, as 

was the putative ncRNA at the 3’ end of luxS identified by Rockhopper. Three separate 

operons predicted by Rockhopper demonstrated multiple genes within the operon affected by 

the mutant condition (two operons upregulated, one operon downregulated). Analysis of 

functionality via the COG database revealed that multiple both up- (trpF, trpB) and down- 

(CjSA_0620, leuC) regulated genes were present in the “Amino acid transport and 

metabolism” functional category; multiple upregulated genes were also included in the “Cell 

motility” (flgE, flgG2, flgG) functional category. Only two genes were differentially 

expressed in both the ∆CjNC110 and ∆luxS mutants, CjSA_0008 (upregulated during 

exponential growth hours) and CjSA_1107 (upregulated during stationary phase); both of 

these genes are annotated as hypothetical proteins at this time.  

In the ∆CjNC110∆luxS double knockout mutant, a large increase in both 

downregulated and upregulated genes when compared to wild type was observed at both 
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timepoints (Table 8). Sixty-one protein coding genes, seventeen tRNA genes, three known 

RNA genes (tmRNA, SRP, 6S) and seven newly predicted ncRNAs were downregulated 

during exponential phase compared to wild-type. In addition, 47 protein coding genes were 

upregulated in exponential phase, along with the previously described non-coding RNA, 

CjNC140 (Dugar et al., 2013), which was also observed to be upregulated in the ∆CjNC110 

and ∆luxS single knockout mutants. During stationary phase, 32 genes and two newly 

predicted non-coding RNAs were found to be downregulated, while 29 genes were 

upregulated in the mutant strain when compared to wild type. Of the observed genes with 

differential expression, many were observed to show altered expression during both 

exponential and stationary phase when compared to wild type; however, most were 

differentially expressed in the opposite direction between the two timepoints. This result was 

highly unexpected; however, considering that the majority of the genes involved fall under 

three main COG categories and three operons, it is plausible that during different stages of 

cell growth that the mutations present affect the regulation of certain genes in different ways. 

Only two genes (motB, CjSA_1350) were downregulated in both conditions, while no genes 

were observed to be upregulated at both timepoints. Many of the differentially upregulated 

genes demonstrated in both background mutants, ∆CjNC110 and ∆luxS, were observed in the 

double knockout (Figures 3A and 3B), while fewer of the downregulated genes were shared 

(Figures 4A and 4B).  

   Of the differentially expressed genes affected by the ∆CjNC110∆luxS double 

mutation, 20 separate operons predicted by Rockhopper demonstrated multiple genes within 

the operon affected by the mutant condition (eight operons upregulated, four operons 

downregulated, and eight operons that showed opposing regulation at the different 
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timepoints). Figure 5 shows the number of genes in each COG category that were 

differentially expressed in the double mutant condition during either exponential or 

stationary growth. The categories most affected by these mutations were “Energy production 

and conversion,” “Amino acid transport and metabolism,” “Translation,” “Cell 

wall/membrane biogenesis,” “Cell motility,” and “Signal transduction mechanisms.”   

KEGG Pathways was used to determine the effect of the mutations on important 

pathways in C. jejuni pathobiology. Figures 6A and 6B compare the genes involved in 

flagellar assembly observed to be differentially expressed in the single knockout mutants 

during stationary phase. In contrast, Figures 7A and 7B compare the genes observed to be 

differentially expressed in the double knockout mutant during both exponential and 

stationary phases for flagellar assembly. A much larger number of genes associated with 

flagellar assembly were noted to be differentially regulated in the double knockout mutant as 

compared to the single knockout mutants alone. 

 

TargetRNA2 and RNAFold predictions 

The TargetRNA2 program predicted 21 regulatory targets of CjNC110 in IA 3902 

based on the standard input parameters of the program and a 137 nt length of the non-coding 

RNA (Table 9). Of those 21, only a single gene (CjSA_1137) was found to show 

significantly altered transcription in the CjNC110 mutant as compared to wild type; this 

significant decrease was observed during both exponential and stationary growth. When the 

226 nt transcript was used as the input, the TargetRNA2 program predicted 23 regulatory 

targets of CjNC110 in IA 3902, again using the standard input parameters of the program. Of 

those 23, two genes (CjSA_1137, tpx) were found to show significantly decreased 
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transcription in the CjNC110 mutant as compared to wild type; CjSA_1137 during both 

exponential and stationary growth, and txp during stationary growth only. Interestingly, when 

the lists of predicted genes from the 137nt and 226nt lengths were compared, only 13 were 

shared between the lists. It was anticipated that all of the 21 genes identified within the 

original 137 nt transcript would also be identified in the 226 nt list as the primary structure of 

the 137 nt was still present in the 226 nt transcript, however, this was not the case. This 

suggests based on the prediction algorithms of the program that by altering the length of the 

transcript, the secondary structure of the RNA will be altered which may affect the binding 

ability for certain targets.  

To assess secondary structure of the CjNC110, RNAFold was used to calculate the 

structure of CjNC110 which yielded a prediction of a Y-shaped stem-loop structure (Figure 

8). When comparing the Target2RNA data of the 136 nt transcript to the RNAFold prediction 

for that same length, all of the predicted interaction areas of the non-coding RNA were 

grouped into the 3 unpaired loop regions of the RNA structure. In contrast, when the RNA 

transcript length was extended to 226 nt, no prediction of RNA secondary structure could be 

made by RNAFold. This suggests that the addition of 89nt to the length of CjNC110 is either 

a spurious finding in our data, or may completely alter the secondary structure and thus the 

targets of this small RNA between strains of C. jejuni. For example, of the nine targets 

predicted to interact with the first stem-loop structure of the 137 nt RNA by TargetRNA2, 

only one was also predicted to interact with the 226 nt RNA even though the base pair 

structure of that region is identical between the two lengths.  
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Identification of additional non-coding RNAs in IA 3902 

 In addition to determining differential gene expression between the mutant and wild-

type strains of IA 3902, Rockhopper has the capability to predict non-coding RNAs present 

within the data. Prior to further manual analysis, Rockhopper predicted a total of 59 ncRNAs 

present in the data (57 chromosomal, 2 pVir). Of those 59, five align with previously 

identified ncRNAs (CjNC20, CjNC60, CjNC120, CjNC140, CJpv2), all of which were 

predicted to be conserved in IA 3902 by Dugar et al. (2013). Manual curation of the list 

decreased the number of predicted ncRNA candidates to 40 (Table 10). Candidate non-

coding RNAs were discarded if they were related to the 16S or 23S genes as these were 

thought to be spuriously identified due to Ribo-Zero depletion differences between 

replicates; in addition, an antisense RNA was discarded due to incorrect annotation of the 

rnpB gene to the wrong strand in IA 3902. Of those remaining, 6 were demonstrated 

transcripts in the region of genes annotated as pseudogenes in IA 3902 (CjSA 1052, CjSA 

1323, CjSA 1444, CjSA 1543 and CjSA 1630 – 2 separate ncRNA predictions). Two of the 

40 remaining ncRNA candidates could potentially be classified as cis as they are transcribed 

opposite of transcribed regions of other genes; 25 would likely be considered trans ncRNAs 

as they are primarily located within intergenic regions; and seven are classified as anti-sense 

RNAs. 

 

Discussion 

 Despite its relative importance in both human medicine as the leading cause of 

bacterial gastroenteritis, and in veterinary medicine as an emerging cause of bacterial 

abortion in small ruminants, very little is known about the regulation of genes in C. jejuni. 
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The absence of traditional regulatory systems that are present in model organisms like E. coli 

and Salmonella initially led to the suggestion that Campylobacter may have a lower level of 

complexity than other bacteria and may not possess non-coding RNAs as a regulatory feature 

(Livny et al., 2008). Recent studies have proven that this is not the case as many putative 

non-coding RNA candidates have been identified in multiple strains of C. jejuni (Dugar et 

al., 2013; Porcelli et al., 2013; Taveirne et al., 2013). Identification of the functional role of 

small RNAs has been slow to follow, however, and minimal further analyses of the role of 

non-coding RNAs in Campylobacter have been published. In closely related H. pylori, 

studies are just starting to emerge where ncRNAs have been shown to influence gene 

expression at the post-transcriptional level (Wen et al., 2013; Pernitzsch et al., 2014). The 

first report attempting to elucidate the role of non-coding RNA just recently published in 

Campylobacter suggests that two recently identified ncRNAs may play a role in flagellar 

biosynthesis; however, the authors were unable to demonstrate phenotypic changes following 

inactivation of these non-coding RNAs (Le et al., 2015). Regulation of cellular processes by 

non-coding RNAs such as CjNC110 as described in our study provides a number of 

advantages to the bacteria when compared to the traditional model of protein-mediated 

regulation (Beisel and Storz, 2010). Non-coding RNAs can be rapidly produced as they do 

not require translation to be active, and once produced in the cell they can rapidly be recycled 

if necessary. Non-coding RNAs can also regulate multiple different targets within a cell in a 

variety of ways to coordinate rapid responses to changing environments.  

The recent development of high throughput deep sequencing of RNA (RNAseq) has 

made this the current method of choice to analyze the transcriptome of bacteria under various 

conditions (Croucher et al., 2010; van Vliet, 2010; van Opijnen and Camilli 2013) as it 
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allows evaluation of the entire transcriptome rather than only previously annotated regions as 

with older technology such as microarrays. Recent work in Campylobacter has demonstrated 

that RNAseq can be useful for analyzing transcriptomic differences between wild type and 

mutant strains of protein coding genes to better understand the effect of inactivation of 

certain genes on a global scale (Butcher et al., 2015; Chandrashekhar et al., 2015). In theory, 

RNAseq should also be able to be utilized for the same purpose of discovering the global 

effects of inactivation of non-coding RNAs. Non-coding RNAs have the ability to affect the 

abundance of mRNA transcripts through multiple mechanisms, some of which should then 

manifest as measurable changes in transcript levels. Small RNAs have been shown to be able 

to stabilize mRNA transcripts by multiple mechanisms (Waters and Storz, 2009), which 

should lead to increased levels of transcript availability and identification in RNAseq 

experiments. In contrast, interactions with small RNAs have also been shown to increase 

transcript turnover by targeting transcripts for RNase degradation or exposing RNase 

cleavage sites (Waters and Storz, 2009), which should lead to decreased levels of transcripts 

available for identification via RNAseq. Assessment of differential gene expression via 

RNAseq should then be useful for uncovering those interactions of small RNAs with their 

targets that directly leads to altered levels of mRNA transcripts in the cell. Of added benefit 

in the case of luxS and CjNC110, where the potential exists for polar affects of inactivation 

of luxS to inadvertently affect the expression of CjNC110, is that transcriptomic changes in 

both mutants can be measured individually as well as in combination. A limitation of the use 

of RNA sequencing data for discovery of targets of small RNAs is that some target 

interactions may not lead to direct changes in mRNA transcript levels, perhaps only leading 

to changes in the translation efficiency of the mRNA; these types of interactions cannot be 
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determined via this approach. Therefore, use of multiple additional methods such as 

computational approaches to determine potential targets of small RNAs is also warranted.  

In other species of bacteria such as Vibrio cholerae, small RNAs have been shown to 

be involved in the regulation of quorum sensing (Shao and Bassler, 2012; Shao and Bassler, 

2014). While there have been conflicting reports of the ability of Campylobacter to 

participate in quorum sensing (Holmes et al., 2009), research in our lab has shown that the 

inactivation of luxS, a gene known to play an important role in quorum sensing in other 

species of bacteria, leads to attenuation of virulence and decreased colonization ability 

(Plummer et al., 2012). Due to the proximity of CjNC110 to luxS, we were interested in 

evaluating the relationship between the two genes. In addition, a recent article assessing the 

effect of various methods of mutation of the luxS gene in Campylobacter suggested that 

certain methods of luxS mutation may have polar effects on this newly described ncRNA that 

have led to differences in the various reports of phenotypic and gene expression changes 

attributed to luxS mutation in Campylobacter (Adler et al., 2014). While the TargetRNA2 

computational algorithm did not predict an interaction between CjNC110 and the luxS gene, 

one of the goals in assessing the differential gene expression of these mutants via RNAseq 

was also to determine if an interaction exists between these genes. During stationary growth 

in the ∆CjNC110 mutant, the entire transcript of the luxS gene was determined to be 

statistically significantly upregulated when compared to wild-type; during exponential 

growth, increased expression was also present but did not reach statistical significance. This 

suggests that when present CjNC110 may normally interact with the luxS transcript to 

increase degradation of the mRNA in the cell and thus impact AI-2 expression and quorum 

sensing. No additional genes known to be involved in quorum sensing or the S-
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adenosylmethionine (SAM) recycling pathway were differentially expressed in the 

∆CjNC110 mutant; however, these same genes were not found to be differentially expressed 

in the ∆luxS mutant either. This is likely due to an overall low level of expression present in 

these genes in all strains examined under these conditions, which likely led to a decreased 

ability to detect differences in expression. 

One additional mechanism for alteration of luxS transcript expression in the CjNC110 

mutant that must be considered as well is the mutation process used to create ∆CjNC110. 

Because CjNC110 is adjacent to luxS, mutation of CjNC110 may have inadvertently caused 

changes in the expression of luxS that are not related to a direct regulatory role of the small 

RNA with the luxS gene. Sequencing of the ∆CjNC110 mutant construct confirmed that the 

annotated coding sequence of the luxS gene was identical to the reference strain for all 

nucleotides except for a single mismatch near the 3’ end. This mismatch is at position 

1132244 and exchanges a G for a T nucleotide. This substitution does not lead to a truncation 

of the protein; however, it does exchange arginine for leucine (L161R) in the primary 

structure at amino acid 161. The predicted length of LuxS is 165 amino acids, therefore, this 

mutation occurs at the far 3’ end of the protein. Previous comparisons of the LuxS protein 

across various species of bacteria have shown that while the leucine residue is frequently 

conserved at that location, it is not always conserved and in fact often the LuxS protein is 

truncated prior to residue 161 (Plummer et al., 2011). As this residue is not always present, it 

cannot be considered an essential residue for which a mutation will lead to a loss of function 

of the gene. If the effect of the substitution at this site were to render the LuxS protein non-

functional, it would be anticipated that the transcriptomic changes observed in the ∆CjNC110 
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mutant would be identical to that of the ∆luxS mutant; this was not observed and in fact was 

frequently opposite.  

In addition to overall increased expression of the luxS gene in the ∆CjNC110 mutant, 

an obvious region of increased transcription of the 3’ UTR of the luxS gene was identified by 

the Rockhopper program and assigned putative small RNA status. Expression for this region 

is present in the 3902 wild-type sequencing at lower levels than the rest of the gene, 

suggesting that mutation of CjNC110 is not solely responsible for the presence of transcripts 

in this region. One potential explanation for this difference is that the terminator of the luxS 

gene may normally be weak and allow for some extended transcription in this region. It is 

possible that the nucleotide change at the 3’ end of the protein in the ∆CjNC110 mutant may 

interfere with normal termination and lead to increased read-through in that region. It is also 

possible that another small RNA does exist in this area, however, our data does not allow for 

that determination to be made definitively. Additional work to determine if a unique 

transcriptional start site is present for this predicted ncRNA is warranted.  

In this study we identified a number of additional genes and operons of importance 

that were differentially expressed in the ∆CjNC110 mutant as opposed to wild type during 

both exponential and stationary growth. The cetAB operon which was upregulated during 

exponential growth is known to be important in energy taxis responses in C. jejuni and has 

been shown previously to be required for normal motility (Hendrixson et al., 2001). The 

significant increase in expression observed in both genes of the operon in the ∆CjNC1110 

mutant suggests that the mutant may be exhibit differences in motility and energy taxis when 

compared to the wild type IA 3902. When examining the genes that were downregulated in 

both exponential and stationary growth phases, ptmA and neuB2 are of interest as they have 
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been shown to be required for normal flagellar glycosylation in C. jejuni (McNally et al., 

2007; Logan et al., 2002). Normal flagellar glycosylation has been proven to play an 

important role in the autoagglutination ability of C. jejuni strains (Guerry et al., 2006); 

downregulation of these genes in the mutant suggest that autoagglutination ability could be 

decreased in the ∆CjNC110 mutant when compared to wild type IA 3902. The tpx gene, 

which has been shown to be involved in the stress response to peroxide exposure in C. jejuni, 

was also downregulated during stationary growth in the ∆CjNC110 mutant. Inactivation of 

the tpx gene has been shown to lead to a decreased ability to respond to peroxides (Atack et 

al., 2008); therefore, increased sensitivity to peroxides may also be present in the ∆CjNC110 

mutant. Also of interest, during stationary phase, expression of the ciaB was noted to be 

decreased; CiaB is a secreted protein that has been demonstrated to be required for in vitro 

invasion of epithelial cells (Konkel et al., 1999). Studies have indicated that expression of the 

ciaB gene and secretion of the protein product are not coupled, with secretion requiring a 

stimulatory signal from the host environment (Rivera-Amill et al., 2001). Inactivation of the 

ciaB gene has also been proven to impair the ability of C. jejuni to colonize the chicken 

cecum in vivo (Ziprin et al., 2001); therefore, it is reasonable to suspect that decreased 

expression of ciaB in the ∆CjNC110 mutant could lead to defects in the colonization ability.  

Interestingly, analysis of transcriptome changes in the ∆luxS mutant were not as 

enlightening as was expected. The list of genes identified does not overlap with the list of 

differentially expressed genes generated via microarray in C. jejuni strain 11168 which 

utilized the exact same mutant construct that was moved via homologous recombination into 

IA 3902 (Plummer, 2009); however, differences in the strain of C. jejuni utilized and culture 

conditions may explain why there was no overlap of differentially expressed genes. No genes 
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associated with the SAM recycling pathway were identified in our RNAseq data as have been 

previously reported via microarray in other strains of C. jejuni (He et al., 2008), however, 

there was very minimal expression of many of the genes associated with the SAM pathway 

in our data (metE, metF, pfs) which may have led to an inability to detect a difference. 

Decreased transcription of flaA has previously been associated with luxS mutation in strain 

11168 (Jeon et al., 2003); expression of flaA during exponential growth was decreased 1.4 

fold compared to wild-type, however, this change was not found to be statistically 

significant; no difference was present in flaA levels during stationary growth. A single gene, 

CjSA_1350, which is annotated as a putative methyltransferase, was found to be down-

regulated during both exponential and stationary growth in the ∆luxS mutant of IA 3902. The 

LuxS enzyme is critical for the formation of S-adenosylmethionine (SAM), which is a major 

methyl donor necessary for methylation of DNA, proteins, carbohydrates and other 

molecules important to the physiology of prokaryotes (Parveen and Cornell, 2011). It is 

plausible that expression of this methyltransferase is sensitive to decreased availability of 

products from the activated methyl cycle due to luxS mutation; however, recent data 

generated within our lab group suggests that this gene does not encode an active 

methyltransferase (Mou, 2015).  

  In distinct contrast to the lack of similar findings to previous studies exhibited by the 

IA 3902 ∆luxS mutant, when the ∆CjNC110 and ∆luxS mutations were combined into 

∆CjNC110∆luxS, many of the previously noted transcriptional changes attributed to 

mutation of the luxS gene alone became apparent (He et al., 2008). The He et al. (2008) 

study was performed in a different strain of C. jejuni, 81-176, which also encodes and 

expresses CjNC110 (Dugar et al., 2013). After attempting to compare various strains and 
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methods of mutation of the luxS gene and finding wide variation in phenotypical and 

transcriptional changes, Adler et al. (2014) suggested that some of the differences reported 

between luxS mutants in various studies may be due to unknown polar affects caused by 

alteration of expression of CjNC110 based on the mutation strategy used for the luxS 

mutation. It seems highly likely based on the data generated in our study that some of the 

changes attributed to luxS mutation alone in the He et al. (2008) study may in fact be due to 

inactivation of the CjNC110 transcript as well. To construct the ∆luxS mutant in that report, 

the entire coding region of the luxS gene was removed via overlap extension PCR, and a 1.2 

kb flanking sequence upstream and downstream with a chloramphenicol cassette inserted in 

the middle was reintroduced to inactivate the gene. As this involved deletion of an entire 

region of the genome, and the exact start and stop location of the deletion is not reported in 

the publication, it is entirely possible that the CjNC110 coding region or its promoter were 

affected. Of the 57 genes listed as differentially expressed by the luxS mutant in He et al. 

(2008), 21 were also found to be differentially expressed in our ∆CjNC110∆luxS RNAseq 

data; again, none were found to be differentially expressed only in the ∆luxS mutant, while in 

contrast, three genes (tpx, ptmB, ptmA) were differentially expressed only in the ∆CjNC110 

mutant. Only the flagellar genes flgE, flgG2, and flgG were also differentially expressed in 

both the ∆luxS only mutant and the ∆CjNC110∆luxS mutant. These findings strongly 

suggest that in the previous study the main driver for the transcriptional changes seen was an 

inadvertent inactivation of both CjNC110 and luxS, and not luxS alone. Of the genes 

identified in both our study and He et al. (2008), a large number of the hook-basal body 

associated proteins (FlgD, FlgE, FlgG, FlgG2, FlgH, FlgI, and FlgK) that are under the 

control of σ54 (RpoN) promotors (Wosten et al., 2004; Malik-Kale et al., 2007) were 
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identified. Expression from σ54 promotors has been shown to require activation of the FlgRS 

two-component regulatory system (Wosten et al., 2004; Joslin et al., 2009). Many of these 

showed opposite differences based on growth phase (decreased exponential, increased 

stationary), and it has been previously demonstrated that regulation by these sigma-factors is 

growth cycle dependent, with σ54 genes typically expressed between σ70 and σ28 genes, which 

may help explain the differences seen here (Wosten et al., 2004). Also of note is the fact that 

flgS was also observed to be upregulated in the∆CjNC110∆luxS mutant. It has been 

previously suggested that an additional unknown factor may control the temporal regulation 

of σ54 dependent flagellar genes (Hendrixson et al., 2003); therefore it is reasonable to 

consider that luxS or CjNC110 may play a role in this regulation. Two additional studies that 

have attempted to elucidate the role of luxS in C. jejuni also utilized a method that involved 

deletion of either all or some of the luxS coding sequence, however, neither of this studies 

attempted to determine transcriptional changes in the mutant (Elvers and Park 2002; 

Corcionivoschi et al., 2009).  

 In addition to evaluation of transcriptional changes present in the mutant strains, the 

Rockhopper program identified additional putative small RNAs which allowed for 

confirmation of expression of five non-coding RNAs conserved among Campylobacter 

species that were previously predicted to be present in IA 3902. The majority of the other 

identified putative non-coding RNAs that were predicted by the program have not been 

previously reported in C. jejuni. Based on the data presented in Dugar et al. (2013) that 

suggests that many small RNAs in Campylobacter are strain-specific, the fact that the 

predicted RNAs were not previously discovered does not mean that they are not real. That 

being said, there are limitations to the identification of non-coding RNAs by Rockhopper. 
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One-third of the initially predicted ncRNAs were manually discarded as they mapped to the 

region of the 16S or 23S genes and were likely identified due to differences between 

replicates in Ribo-Zero rRNA depletion efficiency. Another subset of the identified non-

coding RNAs were recognized by the program because the genome file utilized by 

Rockhopper does not include pseudogenes, therefore, reads that mapped to areas of putative 

pseudogenes were classified as non-coding RNA. While it is possible that these transcripts no 

longer serve as functional mRNA transcripts and now instead the transcribed RNA acts as 

functional non-coding RNA, it is probably more likely that these transcripts either do form 

functional proteins or are simply a non-functional remnant of what once was a functional 

protein coding message.  

Due to the nature of the type of RNAseq data that was generated (i.e. – not enriched 

for primary transcripts), the majority of transcripts that were identified by Rockhopper as 

putative non-coding RNAs were found within intergenic regions. Confirmation of the 

predictions generated by Rockhopper utilizing either transcriptional start site detection or 

Northern blot analysis would be necessary to confirm the existence of the predicted ncRNAs 

that were not previously confirmed in other strains of C. jejuni; visual analysis via the IGV of 

the areas of interest indicate that some of the predictions are likely correct while others may 

simply be read-through of operons into the intergenic space. 

One particular area of interest in the genome that was identified by Rockhopper and 

appears to have transcripts unrelated to annotated genes exists in the area of tetO insertion 

into the chromosome; this area is unique to IA 3902 when compared to the closely related 

11168 (Wu et al., 2013). Two non-coding RNAs were predicted in this region; these 

transcripts appear to be real, therefore, additional acquisition of active non-coding RNAs 
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along with the tetO gene may potentially be an area of differentiation between the two 

genomes of 11168 and IA 3902 that are otherwise highly syntenic and that may have helped 

enable the altered virulence phenotypes observed between the two strains.  

An additional area of interest that warrants further investigation based on our data is 

the two non-coding RNAs that were identified as being differential expressed in these 

mutants that were also previously identified and confirmed to be transcribed in multiple other 

Campylobacter species, CjNC140 and CjNC130/6S (Dugar et al., 2013). Of particularly 

interest is the CjNC140 non-coding RNA. Predicted to be transcribed in the intergenic region 

upstream of porA, this non-coding RNA was upregulated during exponential growth in all 

three of the mutant strains when compared to wild type (Figure 9). As increased expression 

was not observed during stationary growth, this suggests that CjNC140 may serve as a 

regulator involved in mediating changes during different stages of bacterial growth. The fact 

that its expression is similarly altered under all 3 mutant conditions also suggests that the 

three genes, luxS, CjNC110 and CjNC140, may normally interact within the cell in some way 

to facilitate these changes.  

The other newly identified non-coding RNA that was also observed to be 

differentially expressed in our data is the CjNC130, which has been shown to be a 6S RNA 

homologue. The function of the 6S RNA has been elucidated in other model bacterial species 

and is considered to be very important in regulating transcription on a global scale by 

competing with DNA promoters for binding to RNA polymerase (Wassarman and Storz, 

2000). The coding sequence of 6S is not conserved across bacterial genera, however, 

computational searches based on secondary structure have allowed for its identification 

across much of the prokaryotic kingdom (Wehner et al., 2014). The formation of a secondary 
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structure consisting of a large double stranded hairpin with a central bulge is essential as it 

resembles an open promoter complex that allows for binding to RNA polymerase (Barrick et 

al., 2005). CjNC130 was demonstrated to have decreased expression during exponential 

phase in the ∆CjNC110∆luxS mutant only, which suggests that increased overall RNA 

transcription would be allowed to occur in that mutant during exponential phase. Further 

investigation into the role this additional non-coding RNA may play in the physiology of C. 

jejuni is warranted. 

 In summary, by utilizing RNAseq technology, we were able to perform 

transcriptional analysis following inactivation of the CjNC110 and luxS genes in C. jejuni IA 

3902 which has allowed us to identify for the first time potential regulatory roles for the 

CjNC110 non-coding RNA. The results reported here establish that differential RNAseq can 

be used to help determine functional roles of non-coding RNAs within bacteria to help direct 

future studies of phenotypic changes. In addition, the results generated by comparing the 

differences between inactivation of protein coding genes next to non-coding RNAs have 

demonstrated that mutational methods utilized to inactivate protein coding genes may lead to 

unknown polar effects on nearby non-coding RNAs. This may lead to confusion in 

comparing results of studies when differing methods of mutagenesis are utilized. Further 

work is needed to confirm the transcription expression results presented in this study, such as 

RT-PCR or NanoString analysis of some of the differentially expressed genes to validate that 

the observed differences are real. In addition, further confirmation of the presence of 

CjNC110, including determining the exact length of the transcript, via methods such as 

northern blotting, is warranted to help add to data supporting CjNC110 as an important non-

coding RNA in IA 3902 and other strains of C. jejuni.  
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Table 1. Bacterial strains utilized in this study. 

Strain Description Source or Reference 

Campylobacter jejuni 
  W7 Wild type motile variant of NCTC 11168  Plummer et al., 2012  

W7 ∆CjNC110 W7 ∆CjNC110::CmR This study 
Sheep Abortion (SA) IA 3902 Wild type C. jejuni  Sahin et al., 2008  
IA 3902 ∆CjNC110 IA 3902 ∆CjNC110::CmR This study 
IA 3902 ∆luxS IA 3902 ∆luxS::KanR Plummer  et al., 2011 
IA 3902 ∆CjNC110∆luxS IA 3902 ∆CjNC110::CmR  ∆luxS::KanR This study 

   Escherichia coli 
  DH5α fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 
Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 
hsdR17 

New England Biolabs, Ipswich, MA 

 

 

DH5α pNC110::cat DH5α containing plasmid pCjNC110::cat This study 

KanR = kanamycin resistance cassette 
 CmR = chloramphenicol resistance cassette 
  

Table 2. Plasmids used in this study. 

Strain Description Source or Reference 

pGEM-T linearized vectors with T overhang and β-galactosidase screening Promega, Madison, WI 
pCjNC110::cat pGEM plasmid carrying CjNC110 deletion construct with CmR This study 

KanR = kanamycin resistance cassette 
 CmR = chloramphenicol resistance cassette 
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Table 3. Primers used in this study. 

Primers Sequence Target  

CJnc110F2  5'-TTTGATTTGCGTTTTTGCAT-3' CjNC110 
CJnc110R2 5'ATCAAGAGCTTGAGCGAAGG-3' CjNC110 
SA1356F 5'-TCCCATTTGGATGTTGTTGA-3' CjSA_1356 
SA1356R 5'-CAGAACCTGGCCACAAACTT-3' CjSA_1356 
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Table 4A. Summary of RNAseq results following rRNA depletion and strand specific library 
preparation on the Illumina HiSeq 2500.   
 

 Total 
reads 

Number of successfully aligned reads Percent 

Library Chromosome pVir Total 
 mapped 

reads 

IA 3902 WT-3hr-1 4167800 4060985 27341 4088326 97.4% 

IA 3902 WT-3hr-2 3785630 3686851 39278 3726129 98.4% 

IA 3902 WT-3hr-3 3574775 3460965 43366 3504331 98.0% 

IA 3902 WT-12hr-1 4179614 4042874 43963 4086837 97.8% 

IA 3902 WT-12hr-2 4286716 4159744 45225 4204969 98.1% 

IA 3902 WT-12hr-3 2968022 2103578 21429 2125007 71.6% 

IA 3902 ∆CjNC110-3hr-1 3995995 3853431 61455 3914886 98.0% 

IA 3902 ∆CjNC110-3hr-2 3640043 3512435 36437 3548872 97.5% 

IA 3902 ∆CjNC110-3hr-3 4114232 3943639 63649 4007288 97.4% 

IA 3902 ∆CjNC110-12hr-1 4646416 4488809 57391 4546200 97.8% 

IA 3902 ∆CjNC110-12hr-2 4158490 4028072 60311 4088383 98.3% 

IA 3902 ∆CjNC110-12hr-3 5109264 3721853 27654 3749507 73.4% 

IA 3902 ∆luxS-3hr-1 3251135 3143754 51047 3194801 98.3% 

IA 3902 ∆luxS-3hr-2 3026876 2939706 26144 2965850 98.0% 

IA 3902 ∆luxS-3hr-3 2315385 1202081 17248 1219329 52.7% 

IA 3902 ∆luxS-12hr-1 4497066 4378061 42525 4420586 98.3% 

IA 3902 ∆luxS-12hr-2 3294082 3190105 36272 3226377 97.9% 

IA 3902 ∆luxS-12hr-3 19473343 15405040 174495 15579535 80.0% 

IA 3902 ∆CjNC110∆luxS-3hr-1 4480648 4339847 59374 4399221 98.2% 

IA 3902 ∆CjNC110∆luxS-3hr-2 3117870 3013513 41098 3054611 98.0% 

IA 3902 ∆CjNC110∆luxS-3hr-3 3680686 2866303 43328 2909631 79.1% 

IA 3902 ∆CjNC110∆luxS-12hr-1 5329709 5181117 58908 5240025 98.3% 

IA 3902 ∆CjNC110∆luxS-12hr-2 4179965 3853179 42962 3896141 93.2% 

IA 3902 ∆CjNC110∆luxS-12hr-3 4018571 3875936 42462 3918398 97.5% 

AVERAGE 4553847 4102162 48473 4150635 92.2% 

MINIMUM 2315385 1202081 17248 1219329 52.7% 

MAXIMUM 19473343 15405040 174495 15579535 98.4% 

MEDIAN 4066402 3853305 43145 3905514 97.9% 

TOTAL 109292333   99615240  
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Percent mapped reads  

 
Chromosome pVir 

 
Protein coding 

 
Ribosomal RNA 

 
Other known RNA Unannotated  Protein coding Unannotated  

Library Sense Antisense   Sense Antisense   Sense Antisense regions Sense regions 

IA 3902 WT-3hr-1 72 1  15 0  5 3 3 93 6 

IA 3902 WT-3hr-2 85 1  4 0  5 3 2 92 8 

IA 3902 WT-3hr-3 87 1  3 0  4 2 3 91 9 

IA 3902 WT-12hr-1 88 1  2 0  5 2 3 91 8 

IA 3902 WT-12hr-2 86 1  3 0  5 1 3 91 8 

IA 3902 WT-12hr-3 74 0  17 1  4 1 2 91 9 

IA 3902 ∆CjNC110-3hr-1 88 1  1 0  4 2 3 90 9 

IA 3902 ∆CjNC110-3hr-2 74 0  16 0  4 2 3 94 6 

IA 3902 ∆CjNC110-3hr-3 90 1  2 0  3 2 3 90 9 

IA 3902 ∆CjNC110-12hr-1 87 0  2 0  6 2 3 91 8 

IA 3902 ∆CjNC110-12hr-2 89 1  1 0  6 1 2 91 9 

IA 3902 ∆CjNC110-12hr-3 69 0  21 1  4 1 3 92 7 

IA 3902 ∆luxS-3hr-1 89 1  1 0  4 2 3 90 10 

IA 3902 ∆luxS-3hr-2 78 0  11 0  4 3 3 93 7 

IA 3902 ∆luxS-3hr-3 65 1  27 2  3 1 2 89 11 

IA 3902 ∆luxS-12hr-1 86 1  3 0  6 2 3 91 8 

IA 3902 ∆luxS-12hr-2 88 1  2 0  5 2 3 91 8 

IA 3902 ∆luxS-12hr-3 79 0  11 0  5 1 2 91 9 

IA 3902 ∆CjNC110∆luxS-3hr-1 88 1  3 0  4 2 3 91 8 

IA 3902 ∆CjNC110∆luxS-3hr-2 88 1  3 0  3 2 3 91 9 

IA 3902 ∆CjNC110∆luxS-3hr-3 80 1  11 0  3 1 3 90 10 

IA 3902 ∆CjNC110∆luxS-12hr-1 88 1  2 0  5 2 3 92 8 

IA 3902 ∆CjNC110∆luxS-12hr-2 84 1  5 0  5 2 3 90 9 

IA 3902 ∆CjNC110∆luxS-12hr-3 82 0   5 0   6 2 3 92 8 

AVERAGE 83 1  7 0  5 2 3 91 8 

Table 4B. Summary of RNAseq results following rRNA depletion and strand specific library preparation on the Illumina HiSeq 
2500.   
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Table 5. Summary of differential gene expression results between mutant strains. 
 

  
Condition 

  
∆CjNC110 

 
∆luxS 

 
∆CjNC110∆luxS 

    3 hours 12 hours   3 hours 12 hours   3 hours 12 hours 

          Protein-coding genes 
         Number downregulated  
 

6 16 
 

1 6 
 

61 32 
Number upregulated 

 
4 7 

 
14 6 

 
47 29 

          Non-coding RNA genes 
         Number downregulated 
 

0 0 
 

0 0 
 

  25b 2 
Number upregulated 

 
1a 0 

 
1a 0 

 
1a 0 

                    
a = previously described ncRNA, CjNC140 (Dugar et al., 2013) 

   b = 17 tRNA genes, 3 known RNA genes (tmRNA, SRP, 6S) and 4 newly predicted ncRNA 
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Table 6. Differential gene expression in the IA 3902 ∆CjNC110 mutant as determined by RNAseq. 
 

   
Expression (RPKM) Significance 

  
COG 
Code  WT            ∆CjNC110  Q Value  Fold 

change Name Synonym Product 

      Exponential phase         
Genes downregulated 

      hisF CJSA_1252a E imidazole glycerol phosphate synthase subunit HisF 84 30 1.2E-04 -2.8 
pseA CJSA_1254a D pseudaminic acid biosynthesis PseA protein 129 50 1.1E-05 -2.6 
neuB2 CJSA_1263b M N-acetylneuraminate synthase 171 57 7.0E-09 -3.0 
ptmA CJSA_1268b QR flagellin modification protein A 107 41 4.8E-05 -2.6 
- CJSA_1352 M putative sugar transferase 38 17 4.3E-03 -2.2 
rpsN CJSA_1603 J 30S ribosomal protein S14 541 289 3.7E-02 -1.9 
Genes upregulated 

     

 

- CJSA_0008 S hypothetical protein 20 62 9.0E-11 3.1 
cetB CJSA_1127c T bipartate energy taxis response protein cetB 28 78 3.1E-03 2.8 
cetA CJSA_1128c NT bipartate energy taxis response protein cetA 45 100 2.8E-04 2.2 
- CJSA_1261 D hypothetical protein 34 66 1.0E-02 1.9 
CjNC140 predicted RNA - 92nt length, positive strand from 1193307 to 1193399  10 59 9.0E-17 5.9 
- predicted RNA - 55nt length, positive strand from 1132258 to 1132313 (3' end of luxS) 36 157 1.9E-07 4.4 

              Stationary phase         
Genes downregulated             
panC CJSA_0271 H pantoate-beta-alanine ligase 173 109 4.3E-03 -1.6 
- CJSA_0559 - putative lipoprotein 135 91 3.0E-02 -1.5 
- CJSA_0687 O M48 family peptidase 33 22 3.2E-04 -1.5 
tpx CJSA_0735 O thiol peroxidase 1966 1326 5.4E-03 -1.5 
- CJSA_0785 S hypothetical protein 77 51 7.8E-03 -1.5 
ciaB CJSA_0859 - invasion antigen B 68 43 2.9E-02 -1.6 
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Table 6 continued       
- CJSA_1102 S hypothetical protein 173 105 1.2E-06 -1.6 
petC CJSA_1122 C putative ubiquinol-cytochrome C reductase cytochrome C subunit 474 310 1.3E-03 -1.5 
- CJSA_1137 R 2OG-Fe(II) oxygenase 39 15 1.1E-05 -2.6 
- CJSA_1244 - hypothetical protein 30 18 7.9E-04 -1.7 
hisF CJSA_1252 E imidazole glycerol phosphate synthase subunit HisF 56 31 6.3E-06 -1.8 
neuB2 CJSA_1263b M N-acetylneuraminate synthase 58 31 5.4E-03 -1.9 
- CJSA_1266b R hypothetical protein 43 16 5.4E-06 -2.7 
ptmB CJSA_1267b M cylneuraminate cytidylyltransferase (flagellin modification) 158 42 2.8E-34 -3.8 
ptmA CJSA_1268b QR flagellin modification protein A 102 24 2.5E-35 -4.3 
- CJSA_t0002 - Ile tRNA 45 28 1.1E-03 -1.6 
Genes upregulated 

      hcrA CJSA_0713 K heat-inducible transcription repressor 306 659 3.5E-04 2.2 
- CJSA_0716d R hypothetical protein 25 68 1.8E-06 2.7 

- CJSA_0717d S hypothetical protein 20 45 1.5E-03 2.3 
- CJSA_1107e - hypothetical protein 50 100 2.9E-02 2.0 
omp50 CJSA_1108e - 50 kda outer membrane protein precursor 57 118 2.9E-03 2.1 
luxS CJSA_1136 T S-ribosylhomocysteinase 505 1250 5.6E-07 2.5 
- CJSA_1261 D hypothetical protein 10 29 7.8E-11 2.9 
- predicted RNA - 55nt length, positive strand from 1132258 to 1132313 (3' end of luxS) 27 699 0.0E+00 25.9 

        a, b, c, d, e = denotes genes within the same operon as predicted by Rockhopper 
    underlined = signifcantly different expression at both timepoints 
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Table 7. Differential gene expression in the IA 3902 ∆luxS mutant as determined by RNAseq. 
 

   

Expression 
(RPKM) Significance 

  COG 
Code   WT             ∆luxS    Q Value  Fold 

change Name Synonym Product 

      Exponential phase         
Genes downregulated 

      - CJSA_1350 H putative methyltransferase 2047 543 2.2E-03 -3.8 
- predicted RNA - 55nt length, positive strand from 1132258 to 1132313 (3' end of luxS) 36 1 7.2E-271 -36.0 
Genes upregulated 

      dnaN CJSA_0002 L DNA polymerase III subunit beta 55 98 4.0E-03 1.8 
- CJSA_0008 S hypothetical protein 20 53 1.0E-08 2.7 
trpF CJSA_0321a E N-(5phosphoribosyl)anthranilate isomerase 21 59 1.2E-03 2.8 

trpB CJSA_0322a E tryptophan synthase subunit beta 19 37 5.3E-02 1.9 
- CJSA_0337 - hypothetical protein 9 24 3.1E-02 2.7 
- CJSA_0370 - hypothetical protein 22 53 2.0E-02 2.4 
- CJSA_0732 - hypothetical protein 88 149 3.5E-02 1.7 
- CJSA_1017 S flagellar assembly factor FliW 163 247 4.2E-02 1.5 
- CJSA_1131 - hypothetical protein 10 27 5.3E-02 2.7 
- CJSA_1301 O putative nucleotidyltransferase 19 33 2.7E-02 1.7 
- CJSA_1352 M putative sugar transferase 38 61 2.6E-02 1.6 
- CJSA_1449 R putative helix-turn-helix containing protein 43 105 1.1E-06 2.4 
- CJSA_1549 G hypothetical protein 31 79 4.8E-07 2.5 
- CJSA_pVir0042 - hypothetical protein 10 29 2.2E-02 2.9 
CjNC140 predicted RNA - 92nt length, positive strand from 1193307 to 1193399 10 72 4.2E-28 7.2 
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Table 7 continued 
 

 

          Stationary phase         
Genes downregulated 

      - CJSA_0560 - hypothetical protein 193 121 2.5E-02 -1.6 
- CJSA_0620 E M24 family peptidase 262 147 7.4E-05 -1.8 
- CJSA_1349b G hypothetical protein 60 24 1.1E-03 -2.5 
- CJSA_1350b H putative methyltransferase 387 208 3.5E-09 -1.9 
acs CJSA_1453 I acetyl-coenzyme A synthetase 110 65 1.7E-03 -1.7 
leuC CJSA_1626 E 3-isopropylmalate dehydratase large subunit 58 36 1.0E-02 -1.6 
- predicted RNA - 55nt length, positive strand from 1132258 to 1132313 (3' end of luxS) 27 1 0.0E+00 -27.0 
Genes upregulated 

      flgE CJSA_0043 N flagellar hook protein 124 244 1.7E-03 2.0 
flgG2 CJSA_0661c N flagellar basal-body rod protein 308 502 5.0E-03 1.6 
flgG CJSA_0662c N flagellar basal-body rod protein FlgG 292 538 1.3E-03 1.8 

hcrA CJSA_0713 K heat-inducible transcription repressor 306 530 2.2E-03 1.7 
- CJSA_1107 - hypothetical protein 50 102 3.9E-03 2.0 
nrfA CJSA_1292 P putative periplasmic cytochrome C 189 324 4.1E-02 1.7 

        a, b, c = denotes genes within the same operon as predicted by Rockhopper 
    underlined = signifcantly different expression at both timepoints 
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Table 8. Differential gene expression in the IA 3902 ∆CjNC110∆luxS mutant as determined by RNAseq. 
 

   
Expression (RPKM) Significance 

  
COG 
Code  WT ∆CjNC110 

∆luxS 
Q Value  Fold 

change Name Synonym Product 

      Exponential phase         
Genes downregulated 

      - CJSA_0014 S hypothetical protein 274 166 6.8E-04 -1.7 
- CJSA_0041a - hypothetical protein 83 51 4.8E-04 -1.6 
flgD CJSA_0042a N flagellar basal body rod modification protein 159 97 1.0E-03 -1.6 
flgE CJSA_0043a N flagellar hook protein 140 85 5.8E-07 -1.6 
- CJSA_0067 C iron-sulfur cluster binding protein 737 419 1.2E-02 -1.8 
accD CJSA_0118 I acetyl-CoA carboxylase subunit beta 86 48 3.7E-05 -1.8 
trxA CJSA_0138 O Thioredoxin 897 548 1.2E-03 -1.6 

panB CJSA_0272 H 3-methyl-2-oxobutanoate 64 44 4.9E-03 -1.5 
motB CJSA_0310 N flagellar motor protein MotB 178 94 1.7E-03 -1.9 
fliN CJSA_0325 NU flagellar motor switch protein 175 119 3.4E-03 -1.5 
rpsU CJSA_0343 J 30S ribosomal protein S21 4581 2456 9.1E-03 -1.9 
frdB CJSA_0383 C fumarate reductase iron-sulfur subunit 1352 842 3.7E-02 -1.6 
flaG CJSA_0514b N flagellar protein FlaG 559 379 3.0E-05 -1.5 
fliS CJSA_0516b NUO flagellar protein FliS 399 266 8.6E-04 -1.5 
- CJSA_0521 - hypothetical protein 57 32 8.1E-04 -1.8 
- CJSA_0569 R sodium-dependent transporter 38 24 8.9E-03 -1.6 
pstS CJSA_0581 P phosphate transport system substrate-binding protein 47 25 2.0E-02 -1.9 
hslV CJSA_0628 O ATP-dependent protease peptidase subunit 237 162 5.7E-03 -1.5 
flgH CJSA_0651 N flagellar basal body L-ring protein 144 75 3.6E-02 -1.9 
flgG2 CJSA_0661c N flagellar basal-body rod protein 220 138 1.3E-05 -1.6 
flgG CJSA_0662c N flagellar basal-body rod protein FlgG 359 213 1.3E-05 -1.7 
mogA CJSA_0689 H molybdenum cofactor biosynthesis protein 198 132 3.9E-02 -1.5 
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Table 8 continued       
aspB CJSA_0718 E aspartate transaminase 122 79 1.5E-03 -1.5 
- CJSA_0788 F putative oxidoreductase 143 80 2.3E-02 -1.8 
flgL CJSA_0833 N flagellar hook-associated protein FlgL 142 79 1.3E-02 -1.8 
rpmH CJSA_0906 - 50S ribosomal protein L34 471 288 1.2E-04 -1.6 
- CJSA_0920 Q hypothetical protein 392 223 1.7E-08 -1.8 
- CJSA_1093 C cytochrome c553 3846 1960 1.9E-03 -2.0 
- CJSA_1102 S hypothetical protein 190 120 1.2E-02 -1.6 
dctA CJSA_1130 C C4-dicarboxylate transport protein 147 85 9.3E-08 -1.7 
luxS CJSA_1136 T S-ribosylhomocysteinase 546 330 1.5E-06 -1.7 
- CJSA_1182 C radical SAM domain-containing protein 63 43 3.4E-03 -1.5 
porA CJSA_1198 - major outer membrane protein 18344 11845 4.5E-02 -1.5 
hydD CJSA_1203 C putative hydrogenase maturation protease 472 250 3.6E-10 -1.9 
pseB CJSA_1231d MG UDP-GlcNAc-specific C4,6 dehydratase/C5 epimerase 205 124 3.5E-07 -1.7 

pseC CJSA_1232d M C4 aminotransferase specific for PseB product 124 67 6.9E-04 -1.9 
- CJSA_1233d R hypothetical protein 44 22 4.9E-04 -2.0 
neuC2 CJSA_1264 M putative UDP-N-acetylglucosamine 2-epimerase 38 21 4.9E-02 -1.8 
- CJSA_1350e H putative methyltransferase 2047 519 6.2E-12 -3.9 
- CJSA_1351e H putative methyltransferase 1163 629 1.3E-02 -1.8 
flgI CJSA_1386f N lagellar basal body P-ring protein 137 61 2.2E-04 -2.2 
- CJSA_1388f - hypothetical protein 844 513 5.4E-05 -1.6 
- CJSA_1389f - hypothetical protein 282 173 7.2E-03 -1.6 
flgK CJSA_1390f N flagellar hook-associated protein FlgK 125 75 3.5E-07 -1.7 
moaE CJSA_1439 H putative molybdopterin converting factor,subunit 2 130 80 7.3E-04 -1.6 
nuoD CJSA_1488 C NADH dehydrogenase I subunit D 164 93 7.7E-08 -1.8 
- CJSA_1562 - hypothetical protein 138 80 9.4E-05 -1.7 
- CJSA_1568 - hypothetical protein 4698 2214 9.9E-03 -2.1 
- CJSA_1577 R hypothetical protein 246 168 4.0E-02 -1.5 
secY CJSA_1597g U preprotein translocase subunit SecY 213 94 1.4E-15 -2.3 
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Table 8 continued       
rplO CJSA_1598g J 50S ribosomal protein L15 335 193 2.1E-03 -1.7 
rpsE CJSA_1599g J 30S ribosomal protein S5 463 202 6.7E-11 -2.3 
rplR CJSA_1600g J 50S ribosomal protein L18 288 161 3.9E-02 -1.8 
rplF CJSA_1601g J 50S ribosomal protein L6 397 208 2.2E-09 -1.9 
rpsH CJSA_1602g J 30S ribosomal protein S8 371 191 2.3E-04 -1.9 
rpsN CJSA_1603g J 30S ribosomal protein S14 541 247 1.2E-03 -2.2 
rplE CJSA_1604g J 50S ribosomal protein L5 481 252 3.6E-10 -1.9 
rplX CJSA_1605g J 50S ribosomal protein L24 609 316 4.7E-04 -1.9 
rplN CJSA_1606g J 50S ribosomal protein L14 554 300 1.7E-08 -1.8 
rpmC CJSA_1608g J 50S ribosomal protein L29 350 226 4.0E-02 -1.5 
rplP CJSA_1609g J 50S ribosomal protein L16 591 407 2.1E-02 -1.5 
- CJSA_CjSRP1 

 
- 4910 802 7.2E-96 -6.1 

ssrA CJSA_CjtmRNA1 
 

- 34176 20049 1.2E-03 -1.7 
- CJSA_t0002 

 
Ile tRNA 245 95 1.8E-07 -2.6 

- CJSA_t0005 
 

Ile tRNA 245 96 3.1E-07 -2.6 
- CJSA_t0007 

 
Tyr tRNA 661 396 1.2E-03 -1.7 

- CJSA_t0012 
 

Met tRNA 24 15 1.6E-05 -1.6 
- CJSA_t0013 

 
Gln tRNA 23 15 2.7E-05 -1.5 

- CJSA_t0015 
 

Ile tRNA 251 103 4.1E-06 -2.4 
- CJSA_t0017 

 
Gly tRNA 158 69 2.0E-03 -2.3 

- CJSA_t0018 
 

Leu tRNA 50 19 1.8E-06 -2.6 
- CJSA_t0020 

 
Val tRNA 93 39 1.9E-03 -2.4 

- CJSA_t0021 
 

Arg tRNA 312 165 2.3E-02 -1.9 
- CJSA_t0033 

 
Leu tRNA 754 318 4.3E-06 -2.4 

- CJSA_t0035 
 

Ser tRNA 121 50 2.3E-03 -2.4 
- CJSA_t0036 

 
Leu tRNA 213 67 2.5E-08 -3.2 

- CJSA_t0037 
 

Arg tRNA 800 368 9.8E-05 -2.2 
- CJSA_t0038 

 
Arg tRNA 1659 994 3.8E-03 -1.7 
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Table 8 continued       
- CJSA_t0039 

 
His tRNA 850 431 1.8E-05 -2.0 

- CJSA_t0043 
 

Ala tRNA 40 19 6.2E-11 -2.1 
- predicted RNA 

 
16  nt length,  - strand from 1577169 to 1577153 (IG CjSA 1568 /nhaA1) 863 186 9.8E-18 -4.6 

CjNC130 predicted RNA 
 

17 nt length, + strand from 1183929 to 1183946 (6S RNA) 693 232 1.4E-05 -3.0 
- predicted RNA 

 
55nt length,+ strand from 1132258 to 1132313 (3' end of luxS) 36 13 5.6E-23 -2.8 

- predicted RNA 
 

173nt length,  + strand from 198877 to 199050 (antisense: CJSA_0192) 2179 803 1.9E-25 -2.7 
- predicted RNA 

 
37 nt length, - strand from 1358594 to 1358557 (IG CjSA_1350/CjSA_1351) 2324 919 4.6E-13 -2.5 

- predicted RNA 
 

198 nt length, + strand from 1457497 to 1457695 (CjSA 1444 internal) 217 102 1.8E-02 -2.1 
- predicted RNA 

 
15nt length, + strand pVir from 7643 to 7658 205 99 8.8E-08 -2.1 

Genes upregulated 
      dnaN CJSA_0002 L DNA polymerase III subunit beta 55 128 8.5E-04 2.3 

- CJSA_0008h S hypothetical protein 20 62 1.2E-09 3.1 
gltD CJSA_0009h ER glutamate synthase subunit beta 92 171 1.0E-02 1.9 

folk CJSA_0059 H 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase 67 108 4.9E-02 1.6 
- CJSA_0076 M putative aspartate racemase 43 76 1.7E-02 1.8 
- CJSA_0105i S hypothetical protein 156 362 1.4E-04 2.3 
- CJSA_0110i Q putative pyrazinamidase/nicotinamidase 46 88 2.3E-02 1.9 
dgkA CJSA_0234j M diacylglycerol kinase 29 75 1.6E-02 2.6 
pyrC CJSA_0236j F Dihydroorotase 25 55 1.5E-03 2.2 
Tal CJSA_0257 G Transaldolase 34 59 1.8E-02 1.7 
- CJSA_0305 - hypothetical protein 286 606 3.0E-03 2.1 
trpD CJSA_0320k E anthranilate synthase component II 72 133 2.0E-02 1.8 
trpF CJSA_0321k E N-(5phosphoribosyl)anthranilate isomerase 21 83 3.4E-09 4.0 
trpB CJSA_0322k E tryptophan synthase subunit beta 19 56 1.8E-06 2.9 
trpA CJSA_0323k E tryptophan synthase subunit alpha 12 29 4.2E-02 2.4 
- CJSA_0337 - hypothetical protein 9 24 2.5E-02 2.7 
- CJSA_0370 - hypothetical protein 22 55 2.9E-02 2.5 
- CJSA_0372 R colicin V production protein-like protein 90 214 1.2E-03 2.4 
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Table 8 continued       
sdhA CJSA_0409l C succinate dehydrogenase, flavoprotein subunit 30 70 2.3E-03 2.3 
sdhB CJSA_0410l C succinate dehydrogenase, iron-sulfur protein subunit 31 61 4.3E-03 2.0 
sdhB CJSA_0411l C succinate dehydrogenase subunit C 33 59 2.0E-02 1.8 
- CJSA_0490m - hypothetical protein 65 122 9.0E-03 1.9 
- CJSA_0491m P Na/Pi-cotransporter, putative 19 34 1.2E-02 1.8 
- CJSA_0836 TK DNA-binding response regulator 38 69 4.0E-02 1.8 
Cfa CJSA_1121 M cyclopropane-fatty-acyl-phospholipid synthase 22 52 3.2E-04 2.4 
cetB CJSA_1127n T bipartate energy taxis response protein cetB 28 97 1.8E-07 3.5 
cetA CJSA_1128n NT bipartate energy taxis response protein cetA 45 95 1.0E-02 2.1 
- CJSA_1129 T putative PAS domain containing signal-transduction sensor protein 57 108 8.8E-03 1.9 
- CJSA_1131 - hypothetical protein 10 33 1.3E-03 3.3 
- CJSA_1145 OC putative lipoprotein thiredoxin 82 159 2.8E-02 1.9 

- CJSA_1164 T two-component sensor (histidine kinase) 110 173 4.5E-02 1.6 
cbpA CJSA_1167 O co-chaperone protein DnaJ 22 54 4.7E-04 2.5 
- CJSA_1259o QR methyltransferase domain-containing protein 34 74 1.4E-03 2.2 
- CJSA_1260o QR methyltransferase domain-containing protein 26 65 1.0E-03 2.5 
- CJSA_1301 O putative nucleotidyltransferase 19 41 4.9E-03 2.2 
- CJSA_1343 - hypothetical protein 33 59 1.9E-02 1.8 
tagF CJSA_1365 M putative CDP glycerol glycerophosphotransferase 45 74 2.0E-02 1.6 
- CJSA_1449 R putative helix-turn-helix containing protein 43 96 2.5E-03 2.2 
rloH CJSA_1466 R putative ATP/GTP-binding protein 18 34 1.2E-02 1.9 
nuoM CJSA_1479 C NADH dehydrogenase I subunit M 76 144 1.8E-02 1.9 
- CJSA_1549 G hypothetical protein 31 76 3.0E-05 2.5 
leuC CJSA_1626p E 3-isopropylmalate dehydratase large subunit 9 22 3.4E-02 2.4 
leuB CJSA_1627p CE 3-isopropylmalate dehydrogenase 11 30 1.8E-02 2.7 
leuA CJSA_1628p E 2-isopropylmalate synthase 25 47 1.4E-02 1.9 
CjNC140 predicted RNA - 92nt length, positive strand from 1193307 to 1193399 10 40 2.5E-06 4.0 
- CJSA_pVir0042 - hypothetical protein 10 42 2.5E-06 4.2 
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Table 8 continued       
- CJSA_pVir0044 U hypothetical protein 12 33 1.3E-02 2.8 
- CJSA_pVir0025 - hypothetical protein 9 24 5.3E-02 2.7 

              Stationary phase         
Genes downregulated 

      rnhB CJSA_0010 L ribonuclease HII 76 51 1.6E-02 -1.5 
- CJSA_0158 - hypothetical protein 361 240 1.5E-03 -1.5 
- CJSA_0160 QR hypothetical protein 303 207 2.7E-03 -1.5 
- CJSA_0284 P SMR family multidrug efflux pump 41 27 1.6E-02 -1.5 
motB CJSA_0310 N flagellar motor protein MotB 181 112 1.9E-04 -1.6 
trpD CJSA_0320 E anthranilate synthase component II 22 11 3.1E-02 -2.0 
- CJSA_0344 - hypothetical protein 231 149 5.0E-04 -1.6 
- CJSA_0372 R colicin V production protein-like protein 190 122 6.3E-05 -1.6 

- CJSA_0389 - hypothetical protein 474 322 2.7E-03 -1.5 
- CJSA_0396 S putative acidic periplasmic protein 32 19 9.6E-05 -1.7 
sdhA CJSA_0409l C succinate dehydrogenase, flavoprotein subunit 39 22 6.3E-05 -1.8 
sdhB CJSA_0410l C succinate dehydrogenase, iron-sulfur protein subunit 38 23 4.9E-02 -1.7 
uxaA CJSA_0452q G putative altronate hydrolase N-terminus 54 33 4.9E-03 -1.6 
uxaA CJSA_0453q G putative altronate hydrolase C-terminus 42 28 4.6E-03 -1.5 
- CJSA_0560 - hypothetical protein 193 111 1.1E-05 -1.7 
- CJSA_0616 S OstA family protein 27 17 1.6E-02 -1.6 
trmD CJSA_0677 J tRNA (guanine-N(1)-)-methyltransferase 32 17 5.2E-06 -1.9 
aroB CJSA_0951 E 3-dehydroquinate synthase 91 62 1.7E-04 -1.5 
- CJSA_1137 R 2OG-Fe(II) oxygenase 39 8 2.8E-52 -4.9 
- CJSA_1164 T two-component sensor (histidine kinase) 66 42 4.5E-04 -1.6 
pyrH CJSA_1213 F uridylate kinase 250 156 5.8E-03 -1.6 
- CJSA_1349 G hypothetical protein 60 22 5.9E-20 -2.7 
- CJSA_1350 H putative methyltransferase 387 170 8.2E-04 -2.3 
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Table 8 continued       
- CJSA_1414 TK putative two-component regulator 100 57 3.8E-05 -1.8 
Acs CJSA_1453 I acetyl-coenzyme A synthetase 110 44 5.5E-13 -2.5 
- CJSA_1461 R MdaB protein-like protein 66 40 3.9E-02 -1.7 
rnhA CJSA_1548 L ribonuclease H 38 24 1.9E-03 -1.6 
- CJSA_1560 Q putative ABC transport system periplasmic substrate-binding protein 25 15 3.1E-02 -1.7 
leuC CJSA_1626p E 3-isopropylmalate dehydratase large subunit 58 29 2.1E-07 -2.0 
leuB CJSA_1627p CE 3-isopropylmalate dehydrogenase 56 25 5.1E-07 -2.2 
leuA CJSA_1628p E 2-isopropylmalate synthase 82 46 4.2E-06 -1.8 
- CJSA_pVir0030 - hypothetical protein 198 117 5.5E-05 -1.7 
- predicted RNA 

 
97nt length,  - strand from 907368 to 907271 (antisense: CJSA_0911) 139 86 8.1E-03 -1.6 

- predicted RNA 
 

11nt length,  + strand from 1397360 to 1397371 (IG CjSA_1387/CjSA_1388)  1543 1061 4.5E-03 -1.5 
Genes upregulated 

      dsbI CJSA_0017 O DsbB family disulfide bond formation protein 41 87 2.4E-02 2.1 

- CJSA_0040a - hypothetical protein 111 330 1.6E-05 3.0 
- CJSA_0041a - hypothetical protein 74 281 1.8E-09 3.8 
flgD CJSA_0042a N flagellar basal body rod modification protein 157 481 3.8E-06 3.1 
flgE CJSA_0043a N flagellar hook protein 124 390 2.4E-13 3.1 
flgC CJSA_0494r N flagellar basal-body rod protein FlgC 559 911 1.2E-03 1.6 
flgB CJSA_0495r N flagellar basal-body rod protein FlgB 245 644 3.3E-02 2.6 
flgH CJSA_0651 N flagellar basal body L-ring protein 241 687 1.9E-07 2.9 
flgG2 CJSA_0661c N flagellar basal-body rod protein 308 829 4.1E-12 2.7 
flgG CJSA_0662c N flagellar basal-body rod protein FlgG 292 886 9.2E-15 3.0 
hcrA CJSA_0713 K heat-inducible transcription repressor 306 722 1.2E-08 2.4 
- CJSA_0716 R hypothetical protein 25 51 5.1E-02 2.0 
flgS CJSA_0749 T sensor histidine kinase 13 32 3.6E-03 2.5 
flgL CJSA_0833 N flagellar hook-associated protein FlgL 176 503 2.1E-08 2.9 
- CJSA_0969 S putative lipoprotein 820 1267 3.7E-02 1.5 
- CJSA_1107s - hypothetical protein 50 141 1.6E-09 2.8 
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Table 8 continued       
omp50 CJSA_1108s - 50 kda outer membrane protein precursor 57 148 2.4E-06 2.6 
- CJSA_1180 - hypothetical protein 642 1553 2.1E-07 2.4 
pseB CJSA_1231 MG UDP-GlcNAc-specific C4,6 dehydratase/C5 epimerase 208 450 8.5E-06 2.2 
- CJSA_1262t J putative methyltransferase 18 31 3.7E-02 1.7 
neuB2 CJSA_1263t M N-acetylneuraminate synthase 58 157 5.7E-04 2.7 
neuC2 CJSA_1264t M putative UDP-N-acetylglucosamine 2-epimerase 7 25 7.9E-16 3.6 
flgI CJSA_1386f N lagellar basal body P-ring protein 167 546 3.2E-11 3.3 
- CJSA_1387f - hypothetical protein 139 354 2.4E-02 2.5 
flgK CJSA_1390f N flagellar hook-associated protein FlgK 160 302 8.1E-05 1.9 
- CJSA_1562 - hypothetical protein 43 126 4.3E-10 2.9 
p19 CJSA_1570 P periplasmic protein p19 16 44 1.5E-09 2.8 
- CJSA_pVir0042 - hypothetical protein 64 110 5.1E-02 1.7 

- CJSA_pVir0013 - hypothetical protein 35 88 1.1E-04 2.5 
a, b, c, etc = denotes genes within the same operon as predicted by Rockhopper 

    Underlined = signifcantly different expression at both timepoints 
    Double underlined  = significantly different expression at both timepoints, opposite direction 

IG = intergenic 
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Table 9. Targets predicted for CjNC110 in C. jejuni IA 3902, 137nt predicted length, by TargetRNA2. 

Rank Name Synonym Energy P value Product  COG code 

1 - CJSA_1104 -17.61 0.000 hypothetical protein S 
2 bioA CJSA_0281 -12.72 0.005 adenosylmethionine-8-amino-7-oxononanoate transaminase H 
3 - CJSA_1493 -12.38 0.006 putative peptide ABC-transport system ATP-binding protein EP 
4 - CJSA_1137a -11.55 0.010 2OG-Fe(II) oxygenase family oxidoreductase R 
5 murD CJSA_0404 -11.20 0.012 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase M 
6 - CJSA_0015 -11.08 0.013 conserved hypothetical protein U 
7 - CJSA_0856 -11.03 0.013 SCO1/SenC family protein R 
8 - CJSA_0572 -10.47 0.018 putative polyphosphate kinase S 
9 waaC CJSA_1075 -10.31 0.020 lipopolysaccharide heptosyltransferase I M 

10 chuB CJSA_1527 -10.31 0.020 putative hemin uptake system permease protein P 
11 - CJSA_1098 -9.54 0.029 twin-arginine translocation pathway signal Q 

12 sdhA CJSA_0409 -9.44 0.030 succinate dehydrogenase, flavoprotein subunit C 
13 mrdB CJSA_1220 -9.41 0.031 RodA protein-like protein D 
14 kpsT CJSA_1371 -9.37 0.032 capsular polysaccharide ABC transporter, ATP-binding protein GM 
15 - CJSA_1391 -9.22 0.034 hypothetical protein 

 16 cgb CJSA_1498 -9.11 0.035 single domain hemoglobin C 
17 - CJSA_1152 -8.96 0.038 putative exporting protein 

 18 - CJSA_1455 -8.87 0.039 putativetungsten ABC-transport system permease protein H 
19 - CJSA_0799 -8.85 0.040 YGGT family protein 

 20 - CJSA_1245 -8.67 0.043 putative amino acid activating enzyme Q 
21 mraY CJSA_0405 -8.42 0.047 phospho-N-acetylmuramoyl-pentapeptide-transferase M 

a = decreased expression observed during both logrithmic and stationary growth  
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Table 10. List of non-coding RNAs predicted by Rockhopper to exist using RNAseq transcriptomics. 

Transcription 
     

Previously 
identified?  Start Stop Strand Length  LFG RFG Comments 

Pseudogenes with transcription 
     1047422 1046663 - 759 

 
CjSA_1052 CjSA_1052 - annotated as a pseudogene no 

1331028 1331442 + 414 
 

CjSA_1323 CjSA_1323 - annotated as a degenerate pseudogene no 
1630614 1630418 - 196 

 
CjSA_1630  3' region of CjSA_1630 - annotated as a pseudogene no 

1630874 1630848 - 26 
 

CjSA_1630  5' region of CjSA_1630 - annotated as a pseudogene no 
1457497 1457695 + 198 

 
CjSA_1444 CjSA_1444 - annotated as a pseudogene no 

1555611 1555599 - 12 
 

CjSA_1543 CjSA_1543 - annotated as a pseudogene no 
Predicted cis RNA 

      67249 67227 - 22 SRP CjSA_0046 Overlaps 5' end of CjSA_0046 (pseudogene) no 
1183929 1183946 + 17 CjSA_1188 CjSA_1189 antisense to 5' UTR purD Yes - CjNC130/6S 

Predicted trans RNA 
      199473 199366 - 107 CjSA_0192 CjSA_1093 intergenic tetO and CjSA_0192 no 

71394 71379 - 15 CjSA_0049 CjSA_0050 intergenic CjSA_0049 and CjSA_0050 no 
197215 197309 + 94 CjSA_0191 CjSA_0192 intergenic CjSA_0191 and CjSA_0192 no 
250049 249967 - 82 CjSA_0242 CjSA_0243 intergenic CjSA_0242 and CjSA_0243 Yes - CjNC20 
271319 271271 - 48 CjSA_0265 CjSA_0265 intergenic peb3 and lpxB no 
441750 441796 + 46 CjSA_0444 CjSA_0445 intergenic rplK and rplA, opposite strand no 
462280 462334 + 54 CjSA_0462 CjSA_0463 intergenic rpsL and rpsG 

 601205 601168 - 37 CjSA_0604 CjSA_0605 intergenic ppA and msrA no 
675392 675240 - 152 CjSA_0682 CjSA_0682 intergenic dnaE and CjSA_0681 Yes - CjNC60 
726401 726387 - 14 CjSA_0728 CjSA_0729 Intergenic, possible 5' UTR of CjSA_0728 no 
738637 738648 + 11 CjSA_0737 CjSA_0738 intergenic napA and napG no 

1112058 1112049 - 9 CjSA_1127 CjSA_1128 very small intergenic no 
1132258 1132313 + 55 CjSA_1136 CjSA_1137 intergenic luxS and CjSA_1137, 3' end of luxS no 
1153480 1153499 + 19 CjSA_1157 CjSA_1158 intergenic CjSA_1157 and groEL no 
1193307 1193399 + 92 CjSA_1197 CjSA_1198 intergenic CjSA_1197 and porA Yes - CjNC140 
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Table 10 continued      
1243977 1243958 - 19 CjSA_1247 CjSA_1248 intergenic CjSA_1247 and CjSA_1248 no 
1358594 1358557 - 37 CjSA_1350 CjSA_1351 intergenic CjSA_1350 and CjSA_1351 no 
1397360 1397371 + 11 CjSA_1387 CjSA_1388 intergenic CjSA_1387 and CjSA_1388 no 
1397574 1397607 + 33 CjSA_1388 CjSA_1389 intergenic CjSA_1388 and CjSA_1389 no 
1577169 1577153 - 16 CjSA_1567 CjSA_1568 Intergenic CjSA_1568 and nhaA1 no 
1589879 1589849 - 30 CjSA_1582 CjSA_1583 intergenic CjSA_1582 and eno no 
1602665 1602650 - 15 CjSA_1592 CjSA_1593 intergenic CjSA_1593 and gltA no 
1619089 1619055 - 34 CjSA_1918 CjSA_1619 intergenic CjSA_1618 and CjSA_1619 no 

Predicted antisense RNA 
      180678 180760 + 82 CjSA_0173 CjSA_0174 antisense: CJSA_0174 - junction of 2 genes no 

198877 199050 + 173 CjSA_0191 CjSA_1092 antisense: CJSA_0192 - antisense to 3'end no 
907368 907271 - 97 CjSA_0910 CjSA_0911 antisense: CJSA_0911 - antisense to 5'end no 

1489555 1489543 - 12 
 

CjSA_1476 antisense: CJSA_1476 -antisense to 5'end  no 

1549038 1549028 - 10 
 

CjSA_1535 antisense: CJSA_1535 - antisense to 3'end  no 
1586230 1586134 - 96 

 
CjSA_1576 antisense: CJSA_1576  no 

1198424 1198330 - 94 
 

CjSA_1202 antisense: recR - antisense to 3'end no 
Predicted pVir 

       7643 7658 + 15 pVir0009 pVir0010 intergenic no 
25261 25403 + 142 pVir0033 pVir0032 intergenic  yes - CJpv2 
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Figure 1. Growth curve of wild-type IA 3902 and isogenic mutants (mean ± SEM). 
Results of four replicates (log10) of a shaking growth curve performed in 250 mL 
Erlenmeyer flasks under microaerophilic conditions in MH broth. 
 
  

 
 

Figures 2A and 2B. Graphic view of mutations. (A) A screen capture from the IGV of the 
luxS and CjNC110 regions of the genome, corresponding to the genome structure as depicted 
in (B) of all of the strains sequencing using RNAseq. (B) depicts the genome structure and 
mutation strategies employed to construct the mutants.  
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Figures 3A and 3B. Venn diagram depicting the overlap of shared upregulated genes 
during the exponential and stationary growth phases. BioVenn was used to compare the 
lists of known genes upregulated in all 3 mutant strains during both exponential and 
stationary growth.  

A B 
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Figures 4A and 4B. Venn diagram depicting the overlap of shared downregulated genes 
during the exponential and stationary growth phases. BioVenn was used to compare the 
lists of known genes downregulated in all 3 mutant strains during both exponential and 
stationary growth.  
 

A B 
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Figure 5. COG functional categories of differentially expressed genes in the 
∆CjNC110∆luxS mutant. Clusters of Orthologous Groups (COG) categories are indicated 
on the x-axis, with the number of genes enriched shown on the y-axis; blue bars indicate 
increased expression, red bars indicate decreased expression. C - Energy production and 
conversion; D - Cell cycle control, mitosis and meiosis; E - Amino acid transport and 
metabolism; F - Nucleotide transport and metabolism; G - Carbohydrate transport and 
metabolism; H - Coenzyme transport and metabolism; I - Lipid transport and metabolism; J – 
Translation; K – Transcription; L - Replication, recombination and repair; M - Cell 
wall/membrane biogenesis; N - Cell motility; O - Posttranslational modification, protein 
turnover, chaperones; P - Inorganic ion transport and metabolism; Q - Secondary metabolites 
biosynthesis, transport and catabolism; R - General function prediction only; S - Function 
unknown; T - Signal transduction mechanisms; U - Intracellular trafficking and secretion; V - 
Defense mechanisms; W - Extracellular structures 
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Figures 6A and 6B. KEGG Pathway for flagellar assembly in C. jejuni: genes affected 
by the single mutation of either ∆CjNC110 or ∆luxS mutation during stationary growth 
phase. Blue color indicates downregulation of gene expression, red color indicates up 
regulation of gene expression, green indicates that the gene is present in C. jejuni IA 3902, 
and white indicates that the gene is not present in IA 3902. 

A – ∆CjNC110 B – ∆luxS 
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Figures 7A and 7B. KEGG Pathway for flagellar assembly in C. jejuni: genes affected 
by ∆CjNC110∆luxS mutation during exponential (A) and stationary (B) growth phases. 
Blue color indicates downregulation of gene expression, red color indicates up regulation of 
gene expression, green indicates that the gene is present in C. jejuni IA 3902, and white 
indicates that the gene is not present in IA 3902.  

A – Exponential B – Stationary 
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Figure 8. Structural prediction using RNAfold of the 137nt length CjNC110 RNA.  
The structural prediction for CjNC110 contains 3 stem loops, with the unpaired loops being 
the region most likely to interact with mRNAs as predicted by TargetRNA2. 

 

 

Figures 9A and 9B. Graphic view of CjNC140 expression. (A) A screen capture from IGV 
of the porA and CjNC140 regions of the genome, corresponding to the genome structure as 
depicted in (B) of all of the strains sequencing using RNAseq.   
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CHAPTER 5 

PHENOTYPIC CHANGES ASSOCIATED WITH INACTIVATION OF THE CjNC110 

SMALL RNA IN CAMPYLOBACTER JEJUNI IA 3902 

 

Abstract 

While multiple studies over the past several years have identified the presence of non-

coding RNAs in the transcriptomes of various strains of the zoonotic pathogen 

Campylobacter jejuni, few have attempted to elucidate the functional role of these newly 

identified regulatory genes. In the previous chapter, we utilized strand specific high 

throughput RNA sequencing following inactivation of the CjNC110 non-coding RNA in C. 

jejuni IA 3902 to generate a list of potential mRNA regulatory targets of CjNC110 including 

a number of genes involved in important pathways such as energy taxis and flagellar 

glycosylation. Based on these observations, phenotypic assessment of growth in defined 

media, motility in semi-solid agar, autoagglutination ability, and autoinducer-2 (AI-2) 

production of the ∆CjNC110, ∆luxS, and ∆CjNC110∆luxS mutants compared to wild type 

IA 3902 was initiated. Inactivation of the CjNC110 non-coding RNA led to a statistically 

significant decrease in autoagglutination ability as well as AI-2 production, along with a 

trend towards increased motility when compared to wild type IA 3902. Mutation of the luxS 

gene led to a statistically significant decrease in motility as well as an increase in 

autoagglutination ability. The combined mutation of both CjNC110 and luxS demonstrated a 

further decrease in motility that was statistically significant but normal autoagglutination 

ability relative to wild type IA 3902. The collective results of the phenotypic and 

transcriptomic changes observed in our data complement each other and suggest that 
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CjNC110 may play an important role in regulation of energy taxis and flagellar glycosylation 

in C. jejuni IA 3902. 

 

Introduction 

Campylobacter jejuni is the leading cause of gastroenteritis due to food borne illness 

in humans worldwide (WHO, 2015). In addition, C. jejuni sheep abortion (SA) clone IA 

3902 has recently emerged as an important pathogen of ovine abortion, overtaking the niche 

previously held by C. fetus subsp. fetus (Sahin et al., 2008). Analysis of IA 3902 via a multi-

omics approach revealed that IA 3902 is remarkably syntenic with the genome of C. jejuni 

type-strain 11168 (Wu et al., 2013) and it does not harbor any additional known 

pathogenicity islands. The fact that relatively mild changes in genomic structure have led to 

significantly enhanced ability to cause disease by C. jejuni IA 3902 as described above 

suggests that differences in gene regulation may play a key role in regulation of virulence.  

Recently, clear evidence has been published demonstrating that C. jejuni has the 

capability to produce a plethora of the important newly identified class of gene expression 

regulators, small non-coding RNAs (Chaudhuri et al., 2011; Butcher and Stintzi, 2013; 

Dugar et al., 2013; Porcelli et al., 2013; Taveirne et al., 2013). In Chapter 3, we 

demonstrated for the first time the expression of previously identified non-coding RNAs in 

C. jejuni IA 3902, including a number that were differentially expressed in the in vivo host 

environment. In particular, the conserved small RNA CjNC110 (Dugar et al., 2013) was 

strongly differentially expressed during our preliminary experiments, warranting further 

investigation. Beyond simply establishing the existence of non-coding RNA transcripts in 

Campylobacter, there is strong need to begin to determine the functional role of these 
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potential regulators in this important zoonotic pathogen. The first report attempting to 

elucidate the role of non-coding RNA just recently published in C. jejuni suggests that two 

recently identified ncRNAs may play a role in flagellar biosynthesis; however, the authors 

were unable to demonstrate phenotypic changes following inactivation of these non-coding 

RNAs (Le et al., 2015).  

Regulation of cellular processes by non-coding RNAs such as CjNC110 provides a 

number of advantages to the bacteria when compared to the traditional model of protein-

mediated regulation (Beisel and Storz, 2010). Non-coding RNAs can be rapidly produced as 

they do not require translation to be active, and once produced in the cell they can rapidly be 

recycled if necessary (Papenfort and Vogel, 2010). Non-coding RNAs can also regulate 

multiple different targets within a cell in a variety of ways to coordinate rapid responses to 

changing environments (Papenfort and Vogel, 2009). While identification of non-coding 

RNA has rapidly increased over the past several years, it remains challenging to assign 

functional roles.  

In the previous chapter, we demonstrated a number of transcriptomic changes in gene 

expression that have the potential to lead to phenotypic changes in the ∆CjNC110 and 

∆CjNC110∆luxS mutants. In particular, genes associated with a number of important 

pathways such as energy taxis and flagellar glycosylation were altered when the CjNC110 

non-coding RNA was inactivated. Based on this transcriptomic data presented in Chapter 4, 

we hypothesized that the mutation of the small RNA CjNC110 would lead to identifiable 

changes in the phenotype of C. jejuni IA 3902. In this study, inactivation of CjNC110 was 

observed to affect multiple phenotypes, including motility, autoagglutination, and AI-2 

activity. In addition, when combined with inactivation of the nearby luxS gene, unique 
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phenotypic differences were also observed that support the transcriptomics data already 

presented and indicate that some of the results generated by previous studies performed to 

assess the effect of mutation of the luxS gene may have been due to polar effects on 

CjNC110. When combined with the transcriptomic data presented in Chapter 4, our work 

suggests that differences in expression of certain genes related to autoagglutination, motility 

and AI-2 production may be due to a regulatory role of CjNC110 in pathways related to these 

important cellular functions.  

 

Materials and Methods 

Bacterial strains and culture conditions 

All strains used in this study are described in Table 1. Mutant strains of C. jejuni SA 

(sheep abortion clone) IA 3902 ∆CjNC110 and ∆CjNC110∆luxS mutants were created as 

described in Chapter 4; the ∆luxS mutant was created previously in our lab (Plummer et al., 

2012). All strains were maintained in 20% glycerol stocks at -80C and passaged from those 

stocks as needed for experimental procedures. C. jejuni IA 3902 and isogenic mutants were 

routinely grown in Mueller-Hinton (MH) broth or agar plates (Becton-Dickinson, Franklin 

Lakes, NJ) at 42°C under microaerophilic conditions with the use of compressed gas (55% 

O2, 10% CO2, 85% N2). For strains containing a chloramphenicol resistance cassette, 5 

μg/mL chloramphenicol was added to either the broth or agar plates when appropriate. For 

strains containing a kanamycin resistance cassette, 30 μg/mL kanamycin was added to either 

the broth or agar plates when appropriate. Vibrio harveyi strains were grown in autoinducer 

broth (AB) at 30°C with shaking at 175 rpm as described previously (Bassler et al., 1993). 
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Growth curve 

The A600 of overnight cultures was adjusted to 0.5 using sterile MH broth on a 

Genesys 10S VIS spectrophotometer (ThermoScientific, Waltham, MA). Cultures were then 

diluted 1:10 for a final targeted starting A600 of 0.05 in 90 mL sterile MH broth and placed in 

a sterile 250 mL Erlenmeyer glass flask. Cultures were incubated at 42°C under 

microaerophilic conditions with shaking at 125 rpm for 30 hours. Samples were removed 

from the flasks at designated time points (3, 6, 9, 12, 24, and 30 hours) and processed as 

described in Chapter 4 for RNA isolation as well as assessed for A600 and actual colony 

counts using the drop-plate method as previously described (Chen et al., 2003). Samples 

were also collected and processed as described below for assessment of autoinducer-2 (AI-2) 

levels via the bioluminescence assay. All strains were assessed for growth via four 

independent experiments. The A600 of the four experiments over time were statistically 

analyzed using a two-way ANOVA with repeated measures and Dunnett’s multiple 

comparison test (GraphPad Prism).  

 

Motility and Autoagglutination 

 Motility was determined via inoculation of plates consisting of MH broth with 0.4% 

agar as previously described in our laboratory (Plummer et al., 2012). Briefly, the A600 of 

overnight cultures was adjusted to 0.3 using sterile MH broth on a Genesys 10S VIS 

spectrophotometer (ThermoScientific). A 1 µL volume inoculation stick was then dipped into 

a set volume of the standardized culture contained in the bottom of a 15 mL conical tube 

which was then used to make a stab inoculation into the center of the freshly made motility 

agar (MH broth with 0.4% Bacto agar) with a new inoculation stick for each plate. Plates 
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were incubated at 42°C under microaerophilic conditions as described above with the 

exception that the plates were incubated right-side up and in a single layer. Measurement of 

the outermost reach of the halo was performed at 30 hours following inoculation. All strains 

were assessed in quadruplicate in three independent experiments. The three experiments were 

statistically analyzed using a one-way ANOVA and differences between each strain assessed 

via Tukey’s multiple comparisons test (GraphPad Prism).  

 Autoagglutination was assessed according to the method described previously 

(Misawa and Blaser, 2000) with some modifications. Briefly, the A600 of overnight cultures 

was adjusted to 1.0 in sterile Dulbecco’s phosphate buffered saline (PBS) (Corning cellgro, 

Manassas, VA) using a Genesys 10S VIS spectrophotometer (ThermoScientific). The 

suspension was then aliquoted (2 mL each) into standard glass culture tubes. One subset of 

cultures were kept at controlled room temperature (23°C) under microaerophilic conditions; 

the others were incubated at 37°C microaerophilic. At 24 hours, 1 mL of the upper aqueous 

phase was carefully removed and A600 measured to determine autoagglutination activity. All 

strains were assessed in quadruplicate at each temperature in three independent experiments. 

The three experiments were statistically analyzed using a one-way ANOVA and differences 

between each strain assessed via Tukey’s multiple comparisons test (GraphPad Prism).  

 

Vibrio harveyi bioluminescence assay  

 Culture samples collected from time points 3, 6, 9 and 12 hours (2 mL each 

timepoint) from the growth curve described above were centrifuged at 20,000 x g for 5 

minutes at 4ºC. The supernatant was then filter-sterilized using a 0.2 μm syringe filter to 
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create cell-free supernatant (CFS), which was then frozen at -80 ºC until proceeding with the 

bioluminescence assay.  

Autoinducer-2 (AI-2) levels within the collected cell-free supernatant were measured 

using the Vibrio harveyi bioluminescence assay as previously described (Surrette and 

Bassler, 1998). Briefly, 10 µL of each sample was added to AB media containing a 1:5000 

dilution of the reporter strain, V. harveyi strain BB170 (Bassler et al., 1994) in quadruplicate. 

Relative light units (RLU) were measured every 15 minutes over 8 hours using the FLUOstar 

Omega (BMG Labtech,Ortenburg, Germany). MH broth and AB media were used as 

negative controls, while CFS collected from V. harveyi strain BB152 (Bassler et al., 1993) 

was used as a positive control. The timepoints utilized for analysis were those occurring 

during the nadir of values for the negative control wells and at a standardized duration of 

time (3 hours 15 minutes) following initiation of increasing values for the positive wells. 

Following examination of the collected data, a single well from each of the four replicate 

wells that was located on the edge of the plate was discarded from the data analysis due to 

apparent systematic bias; these wells were consistently observed to have falsely increased 

values due to reflection from the side of the chamber. Thereafter, differences in measured 

RLU between strains were statistically analyzed using a two-way ANOVA with repeated 

measures and Sidak’s multiple comparisons test (GraphPad Prism).  

 

Results 

Growth and motility  

The growth of wild-type IA 3902, 3902 ∆CjNC110, 3902 ∆luxS, and 3902 

∆CjNC110∆luxS was evaluated over a period of 30 hours and differences tested for 
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statistical significance using two-way ANOVA with repeated measures of the A600 readings 

at each time point. ANOVA did identify a statistically significant difference between strains 

(p <0.05), however, multiple comparison analysis of individual time points and strains when 

compared to wild type growth revealed that the only time point where the differences was 

considered to be statistically significant was at 30 hours for all strains. In this study, 30 hours 

represents the point where in most cases a decline in the A600 begins to occur; further 

examination of the actual CFU/mL over the course of the growth curve revealed that, in fact, 

by 30 hours cell death was beginning to occur and colony counts were decreasing (see Figure 

1, Chapter 4). As further growth is assumed to be ceased at this time, there is likely very little 

biological significance to this finding. While there was no statistically significant difference 

noted in any of the strains at any other time point, there was a tendency towards decreased 

growth of the ∆CjNC110 mutant and increased growth of the ∆CjNC110∆luxS mutant when 

compared to the wild type in all replicates of the experiment (Figure 1). Growth of ∆luxS 

closely matched that of the IA 3902 wild type throughout the course of the study as 

previously described for the mutation in this strain (Plummer et al., 2012).  

Motility of the mutant strains in semi-solid agar was compared to wild type IA 3902 

at 30 hours post-inoculation for all mutant isolates, and all isolates were confirmed to be 

highly motile (Figure 2A and 2B). Statistical analysis via one-way ANOVA indicated that 

there was a significant difference between strains (p <0.0001). Motility for the IA 3902 

∆CjNC110 strain was observed to be consistently increased above the wild type phenotype in 

all replicates performed. Further analysis via Tukey’s multiple comparisons test did not reach 

statistical significance when compared to wild type, but did reach statistical significance 

when compared to both the ∆CjNC110∆luxS and ∆luxS mutants. Opposite of this, and as has 
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been previously suggested but not proven to be statistically significant (Plummer et al., 

2012), the ∆luxS mutant of IA 3902 exhibited decreased motility compared to IA 3902 wild-

type which did reach statistical significance in the current study. Interestingly, analysis of the 

∆CjNC110∆luxS revealed a decrease in motility when compared to both wild type and the 

∆CjNC110 strain that was again statistically significant.  

 

Autoagglutination activity 

Autoagglutination activity was measured at 23ºC and 37ºC following 24 hours of 

incubation (Figures 3 and 4). A statistically significant difference (p <0.0001) between 

strains at both 23ºC and 37ºC was noted based on initial analysis via one-way ANOVA. At 

23ºC and using a cutoff for statistical significance of p <0.05 when compared to wild type IA 

3902, ∆luxS autoagglutination activity was noted to be increased at a statistically significant 

level, while ∆CjNC110 exhibited statistically significant decreased autoagglutination 

activity. On a percentage basis, the ∆luxS mutant had 164%, and the ∆CjNC110 mutant 72%, 

of the autoagglutination ability of the wild type at 23ºC. A statistically significant difference 

was also noted between ∆CjNC110 and both ∆luxS and ∆CjNC110∆luxS, with ∆CjNC110 

exhibiting 43% and 58% of the autoagglutination activity of these mutants, respectively.  

At 37ºC and again using a cutoff for statistical significance of p <0.05 when 

compared to wild type IA 3902, ∆luxS autoagglutination activity was again noted to be 

increased at a statistically significant level, while ∆CjNC110 exhibited a statistically 

significant decreased autoagglutination activity. On a percentage basis, the ∆luxS mutant 

exhibited 115%, and the ∆CjNC110 mutant 77%, of the autoagglutination ability of the wild 

type at 37ºC. A statistically significant difference was also noted between ∆CjNC110 and 
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both ∆luxS and ∆CjNC110∆luxS, with ∆CjNC110 exhibiting 68% and 72% of the 

autoagglutination activity of these mutants, respectively.  

 Autoagglutination activity of the ∆CjNC110∆luxS did not show a statistically 

significant difference from wild type levels at either temperature. On a percentage basis it 

demonstrated autoagglutination activity of 82% of wild type values at 23ºC; at 37ºC, the 

percentage was much closer to wild type at 106%. These results possibly indicate a return to 

mid-point between the opposing phenotypes seen within the individual mutations present. 

 

Vibrio harveyi bioluminescence assay  

 Bioluminescence activity was measured using the Vibrio harveyi assay as an 

approximation for autoinducer-2 (AI-2) levels generated at various time points during the 

growth of the wild-type and mutant strains. Both the IA 3902 ∆luxS and ∆CjNC110∆luxS 

mutant strains demonstrated no bioluminescence activity at any point during growth, 

indicating a complete lack of AI-2 production (Figure 5). This was expected as AI-2 

production is dependent on a functional LuxS protein which was confirmed to be disrupted in 

these mutants via the transcriptomic data presented in Chapter 4. For the ∆CjNC110 mutant, 

bioluminescence was determined to be statistically significantly decreased when compared to 

wild type at time points 6, 9 and 12 hours (p <0.05) of the growth curve, occurring during 

mid to late exponential phase and early stationary phase (Figure 6).  

 

Discussion 

In this study we were able to demonstrate for the first time multiple phenotypic 

changes associated with deletional mutagenesis of the CjNC110 non-coding RNA in C. 
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jejuni IA 3902, both alone and when in combination with inactivation of the luxS gene. In 

addition, when compared to the transcriptomic changes identified in Chapter 4 of this 

dissertation, many of the phenotypic changes have complementary changes in genes relevant 

to the phenotypes observed that, when taken together, may suggest a regulatory role for 

CjNC110 in many important functions within C. jejuni IA 3902. 

 Motility is considered critical for the in vivo virulence of C. jejuni and requires a 

functional flagellar apparatus (Wassenaar et al., 1991; Yao et al., 1994); however, this alone 

is not sufficient for normal motility to be present (Golden and Acheson, 2002). In our study, 

while a statistically significant difference in motility was not found between the IA 3902 

∆CjNC110 mutant and wild type, there was a very consistently observed trend towards 

increased motility across all replicates of the motility assay that warrants further discussion. 

Interestingly, when assessing the transcriptomics data presented in Chapter 4, the cetAB 

operon (Campylobacter energy taxis proteins A and B), which is known to mediate energy 

taxis response in Campylobacter, was statistically significantly upregulated in the ∆CjNC110 

mutant when compared to wild type during the exponential phase of growth; expression of 

cetAB was increased during the stationary phase as well, however, did not reach the level of 

statistical significance. Defects in the both the cetA and cetB genes have been shown to have 

altered motility phenotypes, particularly in response to migration towards critical factors in 

Campylobacter metabolism such as sodium pyruvate and fumarate, indicating that normal 

expression of these genes serves an important function in the ability to seek energy producing 

environments that allow for maximal electron transport and ATP generation (Hendrixson et 

al., 2001; Golden and Acheson, 2002). Further elucidation of the structure of the CetA and 

CetB proteins revealed that CetA encodes a discrete membrane-bound MCP (methyl-
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accepting chemotaxis) protein while CetB encodes a cytoplasmic PAS-domain protein, both 

of which are co-transcribed in a single operon (Elliott and DiRita, 2008). Investigation of 

expression of cetA and cetB has shown that levels of the gene products are unaffected by 

mutation of sigma factors σ54 or σ28, indicating that transcription of the cetAB operon is likely 

controlled by σ70 or another yet unknown transcription factor. Based on this information, it 

seems plausible that CjNC110 might normally act as a repressor of the CetAB energy taxis 

system. As demonstrated in our data, removal of CjNC110 increased expression of cetAB and 

allowed for an increased motility phenotype, albeit one that did not reach statistical 

significance. The fact that the expression difference was most significant during log growth 

in our transcriptomics data is fitting considering that the highest demand for energy would 

likely be during the exponential phase of growth as opposed to stationary phase. Previous 

studies utilizing microarray data have also demonstrated that expression of cetAB in C. jejuni 

is growth phase dependent ( Wright et al., 2009; Holmes et al., 2009; Stahl et al., 2011). The 

exact effectors of CetAB that lead to increased energy taxis still remain unknown but it is 

suspected to be a redox sensor (Reuter and van Vliet, 2013). Additional genes have been 

identified to be involved in the C. jejuni energy taxis system, including cetC, which is 

predicted to serve as a replacement under certain circumstances for cetB, and cetZ, which is 

thought to regulate expression of the cetAB operon (Reuter and van Vliet, 2013). In C. jejuni 

IA 3902 when compared to strain 11168, cetC is present in the same location upstream of 

cetAB; expression of this gene is present in our transcriptomics data with no change in 

expression between the wild type and CjNC110 mutant. Interestingly, in IA 3902, cetZ is 

annotated as pseudogene CjSA_1052 due to a frameshift and premature stop codon when 

compared with 11168 (Wu et al., 2013). Expression of the CjSA_1052 transcript is present in 



217 

 

our transcriptomic data and levels are also identical between the wild type and ∆CjNC110 

mutant. Expression of a transcript in this case does not necessarily indicate the presence of a 

functional protein; therefore, further study of this regulatory pathway is warranted in IA 

3902. It is possible that a loss of function of the CetZ regulator in IA 3902 has made 

regulation of the cetAB operon by alternative means such as via non-coding RNAs more 

important. The most plausible mechanism to explain how CjNC110 might normally regulate 

energy taxis and motility in C. jejuni IA 3902 is that it acts in trans as a repressor of 

translation of the cetAB operon. Interaction of non-coding RNAs with their target has been 

shown to lead to increased turnover of the mRNA message through a variety of mechanisms, 

including increased exposure of RNase cleavage sites, increased recruitment of some 

ribonucleases or increased stimulation of RNase activity (Pfeiffer et al., 2009; Bandyra et al., 

2012). In this scenario, removal of CjNC110 might allow for a more stable mRNA message 

encoded by the cetAB operon, increasing expression of the CetA and CetB proteins and 

thereby allowing for an increased motility phenotype. Attempts to determine the location of 

the interaction between the cetAB operon and CjNC110 using computational prediction 

programs such as TargetRNA2 failed to identify an interaction region, however, 

computational methods of target identification are particularly unrewarding in non-model 

organisms such as Campylobacter due to a lack of conservation of small RNAs in these 

species (Livny et al., 2008). Further work both to determine whether the observed increase in 

motility leads to increased ability to colonize the host as well as identification of the location 

of interaction between CjNC110 and the cetAB operon is warranted.  

 Minimal changes in genes associated with the flagellar apparatus were noted in the 

transcriptome of ∆CjNC110 which may also help to explain why an increase in energy taxis 
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would allow for an increase in observed motility with the assumption that normally 

functioning flagella are present. In contrast to the ∆CjNC110 strain, however, both the ∆luxS 

and ∆CjNC110∆luxS mutants did display altered expression of genes associated with the 

flagellar apparatus during at least one stage of growth (see Figures 6 and 7, Chapter 4 for 

review). For the ∆luxS mutant, a small number of flagellar associated genes were observed to 

be upregulated during stationary growth. Thus, it seems unusual that a decreased motility 

phenotype would be observed. No additional genes known to be related to motility in C. 

jejuni appeared to be affected by the luxS mutation; therefore, a reasonable explanation 

cannot be ascertained from this data alone. For the ∆CjNC110∆luxS mutant, however, there 

were a large number of genes involved in assembly of the flagellar apparatus that 

demonstrated dysregulation when both the luxS and CjNC110 mutations were combined. 

Many genes related to flagellar assembly were decreased in expression during exponential 

growth; however, the same genes were increased in expression during stationary growth. Our 

data in this study demonstrated a statistically significant decrease in motility of the 

∆CjNC110∆luxS mutant when compared to both WT and the ∆CjNC110 mutant. This 

suggests that the decrease in motility is unrelated to the CjNC110 mutation when present by 

itself, but when both the ∆luxS and ∆CjNC110 mutations are combined, the effect of 

decreased motility observed in the luxS mutation is amplified. The observation that the 

deletional luxS mutant constructed by He et al. (2008) also proved to have a decrease in 

motility, which as discussed in Chapter 4 demonstrated similar transcriptome changes to our 

∆CjNC110∆luxS with no shared changes to our ∆luxS mutant, corroborates these findings as 

well. Differences in motility observed between variations in types of mutagenesis and strain 

backgrounds of luxS mutations as described by Adler et al. (2014) also suggest that polar 
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effects of the type of mutation, which may determine whether just the luxS gene or the luxS 

gene and CjNC110 were affected, may play a role in these observed differences as well.  

 The presence of normal flagella has also been associated with autoagglutination 

ability and is again considered necessary but not sufficient for this important trait (Golden 

and Acheson, 2002). Previous studies in C. jejuni have demonstrated that interactions 

between modifications on adjacent flagellar filaments, particularly those provided by protein 

glycosylation, are required for normal autoagglutination (AAG) ability (Guerry et al., 2006). 

In addition, mutants defective in autoagglutination ability have also been shown to display a 

decrease in adherence and invasion ability in vitro as well as attenuation in disease models 

(Guerry et al., 2006). In the present study, the ∆CjNC110 mutant exhibited decreased 

autoagglutination when compared to wild type at both 23ºC and 37ºC. Interestingly, two 

genes that have been associated with flagellar glycosylation, ptmA and neuB2, were 

downregulated in our RNAseq data as presented in Chapter 4 in the ∆CjNC110 mutant when 

compared to wild type during both exponential and stationary growth phases. The ptmA and 

neuB2 genes have been previously shown to be involved in production of Leg5Am7Ac and 

PseAm, two important structural glycans involved in flagellar glycosylation in C. jejuni 

(Logan et al., 2002; McNally et al., 2007). A decrease in the amount of flagellar 

glycosylation related to decreased production of these genes could in theory lead to 

decreased autoagglutination ability. The fact that we observed a decrease in autoagglutination 

activity in the ∆CjNC110 mutant, combined with RNAseq data indicating a decrease in the 

presence of the mRNA transcripts of the genes ptmA and neuB2 that affect flagellar 

glycosylation, suggests that these findings represent a true phenotypic change in the 

CjNC110 mutant and an additional potential area of regulation for the CjNC110 non-coding 
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RNA. In this case, and in contrast to the cetAB operon where removal of CjNC110 led to an 

increase in expression, inactivation of CjNC110 led to a decrease in the expression of these 

two genes which were predicted to belong to the same operon in our Rockhopper analysis. In 

other bacterial species, small RNAs have been shown to lead to stabilization of the target 

mRNA (Papenfort and Vanderpool, 2015). This suggests that CjNC110 may normally serve 

in trans to prevent degradation of the ptmA and neuB2 mRNA transcripts after they have 

been produced, leading to increased longevity of the mRNA and thus increasing levels of the 

translated protein. By removing CjNC110, stabilization of the mRNA message of ptmA and 

neuB2 may not occur as normal, leading to increased turnover of the message and decreased 

protein production. Again, attempts to determine the location of the interaction between 

ptmA, neuB2 and CjNC110 using computational prediction programs such as TargetRNA2 

failed to identify an interaction region, however, this is not unexpected and does not decrease 

the possibility that a true relationship does exist. Further work both to determine whether this 

decrease in autoagglutination ability holds biological significance such as a decreased ability 

to colonize the host, as well as identification of the location of interaction between CjNC110 

and these genes is warranted.  

 On the contrary, the ∆luxS mutant exhibited statistically significant increased 

autoagglutination at both 23°C and 37°C. This finding is the opposite of what was observed 

in a different strain of C. jejuni, 81-176, where the luxS mutation led to a decrease in 

autoagglutination ability (Jeon et al., 2003). Mutation of the luxS gene by Jeon et al. (2003) 

was accomplished via inverse PCR mutatgenesis which resulted in the removal of 486bp of 

the luxS gene region. As this method of mutagenesis is identical to the method used by He et 

al. (2008) that appears to have resulted in polar affects in expression of the CjNC110 non-
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coding RNA, it is plausible to suggest that the results obtained in that study may also be a 

result of the luxS gene inactivation in combination with polar affects to CjNC110. While in 

our study, the ∆CjNC110∆luxS strain did not exhibit significant changes from wild type in 

autoagglutination ability, there are known differences between strains of C. jejuni in the type 

of flagellar glycosylation present, particularly between 11168 (which is considered sytenic to 

IA 3902) and 81-176, which may help to further explain the differences observed between 

studies (Merino and Tomas, 2014). 

  It is unclear at this time what mechanism allowed for increased autoagglutination 

ability in the ∆luxS mutant in this particular strain of C. jejuni. In addition, while these 

changes in autoagglutination are statistically significant, the biological relevance at this time 

is unknown. When measured in terms of percent of normal autoagglutination of the IA 3902 

wild type strain, for the ∆luxS mutant, autoagglutination ability was observed to be 164% 

and 115% of the wild type at 23°C and 37°C, respectively. For the ∆CjNC110 mutant, 

autoagglutination was observed to be 72% at 23°C and 77% at 37°C of the wild type. 

However, when compared to the percentage of autoagglutination possible, which would be 

considered 100% at an A600 of 0.00 and 0% at an A600 of 1.0, both the wild type and mutant 

strains still exhibited a relatively high ability to autoagglutinate (Table 2). For comparison, 

mutations in the flaA/flaB and flbA genes of C. jejuni strain 81-176 led to a decrease from 

A600 0.031 (96.9%) to 0.731 (24.9%) and 0.654 (35.6%), respectively (Misawa and Blaser, 

2000). Differences in virulence displayed in both in vitro and in vivo models are likely to be 

expected with such dramatic changes in AAG activity as displayed in the flaA/flab and flbA 

mutations; however, as the differences displayed in our mutants were not as dramatic, it is 

difficult to predict how much biological significance these changes hold. As neither the luxS 
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gene nor the CjNC110 are known to be directly involved in flagellar glycosylation, it seems 

reasonable that inactivation of these genes could lead to a modification of autoagglutination 

ability without complete loss or gain of function. Further work both in vitro and in vivo 

assessing invasion and colonization ability are needed to determine if these changes yield 

significant differences in virulence. In addition, assessment for changes in the flagellar 

glycosylation of these mutants when compared to the wild type IA 3902 is warranted.  

 The final phenotype assessed in this study was the ability of the ∆CjNC110 strain to 

produce wild type levels of autoinducer-2 (AI-2) in the bioluminescence assay. Statistical 

analysis showed that for all time points except 3 hours, there was a statistically significant 

decrease in the ability of the ∆CjNC110 strain to induce bioluminescence via the V. harveyi 

bioassay. On initial examination, it seems counterintuitive that while the transcription of the 

luxS gene was increased in the ∆CjNC110 mutant in our RNAseq transcriptomic data as 

presented in Chapter 4, the relative activity of AI-2 appears decreased in the ∆CjNC110 

mutant. Both the RNA used for the differential gene expression study and the cell-free 

supernatant used for the bioluminescence assay were obtained from the exact same set of 

growth curve experiments, therefore, differences between experimental conditions can be 

ruled out as the cause of these disparate findings. One potential explanation for the observed 

opposing results could be that CjNC110 may normally serve to stabilize the transcript of the 

luxS gene in IA 3902, thus allowing more transcript to be translated into the active LuxS 

protein and leading to what would be considered “normal” AI-2 production. In contrast, if by 

inactivation of CjNC110, the luxS gene transcript becomes less stable and its mRNA turnover 

is therefore increased, there would be less LuxS protein available for production of AI-2. The 

observed increase in gene expression of luxS in the ∆CjNC110 mutant may be an effort to 
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overcome this increased rate of turnover of the luxS mRNA, however, a mechanism for the 

increased gene expression is not readily apparent. As discussed in Chapter 4, the mutagenesis 

of CjCN110 in IA 3902 did lead to a single exchange in the primary structure of the protein 

of arginine for leucine (L161R) at amino acid 161. The mutation present is not located within 

either of the previously identified functional domains of the LuxS protein (Adler et al., 

2014), and in some species of bacteria the protein is truncated prior to this amino acid 

(Plummer et al., 2011). Therefore it is reasonable to suggest that this substitution should 

result in minimal changes to the functionality of the LuxS protein in producing AI-2, 

however, it cannot be ruled out that this amino acid substitution is in fact responsible for the 

altered bioluminescence phenotype observed in the ∆CjNC110 mutant. To determine if the 

L161R substitution is able to affect the ability of the LuxS protein to produce AI-2, further 

work comparing the activity of the wild type and L161R LuxS protein via generation of 

recombinant protein in E. coli, isolation and characterization as previously described is 

warranted (Plummer et al., 2011).  

 In summary, the results presented in this study demonstrate for the first time 

phenotypic changes associated with inactivation of the CjNC110 non-coding RNA in an 

important strain of C. jenuni, IA 3902. Growth curve analysis did not demonstrate a 

statistically significant difference in growth rate between strains. The ∆CjNC110 mutant was 

observed to demonstrate a trend towards increased motility which was suggested by 

upregulation of the cetAB energy taxis operon. Autoagglutination ability was observed to be 

statistically significantly decreased which may be related to decreased expression of flagellar 

glycosylation genes. Assessment of production of AI-2 demonstrated a statistically 

significant decrease in the ∆CjNC110 mutant which warrants further study. Mutation of the 



224 

 

∆luxS gene demonstrated a statistically significant decrease in motility which has been 

previously suggested but not shown to be statistically significant, as well as an increase in 

autoagglutination ability. Both of these changes are in direct contrast to mutation of 

CjNC110. When the two independent mutations were combined in the ∆CjNC110∆luxS 

double mutant, the decreased motility phenotype of the ∆luxS mutation was amplified, 

however, no change in autoagglutination was seen. 

 Further work is needed utilizing complementation of CjNC110 into the ∆CjNC110 

mutant to validate that the phenotypic changes observed are in fact due solely to the deletion 

of the CjNC110 small RNA and not unintended polar effects to either the neighboring genes, 

luxS (upstream) or CjSA_1137 (downstream), or other unknown changes in the genome. 

Complementation of the CjNC110 non-coding RNA may prove to be more difficult than 

complementation studies performed in protein coding genes as proper length and secondary 

structure of the transcribed RNA is likely very important to success of complementation, 

whereas in protein coding genes as long as a promoter is present to initiate transcription and 

the coding sequence remains the same, complementation can be acheived. In vivo studies 

looking at the colonization ability of both the ∆CjCN110 and ∆CjNC110∆luxS mutants are 

also warranted to determine if the phenotypic changes seen translate into changes in 

virulence of IA 3902. The studies we have performed thus far have focused on the role that 

CjNC110 plays in IA 3902 in particular, however, CjNC110 is one of the few small RNAs 

identified in C. jejuni that appear to be fairly well conserved across all of the strains tested 

thus far. Particularly as our data suggests that the length of CjNC110 may differ between 

strains of C. jejuni, it is possible that the effect of inactivation of this small RNA differs 

between strains. Some of the regulatory networks that we identified in the both the 



225 

 

transcriptomic and phenotypic studies also were suggested to differ between strains, 

therefore, studies to assess whether inactivation of CjNC110 in other strains of C. jejuni leads 

to similar phenotypic changes are warranted. Finally, determination of the location and 

method of interaction between CjNC110 and its target transcripts will provide yet another 

important piece of the puzzle which will help bring us closer to understanding gene 

regulation in the important human and animal pathogen, C. jejuni IA 3902.  
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Table 1. List of strains utilized in this study. 

 

Strain Description Source or Reference 

   Campylobacter jejuni 
  Sheep Abortion (SA) IA 3902 Wild type C. jejuni  Sahin et al., 2008  

IA 3902 ∆CjNC110 IA 3902  ∆CjNC110::CmR This dissertation 
IA 3902 ∆luxS IA 3902 luxS::KanR Plummer  et al., 2011  
IA 3902 ∆CjNC110∆luxS IA 3902  ∆CjNC110::CmR  luxS::KanR This dissertation 

   Vibrio harveyi  
  BB170 AI-2 reporter strain with luxN::Tn5 Bassler et al., 1994 

BB152 AI-1-, AI-2+; luxM::Tn5 Bassler et al., 1993 

  
  

KanR = kanamycin resistance cassette 
 CmR = chloramphenicol resistance cassette 
 

    

 

 

Table 2. Autoagglutination activity reported as a percentage of activity possible. 

 
23°C 

 
37°C 

Strain % A600
a   % A600

a 

IA 3902 wild type 82.3% 0.177±0.007 
 

85.5% 0.145±0.002 
IA 3902 ∆CjNC110 75.1% 0.249±0.011 

 
81.2% 0.189±0.003 

IA 3902 ∆luxS 89.3% 0.107±0.006 
 

87.4% 0.126±0.003 
IA 3902 ∆CjNC110∆luxS 85.5% 0.145±0.017   86.4% 0.136±0.005 

      a = autoagglutination activity measured by A600, with standard error of the mean 
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Figure 1. Shaking Growth curve of wild-type IA 3902 and isogenic mutants (mean ± 
SEM). Results of four replicates (A600) of a shaking growth curve performed in 250 mL 
Erlenmeyer flasks under microaerophilic conditions in MH broth. Analysis via two-way 
ANOVA revealed a statistically significant difference between strains (p <0.05), however, 
multiple comparison analysis of individual time points and strains when compared to wild 
type growth revealed that the only time point where the differences was considered to be 
statistically significant was at 30 hours for all strains (denoted by *). 

* 
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Figure 2A and 2B. Motility assay of wild-type IA 3902 and isogenic mutants (A - mean ± 
SEM; B – box and whisker plot of min, median, and max). Results of motility assay 
performed in semi-solid agar and measured at 30 hours post inoculation. Statistical analysis 
via one-way ANOVA indicated that there was a significant difference between strains (p 
<0.0001). In (A), * denotes a statistically significant difference from the wild type strain. In 
figure (B), * denotes a statistically significant difference from the ∆CjNC110 mutant. 
 

 

 

 

A B 

* 
* 

* * 
* * 
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Figure 3. Autoagglutination activity after 24 hours incubation at 23°C (mean ± SEM). 
A statistically significant difference (p <0.0001) between strains at 23ºC was noted based on 
initial analysis via one-way ANOVA. At 23ºC and using a cutoff for statistical significance 
of p <0.05 when compared to wild type IA 3902, ∆luxS autoagglutination activity was noted 
to be increased at a statistically significant level, while ∆CjNC110 exhibited statistically 
significant decreased autoagglutination activity (denoted by *).

* 

* 
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Figure 4. Autoagglutination activity after 24 hours incubation at 37°C (mean ± SEM). 
A statistically significant difference (p <0.0001) between strains at 37ºC was noted based on 
initial analysis via one-way ANOVA. At 37ºC and using a cutoff for statistical significance 
of p <0.05 when compared to wild type IA 3902, ∆luxS autoagglutination activity was noted 
to be increased at a statistically significant level, while ∆CjNC110 exhibited statistically 
significant decreased autoagglutination activity (denoted by *).

* 

* 
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Figure 5. Bioluminescence as measured via the Vibrio harveyi bioassay (mean ± SEM). 
Bioluminescence activity of 3902 ∆CjNC110 compared to the positive control strains Vibrio 
harveyi BB152 and 3902 wild type. Each bar represents the average of four replicates with 
standard error. BB152 is the positive control. MH and AB broth are shown as negative 
controls. Both the IA 3902 ∆luxS and ∆CjNC110∆luxS mutant strains demonstrated no 
bioluminescence activity at any point during growth, indicating a complete lack of AI-2 
production as expected. Production of AI-2 increased over time during the course of the 
growth curve for both wild type and ∆CjNC110 strains. 
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Figure 6. Bioluminescence as measured via the Vibrio harveyi bioassay over the course 
of growth (mean ± SEM). Bioluminescence activity of 3902 ∆CjNC110 compared to the 
3902 wild type over the course of growth. The bioluminescence  of the ∆CjNC110 mutant 
was determined to be statistically significantly decreased when compared to wild type at time 
points 6, 9 and 12 hours (p <0.05) of the growth curve, occurring during mid to late 
exponential phase and early stationary phase (denoted by *). 
 

 

* 
* 

* 



233 

 

CHAPTER 6 

SUMMARY AND FUTURE DIRECTIONS 

 

Summary 

Campylobacter jejuni is the leading cause of foodborne bacterial gastroenteritis 

worldwide and is an important cause of ovine abortion particularly in the United States. 

Colonization of the gallbladder by C. jejuni is thought to play a key role in transmission and 

persistence of this important zoonotic agent; however, there is a fundamental knowledge gap 

in our understanding of the molecular mechanisms utilized to establish infection in such a 

harsh environment. The objective for this dissertation was to determine the molecular 

mechanisms responsible for C. jejuni colonization of the gallbladder as well as localize the 

site of colonization within the gallbladder. Our central hypothesis was that changes in 

expression of the C. jejuni transcriptome including both protein coding genes and non-coding 

RNAs allow it to adapt to the bile-rich environment and colonize the protective mucuos 

lining of the gallbladder where it acts as a chronic nidus of pathogen shedding. To test this 

hypothesis, the following specific aims were developed: 1) identify the location of 

gallbladder colonization by C. jejuni  2) identify specific bacterial elements responsible for 

adaptation of C. jejuni for survival in bile and 3) select specific non-coding RNAs that are 

differentially expressed in the gallbladder environment for further study.  

First, we utilized a unique model of direct inoculation of C. jejuni IA 3902 into the 

ovine gallbladder to demonstrate the preferred location of IA 3902 within the gallbladder 

environment using immunohistochemistry staining of the major outer membrane protein 

(MOMP). We observed high levels of MOMP staining deep with the glands of the 
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gallbladder mucosa as well as in free-floating luminal debris. We were then able to 

demonstrate that C. jejuni IA 3902 appears to have an affinity for neutral mucin, acid mucin 

and L-fucose in the ovine gallbladder based on observation of the organism localized in 

higher numbers to areas with increased staining for PAS, Alcian blue and lectin. These data 

suggest that to survive within the harsh environment of the gallbladder, colonization of the 

deep mucosal glands of the gallbladder occurs to allow avoidance of the constant flushing 

action of bile release and the detergent activities of bile salts in the lumen. Once established, 

this site of colonization can then serve as a nidus of chronic infection and shedding into the 

environment where the infection can then be maintained in the herd or lead to human 

exposure and zoonotic disease.  

 Second, we utilized the bacteria collected from the in vivo sheep gallbladder 

inoculation model and in vitro inoculated bile to harvest total RNA for assessment of the 

complete transcriptome of C. jejuni IA 3902 via RNAseq during exposure to this important 

host environment, the sheep gallbladder. We demonstrated that the transcriptional 

environment during direct interaction within the host, as displayed by utilizing in vivo 

inoculation of and RNA recovery from the sheep gallbladder environment, provides a more 

robust picture of the complexity of gene regulation required for survival when compared to in 

vitro exposure to ovine bile alone. Using these data, we confirmed the role of the multi-drug 

efflux pumps cmeABC and cmeDEF for survival within bile and the host gallbladder. We 

identified a subset of 67 genes that were upregulated during all conditions and timepoints, 

suggesting a key role in survival within bile, including two highly expressed hypothetical 

proteins that warrant further study. We also identified a subset of 77 genes upregulated only 

under the in vivo conditions which suggests that they may be important in responding to 
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environmental cues only found in the host. In addition to identification of important protein 

coding genes, seven previously identified non-coding RNAs were confirmed to be 

differentially expressed within our data. Small non-coding RNAs have been shown in other 

species of bacteria to play a key role in regulating gene expression, suggesting that they may 

play an important role in rapid regulation of gene expression upon exposure to bile and the 

host environment.  

Following our preliminary in vivo gallbladder transcriptome analysis, we identified a 

previously validated ncRNA, CjNC110, which appeared to be differentially regulated in the 

host environment. A mutant was constructed to inactivate this small RNA, and this mutation 

was also transferred into the previously constructed ∆luxS mutant in IA 3902 to generate a 

double knockout of these neighboring genes. By again utilizing RNAseq technology, we 

were able to perform transcriptional analysis of the effects of inactivation of both the 

CjNC110 and luxS genes, individually and in combination, in C. jejuni IA 3902. The results 

of this study have allowed us to identify for the first time potential regulatory roles in a 

number of important pathways such as energy taxis and flagellar glycosylation for the 

CjNC110 non-coding RNA in C. jejuni. The results reported here establish that differential 

RNAseq can be used to help determine functional roles of non-coding RNAs within bacteria 

to help direct future studies of phenotypic changes. In addition, the results generated by 

comparing the differences between inactivation of protein coding genes next to non-coding 

RNAs have demonstrated that mutational methods utilized to inactivate protein coding genes 

may lead to unknown polar effects on nearby non-coding RNAs which may cause confusion 

in comparing results of studies when differing methods are utilized.  
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 Finally, we utilized the transcriptional changes observed within the RNAseq data to 

design experiments to assess for potential phenotypic changes in the IA 3902 ∆CjNC110 

mutant and ∆CjNC110∆luxS double mutant and compared those to the phenotype of the 

∆luxS mutant. Growth curve analysis did not demonstrate a statistically significant difference 

in growth rate between strains. The ∆CjNC110 mutant was observed to demonstrate a trend 

towards increased motility and statistically significant decreased autoagglutination ability, 

both phenotypes which were suggested by the RNAseq data. Mutation of the ∆luxS gene 

demonstrated a statistically significant decrease in motility as well as an increase in 

autoagglutination ability, both of which were in direct contrast to mutation of CjNC110. 

When the two independent mutations were combined in the ∆CjNC110∆luxS double mutant, 

the decreased motility phenotype of the ∆luxS mutation was amplified; however, no change 

in autoagglutination was seen. This data represents the first report of phenotypically 

identifiable changes associated with inactivation of a small non-coding RNA in any strain of 

C. jejuni.  

Collectively, these findings provide new insights into several levels of the C. jejuni 

pathobiology of the emerging zoonotic pathogen sheep abortion clone IA 3902. The results 

along each step of the process complement the findings of the previous work and provide a 

strong foundation for future research focusing on the role of the gallbladder environment in 

maintaining C. jejuni within animal populations as well as the molecular mechanisms such as 

non-coding small RNAs that allow it to survive in this harsh environment.  
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Future directions 

The sheep gallbladder inoculation model developed for this study provides many 

additional opportunies to further study the molecular mechanisms of survival utilized by C. 

jejuni to persist within this harsh host environment; however, additional work utilizing a 

more natural model of inoculation is also warranted. Oral inoculation of C. jejuni IA 3902 to 

confirm that colonization of the deep mucosal glands of the gallbladder occurs under 

conditions similar to natural exposure is an important next step in proving that gallbladder 

colonization is a key compenent to maintaining C. jejuni within a susceptible population. In 

addition, future work combining oral inoculation with prior placement of a Hemoclip® over 

the common bile duct should prove useful in determining whether the route of infection of 

the gallbladder is septicemia via the bloodstream, liver, and secretion into the bile, or 

retrograde through the common bile duct into the gallbladder directly from the intestinal 

tract. 

 The results obtained in the transcriptomic study of the response of C. jejuni to 

exposure to the ovine gallbladder provided a wealth of potential areas of further research. 

First, additional work to validate the differential expression of a subset of the genes and non-

coding RNAs identified in this study via RT-PCR or other modalities such as the NanoString 

nCounter is warranted. Following validation, a number of key targets including the two 

highly expressed hypothetical proteins warrant further study, in particular the putative outer 

membrane protein CjSA_1528. In addition to identification of important protein coding 

genes, seven previously identified non-coding RNAs were confirmed to be differentially 

expressed within our data; as these represent potential regulators with the ability to have far 

reaching impact on global gene expression, further study of these should be a primary focus 
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of future work. In particular, the CjNC140, which demonstrated differential expression both 

in all four conditions of exposure to bile, as well as during exponential growth in the CjN110 

mutant transcriptomic study, is a small RNA that may work together with CjNC110 to 

mediate gene expression in IA 3902 and warrants further study.  

Additional work is also needed to confirm the results presented in the RNAseq 

transcriptomic study of the CjNC110 mutant, again utilizing such technology as RT-PCR for 

individual genes or NanoString nCounter to screen a large number of genes at once. Northern 

blot analysis of some of the differentially expressed small non-coding RNAs to validate both 

their existence and length is also warranted, particularly of CjNC110 itself, as the apparent 

length of CjNC110 in IA 3902 as determined via RNAseq appears to be longer than the 

length observed in other strains of C. jejuni. Further work is needed utilizing 

complementation of CjNC110 into the ∆CjNC110 mutant to validate that the phenotypic 

changes observed are in fact due solely to the deletion of the CjNC110 small RNA and not 

unintended polar effects to either the neighboring genes, luxS (upstream) or CjSA_1137 

(downstream), or other unknown changes in the genome. Complementation of the CjNC110 

non-coding RNA may prove to be more difficult that complementation studies performed in 

protein coding genes as proper length and secondary structure of the transcribed RNA is 

likely very important to success of complementation, whereas in protein coding genes as long 

as a promoter is present to initiate transcription and the coding sequence remains the same, 

complementation can be acheived. In vivo studies looking at the colonization ability of both 

the ∆CjCN110 and ∆CjNC110∆luxS mutants are also warranted to determine if the 

phenotypic changes seen translate into changes in virulence of IA 3902. The studies we have 

performed thus far have focused on the role that CjNC110 plays in IA 3902 in particular, 
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however, CjNC110 is one of the few small RNAs identified in C. jejuni that appear to be 

fairly well conserved across all of the strains tested thus far. Particularly as our data suggests 

that the length of CjNC110 may differ between strains of C. jejuni, it is possible that the 

effect of inactivation of this small RNA differs between strains. Some of the regulatory 

networks that we identified in both the transcriptomic and phenotypic studies also were 

suggested to differ between strains, therefore, studies to assess whether inactivation of 

CjNC110 in other strains of C. jejuni leads to similar phenotypic changes are warranted. 

Finally, determination of the location and method of interaction between CjNC110 and its 

target transcripts will provide yet another important piece of the puzzle which will help bring 

us closer to understanding gene regulation in the important human and animal pathogen, C. 

jejuni IA 3902.  
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