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INTRODUCTION

In a developing economy the agricultural sector takes a decreasing
importance, in relative terms. Producing outputs whose price and income
elasticities of demand are smaller than one, thls sector takes on a
progressively lesser importance in the economy when progress alters
the traditional input-output relationships, the price situation and the
per capita level of income. Within the farm sector, capital is sub-
stituted for labor and land through modern equipment and techniques of
production. Farms become laxrger, capital is applied in higher quantity
as more farm inputs are produced by the industry and the excess of farm
labor is transferred to the developing sectors of the economy. At the
same time the risks involved in farming increase.

Under such conditions it becomes important to know, even for an
area as small as the "Bocage Angevin" region, what are the main economic
forces in action and their relative strength in order to guide political
leaders and people. The main problems, among others, are related to:

- level of income opportunities in farming and other jobs

- degree of risk involved in agriculture due to price and techno-

logical progress uncertalinties

- optimum farm plans related to various levels of capital, land

and labor resources at disposal. This knowledge helps to build a
program for developing the existing commercial structure of the
area and to set up an adequate extension program.

- rate of resource accumulation.

In this study, after having reported briefly the main characteristics

of the area we have worked on, we define the main economic problems



which have to be solved and the economic model we have built in order
to help people in their task of defining adequate policies and develop-
ment programs. In Part II we discuss, on theoretical grounds, various
ways of setting up a set of adequate constraints for our linear program-
ming model. Finally, after having reported in Part III the main input-
output relationships and coefficients which have been used in the model,

we give our results in Part IV. They are related to the preceding

problems.



PART I. PROBLEMS AREA AND RESEARCH OBJECTIVES



CHAPTER 1. THE "MAYENNE DEPARTEMENT"™ AND ITS PROBLEMS
Any economic activity is determined by the characteristics of its
near and far off environment. Before defining our research purpose we
will therefore present briefly the "Departement de la Mayenne” and one

of i1ts natural regions called "Bocage Angevin" for which this study has

been undertaken.

A. The "Departement de la Mayenne" (33, pp. 1-43)

It is located between latitude 47° 44' and 48° 31' north and between
longitude 2° 23' and 3° 35' west of the Paris meridian. Its chief town,
Laval, is

-~ 285 kilometers distant from Paris

- 136 kilometers distant from Nantes

- 142 kilometers distant from Caen

1. Geology
The northern part i1s constituted of granite and slate. The

central part is formed of various rocks: sandstone, slate and limestoné.
The southern part, or the Bocage Angevin region, is mainly consti-

tuted of pre-cambrian schist and of few silurian slate. In the former

case, this bedrock has generated fertile clayed soils when they are deep

and well drained. They occupy the major part of the total area.

2. Relief and climate

The highest point is 417 meters above the sea level but the most

frequent altitude is from 200 to 100 meters with a general inclination



from north to south.

Distant 80 kilometers from the sea, the climate is very mild, humid
with a small range of extreme temperature during the year since, in
average, it has been recorded over the last 10 years, 49 centigrade in
January and 19.1°, In July in Laval, for a total of about 0.758 meter of
water, it rains 160 days a year (or about 4.5 days out of 10). Under

such a climate a large number of plants can be cultivated.

3. Demography
In spite of a high birth rate (1.86%) and of an excess of birth

over death of 6.3 per 1000 habitants, the "Departement de la Mayenne"
is continuously losing its population., The ™average" marginal losses
are, in number of people per year and for the following periods:

1876-1936: 1670 persons

1931-1936: 535 persons

1946-1954: 2225 persons

1954-1962: 1872 persons

This emigration benefits equally to the Parisian region and to the
bordering "departements". However, for the first time since many years
"the departement™ maintained its population in 1963 (247,000 habitants).
This result is mainly due to a resolute and concerted action whose
purpose consists of creating new jobs. There is no doubt for anybody
that this equilibrium is very weak for two reasons:

- This "departement", as the major part of the west of France, has

remained apart from the great industrialization movement of the

nineteenth century. Since then, the small manufacturers which



have been attracted here will never play a leading role and the
Common Market won't reverse the situation.

The agricultural sector which has lost about half of its workers
from 1892 to 1962 and about 2,000 per year from 1954 to 1962 still
employed one person (man or woman) for(eight hectares at this

last date. The technological progress which is continuously
taking place will release labor from agriculture. If the farm
youth don't find a job locally the total population of this
"departement" will decrease steadily. The relative importance

of the agricultural sector (Table 1) in the economy of this

"departement" makes this problem still more acute.

Table 1. Composition of the working population (1962)

Occupation Number of workers %
Agriculture and forestry 58,351 51.6
Building 6,969 6.2
Transport 1,723 1.5
Other industries 17,327 15.3
Trade, banking and 1,723 1.5
insurance 10,803 9.6
Services 17,908 15.8
Total 113,100 100.0




4, Characteristics of the agricultural sector

Since over 50% of the working population is engaged in agriculture
we won't describe here the other sectors of activity.
- Farm size: the average slze of farm is equal to 17.85 hectares
and varies from 15.10 to 20.10 from one natural region to another.
Table 2 gives, in relative terms, the distribution of the number
of farms by size of acreage group for the "Bocage Angevin" region

and the whole "Mayenne” area.

Table 2. Number of farms by size of acreage group (cumulative percentage)

Bocage
Farm size (hectares) Mayenne Angevin
<10 | 25. 9% 30.1%
< 20 55.5% 61.0%
< 50 97.1% 97.4%
Total number of farms 25,818 5,773
Average size 17.85 20.61

- Land use and farm output: Over half of the total land is
presently occupied by permanent pastures. On the tilled land is
grown about 45% of cereals, 10% of row crops and 42% of forage
crops (temporary pastures, red clover, alfalfa). Since cereals,
except wheat, are fed to iivestock on farms, animal products made
up about 89% of the total farm output in 1966 (61, p. 8).

- Age of the farm managers: Farmers get control over farms and

expand the size of their holding, when possible, between 25 and



50 years of age. They keep their holding until they are about 65
years old and from there on they start to give up a part, or all
of it to a younger manager. Today, farmers of less than 50 years
of age control 56% of the total land acreage as shown in the

following table.

Table 3. Age and control over farm land

Cumulative % of the

Age (years) total acreage

30 2.814
40 25.69
50 56.38
60 79.32
70 96.32

B. The "Bccage Angevin" (33)

1. Demography

Being essentially a rural area, this region has 45 inhabitants/
square kilometer and only 34 inhabitants/square kilometer in the rural
district. Of a total of 58,200 people, 44.7% make up the total labor
force. Sixty and fifty-five one hundredths percent of the working popula-
| tion is engaged in agriculture, 15.04¥%¥ in manufacturing and 24.41% in the
"tertiary" sector of activity. The "Bocage Angevin" population has
decreased at an average rate cf about 0.27¥ per year over the last
century. Stable, for a certain lapse of time after the wars (1870,

1914, 1940), the total population decreases steadily between them. In



1962, youngsters of less than 15 years of age made up 30% of the total
population (Mayenne, 28.2¥%; France, 24.8%) while people over 65 years

of age constituted 10.5% of it (France, 12.6%).

2. The farm managers

Almost half of the farmers are 50 years old or over and they hold
more than one third of the total farm land., The largest and the smallest
farms are held more frequently by elderly people. The land/labor ratio
is equal, in average, to 7.7 hectares or 13.6 hectares per man, if we

consider that women are not working full time on farms and if we omit

them.

3. Educational status of the farm population

One of the greatest difficulties faced by the rural population is
its level of education (Table 4). It slows down the rate at which
technological progress can be applied in agricultural production and
the adjustment process of the present farm labor force. Under these
conditions the jobs to which the farm youth has access are not very
rewarding. But unfortunately this situation is not particular to our
"departement”. In 1964, out of 100 French college students only six had
been raised on a farm and 7.6 belonged to the working class even though
they were originating from sectors which made up respectively 20.1 and

36.7% of the total labor force (70, p. 36).

C. The Economic Problems of this Area

A permanent migration rate, an important proportion of youngsters



10

Table 4. Educational status of the farm population over 1% years of
age in percent

Diploma Men Women Total
Primary school 22.49 25.74 24,15
High school 1.78 2.80 2.30
College 0.44 0.12 0.28
Vocational training 9.92 5.00 7.41
None 65,36 66.34 £5.86
Total 99.99 100.00 100,00

among its inhabitants, a still small land/labor ratio even in the
rresence of new technologlical progress especially in dairy and forage
production, will force the people of this region to face again two very

important and crucial proklems in the near future.

1. The problem of those who will start and/or keep on farming

For them the important problems to solve are related to optimum
production plans, risks, rate of capital accumulation, degree of special~-
ization, and for a small minority, the economic advantages and welfare
that might be provided by joint farming. However, the most crucial
question for many young farmers consists of accumulating and getting
the control over a minimum amount of resources within an acceptable

range of privation. This minimum has still to be defined.

EE—

2. The problem of those who can't get control over a farmj; land being

the most scarce resource

Acquiring a farm is expensive (8,000-10,000 F/ha) and getting a
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farm lease is almost inossible, the lease being more frequently renewed
to a member of each tenant family. The main obstacle to get a rewarding
job lies in the lack of education of people who are forced to quit

agriculture. Therefore, for the "departement™ as a whole the problem

consists of:

a. Attracting enough trades and manufacturing within its largest

towns In the absence of such a program, the economic activity of

this region will decline in the long rTun.

b. Increasing the level of knowledge of young people whatever

the location where thevy will later work A large proportion of those

who will get to college probably won't find a job locally, But it is
urgent to enlarge the opportunities which are presently faced by the
youth.

Finally, those who are lucky enough to have the opportunity of
choosing between farming and other jobs will have to compare the
relative advantages of the two situations. The comparison has to be
done both in money terms and in function of the related standards of
living (the final choice being, of course, a function of peoples' own

preferences).



12

CHAPTER 2. RESEARCH OBJECTIVES AND THE ECONOMIC MODEL
Taking mainly into account the two above-mentioned problems of this
area, we will define our research objectives and give a brief outline

of our programming model.

A. Research Objectives

The general objectives of this study are to determine:

Problem 1: Optimum production plans (and their related levels of
income) under different levels of msnagement in forage and milk pro-
duction (output per hectare or cow).

Problem 2: The influence on income of specialization in milk,
steers and cereal production. Young farmers aspire for the simplifica-
tion of their work. They want to bring it up-to-date, but such a trans-
formation requires, in most cases, large initial building investments.
They think these investments can become profitable if they are spread
over a larger number of units.

Problem 3: The set of optimum combinations of two 1limiting
resources when the others can be bought at an unlimited level. This
research has been undertaken for the following resourcess

- land-capital

- land-~labor

- labor-capital

Labor is not, strictly speaking, a 1imiting resource since it is
always possible to hire extra farm workers. But, in fact, we know that
it is not always feaslble to hire them on a part-time basis. Therefore,

in order to study its influence on income, it is considered as a limiting
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resource. Furthermore, it is assumed that modern dairy facilities are
either available or not.

These results will allow us to infer on the economic advantages of
joint farming. However, this proklem won't be fully studied here: It
would require the bullding of a sbecific model to evaluate the additional
income due to an increasing degree of resource pooling in agriculture.

Problem 4: The degree of stability of the optimum plans and
related levels of income under situations of variable prices especially
those of milk, beef, cereals and grass seed.

Problem 5: The optimum investment in building facilities.

The results of the preceding work will help mainly those who will
keep on farming. But, however, from these results it is possible to
infer few important consequences for those who will quit farming and
for the political leaders of the area., It will be mainly tried:

a. To determine the minimum level of resources allowing
farmers to get an income equal to different categories of urban people
wages. This knowledge will help the vocational guidance service to set
up its program.

b. To estimate the amount of disgulsed unemployment in
agriculture and the potential decrease of rural population.

c. To set up a program for the extension service after having
compared our results with the present production of this area.

d. To examine the government price program which would help

to solve, in this area, the problem of surplus in milk production.
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B. The Prégramming Model
In order to solve the preceding problems we have set up a unique
linear programming medel whose schematic representation is shown in
Table 5. The following symbols - A, B, b - represent submatrices whose
coefficients are different from zerp. Other submatrices have coefficients
equal to zero. The following computation procedures have been used:
- Bounding of variables. Problems 1 and 3.
- Parametric linear programming. The coefficients of the A matrix,
the objective function, cost coefficients and the constants of
the right hand side of the eguations have been varied to solve
respectively problems 1, 4, 2 and 3.
- Integer linear programming. It has been used to solve problem
5 since the investment cost functions are of the form: = a + bx.
A correct setting up of the lipear programming model constraints

requires a careful analysis of the variables and of the corresponding

production possibility set. It is particularly the case for:

capital

- crop rotations

{

feeding programs
~ investment functions and mutually exclusive set of variables

These related problems wlll be fully discussed in the following

chapters.

C. Form of Results
Most of our results are given under the form of linear and non-

linear equations. The method of least-square regression has been used



Table 5. Schematic representation of the programming model

List of activities
Crops Grassland Transfer &

(forage, manage- miscel- Right-hand
List of constraints cereals) ment Livestock Buying Selling 1laneous side

Objective function
Max. f(x) C, -C -C c, -C -C cC GC,0,-C

Tractor hour requirements? B B B

Land and crop B
rotation B, - A

Accounting constraints on
Grass seeding - A
Fodder - A - A B - A B
Cereals and seeds ~ A
Animals and livestock
products - A, B - A B

Labor
Crops
Livestock

ow
o w
vell @)
t ot
o
1

o5}
=

IA

o

Capital

Working B, - A B B, - A B - A - A
Investment B B B - A 0 B

Buildings B - A <b

- A5

3The equation "tractor hour requirement" is included to estimate the total annual number of
tractor hours which are required by the related optimum production plans.

BGT



Table 5 (Continued)

List of constraints

List of activities

Crops
(forage,
cereals)

Grassland
manage-
ment

Livestock Buying

Transfer &
miscel-
Selling laneous

Right-hand
side

Initial fixed costs

(=1 or C)

qst
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to derive all of them. However, the original data come from two dif-
ferent sources. The first set of observations has been collected from
unplanned experiments; they are real world observations. The second set
of data, in a sense, comes from a controlled economic experiment, if we
admit that a parametric linear programming can be viewed as such.

Consequently, two resulting assumptions are made:

- The unobservable random variables are normally and independently
distributed with mean zero and variance g2. In this case, the
classical statistical inferences are derived. This assumption
is made in Chapters 11 and 13 (first part) since the observations
come from unplanned experiments.

- No specific assumptions are made on the error term of the equa-
tions to be regressed. We use a descriptive linear regression
model in order to show, in a more convenient fashion, a very large
set of results. This procedure allows us, in particular, to
derive a series of iso-revenue and iso-product curves. Making no
particular assumptions on the disturbance term of the equations,
we can't make any statistical inference and probability state-
ments about the regression results. Consequently, the coefficients
of determination (R2) are used as a measure of goodness of fit.
Descriptive linear regression has been used to estimate the
elasticity of demand (60) or the elasticity of supply (47) from
step functions originating from a parametric linear programming
model. Assuming that the midpoints of the vertical portions of
the steps are most stable with respect to price change, these

points were used as observations for fitting the corresponding
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equations. Trying to improve this procedure, Burt (15) proposed
to minimize the integral of squared distances between the fitted
curve and the original step function. Working, in most cases,
into a two or three dimensional space (price or input spaces), we
use the standard descriptive linear least-square regression model
and, in most cases, take observations at equally spaced magnitudes
of the independent variables. Such a procedure is adopted since

a 1ineaf programming model whose size is large requires many

iterations when matrix coefficients and vectors are continuously

varied in a certain range.
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PART II. BUILDING UP AN ADEQUATE SET OF LINEAR PROGRAMMING

CONSTRAINTS: A THEORETICAL INVESTIGATION
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CHAPTER 3. CROP ROTATION CONSTRAINTS

When setting up a linear programming problem we can insert into
the model either a set of crop rotations or a set of linear constraints
which will bound all feasible crop sequences., One will be preferred to
the other according to the specific assumptions which underlie each
particular problem and the corresponding model size.

When crops can't be dissociated from particular sequences of crops
and recombined into other ones without violating the additivity assump-
tion of linear programming model, a pre-established crop rotation
should be included within models. It will always be the case when soil
conservation problems arise. In all other cases, even if each
particular crop can be fertilized at n different levels or be cultivated
in m different ways, we can split off rotation activities into their
components and link them with a set of adequate constraints.

A. Setting up crop rotatlion constraints
1. The relevant requirements
Adequate crop rotation constraints should satisfy to several
conditions.
a. Sequence rules
(1) A crop can follow another one if
(a) the preceding crop has been harvested
(b) agronomic laws allow it
(2) Certain crops can be cﬁltivated on the same soil only
if a certain number of years has elapsed since they

have been plowed in (alfalfa and rapes are such

examples).
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b. Isolation rules
Plants grown for seed have frequently to be Z miles apart
from other specific cropﬁ. It is a conditional mutually
exclusive type of constraint. Location rules cannot be
expressed in percentage of soll occupation or even as a
sequence constraint. All relevant variables are not even
under the control of a manager, he has to consider his
neighbor's decisions.
What can only be done is the determination, g priori, of
a maximum surface which can be assigned to those crops.
From particular solutions it will be decided if they are
feasible or not.
Converting sequence rules into an adequate set of linear
constraints.
The first step consists of building an oriented graph or its
associated matrix, which shows all possible circuits and
oriented chains.
a. The problem to be solved
Given a graph/7'= (G,E,E) and its associated matrix A
where
j = origin

i = destination

It

ajj 1, if i and j are connected by an oriented

° s 2 E
arc;i aj j G

azy = 0, otherwise; aijeG,

we have to find a system of inequations such that all
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possible solutions of the linear programming model will
satisfy two condltions.

Condition 13 From any solution it is always possible to
form one or several circuits.

Condition 235 Each crop i can't give up more surface than
the area x 1t occupiec (Table 6).

This condition can be stated as follows (Table 6):

Table 6. Constraints on the matrix assoclated to the graph [7= (G,E,E)

Destinations

(following Origins (precedirg crop i)

crops i) 1 2 eee n Total
1 X1 X2 ** X1p . =§"1j
2 X21 X22 oc e X2n X2. =Z.1Xij
m X Xao e Xpn Xm.

Total X X 0 see X p E%x_j =§Exi' = Xaoe

or and
Z_{xij X g = % ,0(8=3)

b. Systems of inequations
The first condition, which states that there exists a way from
i to 3 and from J to i can be expressed as a (<) relation since:
1 < J=>]J precedes 1

1 <j<k=1 <k and k precedes 1
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The second condition states that all particular roads

within a circuit will be, in all points, large enough.

Theorem 1

The relation (<) guarantees, for every possible solution
X = ixl, x2..xj..xn} # §, that we can always form with it one or several
circuits which can be either connected or disjointed.
Proof
Suppose that)(ffﬂ doesn't constitute one or several circuits but an
oriented tree, we have for at leacst one variable j:

Xy < 0

since trees have n nodes and (n - 1) arcs (25, p. 354).
Furthermore, X5 > 0 for all variables in a linear programming model

solution. Hence,

which implies that X= g.
First adequate set of linear constraint -
The first necessary condition stated in Table 6:
2x . =2x; (1)
j -J i ll
will always be satisfied if the second one

x,5 = x5, 5 81 = 3) (2)
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is fulfilled.

Equation 2 1s a sufficient condition for a circuit being a feasible crop
rotation. By Theorem 1, equation 2 becomes

X.j_>_X_i., H(1=J)c (3)
We define each activity as crop J following crop 1. Since crops are

considered successively as origins and destinations, then i = j in

equations 2 and 3. The corresponding matrix takes the form shown in

Table 7. Its size iss

= )3
(m - n) X (i%aij)

where a;; = elements of the matrix associated with the graph[f7= (G,E,E).

Table 7. Constraints on the oriented arcs of the graph/7 = (G,E,E)

Crops i Right hand
(1 = J) Xll le e e xml X12 eee Xm2 Xln cee an Side
1 O - l ses — 1 + l es e +1 L] SO
2 + 1 e e "l sen "'l cee _<_O
m-=n --o+ l n-n+l "l cee o SO
Remarks:

1. Crops for which X3 3 =1, 1= j, are not bounded by any crop
rotation constraint. By themselves, they constitute a circuit or a

rotation.

2. Table 7 shows a matrix for which the column vectors are in
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fact the oriented arcs of the grap‘n/7 = (G,E,E). If x; and Uj are
respectively its corresponding nodes and oriented arcs then the matrix
shown in Table 7 has 213 values which are equal to:

+ .
. 1 s Uj originates from x;

-1 . .
. if Uj ends in Xy
0 otherwise

3. The sum of each column vector elements in Table 7 is equal

to zero.
Second adequate set of linear constraints -

The preceding constraint set, although correct, can be found too
large since we have as many rows as nodes and the number of columns
equals to the number of arcs., Instead of considering arcs and nodes we
can take only into account nodes (or crops). Given the associated

matrix A of the graph [7== (G,E,E) we can write

IE < AE (4)
where E = xlx2....xn}fand I = an identity matrix. Equation 4 becomes
IE ~ AE < O
CE=(1-A)E<O (5)
and states that
C4 53 sz.cijxj 3 655 = 1 (6)
=5 4

Theorem 2

If E:Cij = 0, ¥(j), where C;; are elements of the C matrix (equation
1 <
5) then each linear programming solution: {xl,x2....xn} = >(?'¢,
constitutes one or several disconnected crop rotation, and 211 variables

X5 which belong to a particular circuit are equal.
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Proof:
Since)( # ﬁ, the corresponding solution contains at least one circuit
(by Theorem 1). To guarantee that a circuit is also a crop rotation

we must satisfy, for all j, inequation 3. Then:%cij = 0=

[x.
(3

I

xg] S%Xij,
1 3 0

jF i
since any nodes precede only another one.

If several crop rotation were connected, then we would have at
least for one node, several following crops. What violates our
assumption: E;cij = 0., Therefore, all variables are equal for a given

i

crop rotation since our set of linear inequation states:

what implies that
Xjo1 2 %3 2 ¥4177T 2 Kyp(pay) 2 Xikn 2 X4
can only be satisfied if and only if

Xio1 T X3 T X34177 "X (n-1) T Xi+n T Xi-1v

Theorem 3
ifs;cij < -~ 1 for at least one variable j, in equation 5, then
i
each linear programming solution : {xl ----- xn}= X# }25; ijX s might

not constitute a feasible crop rotation, although it will form a circuit.
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Proof:

For node k the incoming arcs are constrained to take the following value

according to equation 6:
ik*k SZijxj
(i=k) 3.
37!1 sk
If the outgoing arcs of node k, as stated by Theorem 3, are at least
equal to 2xk,(42bik > 2) then we can write the corresponding inequation:
1
i#k
(at least 2x,) g 41Xk S%ijxj
i=k X
! i#i,k

or

ij’]

(at least 2xk) < X <2c. .x
J
3#1,k

since cik=l'
Therefore, we are violating the existence condition shown in Table 6
which states: Sum of origins = sum of destination and a feasible crop
rotation might not be found although the solution constitutes, by
Theorem 1, at least one circuit.

If the excess of destination right is not used and goes to disposal
then the solutlion can be a feasible crop rotation, but such a case is
not likely. Let's show, under Theorem 3 assumption that all X5 £ X

might not be equal, as they would be under Theorem 2 hypothesis. Let's

study the following graph (Figure 1):
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Figure 1. Graph of two connected crop rotations

In such a case, equatlion 5 is writtens

X.

A
x

3 i

X < X5

x; < Xy

Xy < X; + Xy

X, < Xp (7)

X3 = Xp
Hence,

X3 S x5 £ X [s(x1 + xk) 2x] <% < x5 <% (8)
then

X, ~< X)e

Furthermore, the preceding set of inequation can give rise to unfeasible

crop rotations.
If we partition by rows the matrices A and 1 in equation 5,

Aiq, 1 = 1l...m we can see that 1 forms a set of disjoint subsets of

positive coefficients since they are equal to zero when i # j.

A constitutes, whenf;c < -1 (equation 5) a set P of overlapping

743
subsets P; of positive coefficients pj; 1 = l...k; psePs€P. Some

nodes are allowed to give up more capacity than they own.
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Since we are considering, in this method, nodes and not arcs as

variables we can't guarantee directly the sufficient condition stated

by equation 2.

Theorem 4
Given a set P of overlapping subset P; such that
P = i?i € Py g...Pg3 then it is sufficient, to guarantee equation 2

fulfillment, that we substitute to the corresponding equations in system

5, the following ones:

X X1 Fooot X5 F X < Pp.
Proof:
Equation 2 states that, through a given node, the incoming flow is
equal to the outgoing one.

Equation 5 states that each following node flow is smaller or
equal to the preceding one(s). But, by Theorem 4 assumption, some
nodes precede several ones. Therefore, it is sufficient, to satisfy
equation 2, to write that each destination right will not be used up
several times.

By equation 5 we have

(9)
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but since Py & Pye.oPy, we are overestimating the value which can be
taken by X providing that some x, # 03 1 < J. To rectify the system of
equation 8 we can write the following one:

X] £ Pl

X9 £ Pooxq

. o o -

X < Pk'zzxi (10)

since each Pj has to be corrected for the destination rights which

have been used by the other crops.

Theorem 5

Given of set P of overlapping subject Pi such that

fpi Z Py
P = then it is sufficient, to guarantee
Lpin Pj;{ﬁg U(i!j)! izlonns

equation 2 fulfillment, that we add to the equations of system 5, the

following ones: s
i=C;
?xi < gpi‘ some i, H(U giip),
Proof:

We know that (1) x; » 0, 8(i)

(2) Each preceding node supplies destination rights to each
element of the same set of varlables, as stated above., Therefore, to
guarantee that each node outgoing flow can't exceed its capaclity we

have to write

$ s

i=] i=1
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but if x; = 0, one i, then we overestimate the right hand side of the

preceding equation by:

s
[P;] - [P;N(UP,)]. (12)
=17
173
Consequently, to rectify equation 10 we write in addition of 1t:
s-1 s-1 ‘
E = [2x; < WP;], (13)
i=1 i=]1

But the set L 5{§l...x;%has to be partitioned into a palr of subsets
containing s - 1 and 1 elements respectively. What can be done in

C:_l ways. Therefore 12 is a system of C:_l equations.

If x; = 0y two 1 (1 =1, 1'), we overestimate the right hand side

of the equation 12 by
s
[Py + Py} - {(py + 2N
J=1
31,1
Therefore, in addition to the system of equation 12, we write the
following ones:

<2 82 s-2
En = [Zfi S_ ljpi]’ n::loooCs . (14)

The subset of X, = O for which this reasoning applies is formed of

1,2...(s-2) elements since the relevant equations for i = (s-1) are

included in 5. Consequently we will add to equation 5: (5&0:) (25~s-1)
supplementary equations. =
Remarks:

1. To reduce the number of combinations, which can be quite large,
particular activities can be aggregated by pair. For example, X) is

transformed into the following one, (xi + xj), as shown in Table 8,

The overlapping of subsets P; and P, has been removed.
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Table 8. Aggregation of activities and reduction of the number of complex

constraints
(a) (b)
Original simple constraints Constraints after aggregation
i 1 2 3 4 1 2 3 4 3+2
1 1 -1 -1 1 -1 -1 -1
2 0 1 -1 -1 0 1 -1 0

2. When Py 521Pj
Ps\Ps & B5 8(3), 1 # 3.

Then the system of equation & will be sufficlent to guarantee
equation 2, since all crop rotatiens or linear combinations of them are
allowed, provided that any crop can't form a circuit by itself. This
last possibility is ruled out by equation 5.

Hovelaque (41, p. 62) states that we should add to simple constraints
(the equivalent of system 5) a set of complex ones, when several crops
compete for occupying the soil liberated by a preceding crop. They are
found by the enumeration of all combinations of m equations taken r at a
time, r = 2,..m. Before him, Mazoyer wrote (57, p. 531): "To a given
set of preceding crops corresponds one and only one set of following

ones. But none of them proved it. We can do it as follows:

Theorem 6

Given C, the set of equation 5, and C; and C, such that
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l,CQEC
Cific, = g
where C; ={PiﬂPj £ P 1#£ 3, 1= 1....5}
Cyp = {pinpj =g; i#35, 1= 1....(m-s)}
then it is sufficient to guarantee equations 1 and 2 to write for C,

in addition to equation 6, the following set of complex constraints

'=. s 2 : = LR S
Dy {?(CUXJ) = J % J)} 20042
i=] i#3

Proof:

When we write C ..x. <f;' .+ = 1, this constraint is effective if
1373 =4L013 J €13
J

iZ3
%5 5%;5 # 0, whatever the value of the right hand side of the inequation.
=3

Therefore, for each activity Xj = 0, there exists a corresponding inequa-

=3

tion 1 which becomes ineffective. The number of possible inactive

T m
constraint sets is equal toj{Ci = 2™, Since set 02 assumption guarantees

equation 2 fulfillment, it ii—znnecessary to add any supplementary con-
straint to the system 5. However, the set of constraints C; doesn't
guarantee that equation 2 will be fulfilled unless we add 1t to equation

5 and X5 # o or X5 = 0y Y(j). Since each x5 can supply destination rights
to any P;€C, and we ignore the specific inequations which will be
ineffective, we combine them 2 by 2, 3 by 3, ...., $ by s, in all possible
ways. Therefore, any node, althcugh linked to several succeeding ones,

will never supply more than its capacity, and equation 2 will be ful-

filled. We have added to equations 5:2% - g - 1 equations.
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Row dominance within crop rotation constraints

Heady (36, p. 154) writes: "if two resources have the same supply...
then for any activity the resource with the larger input requirement will
limit production before the resource with the smaller requirement". And
he takes an example with labor constraints while Hovelaque (41, p. 62)
shows that two crop rotation constraints become unnecessary. We can sum-
marize the necessary conditions for ruling out a set of crop rotation
constraints. They are already standardized since their coefficients
are composed of -1, 1 or zero.

Let's defines

§; = {ij,j = 1....n}'= Supply of destination rights

Dj

1

{3- . = 1....n:}= Demanc of destination rights.
JsJ
For each particular row i = 1....m, we write Di < Sy
(1) if Dy = D and S; C S5 1 # k =>D; <S,
since it is the only constraint which limits production, the other one
being either dominated or redundant.
(2) if D; CDy and S; = §5 1 # k = D < S
The other constraint is dominated or redundant.

Within the set of crop rotation constraints, defined in this paragraph,
a large number of them are either dominated or redundant (they might be

identical to another one or become empty, after simplification, on one

or both sides of the inequation).

Crop frequency constraints

Up to now we have only taken into account the first sequence rule

(p. 19). To guarantee that one or several particular crops alternate
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within the rotation sequence, with a set of other ones we can express
the corresponding constraints in two ways:

x +
(1) (X+f) %, <8 (15)

where X = Xj crop land requirement

P

H

set of other crops land requirement

quantity of crop j subject to a frequency constraint

=<
I

n
1

land supply.

Even if we add to this equation a correction term for crops which last
longer thanf% years, this formulation won't be correct unless we get a
solution containing only one circuit. Two circuits, either connected
or disjoint, would allow equation 15 to overestimate the value which
should be taken by Xj'

(2) Aggregate crops to form a set of oriented chains. We find the set
of all possible oriented chains which can be formed with Xj. All
sequences of crops will last, at least, (°P+/3) years on the same soil.
This set, added to the set of simple crops, will transform our problem
into ordinary sequence constraints, which have been defined in the pre-
ceding paragraphs. We can run into large sets of chains, especially
when/3 becomes large, but the problem is correctly stated.

(3) Introducing preestablished crop rotations into models. Instead of
transforming the sequence rules into an adequate set of linear program-
ming constraints we can use them %o find the set of all possible crop

rotations. This set can be introduced within the model eilther alonel

or in addition to the set of corresponding crops, these two sets being

lsuch procedure has been used by many researchers: Heady, (36),
Lefort and Sebillote (48), Hildreth and Reiteir (40) and many others.
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Table 9. Constraints linking simple crop with crop rotation activities

Crop rotations Crops Right hand
Crops i ABC CBH C cen ABCH A B C ces H side

A -1 -1 1 eve <0
B -1 -1 ere -1 1 cee <0
C -1 -1 -1 oo -1 1 voo <0
e cee ces <0
H -1 cee -1 oo 1 <0

linked by a system of linear inequations as follows (Table 9).

This system is especially used when each crop can be grown in n
different ways without altering any crop rotation. But when the graph
r7= (G,E,E) contains many nodes and/or quite a few arcs, we have to use
an efficient method to enumerate them.

(a) Matxrix method.

A circult is an oriented chain connecting a node X; to itself.

A directed arc 3y 5 represents an allowable precedence between 1 and j

(i »3). Ifi>3j, j>k, theni >k. Or 33 *oayy = 3 1? the cor-
responding sequence of nodes being: (Xi, X3 Xk). A sequence which
doesn't contain the same node twice, is said elementary. A sequence
with p arcs has (p + 1) nodes. Given two oriented chains, Sl and Sy1
L= (%))

Sy = (xp,xp+1...xn)

we can link them to form S3z

83 = (Xl,XQ,...Xp, Xp+l...xn) = Sl * Sé

S
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where Sé = S, whose first node has been dropped. Likewise, given two

oriented chains:

S, = (Xl,XQ....X )

4 P
Sy = (Xp,Xp+l....Xl)

we get a circuit 56 if we 1link 84 and 85 as follows:
S¢ =S, % S8 = (x2....xp, xp+l,....x1).

Kaufmann and Malgrange (4%) after having made these preliminary remarks
develop a method to find all elementary oriented chains without omission

and redundancy. Circuits are founc by the same method. The following

are drawn from their work:

]

1] 1
S1 * 82

S; * S}
B xSy =g
S, xp=p
Brp=p

CP,. = the set of all possible p arcs linking i to j and forming as many

SiSé if the sequence is elementary

p if the sequence is not elementary

elementary oriented chains.C?j QB(S?k = the product of C?j by Cgk such

that it represents all possible oriented chains connecting i with k.

I

C?k x C'9 for oriented chains

kJ
cPtq
i3
+ n n
cPd=ycP@cl=ucP x c'd
15 o 1@ G; L=y 1k Tk

p q
Therefore, Clj ®Cjk

It

MP = A matrix whose element Cij is the set of all p arcs elementary
oriented chains connecting node i with node j and forming as many
elementary oriented chains. M'P js obtained from Mp by dropping the first

node in all elementary chains.
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The method:
The following computations are carried out:
(1) Mp+q = MP x M4
(2) M*PT9 = P yx w9 = cvP 9 = gorP x g9,
To get all possible circuit with p + q arcs it is sufficient to calculate
C"P¥d, the diagonal elements of the matrix MnPTa
J3
When p ¥ g = n, then any ng will contain the enumeration of all

circuits, since they cross each node. Furthermore, the usual properties
of exponent is still valid.
Mp(@)Mq = MPYq
(MP)T = MP9 |
Therefore, we can reduce the computation burden.
Example: suppose we want to find all possible circuits of graph C

(Figure 2). We compute first M! and M2,

Figure 2. Graph C

Moo= g g .‘ 1; 1;15—
21
31 B i g

41 42 43

2 = i x 1o
M= M x M ? g 1?; 1%; ) ? g é % _ éﬁ 142 1%3 g?j
31 42 43 g {1 2 3 g} {421 g 413 g

then Ml = & since ag; = B, ¥(1) in M



M"

3

M 4
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Ml % ml =[s;
41
g 13
14
Ml x M2 =lam ]
431
142
143
214
] 314

There exist, therefore, four circuits: 31, 41, 421, and 431.

(b) Method 1limits to solve our problem.

This method is not perfectly eppropriated to our needs since:

(1)

(2)

It doesn't avoid redundancy in circuit enumeration. A

circuit with n nodes appearing n times within our list.

The set of crop rotations is a subset of the set of all
elementary circuits. When several ones link the same set of
nodes, one of them might be more productive than the others and
dominates them. However, all of them are enumerated. Further-~
more, two elementary circuits can connect the same set of

nodes than a longer one, without being more efficient. The
latter is, therefore, redundant as a crop rotation. On

practical examples, this last case 1s frequent.
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CHAPTER 4. LIVESTOCK FEEDING PROGRAMS
Improved knowledge in livestock nutrition, nutritional value of
feeds and economic model building should be significant to the farm
industry. For most livestock activities, feed cost is a major part of
their total cost. Not only should adequate livestock activities be

chosen but they also should be associated to corresponding least-cost

feeding programs.

A. Simple Blending Problem
Dantzig states: "The problem is to give a recipe showing how much
of each commodity should be purchased and blended with the rest so that
the characteristics of the mixture lie within specified bounds and the
total purchase cost is minimized". (26, p. 42).

Mathematically it can be sta<ted as follows:

Min: SECij (1
: Z e o=
Subj. to: aijxj = by 1 leoem
s >03 J=1l...n

where xj = number of units of the j feedstuff

a;: = 1 nutrient content per unit of j

Q
I

cost by unit of j
b:; = i nutrient requirement.
The overall objective can be either to minimize the cost of producing
a certain output weight or a given daily animal diet. Additional con-
straint(s) would be added accordingly.
Linear programming technique has been widely used to solve

this problem either for feed manufacturers or cattle feeders. However
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least-cost feed-mix problems can be solved only if three sets of data
are available: nutrient requirements, nutrient contents, and primary
feed costs.

Many feedstuffs have no market value. They can't be sold without
being transformed into animal products. Produced and used up on farms,
these resources have, however, non-zero shadow prices. Such values
can't even be used to solve a particular least cost feed-mix problem.
‘They are a by-product of the overall farm income maximization problem.

The latter includes both production and feed-mix problems since
each one interacts with the other. Consequently, they have to be solved
at once. Corresponding shadow prices can't even be used to solve any
subsequent feed-mix problem.

They vary with price systems, production possibilities, initial
amount of scarce resources and thzarefore from one farm to another. In
such a case, the least-cost feed determination has to be made in a
profit-maximizing framework. This procedure has been suggested by Heady

(36, p. 146) and Becker (4, p. 226).

B. Combining Feed-Mix and Overall Profit Maximization Problems
Trying to find optimum livestock diet we have to add to our simple
blending problem a few equations. They will express:
- intake limits on fodder subsets
- fodder complementary or antagonism,
Besides fodder production activities, livestock activities have
to be introduced within our general model. Furthermore, certain feed-

stuffs are available either all the year around or only part of it, and
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animals have not, over time, constant needs. Our feed-mix subproblem

becomes:
J
Subj. to: ... X:ip = bii X | (17)
Je : ijtk*itk = Pitkftk

XippoXee 2 0

where t = l...t time subperiod

i

k le..k livestock activities

i=1l...m nutrient

n

J = l...n feedstuffs
With such a model we run very quickly into dimensional problems although
our matrix is quite empty, as shown below (Figure 3). Our feed-mix
submatrix dimension is:

EZE%§(itk)] XFEE%§(jtk) + k}. If i, j, k, t were constant, then its size
would be: (itk) x (jtk + k). Jullian and Tirel (44) have built such a
model. Although they have included in it only three livestock activities
(dairy herd, three years heifer and steer), and nine periods their blend-
ing submatrix is a 371 x 546 one. That is quite large for only three
animal activities.

Nutrient requirements and contents, intake limits and palatability,
marginal rate of substitution of one feedstuff to another and of one
source of a specific nutrient to another should be known accurately.

Our state of knowledge hasn't yet reached, according to nutritionists,
such an achievement, especially beyond certain specific values.

Linear programming allows only constant marginal rate of substi=-

tution which results from its basic assumption. It is not proved that



Figure 3. Feed-mix submatrix
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we can express the basic biologlical relationships of animal nutrition
in its framework, particularly for large input variations.
If livestock nutrient requirements could always be supplied in
fixed proportion the preceding model would be adequate (independent
of its limits). But it is well known that most factors can be sub-
stituted to others, within certain limits. Energy can be substituted
by proteins, for example.
To determine least-cost feeding programs, using this opportunity,
our previous model should be modified. Livestock production functions
18 and corresponding isoquant maps 19 have to be known with accuracy.
Y o= £(XXole o Xy) (18)
X, = £(Y0, %00 X)) (19)
when ¥ = output
X = input
To get a least-cost feeding program for producing a given output Y°© we
have to minimize the following equation:
plxl + PyX5 = C (20)
which would be written, in the general case framework
Max: R = Pyl.)O - C = Constant-C (21)

where P = price

|

R revenue
A series of least-cost feed mix problems corresponding to an iso-

quant set should be solved to maximize equation 21, assuming that feeds

costs are known. Dent has followed this procedure to find least-cost

bacon pig rations (28). When such market prices don't exist we have

to substitute the system of equation 17 to the system 16.
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Large range of technical substitution between factors and high input
cost differences will result in substantial feed cost saving. Inversely
this long and costly study shouldn't have been undertaken when small

range variations were observed.

C. Pre-established Livestock Rations

When the preceding procedure can't be used, especially to get over
dimensional problems, alternative pre-determined rations are introduced
into a general maximizing model. Among them, the least-cost ration is
chosen. But this simplifying proczdure might mask the true optimum of
the objective function and reduce it by a substantial amount. Pre-
established rations are largely arbitrary and through a chain of linked
constraints they can narrow the income opportunity set that we wanted
to explore. This difficulty arises each time we aggregate activities
instead of separating them. The begt means of ove£COming it consists of
multiplicating the number of aggregate activities in such a way that
the complete production possibility set is entirely included into our
model. But alternative activities can be so numerous that we are again

running into dimensional problems.

1. Extreme aggregate activities

It is well known that a convex set S is completely defined by its
extreme points U. The set of all convex combinations of sets of points
U will generate S. Making a large use of this property we can overcome
our dimensional difficulties without altering the original problem.

Heady has pointed out this principle. He writes, "aggregate activities
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only into their extreme relationships™ (36, p. 217).

Practically it is convenient to mix, in a given ruminant ration, a
maximum of three bulky feeds. In this case a minimum of eight vertices
(extreme ration) will be sufficient to take into account the set of all
possible rations which can be formulated with these three fodders.

Extreme rations are formed with all feasible extreme proportions of
bulky feeds, concentrates being added in variable quantity to make up
the difference with total animal nutrient requirements. We get more
than eight extreme rations when we have to make linear approximations
of non-linear extreme combinations of feed. As a consequence of this
formulation, all possible combinations of bulky and concentrated feed
are allowed (as it was with the blending problem).

Although our problem has been considerably narrowed without alter-
ing it, we however end up with a large number of activities. If hay
should be incorporated into all rations to satisfy dry matter minimum
requirements, then, the minimum number of activities to be defined, by
period and animal, is equal to N, where N = 20 and n = number of bulky
feed, including hay.

It still would be possible tc reduce N if we knew in which subset

of rations the optimum choice is azlways made.

2. Economic dominance and extreme aggregate activities

When such a dominance exists it becomes useless to write the
dominated subset of rations in a model. If we knew for example that the

optimum subset X of feeding programs could be defined as follows:

optimum X = {?inimu? weight of concentrates and minimum quantity;}
o ay
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then, if n = 3, our extreme rations would be reduced from 8 to 3. It
would be sufficient to use with the corresponding minimum quantity of
hay, the maximum of one or both other fodder to minimize concentrated
feed requirements. The number of actlvities and constraints would,

therefore, be reduced in a large extent.

D. Specific Difficulties in Optimum Dairy
Herd Feeding Program Determination

The main complications arise from two causes:
- dairy herd characteristics

- practical constraints

1. Dairy herd characteristics

We always observe a large variation of daily milk production from
cow to cow within different herds. 7To the distribution of daily milk
production per cow corresponds a similar distribution of daily nutrient
requirements per animal. These variations are due to different

- calving dates

- cow production potentials

- lactation numbers...etc.

Furthermore, the arithmetic mean of these distributions are not
constant over time. The production of milk is a decreasing function

of time within each lactation.

2. Practical constraints

As it wouldn't be realistic to calculate, in a model, an optimum

ration for each cow, it wouldn't be practical to distribute a different
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menu to each individual of a medium size herd. However, sub-herd with
similar characteristics could be constituted.

In short, we try to find a single least-cost ration for a herd
which is constituted of heterogenepus individuals. We must satisfy,
not a sum of nutrient requirements but a distribution of them,
Individuals can be overfed, if profitable, but underfeeding is ruled
out. The optimum level of the common ration should be found.

If bulky feeds are cheaper than concentrated ones, then we must
balance the cost of overfeeding few cows with bulky feeds over concen-
trate savings in more nutritive cow rations. This problem could be solved
easily with a mixed integer code since we have to write a set of mutually
exclusive constraints to express it correctly (26, p. 538). Among a
set of basic rations, we have to choose the one which, distributed to
each sub-group of cows, minimizes total feed cost. The corresponding
sub-matrix can be written as follcws (for a given period):

. +T T
Max: .. %ij. %CepXkp

j P
Subjs  ...A;sXy - Aikpxkp <0 (22)
n-nxj,xkp Z O

...mutually exclusive subsets of constraints i

where 1 = basic ration level = l...n
J = hexrd type = 1l,..m
k = basic ration =l...m
p = herd sub=-group = 1l...p'

Our alternative problem becomest

.. X, +&.Y :
Max: EECJXJ kkapxkp
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by: + . - A, + L.6O:
Suojr + A; Xy = Ay X, ¥ 1383 <0 (23)
.Z.ei s 1
i
onoei = O OI‘ l
where Li = lower limit of constraint i.
Besides computation difficulties we run again into dimensional problems
since the latter constraint extends our initial models.
The possibility of cow profitable overfeeding and the particular

shape of the overtime milk production function generates accuracy problems

in feed cost determination., These difficulties arise with linear combina-

tion of aggregate activities.

a. Overfeeding and approximation problems If A and B are two

feeding activities satisfying exactly to all animal nutrient requirements
(i = 1...n), then activity C will have the same characteristics, where

C =A + (1-%)B.
If, however, at least one of the two activities exceed one or several
animal nutrient requirements, the guantity of feed inputs will be over-
estimated for all linear combinations C of A and B,

where A = °1 | B = by
a,*dj, b5

a; = b; = minimum nutrient requirement

d = nutrient excess
c ={°(al + (1-%)by k={bl }
H*(agrd) + (1-%by} (b, +xd
To overcome this problem overfeeding can be excluded, but we restrict
the production possibilities to a particular subset without being sure

that it contains the optimum one. Hovelaque (41) has, nevertheless,
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chosen this alternative. Doing so, certain basic rations, especially
those formed with nutritive fodders, are limited to a level of 6.5
kilograms of daily milk production, although they could satisfy to

the energy requirement of 11.5 kilograms. If the production of these
fodders is profitable, energy is an expensive nutrient and daily milk
output per cow reaches high level (for the herd or sub-group of it),
then found solutions are not true optimum. When feeding aggregate
activities are introduced within linear programming model a choice has
to be made between overfeeding or low basic ration level. If such a
choice can't be made, then optimum feeding programs will be studied as

blending problems which overpass these difficulties.

b. Decrégsing,milk production function and accuracy problems

Cow nutrient requirements vary as their milk production function. Their

needs decrease over time from a celving date to the following one.

Basic rations supply a certain praoportion of total nutritive needs.

The remainder is brought by concentrates. To satisfy specific require-

ments, added concentrate quantities vary with basic ration levels. The

linear combination of certain aggregate activities results in accurate

concentrates cost estimates, others lead to erroneous estimations.
Adequate linear combinations - Without loss of generality we can

restrict our demonstration to a single nutritive element such as energy,

for example (Figure 4), where

Ry yRp:  level of disposable energy supplied by basic rations A and B
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Figure 4. Supply of concentrate in addition of two alternative basic
rations (example one)
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Figure 5. Supply of concentrate in addition of two alternative basic
rations (example 2) -
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A9,A® + B®: total quantity of concentratés added respectively to
basic rations R, and Rp, within the t, period.
Any linear combination of these two rations will give a correct
estimation of concentrated feed consumption. We get:
CO =wa® + A(A° + B%); p=1-

A° +F5B°.

il

cO
The value of C° is accurate since

- the first term AC is constant for all values of p

- B input consumption is dirsctly proportional to fS(time)

Inaccurate linear combinations - When R, and Ry take higher values
as shown in Figure 5, the estimation of C° won't longer be adequate,
where

A%,(A® + B® + D%): +total quantity of concentrates added respectively

to basic rations R, and Rp, within the T° period.

We get:

CO =&A® +B[AC + BO + DOJ; X = -4

C% = A® + A[BC + DC]

But in fact:

for & > &3 B® = 0
X< o¢,3 DO should equal Do

Furthermore, even if we write the preceding combination as follows:
A BD%s s fio

AO + DO +PBO; (3 ZFSO

It

co

cO
we would not get a correct estimation of C® since the consumption of

concentrated feed is not directly proportional to time. This case, in
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fact, violates the proportionality assumption of linear programming
model. To overcome this difficulty (if we suppose it is not negligible)

we can only divide our time axis into more subperiods, in order to make

a linear approximation of nutrient requirement curves.

E. Conclusion

In model building we can choose either one of three alternatives:

- the blending framework
- the set of extreme pre-estaplished ration

- the ration subset which presents known economic advantages over

other subsets,
Particular choice will be a function of the problem to be studied

and the amount of available economic results. When optimum feeding

programs constitute the main reseerch objective, then the blending frame-

work should be chosen. Otherwise, other procedures are more convenient.
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CHAPTER 5. LABOR CONSTRAINTS
Each production process requires a definite amount of labor inputs.
Due to the particular pattern of farm production and the high cost of
those resources, it 1is particularly important to avoid both under-
estimation and over-eétimation of production opportunity surfacé. What

can easily be done when labor constraints have not been set up very

rigorously.

A. The Problem
Any livestock and crop activity can be characterized by a sequence

of discrete jobs. This sequence is an ordered collection of field and

tending animal operations.

1. Job definition

A job is completely defined by:

(a) Its period of completion. The ™when should we execute it"
question will determine its place on the time axis. First of
all, jobs are divided into two subsets according to the
possibility of postponing them or not.

Postponable jobs, such as fencing or machinery maintenance,
don't generate a set of strenuous constraints. They are
omi tted.

Non-postponable Jobs, on the contrary, limit really and
sometimes strongly, production plans. They are included in
models. These jobs can only be executed efficiently within

certain perieds, say (t - t;) = B,. Timeliness of each



54

operation is subject to certain environmental conditions such

as the weather and/or biological laws. But generally, within

any given time period, only a certain proportion of days or

hours can be devoted to the corresponding job completion.
Let's define:

= job k of activity J

ka

Bkj = time period of job k in activity j

f3kj = environmental conditions required by jkj in Bkj

bkj = number of effective hours which can be allocated to job k
in activity J

Akj = man labor requirement for job k in activity J.

If Bkj can be viewed as constants or variables with small over-
time variances, we observe that bkj varies greatly from year to year:
bkj being a function ofFSkj.

Since a linear programming assumption states that coefficients are
fixed we have to choose a single value for bkj' Should we take the
mean, the mode or extreme values of the distribution function? The
chosen value will depend upon farmer's willingness to accept risks of
non-completion of his field work during bad years or in order to avoid

them, to use any exceptional means. To determine such a value we need

a "risk criteria". This concept has been used by Link (51) and Reboul
(65).

(b) Its man labor and machine time requirements. After having
defined all different ways which could be chosen to execute

each particular job, labor and machine input requirements are

calculated.
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2. Setting up adequate labor constraints

Labor inputs are "flow resources" and therefore the marginal rate
of substitution (M.R.S.) of one period input to the subsequent one is
frequently equal to zero. However,uwithin certain subperiods it is
equal to 1.0. A correct setting-up‘of constraints requires that

(a) Within each labor constraint the M.R.S. of labor from one

job to another is equal to 1.0.

(b) The supply of labor > its demand.

We assume that the number of workers is constant over time although
the number of work hours per day can vary. If a single activity J
(j # 0) were chosen as the best solution it would be limited by the
smallest ratio Gj:

6 = Min Pkj (24)

A corresponding constraint should be included to limit activity j
accordingly (except if kei, case 1 below).

When several activities j differ from zero we have to add our
second requirement stated above:
Definition:

i={(tl-to) = T such that: By anj, =g 3# 3", ¥ (k,j&

i = time period

i = time subperiod such that iel
The constraints:

Different sets of 1, iei, will be defined as follows according to
corresponding assumptions.

Case 1t If within I:
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(a) By = Byjus J 7 3,8(3)

(b) oy s = byses 37 3,8(3)

()13 = Brgrs 3 7# 31,8(3)

Then, it is sufficient to write a single labor constraint for the
corresponding time periods. Labor, in this case, can be viewed as a
stock resource since its M., R. S. within the time period I is equal to
1.0. The corresponding conétraint is:

5% <50 (2)

Case 2: if within i:
(a) By = By, 3F 3,8(9)

(b) by >< byges 3 7 3',8(3)

(c){gkjn@kj. =g; 3 # 3',8(3)
then, although all jobs can be performed within exactly the same perilod,
they are, however, a set of mutually exclusive events due to weather
conditions as for example:

- if it rains we transplant fodder beet

- if it doesn't we make hay.

The corresponding constraints are:

AsX5 < Pygs 3= 1...n (26)
but we retain only those k which correspond to 6 = Min E&i . The others
k are dominated by the constraint which corresponds :o Q.j
Case 33 if within i:

(a) Bkj = Bygjrs J # 3,8(3)

(b) s S P, g1 < By je0r+ oS Py 54

(C)lgkj _C.F’k,j—hl EPAk,5+2 -Efk, 5+n
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In this case, where the subset j is included within the subset
j+ 1, for all j. An adequate set of 1 = n + 1 constraints will be

written as follows:

UA < Ubpgs 1= 0,1..0n (27)
= 1+1k3 I 51

Case 4: If within I:

oxr
Bkj c Bkj' s 3 7' j'sa(j)

() byy >< byyis 37 3
(@) e By # 85 57 3
Prs ¥ prgs 373
To take into account this set of overlapping subsets of constraints
we have to define, in addition to constraints specified by the © ratio,
the following ones:

—-cn Ay X5 Sffcﬁkj’ T = 2...n (28)

n
This set of constraints has }:; C? = (20 - n - 1) elements.
L] - P‘::
Case 5: If within I:
(a) Bkj anjl ?{p; j# 3!
Brs # By
(b) ﬁk:) =(3kj'; i=3'.

An adequate set of constraints wili: be formulated by equation 28.
We are led to define (2P - n - 1) subperiods i, iel.

Case 63 If within It

() By By # 5 1 # 30



Bij G Byyrs 3737, 8(J)

(2) By5 =Byyrs 37 3

In this case equation 27 will constitute a sufficient set of constraints.

B. Conclusion

W2 have not proved the validity of the preceding five equations.
Proofs would lie on the same arguments that we have developed to prove
theorems 4, 5 and 6 relative to crop rotations. They are therefore
omitted. Those equations are necessary to guarantee that the supply of
labor in any period is not smaller than the effective requirements of
labor inputs which arise from any vossible solution of the linear
programming mecdel. However, in préctical problems, we have to make use
of good judgment to select among this large number of constraints, those

which are more likely to be effective. Otherwise, the model would fre-

quently be very large.
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CHAPTER 6. CAPITAL

Any production plan purpose is the transformation of resources into
final products such as wheat, corn, milk. Each process can be a direct
one (wheat) or the result of a succession of intermediate processes
ending into a final one. Heifer and fodder, for example, have to be
produced before we can get milk or steer output.

Service of resources could be classified into three main groups:
(37, p. 23) stock, flow or stock-flow. They are used up in the pro-
duction process and as such are a part of the resulting output. Since,
in every case, the combination of inputs has to precede any output
obtainment, one can't start producing if he has not accumulated a
minimum amount of scarce resources. At one time, farmers had to save
seeds and enough food from the preceding harvest if he wanted to get the
following one. Nowadays, larger snd larger amount of inputs are pro-
duced out of farms. Farmers have to buy them on the market and to pay
the corresponding bill within a certain delay which is usually shorter
than the production period. Therefore, modern farmers, like our
ancestors, have to own some particular inputs (or their money equivalent)
before they can undertake something. To start farming one should own a
certain amount of capital which could be invested into resources which
embody either stock or flow services. In the former case the value of
those inputs will be entirely recovered at the output sale time (other-
wise the corresponding activity wouldn't be selected from the vector list
by the computer). In the latter case, we will get back only the annual
amortized payment of the éssets and the annual expense associated with

owning and using it (since this type of input lasts longer than the
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chosen lapse of time). In particular, capital output from a production
period is an input for the next one. Therefore, at each production
cycle, if all processeé start and finish within it and even i1f he doesn't
get any external contribution of liquid assets, the manager will be able
to choose the same production plan so long as he doesn't consume more
than he earns. On the contrary he will enhance its production possi-
bilities and consequently its future income expectation by relaxing its
capital constraints (if he has any). In any model the adequate expres-
sion of outgoings and incomings will be a rewarding effort since capital
flows are counterparts of almost every decision which might be made in
the farm-firm. It is not so easy to do so. Capital has several
dimensions through its role of expressing any outgoing and incoming
inputs and outputs in money terms. The main ones are time and quantity.

Capital and its time dimensiorn - Inputs and outputs are sold and

bought at certain dates which are different for each activity production
cycle. Furthermore, we have to cut the time axis since our linear pro-
gramming model assumes a finite number of activities. Practically, it
is important to construct a model which does represent reality as
closely as possible and includes the minimum number of variables and
constraints. Once the time period is chosen we will be able to classify
inputs and production processes into two main groups:
- variables inputs and one period activities.
Within the time period length certain inputs are fully
"used up"™ and tne production cycle of a subset of activities

ends. Typical cases are fertilizer inputs and barley.

¥
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»
- Durable inputs and multi-period activities.

Some inputs and production processes do not end with the
usual time period. They last longer. Examples are buildings or
apple production. To take them fully into account we have two
solutions. We could lengthen our time period in order to include
the longest production cycle or the inputs wearing out time.
Another way would be to use artificial means. Durable inputs
are amortized and multi-period activities are combined into
single period ones. To do so, we can divide into parts the
entire production cycle such as we introduce at each period an
amount of a starting process equal to the one which has been
ended. For example, if apple trees are pulled up after 15 years

we will define the corresponding orchard activity in the following

way:

total planted acreage: 15 hectares

acreage in full procduction: 10 hectares

- acreage pulled out each year: 1 hectare
- new planting: 1 hectare

Capital and its quantity dimension - We have to consider two

important classes of problems: divisibility and scarcity.

- Capital can be a scarce or a plentiful resource. In the latter
case it will never be an efficient constraint on the production
plan.

- Although capital can be, by nature, divided ad infinitum, the
physical inputs which are bought with it might be indivisible, and

so the production processes which are associated with them.
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A. Multistage Linear Programming Versus Mono-Periodic Programming

Within a multistage linear model the capital flow is entirely
described since the chosen programmed period includes the longest pro-
duction cycle. We answer, not only the question "what should we produce",
but also "when should we start each production process™?

A mono-periodic model can take into account capital flows which
arise from a production plan already in cruising speed. To the initial
investment we have to add working (or operating) capital. From this
model objective function the durable input annual depreciation is sub-
tracted. Doing so, we will fail to solve the "when" of investment deci-
sion, except in some particular cases.

To know which one we should use, in a particular problem, we have to

consider several cases.

1. Project benefits are constant-over-time

a. Unlimited amount of capital When value of goods and services

provided by a set of investment alternatives doesn't change over time it
would be necessary "only to compare the present value of the benefits

of each proposed project with its construction outlay. If the former
exceeded the latter, the project would be constructed at oncej; otherwise,
it would be rejected" (5%, p. 11). It is therefore sufficient, in every
case, to build a mono-periodic model since we only have to decide whether
a project should be undertaken. It is, however, necessary to evaluate
correctly the required amount of capital in order to assign to the

specified project the corresponding opportunity or real interest charge.
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b. Limited amount of capital Even though capital is a limiting

resource, the necessity of building multistage models will be decided
upon the absence or the presence of joint characteristic assumptions.
In a first approach we will consider that every process yields all its
output within a single period. We rule out every multi-period activity
and intertemporal constraint other than capital.

Divisible and variable inputs ~ Although capital is limited, a

classical linear programming model will allow us to specify what and
when each production plan should ke attempted: each year plan being
different from the preceding one by a certain amount of capital. The

set of all solutions being completely defined by the following equa-

tions:
Y = f(K) = f(K + 6K) (29)
X= f(K) = f(K+ oK) (30)

where Y = objective function value

X = solutlion vector of a linear programming model

Il

K= initial amount of capitel

It

® = a variation parameter (> 0).
Or the solution of equations 29 and 30 can easily be found in an
inexpensive way by using a parametric procedure on an initial linear

programming solution. Such a modzl has been described by Candler (16).

Divisible and durable inputs - The amortization rate of durable

inputs can always be chosen so that it coincides with the repayment rate
of a bank loan. The corresponding depreciation rate will be linear
since most banks require lump sum annual installments. Durable inputs

being divisible, their corresponding costs will be directly proportional.
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When such inputs can be sold on a market at a price near their
residual value we can always, at any time, transform a durable input

set into another one. Capital being perfectly adaptable, equations 29

and 30 still hold and the corresponding procedure will be valid. 1In
each subsequent year additional durable inputs will be bought at the
maximum permissible amount allowed by capital availabilities. If, at
certain firm growth level, the transformation of the basic equipment is
required, the corresponding solution will still be feasible. We must
observe, however, that the notions of flexibility and adaptability are
different. Flexible plant can be used for producing one product out

of n possible ones, according to specified substitution rates. Perfect
adaptability of capital allows productive bundle of durable inputs to
be transformed, at zero cost, into another one.

However, capital input is not always so malleable. Secondhand
inputs can have a very low.salvage value or even no market at all, for
different reasons, a typical one being location obsolescence. Under
these assumptions it will be necessary, in most cases, to build a multi-
stage model. Continuous variation of capital constraints would possibly
give a sequence of solutions requiring z steady change from one durable
input set to another. Since these inputs have no salvage value their
amortization rate should vary with their effective use span. These two
variables are negatively related. Their effective life span being
unknown we have to consider time as an additional variable in order to
take their real cost and their potential use into account. A multi-
stage linear programming model is required unless we should get from

the parametric solutions of the mono-periodic program one of the two cases:



65

i = 2...n (X, = durable input set required by capital
level 1)

- the growth rate is such that we get an exact correspondence
between the capital accumulation rate and the life span of the
successive bundles of durable inputs. If the first case can be
frequent (e.g. field tilling), the second one is quite improbable.

Indivisible and variable inputs - It is difficult to think of an

essential real life example when the corresponding period of time lasts
one year. However, under such assumptions, a multistage model wouldn't
be an essential one. Time doesn't need to be taken into account since
inputs are destroyed each year by the production process. At the end
of each period their value is found in the marketed products. Capital
being, through time, fully adaptable we can still use the two preceding
procedures. However, the main difficulty would be to find a good mixed
integer algorithm capable of finding the optimal solution within a
suitable time. Furthermore, none of these codes can perform a parametric
procedure allowing the finding of equation 29 and equation 30, We
would have to find, if the main difficulty can be overcome, a set of
solutions for the corresponding amount of liquid assets.

Indivisible and durable inputs ~ Indivisibility requires the use

of an integer or mixed integer algorithm. Durable inputs require a
multistage model when they are such that they rule out any form of
adaptability. We must weigh savings from economies of scale relative to
the opportunity costs of temporary excess capacity. On the contrary,

when they are perfectly adaptable a mono-periodic model is adequate.
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Multi-period activities - We reintroduce here multi-period activities

into production plans excluding other assumptions, especially

- indivisible inputs

- inadaptability of capital.

Multi-period productions can present four different characteristics:

(1) Over-time constant stream of income

(2) Over-time variable stream of income

(3) Over-time variable input requirements

(4) Intermediate products can be marketed

Over-time constant stream of income and outlay - When we get in each
period the same total amount of outgoings and incomings and when they
appear, within each subsequent period, at the same date we can still
choose a mono-periodic model. Each year is similar to the preceding one.
We may have to amortize some initizl costs over the total production
period. One example can be provided by alfalfa.

Over-time variable stream of income and outlay - Outputs of quite a
few productions are located within the last periods of their production
cycle. When we combine all subsequent periods into a single one, costs
and incomes of the production process are aggregated. Continuous
variation of capital constraints will give a set of solutions which
won't be feasible. Capital 1s overestimated as long as we have not
reached the corresponding cruising speed. Popular plantations whose
yield is marketed after more than 15 years give us an extreme example
of this situation.

Over-time variable input requirements - Although activities are

independent from each other in the sense that their benefits and costs
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do not depend on whether other projects in the program are undertaken,
they are, however, interdependent through their competing use of limit-
ing resources. A project whose input requirements vary over its life
allows other projects to be associated with it at time-varied levels.
When such a process enters into the solution of a multi-stage model we
get a sequence of optimum plans, each one differing from the other
partially by the level of interrelated projects. Stable solutions will
appear when capital constraints will cease being effective and the
maturation time of multi-period projects will be ended. Under that
assumption, a mono-periodic model can't be used. Orchard investment is
a good example of a project which requires over~time variable inputs
(especially labor) and provides an irregular stream of net income.

Existence of a market for intermediate outputs - We define the
producing units arising from the maturation time of the multi-period
activity as intermediate outputs. In some cases they can be acquired in
a market place. A dalry herd can be formed with bought heifers.
Although they represent a typical multi-period process it has been split
into a single period one by the market. Each subsequent intermediate
output becomes a final product with its real cost, its opportunity cost
and its market value. This last characteristic rules out the need of a
multi-period model, a mono-periodic one being sufficiently accurate.

Other inter-temporal constraints - We can imagine a few situations
which cannot be correctly expressed within a mono-period linear model.
They have in common the property of generating constraints in such a way
that decisions in one period modify next year's possibility set and

impose a series of new constraints upon it. Year t crops generate liquid
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assets, which extend next year's income opportunity curve, and at once
restrict the number of crops which can be cultivated to a new subset.

When capital is unlimited we need to find optimal crop rotations
(circuits on a graph). Capital constraints impose the finding of an
optimal crop sequence (an oriented tree or chain ending into a circuit
when capital ceases to be scarce). The introduction of crop rotations
into a mono-periodic (or a multistage model) can lead to:

- non-optimum

- and infeasible solutions.

In the first case the optimum solution can be a time sequence of
crops rather than a sequence of crop rotations. The latter can impose
crops in the first stages of a firm growth, although they could really
be undertaken more economically in later stages. When the present crop
is meadow (year 0) it can be follcwed by corn (year 1) and oats (year
2) rather than cultivating an equal amount of each one in every successive
year.

Infeasible solutions can be obtained when there exists no way of
linking correctly the found crop rotation sequence.

Crop rotation rules are frequently such that it is impossible to
cultivate any crop after any other one. This assumption leads to the
preceding remarks. However, in particular cases, we can find subset of
crops for which the preceding assumption doesn't apply and mono-periodic
models would be accurate enough. It is the case when the expansion path

is not determined by crop rotation constraints.
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2. Over-time increasing project benefilts

Even in the absence of capital constraints a positive present value
of total benefits may lead to non-optimal decisions when the demand for
a particular output increases over time. Projects can be undertaken too
soon. "The optimal construction date is t,, at which time the value
of the project's output catches up to the interest cost. Until this
time the project would be losing money each minute of its existence"
(55, p. 23). Under this assumption when projects are interdependent
through the competitive use of resources, we are led to build a multi-

stage model. If capital is scarce we come to the same conclusion.

3. Conclusion
To maximize their income (1), farmers should act upon such choice
variables as the level of inputs (X) and/or outputs (Y). In other

words they should find the solution of the following equation (56,

p. 83):
Max Max  R(Y) - C(X) = Max (1) (31)
Y Xf(Y)

where X,Y are vectors

C costs

R = receipts

To maximize it over-time we can use a parametric mono-periodic linear
model even under our first two simplifying assumptions:
- capital is the only varying inter-temporal constraint

- there exist no multi-period activities in the model.



70

This procedure is valld when capital is perfectly adaptable through
the market, as for durable inputs, or through product sales, as for
variable resources. If, furthermore, a few inputs are indivisible, we
will solve the problem with a mixed-integer linear model, instead of
using a classical one. In all other cases, when capitel is inadaptable,
classical or mixed integer multistage linear programming will be
required.

Under our two second simplifying assumptions:

- multi-period activities are present among choice varlables

- crop rotation rules constitute a subset of over-time constraints.
We can still maximize equation 31 using a parametric mono-periodic linear
model. This procedure is only valid when:

- multi-period activities generate constant stream of income or

marketable intermedlate outputs

- crop rotation rules are such that any crop can be followed by

any other one.

In all other cases, classical or mixed integer multistage linear
programming will be needed, especially if multi-period activities
require varying amounts of inputs through time or generate fluctuating
streams of income and if crop rotation rules are severe.

If capltal scarcity is a necessary condition to the need of build-
ing multistage linear model, it is not a sufficient condition. Other

ones have to be associated with it.
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B. Capital as a Constraint

Many farmers mention capital rationing as a constraint. It can
be imposed by external agents such as merchants, bankers...or by farmers
on themselves (risk bearing motives...).

A few authors neglect the corresponding restrictions for different
reasons. Tyler (73, p. 9) thinks that operating capital shouldn't be
a constraint so long as projects are profitable and loans can be repaid
within a reasonable lapse of time. du Boullay (13) distinguishes two
cases. When capital is an effective constraint we should integrate it
to a multistage model in order to maximize the growth rate of the firm.
He mentions that multi-period activities and durable inputs rule out the
possibility of expressing correctly the corresponding money flux within
a mono-periodic model (13, p. 2). When capital is plentiful we should
exclude from mono-periodic model both investment and working capital
constraints (13, p. 8).

However, many authors integrate capital constraints into their
models (36, p. 206). This practice is even done when they recognize
"the capital problem" (14, pp. 72-77).

Even though capital is not an active constraint we may desire to:

- estimate the required amount

- take full account of the loan interest cost

- charge the project with a certain interest opportunity cost.

When capital is an effective constraint we have shown that, in a
few cases, 1t can be integrated correctly within a mono-periodic model.

For this subset of problems it is, therefore, necessary to be able
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to express the corresponding capital constraints correctly within our

mono-periodic models.

1. Working capital constraints

a. General hypothesis

future is known with certainty

family consumption plus loan repayments don't exceed

their total income

the model assumptions are such as is adequate to write

a mono-period linear program

all bills are paid within a certain time limit (for

example three months) after delivery

b. Definitions

1]

J = activity set
T = period set

X = level of actlvity

+
I

= positive balancey t&T, j&J
a = (receipts-payments)

initial amount of capital

~
1]

© = capital transfer from period (t) to period

(t+1)

atj
c. Model # 1

It

negative balance; t€T, j&J

We assume:

(1) amgy3 ¥(3,t < o)
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a+tj; U{j,t Z,to)
(2) a5 Na~yy = f5 1 # 3,1,387, ¥(j,t)
(3) U(atj) = f; some t€T, Y(j)
In other words the time axis can always be cut in such a way that
every activity production cycle can be included within it.
@ negative balances always precede positive ones.
¢ any activity i incoming cannot pay out for activity j outgoing.
Under these conditions a unique capital constraint will be suf-
ficient
Elam X; < K (32)
d. Model z 2
In model 1 we substitute assumption number 1 by the following
hypothesis to obtain model 2 assumptions
(1) a'tj; B(t < tys t) < tp)
gy Mty <t gty ty <t <ty)
In this case we will be able to pay period (t, - tl) bills with
periods (tl - to) net receipts. Total capital needs would be
less than the total sum of negative balances. The corresponding

capital constraints could be written as follows:

t
t5

to 1]
- —
ZZ& thJ-Z aJ_t-l.OsO
3 to
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The first equation guarantees that initial outlay will be paid
on the disposable stock of capital. The second one allows

(t, - tl) payments to be made on (t; - to) net receipts and

2
through a capital transfer from the initial stock of capital,

if needed.

Mcdel 2 3

We assumes

(1) &'y 3N e ™y # Bs 1 F 5,13 7,8(¢)

(2) U(atj) = @, some teT,H(j)
All activity production cycles can take place within the
defined time period t,, but some activities possess a capital
profit enabling them to pay out for other activity expenses.
When capital is scarce optimum solutions will make use of
this oppoxrtunity.
Equation 34 takes the corresponding constralints into account.
3t 3 submatrix coefficients will be negative or positive when

they represent respectively the following balances: a+tj and

-

a.tj. -
+ Tx, T I
o a0 alj L] alk Xé ooj
851 +++ 824 +er 35 -1 +1 . .
. . xj .
e . s eevoese0sne T + .
aij gy 1 1 i < |0 (34)
. k .
. gk+1 .
. k‘.2 .
a‘tj LI atk Sesecsessevsscescsasse s —1 O
J e,
L
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n matrix notation

X B

(txn) (nx1) = (tx1)

Model 2 4

We a

Here
hypo
equa
cee 87

¢ e 82

cee 83

" o0 at

or i

equation 3% is equal to equation 34 to which we have added

equation 32 after two modifications:

ssume

(1) a7y 55 Ut < t)
(2) a'y3 Na"gy = P51 # 5,15e7,8(t, <t 5 ty)
(3) a+tj f\a'ti # ﬁ; i # Jjsijed,some (t > tl>

# #; some teT,H(j)

(35)

(4) U(atj
we have combined model number 1 with model number 3
thesis. Constraints will be easily taken into account by
tion 35. -
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1] 1k Xé o°
| -1 +1 . 0
3 2k ) 0
j e s e a3k -1 gk S »
a -1 k+1 :
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Gn 0
-~ - —
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n matrix form: A X < B

(txn) (nx1) = (nx1)

for KO in the B vector (2quation 34), and allowed capital

tran

sfer from period t, to period t.

Model f )

We assume:

(1) a+tjr\ a” g 7 P31 7 3,i3ed, some t

(2) Uayy) 7 B, U(teTsied)

We have substituted zero
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It is impossible to divide the time axis into periods in such
a way that every period includes an entire production cycle.
But if we define T3 periods such that the longest production
cycle can be included within it, we have the following rela-

tionship:

m .
+ - = . T3 :
b [Ei(a . 301 = D3Cs3 Y(3eT,teTy) (36)

number of cycles within T

I

where b > 1.0

1

C;

j activity net return, above fixed costs.

Assumption 2 allows capital constraints to be useless. When

the production activities are profitable, then
ZjbjCij > 0

$b4sC5X; = 0 otherwise. (37)
Sincere are maximizing equation 31, within each period T;, a
few a"tj will yield their corresponding output in ti+l period,
as a few 3+tj result from Ti-l expenses. It is, therefore,
possible that capital becomes an unconstrained resource when
quite a few activities yield their output within T; first
subperiods and when production has reached its cruising speed.
Nevertheless, capital is an effective constraint within the
first period in which production plans are starting. We must
consider, not a2 single period as previously, but two periods.
The former represents the starting process, the latter
describes a stable capital profile. Beyond it, T;_; capital

output will be sufficient to satisfy T; capital input requirements.
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Therefore, we have to choose a date at which the first
project will be undertaken. Equation 3% will express cor-

rectly the corresponding capital constraints with A being now

a (2t x n) matrix.

2. Investment capital constraints

Initial outlays which represent investment expenditures (equipment,
livestock) can be added to the operating capital requirements of the
first subperiod Tl in any preceding system of equations 32, 33, 34, and
35. However, when borrowing activities have different characteristics
(interest rate, upper bound...) according to their subsequent use we
should distinguish both types of capital; A first equation represents
investment outlay, the second one being the T1 subperiod working capital

constraint. A capital transfer activity links them as follows:

Saq:X; - Xipg <O
3 0370 T (38)

+ X.
j%aljxj XJ+l <K

This last equation shows that we should not artificially separate operat-
ing and investment capital since a plant cannot be operated if we are

unable to finance both its construction and its working expenditures.

C. Conciusion
Under the preceding assumptions, our models ensure us that the
found solution is optimum since scarce capital is used in the most
efficient way. Furthermore, a continuous variation of initial capital

supply will determine an optimum and feasible sequence of production plans.



78

When capital flows can't be correctly expressed within a mono-
period model, a multistage model is the only known substitute. But we
are running into dimensional, residual value appraisal, uncertainty and

indivisibility problems.
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CHAPTER 7. INVESTMENT AND MUTUALLY EXCLUSIVE SET OF VARIABLES
To maximize their income (1), farmers should adjust not only their
production plan (?) but also the set of fixed and variable inputs (X)
which are necessarily associated with it. If we want to make a choice
of the best production plan, we have to include, within our model, the
set of all possible production possibility surfaces. In other words,
we have to maximize the following equation:

Max Max

voxep(y) RO -clx) = Max(1)

= sales

C = cost

Furthermore, the resulting choice should be practically feasible.

To be fully taken into account, the two preceding considerations
require that our classical linear programming model be transformed into
a mixed integer problem. However, we are running into the problem of
finding an efficient code. But at the start of our study we have
thought that, by the end of it, new codes might have been developed and
made available to potential users. Work is being constantly done on
this subject (28, 24, 2).

Main problems to be solved with mixed integer models.

Among problems we have met and which are easily formulated within
the framework of a mixed integer linear programming model we can
enumerates

- the fixed charge problem

- mutually exclusive activities or set of activities.
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A. The Fixed Charge Problem
It is frequently found mainly associated with investment decisions.
Building cost functions, for example, are generally of the form
= a + bx | (39)

where X = 0=> a3 =0

i

x>0=>Y = a+ bx
when they are extended in only one direction. Following Dantzig (26,

p. 545) we can transform 39 as follows:

Y= ad+ bx (40)
X 5;116
S=0or 1.0

inequation X < U 1linked with the condition S=o0o0r1 guarantee that

¥ =0) when X = 0 (U = upper 1limit of X).

B. Mutually Exclusive Activities or Set of Activities

It can be required, for example, that a building space could be
transformed into adequate facilities for either one of the following
livestock activities: dairy, hogs, beef, heifer or yearling bull.

Another practical problem is azlso encountered. Farmers expect to
ask about the type of dairy breed they shouid raise, but they reject,
in some cases, the divisibility and convexity assumptions of linear
programming. Thelr problem could be stated as follows: I expect to
ralse zero cows, or more than 10, but they should belong to the same
breed and the total number of head cannot exceed 50.

Mathematically, these two problems can be expressed by the following

set of equations.
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Problem 1:

O<xy <a rngQpr_r_Ostgchsx‘lgd

Problem 2:
Without last of generality assume we have two breeds, then

X, 10 X, 2 10
or or

A
O
>

v

In
o

|

Figure 6. Domain of acceptable solutions

(41)

On Figure 6, the double lines depict the domaln of feasible solutions.

As for the fixed charge problem we can transform the set of equations 42

and 43 into the equivalent equations, using 0,1 variables.

Problem 1:
X; - a(l -8;) 50
Xy = b(1 -52) <0
X3-C(l-§3) 0

te]
1

<
4 -dl-g) <0

(42)



82

4
> S, = 3.0
=17

0<§5<1.0
Sﬁ = integer
Problem 21
=X, + 50(1 = &;) 2 0 (43)

Xy ¥ 50(1 —Sl) >0

10 + 10(1 -8,) > 0

<
1

-X5 + 50 (1 -52) >0

<
[\
1

10 + 10(1 -&35) 2 0

-X) ¥+ 50(1 -§3) 2 0
3
2. 8. = 1.0

osgj < 1.0
. = int
é% integer
Problem 1: A particular case

If we want to choose n from N variables when all of them take specific

values, then it is sufficient to write the following constraints:

N
;_jaijg. = n (44)
J

aij = 1.0
-This procedure 1s used when we have to make a choice among N equipment

for example.
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D. Conclusion
Providing we can find an efficient mixed integer code we will be
using the preceding means to solve some of our sub-problems. Doing so,
we will avoid the computation burden involved in testing 2k possibilities
arising from the fact that k variabies can take only one of two specific
values (Xj = 0 or 1.0). When we explore the solutions allowed by dif-
ferent subsets of investment, in liyestock facilities for example, we

will give up the mixed integer algorithm and use the classical one,

after having set up adequate bounds on the corresponding subset of

variables.
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PART III. SETTING UP THE LINEAR PROGRAMMING MODEL
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CHAPTER 8. GENERAL ASSUMPTIONS AND MATRIX COEFFICIENTS ORIGIN .
After having discussed, on theoretical grounds, the setting up of
the programming model we will now specify our general assumptions and

the origin of the matrix coefficients.

A. General Assumptions

Beside the four assumptions which underlie any linear programming
model (linear objective function, additivity, propor%ggnality, non-
negativity) we have made a few other ones, related to particular‘input-
output relationships.

(1) The programming model has been set up for the "Bocage Angevin"
area whose soils are deep (tillable soil > 0.20 meter) and well drained.
Are excluded, from this definition, shallow soils as well as those whose
bedrock is formed of sand and gravel.

(2) The chosen input-output relationships to be obtained with
regularity from year to year are such that they require a good level of
technical management from the farmer. However, when the techniques of
production are more difficult to mester or when a production has been
recently brought into the region, several levels of management are
defined (milk yield per cow, fodder corn).

(3) Crop and livestock enterprises in the programming model are
those common to the area, plus a few other ones. They have been included
because they truly belong to the production possibility set of this
region (yearling bull for example).

(4) The economies of scale in labor and machinery input coefficients

are ruled out. In order to satisfy this hypothesis it has been assumad
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that small farms as well as greater ones are able to hire or own heavy
machinery and that the corresponding costs are equal in all cases. This
assumption is valid when there exists a certain competition between field
work contractors and co-operative societies, It has also been assumed
that mutual-aid was always possible between small farmers. So, they
are able to be as efficient as any other farmer who has the possibility
of organizing the most desirable team of workers to achieve any
particular job efficiently.

Besides this set of general hypothesis, the particular ones which

are specific to each chepter of results are stated in Part IV.

B. Origin of Matrix Coefficients
Input-output coefficients, prices, initial stock of resources were
obtained from many sources and particularly from the different specialists
of the extension service and other agencies of this region. The set of
data, which was gathered for the purpose of this study and some other
ones, are published (18). Consequently we won't give a full report of
it here. Table 10 refers to this publication and indicates the cor-
responding chapters in which the coefficients of each submatrix are
found. However, in the following pages we wills
- indicate the further assumptions which are made (e.g. annual
price distribution and relative level of prices or yield)
- justify the reasons of our choice when specific constraints can
be set up in several ways {e.g. livestock feeding programs)
- define more particularly few linear programming constraints

(e.g. crop rotations)
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- present a few research results which were obtained. They were
necessary either for setting up a more adequate set of activities
(e.g. livestock rations) or for transforming the original data
into a more suitable form (e.g. livestock facilities). Our
research on grass yleld wass made to provide the necessary forage
input-output coefficients which were badly lacking.

In the following pages, information will be given on the following

subject matter:

- crop rotations

- livestock rations

- seasonal variations of grass output

- working and investment capital

- livestock facilities

- prices

- crop and livestock yields

- labor constraints



Table 10. Origin of the matrix coefficients

List of activities

Grass- Transfer
Crops land and Right-
Constraints (forage, manage- Live- miscel- hand
code cereals) ment  stock  Buying Selling laneous side

00 Objective function Chp. 5 Chap. 5 Chp. 11 Chp. 5 Chp. 5

Chp. 13 Chp. 11- Chp. 11

15, 14
29/34 Tractor hour requirements Chp. 4  Chp. 4 Chp. 10
01/1% Land and crop rotation  Chp. 3
Accounting constraints on:
16/17 Grass seeding Cp. € Chp. 6
18/24 Fodder Chp. 6 Chp. 6 Chp., 9 Chp. 5 Chp. 5
25/28 Cereals and seeds Chp. 5 Chp. 9 Chp. 5
£6/82 Animals and livestock Chp. 11 Chp. 11 Chp. 11
products
35/5% Labor - crops Chp. 4 Chp. 4 Chp. 10 . Chp. 4
- livestock
110,83/87 Cspital - working Chp. 7 Chp. 7 Chp. 12 Chp. 5, Chp. 5,
- investment 11, 14, 11
15

83/93 Buildings Chp. 10 Chp. 14 Chp. 14
94/98,111 Initial fixed costs Chp. 14,

15

88
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CHAPTER 9. CROP ROTATION CONSTRAINTS

In the "Bocage Angevin" region, 14 crops can be grown. They are:
Subset 1

1. Corn

2. Winter wheat

3. Spring barley

4, Winter oats

5. Spring oats

6. Rape

7. Seed production of tall fescue

8. Seed production of Italian Rye-Grass

9. Temporary pasture
Subset 2

10. Winter barley

11. Fodder corn

12, Fodder beet

13. Potato

14. Intercrop fodder kale (after winter barley or Rye-Grass

pasture)
Besides this set of crops, few other ones are excluded. They are
dominated by other crops, their yield and/or their price per kilogram
peing too low. We can enumerate: seed production of red-clover,

alfalfa, timothy, meadow fescue and cocks-foot, hemp.
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A. Setting up Crop Rotation Constraints
From present production plans adopted by farmers and linear pro-
gramming results (41, annex 1; 34, pp. 45 and 64; 5, pp. 49 and 66) we
can observe that crops 10 to 14 are always chosen at a very low level
relative to farm total acreage. Fﬁrthermore, to avoid crop rotations
fequiring a large number of small tracts of land, farmer; have a root
crop rotation more or less disconnected from the main one. They isolate
these fodder crops on a tract of land, not far from the farm buildings,
when possible. We followed this practice when setting up our model and
defined a pre-established root-crop rotation. it should have the
following characteristics:
- livestock activities shouldn't be limited, in any case, by the
corresponding crop rotation
- the defined fodder crops should be chosen at will, in any pro-
portion relative to one ancther.
Consequently, we inserted the following rotation in our model:
First and second year: (and/or)
intercrop fodder kale (after Italian Rye-Grass)
Winter barley + intercrop fodder kale
Fodder kale
Fodder beet
Fodder corn
Potato
Third year: (and/or)

Winter wheat
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Spring barley
Spring oats

Fourth year:

Italian Rye-Grass

Root crops and/or potato can only be followed by three cereals if
we want to avoid s continuous rotatlon of root crops. Finally, Italian
Rye-Grass was included to remake initial soil structure which could be
damaged by harvesting roots with heavy machinery. Intercrop fodder kale
was assoclated with winter barley, since they are two supplementary
enterprises.

The main crop rotation includes at most 10 crops. Winter wheat was
differentiated into two distinct activities according to its gross
margin level which vary from the first subset of preceding crops to the
second one (additivity assumption), Winter barley, being dominated by
winter oats (18, chp. %), was excluded. Table 11 summarizes the cor-
responding crop constraints. However, they had to be transformed into
activity rotation constraints. To decrease the number of complex ones,
as defined in Chapter 3, we aggregated the following crops:

- (spring barley + tall fescue) and (rape or corn)

- (Italian Rye-Grass) and (rape or corn)

Furthermore, due to labor time constraints, we did it also for:
- Corn + winter wheat type 1
- Temporary pastures and thelr two alternative nurse crops: spring
barley or oats. Temporary grassland can be sown either in
springtime with a companion crop or in September as a main crop.

When several crops require the same set of preceding ones the



Table 11. Crop rotation constraints (matrix associated with the graph: [7= (G, x, x)

Preceding crops

Italian
Tall Rye-
Winter Winter fescue Grass
Crop Winter wheat wheat Spring Spring (for (for Temporary
code Following crops Corn Rape oats type 1 type 2 oats barley ssed) szed) pasture
0 Corn 1 1 1 1 1 1 1 1 1 1
1 Rape 1 1 1 1 1 1 1 1
2 Winter oats 1 1 1 1
3 Winter wheet type 1 1 1 1
4 Winter wheat type 2 1 1 1
5 Spring oats 1 1 1 1 1 1 1
6 Soring barley 1 1 1 1 1 1 1
Seed production -
7 Tall fescue 1
8 Italian Rye-Grass 1 1 1 1 1 1
9 Temporary pasture

6



Table 12.

The simple constraints of rotation of the crop activities

Simple
constraint

Preceding activities

Winter

Following Corn Rape oats
code activities?® (1) (2) (3)

3

5

2

4 1

gF11+12 1

5+14 1 1
G 7+8+10+13 1 1

1+1%5 1 1

3Activities are numbered rather than named.

PNumbers in parentheses are activity code numbers.

€6



Table 12 (Continued)

Preceding activitiesP

Spring Spring Temporary pasture + Corn +
barley + Italian barley + Italian its nurse crop winter
Simple tall fescueRye-Grass  tall fescue Rye-Grass Temporary Sporing Spring wheat
constraint + rape + rape + corn + corn pasture barley oats type 1
code (8) (9) (10) (11) (12) (13) (14) (15)
A 1 1 1 1
B 1
C 1 1 1 1
D 1 1 1 1 1
E 1 1 1
F 1 1 1 1 1 1 1 1
G 1 1 1 1 1 1 1 1
H 1 1 1 1 1 1 1 1

Y6
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corresponding constraints were also aggregated, according to rule
2, page 21 and Theorem 4, page 28 (Chapter 3). To the first seven
simple constraints A to G in Table 12 we added a subset of complex
ones (Theorem 4 and 5, Chapter 3, pages 28 and 29). Constraint H
is redundant since, after simplifying it, we get: —]ng < 0. The
subset of complex constraints was found from the following union
of simple ones, as shown in Table 13, all others being either

dominated or redundant.

Table 13. Valid complex constraints

Complex constraint Origin of the complex
code constraint

1 AUBUC

2 AUD

3 AUDUF

4 BUDUG

5 AUBUCUDUE
6 B UE

Moreover, some complex constraints dominate simple ones. They are:

1l and C
3 and F

4 and G

6 and E

The subset of valid constraints contains nine rows. They are shown

in matrix format in Table 14.

To eliminate unacceptable crop rotations we added to the preceding

constraints, two supplementary ones;



Table 14.

Necessary and sufficient crop rotation constraints

Constraint Right-hand
code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 side
A 1 -1 -1 -1 -1 -1 -1 -1 <0
B -1 -1 1 -1 -1 <0
D -1 1 -1 -1 -1 -1 -1 <0
1 1 -1 -1 -1 -1 -1 -1 -1 <0
2 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 <0
3 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 <0
4 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 <0
5 -1 -1 -1 1 -1 -1 -1 <0
6 -1 -1 -1 -1 -1 -1 1 1 -1 <0

96
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ij < .66S
J

where j = any cereal activity

)%xj < .33(s -y_kaikxk)

i

where j = rape activity

S = total land resource
k = activity of more than three years' duration
a5y > 0

a3 = (activity k duration in years - three)
They fix a limit on the maximum quantity of rape and cereals which
can be grown on a farm (57, p. 531 and 35, p. 81). In fact we did not
write strict frequency constraints but "average™ ones. As expected

these constraints are not frequently efficient. This procedure simplified

our model.

B. Enumerating E)ementary Crop Rotations

Using the "matrix method" we enumerated all possible circuits.
After the elimination of

- any rotation which contains too many cereals

- any rotation which doesn't satisfy to rape frequency constraint
we ended with 144 elementary crop rotations. The submatrix shown in
Table 14 is obviously more compact than the one which would be
associated with those aggregate crop rotations. They are enumerated
in Table 1% which can be read as follows: +to form the set of crops,
which can be linked by, at least, one circuit, combine for each line

of the table, the subset s, with one element of the subset sy when
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Table 15. Enumeration of elementary crop rotations

Subset of cereals and Subset of rotation leading crop(s)b

plants grown for seed?® (so
0 1 9 01 10

X
X XXX
XK X X X

N
(6]

H XX XXX XXX
x

be
KRR XXXRXNRNRRXNXX

423
453
523
542
623
642
643
645
652
653
763
765
823
826
843
845

KX XXMM NR XXX
XXX KNHNKR XXM

H XX XXX
XX KK XK
XX X X

®The crop code is given in Table 11.

b
x indicates that the crop is included in the rotation.



Table 15 (Continued)
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Subset of cereals and
plants grown for seed®
(s,)

1

Subset of rotation %eading crop(s
(so

1

9

)b

01 19

DOWOOVMONOVOVOVONNIINIONOOO W

64
76
76
76
76

765

853
863
865
876
825
824

423
423
523
542
543
623
643
645
653
245
265
423
426
523
543
623
643
645
653

523
423
523
543
245

243

X X X X

ke

HXXXMUYRYNXNX XXX

XXX XXX XX XXX K XX

X X X X

X

XXX XX
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allowed. For example in line two, we have two elementary crop rotations:
29 and 219 or (winter oats + temporary pasture) and (winter oats + rape +
temporary pasture). When several circuits connect the same set of
crops they are viewed as equivalent since their economic contributions

are identical, due to the additivity assumption.

C. Conclusion
We inserted into our model the root-crop rotation previously
defined and the set of crop rotation constraints shown in Table 14. We

think that this last method requires less desk work than the other one.
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CHAPTER 10. LIVESTOCK RATIONS

In Chapter 4 we have studied three alternatives of writing within a
linear programming model, all possible rations which could be fed to
livestock. Of these three altcrnatives we chose the last one, which
includes, within the model, the only dominating extreme aggregate
activities. We decided to choose this last procedure in order to

- use available and valuable information

- decrease our model size, especially in view of the large number

of selected livestock activities.

A. Available Informaticn on Dominated Fodder Inputs
A careful study of Jullian and Tirel's results (44, pp. 100-145),
which were obtained from a model combining feed-mix and profit maximizs-
tion problems, shows that:
- hay is introduced into rations for milk cows at its minimum
level
- concentrated feeds are never substituted for bulky ones. They
are introduced into rations to adjust them to the minimum required

amount of nutrient elements.

l. Minimum weight of hay per animal

In Jullian's model, when annual labor is equal to 1.5 units, hay is
always at its minimum level (nine subperiods). When labor is limited to
1.0 unit, then hay is minimum in six out of nine subperiods.

But, for these three exceptions, the additional amount of hay,

above the minimum level, is equal respectively to 38 and 33¥% of the
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total weight allowed above minimum. Heifers and steers get hay and/or
straw above minimum level in nine periods out of 19 with 1.5 units of
labor and in four periods out of 19 in the second model (1.0 unit of
labor). These last results can easily be explained since the production
of fodder associated with hay is limited by labor constraints.
Hovelaque's results (41, pp. 116-117 and Appendix A) confirm the
preceding ones. Hay has a very high marginal value and is, therefore,

substituted by other fodders. Sincs he was working with extreme

aggregate rations the chosen ones are those which require the minimum

weight of hay per head.

2. Highest basic rations

From Jullian's results (44, pp. 79-80 and 104) we can draw the

following table.

Table 16. Percent of nutritive elements brought by concentrate into
total dairy cow rations

Nutrient requirements

Fodder units Digestible
Hypothesis (U.F.) protein
1.5 labor unit 1.84% 5.95%
1.0 labor unit 0.48% 0.26%
Total requirement 3,082 U.F,. 336 Kg

We note that concentrate feeds are reduced to their minimum levels.
They are not substituted for bulky fodders, they are complementary to

them. Otherwise, they would be remmoved from daily rations,
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B. Extrapolation of these Results to the Region we are Working for

The preceding results were found out for two regions: "Le Bassin
de Rennes" and "le Pays d'Ouche"™ respectively 50 and 100 miles apart
from the "Bocage Angevin" region. Although small differences in soil
fertility and climate exist between these regions we accepted these
results and assumed that their extrapolation to the "Bocage Angevin™
was valid. We will come back to this problem later on. In order to
try extending these results and specifying a few basic rules which
would allow us to classify extreme aggregate rations into two main
groups:

- the dominated subset

- the dominating subset
we built a linear model which emphasizes the feeding program problem (7).
This model (125 x 370) was set up for a 25 hectares farm. Eight live-
stock activities were selected:

- two dairy herds differentiated by their most frequent calving

dates, February and October

- two steer activities for each calving date

- one heifer activity for each calving date.

Furthermore, the year was divided into eight feeding subperiods
according to fodder availability end animal nutrient requirements. On
the whole, 296 pre-established extreme rations were included. They were
chosen according to the preceding rules:

~ minimum weight of hay

- minimum amount of concentrate feeds.



104

Hay was associated to one or two of the following fodders:

fodder beet

1

fodder kale

corn silage

!

grass silage

Four types of hay were differentiated according to their contents
of digestible proteins and energy. They are:

- first cut alfalfas (second choice)

- second and third cut alfalfa (first choice)

- rye~-grass

mixed grass

1. Results

Table 17 shows, for each 20 cow-herd and subperiod, the different
rations shadow prices. Each one is an average of four results cor-
responding to the four types of hay associated with the same quantity
of other fodders. An increasing cost order is set up for the first
herd.

We observe that, for October calving, the chosen rations are
mainly those which consist of three fodders. Grass silage + hay rations
are never chosen for both herds. They have the highest average shadow
prices in every case.

For February calving, chosen ration rank order differs from the
October calving one, especially for subperiods 1 and 2.

The February calving herd being dried off at these periods, its

minimum requirements are very low, It was assumed that farmers would
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Table 17. Shadow prices of various ration types

Ka of Oct. calving?® Feb. calving®
Subperiod Fodder with hay hay T Se T S
I Kale - beet 5 94.75 122 112.00 25.8
(5/11-1/12)
Kale 9 357.75 86.7 39.75 46.7
Beet 10-11 360.00 175 147.75 84.2
Grass silage 5 831.00 78.9 426.2%  26.0
II
(1/12-1/01) Kale + corn silage 4 39.25 39.3 163.00 25.8
Beet + corn silage 4 112.75 102 170.75 25.5
Kale + beet o) 126.25 14.3 291.50 146
Corn silage 4 190.00 95.4 21.75 25.5
Kale 9 373.25 71.2 226.25 57.7
Beet 11 378.00 258 360.75 104
Grass silage 5 987.75 174.5 706.25 267
III
(1/01-10/03) Beet + corn silage 4 221.75 242 147.75 126
Corn silage 4 230.25 194 124.50 133
Beet 11 843.00 445 574.50 352
Grass silage 5 2,030.00 189 1,849.20 104

8C is the mean of the shadow prices; s¢ is the standard error
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not feed several different basic rations each day, even if their herds
are partly dried off and partly in full lactation.

Consequently, since basic rations were set up such that they contain
the highest possible level of energy, cows are more or less overfed with
different alternative rations. This bias introduces a disturbance

factor into the comparison and explains some differences we will see

below.

To conclude we can say that:

(1) Grass silage + hay rations are always dominated.
(2) Other rations are ranked differently from one period to
another especially when the herd is dried off.
(3) Rations for the October calving herd can be rahked as follows:
three fodder basic rations (including hay)
two fodder basic rations.
Among them, hay + fodder beet raticns are those which have the most

fluctuating shadow prices around the mean.

2. Setting up a choice rule
The model results, as many others (41, 44) show that land shadow

price is very high. Furthermore, the yield of different fodders vary
widely, in certain cases from 1.0 to 2.5. It is natural to think that
land requireménts associated with alternative subperiod herd rations,
could explain a fraction of the rstion shadow price variances. On the
other hand, varying weights of concentrated feeds are added to different

basic rations. The corresponding cost is, in some cases, quite high. It
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is hypothesized that these two variables are the most significant ones.

Let's define:

X, = Land requirement for producing subperiod 20-cow herd rations
(hectares)

Xl = Ration concentrated feed cost (francs)

C = Shadow price

To verify this assumption we ran the following regression:
C=a+ bX; + byXs. (45)

To be sure that this relation was adequate we also calculated the

following ones:

C =2+ bX; + byX, + baX;X, (48)
- 2
C=a+ bX; + byX, + b X5+ b;X;X, (47)
1 L
— 2
C=at+ Jolx1 + byXy bsxg + b4(X1X2) (48)

In each case the coefficient ¢f determination R? is high, except

for period 1, February calving as shown in Table 18.

Table 18. Range of coefficients of determination for equations 45 to 48

Subperiods October calving February calving
1 .792 + ,037 L0696 + ,0072
2 .828 + ,009 .515 + ,005
3 .948 + ,006 .898 + ,013

Because non-linear equations and interactions between X; and X, do
not explain a significant additioral amount of total variance we chose

equation 45. The corresponding results are shown in Table 19.
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Table 19. Value of R? and regression coefficients b; of equation 43 for
various subperiod cow rations

Subperiod Equation A
cow-ration number bg D, by R+

October calving

Subperiod 1 49 -424.,66 1.284 2.681 .753
Subperiod 2 50 ~1369.85 1.231 16.715 .819
Subperiod 3 51 -3226.37 .845 21.506 <941

February calving

Subperiod 1 52 -£54.85 0 12.5 .068
Subperiod 2 53 -1092.78 0 17.75 511
Subperiod 3 54 ~4178.88 .978 22.785 .883

Table 19 shows that equations 49 to 54 present a good fit of shadow
prices except for equation 52. In fact, for this period cows are over-
fed with basic rations and the rate of overfeeding is higher with high
yield fodder than with others. This disturbance factor narrows the
range of X, variation to a great extent and explains why the correspond-
ing equation is not significant. In the subsequent periods, the same |
disturbance factor is still present but rations with corn silage are
allowed, they require less surface than others and cows are less overfed,
The coefficient of determination of equation 53 is much higher, although
not very good.

(a) The choice criteria:

Since in every case,

%—%—> 0, i=1,2. (55)
1
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Then we can minimize C by decreasing both X; and X, values. In

other words we should choose pre-established extreme rations which
satisfy one of the following criteria or both:
- the required amount of land to produce them, 1s as low as

possible

- basic rations should be such that they minimize the needed

quantity of concentrated feeds to be added.

The marginal rate of substitution of land for concentrated feeds

for each feeding subperiod (October calving herd) is equal to:

dxl _ _ -
T = -2.681/1.284 = -2.08 (36)
X2

" = -16.715/1.231 = -13.57 (57)
"= .21.506/.845 = -25.45 (23)

We can, therefore, substitute 13%0 F of concentrates to 1 hectare of
land in period 2 and 2545 F in period 3.

Figure 7 and Figure 8 show that rztions are composed of one or
two of the following fodders, besides hay: kale, corn silage, fodder
beet, are those from which we can expect to get the lowest shadow prices.
How can we explain why the result is thus, as well as, the value taken
by equation 557 Table 20 gives us the answer.

Basic rations requiring the lowest quantity of concentrated feed
are those which allow the largest intake of highly nutritive dry matter
when animal needs are big., Columns A and B of Table 20 show that they
are composed of a minimum quantity of hay associated with the fodders
mentioned above. They are, also, those which supply the highest quantity

of fodder units per hectare., Furthermore, in every case, variable costs
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Table 20. Characteristics of fodder and related variable costs

112

Order of Fodder Fodder
animal unit per unit Variable
appetency Kg of yield cost? per
for dried (thousand fodder
fodder matter ha)® unit (f)°
Fodder type A B C D
Fodder beet 1 1.0 9.0-11.0 ,037-,032
Corn silage 2 .75-.80 6.4-8.0 175-,135
Kale 3 .85 6.0 .07
Mixed grass silage 4 e50-.55 4.2 .198
Hay 5 Q45—.50 4.2 0095

@Including harvest custom work.

bErgan, M., Maison de 1'Agriculture, Laval, 53. Fodder nutrient

content. Private communication.

®Source 18, chapter 5.

1968.

per fodder unit, including or excluding harvest custom work expenditures,
are also lower for these fodders. All economlc forces converge toward
the same fodders and favor them,

(b) Validity test of this choice rule:

It may be asked if this choice rule is valld in all cases. We did
not test it to enumerate its conditions of validity. However, the study
of two particular cases (34 and 5) which were undertaken in this region,
independently from our work, came as a confirmation of our ruie. The

results of Berson's study show that grass silage was never choseni rations
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were composed oflkale, fodder beet, corn silage and hay (5, pp. 51 and
67). Gaultier remarks that "hay is always inserted (into rations) at its

'mihimum level when kale and fodder beet are introduced at their maximum®

(34, p. 42).

C. Extreme Aggregate Rations Inserted into our Model

Figures 7 and 8, beyond illustrating our choice rule, show that
different types of hay are a factor of variation of ration shadow prices.

In general, for any ration type (characterized by fodder(s)
associated with hay), rye-grass and mixed grass hays are dominated by
alfalfa hay which contribute to decrease the corresponding ration shadow
prices. This is due particularly to the high digestible protein content
and the high yield level of alfalfej two factors which allow to reduce,
for any rations, the corresponding concentrated feed cost and land
requirements. Consequently, we eliminated grass hay from our final
model. Only averagé choice alfalfe hay was included.

Although we defined the dominzting livestock rations, we could
choose only one of them to be inserted in our model. Other constraints,
such as labor, could limit farmers®’ income. As harvesting dates of each
dominating fodder is different from one another, we retained all of them
to keep the maximum of flexibility within our model. Therefore, our main
basic rations are the following:

alfalfa hay *+ fodder beet

1

- alfalfa hay * corn silage

alfalfa hay + kale

i

alfalfa hay + fodder beet + corn silage
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- alfalfa hay + fodder beet + kale

~ alfalfa hay +* corn silage *+ kale

Rations composed of three fodders can only be fed to animals with
high level nutrient requirements such as dairy cows or feeder steers.
They allow, generally, to decrease the required minimum of hay and
added concentrated feeds, The rest of the year, livestock is fed on
grass with a complement of silage, if necessary, during late summer.

After we had started our computation work, livestock experimental
results were published (54). They state that yearling-bulls can be
raised with a lower quantity of hay than it was generally admitted
previously. Corresponding yearling-bull activities were included in
subsequent computations and hay minimum requirements reduced from 1200

Kg to 300 Kg. Our first results show that this substitution is surely

profitable.

D. Conclusion
The determination of our choice rule for selecting extreme aggregate
basic rations, besides its practical interest especlally for this
region's extension service, allowed us to narrow our model to a great
extent. We estimate that the numbef of extreme aggregate rations was

divided by, at least, 10.
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CHAPTER 11. TOTAL ANNUAL PASTURE OUTPUT AND ITS SEASONAL VARIATION

In this region, climatic conditions necessitate full hand feeding
in fall and winter but livestock obtain the bulk of their feed by
grazing in other periods. Since it has never been considered, up to
now, to suppress green fodder from livestock spring and summer feeding
programs and since stocking rates are unknown for each separate live-
stock activity, we can't avold taking into account pasture outputs.
Even average herd stocking rates are little known and their variance is
large. Furthermore, on each farm, different types of pasture and other
grazing crops are fed to a set of different animals producing few
products such as heifers, feeder calves, steers, milk and so on. Under
these conditions, it is difficult to use these stocking rates since our
objective includes the research of the most rewarding livestock
activities. We cannot, therefore, avoid estimating total pasture output
per year as well as its breakdown by subperiods, grazing output being
not constant over time. These estimations are usually made by two dif-
ferent methods.

Experimental design results: In any design, split-plot or others,
forage is cut with a motor mower at different stages of growth and at
different intervals of time according to the "type" of forage utiliza-
tion which is being referred to. In most cases, yield is estimated in
terms of weight of dry matter per hectare. Researchers need a precise
measure of yield since they are studying the influence of factors such
as variety, fertilizers, and dates of cutting. Many studies of this

type have been published (53, 62, 42). Even though feeding value of
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herbage from temporary pastures at the grazing stage is starting to be
well known (27) we hesitated to use these data, mainly for two reasons:

- To transform this crude forage yield into effective fodder intake
we need to know the transformation coefficients which would take
into account the unavoidable wasting of forage by livestock and
vield differences between small and large plots. But these coef-
ficients are little known and difficult to determine.

- Many experiments are often located far from the region we are
studying. Even the nearest osnes were made under slightly dif-
ferent climate and soil concditions than ours. Response surfaces
should integrate soil and climate indexes in order to extrapolate
these costly findings. To cur knowledge, no such production
functions have been published. They wculd be very useful since
we have problems when we want to use this set of data apart from
experimental station soils znd ciimate conditilons.

Forage evaluation through livestock:s Since we need to evaluate
animal products which can be obtained per hectare from a set of forage
crops and since crude yield results are insufficient to define the
numbper of animals which can be fed by surface unit, it is natural to
estimate pasture grazing through the amount of nutrients required for
producing a given observed livestcck output. This method has been
described by Falke and Geith and reporied by Kohnlein (46, p. 13),
Jarrige and Journet (43, p. 698). 1In spite of its inaccuracy, this
method has been used extensively due to its inexpensiveness. This
method has even been simplifieds effective forage intake being estimated

with the three followlng variables:
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(1) number of grazing days per hectare

(2) theoretical feeding value of herbage at various grazing stage

(3) theoretical intake of herbage by different animals when fed

ad libitum.

More than others, the last variable might be a source of errors in
measurement. The ad libitum feeding assumption is not always valid
in real world situations, especially during summertime. In spite of
the lack of precision in this last simplified method, extension people
have been estimating temporary and natural pasture ylelds for three years
(31) when we started our study in 1966. We decided to use these data
since they had the advantage of having been elaborated in the region we
were studying. This original set cf data was collected kut no one, up to
this date, has interpreted it. Our needs being particular and deviating
from these people's objectives we undertook this work although we knew

these data were not very accurate. But in any case we had not much

choice.

A. Forage Crops Output

1. Total estimated grazing intake per year and consumable vield after

conservation of other fodder crops

Total forage crop output is seldom transformed into hay. Generally
part of it is grazed, the rest 1s cut and dried.

To take into account this fact and add grazing to hay yield, the
latter was estimated as the number of fodder units which would be

necessary to produce, without any loss of dry matter, the corresponding
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Table 21. Yield of different forage crops per year

Numbex Average
of yield
obser- (fodder Standard Data
Fodder type vations units)? error s reference
Alfalfa MP 28 5,600% 1,627
Rye-~grass M 20 4,980% 1,346
Rye~-grass pP 6 4,875% 1,235
Mixed grass M 23 5,470% 1,440
Mixed grass P 28 4,640% 1,350 (18)
Natural pasture M 14 4,170% 1,400 Chapter 6
Natural pasture P 31 3,030% 1,290
Corn ‘ 17 6,000 1,250
Fodder beet
Transplanted 46 9,700 2,400
Drilled 25 12,200 3,280
Kale 6,000 |
a%0ver time.

b\ indicates meadows P indicates pasture.

quantity of hay. In other words, extension people estimated that dry
matter losses are equivalent in both cases. Table 21 shows that the
fodder output is slightly smaller when forage is grazed rather than
dried in field. In view of the large variation of yield in temporary
pastures or meadows we decided to calculate the influence of such a
yileld variation on farmers' revenue. According to extension people,
yield differences are due mainly to the farmer's range of knowledge.
Since the probability of having an important area of pastures into our
model solutions was high, we decided %o define three levels of pasture
management differentiated by input requirements and output levels. They

correspond to the required managerial ability for producing, in average:
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3,000 fodder units per hectare

4,000 fodder units per hectare

5,000 fodder units per hectare

A 6,000 fodder unit output level has been left out. It was thought

to be difficult to obtain, especially in bad years.

2. Total forage output breakdown by subperiods

To evaluate such data, two similar methods are available. The

first one consists of computing a forage cumulative production function,

the second one, its derivative.

a. Forage cumulative production function Let's define the

following variables:

1

Yo = cumulative forage output at time T
T = time (decade number)

F = fertilizer inputs

S = so0il fertility index

E = type of pasture management

S, = forage specie

1

variety
The cumulative production function wouid be:
vr = £(T, Fl s, E, Sps V). (59)
But the original set of data excluded to compute such a function for
three reasons:
- F was not always known and, even if it had been, we would not be

able to take into account initial soil nutrient contents, soil



tests being lacking.

- E was not homogeneous. Forage was cut and/or grazed. The
number of observations was r=zlatively small in each sub-group.

- Finally even when total forage output was grazed, grazing intervals
were not equally spaced. They were varying from two to eight
weeks, between and even within different observations. It is
well known, however, that grazing intervals are correlated, within
a certain range, with total output (63, pp. 13-28; 53, p. 21).

This last remark incited us to use the following method.

o. Daily output of forage crcps When grazing intervals are

defined, forage cumulative production functicns are composed of a series
of linked segments: each one could be viewed as either:

- the average daily output of forage within the corresponding sub-

period

- the "average" marginal output of our cumulative production function

within the corresponding sudperiod.

Our objective consists of finding the slope of this series of

segments., We can express it as follows:

Y, = £(F, YO, TY®, G E) (60)
where
Y1 = “average" marginal grazing output, time t
YO = total forage crop output (maximum of Y¢ in hundreds of fodder
units)

G = grazing interval.
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However, the first grazing cannot be regressed on equatlon 59 since
G is unknown: the first interval being not defined, Consequently

equation 61 was substituted for equation 60.

Yi, = £(T, Yo, TYC | E) (61)

t

where

Yi, = total first grazing output

Forms of grazing production functions - The interaction factor
TY® has been included upon logical considerations. Whatever the total
forage yield, forage growth stops by the end of October. For any
cumulative production function we cet

dY/dT = 0, for T = T¥

Daily forage growth reaches, through the year, two peaks: the
highest one in May, the smallest one in September (74, p. 63). If the
former is always observed, the latter can be completely erased in drought
years. Our cumulative production function, which is a function of time,
has a double S shape. To take into account the non-linear effect of

time upon Yi, non-linear equations were calculated such as cubic,

quadratic, square root and linear equations (with a dummy time variable

t). They are:

Yy = a+ byt + boT + ba¥Y0 + p,G (62)
Yy = a+ byt + byT + bg¥0 + byG + bgT¥0 (63)
Yy = a + boT + bg¥0 + b,G (64)
Yy = a + boT + bg¥Y0 + byG + bgTYO (62)
Y, = a + byl + ba¥® + byG + bgTYO + beT? (é6)
Y, = a+ boT + bg¥0 + byG + bg(TY0) O+ beT*? (67)
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Yy = a + boT + bg¥0 + byG + bgTYO + bgT2 + byT3 (63)
Yio = a + byT # bp¥° (69)
Yio = a ¥ byT + by¥0 + bgTYO (70)
Yi, = @+ bjT + bp¥0 + baTYO + p,(Y0)? (71)
Yio = a + byT + boYO0 + bg(TY0)*P (72)
Vi, = @+ byT + by¥0 + ba(TYP)*D + by(¥?)+° (73)

B. Computation Results and Cholce of Coefficients

YO was differentiated into two sub-groups. The first one is composed
of results with both hay and grazing output. The second one contains
only grazed forage yield. These stb-groups were distinguished to take
into account the disturbances whicl could come up from the variable E.

In view of the above set of multiple correlation coefficients
(Table 22), the utility of one or two independent variables may be
questioned and their omission propcsed. In the first series (equations
62 to 68) these variasbles are: t, TY?, T2, T3, They condition, if
significant, both the cumulative production function shape relative to
time, and the date at which this function becomes maximum,

The following F test is made:

585 - SSp_y SS
FE—K ~ >2°R R K/___E_
R-K R

where

n

SS sum of squares

the set of independent variables

=}
Il

K = the first K independent variables
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22. Level of significance (LS) of multiple correlation coefficients
(R) for equations 63 to 68 and 69 to 73

Pasture Meadow
Temporary  Natural Temporary
Equation pasture pasture Rye-Grass meadow Rye-Grass Alfalfa
number R Ls@ R Ls@ R Ls@ R Ls@ R Ls@ R Ls?
21 763 ¥R [B4nH K 543 ¥ 745 *¥¥* 602 ¥
22 LT76 F* .D48  *¥ .545 * 778 ** 687 K%
23 763 ¥® B4R k% 720 ¥X B43 ¥k (711 ** .561 *
24 7D *E .D48  ** L7908  ¥% B4H XX LT764  *¥X 6RE XK
25 L7683 ¥ BRT ¥X L7908 ¥ 587 % 320 ¥¥ 673 *
26 LT794  ¥% H76 0 ** 770 KX 592 X% 79 *¥¥ 686 ¥¥
27 797 % 601 *% .800 ¥ 628 ¥* 821 ¥ 673 *
31 .B13 ** 688 ¥x
32 374 ¥* 725 ¥
33 .878 ¥ 729 ¥%
34 861 ** 689 ¥*
35 .862 ¥ 713 **

8For ¥, LS = 5%; for ¥*, LS = 1%.
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variables to be deleted

I

R-K

1

E error,

It takes the following values (Table 23).

According to Table 23, the independent variable (TY®) makes, in most
cases, a significant contribution to regression. As mentioned above, this
result stands on theoretical grounds. The variables t, T2, T3 can be
deleted. It would seem that Y. is linear relative to time, and there-
fore that Y7 i1s a quadratic function. Two reasons can be invoked to
Justify this finding:

- Equation Y., takes into account the entire increasing phase of

equation Y.. Consequently the first peak mentioned above cannot
t

appear in equation Yg.
- The output estimation procedure is not precise anough and the
second peak is erased: animals playing the role of a buffer.

In the second series of equations, 62 to 73, the interaction factor

(TY®) makes again a significant contribution to regression. However, the

independent variables (Y°)2 and (Y°)*® can be deleted. As previously, the
significance of the interaction factor can be justified on theoretical

ground. The first grazing output increases at an increasing rate through

time when total grazing output becomes larger.

In view of these results we chose equations 65 and 70 to evaluate

respectively Yt and Y¢,. These equations are given below.

1. Forage output

a. Grazing output Temporary pasture

Yi = 10,794 - 0.011 T + 1.016 Y0 - .219 G - .347 TY°



Tebls 23, F values for different comparisons of equations

Psir of Pasture Meadow

egiiations Temporary Natursl Temporary
teing pasture pasture Rye-Grass meadow Rye-Grass Alfalfe

compared Fa R-K/R  Fa R-K/R  F3 R-K/R  F& R-K/R F& R-K/R F2 R-K/R
21,22 3.99%  1/80 0,36 1/€1 0.11 1/34 2,16 1/17  4.77% 1/23
21,23  0.008 1/81 0.25 1/62 0.006 1/35 1.98 1/18 1.84 1/24
22,24 0,091 1/80  0.07 1/61 0.01 1/34  0.93  1/17 1.90 1/23
23,24  3.99%  1/81 0.54 1/62  11.12%%  1/34 0,10 1/35 3.35° 1/18 4.82% 1/24

24,25 2,45 1/80  0.96 1/61  0.07 1/33  2.51 1/34 4.61% 1/17 1.01 1/23

24,27  3.66 2/79  2.84 2/60  0.25 2/32  2.67  2/33  2.24  2/16 0.48 2/22

31,32 16.88%% 1/26  4,050% 1/39
31,33 6.,02%% 2/25 2,39 2/38
32,23 0,78 1/25  0.49 1/38

34,35 0.157 1/25 2,67 1/38

3For ©, LS = 10%; for *, LS = 5%; for **, LS = 1%.

gzl
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Yio = 1321.37 - 105.135 T - 43.667 Y° + 6.310 TY

- Natural pasture

Yi = 49.615 - 1.793 T -~ 141 Y° - .254 G + .0208 TY®

Yio = 799.3 - 102.276 T - 22,988 YO + 5,653 TY°

Rye~-Grass pasture

Y, = 10,803 + 2,296 T+ 1.371 ¥Y° - 287 G - .081 TY®

T <20

1

Temporary meadow

Yy = 13,792 - 332 T + ,568 YO - ,286 G - .0092 TY®

Rye-Grass meadow

Yy = ~36.346 + 1,662 T + 1.297 Y° - ,089 G - .046 TYO

Alfalfa meadow

Y, = -33.372 + 1,792 T + 1.153 YO - .127 G - .042 TY°

Contrary to what is expected, the coefficient of the variable G takes
a negative value. Plant physiology theory contradicts this result. Ho@—
ever, it proves that the estimation method used by extension people to
measure the output of pastures and meadows, is not very accurate. An
acceptable explanation of this negative coefficient can be found. When
the stocking rate is too high for a given perlod, pasture output grazing
intervals become smaller and smallier. Livestock are underfed and pasture
output overestimated, as it is expressed by the sign of the G variable.

Fﬁrthermore, in the natural pasture equation, Y4 behaves incorrectly.
Since §Z§ = -,141 + ,0208 T, its slope decreases as Y° increases. Here
too, plant physiology contradicts this result.

Is this result due to the fact that natural pastures are very

heterogeneous in respect to soil fertility and moisture content or is
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it due to summer and fall overgrazing which gives rise to an overestima-
tion of the corresponding period pasture output? A definite answer has
not been given to this question, but we can hypothesize that the two
preceding causes are effective. Usually, natural pastures are found on
poor soils and it is observed that they are more often damaged by over-

grazing than the more productive temporary pastures.

b. Hay yield t is generally admitted that alfalfa produces
about 50% of its annual hay output at the first cutting, the remainder
being harvested at the second and third cuttings (42, 1964 report, p.
61 and 1965 report, p. 54). On the contrary, grasses which are associated
with alfalfa produce about 70% of their total output by July 1 (62, p. 45).
Grasses have a tendency to predominate over alfalfa, especially with a

nitrogen fertilization. A first cutting of alfalfa and grasses yields

65% of their total annual output.

c. Grassland output inserted into our model From the preceding

result we built a series of activities which differ from one another on
total output level and grassland utilization. Although these results

are based on somewhat poor data, they are not in contradiction with
published experimental results (62, p. 45) which show that spring output
(by July 1) represents from 64 to 75% of the annual output. Moreover,
these results were submitted to extension agents1 for agreement. Finally,

the following set of data was inserted into our model (Table 24).

lErgan, M., Vignier, D. and Houdan, M., Maison de 1'Agriculture, Laval,
53, Input-output relationships. Private communication. 1967.



Table 24. Annual grassland output

Summer
Spring and
Output grazing early fall
level (by July 1) grazing Hay Silage
(fodder Grassland fodder fodder Metric Metric
unit/he; Type of forage utilization® units/ha units/ha quintal/ha  quintal/ha
£,000 Alfalfa t grasses HHH 0 0 110.0 0
HGGG 770 1,600 71.5 0
GHGG 1,600 1,920 53.0 0
White clover + grasses GGGG 3,100 1,900 0 0
SGGG 1,730 820 0 164,0
Natursl pasture GGGG 2,100 1,400 0 0
HGG 0 1,400 35.0 0
4,000 Alfalfa + grasses HHH 0 0 990.0 0
HGS33 600 1,320 58.5 0
GHGG 1,360 1,530 42.0 0
White clover + grasses G3GG 2,480 1,520 0 0
SGGG 670 1,430 0 128.0
Natural pasture GGGG 1,650 1,150 0 0
3,000 Alfalfa + grasses HHH 0 0 70.0 0
HGGG 420 1,060 45,5 0
GHGG 1,220 1,220 29.5 0
White clover + grasses GGGG 1,860 1,140 0 0
SGGG 520 1,120 0 100.0
Natural pasture GGGG 1,k60 840 0 0

3H indicates hay cut; G indicates grazing.

6¢l
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Permanent pastures occupy, at least, 1/10 of the total farm acreage.
This amount 1s generally admittedl as the minimum acreage which is

usuzally found on most farms.

2. Fertilizer inputs

In spite of the lack of known response surfaces in fertilizer use
(N, P05, K) which would be valid for the soil and rainfall characteristics
of this region, we had to vary the level of fertilization with the level
of forage output. The level of PpCry and K was indicated by extension
agentsl. The rates of "average" marginal productivity of N which were
used are based on Bougle's experimental results (10, 11, 12). The

corresponding amount of fertilizer inputs are given in Table 25.

C. Concliusion

In a2 region where forage crops occupy about 66% of the total area
(8, p. 33) precise and reliable forage input data are still lacking for
each different soil and rainfall condition. In this domain a large
amount of experimental research is needed, as well as, the insertion of
soil and climatic indexes into production functions which could be
derived from the set of results found in the past, by all experimental
stations located in the western part of France.

In our case, for the type of soil and rainfall characteristics

which are those of the "Bocage Angevin" region, the preceding data,

libig.
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Table 25. Rate of fertillzation of different pastures and meadows

Level of

Type of pasture output (100 Fertilization rate
or meadow fodder units) N P50g K
Natural pastures 20.0 0 70 70
27.5 50 80 80
35.0 120 100 100
Temporary pastures 30.0 0 80 80
40.0 80 100 100
50.0 170 120 120
Rye~Grass 40.0 80 80 80
50.0 150 100 100
60,0 240 1290 120
Alfalfa + grasses 42.0 0 80 30
54.0 40 100 100
66.0 100 120 120

derived from real observations, seem to constitute a first good approxima-
tion of reality. Obviously they will have to be confirmed or corrscted,
when new experimental results are available. A new series of experiments

is actually taking place to reach these objectives.
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CHAPTER 12. CAPITAL
In Chapter 6, we have discussed the necesséry and sufficient condi-
tions for building multistage models., Our model being a mono-periodic one
we will define the conditions under which we are working, as well as

the corresponding capital constraints.

A, Model Assumptions

At some stage of our study, capital will be viewed as a scarce
resource since we want to study the effect upon farmers' income of
different combination of land, capital and labor inputs. To this
necessary, but not sufficient, assumption to build a multistage model
we add the following ones:

(1) Multiperiodic activities such as steers, heifers and alfalfa
belong to the production possibilities of this region. However, there
exists a market for almost every intermediate animal output, such as one-
year and two-year steers and heifers., Although alfalfa and temporary
pastures are multi-periodic activities they can be seeded In each late
summer and be ready to start full production next spring. Furthermore,
they can follow a large set of crops and, in this respect, are not
limited by crop rotation constraints. Installment costs being very low,
if optimum solutions require a shorter than usual duration of these
activities, only a negligible error will be made. Under these condi-
tions a mono-periodic model is valid.

(2) Durable inputs such as livestock facilities are partly
divisible and partly indivisible. In the case of dairy facilities, the

barn can be extended beyond a certain minimum of square meters each year.
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However, such a possibility is ruled out with milking parlor,
especially when the size of the herd necessitates a shift from a tandem
parlor to a herringbone one.

When capital is scarce we know that cash cropping will be selected
rather than forage crops which have to be transformed by animals. The
average productivity of capital, according to our estimation, is always
greater than 2.15 with cereals (barley, 3.25; wheat, 3.40) and smaller
than 1.7 with steer and dairy production (dairy production, 1.0;
2¢-month steers, 1.65).

Under these conditions, an increasing supply of capital will
generate production plans whose preportion of forage crops will
correlatively increase, as well as, the related amount of livestock
facilities, if profitable. A mono-periodic model will be able to take
fully into account the cost of the divisible and durable inputs, but
it will underestimate the cost of the undivisible and durable ones, when
they are not perfectly adaptable.

It will also overestimate the rate of growth of the firm if
capital can only be accumulated very slowly; in practice, farmers will
never extend their barn a few square meters each year.

Although a multistage model would take into account more accurately
milking parlor costs, we chose the mono-periodic model, the extra
computation costs involved being too high. Furthermore, if the dairy
herd increases very rapidly when capital becomes less scarce, 1t is
always possible, in practice, to budget the relative advantages of

building ahead of present needs and to choose flexible and extensible

equipment.
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(3) Crop rotations are not such that we can cultivate one crop
after any other. However, since the expansion path is negatively
correlated with the quantity of cereal crops, and since temporary pasture
can be cultivated after any one of those except corn, we can expect

that the set of found solutions will be feasible.

B. Capital Constraints

Since, in spite of certain approximations, a mono-periodic model
is adequate, we include within it a set of capital constralnts.

The working capital profile of the activity set is such that it is
impossible to include all expendlitures and receipts of every production
cycle within the same period (a yesr). This situation corresponds to
our model % described in Chapter 6, page 75. The chosen starting date
is the third quarter (September - October) period at which time winter
CTrops are sown.

The time at which incoming and outgoing is taken into account, is
not defined as the date of the movement of goods. Farmers run accounts
and doing so, they vary their supply of credit by varying the time lapse
before payment. It is assumed that farmers are able to get three months’
credit without losing good standing. This delay has been reported as
also admitted in England and New Zealand by Taplin (71, p. 63).

Six constraints were defined:

- investment capital

- year TO net balance

- year T' net balance
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third quarter

- fourth quarter

first quarter

second quarter

The investment capital constraint takes into account building and
livestock initial outlay. In the case of multi-periodic activities such
as three-year steers, initial outlays are equal to the market value of
two young steers (one and two years old). This number of young animals
of different age has to be such that esch year a steer will be sold and
a calf will be raised. When the market values were not well defined
we estimated the cost of those animals by extrapolation. It was admitted
that their value increases proportionally to their gain of weight.

Year T® net balances represent a subperiod in which balances are
negative within each quarter for every activity except dairy, hog,
fattening calf and broller activities. These last are positive in ea