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ABSTRACT 

As cellular automata are becoming popular in many research areas, the need for an 

easy-to-use system for cellular automata programming is becoming greater. Traditionally, 

cellular automata transition functions were manually depicted in a tabular format, which is 

often time-consuming and error prone. A more promising approach is to design a general-

purpose cellular automata programming environment. 

In this thesis, a new cellular automata simulation environment, jTrend, is introduced. 

jTrend was developed on the Java platform for cellular automata exploratory research. 

With a built-in high-level programming language and an easy-to-use graphical user 

interface, jTrend has become one of the most powerful cellular automata simulators, and 

can be used for most one- and two-dimensional cellular automata simulations. The object-

oriented design and performance optimization techniques used in jTrend provide high 

flexibility and fast simulation speed.  

jTrend has been used to study some real world problems in cellular automata. Solutions 

for two important problems, bubble sort and satisfiability (SAT), have been implemented 

using jTrend. Their experiment results suggest that it may be advantageous to solve 

problems using cellular automata, and jTrend provides a foundation to test such ideas. 
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CHAPTER 1. INTRODUCTION 

1.1 Cellular Automata Modeling 

1.1.1 What are cellular automata models? 

Conceived by John von Neumann [21] and Stanislaw M. Ulam [32] in the 1940’s, 

cellular automata models provide a framework to study the behavior of complex, adaptive 

systems formally. 

In essence, cellular automata are discrete dynamic systems whose behavior is 

completely specified in terms of a local-only relation. Each cellular automaton consists of 

a grid of cells that can be in one of N finite states at any time. Each cell determines its next 

state based on the states of its neighbor cells (including itself) using a set of pre-defined 

rules (called transition functions). The states of all cells are updated simultaneously and 

independently of one another in discrete time steps. One cellular automata example, the 

Game of Life, is shown in Figure 1.1 to depict the mechanism of cellular automata in 

action. 

The Game of Life model was invented by John Conway in 1970 [14] to investigate the 

basic process in living systems. Each cell in this model can be in either of two states: alive 

or dead. The state of each cell changes from one generation to the next, governed by he 

following rules: 

1. If a live cell has two or three live neighbors, it survives.  

2. If a live cell has less than two or more than three live neighbors, it dies.  

3. If a dead cell has exactly three live neighbors, it is born.  

 

• • •
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•
• •
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• •

•
•

• • •
• •

•
• • •

•
•

epoch 1 epoch 2 epoch 3 epoch 4 epoch 5  

Figure 1.1    Conway’s Game of Life example 
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By the repetitive application of these rules, any given initial pattern of a collection of 

living cells in a universe of dead cells can develop over time and produces various 

configuration changes. Figure 1.1 shows how one initial pattern, named glider, evolves 

over five generations. Comparing the patterns at epoch 1 and epoch 5, we note that the 

glider gradually moves to the lower right corner.  

1.1.2 Applications of cellular automata 

Since the original work of John von Neumann and Stanislaw M. Ulam, cellular 

automata have been applied to the study of many real-world phenomena, including 

adaptation, optimization, simulation, competition, and evolution, etc.  

One of the most attractive topics in cellular automata research is self-replication, a 

challenging subject that was first studied by John von Neumann. It was this study that 

motivated him to design the cellular automata model. Instead of focusing on the physical 

realization of self-replication, his study tried to capture the fundamental information 

processing mechanism underneath self-replications. Such study aims at building systems 

that are much more autonomous in the future than we can possibly build today. The first 

self-replication model was designed by John von Neumann in a two-dimensional cellular 

automaton with 29-state cells. After his pioneering work, self-replication research 

conducted by other researchers has led to smaller and simpler systems that can be readily 

implemented on a computer ([6], [19], [2], [23]). Instead of designing the self-replication 

structure by hand, Chou et al. took a different approach [3]. They presented a model in 

which self-replication structures can emerge from a set of individual structures that are 

distributed in the cellular space randomly. To some extend, the results of this study 

suggest that it is possible to use self-replication structures to study the origin of life. 

Recently, the research of how to program self-replication structure to do other jobs instead 

of just self-replicating itself has become popular. This research has led to self-replication 

structures that can be used to solve other real-world problems, such as SAT [4].  

Because of its unique features, cellular automata are also proved to be useful discrete 

models of dynamical systems theory. A systematic use of cellular automata in this area 

was pioneered by Stephen Wolfram [30]. The dynamical system theory studies the 
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collective phenomena such as ordering, chaos, fractals, etc., and cellular automata provide 

a rich collection of representative models where these phenomena can be studied with 

relative ease.  

 In addition to modeling phenomenal aspects of our world, cellular automata also 

provide a way to model the laws of physics directly. Conducted by Edward Fredkin and 

Tommaso Toffoli first, this research focuses on the formulation of information-preserving 

computational models. In particular, some differential equations of physics, such as the 

heat, wave and Navier-Stokes equations, have been well studied using cellular automata 

as simulation models. The detailed introduction about the applications of cellular 

automata in this field can be found in [27]. 

To sum up, cellular automata have an increasingly important role as conceptual and 

practical models of self-replication and discrete dynamical systems. Research in this field 

will give us better understandings of dynamic phenomena in complex systems with 

discrete time, discrete space, and a discrete set of state values. 

1.2 Existing Cellular Automata Programming Environments 

Since cellular automata have been used in many research areas, the need for an easy-to-

use system for cellular automata programming is greater than ever. Traditionally, cellular 

automata programming was conducted manually. To produce desired phenomena, an 

investigator had to convert his experimental transition function for a cellular model into a 

mapping table. He then needed to create computer programs that do the simulation and 

produce results based on the table. He might need to repeat his experiments several times 

using different tables until the result had succeeded or it appeared that his model was not 

promising. Without the help of a computer, the job of table creation is tedious and almost 

impossible to be followed by a human for complex models. In addition, some tasks, such 

as visualization and result analysis, make the job to conduct cellular automata experiments 

even more difficult and time-consuming if each investigator has to create their own set of 

experimental software tools. 

Since these circumstances arise quite naturally in connection with cellular automata re-

search, a few software packages have been designed and made available. In the following 
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subsections, three of the existing general-purpose cellular automata simulators are intro-

duced briefly. A comprehensive review of existing simulation systems can be found in 

[31]. 

1.2.1 CAM-6 

CAM-6 [27] is a commercially available cellular automata machine, which is 

accessible for PC users. This machine was originally developed to fulfill MIT’s internal 

research needs by the MIT Laboratory for Computer Science. CAM-6 consists of two 

components: simulation hardware and control software. The hardware component is a 

module that plugs into a slot of IBM-PC and does most of the simulation work at high 

speed. The control software for CAM-6 is written in Forth, a semi-high level postfix 

programming language, and runs on the IBM-PC with 256K of memory. 

In CAM-6, users are allowed to specify the rules for cells’  behavior by using the Forth 

language. Internally, these rules are converted into a rule table by the software component 

and stored in the CAM-6 hardware module. During the simulation, results can be 

visualized with colored dots, or pixels, on a monitor.  

CAM-6 is the first general purpose cellular automata simulation system that is widely 

available. It is also the first simulator to use hardware acceleration and use a high-level 

programming language to specify the rule set. Many unique ideas of CAM-6 were adopted 

by other cellular automata simulation environments later. 

1.2.2 Cellular 

Different from CAM-6, Cellular [9] is a cellular automata programming environment 

without a specific hardware component, therefore it is easier to deploy. It consists of the 

following components:  Cellang, avcam, and cellview. Cellang is a programming 

language that is associated with a compiler cellc; avcam is a simulator used for cell 

evaluation; and cellview is a graphic viewer. Compiled Cellang programs can be run on 

avcam with a separate input data file for initial cellular space configuration. The results of 

simulation can either be fed into cellview and viewed graphically, or passed through a 

custom filter for statistical purposes.  
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Each program written in Cellang can be divided into two main parts: a cell description 

and a set of statements. The cell description determines the dimension of a cellular space, 

the field(s) each cell contains, and the bit depth in each field. Statements in Cellang are 

used to decide a cell’s next state. Three kinds of statements are available in Cellang: if, 

forall and assignment. The assignment statement in Cellang is different from other high-

level languages, since it provides conditional assignment. The forall statement is similar 

to the loop statement in other high-level languages. The variable that used as an index 

within this statement will iterate through a range of values. The if statement is the same as 

those in other languages. 

Two special variables are maintained in the Cellular simulator. t i me is a system 

defined variable indicating the number of iterations that have been executed. It is updated 

automatically by Cellular. This variable allows field value changes that depend on time. 

r andom is another pre-defined variable used to provide a uniformly distributed random 

number in each cell. 

The predefined variable cel l  is special and refers to the cell that is under 

consideration. Assignment to cel l  is the only way to alter the value of the current cell. 

Furthermore, the new value of cel l  will not become available until the beginning of the 

next cycle, thus reading cel l ’s value after an assignment to it will obtain its old value, 

not the assigned new value. 

In Cellang, neighbors can be arbitrarily referenced using a relative indexing format. In 

this format, the relative position of the desired neighbor is placed within square brackets 

([]). For example, [ 1, 0]  represents the east neighbor of current cell and [ - 1, - 1]  for the 

northwest neighbor. To access the field values of these neighbors, users can place a dot (.) 

and field name after a relative index. For example, expression [ 0, 1] . di r  will return the 

dir field value of the southern cell. 

A new feature introduced in the latest version of Cellang is agents. Agents are 

designed to manage the complexity involved in moving a value from one cell to another. 

Compared with traditional cellular automata techniques, agents allow such movements to 

be specified more clearly and easily. Additional language features of Cellang can be 

found in [10]. 
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1.2.3 CAMEL/CARPET 

Traditionally, most cellular automata simulation environments were implemented on 

sequential computers, such as CAM-6 and Cellular. But in essence, cellular automata are 

intrinsically parallel. Cellular automata models run in a parallel way because an identical 

set of rules is applied simultaneously to all cells during each iteration. This characteristic 

makes parallel computer an ideal platform for the implementation of high-performance 

cellular automata simulators 

CAMEL ([12], [13]) is an interactive parallel programming environment that uses the 

cellular automaton both as a model for parallel computation and as a tool to model and 

simulate complex dynamic phenomena. The elaborate design of CAMEL helps to hide the 

underlying architectural issues from users while offering the computing power of a 

parallel computer. 

CAMEL is composed of a set of macrocell processes that run on each processing 

element of the parallel machine, and a controller process running on a master processor. 

Each macrocell process simulates several elementary cells of the cellular automaton, and 

makes use of the underneath communication system to handle the data exchange among 

them. All macrocells execute the same local rule set in parallel, under the coordination of 

the controller process. With this design, users only need to specify the transition function 

for a single cell in the cellular space without considering other cells. 

Similar to Cellular, CAMEL comes with a programming language called CARPET, 

which is used for programming cellular algorithms in the CAMEL environment. A 

CARPET program is composed of a declaration part and a body program. The declaration 

part, which is similar to the cell description component in Cellang, specifies the structure 

of the automata space, such as its dimension, and determines the information stored in 

each cell. The body program contains usual statements similar to the C language, and a set 

of special functions to access and modify the states of a cell and its neighborhood. 

CAMEL converts the body program automatically into a binary code, and distributes the 

binary code to each processor for simulation. 
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In CARPET, fields of the current cell can be referred by cel l _f i el d. To guarantee 

the synchronous cell updating in cellular automata, the value of fields can only be 

modified by the updat e function. 

Compared with Cellang, CARPET generalizes the concept of neighborhood. In 

CARPET, users are allowed to define a logical neighborhood by a nei ghbor  declaration. 

The neighbors of current cell can be assigned specific names through the nei ghbor  

declaration. Cells can refer to field values of its neighbors using these names. For 

example, the von Neumann neighborhood can be defined as follows [13]: 

 
Nei ghbor  Neumann[ 4]  ( [ 0,  - 1] Nor t h,  [ 1,  0] East ,                 
                     [ 0,  1] Sout h,   [ - 1,  0] West ) ;  
 

With this declaration, the dir field of the northern cell could be referred as Nor t h. di r  

instead of [ 0, - 1] . di r  as is required in Cellular 

Similar to the variable t i me in Cellang, CARPET allows users to access the number of 

iterations that have been executed through a predefined variable st ep. A random number 

function, r andom, is also provided in CARPET. In addition, CARPET allows cells to 

access the value of the coordinates X, Y and Z of a cell in the automaton through the 

Get x , Get y , and Get z  functions. These functions are useful for users to design 

heterogeneous models, in which different cells have different transition functions.  

1.3 The Trend Simulation Environment and its Language Features 

1.3.1 Why is Trend needed? 

Although existing simulation systems are very capable in doing many general-purpose 

cellular automata programming, they are still inadequate for our requirements. In 

particular, we need a system that allows us to specify the information stored in each cell 

easily, a backtracking mechanism to trace back to previous cellular automata space 

configurations for debugging code, and a high level cellular automata programming 

language which can exploit the rotational symmetry of the cellular automata space. For 

these reasons, a new cellular automata simulation environment, Trend, was developed.  

Trend combines most capabilities of available cellular automata simulation systems 

and introduces new language features. Compared with others, Trend has some major 
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advantages for doing simulations of complex cellular automata models without increasing 

the complexity of programming too much. 

The Trend programming language takes a high-level structured approach and is 

modeled after the most popular programming language C. Some language features of 

Trend will be discussed in the next section. Detailed description of the Trend language can 

be found in [3]. 

Since the Trend language contains most modern programming language constructs, it 

allows algorithms expressed using it to be very complex, yet still readable for users. This 

greatly extends the power of cellular automata programming when compared with 

manually created cellular automata simulation systems. A Trend language compiler is 

bundled with the Trend simulator. For each Trend program, the Trend compiler generates 

a virtual machine code that can be executed by its simulation engine. The working process 

of the Trend simulation environment is shown in Figure 1.2. 

1.3.2 Trend language features 

Data types are the basic constructs of a programming language. Trend1 introduces three 

primitive data types: i nt , nbr , and f l d. The first one, integer data type, is common in 

other programming languages. An i nt  variable is a 32-bit integer and that can be used to 

store cell states temporarily. nbr  and f l d are two special data types introduced in Trend 

specific to cellular automata programming. nbr  is used to denote the position of a 

neighbor cell, such as north, south, etc. f l d denotes fields within each cellular automata 

cell. When combined with the nbr  data type, f l d can uniquely specify a particular field 

within a particular neighbor cell. 

 

Trend language
compiler

Trend program
simulation engine

VM code simulation results

 

Figure 1.2    The working mechanism of the Trend simulation environment 

                                                 
1 In this thesis, Trend is used to refer to either the simulation environment or the programming language. 
Readers should be able to differentiate its uses from the context. 
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Most arithmetic and logical operators in C are available in Trend, such as +, * , ++ 

(increase), % (remainder), & (logical and), <= (equal or less than), etc. Function 

declarations are also allowed in Trend. 

Unlike Cellang, Trend programs do not contain any cell description. A cell description, 

which specifies the information of neighborhood and cell fields, can be defined “on the 

fly”  by the user using the template window (shown in Figure 1.3) of the Trend simulator. 

Field and neighborhood names defined in the template window are used as semi-reserved 

words in a Trend program. Users can use these names to refer to a particular neighbor and 

field of the current cell. The Game of Life rules rewritten in Trend [3], shown below, 

demonstrate some language features of Trend: 

 
default life = life;  
 
int count ;  
nbr y;  
 
count  = 0;  
 
over each other y:  
 i f ( y: life)  count ++;  
if( count  < 2| |  count  > 3)  
 life = 0;  
if( count  == 3)  
 life = 1;  
 

In Game of Life, we defined two variables, count  and y . count  is an i nt  variable 

used as a temporary storage for the counting of alive neighbors. As an nbr  variable, the 

second variable y  stores a neighbor position index. 

Since Trend allows users to configure neighbor and cell information in the template 

window, that makes the neighborhood reference quite simple in Trend programs. For 

example, in the Game of Life, a cell can refer to the life field of its neighbors using 

y: l i f e,  without any additional specification. 

One special feature of Trend is in the control flow statements. In addition to providing 

traditional control flow statements such as i f  and whi l e, Trend introduces the over  

statement. The over  statement in Trend is used to scan over all neighbors for a current 
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Figure 1.3    The template design window of jTrend 

cell. It takes the following form [3]: 

 
over each { other}  nbr _var i abl e st at ement  
 

In essence, the over  statement is similar to the loop statements in other languages. It 

loops through all neighbors of a cell, including the center cell itself. During every loop, 

the over  statement assigns each neighbor position index into the nbr _var i abl e, which 

can be used in the following statement.  The tag “ot her ”  is optional. It can be added to 

exclude the center cell in the scanning process. For example, the following code segment 

in Game of Life determines how many neighbors are alive: 

 
count  = 0;  
over each other y:  
     if ( y: life)  count ++;  
 

For visualization purposes, each field value in Trend is mapped to an ASCII character. 

For example, if character ‘O’  is defined as the second symbol for the life field in the 

template window, then literal ‘O’  represents the value 1 on screen during simulation. 

Similarly, when ‘O’  is assigned to the life field in a Trend program, the value of life field 

is set to 1. Symbolic representations make simulation results more readable and real-world 

problem solving easier. 
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1.4 Our Projects for Trend Improvement and Portability 

For any general-purpose simulation environment, its availability is a critical factor. The 

existing cellular automata simulators have different kinds of limitations that prevent them 

from becoming convenient programming environments for users. For example, the CAM-

6 requires a special hardware component. Without purchasing this component, it is 

impossible for users to use CAM-6. Even though Trend does not require such specific 

hardware, there are still other limitations of Trend. In particular, Trend was designed for 

specific platform ���
	���  For users who do not have the access to Unix machines, they 

cannot use Trend.  Additionally, the user interfaces of Trend on Unix were developed 

using Motif, a commercial graphical user interface (GUI) library. This dependence 

prevents the Trend source code from generating executable programs on machines where 

Motif has not been licensed. This limits Trend’s widespread availability as well. 

Even though the Trend language is more capable than many existing cellular automata 

programming languages, it still has some limitations.  For example, variables in Trend 

have to be declared before their usage; there is no bracket around a function body, etc. 

These limitations make us believe that it is time to develop a new version of the Trend 

simulator, not only for portability reasons, but also for improved language features. 

Nowadays, Java is becoming a popular cross-platform programming language. Any 

Java program is guaranteed to run on different platforms if users install the Java Runtime 

Environment (JRE), which can be freely downloaded from Sun Microsystems Inc. In 

addition, Java provides a complete graphical library for users. The abundant graphical 

components provided in Java make porting Trend’s interfaces to Java comparably easy. 

These benefits make Java our top candidate for extending Trend cellular automata 

programming language and its simulation environment to the other platforms other than 

Unix. 

We name the new system jTrend, meaning that it is a Java-based Trend. For the rest of 

this thesis, Trend refers to the Unix version and jTrend denotes the Java version. 
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1.5 Organization 

The rest of this thesis is organized as follows. In Chapter 2, the software organization 

of jTrend is introduced, with some discussion of implementation issues. New features that 

are not available in Trend before but added in jTrend are mentioned in this chapter as 

well. By using the new jTrend environment and the improved Trend programming 

language, solutions for two computational problems, bubble sort and satisfiability (SAT) 

problems, are presented in Chapter 3 with some experiment results. Finally, in Chapter 4, 

we summarize the achievements and make some conclusions.  
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CHAPTER 2. jTrend A JAVA-BASED CELLULAR 

AUTOMATA SIMULATOR 

jTrend is a general-purpose cellular automata simulator that was created to support the 

development and experiment of cellular automata research. With its high-level, general-

purpose programming language and the flexibility in the neighborhood definition and data 

field allocation, jTrend is suitable for most one- and two-dimensional cellular automata 

simulations. 

For any well-designed cellular automata simulator, the following three issues must be 

addressed carefully. The first issue is software organization. For a complex simulation 

system, the software design determines the maintainability and flexibility of the whole 

system. The second one is graphical user interfaces (GUIs). A user-friendly cellular 

automata simulator should provide integrated, easy-to-use interfaces that allow on-going 

monitoring and interactive control of simulations. The last issue is simulation 

performance. Performance is a critical issue for simulation systems, especially for jTrend 

that was implemented on the Java platform. 

This chapter covers the above issues in jTrend. The software organization of jTrend is 

introduced first in Section 2.1, including its major software modules and their relationship. 

The rest of Section 2.1 discusses the design of these modules in detail. Section 2.2 is 

devoted to introducing major GUI components of jTrend. To make that section more 

complete, some screen shots of these GUI components are presented as well. Section 2.3 

discusses the strategies that are used to optimize the simulation performance of jTrend. 

Finally, the availability of jTrend is discussed in Section 2.4.  

2.1 Software Organization of jTrend 

Basically, jTrend can be divided into two major modules: Trend language compiler and 

GUI components. The relationship between them is shown schematically in Figure 2.1. 

Trend compiler is a stand-alone module used to compile Trend source code (i.e. rule 

sets). Upon receiving a “compiling”  command from users, a GUI component invokes the 

compiler module to compile the Trend source code. If the compiling is successful, the 
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Trend language
compiler

GUI
components

source code

RuleSet class

template
struct

 

Figure 2.1    Interactions between Trend language compiler and GUI components 

source code is converted into an executable Java class, RuleSet, and returned to the GUI 

components as a transition function for cell evaluation. GUI uses the RuleSet class to 

calculate the next state value for each cell in the cellular automata space. If the compiling 

fails, the compiler will report errors and indicate the positions where errors happen in the 

source code. According to Figure 2.1, a template struct is referenced by both the GUI 

module and the Trend language compiler. jTrend stores the information that is related to 

cell configuration, such as the definitions of cell neighborhood and data bits allocation, in 

this struct. 

As we can see in Figure 2.1, the interfaces between the GUI module and the compiler 

module are very simple. That allows these two modules to be developed independently as 

long as the interfaces between them are maintained well. In the next two subsections, the 

designs of Trend compiler and the GUI components are presented in detail.  

2.1.1 Trend language compiler 

Because the simulation performance is primarily decided by the efficiency of the 

binary code generated by the compiler, the compiling module has become a crucial part of 

jTrend. Originally, the output of Trend compiler on Unix is a parser tree. To decide the 

next state for each cell, the evaluation component has to follow the parse tree and 

calculate values for some nodes using recursive function calls. But in Java, the operations 

involved in function calls are time-consuming. Thus, the interpreted parse tree approach is 

unacceptable for jTrend, which runs on an interpreted environment already. To improve 

the evaluation performance, we decided to compile the source code directly into a JVM 

class. A JVM class can be loaded and executed by the Java virtual machine directly. 
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Obviously, this solution is far better than the previous one and will improve the simulation 

performance significantly. 

Basically, the jTrend compiler2 consists of two parts: a lexical analyzer and an iterative 

parser. As shown in Figure 2.2 ([1]), the lexical analyzer takes a stream of characters and 

produces a stream of tokens that become the input to the following phase. When the parser 

obtains a string of tokens from the lexical analyzer, it will verify that the string can be 

generated by the grammar for the Trend language. The parser will report any syntax error 

in an intelligible fashion. If there is no error during compiling, the parser will use the 

Oolong [11] JVM toolkit to generate a JVM class object, RuleSet, and return it to the GUI 

module. With the current cell’s neighborhood configuration as the input, the GUI module 

executes the evaluate method of the RuleSet object for each cell. The return value from 

the evaluate method will become the next state value for the current cell. 

To parse context dependent literals, the lexical analyzer of jTrend compiler was written 

manually. On the other hand, the Java_CUP [18], a Java parser constructor, was used to 

generate the parser automatically based on a Yacc-like specification. 

2.1.2 The GUI module 

The organization of jTrend GUI components is shown in Figure 2.3, with a dashed 

rectangle around it. Note that this figure is similar to Figure 2.1, except that it provides 

more detailed information about the interactions between different modules. The 

information flows between different components are shown in this figure using arrow 

lines. 

token

get next
token

Trend program
parserlexical analyzer

symbol table

RuleSet class

 

Figure 2.2    The lexical analyzer and parse of Trend language compiler 

                                                 
2 The jTrend compiler is solely developed by Dr.Hui-Hsien Chou. 
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As we can observe in Figure 2.3, the GUI components of jTrend are divided into three 

categories: user interaction components, graphical visualization components and 

evaluation components. The user interaction components provide interactive interfaces 

between users and jTrend. In jTrend, users can change the template of a cellular automata 

space, specify the values of cells and modify the rule set, etc. Additionally, jTrend allows 

users to configure the appearance of the simulation environment and monitor the 

simulation process during run time. All of these functions are provided through the user 

interaction components of jTrend. The graphical visualization components are responsible 

for presenting the simulation results to users. The evaluation components in the GUI 

module calculate the next state for each cell based on current states of its neighbors 

(including itself), using the RuleSet class that is returned from the compiler module. The 

visualization components then convert the new cell values into graphical symbols that are 

defined by users in the template window. Finally, these symbols are drawn on the cellular 

automata space. 

According to Figure 2.3, the cell evaluation and the graphical visualization are 

separated from each other. In addition to maintaining clear interfaces between different 

components, there are other reasons to take this approach in the implementation of jTrend.  

 

template
information

file system

graphical
visualization
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users user interaction
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users

Trend language
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components
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Figure 2.3    Software organization of jTrend GUI module 
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The first reason is for system optimizations. For a cellular automata simulator, the 

graphical visualization is always a bottleneck of the entire system. Separating the 

visualization from cell evaluation allows us to optimize the graphical updating without 

worrying about altering other parts. The optimization of graphical visualization in jTrend 

will be introduced in Section 2.3.  

Another reason for separating these components is to provide more flexibility in 

jTrend. For example, there is a new feature in jTrend that allows users to specify a refresh 

rate for the graphical updating. This rate forces the graphical module to update the 

simulation results on the main window at a particular frequency. If the evaluation and 

graphical visualization components are combined together, there is no way to do the 

evaluation and graphical updating at different rates. 

It should also be pointed out that, all information that is required in simulation, 

including template, cellular space configuration and rule set, can be saved to the file 

system for later use. For users that are working on complex cellular automata models, this 

feature allows them to design their models incrementally.  

2.2 Major GUI Components and their Functions 

In this section, major GUI components of jTrend, including their functions, are 

introduced in detail. This section focuses on the new graphical features that are special 

and useful to users who are using jTrend. To limit the size of this thesis, other components 

of jTrend will not be covered here. Interested readers can find the usage information of 

jTrend in its software release document. 

2.2.1 Main window and text window 

As an integrated cellular automata simulator, jTrend allows users to configure their 

working area and edit their source code at the same time. jTrend presents users two 

windows, the main window and the text window (Figure 2.4).  

Like most text editors, the text window of the simulator allows users to load a 

previously designed Trend program, or input new rules into the editing area. As we  
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(b) text window
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Figure 2.4    The Main Window and Text Window of jTrend 
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mentioned earlier, the program written by users is passed to Trend compiler when users 

decide to compile their source code. The compiling message, no matter successful or not, 

is shown in the message area of the text window. 

The main window in jTrend allows users to decide the configuration of their simulation 

environment or to load a previously designed configuration from a file. In the cellular 

automata space displayed in the main window, users can also modify values of different 

cell fields. Additionally, the main window of jTrend presents two widgets, toolbar and 

status bar, to users. The toolbar on the top of main window allows users to manipulate 

frequently used functions. The status bar is continually updated to help users monitor the 

progress of on-going simulations. These two widgets help jTrend to be more convenient to 

use. The detailed functions of toolbar and status bar are described in Section 2.2.4. 

2.2.2 Template design window 

Since jTrend is very flexible, the neighborhood layout and cell data bit allocation can 

both be determined in the template design window, instead of being specified at the 

beginning of the source code like in Cellang, CAMEL.  

The template design window is shown in Figure 2.5. Basically, this dialog can be 

divided into two parts. The left portion of the window is a set of choices related to the 

neighbor definition of current cellular automata model. The right portion is used for field 

information definitions in a cell. 

An 11 x 11 neighborhood matrix on the left part of the template dialog is used for 

neighborhood position definitions. The cell with a ‘C’  mark is the central cell. According 

to the definition of cellular automata, central cell is always required to be included in the 

neighborhood template. The center cell always represents the current cell when an 

evaluation is being executed. Users can define other neighbor cells by clicking on other 

cells and specify their names. As described in the previous chapter, all neighbor names 

will become semi-reserved words in Trend program. Users can use these names to access 

cell’s neighbors in a Trend source code. 

In the right part of the template dialog, a set of choices regarding the field definition 

such as field bits, field names and field colors etc are available to users for configuration. 
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Figure 2.5    The template design window of jTrend (duplicate of Figure 1.3) 

In addition to showing the bit allocation for each field, jTrend also show how many free 

bits available for use within the designated bit depth. That will help user to decide the 

tradeoff between the field count and their data bit lengths. The maximum cell bit depth is 

64, which is two integers long in a popular 32-bit computer system. 

In addition to bit information, users can also configure the field symbols for each field 

in the template window, if its bit length is less than 8. Different field values can be 

visualized by the field symbols specified here. The reason to use symbols in cellular 

automata is to make simulation results more readable and closer to real world when 

jTrend is being used to solve real-world problems. 

2.2.3 Floating field window 

As we can see in Figure 2.5, the data bits of cells are always divided into different 

fields with different colors in jTrend. Unfortunately, the symbols of these fields in one cell 

will overlap with each other on the working area in the main window. That makes it hard 

for users to view each individual symbol clearly. To manage this problem, we need to 

allow users to decide which fields to be shown. In jTrend, there is a floating field window 

(Figure 2.6), which is associated with the main window. This floating window is  
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Figure 2.6    The floating field window of jTrend 

designed to control the display and editing of cellular automata fields in the working area.  

The right column of this field window lists the field names defined by users. Any field 

that is selected in this column will become the current focus field. The main function of 

focus field is to decide which field is associated with the field editing popup menu. This 

popup menu is used to edit the field values in the working area of main window. To allow 

editing, the focus field content will always be displayed in the cellular space of the main 

window. At any time, there is only one focus field. A new focus field selection will 

replace the previous focus field.  

To the left of the name list is a set of check boxes. Users can decide which data fields 

are necessary to be displayed at any time by clicking these check boxes. In Figure 2.6, 

four different data fields (direc, code, pos and clause) are selected by the user in the left 

column. Combined with the focus field, these four fields will be displayed in the cellular 

space of the main window. 

2.2.4 Toolbar and status bar 

The toolbar (shown in Figure 2.7) in the main window provides users fast access to 

commands that are used most frequently, such as the template loading, the program 

compiling and the simulation controls, etc. Users can benefit from using this facility 

because this facility will help to save users’  time when modeling complex systems. 

 

 

Figure 2.7    The toolbar in the main window of jTrend  
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Figure 2.8    The status bar in the main window of jTrend 

As shown in Figure 2.8, the status bar of jTrend provides users with the internal 

information, such as simulation iteration number (i.e. epoch), trace file usage, and 

unsolved cell number etc. The meanings of these flags are outlined in Table 2.1 

2.2.5 Controls of cell evaluation 

As a user-friendly simulation environment, jTrend provides two kinds of evaluation 

mechanisms. The first one is step evaluation. The “Forward one step”  command provided 

allows users to trace every simulation step. Thus, users can spot an error, figure out the 

error position in the rule set and correct it instantly. However, this command is not an 

appropriate choice for long-term simulations. Because it requires constant clicking to 

move forward, jTrend provides a “Fast forward”  command, which starts the simulation 

continuously until users click the “Pause” button. All available control buttons in the tool 

bar are shown in shown in Figure 2.9. 

Another mechanism is backward tracing, which provides a backward capability in  

jTrend. When users are designing their rule sets and notice that the behavior of their 

simulation is not in the way as they expect, they can backtrack one step to find out what 

really happened during the simulation. The backward tracing mechanism allows this to 

happen. With this mechanism, debugging code in jTrend becomes much easier. 

Table 2.1 The function description of flags in status bar 

Flags Flag Description 

Epoch Current epoch number 

X, Y Current coordinates of mouse pointer in cellular automata space 

Efficiency The efficiency of caching mechanism in cell evaluation 

FileUsage The percentage of space size used as trace file 

Conflicts The number of cells with conflict errors 

Unsolved The number of cells with unsolved errors 
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Figure 2.9    Control buttons available in jTrend toolbar 

The difference between iterations is stored in a temporary trace file on disk by jTrend. 

When user want to trace back, the backtracking mechanism uses this file for tracing back  

to previous epochs. For long-term simulations, the trace file saved on disk may become 

very large and corrupt the file system eventually. To prevent such circumstances from 

happening, jTrend only records up to 3000 simulation steps and allows users to specify a 

limit for the trace file size as (see Figure 2.10). 

2.2.6 Other special visualization features 

To help users debug their program, another new feature, the tooltip cell information, is 

added in jTrend. In the main window of jTrend, users can place the mouse cursor over any 

cell in the working area to display its field values. The values are displayed in a small 

pop-up window that looks like a tool tip. One example is shown in Figure 2.11. 

Since users may have different appearance preferences, it is a benefit for users to be 

able to configure the appearance of their simulation environment as they wish. In jTrend, 

most appearance parameters can be configured in the appearance menu (Figure 2.12). 

Through the appearance menu, users can decide the refresh rate of simulations, the 

 

 

Figure 2.10    jTrend trace file size configuration 
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Figure 2.11    One example of the tooltip cell evaluation in jTrend 

pixel size of field symbols displayed in the main window, and whether to display 

quiescent states or not, etc. 

2.2.7 Input/Output GUI components 

In order to make itself platform-independent and compatible with the existing Trend 

version, jTrend makes uses of the Java network file format to store three different kinds of 

information, including the template configuration, the cellular automata space 

configuration, and the Trend language rule set. The files that are saved in the network file 

format are independent from platforms and could be recognized by jTrend or Trend across 

different file systems.  

The commands that are related to file system in jTrend could be found under the “File”  

menu item (Figure 2.13) in the main window. Through this menu item, users can load 

template or rule set files from disk and continue with the simulations. In addition, jTrend 

 

 

Figure 2.12    The appearance menu of jTrend 
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Figure 2.13    The commands under the File menu item in jTrend 

allows users to print the configuration of current cellular automata space through two 

printing commands “Print world”  and “Print screen” . The configuration will be converted 

into a postscript file and sent to a printer for printing. Users can determine other printing 

options in the printing configuration dialog (shown in Figure 2.14) that is provided by 

jTrend.  

 

 

Figure 2.14    The printing configuration dialog in jTrend 
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2.3 Implementation Issues 

In the previous section, the functions of major GUI components in jTrend are 

introduced. Since jTrend is implemented in Java, there are a variety of implementation 

issues that are not found in the Trend Unix version. Some implementation issues, 

especially the performance tuning and optimization, are discussed in this section.  

2.3.1 Cell evaluation performance tuning 

The evaluation module in jTrend calculates the next state for each cell based on the 

cell’s current state and the states of its neighborhood. This computation is conducted using 

the RuleSet class object that is returned from the compiler module (Figure 2.3). The time 

used in this stage is called evaluation time. The evaluation time for each cell might be 

tiny. But since there are a massive number of cells in a cellular automata space, the 

evaluation time for these cells turns out to be one of the bottlenecks in jTrend. To improve 

the simulation speed of jTrend, a three-phase strategy is used to conduct the evaluation for 

each cell. This strategy is depicted in Figure 2.15. 

The first phase is neighborhood invariant skipping. According to the definition of 

cellular automata, the next state of each cell is decided solely by its neighborhood 

(including itself).  If none of its neighbors has been changed, the current cell, which is 

under evaluation, will stay unchanged. The first phase of cell evaluation module takes 

advantage of this characteristic. For each cell, we add one flag bit, CHANGE, to indicate  

 

RuleSet classcell evaluation

cache table
look up

neighborhood
invariant skipping

cache table

evaluation

 

Figure 2.15    The three-phase strategy used in the evaluation module of jTrend  
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its changing history. If a cell keeps unchanged from the previous epoch to the current 

epoch, its CHANGE bit is 0. Otherwise this bit is set to 1. Thus, before calculating the 

next state for a cell, the evaluation module checks the CHANGE bits of all its neighbors. 

If none of these neighbors has been altered, the cell can be skipped in the evaluation 

process since its value cannot change in the current epoch.  

For a cell that has a different neighborhood in the previous epoch, its next state has to 

be calculated. Instead of doing cell evaluation using the RuleSet class, the evaluation 

module looks up the cache table and tries to retrieve a state value for current cell. If a 

recent evaluation that has the same neighborhood as the current cell could be found in the 

cache table, the evaluation module will use them and the third evaluation phase is 

unnecessary. The cache table is maintained as a priority tree. Only the least often referred 

result has the chance to be replaced by new results. 

If the second phase does not find a value either, an actual evaluation has to be taken 

now. The evaluation component will collect the neighbor values of the current cell and 

pass them to the compiled RuleSet class to obtain the next state for the current cell. If the 

evaluation is successful for a cell, the new result will be stored into the cache table for 

future references. 

Due to the data access locality characteristic of many Trend programs, the evaluation 

performance can be improved dramatically with this three-phase strategy. Actually, for 

some Trend rule sets (such as the Game of Life rule) that only modify a small area of the 

cellular automata space during each epoch, cell evaluation can all be finished in the first 

two phases (i.e. a 100% hit rate) without going into the third phase after a few iterations.  

2.3.2 Graphical interface optimization 

For many simulation systems, GUIs provide users an interactive mechanism that is 

more intuitive than other interface styles. In addition, cellular automat programming can 

be made more attractive with the visualization of simulation results. From a programmer’s 

perspective, however, GUIs are significantly more complex to implement than other 

interfaces styles. A badly designed GUI makes itself a bottleneck of the whole system. To 
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improve jTrend, many techniques have been developed to optimize its graphic 

performance. In the following, we introduce some important techniques used in jTrend. 

DIFFERENT bit 

As we mentioned in Section 2.3.1, during cell evaluation, a new flag bit, CHANGE, is 

used to denote whether a cell has been changed between epochs. The CHNAGE bits of a 

neighborhood are used in the first phase of the three-phase strategy to decide whether it is 

needed to continue with the cell evaluation. Similarly, for better graphic updating 

performance, we use the DIFFERENT bit to decide whether a cell needs to be redrawn on 

the screen. If only a few cells in a cellular automata space are modified, this technique can 

improve the performance of the graphic module significantly. To show the mechanism of 

this technique, a scenario where the DIFFERENT bit is used is presented in the following. 

In jTrend, users can decide the graphic refresh rate. The refresh rate allows the graphic 

module to redraw the cellular automata space at a specified frequency instead of each 

epoch. For example, if the refresh rate is set to 10, the graphic updating module will not 

repaint the cellular automata working space until the tenth epoch. During this period, the 

DIFFERENT bit of a cell will not be changed if its value has not been changed at all. At 

the 10th epoch, the graphic module checks the DIFFERENT bit of a cell. If it is 0, 

repainting this cell is unnecessary, and the graphic module will skip the cell. If a cell 

accumulates changes during the past ten epochs, its DIFFERENT bit will be set and it will 

be redrawn by the graphical module. 

One point that should be mentioned is the difference between system simulation 

repainting and exposure repainting. Unlike the former case that is always triggered by the 

evaluation module, the latter case only happens when the cellular automata space exposed 

by a covering window. In the former case, jTrend knows that only cells whose 

DIFFERENT bits are 1 need to be repainted. But for the latter case, the covered area 

becomes dirty and has to be cleared and repainted. All cells inside this area needs to be 

redrawn no matter their DIFFERENT bits are 0 or 1, but after the redraw, they will be 

reset to zero again. 
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XOR mode 

There are two painting modes in a Java graphics class: paint mode and XOR mode. In 

the paint mode, everything drawn replaces whatever is already on the screen. For 

example, if we draw a red square using the paint mode, we get a red square, no matter 

what was underneath. The behavior of XOR mode is very different. The idea behind XOR 

mode is that drawing the same object twice will return the screen to its original state. This 

characteristic makes XOR mode a good choice for animation in simulation systems.  

In jTrend, each cell can be divided into different fields. Instead of overlapping each 

other, these fields should be shown at the same time. This requirement makes XOR mode 

painting the choice for drawing the state symbols of different fields.  

In fact, the XOR mode painting is an efficient solution for graphic updating in jTrend 

and allows more flexibility. As we mentioned before, jTrend enables users to display 

some cell fields but turn off the others. To implement this, one alternative solution is to 

clear the whole cellular automata space and redraw fields that are displayed. Obviously, 

this is not an efficient approach. The XOR mode drawing appears to be more effective in 

this scenario, because we just need to draw the undesired fields against the existing 

screen. According to the characteristics of the XOR mode painting, these fields will 

disappear automatically. 

Clip rectangle 

While developing a GUI application, some simple techniques may have significant 

performance implications. Using clip rectangles is one of them.  

The clip rectangle of a Graphics class object in Java is set to the area of the component 

that is in need of repainting. From a programmer’s point of view, this area is the dirty 

region that requires repainting. jTrend uses this information to narrow the drawing 

operations. When jTrend receives an exposure event triggered by the system, it knows 

what areas have become dirty and need redrawing. Instead of clearing the whole cellular 

automata space that is always larger than the actual dirty area, jTrend only clears the clip 

rectangle area and redraws cells within this area. This technique leads to smart painting 

and reduces the graphic repainting overhead. 
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Canvas space 

In jTrend, the actual cellular space size might be larger than the viewable area in the 

main window, as shown in Figure 2.16. Two scrollbars are provided to allow users view 

the whole cellular automata space by scrolling. 

Since users can only observe part of the cellular automata space, there is no need to 

render cells within the whole cellular automata space. Only cells within the viewable area 

should be repainted. jTrend maintains a class named Canvas to manage the viewable area 

repainting. Instead with rendering the whole cellular automata space, this implementation 

is much more efficient. 

Buffered images 

For visualization purposes, each state value of a field has a corresponding ASCII 

symbol defined in the template window. These symbols are used to represent field values 

on the main window during simulation.  

Even though Java provides functions for drawing characters (or strings) on screen 

directly, it is not efficient to render these symbols this way. The reason is that drawing 

characters on a graphical component is very inefficient in Java. Further more, some state 

values have to be represented by a character in different orientations. For example, the  

 

CA space

View

scroll bars

viewable area

 

Figure 2.16    The relationship between viewable area and a cellular automata space  
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Trend value ’>,1’  requires the graphical module to use the character ’>’  in 90o clockwise 

rotation. This makes direct character drawing impossible in jTrend. 

On the other hand, in Java, rendering an image is more efficient than drawing a string 

since image rendering is always implemented in native methods. In order to obtain the 

maximal simulation performance, jTrend uses images for cell symbol rendering.  jTrend 

maintains a dynamically generated image library for all state values defined in the 

template design dialog such that each symbol has a corresponding pre-created image 

stored in this library. Every time the template is changed, jTrend will recreate the state  

symbols in the library. During a simulation, the graphical module of jTrend uses these 

images to render the cellular automata space instead of drawing characters. 

2.4 Availability 

jTrend is released as a Java archive (JAR) file. The JAR file format allows a 

programmer to bundle multiple files into a single compressed archive file for efficient 

distribution. Typically a JAR file contains the class files and other resources associated 

with an application. Java allows users to execute the application in a JAR file without 

extracting its constituent class files. This feature makes JAR file more portable than other 

releasing formats. 

In order to run jTrend, users have to install the Java Runtime Environment (JRE) in his 

machine. JRE can be downloaded from the Java website of Sun Mircosystems Inc. 

(http://java.sun.com) for free. jTrend requires JRE not less than version 1.2, since jTrend 

uses Java Swing, a new graphical toolkit that is only available in JRE version 1.2 or its 

higher versions. 

Because Java is a cross-platform environment, Java programs are guaranteed to “write 

once, run everywhere” . Therefore, jTrend can be run on most popular operating systems, 

such as Unix, Windows, Linux, and Mac OS X, etc. jTrend is widely available for users 

using most major platforms. 

The release version of jTrend, including its tutorial and documentation, can be 

downloaded from the website of Iowa State University Complex Computation Laboratory 

(http://www.complex.iastate.edu). Some examples can also be found in the website. 
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CHAPTER 3. TREND PROGRAMMING 

As we mentioned before, cellular automata have been used in many research areas. 

However in these fields, researchers always use cellular automata as simulation models, 

instead of studying cellular automata itself. There is little research focusing on the 

relationship between cellular automata and sequential machines, and how to apply cellular 

automata on traditional computational problems.  

In this chapter, new solutions for two traditional problems, bubble sort and 

satisfiability (SAT), are illustrated using jTrend. To emphasize the difference between the 

traditional sequential computation model and the cellular automata model, we focus on 

how to convert traditional sequential algorithms into cellular automata models. The 

performance of our new solutions is also discussed in this chapter. The research 

introduced in this chapter shows us the benefits of cellular automata in solving these 

traditional problems, and suggests that it may be advantageous to solve other problems 

using cellular automata in future. 

3.1 A Cellular Automata Bubble Sort Algorithm 

Sorting is one of the most common activities performed by computers. In order to 

access the information more efficiently, many algorithms incorporate sorting as an 

intermediate step to reorder information. In this section, a bubble sort algorithm 

implemented using the Trend language is introduced. The main idea of this algorithm is to 

use locally formulated rules that are executed in each member of a numerical array in 

parallel. In addition to one-dimensional arrays, this algorithm has been extended to sort 

two-dimensional arrays in a cellular automata space. 

3.1.1 Traditional bubble sort 

Briefly, sorting is the job of rearranging a list of numeric numbers in decreasing (or 

increasing) order. Since many applications require the sorting of a large amount of items 

(such as telephone books, purchasing records, etc.), the efficiency of a sorting algorithm is 

very important. Many sorting algorithms have been studied before, and bubble sort is one 

of the most basic sorting algorithms among them. 
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Traditional bubble sort algorithm runs using two layers of iterations. During each inner 

iteration, the value of each array element A is checked against the value of the element B 

that follows it. If the value of B is less than A’s value, they will be switched positions. 

Thus, at the end of each outer iteration, the largest element of the unsorted array is placed 

in its proper position, and the length of unsorted array is shortened by one. Using 

induction, we can infer that, if we keep permutating the array using the same condition of 

switch, eventually this algorithm will lead to a sorted array. The pseudocode of the bubble 

sort algorithm is listed in the following. 

f or  ( i =0;  i <N- 1;  i ++)  {   / /  The out er  l oop;  

  f or  ( j =0;  j <N- 1- i ;  j ++)  / /  The i nner  l oop;  

    i f  ( a[ j +1]  < a[ j ] )  {   / /  i f  a[ j +1]  l ess t han a[ j ] ,  swi t ch t hei r                                 

      t emp = a[ j ] ;         / /  posi t i ons 

      a[ j ]  = a[ j +1] ;  

      a[ j +1]  = t emp;  

    }  

 }  

As we can see from the pseudocode, the algorithm consists of two nested loops. The 

main function of the inner loop is to put the maximal number at the end of unsorted array, 

while the outer loop is used to maintain a variable i  that indicates the length of sorted 

array. Obviously, the length of sorted array will increase by one after each outer iteration. 

In particular, after the first outer iteration, the largest element is placed at the right end of 

the array a, and the variable i  becomes 1. Similarly, the second largest element is in its 

proper position on the right after the second outer iteration, and so on. This procedure is 

repeated until the entire array is sorted. Obviously, the upper bound of the inner loop is N-

1- i , so the time complexity of the traditional bubble sort algorithm is as follows 
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Compared with other algorithms such as quick sort, the bubble sort is not an efficient 

approach since it has a worse case time complexity. Even selection sort does a better job 

than bubble sort. However, because of its special characteristics, this algorithm can be 

easily converted into a cellular automata model. 



 34

3.1.2 One dimensional Trend bubble sort 

Since a cell in the cellular automata space can only access the information of its 

adjacent neighbors but not all other cells, this characteristic makes it difficult to convert 

many traditional sorting algorithms that require maintaining global information about the 

sorting progress. Fortunately, the bubble sort introduced above is not one of them. 

The two global variables used in the traditional bubble sort algorithm can be easily 

removed. The variable i  is used to maintain the size of an unsorted list to be checked in 

the inner loop and the variable j  is maintained for scanning over the elements of the 

current unsorted list in succession. The sequential bubble sort requires these two variables 

in traditional computational model, but a cellular automata model has no need of updating 

each element in an array sequentially. Actually, cells in the cellular space can execute the 

switch rules in parallel. Therefore, it is possible to implement the bubble sort on cellular 

automata without these two variables. This approach, which is called Trend bubble sort, is 

illustrated below. 

In the Trend bubble sort, no centralized control is used in sorting the elements of the 

array. Instead, each element sorts itself by comparing its value with the values of its 

neighbors. If one element notices its value is less than the value of its left neighbor, this 

element has to swap its value with this neighbor. Similarly, if its value is greater than the 

right neighbor’s, they have to swap their values as well. This approach will lead to a 

sorted list eventually. The rules of this algorithm are listed below, in Trend language: 

 
def aul t  val ue = val ue;  
def aul t  f l i p = f l i p;  
 
nbr  t ar get ;  
 
i f ( f l i p == ‘ <’ )  {  
  t ar get :  = we: ;  
   
  i f ( val ue ! = 0 && t ar get : val ue ! = 0)  
    i f ( t ar get : val ue > val ue)  
      val ue = t ar get : val ue;  
 
  f l i p = ‘ >’ ;  
}  
el se {  
  t ar get :  = ea: ;  
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  i f ( val ue ! = 0 && t ar get : val ue ! = 0)  
    i f ( t ar get : val ue < val ue)  
      val ue = t ar get : val ue;  
 
  f l i p = ‘ <’ ;  
}  
 

 
The Trend bubble sort rules begin with two default statements. If no rule is applicable 

for the current cell, the values of the value and flip fields will be unchanged. 

As introduced in chapter 1, each cell in Trend can be divided into different fields to 

simplify cellular automata programming. In the Trend bubble sort model, each cell is 

divided into two fields, value and flip, shown in Figure 3.1. The value field contains the 

integer that is currently being stored in a cell; and the flip field is used to determine the 

comparison target. Because the Trend bubble sort discussed here is one-dimensional 

sorting, comparisons only happen between the current cell and its horizontal neighbors 

(i.e. east and west neighbors). Hence the flip field uses two special arrow symbols, > and 

<, to represent the two horizontal comparisons. If the symbol of the flip field is ‘>’ , then 

the current cell needs to compare its value with its east neighbor since the arrow is 

pointing to the east. Similarly, if the symbol is ‘<’ , the comparison target is the west 

neighbor of current cell. 

In the Trend bubble sort, if two adjacent numbers in the list are unsorted, they have to 

be swapped in order to obtain a sorted list. Unlike the traditional bubble sort, each cell 

accomplishes the swap operation by itself in Trend bubble sort, instead of being a passive 

recipient of the swap action preformed on them. From the cells’  point of view, to 

accomplish the swap operation, they have to copy the numbers from each other at the 

same time. Therefore, the swap operation has two parts and each cell should take care of  

 

value field

flip field
 

Figure 3.1    The data fields used in the Trend bubble sort 

 



 36

one part. To group cells in pairs, the flip field is used to divide the cells. Each pair consists 

of two cells whose flip fields look like ><. During each iteration, cells in the same pair 

compare their numbers with each other and copy the numbers from each other, if 

necessary. In the next iteration, cells will change their flip fields and compare their 

numbers with the neighbor on the other side. For example, if the flip field of cell A is ‘>’  

at the i th epoch, its flip field will become ‘<’  at the (i+1)th epoch. An example showing 

how the cells in the cellular automata space change their flip field is presented in  

Figure 3.2. Obviously, this procedure will lead to a sorted list eventually if we can 

maintain correct flip patterns for the cells. 

The Trend bubble sort is similar to the odd-even transposition sort designed for parallel 

computers with one-dimensional mess architecture [22]. Because the time complexity of 

the odd-even transposition sort is O(n), the time complexity of the Trend bubble sort is the 

same. In addition, since [22] has proven that the odd-even transposition sort is an optimal 

algorithm for parallel models, it can be concluded that the Trend bubble sort is also an 

optimal sorting algorithm for cellular automata. It should be pointed out that, since the 

traditional bubble sort is mainly driven by local comparisons between adjacent elements 

in an array, it could therefore be converted into cellular automata model easily. For other 

sorting algorithms that use critical globals in rearranging elements such as quick sort, it 

will be difficult to translate them into cellular automata models. 

 

value 2 7 5 4 1 3 6 0

flip > < > < > < > <
epoch 1

value 2 7 4 5 1 3 0 6

flip < > < > < > < >
epoch 2

value 2 4 7 1 5 0 3 6

flip > < > < > < > <
epoch 3

value 2 4 1 7 0 5 3 6

flip < > < > < > < >
epoch 4

value 2 1 4 0 7 3 5 6

flip > < > < > < > <
epoch 5

value 1 2 0 4 3 7 5 6

flip < > < > < > < >
epoch 6

value 0 1 2 3 4 5 6 7

flip < > < > < > < >
epoch 8

value 1 0 2 3 4 5 7 6

flip > < > < > < > <
epoch 7

 

Figure 3.2    One example of one-dimensional Trend bubble sort 
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3.1.3 Two dimensional Trend bubble sort  

The Trend bubble sort introduced in the previous section is designed to sort one-

dimensional arrays. Because jTrend is a two-dimensional cellular automata simulation 

environment, this cellular automata sorting algorithm can be revised for sorting two 

dimensional arrays. Sorting in two-dimensional cellular automata space allows more data 

to be processed at the same time. 

The two-dimensional Trend bubble sort is similar to the one-dimensional one except 

that the cells’  flip field has four different choices instead of only two. These four choices 

represent four comparison directions (north, south, east, and west) that are shown in 

Figure 3.3. In addition to comparing with its east and west neighbors, each cell in the 

cellular space now compares with its north and south neighbors as well. If a cell’s value is 

larger than its east or south neighbors, it will switch its value with these neighbors using 

the same mechanism of one-dimensional Trend bubble sort. Gradually, the smaller 

numbers will migrate to the upper-left corner of the cellular automata space while larger 

numbers move towards the lower-right corner. The rules of two-dimensional Trend bubble 

sort can be found in APPENDIX A.  

3.2 A Migration Cellular Genetic Algorithm for Solving SAT Problems 

The satisfiability problem (SAT) is the problem of finding a truth assignment that 

makes a boolean predicate satisfiable (i.e. evaluated to true.) Since the SAT problem is 

related to many practical problems such as mathematical logic, constraint satisfaction, 

etc., efficient methods for solving the SAT problem are very important.  

 

cell >

>

>

>

East

South

North

West

 

Figure 3.3    The four comparison directions of two-dimensional Trend bubble sort 
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However, since the SAT problem is NP-hard, there are no polynomial time algorithms 

that guarantee optimized solutions. That is why certain approximating algorithms are 

popular alternatives. Among them, the Genetic Algorithm (GA) [29] is often used. In this 

section, we propose a new algorithm, migration cellular genetic algorithm (MCGA), for 

solving SAT problem efficiently by combining the Cellular Genetic WSAT (CGWSAT) 

algorithm with a random migration. The experimental results at the end of this section 

show that MCGA can lead to faster convergence in finding the solutions while 

maintaining a highly diversified population. 

3.2.1 SAT problem and local search solutions 

Before we introduce the algorithms for solving SAT problems, it is helpful to provide a 

brief definition of the SAT problem first. A SAT problem is composed of three basic 

components [16]: 

1. Boolean variables: x1, x2, x3, …; 

2. A set of literals. A literal in a boolean formula is an occurrence of either a variable 

(xi) or its negation ( ix¬ ). 

3. A set of n distinct clauses: C1, C2, …, Cn. Each clause consists of literals combined 

only by the logical or ( ∨ ) operators. 

A SAT problem is always represented by a predicate in the conjunctive normal form 

(CNF) as nCCC ∧∧∧ ...21 , where ∧  is the logical and operator. The SAT problem is to 

determine whether there exists an assignment of boolean values to its variables that makes 

its CNF formula satisfiable, i.e. can be evaluated to true.  

Satisfiability problems play a key role in a broad range of research fields, most of 

which involve solving a combinational optimization problem. Unfortunately, SAT 

problems are NP-hard problems [7]. The time complexity to decide all satisfiable 

assignments for a predicate is exponential 2n, where n is the number of variables involved. 

Therefore, finding an efficient approximating algorithm for NP-hard problems such as the 

SAT is of great importance in practical problem solving. Over years, there have been a lot 

of approximate methods proposed for solving SAT problems. Among them, methods that 

are based on local search have attracted a lot of attention ([15], [16]).  
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Local search is an efficient heuristic algorithm devised to solve many NP-hard 

problems. For most search problems, such as the SAT problem, local search can often 

achieve many orders of magnitude of performance improvement over brute-force ones.  

The main idea behind local search is to find optimal points in a discrete space. Many 

popular techniques, such as simulated annealing and genetic algorithm, are either local 

search algorithms or variants of them. One popular local search algorithm for solving the 

SAT problem is the GSAT method proposed by Selman et al. in 1992 ([24]).  

Initially, GSAT starts a greedy local search with a randomly generated truth 

assignment. From there, this algorithm tries to obtain the largest increase in the total 

number of satisfied clauses by changing (i.e. ‘ flipping’ ) the assignments of the variables. 

This procedure is repeated as needed until an answer has been found (with a upper bound 

MAX-TRIES). The experimental results [24] show that GSAT does outperform some 

traditional approaches such as backtracking search. However, since GSAT only allows 

flipping variables that lead to a decrease of the total number of unsatisfied clauses, 

sometimes it can get trapped within local minima, and never find a solution. To diffuse the 

information slowly and avoid getting trapped, an extension to the GSAT method, the 

random walk SAT (WSAT) method, was proposed in [25]. WSAT differs from GSAT in 

the selection of the variables to flip. GSAT only flips the variables that decrease the 

number of unsatisfied clauses, but with a random walk strategy, WSAT allows the number 

of unsatisfied clauses to increase with some probability. This random strategy allows 

WSAT to escape from local minima and find the solutions more quickly. 

3.2.2 Cellular genetic algorithms 

Genetic algorithms (GAs) are powerful heuristic search strategies based on a simple 

model of natural evolution ([17], [29]). Starting with a population of individuals (i.e. 

strings), GA uses selection and reproduction operators to evolve the individuals that are 

successful, as measured by a fitness function. The individuals with higher fitness values 

will be chosen for reproduction with higher probabilities. The reproduction step is 

accomplished by two genetics operators, crossover and mutation. Crossover combines two 

candidate strings to produce new strings with bits from both parents, which allows 
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searches to start from new points. On the other hand, mutation flips bits of the string 

randomly, which creates new candidate strings. With these two operators, generations of 

strings can be produced for evaluation until answers are found. Because of its tremendous 

effectiveness, GA has been used both as tools for solving practical computational 

problems and as scientific models of the evolutionary processes  

Essentially, searches within the GA are parallel because each individual string in the 

population can be viewed as a separate search. Due to its inherent parallelism, cellular 

automaton is a perfect model for implementing genetic algorithms. In 1993, D. Whitney 

first proposed an approach for conducting genetic algorithms using a cellular automata 

model [27]. In his paper, cellular automata are used as frameworks to enable a fine-

grained parallel implementation of GA, which is called the cellular genetic algorithm. 

Each individual string in his genetic algorithm is mapped onto a cell in the cellular 

automata space. Strings in the cells then select mate partners that have the best fitness in 

the neighborhood; and then crossover with their partners. The mutation operation is then 

applied to the new strings after crossover. 

Combining cellular genetic algorithm with WSAT, a new algorithm called Cellular 

Genetic WSAT (CGWSAT) was proposed by Folino et al ([12], [13]) for solving SAT 

problems. In CGWSAT, new strings are generated in each cell by crossing with one of 

their neighbors, while the mutation operation is carried out using the WSAT strategy. The 

CGWSAT algorithm has been implemented on a CS-2 parallel machine using the cellular 

automata language CARPET that was introduced in Chapter 1. Experiments show that 

CGWSAT converges better than both sequential and parallel WSAT methods for all test 

cases.  

3.2.3 Migration cellular genetic algorithms (MCGA) 

In the cellular genetic algorithm, the string in a cell can only recombine with strings in 

its immediate neighborhood. For two strings that are far away from each other in a cellular 

space, numerous crossover and mutation steps have to happen before these two strings get 

the chance to mate. Obviously, this local interaction property of cellular automata 

prevents strings from migrating quickly, and it slows down the speed of finding the 
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solutions. Since cells only interact with their adjacent neighbors, this algorithm tends to 

get trapped in local optima and will not lead to diversified solutions. 

One possible improvement to these problems might be to expand the neighborhood 

where the recombination can occur. However, the cellular automata definition limits the 

size of the neighborhood (for example, in jTrend, the maximal neighborhood size is 

11x11.) A larger neighborhood, even when available, still cannot solve these problems 

satisfactorily. We propose a new approach, the migration cellular genetic algorithm 

(MCGA), for solving SAT problems effectively without the need to expand neighborhood. 

With the help of a migration mechanism, MCGA has the ability to escape from local 

optima. This algorithm has been implemented using the jTrend cellular automata 

simulator. 

In detail, MCGA is based on the CGWSAT algorithm but introduces a new migration 

strategy that allows strings to migrate in the cellular automata space. In MCGA, individual 

strings are mapped onto the two-dimensional cellular space and each cell in the space can 

only carry at most one string at any time. MCGA only uses some cells to store strings. 

Cells that are not occupied by any string are used as pathways for strings to migrate. 

MCGA uses a fitness function, which is defined as the number of unsatisfied clauses, to 

evaluate strings. A string whose fitness value is zero is a solution to the SAT problem 

because it has no unsatisfied clauses. Such strings are named as solution strings in this 

thesis. To prevent solution strings from contaminating other individuals, the migration 

strategy of MCGA only allows strings whose fitness value is not zero to move in the 

cellular automata space. Once these migrating strings find solutions, they will stay in the 

same cells forever. 

With the new migration strategy, strings in MCGA can move around in the cellular 

space. Therefore they have more chances to crossover with other strings. That helps to 

maintain the diversity of the solution population. In addition, since the strings with fitness 

zero are fixed in the same cell of the cellular space, MCGA should be able to prevent 

these strings from influencing other strings. This technique is also helpful in improving 

the diversity of MCGA algorithm. 
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3.2.4 The implementation of MCGA 

The pseudo-code of the MCGA algorithm is listed below. Each cell decides its next 

state according to this algorithm in parallel. This algorithm has been implemented on 

jTrend using the Trend programming language, which can be found in APPENDIX B. 

i f ( cel l  has a st r i ng)  {  
  i f ( cel l  i s not  a sol ut i on)  {  
    i f ( does not  need t o mi gr at e)  {  
      par t ner  = Deci dePar t ner ( nor t h,  nor t heast ,  east ,  
                sout heast ,  east ,  sout hwest ,  west ,   
                nor t hwest ) ;  
      i f ( par t ner  i s not  cent er  cel l )  {  
        i f ( pcr oss > CROSS_RATE)  
          Cr ossover ( cel l ,  par t ner ) ;  
        Mut at i on( cel l ) ;  
        f i t  = Eval uat e_f i t ness( chr om) ;  
        Updat e( cel l _chr omosome,  chr om) ;  
        Updat e( cel l _f i t ness,  f i t ) ;  
      }  
    }  
    el se {  
      Move_ar ound( cel l ) ;  
    }  
}  

MCGA adopts the Von Neumann neighborhood, with each cell divided into ten data 

fields that is shown in  

Figure 3.4. The function description of each field is also shown in this figure. At the 

beginning of a simulation, the cellular automata space is initialized with a population of 

strings along with their fitness values. During each iteration, a string with non-zero fitness 

value looks around its neighborhood and decides it crossover partner according to the  

 

Field Name Field Function Description 

exist determine whether there is a string existing in the current cell 

string the string in the current cell 

fitness the fitness value for current string 

found determine whether the string is the solution for current predicate 

dir the direction for cell with fitness value 0 to migrate 

pcross the random number of crossover rate 

pmut the random number of mutation rate 

crossPos1 the first point for two-point crossover operator 

crossPos2 the second point for two-point crossover operator 

walk the random number of random walk rate 

 

Figure 3.4    The fields defined in MCGA and their function description 

exist

dir
pcross
pmut

fitness
string

found
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walk
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fitness values of neighbors. In the cellular genetic algorithm, cells only crossover with the 

neighbor that has the lowest fitness value. As a result, that approach tends to get trapped 

in local minima. To eliminate this problem, our MCGA algorithm 

adopts the WSAT algorithm in crossover selection and allows cell to mate with strings 

that have a higher fitness value with some probability. This strategy is called downward 

move. It allows MCGA to escape from the local optima and continue the searching from a 

new starting point. The crossover operation used by MCGA is a two-point crossover, as 

shown in Figure 3.5. Current cell choose one of the two offspring as its new string. The 

crossover partner of the current cell does the same thing simultaneously. 

For the mutation operation, MCGA adopts the mixed random walk strategy proposed 

by [25]. With this strategy, the variable that can causes the best decrease in the number of 

unsatisfied clauses is flipped with a probability f ; and with probability ( 1- f ) , another 

variable that appears in some unsatisfied clause is picked randomly and its assignment 

value is flipped. 

In MCGA, strings that are not the solutions for a SAT problem are allowed to move in 

the cellular automata space. The strings use dir field to decide whether to migrate, or to do 

the crossover and mutation operations. To allow strings move around in cellular automata  

space, a handshake mechanism is used in MCGA. The detail of the handshake mechanism 

is shown in Figure 3.6.  

As we can observe from Figure 3.6, the MCGA algorithm uses the dir field to direct its 

migration operation. Every time when an empty cell A finds that its neighbor cell B it 

points at has a partial solution for the SAT problem (i.e., its fitness is not zero), it will 

inspect the dir field of cell B. If cell B’s dir field is also pointing towards A, A will copy 

some data from B, including fitness, string, exist, etc. At the same time, cell B will notices 

current string crossover partner

offspring 1

1 5 3

offspring 2

4 2 6

+ =
1 2 3 4 5 6

 

Figure 3.5    The mechanism of two-point crossover in genetic algorithms 
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that A points at itself, and copies the same data fields from cell A. After these 

simultaneous exchanges, one step of the migration operation is achieved. In essence, the 

migration mechanism of MCGA is similar to the swap operation introduced in the jTrend 

bubble sort earlier. 

With the help of migration, we expect that the MCGA algorithm can escape from the 

local minima and find more answers faster than CGWSAT. However, the potential 

problems that can plague this algorithm should also be considered seriously. Premature 

convergence is one of these problems. For a genetic algorithm that can find a solution 

quickly, its population might become saturated with similar answers. Thus, the pool of 

candidate answers would converge to some sub-optimal points in the space being 

searched, and the diversity of the whole population would become low. In the next 

section, we compare the convergence speed and diversity of MCGA and CGWSAT. 

These experiments were conducted with jTrend running on a Linux machine with Pentium 

III processor and 256 Mbytes of memory. 

3.2.5 Experimental results and analysis 

Due to the 64-bit cell size limit of jTrend, we can only test SAT predicates with no 

more than 32 boolean variables. In our experiments, each predicate is composed of 48 

clauses with 16 variables, and all predicates are generated randomly by computer. Since 

there are 16 variables, the possible solutions (i.e. strings) that can make a predicate true 

are 65536 (216). However, only a small fraction of these strings are actual solutions for a 

predicate. For example, the first predicate in our test cases has only 131 solutions out of 
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Figure 3.6    The handshake mechanism of MCGA for migrating strings 
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the 65536 possible strings. To study the distribution of solution numbers, we randomly 

generated 20 sample predicates and count their solution number. The distribution of 

solution numbers is listed in Table 3.1. As we can observe, most predicates only have 0 – 

200 solutions.  

Intuitively, we believe that the size of a cellular automata space can influence the 

performance of MCGA, because the bigger the cellular automata space size, the sparser 

the string distribution will be under a fixed population size. The chance for unsolved 

strings to crossover with others is lower since there might be no strings surrounding them. 

Due to these reasons, we have to study how the cellular automata space size affects the 

performance of the MCGA algorithm, and decide the best size for this algorithm before 

we compare it with CGWSAT.  

First, we want to compare the convergence speeds of MCGA that runs under different 

space sizes. We start with 400 strings in the cellular space. To allow strings with the best 

fitness value to migrate in the cellular space, there should be extra empty cells for these  

strings to move. Therefore, the cellular space size must be greater than 20x20 (400). In 

this experiment, we tested four different space sizes (40x40, 35x35, 30x30, and 25x25.) 

The results are shown in Figure 3.7. Four predicates are chosen in this experiment 

according to the solution number distribution of Table 3.1. The solution numbers of these 

four predicates are 621, 25, 107, and 211 respectively, which represent a typical 

distribution of these 20 predicates we mentioned earlier. 

It is obvious from Figure 3.7 that the smaller the cellular automata space, the faster 

these initial 400 strings become solutions of a predicate. Since cells in larger cellular 

Table 3.1    The solution number distribution of 20 SAT sample predicates 

Range Number of predicates Range Number of Predicates 

0 – 49 6 250 – 299 0 

50 – 99 2 300 – 349 0 

100 – 149 5 350 – 399 1 

150 – 199 4 400 or above 1 

200 - 249 1   
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space have fewer chances to crossover, the results are reasonable and seem to follow the 

predication we made.  

To understand how the cellular space size correlates with the diversity of solutions 

found, we must have a quantitative measurement of diversity. In our experiments, we use 

diversity, which is defined as the percentage of distinct solutions existing in a solution 

population, to measure the quality of solution strings. For example, if there are 400 strings  

carrying solutions for a predicate, but only 250 strings are unique, then the diversity of the 

population is 250/400 = 62.5%. Note that we define the diversity to be 100% if the 

population size is 0. 

The diversities with the four different space sizes are shown in Figure 3.8 for the same 

four predicates. Note that the diversities are the highest (100%) at the beginning of a 

simulation (epoch 0). As the simulation continues, the diversities decrease and approach a 

fixed value eventually. The reason for such behaviors is the crossover operation of cellular 

genetic algorithms. In the traditional genetic algorithm, whenever crossover happens 
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Figure 3.7    The convergence speeds of MCGA with different space sizes 
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between two strings, each of them will pick one offspring. Therefore, all information is 

still kept in the population. However, in cellular genetic algorithms, only one offspring is 

kept in the current cell. The other offspring is tossed away, so the total information in the 

gene pool decreases. That tends to make the whole population becoming the same. 

Toward the beginning of a movable cellular genetic algorithm, the effect of crossover 

operations is relatively small because few crossover operations will happen at the onset. 

At this time, it is easier for strings to evolve independently, and the diversity can be 

maintained at a higher level. As the simulation goes on, the effect of crossover operation 

will gradually become obvious. Every strings exchange information with its neighbors 

through crossover. Even though mutation can alleviate this unification effect a little bit, it 

is still possible for the whole population to evolve in the same direction, and the diversity 

will suffer. Eventually, when all strings have become solutions, the diversity value will be 

constant. It should be pointed out that, according to the definition, the diversity is 100% 

when the population size is 0. That is why diversities are always 100% at epoch 0 in 

Figure 3.8. 
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Figure 3.8    The diversities of MCGA with different space sizes  
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From Figure 3.8, it seem to suggest that larger cellular spaces can maintain populations 

with higher diversity than the smaller ones. The explanation of this is, the convergence 

speeds of strings are slower in larger cellular space, which allows strings to have more 

chances to move faster away and to crossover with other strings. This prevents these 

strings from finding similar solutions. In addition, we also observe that the diversities of 

MCGA 35x35 is about the same as, sometimes better than, MCGA 40x40. That suggests 

that the influence of cellular size on the diversity will become very small when the size is 

larger than some threshold.  

Our main focus is to compare the performance of MCGA and CGWSAT. Based on the 

observations of Figure 3.8, it can be seen that cellular automata spaces of 40x40 has the 

best diversities among the four different sizes. It seems that this space size is the best 

choice for comparing diversity between MCGA and CGWSAT. However, as we 

mentioned earlier, MCGA 35x35 has about the same diversity as MCGA 40x40. In 

addition, the convergence speed of space size 35x35 is better than 40x40. Combining all 
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Figure 3.9    The convergence speed comparisons between CGWSAT and MCGA  
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these facts, we believe that space size 35x35 is a better choice than 40x40 for the MCGA 

algorithm, if we want to compare the convergence speed and diversity of MCGA and 

CGWSAT at the same time. Since MCGA 25x25 has better convergence than other space 

sizes, we also use this size to compare MCGA and CGWSAT in this experiment. 

In these experiments, we initialized the cellular automata space with a string population of 

400. The crossover operation used in these two algorithms is the same two-point crossover 

with a crossover probability of 50%. In addition, their mutation rate is the same at 90%. 

Both MCGA and CGWSAT also use the WSAT random walk strategy with a 50% 

probability in choosing the random walk direction. The convergence speeds of MCGA 

and CGWSAT are shown in Figure 3.9. Without lose of generality, we used the same four 

predicates that are used in the previous  

experiments for this comparison. The convergence speeds of MCGA 25x25 are about 

the same as CGWSAT. But for MCGA 35x35, its convergence speeds are less than the 

speeds of CGWSAT algorithm in most cases. An explanation of this is the influence of  
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Figure 3.10    The diversity percentage comparisons between CGWSAT and MCGA 
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cellular automata size we mentioned earlier. The cellular space size used in MCGA is 

larger than CGWSAT. Since only some of the cells in the MCGA cellular space contain 

strings, these strings have fewer chances to cross with other strings than in CGWSAT. 

That slowdowns the convergence speed of MCGA, and makes the convergence speed of 

MCGA slower than CGWSAT.  

We expect the diversity of MCGA to be better than CGWSAT because MCGA 

disallows solution strings to migrate in cellular space. The experimental results shown in 

Figure 3.10 follow our expectation, and show that the diversity of MCGA, especially the 

one with cellular space size of 35x35, is better than the CGWSAT algorithm.  

3.2.6 Discussion 

Based on all the experiment results presented in the previous section, we can draw the  

following conclusions. The diversity of solutions in MCGA is better than the diversity of 

the CGWSAT algorithm. In addition, the MCGA algorithm has a slower convergence 

speed in finding solutions. If we consider that cellular space size of MCGA is larger than 

CGWSAT and strings have fewer chances to do crossover, it is not very unreasonable. To 

increase the diversity of MCGA, we improve MCGA by disallowing strings to cross with 

the strings that have found the solutions. The experiment results show that, this technique 

can increase the diversity of MCGA; but it also deteriorates the convergence performance. 

With the current implementation of the Migration Cellular Genetics Algorithms 

(MCGAs), each cell will host a complete string and execute the complicated rules shown 

in Appendix B. Although it is quite straightforward, it has problems with scalability. 

When the strings become larger (such as from 32 to thousands), it is impossible for a cell 

to host the string since the maximal bit depth allowed in jTrend are only 64. A better 

solution is to design a collaborate framework that allows cells to carry out the complex 

string manipulation together. In this framework, each cell is designed to be simple and 

carries a small fraction of the whole string. With this new framework, we can reduce the 

complexity of each cell, and make it possible to be scaled for lager problems. That will be 

our future work as discussed in the next chapter. 
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CHAPTER 4. SUMMARY AND CONCLUSION 

Cellular automata are discrete dynamical systems whose step-by-step behavior is 

completely specified in terms of a local relation. Each cell in a cellular automata space 

executes the same rule set in parallel using only local interactions. With this intrinsic 

parallelism, research conducted on cellular automata provides opportunities for the 

development of scalable algorithms and applications in computational science. In 

addition, the abstract modeling of cellular automata allows researchers to capture the 

essential features of systems in which global behaviors arise from the collective effect of 

numerous simple local interacting components, without the need to physically realize 

those models in cumbersome fabrications. Cellular automata have been widely used for 

modeling and simulation of complex phenomena and systems, especially in fluid 

dynamics, evolution, road traffic flow, artificial life, and quantum physics. 

In this thesis, a general-purpose cellular automata simulation environment, jTrend and 

its implementation issues are introduced. In addition, a bubble sort algorithm for sorting 

one and two-dimensional arrays using the Trend programming language is also presented. 

The study of genetic algorithms finally provides a new cellular genetics algorithm, 

MCGA, for solving SAT problems on a cellular automata model. We compared the 

convergence speed and diversity of MCGA with the previous CGWSAT algorithm for 

solving the SAT problem on the jTrend environment. In the following sections, we 

summarize the major contributions and achievements of this work and discuss some future 

research possibilities.  

4.1 Contributions 

In a summary, the major contributions made by this work are as follows: 

• A general-purpose cellular automata simulator, jTrend, was developed for the Java 

runtime environment with high portability. 

• An object-oriented, modular design of jTrend makes it more flexible and provides 

the potential for future performance improvement. 

• A three-stage cache strategy implemented in the cell evaluation module of jTrend, 

which improves the simulation speed significantly. 
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• One and two-dimensional bubble sort algorithms with an optimal time bound were 

implemented on cellular automata model. 

• A cellular genetic algorithm with string migration capability was designed for 

solving SAT problems. Performance comparison between the new algorithm and 

the previous CGWSAT algorithm is presented. 

The details of each contribution are discussed below. 

4.1.1 A general purpose cellular automata simulator with high 

portability 

jTrend is an integrated general-purpose cellular automata simulator based on the Java 

runtime environment. In the past, very few general-purpose cellular automata simulation 

tools were available to researchers. For the few that were developed, either they require 

special hardware to operate such as CAM-6, or they are available only on some specific 

platforms, such as Cellang and CARPET. All of these limit the their availability to 

researchers. 

jTrend was implemented on the Java runtime environment. The cross-platform nature 

of Java makes jTrend widely available to researchers. Almost all major operating systems, 

such as Windows, Unix, Linux, and Mac OS X can run jTrend. Consequently, more users 

using different platforms can participate cellular automata research, helping to expand this 

research domain.  

As a general-purpose cellular automata simulator, jTrend also provides all functions 

necessary to control and monitor the simulations. All cell-related information can be 

defined by users via an easy-to-use graphical user interface. jTrend also takes care of 

simulation details and provides backtracking mechanism for debugging. Together with 

other new features, jTrend turns out to be one of the most powerful cellular automata 

simulators available today. 

4.1.2 Object-oriented system design 

Three major software modules in jTrend are the graphical user interface, Trend 

language compiler, and simulation engine. The graphical user interface manages the 
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interaction between users and the simulation engine. It allows users to control the 

appearance of their models and monitor its simulation progress. The independently 

developed Trend language compiler compiles the Trend source program into an 

executable Java class RuleSet on the fly, which is used by the simulation engine to 

compute new cell values. 

The clear job division between these modules makes jTrend highly maintainable and 

easy to extend in the future. Different modules can be updated without altering the others. 

For instance, if the Trend programming language needs to be upgraded, only the compiler 

module has to be modified since the other modules are not related to compiling the Trend 

programming language.  

4.1.3 Three-stage caching strategy 

To improve the simulation speed of jTrend, a three-stage strategy is adopted to 

accelerate the evaluation for each cell. These include neighborhood invariant skipping, 

cache table lookup, and cell evaluation. In the neighborhood invariant skipping stage, 

jTrend utilizes a property of cellular automata that a cell will not change as long as its 

neighbors stay the same. Consequently, this stage can accelerate the simulation speed 

significantly because most cells remain unchanged during the simulation in many models.  

jTrend also maintains a cache table to store the recent evaluation results. Whenever 

necessary, jTrend lookups a new cell value in the cache table during the cache table 

lookup stage. In many models, jTrend shows to have high cache hit rates. That proves this 

stage very effective in speeding up simulations. Only when both stages have failed to 

provide a new cell value will the third evaluation stage come into play. The overall 

performance of jTrend is therefore much better than previous cellular automata simulators 

without the two additional skipping/caching mechanisms.   

4.1.4 Cellular automata bubble sort algorithm 

With the help of jTrend, a bubble sort algorithm with an optimal time bound for sorting 

numeric integers was implemented in a cellular space. In addition to being able to sort a 
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one-dimensional array, this algorithm was also extended and was able to sort numbers in a 

two-dimensional array.  

In a cellular automata model, there is no notion of updating each element of an array in 

succession like sequential machines. Additionally, each cell can only see its adjacent 

neighbors instead of all cells in the whole cellular space. Due to these differences, our new 

algorithm takes a different approach to sort. Instead of rearranging the array with a global 

control index, our algorithm only uses local interactions between adjacent cells. Each cell 

sorts its content by comparing with its neighbors and making a swap operation with them 

if necessary. Eventually, this local-only approach can lead to a sorted array in the cellular 

automata space. Due to the intrinsic parallelism of cellular automata, the performance of 

our algorithm is far better than traditional bubble sort. Its time complexity, O(n), is 

optimal for parallel models like cellular automata. 

4.1.5 Migration cellular genetic algorithm for solving the SAT problem 

This thesis proposes a new strategy for solving SAT problems using parallel genetic 

algorithms. Named as migration cellular genetic algorithm (MCGA), this new model is 

based on the cellular genetic algorithm and random walk SAT (WSAT). By allowing 

strings to migrate freely around the cellular automata space, this model allows quick 

escape from local minimal points in the search space. Compared with the CGWSAT 

algorithm that does not allow migration, this new capability leads to a slower convergence 

in finding solutions but maintains a much better diversity of solutions found. 

Since SAT is an NP-complete problem, solutions for it can lead to potential 

applications of cellular automata on solving other NP-hard problems, especially 

combinational optimization problems such as graph coloring, N-Queens, etc. Even though 

MCGA is still not a polynomial time algorithm for SAT, the parallel nature of this 

algorithm makes us believe that cellular automata are ideal models for solving many NP-

hard problems due to their intrinsic parallelism. 
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4.2 Future Work 

We envision the following possible future topic beyond this work. 

4.2.1 Improving the simulation environment of jTrend 

Currently, a noticeable limitation of jTrend is its simulation speed, when compared 

with Unix Trend. Since jTrend was implemented in Java, overhead introduced by the Java 

runtime environment slows down the simulation of jTrend. Even thought some techniques 

have been used in jTrend to improve its speed, they do not rule out the possibility to 

improve it further using other techniques. 

According to the profiling results, there are two major bottlenecks within jTrend, cell 

evaluation and graphic updating. To improve the simulation speed, a three-stage caching 

strategy has already been used; but that is still not enough when running complicated rule 

sets that prevent invariant skipping and cache table lookup to be effective. If we can 

implement the cell evaluation stage using Java Native Interface (JNI), a technique that 

allows executing native code, this bottleneck can be eliminated. In addition to JNI, 

multiple-threading is another possibility that can be added in the future for machines that 

support multiple CPUs. Multithreaded programming allows program to divide one big 

task into many small ones and assign these jobs to different threads. Obviously, with this 

technique, the evaluation time will decrease significantly on a multi-CPU computer. 

To reduce the overhead of graphic updating in jTrend, it may be desirable to run jTrend 

as a background process, totally eliminating its graphical appearances. If jTrend can be 

run as a background application, the overhead introduced by graphic modules will 

disappear. This can benefit users who are running long-term simulations using jTrend and 

do not need to monitor its individual epochs. 

4.2.2 Improving the Trend programming language 

Another research possibility is to improve the Trend programming language.  As a 

high-level language, Trend is powerful and convenient for users doing cellular automata 

research. However for some specific cellular automat simulations, this language may not 

be powerful enough because it does not provide some additional features that are required 
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in these simulations. One example is the floating-point data type. Trend provides users 

with only three different data types now, int, nbr, and fld. Calculations allowed in Trend 

are all integer-based. Obviously, these data types are not enough for jTrend to simulate 

some complex models that require floating point calculations such as a weather model. 

Besides more data types, new approaches for data analysis should also be incorporated 

into the Trend programming language. Currently, if users want to do data analysis, they 

have to export the content of a cellular automata space into a separate file and use other 

programs to analyze the simulation results. This process is quite cumbersome and 

inconvenient for users. If Trend can provide some functions to collect such statistical 

information automatically, it can save users a lot of time when doing data analysis. 

4.2.3 Other cellular automata models 

In Chapter 3, two algorithms for solving real-world problems (sorting and SAT) using 

cellular automata models are presented. Besides these, there are other attractive problems 

for cellular automata research. 

Since cellular automata are intrinsically parallel models, it is useful to use them to 

solve hard problems that require intensive computation. A lot of research effort has been 

put into this field, and some cellular automata models have been designed (such as TSP 

[20]). We anticipate developing new solutions for the following problems on cellular 

automata: N-Queen, SAT on a self-replication structure, and digital image processing. 

As we mentioned before, research on self-replication has attracted lots of attention 

since cellular automata provide an ideal abstraction for the artificial life research. If we 

can let a self-replicating loop carry complex codes and allow it to evolve and change 

based on the fitness of the complex code it carries, much more useful cellular automata 

behaviors are expected. With genetic algorithms, this approach towards artificial life 

research may generate many interesting results in the future. 
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APPENDIX A. TWO-DIMENSIONAL BUBBLE SORT RULE 

LIST 

/ / def aul t  r ul es 

def aul t  val ue = val ue;  

def aul t  f l i p = f l i p;  

 

nbr  t ar get ;  / / compar i son t ar get   

 

i f ( f l i p == ’ >, 0’ )  {  / / f l i p f i el d i s poi nt i ng t o east  

  t ar get :  = ea: ;   

  i f ( val ue ! = 0 && t ar get : val ue ! = 0)  

    i f ( t ar get : val ue < val ue)  

      val ue = t ar get : val ue;  

}  

el se i f ( f l i p == ’ >, 1’ )  {  / / f l i p f i el d i s poi nt i ng t o sout h 

  t ar get :  = so: ;  

  i f ( val ue ! = 0 && t ar get : val ue ! = 0)  

    i f ( t ar get : val ue < val ue)  

      val ue = t ar get : val ue;  

}  

el se i f ( f l i p == ’ >, 2’ )  { / / f l i p f i el d i s poi nt i ng t o west  

  t ar get :  = we: ;  

  i f ( val ue ! = 0 && t ar get : val ue ! = 0)  

    i f ( t ar get : val ue > val ue)  

      val ue = t ar get : val ue;  

}  

el se i f ( f l i p == ’ >, 3’ )  {  / / f l i p f i el d i s poi nt i ng t o nor t h 

  t ar get :  = no: ;  

  i f ( val ue ! = 0 && t ar get : val ue ! = 0)  

    i f ( t ar get : val ue > val ue)  

      val ue = t ar get : val ue;  

}  

 

/ / change t he f l i p f i el d 

i f ( f l i p)  

  f l i p = f l i p  % 4 + 1;  
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APPENDIX B. MIGRATION CELLUAR GENETIC 

ALGORITHM RULE LIST 

/ * * * * * * * * * * * * * * * * * * * * * * * def aul t  r ul es* * * * * * * * * * * * * * * * * * * /  

def aul t  di r  = di r ;  

def aul t  pcr oss = pcr oss;  

def aul t  pmut  = pmut ;  

def aul t  f i t ness = f i t ness;  

def aul t  st r i ng = st r i ng;  

def aul t  f ound = f ound;  

def aul t  cr ossPos1 = cr ossPos1;  

def aul t  cr ossPos2 = cr ossPos2;  

def aul t  wal k = wal k;  

def aul t  exi st  = exi st ;  

/ * * * * * * * * * * * t he const ant s ar e def i ned her e* * * * * * * * * * * * * * /  

i nt  VAR_NUM = 16;  

i nt  MAX_CLAUSE = 48;  

i nt  MUT_RATE = 14;   / /  14/ 16 == 87. 5% 

i nt  CROSS_RATE = 8;  / /  8/ 16 == 50. 0% 

i nt  RANDOM_WALK_RATE = 8;  / /  8/ 16 = 50. 0%  

 

i nt  CLAUSE[ ]  =  

{ 2, 16, 16384, 64, 2048, 32768, 256, 32, 1, 128, 2048, 1024, 8, 16384, 64, 256, 2

56, 4096, 8192, 16384, 2048, 32768, 4, 4, 64, 8192, 2, 16384, 4, 128, 1024, 8, 16

384, 4096, 4, 32, 2048, 16, 4096, 2, 4, 64, 512, 2048, 16, 64, 4, 8, 1024, 8192, 81

92, 16384, 2048, 128, 4096, 2048, 1024, 32, 512, 2, 16, 16384, 2, 512, 16, 1024,

4096, 1024, 4096, 32768, 16384, 1024, 16384, 32768, 2, 128, 512, 8192, 512, 25

6, 1, 32768, 8192, 32, 16384, 16, 4, 256, 32768, 2048, 512, 128, 512, 32768, 163

84, 2, 8192, 16384, 4096, 64, 1024, 2048, 4096, 32768, 8192, 32768, 1, 1024, 16

384, 8192, 8, 32768, 4, 4096, 2, 2048, 32768, 2048, 16384, 1024, 128, 4, 2, 4, 25

6, 32768, 4, 16384, 8192, 16, 32768, 4096, 512, 8192, 16, 16, 1, 64, 16, 16, 4096

, 1024, 8, 32} ;  

 

i nt  VALUE[ ]  =  

{ 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1,

1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1

, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1,
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1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1

, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1} ;  

 

 

/ * * * * * * t empor ar y var i abl es ar e def i ned her e* * * * * * * * * * * /  

i nt  t mpFi t ;  

nbr  p;  

i nt  t mpSt r ;  

 

/ * * * * * * * * * * * * f unct i ons ar e def i ned her e* * * * * * * * * * * * * * * /  

i nt  I sSame( i nt  i ,  j )  {  

  i f ( i  == 0 && j  == 0)  

    r et ur n 1;  

  el se i f ( i  >= 1 && j  == 1)  

    r et ur n 1;  

  el se 

    r et ur n 0;  

}  

 

i nt  Eval Fi t ness( i nt  st r )  {  

  i nt  count ;  

  i nt  k;  

  count  = 0;  

   

  f or ( k = 0;  k < MAX_CLAUSE;  k++)  {  

    i f ( I sSame( st r  & CLAUSE[ 3 *  k] ,  VALUE[ 3 *  k] )  == 1 | |  

       I sSame( st r  & CLAUSE[ 3 *  k + 1] ,  VALUE[ 3 *  k + 1] )  == 1 | |  

       I sSame( st r  & CLAUSE[ 3 *  k + 2] ,  VALUE[ 3 *  k + 2] )  == 1)   

    {  

       count ++;  

    }  

  }  

 

  r et ur n MAX_CLAUSE -  count ;  

}  

 

nbr  Deci dePar t ner ( )  {  

  nbr  n;  
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  nbr  par t ner ;  

  i nt  val ue;  

  par t ner :  = ce: ;     

  val ue  = f i t ness;  

 

  over  each ot her  n:  {  

    i f ( n: exi st  == 1)  {  

      i f ( n: f i t ness ! = 0 && n: f i t ness < val ue)  {  

        par t ner :  = n: ;  

        val ue = n: f i t ness;  

      }  

    }  

  }  

 

  r et ur n par t ner : ;  

}  

 

voi d Randomi ze( )  {  

   di r  = ce: di r  ^  no: di r  ^  ne: di r  ^  ea: di r  ^  se: di r  ^  so: di r  ^     

         sw: di r  ^  we: di r  ^  nw: di r ;  

  pcr oss = ce: pcr oss ^  no: pcr oss ^  ne: pcr oss ^  ea: pcr oss ^   

           se: pcr oss ^  so: pcr oss ^  sw: pcr oss ^  we: pcr oss ^   

           nw: pcr oss;  

  pmut  = ce: pmut  ^  no: pmut  ^  ne: pmut  ^  ea: pmut  ^  se: pmut  ^   

         so: pmut  ^  sw: pmut  ^  we: pmut  ^  nw: pmut ;  

 

  cr ossPos1 = ce: cr ossPos1 ^  no: cr ossPos1 ^  ne: cr ossPos1 ^   

              ea: cr ossPos1 ^  se: cr ossPos1 ^  so: cr ossPos1 ^   

              sw: cr ossPos1 ^  we: cr ossPos1 ^  nw: cr ossPos1;  

  cr ossPos2 = ce: cr ossPos2 ^  no: cr ossPos2 ^  ne: cr ossPos2 ^   

              ea: cr ossPos2 ^  se: cr ossPos2 ^  so: cr ossPos2 ^   

              sw: cr ossPos2 ^  we: cr ossPos2 ^  nw: cr ossPos2;  

   

  wal k = ce: wal k ^  no: wal k ^  ne: wal k ^  ea: wal k ^  se: wal k ^   

         so: wal k ^  sw: wal k ^  we: wal k ^  nw: wal k;  

}  

 

i nt  Cr ossover ( i nt  st r 1,  st r 2)  {  
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  i nt  l ef t ,  r i ght ;  

  i nt  mask1,  mask2;  

  i nt  i ,  v;  

 

  i f ( cr ossPos1 == cr ossPos2)  

    r et ur n st r 1;  

  el se {  

    i f ( cr ossPos1 > cr ossPos2)  {  

      l ef t  = cr ossPos2;  

      r i ght  = cr ossPos1;  

    }  

    el se {  

      l ef t  = cr ossPos1;  

      r i ght  = cr ossPos2;  

    }  

 

    mask1 = 0;  

    mask2 = 0;  

 

    v = 1;  

    f or ( i  = 0;  i  < VAR_NUM;  i ++)  {  

       i f ( i  >= r i ght  | |  i  < l ef t )  

         mask1 = mask1 |  v;  

       v = 2 *  v;  

    }  

 

    v = 1;  

    f or ( i  = 0;  i  < VAR_NUM;  i ++)  {  

       i f ( i  < r i ght  && i  >= l ef t )  

         mask2 = mask2 |  v;  

       v = 2 *  v;  

    }  

     

    r et ur n ( ( st r 1 & mask1)  |  ( st r 2 & mask2) ) ;  

  }  

}  

 

i nt  Mut at i on( i nt  st r )  {  
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  i nt  t ,  i ,  p,  j ,  v,  count ,  posi t i on;  

  i nt  t mpSt r ;  

 

  i f ( wal k < RANDOM_WALK_RATE)  {  / / choose t he l ocal  opt i mal  

    v = 1;  

    count  = MAX_CLAUSE + 1;  

    f or ( i  = 0;  i  < VAR_NUM;  i ++)  {  

      t mpSt r  = st r i ng;  

      t mpSt r  = t mpSt r  ^  v;  

       

      j  = Eval Fi t ness( t mpSt r ) ;  

      i f ( j  < count )  {  

        posi t i on = i ;  

        count  = j ;  

      }  

      v = v *  2;  

    }  

  

    t  = 1;  

    f or ( i  = 1;  i  <= posi t i on;  i ++)  

      t  = t  *  2;  

 

    r et ur n st r  ^  t ;  

  }  

  el se {  

    t  = 1;  

    p = pmut ;  

 

    f or ( i  = 1;  i  <= p;  i ++)  

      t   = t  * 2;  

 

    r et ur n st r  ^  t ;  

  }  

}  

/ * * * * * * * * * * * * * * * * * * mai n body f or  GA_MOVE* * * * * * * * * * * * * * * * * * * * /  

 

Randomi ze( ) ;  
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i f ( exi st )  {  

  i f ( f ound == 0)  {  

    r ot  i f ( di r  == ’ >, 3’  && no: di r  == ’ >, 1’  && no: exi st  == 0)  

    {  

       f i t ness = 0;  

       st r i ng = 0;  

       f ound = 0;  

       exi st  = 0;  

    }  

    el se {  

       p: = Deci dePar t ner ( ) : ;  

       

       i f ( p:  ! = ce: )  {  

          t mpSt r  = st r i ng;  

          i f ( pcr oss <= CROSS_RATE)  

            t mpSt r  = Cr ossover ( st r i ng,  p: st r i ng) ;  

          t mpSt r  = Mut at i on( t mpSt r ) ;  

     

          t mpFi t  = Eval Fi t ness( t mpSt r ) ;  

    

          st r i ng = t mpSt r ;  

          f i t ness = t mpFi t ;  

     

          i f ( t mpFi t  == 0)  

            f ound = 1;  

       }  

    }  

  }  

}  

el se {  

  r ot  i f ( di r  == ’ >, 3’  && no: di r  == ’ >, 1’  && no: exi st  == 1 &&               

         no: f ound ==0) {  

    f i t ness = no: f i t ness;  

    st r i ng = no: st r i ng;  

    f ound = no: f ound;  

    exi st  = no: exi st ;  

  }  

}  
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