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INXRODffCTIOH 

fhis struoturss of a nucibor of alloys of high boryllium content have 

recently been determined. Most of these prored to be oompounds and 

were found by Baenalger and Hundle (1948) to hare the cubic, HaZnj^g struc­

ture. The titanium coapound* originally thought to be mis found \}sr 

Baenslger (1947) to be different from the others« and to be based on a 

hexagonal lattice. 

Further examination of the compound by the author yielded X-ray dif­

fraction patterns which exhibited a large number of unusual extinctions* 

Zero and third layer Weissenberg diagrams* which are representative of the 

even and odd latere» taken with rotations around the six-fold axis, are 

shown in Figure 1. The absences were sufficiently wusual to warrant an 

attempt at a complete structural deterioination. 

The structural investigation presented a number of unusual problems 

and these problems led to the study of Fourier transforms and to the devel­

opment of several new types of Fourier syntheses. The theory of these 

syntheses is treated first in the theoretical section. Then, using the 

results of this tiieory, the determination of the crystal structure of 

TiBei2 is considered. 



Figure 1. ft. (hkO) and b. (hkS) Weiasanbarg photographs of 
TlBaj^g* prints have bsan enlarged.) 
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THE fHEORY OF FOURIER fRANSFOBMS 

Aoy propart;y of a orystaX which ia a function of position within th» 

crystsal, may b« raprasanted by means of a Fowler series (Bragg, 1915), 

Eiis fact haa found ooasidarable use in the determination of crystal struo-

tures. Serearal of the methods evolved are considered in the historical 

introduotioQ* 

The usual method of utilising the Fourier series has been to seek a 

Fourier expansion of some particular physical property and to relate the 

Fourier coefficients to quantities measured in X-ray diffraction experi­

ments # A somevhat different a^e'^iod is adopted hers. In the sections fol­

lowing the historical section the usual procedure is reversed. There a 

physical property is sought which has, as Fourier coefficients in its 

expansion, oeri»iQ chosen parts of the observed X-ray data. The treatment 

has been carried out for t«o special cases. The author believed that such 

a treataent i&ay be carried out for a number of other eases. In fact, it 

eiay well be true, that a Fourier synthesis, made with any systematically 

chosen part of the X-ray data will have an easily interpretable meaning, 

which may be found by methods similar to those used here. 

Historical Introduction 

In 191&, Bragg first suggested that any function of position in a 

crystalline lattice could be represen-ted by means of a Fourier series. 

Duane (1926) extended Bragg's two dimensional series to three dimensions 
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RQd darlTfld th« aeries 1q the following formt 

f (x»y»s) " f ^ F(hk •5.)oos2 ir |_(hat + ky • iZ) - o<.(hk ̂  )J • 

Heref fixyt) Is the electron density function, V« the volume of the imlt 

oell, ek(hkj(}, the lE^ase angle, and F(hk £}, the struoture faotor, defined 

by 

ti 
P(hk: J2) « ^ - 2 ir i(hacj+ ]sy. + J?*) 

^« I 'I > < J 

•where f ̂  is the atom form factor of the ?itom atx^ 

parametersJ as used in this thesis are fraotional values and take on values 

between sero and one,) 

It will be seen that, in this three diiaensional form of the Fourier 

expansion of the electron density, all of the available struoture factors 

are used* 

In Bragg*s original work one and two dimensional Fourier sussaiations 

are derived* If 

p(*y) • f (xy«) d* 

f{x) • 

the Fourier expansions of f (xy) and p (x) take the fom 

J?(xy) • ̂ ^ F(hkO) 0082 IT [ hx + ky - oi^ (hkO)j 

_ 4 fO 
f(x) •f F(hOO) 0082 IT [hx - elChOO)] . 

These forms contain the unusual weight factor This is because ^ (xy) 

and p(x) have been defined in parameter space rather than real space as 



5 

is usually doos. For more usual forms, se« Jamss (1348)* and Booth (1948). 

In th«6« Fourier projections only a portion of th« available structure 

factor data is used* Two dimensional projections tsay be Bade using the 

structure factors represented by any plane of the reoiprocal lattice vhieh 

passes through thM origin* One dimensional projections may be made tram. 

any reciprocal lattice line passing through the origin* But in neither of 

these are regions of the reciprocal lattice used mhich do not contain the 

origin. 

Other physical properties, more remotely related to the electron 

density function, may be expanded in a Fourier series. One such quantity 

is the Patterson function defined by 

The Fourier development of this function was found by Patterson (1935) to 

have the fona 

The Patterson function has a maximum at x, y, vhenerer there are maziota 

in the electron density function at u,ir,iif, and at x • u, y v, s + w. 

Thus the Patterson i^xima correspond to the set of all possible vectors 

between the set of maxima in the electron density function* One and two 

dimensional projections of the Patterson function may be made in the same 

manner as the projections of the electron density function* 

For the computation of the Patterson function, it is not necessary 

know the phase angles oC.(hk je), which are not observed quantities. The 

portions of the reciprocal lattice which must be used are, however, the 

same as in the electron density Fota-ier expansions. 

x + u, y + V, s + w) p(uvw) dudvdw 
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A somonhat different kind of Fourier synthesis has been suggested "by 

Barker (i948a}. He has shown that a hypothetical disorder may be introduced 

into structure calculations by using only the reciprocal lattice points one 

of vhose indices is a multiple of a small integer. For instance* if a 

Fourier synthesis is made using reciprocal lattice points whose index is 

even, the resulting density function at x,y,t, gives an averagt of the 

electron Jtonsity function at x, y, t, and * y, s + I. Since this hypo­

thetical disorder concept has been used in the deterraination of the struc­

ture of tlBej^g* derivation of the necessary equations is reproduced 

here« 

The electron densilqr at the points x,y,2, and x,y,t + is given by 

j>ixyz) • ̂ ^ F(hk .?)exp - 2 it i(hx + ky + a) 

+ oO 
f (*»y»J! * h) * ̂  ̂  ̂  ̂  F(hk jB) 9xp - 2 iTi(hx + + j? « + IJI ) 

— flO 
•t 

• ̂ sxp(-2ni^) F(hk^) exp - 2-rri(hx + ky 

f ixyz) * fixtytx + f) - [l + exp(-2Tr i|jjF(hki ) 

exp - 2Tri(h* + 'ky-^J^Z) 

"t oO 
I [^^(sy*) + ^(x»y,z + D] - ̂  E £ f F(hkje) exp - 2Tri(hx + 

€ V $ M 

k-y + J? «)« 

A similar relation may be shoitn to exist for the average of the Patterson 

function* 

fba Fourier synthesis in a call with hypothetical disorder is the only 

synthesis, which has thus far been considered, which uses a part of the 
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staruoture fftotor data different from that used in the standard Fourier and 

Patterson syntheM6» 

pother reoent deTsIopment has been a suggestion by Konobeerskil (1948) 

that the ^ourisr synthesis of the eleotrostatio potential field of the 

electrons be made instead of that of the eleotron density* Unfortunately^ 

details of the msthod have not yet be«n published in a language familiar to 

the author* The method is mentioned here to oall attention to the faet 

that Fourier synthesis need not be confined to the eleotron density or to 

the Patterson function• 

A mmber of variations on the eleotron density and Patterson function 

syntheses hare been developed and used in the interpretation of X-ray dif-

fraetion data* These are summarised by Booth (1948). None of these 

Btethods offer ai^ innovations as to the portions of the reciprocal lattice 

used in making the expansion* 

It is convenient* here, to introduce the concept of the Courier trans-

fom as used by Winch (1946)* The Fourier transform of a function, g(:KyE), 

itofined in real space, is given by 

The Fourier Transform 

wT(XYZ) » f r J 6(*y2) exp2-ni(xX + yY + tZ) dx^yds 

+ •0 

where w - I/i g(xyB) dxdyds. 
"" cO 

Reciprocally, the transform of T(XYZ) is given by 

e(xys) ' w f  f  ( T(X rz )  exp - 2-tTi(xX + yY + «Z) dXdYdZ. 
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Th« function T(3XZ) is oallod the trftosfoPBi of g(3cyz) and if x,y,t, ara 

real spaoe coordinates, X,Y,Z may be identified nith the reoiprooal space 

eoordinates of eryetallography. 

If g(xy8) represeats the electron density function, and is periodic, 

then f(XirZ) is different from zero only at a disorete set of points* those 

points are, in fact, the points of the reciprocal lattice coordinates, h, k, 

j? t and 7(X7Z) is the structure factor. In the periodic case the last 

integral reduces to a sumation over the discrete values of X, 7, and Z* 

It has been pointed out (Wrinch, 1946) that the transform of a periodic 

distribution may be considered as made up of two partst first, the transform 

of a non-periodic part of the distribution (the contents of a unit oell)j 

and second, the transform of a lattice, considered as a point set* The 

first part is given precisely by the equations above, while the second part 

is zero except at the points of the reciprocal lattice* In this sense, the 

transform of a periodic function is the function T(X7Z} at the points of 

the reciprocal lattice and zero elsewhere* 

Because of this relation we are able to evaluate the Fourier transform 

in the integral form of the above equations, which is in maiqy cases easier 

to evaXtiate than the corresponding summation* The transf<»>suitio& of the 

periodic!^ need not be considered at all since it leads only to -Uie dis" 

crete fom of the reciprocal lattice* 

In the XMixt section the Fourier transfora concept described here is 

used as a means of Interpretation of several special types of data obtained 

in the structural work on TiBej^2* 

The two transforms, which are derived below, proved to be of special 

interest in the determination of the TlBej^g structure. The first transform 
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has baea us«d qult« extaneively, partioularly lb tha determination of the 

probabilities in the postulated disordered structure. It is especially 

useful here« since the key to the short range order in the structure lies 

in the reflections with odd index# The transform of a particular layer 

of reflections, with • I, for example, yields as much information con­

cerning the order as a three dimensioaal Fourier synthesis of the electron 

density and is considerably easier to obtain. 

The second transform is of less practical value than the first, but is 

also of considerable theoretical Interest. The abstraction of symmetry 

elements froia tha transform has been of use in one ease explained in a 

later section, but in general there is no advantage in carrying out the 

synthssls using this abstrection* The work involved itx such a synthesis is 

also considerably greater* 

Transforms of Reciprocal Lattice Flams 

As ve have seen In the historical section, Fourier syntheses have bees 

made using data based on planes or lines of the reoiprooal lattice passing 

through the origin. The restriction that the line or place pass through 

the origin may, however, be rather simply removed. 

Ahqt plane in reciprocal space is defined by the equation Z * 

(constant), if the reoiprooal axes are chosen properly. Any line may be 

defined by the equations Y • Yj^, Z • Zj^. Considering first the Fourier 

transfonn of a plane in reoiprooal space at constant Z, 

+ oO 

*tT(XyZ,) • / J r s(*ya) expETTlCxX + yY + iZ^) dxdydz 
- oB 

and 
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,+-o(» oO 

r g(xysE) «xp2 IT iaZj^de "n J J T(XYZj^)exp - 2ni(xX + yY) dXdY, 
-o(. -o 

and if gixyz) is the periodic electron density function 

. \  oO J j>(3!y«) «3cp2vTiflj|^dz •"ftCFChk^,) axp -S-n i(hx + ky), 

Ihe replacing of the integration by a summation is a result of the 

periodicity of j)(xyE) as explained earlier. f(xy«) is used in place of 

gCxyx) and h,k« JE» in place of to etaphasiEe the shift froia a general 

function defined in real space to the periodic electron density function. 

Real and imaginary parts of the above equation may be teparated to give 

I J, f w 
p (*y«) 0082-n 8 dz m J Z E P(hk je,)eo82'n (h x + ky) 

and 

I 1 1 
J pCayJs) ain2'Fr t ^ ̂ F(hkJ?,) sin2Ti(hx • ky). 

In a similar fashion, the Fourier synthesis along a line in reciprocal 

space can be obtained* Thus, 

X' r'  ̂  ̂J f (xyz) cog2 Tr(l(y + -P, t)dyd8 ^ P(hkj J?, )co82T7hx 

« I 1 
J j ̂(xyz) flia2iT(kj^y •^je,s)dydz F(hkj^ J2, )sin2 hx. 

In using these equations in this structural study only the cosine sum*' 

Boitions «ere carried out* since interest was centered upon atoms lying at 

e • 0 and z " and first layer data ims used. In other cases it might be 

useful to carry out both the sine and cosine sums. 
T " " 
Similar formulae have been derived in a different form as an aid in 

the p'ecise location of peaks by Clevs and Cochran (1949). 
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^ansforms of Points Not Equiralent by Synawtry 

It Is possible, in many oasas, to find the transform of that part of 

reeiprocal spaoe, which contains a set of reciprocal lattice points from 

nrhioh all points of the reciprocal lattice may be obtained by the opei^ations 

of the sytmoetry elements 'which are present. In this section^ the transform 

of reciprocal lattice points, which with the operations of an n-fold axis 

of rotation will generate the entire reciprocal lattice, ia derived. 

The region in reciprocal spaoe which when acted on by an n-fold 

symmetry axis will give all of reciprocal space, is best defined in 

cylindrical coordinates. If in the Fourier transform equations, the sub* 

stitution 

X • f oo« <p y " f sin ̂  

X - Poos ̂  Y - Psin 4) 

is made, the equations become (Wrinch, 1946) 

J" ^ an 
wT{P<^Z) •J' J' g(^ ̂«)exp2"n i |>Pcos(^ - ̂ ) exp2-IT ieZ d^ d^ds 

- O e 

gCffe)** f r r PT(P^2)exp - 2H i f P008(^-<|>) 
> 40 ^ ^ 

exp > 2iri£Z dPdc|>dZ, 

If the n-fold symmetry axis lias in the Z direction in reciprocal 

spaoe, the equations 

T(P^2) - T(P,<})- ,Z) . . . . T(P, <|>- ,Z) 

are obtained. 



12 

ni« funetion T'(P<^2) is now defined by tha aquations 

T'(P<t>Z) • f(P(^Z) 0 < ^ 

Jf(P^Z) <jp « O ^ 

0 elaaiRhar* 

T'(P^Z) whan rapaatad by tha n-fold synunetry axis* ganaratas tha 

function T(P<(>Z). 

Tha meaning of tha transform of tha T* function is now sought. In the 

transform of T, tha integral over c|) from 0 to 2 n may be reduced to a sum 

a,n 
of n integrals from 0 to -ts;. , eto. Then, 

••<0 IP 
b) • w r (r PT(p4>Z) axp - 2tr i j>Poo8( 4)) 

:;<*» -̂ 0 •'o 
exp - 2trisZ dPd(^dZ 

+•«« 

+ w 1 ) I PT(P^Z)exp - 2 tTlj>Poos( 99 - <t)) 
*l<*> iE C> 

exp - Z-TTltZ dPd4>dZ 

^ IV eO 

1 ( PT(P<jf Z)exp - 2 •« i f Pooa(9P - 4> ) 
.«) Jo 

exp - Z i tL tZ  dPd^dZ. 

Novf if the transformations 

((>' . (J) 

(|>% 4> -  ̂r 

(j)'̂  • (j) - (2/r) 

are made in the above equation, where the transformation is made in the 
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i^th t«rm, the equation heooms 

+oO -111 «eiO 

s(i* ̂  2) • J" TPT(P(̂ Z)axp - 2-tx i j) Pooa(<j? - ̂ ) 
-•» i> 0 

•xp - STfiaZ dP(3<^«i2 

-o 

+ TB 1 1 1 Pf (P<^Z)exp - 2it ij> Pcos( ^ ̂  - <^) 
-*0 J" 

•xp - STiiaZ dPd<^dZ 

• • • 

+̂ 0(> y 3^ ^OO 

-oO 0 
0xp - 2TI122 dPdc^dS. 

r'̂  
J I I PT(Pt^Z)exp - S-n ij> Poos{ 9? + <|> ) 
-da J Q Jo 

The auporaoripta hav« been omitted, since they are unnecessary and the 

relations 

r(P4>Z) - T(P,ct) - ^ ,2), eto. 

have been used. 

low, iatroduolng the !• functions, defined above, g{j) fp *) becomes 

yo in <0 

g(j3 9P a) " w J J j PT* (P(^Z)exp • 2-0 i j> Poos( 9? - cji) 

exp - 2 tr isS d?d<^ dZ 

+<» ^ in ̂ cR) 

+ w 
"l-oo " o -'a 

exp - ZTTiaZ dPd(|)dZ 

+« in cR) 

J J ( P!r'{P<l>Z)9xp - ZTtif P008(95+ ̂   ̂) 
-00 o -'a 

+ 

fc® -in -oO 

i j" j'pT*(P4>2)exp - 2ni j)Poo8(9? + ) 

exp - StTitZ dPd<j>dZ« 

+ 1* 

-c6 "0 c> 
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If now, tha transforia of V is denoted by g', ao that 

T r" f* 
g* (p ̂  e) • w J I I PI* (P<^ 2)exp - Z'Xt if PoosC 4>) 

-•B J p -'6 

exp - 2 xr dPd^ dZ 

and 

yo a,, 

6*( f » 9 + ̂  *8) - w J PT»(P<|)2) «xp - 2tTipPcos(9»i' ̂  - <))) 
-oO -'o •'o 

exp - 2trizZ dPd4>dZ, 

s(f ®ay written in terna of the g'(f ̂  a) function as followsi 

e(f <p z) ' gt(f 9» e) + £• (:f . ^ »«) + .•.+ g*(f * , 

The last equation means that the transform of a function with n-fold 

axial symetry may bo obtained by transforming on3^ that part of the func­

tion which lies between 0 and ^ , and subsequently adding the values 

o f  t h e  g *  f u n c t i o n  a t  ( j '  c j i ' s ) ,  ( f  ,  9 ? +  ̂  ,« ) ,  .  .  .  ,  ( f ,  < P * ^ '  ( , z ) .  

From another point of view, the symmetry axis is removed from the reciproeal 

space function and only the part independent of symmetry is transformed. 

then the symmetry axis is replaced in the transformed function. 

These results are readily applied to the customary Fourier syntheses. 

Although the proof has been carried out in cylindrical coordinates, the 

actual summation may be carried out in the customary crystallographic 

coordinates. Since the electron density function is real, only the real 

part of the g* function need be determined. 

As an illustration, g* will be written out for the case in which g con­

tains a six-fold symmetry axis. In the hexagonal system, using hexagonal 

axes, the region in reciprocal space bounded by the cylindrical coordinates 
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0 and l/H IT , is dafinsd by h and k 0. To obtain g*, therefore, only 

positive Talties of h and k are inoluded in the sun. I^us, 

. «o oe feo 
g»(3cy«) •" ir 2 £ E F«(hk je) exp - E-rr i(hx + ky + e), 

V c? o - ««d 

where F* is subjeot to the condition 

T'(P<t>Z) - i«(P4>Z) at 0 « 0 or 

Therefore* 

F* (hk J?) - ̂(hk J! ) for h or k - 0. 

To obtain the value of the electron density function, one sums the values 

of g' at the syametry related points in real space* This is the eomon 

value of p(xyz) at those points* 

The g' Fourier summation has been found useful in only one case thus 

far* In the hexagoial system, it is sometimes useful in avoiding the 

higher indices entailed in the sunsoation over all of the points of the 

reciprocal lattice. This might be true, for instance, for sumations car­

ried out with the help of Bsever-Lipscomb strips, or in other methods where 

an upper limit is set on the frequencies which may be used* 

In the preliminary work on the present structure, several Fourier syn­

theses were made using this device* Reflections with indices as high as 

(18*12,1) are present in the region in which h and k are positive. The 

s^nmetry equivalent reflections, generated by the three-fold axis are 

(I2.f?*l) and (1?*18«1)* Since the I*B*M* card sets used in the suraaation 

contained no frequencies above twenty, over one-third of the reflections 

would have to be omitted in the usual Fourier synthesis* In the synthesis 
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with symmetry abstracted, hoTWver, nearly all of th« observed refleotions 

could be used. The itork referred to here led to no useable information con­

cerning the structure, and hence is not referred to in the structural 

determination* 

£he method has, however, several disadvantages* The summation mat be 

earried out over a oonsiderably larger portion of the cell than is usual 

and the work Involved is therefore increased. Only in the hesotgonal or 

monoolinio systems does the method seem to offer any advantage nAmtever and 

even in these systems it would only rarely seen to offer ac^y advantages 

over alternative methods of carrying out the suMwition. 
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m STHaCTORE OF 

As has b««D pointvd out earlier, the interest in the 

arose more from the so&ewhat umsual appearance of the x-ray diffraction 

patterns than from any other reason. In spite of this* the structure is of 

interest as an additional metal structure, which an adequate theory of 

mstals should be able to explain. A feur related points are discussed in 

the last section of this thesis. 

the structure of has not yet been fully determined. Indeed, in 

a unit cell of this size, one might not have expected to be able to deter­

mine anything about the structure had it not been for the remarkable pseudo 

cell relation. The structure which is finally suggested (for even this 

Biuch is not completely definite) is one in which each titanium atom lies in 

one or the other of two possible positions and there is a definite probabil*-

ity of occurrence of the titanium at each site. The correlation that must 

exist between these probabilities has not been found. !l!he berylliums are 

placed in idealici^ positions and although there must be a displacen^nt 

from the ideal positions and although the cause of such a displacement can 

be postulated, the details have not been determined. These depend on the 

correlation of the probabilities of the titaniums, which is n^t known. 

Experimental Procedure 

A sample of flBej^2 obtained by the heating of titanium-beryllium 

mixtures in the atcnaie ratio of about lilS to about 1400'C, in an induotion 
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furnace t One sample obtained in this wy had a siaall eavity in the center 

into which extended hexagonal needles of Tiflej^g. There seemed to be only 

small amounts of a second phase present, so it is reasonable that the com­

pound contain only a little less beryllium than TiBe^^g. An adequate chemi­

cal analysis of the compound itself has not been obtained, because of the 

difficulty in obtaining samples known to be the compound in sufficiently 

large quantities* Ihese needles were easily separated from the matrix and 

several, about 1 ran in length and 0.05 to 0,1 mm in diatroter, were chosen 

for exiwaination by X-ray diffraction. The face development on the needles 

proved to be (loTo) and orientation about the six-fold axis was an easy 

matter. 

The following Keissenberg and Precession photographs were madet 

Cu Kol radiation •- IHieissenberg (hkO)—(hkS) 

(hOi?) 

Mo Eo(. radiation — Weissenberg (hkO) — (hk'lO) 

Precession (hkO),(hOj?),(hh2) 

Ag radiation — Weissenberg (hO^) 

The Cu Koi pictures were taken by the multiple film technique. The 

Mo Kc*. Weissenberg with even Ji indices and the Ag Ee«. pictures were 

taken as a series of timed exposures at doubled intervals of from 1/4 to 16 

hours. A Phillips diffraction unit was used for all pictures except the 

Ag Kc^. ones. Here a homemade gas diffraction unit was used* 

Intensities were estimated by visual comparison of five multiple films 

(Robertson, 1945) or of six timed exposures* The intensities of all 't&e 

Cu Ken films, the Mo Kc^ Weissenberg films of even index, and the (00^) 

reflections from the Ag Eo(. film were estimated in this way. 
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S<|uarQs of the strviotura factors were oaloulat«d from the foriaula 

I » K 1 F| ® G 

n^are G is the Lorentz polarization factor obtainad from tables given by Lu 

(1943), K is a constant which -ms used to put all structure factors on the 

same scale, and eventually determined to put them on an absolute basis, 

Adsorbtion and temperature factor oorreotione were not used since both "siere 

small. That the temperature correction is small is shown by the considera­

tion that reflections occur "siell past the reciprocal lattice points within 

the molybdenum sphere of reflection. Relative intensities vary little on 

passing from Cu to Mo radiation, which shows the adsorbtion correction also 

is negligible. 

The absences which occur are quite important and several very intense 

diffraction patterns were made, but no reflection tfiiich appeared to be part 

of the systematic absences appeared on any film, no matter how intense. 

Towards the end of the structural work, when a disordered structure 

was suspected, a number of Laue pictures were made with filtered and unfil-

tered Mo radiation. A streaking was obtained in the (hkO) reciprocal lat­

tice plane in several directions but no streaking iras found perpendicular 

to that plane. The Laue diagrams showed considerable evidence of diffuse 

scattering but it could not be measured with the facilities available. 

The Unit Cell and Space Group 

All of the diffraction patterns obtained could be indexed on a hex­

agonal basis. The(hhJ?) Precession pictures yield what are probably t^M 

most accurate values of the lattice constants. In terms of the repeat 
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distaneea along [OOI^ and [llO] , thas© ar«j " 7.33 * .OX A. " 

29.44 * ,01 A. It will be seaa that the t distance Is very nearly one 
OOL 

quarter of the distance (7.36 ^ .01). Slnoe the two dlstanoes were 

measured on the same fllm^ It seems cartain that the difference In the two 

values Is real, fhe lattice constants a, and are equal to and 

respectively. The Welssenberg diffraction patterns obtained with the crystal 

rotated around the o axis all show the diffraction sysmetry of . This 

fixes the point symetry as or A great many extinctions 

oeour but the only one of possible significance in the determination of the 

space group, is (00 Jl) when J? is odd. In the odd layer lines only those 

reflections occur which lie along the edges of the series of hexagons, i^leh 

are shown in Figure for the reciprocal lattice layer (hkl). The reflec­

tion (00 jp } (odd) occxurs at the center of one such hexagon, and is thus 

equivalent to (441), etc. which are also absent. It does not appear, 

therefore, that the absence of (00J?) with ^ odd necessarily reveals the 

presence of a two-fold screw axis. The possible space groups are therefore 

the followingt (C6/bbbii). dJ (C62), (CBjg) , (G6fflm), (c1b2), 

and (Cl§^a). 

Division of the Problem 

The even layer line Weissenberg and Precession diagrams, considered 

Independently of the odd layers, may be indexed on the basis of a small 

pseudo cell. The orientation of this pseudo cell with respect to the true 

cell is shown in Figure S. The 0^^ axis of the pseudo cell is parallel to 

Cq of the real cell and the angle between ao and Aq is 90". The lattice 
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0 IS' t f 

Figure 2, The reolprooal lattice net (hkl). The indioated refleo-
tions are present, thd rest, absent. 
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Figure 3. The relative orientation of the real and pseudo oells. 
The o Mis for both oells is perpendicular to the paper. 
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constants of th« pseudo coll arsi » 4.23A®| » 7.53A". Th« struotur® 

of th« pseudo oall can be determined from the intensities of the refleotion 

with even -2 index, using standard methods. The real cell struotura and 

the psaudo call structure have been shown to be related as follows» (of. p. 

6} If the value of the electron density function in the real cell at z and 

E + |- are averaged for all values of x and y, and that value of the electron 

density placed at both s and c * the result is a unit cell made up of a 

series of identical units related by the pseudo cell primative translations* 

Bach of these identical units is, in fact, a pseudo cell. 

In other words, the real cell consists of a series of pseudo cell-like 

units differing from each other only in the division of a constant electron 

densilgr (for a given sy) between z and « + If the structure of the 

pseudo cell can be determined from the intensities of reflections with even 

Jt index, only the iuture of the division between t and t * ̂  need be deter* 

mined to obtain the complete structure. In the carrying out of the latter 

step the intensities of reflections with odd A index must be used. Thus 

the structural determination resolves itself into two distinct problemst 

The structure of the pseudo cell and the removing of the ambiguitfy between 

z and K ^ at the various points in the real cell* 

The Structure of the Pseudo Cell 

From the observed density of 2,30 and a cell volume of 111.5 A®, the 

weight of bhe unit pseudo cell in molecular weight units is 154. This is 

compatible with the formulae TigBeg or TiBej^g. Although the experimental 

acciuracy probably does not preclude TiBe^^j^ or TlBej^g, the calculated forawla 



Is much closer to Iho volume of the pasudo oell salculatad from 

the atc^ic values of titaniua and berylliuia (from the structures of the 

pure laetals) is 110 A® for TiBs-j^g, and 112 A® for TlgBeg. TigBsg seems 

quite unlikely la view of tlie method of preparation but -was considered 

beoause of the inadequate chemical analysis. 

The Pattersoa function projected on (001) has bean obtained using the 

formula 

P(sy) » t t (P^^ + F'J^) COS hx cox iy 

" ̂hk^ hx sin ley, 

where F^~ • 0 if h or k •• 0. 

fhe projection ims prepared using the CuKoc (hkO) Weissenberg data* The 

projection (Figure 4) shows tluree different peaks with the peak heights 

listed in Table 1* 

Table 1 

Peak heights from Patterson projection 
of pseudo oell on (001) 

x y 

0 0 690 

lA 200 

1/2 0 300 

The possible interpretations of the Patterson projection in the various 

possible plane groups may now be considered. The projections of the space 

groups ®6* ^ev^* yiald the plane group , while yields 
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Figure 4. Patterson projeotioQ of pseudo oelX on (001), The contour 
lines have been dravn at equal intervals and have not been 
smoothed. The irregularities indicate the approximate 
acouraoy of the data. 
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and yields . (Pattsrson, 1935), 

The avallabla positions in these point groups are -

In oj, . 

IJ (a) 00. 

2: (B) 1/̂ ,2/312/̂ ,1/̂ . 

3 j (o) 

6t (d) x0;0xj3CCjx02Cf{xx. 

(e) xx;x,xix,zx}zx,xtxfxixfzxizxix. 

In I 

li (a) 00. (b)l/3,2/3. (c)2/5,iA. 

3} (d) XfX}x,ZxiZXfX» 

61 («) x,y}y,x-yjy-x,xi^,xjy-x,yix,x-y. 

x" of, 

li 00. 

2 j l/5»z/si z/zaa' 

3i xO} Cbc|^. 

6t x,yi y,x-yj y-x,x| y,x{ y-x,yj x,x-y. 

The possible placement of atoms for the improbable formula Ti2Beg is 

ooQsidered first. In the first plaoe, if there are two titanium atoms in 

the unit cell* they must hare the same x y parameters* sinee if they do not« 

they must oeour at 00 and l/5«2/1S (or Z/!i,l/i), In the latter case equiva­

lent peaks wjuld appear on the Patterson at xy and at x - 1/fe, y - Z/$ and 

this does not oeour. With both titaniums at 00 or x/Zfi/Z there is no 

arrangement of the berylliums ithioh nill give the observed peak helghtSi and 

further, the appearance of the odd layer lines cannot be explained. Thus 

the formula Tl^Beg may be eliminated* There remains TiBej^2* f^ich is much 
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mora probable sima the compound was prepsirsd in the presence of a Isurgo 

excess of berylliisa. 

Ihe Patterson projection can be interpreted by means of the following 

positions in C?. s 
oj? 

fi in (a) 00. 

2 Be in 2(a) 00. 

6 Be in 2{o) i^"»0|0,g^;^-,-g'* 

4 Be in 2(b) l/^,2/fe| 2/fe,l/5. 

1 TT !rhese positions ftr« also possible in and and the only po8~ 

sible Tariation is the diaplaoement of the origin to \/%fZ/Z in Cgjj • 

fhis makes no differenoe in tho pseudo cell but must be considered in the 

transition to the real cell. 

The Fourier projection on (001) gives further e-videnoe that these posi­

tions are approxisiately correct. This projection (Figure 5) was calculated 

fron (hkO) molybdenm £oC Weissenberg diffraction data with signs assigned 

from the structure factors calculated from the above positions* The 

integrated peak heights on an arbitrary scale ar« given in Table 2, 

fable 2 

Integrated peak heights from Fourier projection 
of pseudo oell on (001) 

m 

00 87,141 

\/^^^/% 17,806 

1/2,0 15,793 

These peak heights agree very i»ell with those expected for the postu-



Figure 5. Fourier projection of pseudo oell on (OOl). 
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latod X and y positions. It mill be noticed that the peak at 1^,2/^ is 

partially reeol^^ed into three peaks. Sinoe there are only two beryllitM 

atoms at that position^ this separation tmst represent a small de-riation 

from the pseudo structure which ooours in expanding to the real structure• 

Suoh a deviation may be large enough to influence the intensities of the 

observed reflections of the h]ld) planes* but not large enough in Itself to 

cause other reflections to appear. This is true because the intensil^ of a 

reflection is proportional to the square of the structure factor« F* Since 

(p • • 2Pf + a small change in parameters which changes P to 

F + C will clwnge the intensity by Zff * cf®. For a reflection where 

2 F " 0 the intensity will now be only S • 

Weissenberg and rotation pictures around £ show that the (hkO), (hk4), 

and (hk8) intensities patterns are quite similar and that (hk2), (hk6), and 

(hklO) are also similar but different from the other set. "Thus we are led 

to postulate a layer structiure for the pseudo cell,with atoms lying l/4 

apart in s. Packing considerations then lead to the following pseudo cell 

structure in 

1 Ti in (a) 000j or (b) OQl/Z, 

Z Be in (e) OOsi OOc'i t near l/l» 

6 Be in (1) ̂ *2* *2 

2 Be la (e) 1/^,2/^,0| 2/S,1/^,0. 

2 Be in (d) lAt^A»h 

Each of the sets can be given an arbitral^ parame-tor in some one of 

the other possible space groups* but the above parameter sets are t^e only 

ones #iioh explain all the data. The one dimensional Fourier projection 

along c calculated from Silver S ec data shows that most of the atoms near 
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l/4 are In faot praolsaly at l/Z, so tg • l/4, (Figure 6) fhere are small 

peaks near l/4 at 0o22 and 0.28. Beoause hl£3 reflections appear to be the 

strongest of the refleotions -with Ji odd, and because of the slse of the Ti 

atom, ISO take z as 0.28 -when fi is at 000 and at 0«22 when Ti is at 00§* 
dl 

Iq fable 3, observed (00/^) structure factors are oom^pared with those oaleu-

lated for the above atrueture» and also with those calculated vith at 

0»£7 and,29. It is seen that these intensities are not very sensitive to 

this 2 parameter, and that agreement is in every case quite good if -ne 

except (004), which is the strongest reflection appearing in the entire 

reciprocal lattice* We presume that extinction causes the discrepancy in 

0̂04* 

IQ Table 4, observed and calculated structure factors are compared for 

all (hkJ?) refleotions with Ji even which are observed with CtiKoi radiations* 

The (hkft) refleotions are somcmhat sensitive to and 0*28 seems to give 

the best fit. 

The Structure of the Beal Cell 

The determination of the pseudo oell in the preceding section has left 

an atobiguity in the s parameter of theHtanium and beryllium atoms at the 

X * 0, y "0. The titanium atcssa may occur at « • 0, or « • -J-, the two 

berylliums lying 0*28 z 7*36 A* away along the e axis* It is natural then 

to assume that in the true unit cell, this ambiguity will be completely 

removed and that eaoh of the forty-eight titanium atoms in the unit oell 

will have a s parameter of either 0 or As will be shown later it is 

impossible to explain the structure on this basis. While it is certainly 

true that eaoh titanium has a e parameter of 0 or an individual titaniiaa 
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Figure 6» One dimensional Fourier projection along o« 
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Table S 

Comparison of o&loulated and observed atruoture 
faetors for (00jS ) refleotions 

Index 
^ob« 

» 0.28 
^oal * 
* 0.29 • 0.30 

002 11.6 9.1 9«4 9.7 

004 26.0 33.1 32.4 31.7 

006 9.8 6.3 7.5 8.7 

008 15.2 16.5 14.3 13.3 

0*0.10 4.6 7.1 8.1 7.5 

0*0*12 10.0 9.9 9.2 9.5 

0*0*14 e.6 6.2 5.2 7.8 

*Booth*8 correlation faotor, S 

omitting for s » 0.29 is 0.14. 

• £ I''.*! -

•L \ obi 1 
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Table 4 

Calculated and observed structure faotors 
for the paeudo cell 

Pseudo cell 
iQdex 

True index ^obs F 
^oal 

1'0.*.0 4.4.*»0 IS.O 12.6 
1.1.•.0 12.0.*.0 20.9 21.6 
2»0.**0 8.3.**0 25.2 23.6 
2»1**»0 16.4.**0 10.8 8.2 

12.12.••0 15.3 17.1 

2*2***0 24*0***0 25.9 26.5 
s.i.*.o 20.8«*.0 7.1 6.8 
4»0.*»0 16.16.».0 17.9 16.6 
3.2.*.0 28.4.*.0 7.8 5.8 
4.1.».0 24.12.*.0 9.1 14.3 

1.0.*.2 4.4.*.2 15.2 13.1 
1.1.*»8 12.0.*.2 21.6 20,8 
2.0.*.8 8.8.*.8 S .3 - 4.1 
2.1.*.2 16.4.*.8 18.7 8.4 
S.0«*.2 12.12.*.2 16.7 16.9 

2.2.*.2 24.0.*.2 6.2 4.6 
3-1.*.2 20.8.*.2 11.8 12.4 
4.0.*.2 16.16.*.2 3.6 -3.8 
S.2.*.2 28.4.*»2 10.6 6.2 
4.1.*.2 24.12.*.2 9.7 12.6 

1.0.*.4 4.4.*.4 7.3 7.S 
1.1. .4 12.0.*.4 15.8 16.3 
2.0.*.4 8.8.*.4 17.8 19.0 
2.1.*.4 16.4.*.4 7.6 6.2 

12.12.*.4 11.3 13.6 

2.2.*.4 24.0.*.4 19.1 21.0 
3.I.*.4 20.8.*.4 6.7 5.4 
4.0.*.4 16.16.*.4 14.4 13.1 

VeprecsQts the third BraTrais-Miller index which oooure 
1q the hexi^onal syetem. 
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set, at say (^,0) is not always at z • 0, or at « " but possesses 

definite probabilities for lying in one or the other of these positions. 

As has been seen, the pseudo oell data give no indication of whether a 

Ti atom oocurs at a • 0 or z « The pseudo cell structure, therefore, 

gives no indication of the distribution of titanium atoms between 0 and 

It is necessary to use reflectiojis with Ji odd to obtain information about 

this distribution. 

The absence of (00 JP)  reflections with X odd is conclusive evidence 

that there are equal numbers of titanium at z • 0 and z " Indeed, as 

will be seen later, a reflection whose struotiire factor is If^j^^ should be 

clearly seen at low sin 6 , and a separation of titanium between z • 0 and 

z " ̂ in the ratio of 23t25 would give rise to a structure factor of Sfj^ 

for all (00J?) reflections witii A odd. There must, therefore, be twenty-

four titanium at each level. 

The relative orientation of the real and pseudo cells are shown in 

Figure 3* The pseudo oell net picks out forty-eight points with the real 

oell -rtiich are equivalent except for the ambiguity in the Cq direction. 

The two possible pseudo cell positions for the titanium atom correspond to 

two possible sets of positions in the real cell. 3%e point positions 1/^, 

Z/S occur in the pseudo oell in the space group flSh. but when these posi­

tions are referred to the axes of the real cell, they are found to occupy 

the positions of This happens because the two space groups differ 

only in the angle the vertical mirror plane makes with the x end y axes. 

In 13^^ each of the symmetry connected atomic sets has A zero contribution 

to therefore impossible to explain the appearance of (401) 

with titanium in these pseudo-cell positions. 
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There rejaaiss, therefore, only the possibility that the titanium atoms 

00our at CK) in the paeudo oell, and atoms may be placed over the pseudo oell 

is origins in all of the possible spaoe groups* 

All of the possible spaoe groups possess in eomoQ a three-fold axis* 

It will, therefore, be convenient to disouss tlM various arrangeownts of 

the atoms in terms of the three-fold sets and the atomic position in the x y 

plane are so listed in Table 5. The set A (0,0| 1/^,2/Si 2/^,l/1l) is not a 

three-fold position because of the synsnetry of the spaoe groups. But simte 

all of the other sets are true three-fold sets, this one must be too, if 

the atoms are to be arranged with twenty-four atoms at b • 0, and twenty-

four at « • The relative positions of these three-fold sets are illus­

trated diagramatically in Figure 7* 

A i^stematio elimination will be carried out, and it will be shown 

that none of the ordered arrangements of the titanium atoms In the spaoe 

groups of the crystal class are capable of explaining the data* 

Criterion of ellalnatioa 

From the calculated intensities of the pseudo oell reflections, and 

the observed intensities of the reflections with even and odd JL indices an 

estimate can be obtained as to the numbor of titanium atoms scattering in 

phase to the various reflections of hOJ?, Using the observed F value of 

(002) and (401), and the oaloulated P value of (002) w« find that the oal-

w culated value of ^01 is about six or seven* 
t̂i - %e 

Sinoe reflections were observed with IntwnsitiQs of less than a hun­

dredth of that of (401), it would seem that for the absent reflaotions 
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Figure 7, The relative position of the three-fold titanium sets in 
the xy plane. The letters refer to the positions listed 
in Table 5. 
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Table 5 

3fh« xy paramters of the three-fold titanium sets 

Set Positions 

A. 0,0j Ia»2aJ 2/5,l/S 
b. l/4,0j 0,1/4| 3/4,3/4 
c. s/4,0j 0,3/4j 1/4,1/4 
D. l/^,Oj 0,l/2i l/2,X/fe 
s, 1/12,2A2j i/i2,1iA2» 10/12.11/12 

f. 2/12,lA2j 11/12,1/121 11/12,10/12 
G. 4/12,2A2j 10/12,8/121 10A2,2/I2 
H. 2/12,4/12J SA2,10A2I 2/12,10A2 
I. 1A#IAJ 3/4,1/2| S/4,1/4 
J. 1/4,lAl 1/4,3/4 

k. 5a2,1a2} 11/12,4/121 8/12,7/12 
l. 1a2,sa2j 4a2,11a2| ̂/IZ^B/IZ 
M. 7/12,2A21 10/12, 5A2J 7/12,5/12 
». 2/12,7/121 5a2,10a2i 6a2,7/12 
0» 8/12,1/121 11/12,7/12j 6a2,4a2 
p. la2,8/121 7a2,11/121 4a2,sa2 
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(101), (201), (501), and (111), 0.5fjj^ to l»0?j|^ would be a oonservativ# 

upper limit on F, 

The prooess of elimination of the ordered structure was carried out 

roughly as follona. The contributions of each of the three-fold seta of 

titanium to the real part of the structure factors for several reflections 

were calculated. These are asenbled in Table 6 where the symbol 

denotes the real part of what we have called the relative structure factor* 

Table 6 

Contributions of the three-fold sets to the 
relative structure factors 

Sets B * 
lOl ®201 ®S01 «401 ®601 ®lll ®221 

A 0 0 S 0 0 3 3 
B,C I -1 I 3 1 -1 -1 
S -I S -I 3 -1 -1 3 
B,P i/e+ Js lA -1 -3/2 1/2-/3 1 -1 
G,H 1/2 -5/fe -1 -3/2 1/2 3 

I,J -1 -1 -1 3 -1 1 -1 
K,L -lA 1/2 1 -sA -1/2 -1 -1 
M,H 1/2 -1 -sA 1/2+V3 1 -1 
0,P -1/2 1/2 I -3/2 -1/2 -1 -1 

xoi " 

It is equal to the real part of the structure factor divided by f^^* This 

is similar to Barker's vinitary structure factor (Barker, 1946b), but it has 

not been normalised* For this reason it has iMen given a different name* 

The structure factors of the possible atomic arrangwaents which plaCQ 

twenty-four atoms at z • 0 and twenty-four at z • can be obtained by add­

ing structure factor contributions obtained from Table 6 for those atomic 
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sets lying at * " 0 and multiplying by two. The atomic layer at a • 

Eaakes the saB» contribution to the structure faotors of the reflection con­

sidered since the atriwture faotors of the corresponding reflections in the 

reoiprooal lattice layer with -2 • 0 are identically sero. 

To aid in the consideration of all the possible arrangemsats of the 

atoms# a rather simple symbolism has been used. This is described in the 

next section* 

The elijaiaation aymbolism 

In Tables 5 ewd 6 the capital letters A« etc* have been used to 

represent the three-fold atomic sets which occur in the structure. By BC 

will be meant the set containing both set B and set C. 

In the calculation to follow the structure factors of all of the 

atomic arrangements compatible with the possible space groups are to be 

derived. As will be observed in fable 6 most of the three-fold sets occxir 

In pair, having th. sum oontribution to all of th. It is also 

found in the course of the calculations# that various combinations of the 

sets have the same contributions to all of the ^ Wien several 

atomic sets or coatoinations of atomic sets have the sam contribution, this 

fact will be recognised by enclosing the set symbols# over each other# in 

parentheses. Thus^} is used to rS|tf4tent sets B or C# whose structure 

factor contributions are the same. 

>Jhen several sets have different structure factors, for example the 

sets (A) and (^)# and either of the sets may be chosen for the layer 2 * ) 

for the space group under consideration, the set symbols are written over 

each other in braclcats* Thus sets occurring over each other in parenthesis 
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hATe a oommon group of structure faotors, while those appearing above eaoh 

other in braokets have different values for some of the structure factors 

ooQSlderod. 

In using the symbolism a series of braoksted terras arranged horiton-

tally are derived by consideration of the possibilities niliiiQ eaoh spaee 

gro\^« l^en, all of the possible sets of atoas having different stx*uoture 

factors are read from the array by choosing one set from eaoh bracket, 

rejecting any oombinatlons so obtained, which have the same set appearing 

twice. There are several set combinations which have the same struoture 

factors, but only one of these oombinatlons has been listed in the laibles* 

Should it happen to have struoture factors which are compatible with the 

observed data sill otiier sets having the same struoture factors are also oompat-

ible and these are readily found from the original arrs^. 

The xise of this symbolism will be explained in detail in the oonsidera" 

tion of , and this should make its meaning clearer* 
on 

Bllminatioa of ordered structures 

The various possible spaee groups allow the following three, six, and 

twelve-fold setsi 

®6h * * ^6 """ 

A, D, BC, SP, OH, MN, IJ, KLOP, 

~ 

A, D, E, P, 0, H, I, J, M, K, BC, LP, KO, 

ih-

A, B, C, », EP, OH, IJ, KL, M, OP. 
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B The spaoe group Dg oannot used, sinos titanium atoms will b9 plaoed 

over aaoh othsr at 00, 

SiQoa (221) is praseot R221 different from zero, einoe the 

imaginary j»rt -ranishes for each of the three-fold sets independently. An 

examination of fable 5 shoos that, if (221) is not to vanish, ve must have 

three or four of the sets A, B, G, H, at the same t level. We therefore 

need to ealoulate the structure faotors for atomic sets containing either 

ADGR, ASH, D6H, AM, or AM. The last t«o combinations can occur only in 

»5h> fhe various different nays in which the remaining atomic sets may be 

combined Kill nov be outlined. 

In only the combination Al^H need be considered, since there are 

only tKo three-fold sets in and these must occur at the same level if 

there are to be an even nui^er of atoms at each level* To complete the 

layer with AD6H, then, we must choose either KLOP, or any two of BC, EF, 

MH, or IJ. We may therefore write the array 

(BC) [(BC) 
(EP) (EP) 
(mn) (mn) 
(I J)J |il J)_ 

FKLOP)| 

The Interpretation of the array is fairly obvious in this case, since 

all of the stouoture faotors refer to only one combination of sets. The 

brackets placed over each other represent a choice of one or the other set 

of braoksts. 

The o<»tbination8 chosen from this array are listed In Table 7. 

In the layer at s « 0 may contain any of the sets ABG^, AOH, 

ADS, or AM* With AMB, must be chosen four three-folds from the sets S, F, 
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Z, K, BCf LPt KO. We may further divide the selection into that of 

two six-foXds, one six-fold and two three-folds, or four three-folds. These 

ohoioes may he represented by the array 

Lbc) k̂o 

CadghH (BC) 
lp. 
jjco'. 

r) 

dnl 

(5) 
-h- 5!!). 

(J) 

Table 7 

Belative structure factors for laver of 
titaniiURi atoms at s • 0* in Sgi. 

Sets ®101 hoi hoi ®401 
fi 
601 ®lll «221 

ADOHBCBP 8+2 /5 -1 0 3 3-2 /T 0 8 
BCIJ 0 -4 0 12 0 0 8 
BCMI 3-2/?• -1 0 3 3+2 /S 0 8 
EFIJ -1+2 -1 -4 3 -1-2 ./Z 4 8 

EPMH Z 2 -4 -6 Z 4 8 
lomr -1-2 JZ -1 -4 5 -1+2/3 4 8 
KLOP -Z 2 4 -6 -2 -4 8 

WitJi DSH, AOS, &BG, flnd hJM we must ohoose five three-fold sets from 

Ef ft 1, J» M« B, C« LP, KO. The following arrays represent the ways in 

which this oah be done! 



43 

Two six folds 

(AGH) 
(SGH) 
(AD) 

One slx-folil 

(AGE) 

(DQH) 

(AD) 

Ko six-fold 

(ASI') 

(DGH) 

(AD) 

>g) 
E (3C) 

c®) 
h 

(BC) 

(^) 

(j) 

(̂ )1 êo'j 

^5) 

(AGH) 

(DGH) 

(AD) ,S. 

(EF)(IJ) 

(IJ)(MN) 
'•P 

These -T^arious possibilities are listed ia Table 8. 

In th. l.y.r at t may contain ADSH, AGH, or DOH. AH) and AM 

are not possible in this spaoe group since G and H may not be separated. We 
I 

are lead, therefore, to the following arrays: 

With tKO six-folds 

HADGH)] 
(EP) 
(ij 
(m 

^or 

[(ADOH[] (bp),k]u 
•-op 

(ij)^klj 

Where terms like (£F)(Ijr) have been omitted froia the second expression. 

sinoe these have already been considered in D|j^. 
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liable 8 

SeXative structure factors for the layer of 
titaaium atoms at s <• 0, in 

^lOX hoi hoi hoi ^601 \ll ^221 

0 -4 8 
3 / f e -  / s o  6  
S 0 8 
3/2 +/S 0 8 
-S/2- /S" 0 8 

0 0 8 
-3/2+ fZ 0 8 
-1 4 8 
i- y? 4 8 
f+ /F 4 8 

5/2- v/S -2 4 
1 -2 4 
6/2+ J¥ -2 4 
S 2 4 
S-2 vTS 2 4 

9/2- /S 2 4 
S/2- 7T 2 4 
3/S+ /$ Z 4 
9/2+ /¥" 2 4 
3+2/8' 2 4 

AGilLPBIM 0 -2 0 -6 0 2 4 
BPI 2/1" -2 0 -6 -2 t/T 2 4 
EPM 8/1+yf -1/2 0 -21/2 3/2-/3 2 4 
IJE -3/2+ /Z -7/2 0 -5/2 -3/2- /T 2 4 
IJM -3/2- >/T -7/fe 0 -3/2 -3/2+ yr 2 4 

3/fe- yS -1/2 0 -21/2 3/2+ /$ Z 4 
MMI -2 3 -2 0 -6 2 3 2 4 

AGHEFUM 1/2+ /a -7/2 -4 -3/2 l/2- /Z -Z 4 
IJMHB 1/2-v/T -7A -4 -3/^ I/J+TS" -2 4 

2  - 2 - 4 - 6  2  - 2  4  

ADGHBCLP 1 -X 4 3 
BCII 3A+ ^ 0 X5/2 
BCEM s -X 0 8 
BCIM 5/fe- /S 0 X5/2 
LPII -3/2+ 0 -3/2 

LPEM 0 2 0 -6 
LPIM —3/2- /s" i 

St 0 -5/2 
IJME -X -X -4 0 
EFM i+/S -4 -3/2 
MI3BI |-/f 1 -4 -3/fe 

AaBBCLPE 5/2+ s/T -7/2 4 -3/2 
I X -6 4 8 
M s/^-vTs -T/fe 4 -3/2 

AaHBGSIM s -e 0 3 
IFI 8+2 >/S -5 0 8 

EFM 9/J+ /5 -7A 0 -3/2 
IJB 3/8+/f -XS/2 

-X3/J 
0 U/Z 

X4M 3/2- /s 
-XS/2 
-X3/J 0 

U/Z 

MM 9/2- /f -7/2 0 -3/2 
MX 3-2 -5 0 3 

'^ach group has eight letters representing the eight three-fold sets 
Letters nhioh hare been omitted are the same as those direotly above* 
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Table 8 (continued) 

Sets %0l %01 %01 ®401 %01 hii %21 

OGHBCLPE 
I 
U 

DG-HBCIZH 
BFI 

3/2+ sfZ 
0 
sA- >/5 
z 
2+2 y? 

-1/2 
-2 
-lA 
-2 
-2 

0 
0 
0 
-4 
-4 

sA 
6 
sA 
6 
6 

z/z-Jz 
0 
3/2+/s 
2 
2-2 /% 

-6 
-6 
-6 
-2 
-2 

4 
4 
4 
4 
4 

IFM 
log 
IJM 
MI® 
MI 

7/2+/5 
i/fe+ Js 
IA-/8 
7/8-yf 
2-2/8 

-lA 
-7/2 
-7A 
-lA 
-2 

-4 
-4 
-4 
-4 
-4 

3/2 
21A 
21A 
8/2 
6 

7/2-/8 
lA-ys 
iA+ ŷ  
7/2+ /s 
2+2 /S" 

-2 
-2 
-2 
-2 
-2 

4 
4 
4 
4 
4 

DGHLPEIM 
EFI 
EPM 
IJB 
IM 

-1 
-1+2^ 
l/Z*J% 
-5/8+^/T 
—5/^— yy 

1 
1 
5/2 
-lA 
-lA 

-4 
-4 
-4 
-4 
-4 

-8 
-8 
-15/2 
3/2 
8/2 

-1 
-1-2 ys 
lA- ŷ  
-sA-yr 
-5/2+ /S" 

-2 
-2 
-2 
-2 
-2 

4 
4 
4 
4 
4 

MM 
MI 

D6MFZJM 
ijm 
EFmi 

1/8-/8 
-1—2 /J 
-1/8+ ys 
-i/fe-yi" 
1 

5/2 
1 

-lA 
1 

-4 
«4 
-8 
-8 
-8 

-15/2 
•3 
8/2 
3A 

-5 

1/2+/8 
-1+2/f 
-lA- ys 
-iA+/^ 
1 

-2 
-2 
-6 
-6 
-6 

4 
4 
4 
4 
4 

ADQBCLPE 
1 
M 

ADG3CBIM 
BPI 

1+ ̂ 8 

r-1- ys 
sA 
S/8+2 ys 

1 

1 

-1 

4 
4 
4 
0 
0 

Z 
isA 
2 
15/2 
15A 

1-/S 

1+/I 
3/2 
3/2-2 ys 

-2 
*2 
-2 

2 
2 

4 

4 

4 

SFM 
IJE 
ion 
hm 
MSI 

8+ yi" 
ys 

- yr 
8- y? 
3/2-2 /i 

1 
—8 
.2 
1 

-k 

0 
0 
0 
0 
0 

8 
12 
12 
8 
15/2 

8- y? 
- y r  
/r 
8+ VS" 
3/2+2 ys 

2 
2 
2 
2 
2 

4 
4 
4 

4 

ADQmSIM 
EFI 
EFM 
XOS 
IJM 

•''5 r-—3]^+2 /s 

-s+Zs 
-3-/5" 

5/2 
5A 
4 
1 
1 

0 
0 
0 
0 
0 

-3/2 
-sA 
-6 
3 
8 

-3/2 
-3A-2 ys 
- /S" 
-3-
-3+y3 

2 
2 
2 
2 
2 

4 
4 
4 
4 
4 

MM 
MX 

ADaEFIJM 
1<U 
EFMJII 

- y s  
-8/2-2 /S 
-1+ /F 
-1- >/5' 
1 
s 

4 
5A 
1 
1 
5/2 

0 
0 
-4 
-4 
-4 

-6 
-sA 
8 
8 
-sA 

/r 
-3/2+2/3 
-1-/^ 
-i+yr 
a 

2 
2 
-2 
-2 
-2 

4 
4 
4 
4 
4 



fhsse possibilitiss ars listed in fable 9. 

It has be«n shown earlier that If^^ is a oonservatiTe upper limit for 

the refleotlons which are syfitenmtioalXy absent, this sioans that < 0.6 

for these refleotions and an esmraination of lables 7, 8, and 9 shows that 

in avery oas® at least on« of R^oi* ®20l' ®S01» ®X11 graater than 

this. Thu8« none of the possible ordered struetvures will explain the 

observed absanees. 

A disordered struoture. 

Siaea no ordered structure can be found, the structure must be par­

tially disorderad. 

fhera is independent evidence which lends support to the idea of a 

disorderad structure. The original Weissanberg patterns thamselvas led to 

an early suspicion that the structure was not wholly ordered, since, as can 

be seen from Figure I, certain of the spots on the odd layer pictures 

appaar to ba diffuse. 

The Laue diffraction patterns, taken with molybdenum radiation also 

give evidence of disorder, (cf. Experimental Methods section). The 

With one six-fold 

"(EP) 
(IJ) 
(KL) 
(MH) 

© 

r(ad®i)(bcyi Ref) 
m 
(MH) 
/kl) 



12 
12 
12 
12 
4 

4 
4 
4 
4 
4 

4 
4 
4 
4 
4 

4 
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Table 9 

Relative structure factors for la^r of 
tltaQlum atoms at s 0« in 

®101 %01 %01 %01 %01 %11 

2 /W 2 0 -6 -2 /F 0 
-5 -1 0 3 .3 0 
-2>/T 2 0 -6 2/3  0 
1 -1 4 3 1 -4 
1+2/5 -4 -2 3 1-2 v/S 4 

2+2/3 -2 2 -S 2-2/3 0 
4 -2 -2 -6 4 4 
-1 -S 2 3 -1 0 
1-2 /S -4 -2 3 1+2 /S 4 
2-2 y/T -2 2 - 6 2+2 yf 0 

2 /3 -1 -6 6 -2 /F 0 
1+2 /S 1 -2 -S 1-2 /r 0 
3 1 -6 -3 -3 0 

-2 —2 -2 6 -2 -4 
-2 -1 -6 6 2/S 0 

1-2 ^/Y 1 -2 -3 1+2/T -4 
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streaking observed In these photographs indicate a streaking in the recipro­

cal lattice in planes perpendicular to This streaking is oheraoteristio 

of a two-dimensional disorder* (Zaohariasen* 1945). The details of the 

non-Bragg scattering in these photographs could not be determined with the 

facilities that were available, so that little else could be determined 

coneerniug the details of the disorder* 

Mature of the disorder. It has been found possible to explain the 

over all intensity patterns quite satisfactorily on the basis of a par­

tially disordered structure in Dg^* No reasonable method oould be found by 

which the remaining possible space groups oould be investigated with respect 

to disordering and little attempt was made to find a disordered structure 

in other groups. It can hardly be expected that any such structure oould 

explain the observed data any more satisfactorily than does the present 

postulated structure. 

Since the diffuse* non-Bragg scattering has not been studied and, con­

sequently, the correlation among the disorder 8it»s are not known, each of 

the atomic sets of titanium in must be treated as independent* It is 

assumed tluit for each set (one of whose atoms occurs at there is a def­

inite probability, that the set occur at e • 0, and a probability of 

I - that it occur at s • Sinoe the disorder is probably a two-

diawnsional one, the Ti-Be—Be-ti chains oocurring in the £ direction are 

probably o<Mapletely ordered along their length, but each chain may start at 

either s " 0 or s • ̂ with a probability that depends on its position in 

the (001) plane. 

Equations for absence. Sinoe the titanium x,y parameters are all mul­

tiples of one-tiwlfth, the contributions of the titanium to F(hk I?) is 
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periodic in h and k for all possible titanium combinations, and this, 

together -with the syBKetry of allows only eight of the structure fac­

tors in each of the odd layers to be independent. Thus the titaniuia con­

tribution to the structure factors of the first layer •will have only the 

values fjj^ R(hk^ ), where S takes on only ei^ht distinct values. 

The reflectiojs (lOl), (201), (301), (111) and (441) are all absent and 

S(hk<B) for these reflections take a different form for each of these 

reflections. All other absent reflections have the same form for R as one 

of these, so these reflections may be taksn as representative of all the 

absent reflections. If it is demanded that the absent reflections have 

zero structure factors, a set of five simultaneous equations in the eight 

probabilities that the eight atcsaic sets be at z • 0 can be obtained. One 

of these equations has irrational coefficients, and the equating of its 

rational and irrational parts yields an additional equation. 

Tha structure factor for the reflections with odd Ji indices may be 

written in the form 

F(hkj2) >• 2. cos 2 -rr (hxj + ) 

* #(l - px y ) oos2tr(hx^ + iy; ) 

P(hki^) - X f (2pj.^y^,-l) oo«2-rr(hx^ + ky^ ) 

n^ere f • f+ 2fg^ cos , and Pj^ .y, » the probability that the atom 
6 ^ 

at x^y^ lie at 8 "0, 

Ti^e beryllium atoms at 8 • l/4 and s " 3/4 do not occur in this expres­

sion because their structure factors cancel out precisely. The berylliutas 

at « " 0 and B " § are omitted because although they not occur over 

each other at precisely the sasKr xy position, they very nearly do. In any 
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oas0 the vaaishiog of the approximate structure factor as written is a nec­

essary condition for the vanishing of the total structure factor, since the 

periodic absences cannot be explained by a cancelling of the psriodic 

titanim structure faetor contributions by the non-periodic beryllim con­

tributions* The 'beryllium structure factors are not periodic unless they 

lie in the ideal pseudo cell positions, in which case their structure fac­

tor contributions would cancel as do those of the berylliums at b • 1/4 and 

S/4. The titanium structure factor contributions alone mst be zero or 

very nearly so and they are assumed to be aero. Here a particular x^y- is 

used to represent the entire atomic set in p . 

From P(lOl) « 0 

p(l/l2, 2/12) - p(7/l2, 2/12) 

and - p(|, 0) + 2p(l/4, 0) + 2p(l/l2, 2/l2) + p(4/l2, 2/l2) - 2p(|, l/4) 

- 2p(s/l2, 1/12) - i 

from F(20l) •• 0 

3p(t. 0) - P(l/4» 0) + 2p(l/l2, 2A2) - 3p(4/l2, 2/12) - 2p(|-, l/4) 

+ 2p{5/l2, 1/12) - 0 

from F(301) •• 0 

6p(0, 0) - 2p(|, 0) + 4p(l/4, 0) - 8p(l/l2, 2/l2) - 4p(4/l2, 2/l2) 

- 4pM, 1/4) + 8p(5/l2, lA2) - 1 

from P(m) - 0 

6p(0, 0) - 2p(|, 0) - 4p(l/4, 0) + 4p(l/l2, 2/l2) - 4p(4A2, 2A2) 

4p(4A2, 2/12) + 4p(t, 1/4) - 8p(5/l2, l/l2) - 0 

and from F (441) - 0, 

p(0, 0) + p(|, 0) + 2p(l/4, 0) + 2p(lA2, 2A2) + 2p(4/l2, 2/l2) 

+ 2p(7A2, 2A2) + 2p(|, 1/4) + 4p(5/l2, l/l2) - 8 
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Ihe aquations are cocsistent, sinoe the ooeffieient and augmented 

aatrices are hoth of rank fire. Only the equation F(lOl) • 0 leads to two 

equations sinoe it is the only one to contain both rational and Irrational 

ooeffloientB. 

The equations may be solved in teras of two of the probabilities Tshioh 

have bean taken to be p(0, 0) and p(|", O). The solutions are: 

p(6/l2, l/lZ) - 17/80 + S/l0p(0, 0) - 5/5 O) 

Vih 1/4) - 2/10 - llAo p(0. 0) + 7/10 p(i 0) 

p(4/l2, 2A2) - 1/8 + SA P(0. 0) - |p(i. 0) 

p(7/l2, 2/12) • p(l/l2, 2/12) - 9/lO + 1/feO p(0, O) - 7/feOp(-|, O) 

p(l/4, 0) - 29/feO - 16/10 p(0* 0) + 12/10 p(|, O) 

It vfill be seen that the equations are not suffioient to determine a 

unique sat of proDabilities» The intensities of the present reflections 

must^ therefore* be used. Sinoe there are three independent structure fae-

tors among the present reflections, there will not nsqessarily be a set of 

probabilities "which satisfy the above set of equations and also give the 

correct intensities for the present reflections. It was in fact found as is 

shown in ths next section that no set of probabilities which put the present 

reflections in the right order of intensities, would satisfy the above set 

of equations, 

Fourier transforms• As representatives of the three independent struc­

ture factors of the reflections which are actually present on the odd layers, 

(401), (501), and (221) will be used. 

Normally it is not possible to carjry out a series of Fourier syntheses 

with all of the possible permutations of the signs of the structure factors 

because the number of permutations is far too great. In the present case, 
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however, this is possible since only three independent sign aesignoants need 

be applied to the first layer data. This procedure ueoesaitatee tJ^ assump­

tion that any deviations of beryllium atoms from their idealized positions 

Tsill not affect the assignment of signs. 

It is difficult to see hots the small possible displacements of the 

pseudo cell berylliums could cause a sign reversal from that required 

the titaniums and yet fail to cause an absent reflection to appear, so 

there will be only foxur possible variations in the signs of the structure 

factors of the appearing first layer reflections. Changing all the 'signs 

of the first layer structure factors will have the effect of adding ̂  to all 

of the s paramters in the structure and will yield the same structure with 

the origin displaced by ̂  in the z direction. Iherefore, the sign of (401) 

nay arbitrarily be takan as positive, and the various combinations of posi­

tive and negative signs be taken for (501) awi (221). These sign combina­

tions may be represented schematically by 

(401) (501) (221) 

I + - -

II + + -

III + - f 

I? + + + . 

The various possible structure factor combinations represented above will 

be referred to l:y the Roman numeral which precedes it. Sign combination 

and structures derived from this sign assignment will be referred to by the 

same Roman nimeral. Thus, structures I will have the structure factor of 

(401) and related structure factors positive, and the structure factors of 

(501) and (601), and the structure factors related to than, negative. 
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First layer Fourier syntheses were mad® with each of the possible sign 

oombinations. the sums mre carried out first with the three-fold axis 

abstracted as outlined in the theoretical section and later, by increasing 

the frequencies of the International Business Machine card set to thirty, 

in order to include a majority of the reflections obtained with Cu Kot 

X-rays. In the latter case the following formula was usedt 

The values of the peak heights for the four suimaations are given in fable 

10. The sums of all of the peak heights for each of the structures is also 

included* for reasons discussed below* 

The interpr«tation of the first layer transforms is particularly 

simple in this case. In the theoretical section, the formula 

has been derived, where J2, is the index of the layer for which the 

synthesis is made* In the present structure the problem is to distinguish 

between titanium atoms at a « 0 and ti-tenium atoms at a • If in the 

above integral the function j?(xy2) is shifted by a • (i.e. If j7(3!ya) is 

replaced by ^ (x,y,B + g), the integral becomes 

E(3cy) • ^ ̂  ^'hkfi ^ 2i«hx cos 2 ivlsy 

^^*hkA - ̂ *hkji ) sin 2nhx sin 2Tt Iqr 

with F» ~ " 0 if h or k - 0 
hkj; 

6 

j^^(xyt) oo82-Tr( J^,z + ". 

S(xy) if je, is odd 



64 

fable 10 

Peak heights from the F(hk l) Fourier syntheses 
and the probabilities deduced thereform 

Structure I 
Sets Atomio position Peak heights Probability that set 

is at » » 0 

A 00 -531 \% B,G 919 \% 
D IO 937 S/4 
I,J 1,1/4 1660 1 

MjH 7/12,2^2 -1180 1/8 
K,L,0,P 5/12,1/12 -176 
1,P 1/12,2 A2 72 i. 
G,H 4/12,2^2 -1284 1/8 

Weighted sm 180 

Structure II Probability that set 
Sets Peak heights is at 8 " 0 

A S31 8/12 
B,C 581 8A2 
D 2011 1 
I, J 1512 10/12 

M,N -1618 
K,L,0,P -696 SA2 
E,F -366 5/12 
G,H 332 7A2 

Weighted sum lit 
7A2 

* 
structure III Structure IV* 

Sets Peak heights Peak heighta 

A 1687 2761 
B.C 1637 1299 
D 207 1281 
I,J 906 568 

M,N . 666 228 
K,L,0,P -257 -695 
E,F -586 -1024 
G,H -1284 -210 

Weighted sum i"5m 

*Ho probabilities have been determined for these structures. 
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If tha structure wre perfectly ordered, one would expect peaks of only 

two kinds at titanium sites, equal to each other in absolute magnitud# but 

the one the negative of the other. It is readily apparent from Table 10 

that this is not the oase. 

Although the structure is not entirely ordered, it still must be tjrue 

that there are as many titanium atoms at z • 0 as at E » For this 

reason the sum of R(xy) over all the titanium sites must be sero. fhis 

consideration eliminates the sign assignments III and I?« In the two 

remaining syntheses, probabilities may be assigned to each titanium set 

which will explain the observed peak heights. The probabilities have been 

assigned "by making use of the fact that the peak heights are proportional 

to 2p • 1* Thase p*obabilitieB are also listed in Table 10» In both 

oases the ma^mum peak has been assigned a probability of one, and l^e 

probabilities have been rounded off to give a set of small rational frac­

tions. 

It will be seen that neither of the two trial probability oombinations 

satisfy the conditions for the vanishing of the structure factors of the 

absent areflections. In particular p(7/l2, 2/l2) p(l/l2, Z/XZ), for 

either of the structures. 

In Table 11 the pertinent structure factors are evaluated for the two 

cases* It is obvious that the first set, obtained from tha p's derived 

from the sign combination F(40l) positive, F(50l) negative, and F(22l) 

negative gives the better correlation with the observed data. Mot only do 

most of the structure factors of the absent reflections vanish but the 

structure factors of the present reflections are put In the obaervad order# 
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Since the Fourier agrnthesis of the first layer data is a new method, a 

three-dioensional Fourier sunmatioQ ^(xyO) ms made as a eheok using ell 

of the Cu EoL data with the sign as&ignmeQt I, which ga^e the best fit 

above* Ihe peak heights from this suBsnation are given in Table 12, fhe 

Table 11 

Comparison of the relative structure faotca's for 
the two disordered struoturss, I, and II 

Structure I Structure XI Observed presence 

%01 -0,2 1.30 absent 

%01 0 -0*76 absent 

%01 0 -0.5 absent 

®401 7 7.25 present 

%01 -1.72 -0*26 present 

%11 -0*6 0.16 absent 

%2l -1.7S 3.5 present 

%41 0 0 absent 

probabilities obtained from the F(hkl) synthesis are also included and they 

will be seen to parallel the peak heights* They are not proportional to 

them« as might have been expected. This is due partly to an incorrect 

background in the three-diownsional synthesis and partly to a lack of cor­

relation between the various layers which went into the three-dimensioml 

synthesis* fhis lack of correlation arises because the streaking of the 

odd layer reflections appears differently in the (hO Jl)t used for correla­

tion, than it does in the (hk) films. The agreement between the prob­
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abilities and the peak heights seems to bo good enough, however, to oonfina 

the postulated inrobftbilities* 

Structure I, then, seems to satisfy all of the requiremnts of the 

observed data. That the agreement is fairly good, in spite of the laok of 

Table 12 

Three-dimensional Fourier Section (scyO) 
for the sign assignment I 

Sets Probability that 
Atomic position Peak heights set is at jE •* 0 

A 00 6S00 1/4 
1/5,2/^ 4600 lA 

B,C 1/4,0 9000 5/4 
D iA»Q , 8960 3/4 

1/2,1/4 10000 1 

M,H 7/12,2/12 4B00 1/8 
S,L,0,P 6A2»1A2 7100 l/2 
E,F 1/12,2/12 6600 l/2 
G,H 4/12,2/12 4200 1/8 

refinements is shovn ̂  the comparison in Table 13 where calculated and 

observed structxare factors are recorded for three of the odd layers. 

Adjacent reflections are, in most cases, placed in the observed order 

with approximately the correct intensity ratios. It could not be expected 

that reflections farther apart would exhibit agreetnent between the observed 

and calculated structure factors and they do not. Because the extent of 

the variation of the observed structure factor from the calculated value 

within each layer seems to depend on JL more strongly than might be expected, 

some minor adjustownt of the z parameters of the berylliums at « " 0 and 

or 1/4 and S/4 might be indicated. 
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Table 13 

Caloulated and observed strueture 
faotors for Structure I 

Index ^oba ^oaX 

2.2.*•! 40 -XOO 
40 -93 
X25 249 

6.0.*.! 65 -90 
6.0.**1 S7 •*94 

7.0.**X 65 -85 
8.0.*•! X67 222 

42 -8X 
8.2.*•! 43 -85 
8.3.*•! 46 -78 

6.6.*.l 42 -82 
7.5. 42 -76 
8.4.*.1 X62 20X 
9.4.*.x 47 -73 
10.4.*•! 48 -76 

52 -68 
12.4.*.l 52 X76 
X3.3.*'l 0 -63 
X4.2.*.X 0 -67 
X2.5.*.X 54 -62 

xe.x.*»x 0 -62 
X2.5.*»l 56 -65 
X6.0.*.X 47 X63 
X2.7.*.X 60 -60 
17.0»**X 47 -60 

xo.x©***x 53 -63 
XX*9.**X 53 -59 
X2*8**»X X34 X58 
X8.0***X 50 -62 
XS*8***X 50 -57 

X9.0.*.X 53 -56 
X4.8.*.X 53 -60 
20*0.*.X X33 147 
XB.8.**1 54 -54 
20*X***1 49 -54 

*r«pre8ent8 the third Bravaie-Miller index* 
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Table 13 (oontlQued} 

Index ^'obs Feel 

20»2**«1 49 -56 
16.8.*.l 100 141 
17.7.*.1 49 -55 
18.6.*•! 49 -56 
20.S.*.1 49 -52 

19.5.*«1 49 -62 
16.9.*.l 0 -52 
20.4!.*»1 142 137 

16.10.*.l 0 -54 
21.4.*.l S2 -50 

22.4.**1 0 -52 
16.12.*.! 20 131 
17.12. 20 -48 
24.4.».l 89 126 
18.12.*.1 20 -50 

24.5.*.l 0 -46 
19*12«*«1 20 -45 
24*6«**1 0 -48 
20»12***1 82 119 
21*ll***l not observed —44 

24*7***1 not observed -44 
22*10*'**1 not observed -47 
23 .9***l not observed -44 
24.8»**1 not observed 116 
20.1S.*.l 20 

2.2.*.5 47 -100 
3.1.*.5 47 -93 
4.0»*.5 232 249 
S.0**«3 108 -92 
6.0***S 126 -98 

7.0.*.8 137 -89 
8.0.*.5 S72 234 
8.1.*.5 86 -86 
8*2.*.3 92 -93 
8.5.**3 93 -85 

6*6.**3 08 -88 
r.6.*.8 58 -82 
8.4.*.5 239 218 
9.4.*.S 60 -80 
10.4.*.5 51 -84 
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Table IS (oontlnued) 

Index ^obs ?Oftl 

n'4.*.3 38 -77 
12.4»**S 179 204 
13*S«*'5 36 -76 
14'2•*•3 36 -81 
12'S•*•3 36 -76 

IS.I.**3 36 -78 
12.6.*.3 47 -80 
16.0.*.3 179 198 
12.7.*.S 43 -73 
1T.0.*.5 37 -73 

io»io.*.s 43 -77 
11.9.*.8 43 -72 
12.8.*.3 209 190 
18.0.*.5 37 -76 
13.8.*.3 43 -69 

19.0.*.3 37 -69 
14.8.*.$ 43 -74 
20.0.*.3 202 182 
15.8.**3 43 -67 
20.1.*.3 43 -67 

20.2.*.3 43 -71 
16.8.*.3 204 177 
17.7.*.3 43 -66 
18.6**.3 43 -70 
20.3.*.5 43 -66 

19.S.*.8 43 -6§ 
16.9.*.3 43 -60 
20.4.*.3 204 173 
16.10.*.3 30 -70 
21.4.*.S 0 -62 

22*4.*.S 0 -65 
16.12.*.3 37 162 
17.12.*.3 S7 -69 
24 .4.*.3 153 156 
18»12.*.3 22 -62 

24.5.*.3 0 -57 
19.12.*.3 37 -57 
24. 6.*.3 0 -60 
20.12.*.3 177 ISO 
21.11.••S 97 -55 
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fable IS (continued) 

Index Fo^b 

24.7.*.S 0 -56 
22.10.*.S 103 -69 

2S.9.*.5 105 -55 
24.8. *.5 174 144 
20.15**.S SO -54 

28.0.*'5 21 160 
2.2.*.6 54 -54 
S»l.*.6 57 -50 
4.0.*.6 192 135 
5.0.*.6 83 -50 

6.0.*.5 83 -53 
7.0.*.5 81 -SO 
8.0.».5 171 132 
8.1.*.e 52 -49 
8.2.*.e 57 -52 

8.S»*»5 57 -48 
6.6.*.S 58 -50 
7.5.*.6 68 -47 
8.4.*.6 267 126 
9.4. *.6 74 -46 

10.4. *.5 69 -48 
11.4.*.5 61 -44 
12.4.*.S 201 117 
13.3.*.e 0 -44 
14.2.*.6 0 -47 

12.5.**S 66 -43 
15.1.*.S 0 -43 
12.6.*.5 71 -45 
16.0.*.5 37 112 
12.7.*.5 77 -41 

17.0.*»5 29 -41 
10.10.*»5 87 -43 
11.9.*.5 87 -40 
12.8.*.5 275 108 
18.0.*.5 32 -43 

13.8.*.5 68 -40 
19.0.*.S 37 -40 
14.8.*.5 48 -42 
20.0.*.5 300 103 
15.8.*.5 0 -39 
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Table 13 (coDtlQued) 

IndMx ^oba ^oal 

20.1.*.S 77 -38 
20.2.*.6 71 -41 
16.8.*.S les 103 
17.?.*.g 24 -38 
18.6.*.6 32 -40 

20.5«*«6 65 -38 
19.6.*.5 37 -37 
16.9.*.e 0 -38 
20.4.*.6 90 99 

16»10.*.6 0 -39 

21.4.*.5 79 -36 
22.4.*»5 66 -37 

16.12.*.® 163 93 
17.12.*.6 68 -34 
24*4.*.6 210 90 

18»12«**6 63 -36 
24»6»**e 0 -34 
19.12.•.g 62 -34 
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Thd real test is, however, that this atruetwe explains the absenoes 

and no other atruoture has been found which will do this. It must be 

admitted that other disordered structures may exist which will explain the 

data equally well. There might be, for instance, disordered structures in 

any of the other possible space groups which would do this. Without fur­

ther knowledge of the diffuse scattering without which no idea of the rela­

tions between the various probabilities can be obtained, there seems to be 

little use in trying to proceed further. The absences are explained by the 

present structure and no other structure oould do that much better. 

Further refinements. The structure, as it now stands, is admittedly 

only a rough approximation. If the disordered structure, which has been 

postulated is correct, there is little iionediate hope of refining the 

beryllium positions. It i»s seen from the pseudo cell Foiirier projection 

(Pigore S) that certain of the beryllixim atoms must show small displacements 

from their ideal pseudo cell positions. These displacements certainly 

depend on the relative positions of adjacent titanium atoms. If the titan­

iums were perfectly ordered, sise considerations alone might sake it possi­

ble to find accurately the beryllium displacement. As matters stand now, 

the magnitude of this displacement can be found from the Fourier projection 

but the direction of an individual displacement cannot be found and oould 

not be unless the correlation among the titanium probabilities were known* 

If the beryllium which is displaced is considered more carefully, it 

will be seen that it amy exist in at least four situations, nmelyt sur­

rounded at its z level by none, one, two, or three,-titaniums. If the 

beryllivua is at the center of the triangle of stirrounding titanium sites, 

it will be too close to any corner containing a titanium. It is unlikely. 
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then, that three titanixuas will surround a beryllium and therefore also 

unlikely that no titaniums •will surround it» Baoh of these berylllvuna Is 

probably surrounded, therefore, by one or two titanium atoms at the oorners 

of the titanium site triangle and oust move away from the titaniums* fhe 

Fourier (Figure 6) shows the berylliums to lie at 2.S A from some of the 

pseudo cell corners and atomic radii saro consistent with this belt^ a 

beryllium titanium distance. 

If the correlation among the titanium probabilities could be found, 

the positions of the beryllium atoms at each of these sites could be found. 

This oould be done, also, by a trial and error procedure using the observed 

intensities of the odd layer lies, but suoh a procedure would involve 

hundreds of parameters and is impractical unless those parameters could be 

guessed in advance. But suoh a guess involTes the correlation of the 

titanium probabilities mentioned before. The ideal beryllium positions 

mxBtf therefore, be regarded as the best approximation that can be made. 
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DISCUSSION 

The fiaeX structure is represented soheraatioally in Figures 8 and 9. 

Tlie fractions in Figure 8 are the probabilities, deduced earlier, that the 

titanium atom occurring over that sy position occur at » • 0» Figure 9 

shows one-half of a pseudo cell portion of the real cell with the titanium 

atoms in ordered positions* The portion shown has a height of and the 

complete pseudo cell portion is obtained by the operation of horizontal 

mirror planes at z « 0 and e " In tiie true cell, siiailarly ordered 

pseudo cell portions will occur throughout the structure, with various 

orientations and with the pseudo oell origin either at « 0 or s • The 

Immediate surroundings of the various kinds of atoms are, however, similar 

throughout the structure. Figure 9 also shows these surrounding atoms 

around one of the titanium atoms and around on® each of the three crys-

tallographioally different beryllium atoms. 

Without further knowledge of the relative positions of the titanium 

atoms, little can be said concerning the reasons for the unusual disorder 

appearing in the structure. Eiere, at least, is some rationality in the 

titanium positions, since if they are to occur with the given 3cy parameters 

and in two layers separated by s • there is no ordered structure which 

will preserve the correct titanium-beryllium distances in the xy plane. As 

mis pointed out earlier, the three titanium atoms surrounding the beryllium 

atom at the paeudo oell position 1/^,2/6 cannot all have the same z para­

meter if a reasonable titanium-beryllium distance is to be maintained. A 

nmber of the ordered structures which were examined in some detail in the 
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Figura 8, A schematic representation of the titanium positions in the 
final struottire. The titaniums occur over the indicated 
positions at z » 0 or z « and the fractions are the 
probabilities that the atom at that xy position occur at 
z " 0, 
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Figure 9. One half of an ordered pseudo cell portion of the real 
cell. The coordination polyhedra of the various atoms 
are also shown. The larger circles are titanium atoms, 
the smaller, beryllium. 
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o.ourse of th« elimination of the ordered structures eontainiog this forbid­

den grouping of titanium atoms in the same layer. All of the possible 

ordered structures could not be examined in such detail but if this grouping 

occurs in all of them the structure is disordered because no ordered struc­

ture will preserve the correct interatomic distances. 

Ife may conjecture that the various probabilities in the pjirtially dis­

ordered cell arise through a partial ordering of soiae completely disordered 

structure. Indeed, the sharp reflections alone ^le even layers and (401), 

(801), ete_j7' can be explaitMd by a disordered structure in whleh the titan­

ium at 00 and at positions, all of -whose parameters are multiples of 1/4, 

are at s •» 0, and the other titaniums have a probability of l/4 for occur­

ring at 2 • 0. This structure makes the structure factors of all absent 

reflections *ero and» in addition, yields a «ero structure factor for (501), 

(221), and the reflections related to these* The final structure night, 

then, represent the greatest amount of ordering the system could achieve 

while maintaining the proper Interatomic distenoes. 

In Table 14 are given the numbers and distances of atoms within the 

true cell* Some of the distances found may be explained very nicely if the 

bond orders are chosen properly. Each titanium Is bonded to eight beryll­

iums, two at 2.18 A and six at 2*55 A* The sum of the titanium and beryll-

lun coordination number twelve metallic radii is 2.59, while the em of 

their single bond radii is 2,21 A. (Pauling, 1947). These considerations 

lead to a titanium valency of four (6/l2 +2 » 4), The beryllium at 

0,0,0.29 has six beryllium atoms at 2»13 A* which Is near the eoordlmtlon 

number twelve distance. There Is also the one titanium at the single bond 

distance, 2,13 A, so this beryllium has a valency of two. 
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7abl« 14 

NoighborlQg atoms and interatomlo distaQoes* 

Baoh Ti at 000 hast 

2 M (at 0,0,0.29J «to,) at 2,15 A| 

6 Be (naar l/fe,2/5,Oi eto.) at 2,65 Aj 

X2 Bo (at ̂ ,0,l/4| eto,) at 2,80 A, 

Baoh Be at 0,0,0,29 hast 

1 Ti at 2,13 Ai 

6 B# (at |-,0,l/4j eto,) at 2,13 A| 

12 Be (aear l/3,2/^,0| etc,) at 3,34 A* 

Each Be near 1/^,2/^,0 hast 

1 or 2 Ti at 2,65 A| 

4 or 2 Be (at 0,0,0,29} eto.) at 3,34 Aj 

2 or 4 Be (at g,0,l/^i etc.) at 2,2 Af 

4 or 2 Be (at ̂ ,0,l/4| etc.) at 2,3 A, 

Baoh Be at ̂ ,0,l/4 haet 

2 Be (at 0,0,0,29| eto,) at 2,13 A| 

2 Be (near l/^,2/fe,0| eto,) at 2,2 Aj 

2 Be (near l/fe,2/^5,Oj etc,) at 2,3 Aj 

4 Be (at J-#i-,l/4} ate,) at 2,12 A» 

2 11 at 2,8 A, 

*Tha positions given refer to the pseudo oell. 
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Th« berylliums at ̂ l/4, etc., lis in a haatagonal net perpendioular to 

and aro nearly closest paoksd tdthin this net. In addition* each on« 

is bonded to four other beryllium atoms, two abovs and two below at a 

sli^tly greater distance, thus, these berylliums have a coordination 

ntmber of about ten and the distances are compatible with this* 

Finally, the berylliums near 1/^5,2/^,0 ssem to be less strongly bound. 

It is possible, since i^e direction of the shift of these berylliums wil^ 

respect to the titaniiim atoms is not determined by the data but is merely 

assumed, that some of these bsrylliuas are bound more strongly to one of 

the adjacent titanium at(»ns. This again is pure conjecture* 
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SUMMAR7 

Th« struetur« of the metallic compound TlBe^g has been Itnrestigated. 

The compound vms found to crystallise in the hexagonal system Kith lattice 

constants* a^ • 29,44 ± .01 A* Og " 7»33 t *01 A. The Laue diffraotion class 

is Sg^ and the space group of the postulated disordered structure is 

(C6/mmm}* 

Hie intensities of reflections with even ^ index have been used to 

establish a pseudo cell structure frcnn which the various interatomic dis­

tances have been determined* The pseudo cell contained an ambiguity, since 
r 

itdd not distinguish between the points x,yf®, and x,y,8 + |^. This 

ambiguity is only partially resolved in the final structure, for it was 

found that only a partially disordered structure would explain the absence 

of the large number of extinct reflections. All possible ordered struc­

tures in ai:^ of the possible space groups were systematically eliminated 

and only one disordered structure was found which would explain the absenoes 

"k-

The short range order of the structure has been explained satisfactor­

ily but, while the long range partial disordering may be made to appear not 

too unreasonable, no truly satisfactory explanation of the details of the 

disordering has been found. 

A study of Fourier transforms was of help in the structural determina­

tion. The most Important result of this study was the development of a new 

B»thod of Fourier synthesis, using data obtained from a single layer line. 
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other than the ««roth. Th® interpratation of euoh sjmtheaes was found to 

be quite simple in the present struotural detsrmioation and is used to find 

the postulated structure. 
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