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I. INTRODUCTION 

Bone cement is used in orthopaedic surgery to replace or bind bone fragments resulting from 

trauma, to fill cavities, or to secure an implanted prosthesis. Any enduring bone cement must be 

biocompatible, be stable in the physiological environment, and have adequate mechanical properties 

for stresses applied during daily activity. 

Joint replacement is a common procedure to replace diseased joints. 139,000 total hip 

replacement surgeries and 247,000 total knee replacement surgeries were performed in the United 

States in 1996 (NCHS, 1999). In joint replacement, the cement serves to anchor the prostheses as 

well as transfer the applied load from the stiff prosthesis to the relatively less rigid bone. In addition to 

biocompatibility and adequate mechanical properties, a bone cement should have flow properties to 

allow proper placement and an appropriate setting time so that joint articulation can be verified before 

closure of the wound. 

Common bone cements are based on polymerizing methacrylate or reactions with salts of 

calcium phosphates. Poly(methyl-methacrylate), PMMA, is currently widely used for prosthesis 

fixation and cavity filling applications. However, PMMA has many shortcomings including: tissue 

necrosis resulting from the exothermic setting reaction, lack of bonding (except for mechanical 

interlocking), degradation fragments which cause irritation and inflammation, and suspected toxicity of 

the monomer (Planell, 1995). To date, calcium phosphates cements have shown excellent tissue 

compatibility, but mechanical properties have been poor and inadequate for load bearing application. 

In previous research, cement made from a combination of calcium aluminate and calcium 

phosphate was studied in vitro and was found to have mechanical and setting properties that would 

be suitable for use as a bone cement (Roemhildt, 1998). This cement is referred to as OC-cement in 
r 

this paper. It is postulated that the hydrated calcium aluminate binder would provide adequate 

strength and be stable in the physiological environment, while the calcium phosphate aggregate 

would enhance the biocompatibility of the material and lead to bioactivity. 
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The objective of the present study was to investigate the following characteristics of OC-

cement: 

• flow and setting properties, 

• compressive strength and phase composition of OC-cement with aging, 

• bonding strength between the OC-cement and a metal prosthesis, 

• bonding strength between the OC-cement and natural bone, 

• and tissue response to the OC-cement in vivo. 
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Figure 1. Longitudinal section through a growing long bone (Banks, 1986) 

Table 1. Composition of adult mammalian bone 

Component Amount (wt%) Approximate distribution (wt%) 

mineral matrix 50-70% calcium 39%, phosphate 17%, sodium 0.7%, magnesium mineral matrix 50-70% 0.5%, carbonate 0.5%, potassium 0.2% 

organic matrix 20-40% collagen 96%, noncollagenous protein, proteoglycan, organic matrix 20-40% hyaluronan, and gylcoprotein 

water 5-10% water 5-10% 

lipids <3% 
From Lïan et al., 2000 and Martini, 1995. 
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The organic matrix mostly contains type I collagen fibers that are oriented in a preferential 

direction. The preferential orientation of the collagen fibers alternates from layer to layer in adult 

bone to give bone its typical lamellar structure (Baron, 1999). The mineral phase forms spindle- or 

plate-shaped crystals (-30-70 x 200Â) of a poorly crystalline, carbonated apatite similar to 

hydroxyapatite [Ca10(PO4)6(OH2)]. These mineral crystals are found on and within the collagen fibers 

and in the ground substance. The crystals are typically oriented in the same direction as the collagen 

fibers (Baron, 1999). Substitutions of carbonate, magnesium, acid phosphate and OH" vacancies 

create small, imperfect crystals that are somewhat soluble, allowing bone to act as a reserve for 

calcium, phosphate, and magnesium ions (Lian et al., 1999). 

4. Types of bone 

According to structure and function, there are two main types of bone: dense cortical 

(compact) and cancellous (trabecular). They are constituted of the same matrix elements and the 

same cells, but are different in structure and function. The main structural difference is that 80-90% 

of the volume of cortical bone is mineralized, while only 15-25% is mineralized in cancellous bone. 

The remaining volume is occupied by bone marrow, blood vessels, and connective tissue (Baron, 

1999). 

In cortical bone, the main structural unit is the osteon that is composed of approximately 20-

30 concentric lamellae (Figure 2). A typical osteon is cylindrically shaped and approximately 200-250 

urn in diameter. At the center of each osteon is the Haversian canal providing a pathway for blood 

vessels. Perforating (Volkmann's) canals provide a transverse, interconnected network through the 

lamellae for blood vessels to supply nutrients to osteons deeper in the bone and to the marrow cavity 

(Martini, 1995). Inside the concentric lamellae are small cavities called lacunae where osteocytes are 

found. Canaliculi provide a narrow passageway for diffusion of nutrients between lacunae. 

Surrounding each osteon is a cement line, a 1-2 pm thick layer of mineralized tissue that lacks 

collagen fibers. 
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Figure 2. Structure of osteon system (Martini, 1995) 

In cancellous bone the structural unit is shallow, crescent hemiosteon, or trabecular packet, 

approximately 600 pm radius, 50 pm thick, and 1 mm in length (Jee, 1999). The architecture of the 

trabeculae serves to distribute a load over a larger area. With a surface to volume ratio eight times 

greater than cortical bone, cancellous bone surface provides more than 66% of the total bone surface 

(Jee, 1999). Table 2 shows a comparison of the basic structural units in cortical versus cancellous 

bone. 
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Table 2. Comparison of adult cortical and cancellous bone structural units 

. Cortical Cancellous 
(Osteon al) (Trabecular packet) 

Circumference (mm) 0.6 0.6 

Length (mm) 2.5 1.0 

Wall thickness (mm) 0.075 0.040 

Number / mm3 bone volume 15 40 

Total # in skeleton 21 * 106 14* 106 

Resorption time (days) 24 21 

Formation time (days) 124 91 

Bone turnover rate (% / yr) 3 26 

Shape cylindrical crescent 
Modified from Recker, 1983. 

5. Types of bone cells 

The main cellular elements of bone are osteoblasts, osteocytes, osteoclasts, and bone lining 

cells (Figure 3, Table 3). Osteoblasts, osteocytes, and bone lining cells emanate from local 

progenitor cells whereas osteoclasts arise from precursors originating in various hemapoietic tissues. 

Osteoblasts are bone-forming cells that synthesize and secrete unmineralized bone matrix, 

participate in calcification and resorption, as well as help to regulate the ion flux in and out of bone. 

In their active state, they are found in clusters of cuboidal cells along a bone surface. Osteoblasts 

contain an abundance of alkaline phosphatase and osteoinductive cell markers (Jee, 1999). At the 

end of its secreting period, an osteoblast becomes a bone lining cell or an osteocyte (Baron, 1999). 

Osteocytes are mature osteoblasts that ceased producing matrix and have become embedded with 

bone. They are found in lacunae and are incapable of dividing. Slender processes extend from the 

osteocyte through the canaliculi to communicate with other osteocytes or bone lining cells. The role 

of osteocytes is to stabilize bone mineral, detect microfractures, and respond to the amount and 

distribution of strain within bone (Jee, 1999). 
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Figure 3. Types of bone cells (Marks and Popoff, 1988) 

Table 3. Comparison of types of bone cells 

Osteoblast Osteocyte Bone lining cells Osteoclast 

Size 15-30 pm length -20 pm long 1 pm thick 
12 um long 

20-100 pm 
diameter 

Shape cuboidal elliptical with processes flattened 
ellipsoidal 

multinucleated 

Function 
synthesize and 
secrete bone 
matrix 

regulation of mineral 
content and architecture 
of bone mass 

cover inactive 
bone surfaces 

erode bone 

Location mineralization 
front 

lacunae inactive bone 
surface 

cavities on bone 
surface 

Precursor mesenchymal 
progenitors 

osteoblast inactive 
osteoblasts 

macrophage 

Life-span n/a n/a n/a 7 wks 

From Jee, 1999 and Puzas and Lewis, 1999. 

Osteoclasts are multinucleated, giant cells that are found on bone surfaces; eroding and 

resorbing bone matrix. A ruffled border that is sealed on each side characterizes their zone of 

contact with bone. The osteoclast lowers the pH of the extracellular compartment to approximately 5 

and dissolves the crystals of calcium phosphate (Puzas and Lewis, 1999). Next, lysosomes and 

enzymes degrade and digest the exposed matrix and collagen fibers. It is thought that the osteoclast 

undergoes apoptosis after a cycle of resorption (Baron, 1999). 
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Bone lining cells are flat, elongated, inactive cells that cover bone surfaces that are not 

undergoing resorption or formation (Marks and Hermey, 1996). 

6. Bone growth, repair, and remodeling 

Specialized receptors in bone cells respond to hormonal, mechanical, and other signals to 

control bone growth, repair, and remodeling (Lian et al., 1999). 

Bone growth occurs through intramembrous or endochondral ossification. Most growth of 

long bones occurs through endochondral ossification, in which growth of bone proceeds from 

cartilage. Mesenchymal cells proliferate and differentiate into prechondroblasts and chondroblasts. 

A chondroblast secretes cartilaginous matrix in which it can become embedded and differentiate into 

a chondrocyte (Baron, 1999). The cartilage enlarges, a series of struts calcify, followed by the death 

of the chondrocytes. 

In contrast, growth of flat bone and some bone repair proceeds through intramembrous 

ossification. Mesenchymal cells proliferate and differentiate into preosteoblasts and then to 

osteoblasts. In intramembrous ossification, osteoblasts synthesize bone matrix without a preferential 

orientation, osteocytes are large and numerous, and calcification is delayed and irregular. This 

results in what is called woven bone, which is later remodeled into compact bone (Baron, 1999). 

The body's normal response to bone fracture involves three stages: inflammation, reparation, 

and remodeling. Immediately after the injury, hemorrhage and cell death elicit an inflammatory 

response that works to phagocytize necrotic tissue and produce rudimentary scar tissue. Clinically, 

this phase of healing is associated with swelling, pain, and warmth lasting 3-4 days. In the reparation 

phase, necrotic debris is removed and replaced with new cell matrix and an external callus is formed 

to provide stability. The last phase, remodeling, can begin after 4 to 6 weeks and last up to 12 

months. During this time, the periosteal bony callus is gradually resorbed, maturate bone is formed, 

and the bone structure is restored (An et al., 1999, Caputo, 1999). The rate at which the repair 

proceeds is species dependent as shown in Table 4. 
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Table 4. Timetable of interface formation for an endosseous implant in cortical bone 

Stage of repair Time in weeks 

Rabbit Canine Human 

Woven callus formation 2 4 6 

Lamellar compaction 6 12 18 

Interface remodeling 6 12 18 

Maturation 18 36 54 

From Roberts et al., 1987. 

Bone remodeling is a coordinated mechanism of bone resorption and bone formation, 

through which old bone is removed and replaced by new bone. Though cortical and cancellous bone 

vary in structure, the remodeling of each follows the same principles. Remodeling can be divided into 

five phases: resorption, reversal, initial mineralization, formation, and mineralization (Figure 4). 

Figure 5 depicts bone-remodeling activity along a longitudinal sequence. First, a "cutting cone" 

tunnels out bone matrix followed by a "closing cone" that leads to the formation of a new haversian 

system. 
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Figure 4. Bone remodeling in cancellous bone (Baron, 1999) 
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Figure 5. Bone resorption cone (from Baron, 1999) 

On average, 18% of the total bone mass is remodeled each year in an adult human (Ganong, 

1995). Remodeling serves to help maintain the overall skeletal mass, reform fracture callus to new 

bone, adapt bone to applied stresses, and aid in the control of mineral homeostasis (Puzas and 

Lewis, 1999). Bones that are heavily stressed become thicker and stronger, whereas bones not 

subjected to ordinary stresses will become thin and brittle (Ganong, 1995). The relationship between 

the forces acting on bone and remodeling were studied by Wolff who found that bone is reshaped in 

response to the forces acting on it (1892). Others have suggested these additional principles: 

• Remodeling is triggered not by principal stress but by "flexure." 

• Repetitive dynamic loads on bone trigger remodeling. Static loads do not. 

• Dynamic flexure causes all affected bone surfaces to drift toward concavity that arises during the 

act of dynamic flexure (Park and Lakes, 1992). 

Also of interest is the phenomenon of stress shielding. This occurs where a load-bearing 

implant reduces the local stress at a previously load-bearing site resulting in atrophy or tissue loss in 

adjacent tissue (Black, 1999). In total hip replacement (THR) cement serves not only to anchor the 
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prosthesis but to transfer the load from the relatively stiff prosthesis to the surrounding tissue (Park 

and Lakes, 1992). 

7. Hormonal regulation of bone 

Although there are many hormones that may have an effect on bone, there are three main 

regulating hormones for the control of calcium metabolism and bone physiology: 1,25-

dihydroxycholecalciferol, parathyroid hormone (PTH), and calcitonin. 1,25-dihydroxycholecalciferol is 

a steroid formed from vitamin D that functions to increase the calcium absorption in the intestine. 

PTH acts directly on bone to mobilize calcium from bone. It also indirectly decreases calcium 

excretion. Calcitonin acts to decrease the calcium concentration in the extracellular fluid by inhibiting 

bone resorption (Ganong, 1995). 

8. Factors affecting bone loss 

When bone loss is accelerated or exaggerated, it contributes to a decrease in bone mass and 

strength and increases the possibility of fracture. As adults age, they begin to lose bone mass in their 

later decades. This is due in part to the low calcium intake in the elderly population as well as 

decreased vitamin D consumption (Rosen et al., 1999). Estrogen deficiency has also been 

recognized as a major cause of bone loss in women after menopause. In addition to nutritional and 

hormonal factors, level of exercise, alcohol consumption, smoking, heredity, and environmental 

factors contribute to overall bone loss (Rosen et al., 1999). 

B. Mechanical Properties of Bone 

Bone is a complex composite of materials that contribute to its overall mechanical properties. 

The structure of bone is anisotropic, leading to the anisotropy of its properties. It has been difficult for 

researchers to determine accurate values for the mechanical properties of bone and a broad range of 

values has been reported in the literature, as shown in Table 5. The intrinsic strength of bone is 

dependent upon the type of bone, bone architecture, species, age, and composition in terms of 

porosity, density, and mineralization. 
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Table 5. General mechanical properties of bone 

Bone property Range Average 
Cortical bone 

Comp. strength (MPa) 133-295 200±36 
Comp. elastic modulus (GPa) 14.7-34.3 23+4.8 

Tensile strength (MPa) 92-188 141+28 

Tensile elastic modulus (GPa) 7.1-28.2 19.6±6.2 

Cancellous bone (average) 

Strength (MPa) 1.5-38 

Elastic modulus (GPa) .01-1.57 

From An, 2000. 

In vitro factors also influence the values obtained when testing the mechanical properties of 

bone. Factors of influence include storage history of the bone sample, dryness, rate of mechanical 

loading, and direction and distribution of the applied load. It has been recommended that bone 

samples be kept moist with saline at all times and that samples be frozen to minimize degradation if 

storage is necessary. Freezing of bone specimens to -20°C for up to eight months was not found to 

significantly affect the mechanical properties of bone (Zioupos et al., 2000). 

C. Orthopaedic Biomaterials 

1. Bone repair and replacement materials 

In addition to autografts, allografts, and xenographs, various metals, ceramics, and polymers 

have been used in orthopaedic surgery to repair and/or replace bones and joints. Any material that is 

implanted must be biocompatible. Williams defines biocompatibility as the ability of a material to 

perform with an appropriate host response in a specific application (1999). An orthopaedic 

biomaterial must be appropriate in terms of its mechanical and biological properties. Materials are 

described as toxic, bioinert, bioactive, or bioresorbable based upon the host's response to the 

biomaterial. These terms are described in Table 6. Also of concern in the use of orthopaedic 

biomaterials are the possibilities and effects of wear debris, corrosion, and infection on the 

biomaterial as well as on the tissue (Tanner, 1998). 
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Table 6. Types of biomaterial based on host response 

Type of material Tissue response to the material Examples 

Toxic provoke inflammatory or disadvantageous 
response, body tries to reject or remove the 
material, necrosis of surrounding tissue 

particulate debris 

Biotolerant foreign body response forms a fibrous capsule that 
surrounds and isolates the material 

PMMA, 316L 
stainless steel 

Bioinert limited response with the formation of a thin fibrous 
capsule 

alumina, zirconia 

Bioactive body's response is advantageous, formation of 
biomaterial-tissue interface results 

glass-ceramics, 
hydroxyapatite 

Bioresorbable material is nontoxic, dissolves, and is replaced by 
surrounding tissue 

tricalcium phosphate, 
some polymers 

From Hench, 1996 and Park and Lakes, 1992. 

In general, metals have a high strength and elastic modulus, are tough and ductile, and 

usually have good fatigue resistance and stress-corrosion resistance. Commonly used metals 

include low carbon stainless steel and alloys of Ti-AI-V or Co-Cr-Mo. Metals are frequently used for 

load bearing applications such as prostheses, nails, pins, rods, and plates. Polymers, long chain, 

high molecular weight molecules, generally have substantially lower strength, lower elastic moduli, 

and deform at lower stresses than metals. Poly(ethylene) is often used to form the artificial 

acetabular cup and poly(methyl-methacrylate) is commonly used in bone cement. Ceramic materials 

such as calcium phosphates, zirconia, and alumina have been found to have good tissue response 

and are typically strong, but brittle in nature. For this reason they are generally used as coatings or 

for non-load bearing applications; however, in Europe the use of alumina for the ball and socket of the 

total hip replacement is popular due to its superior wear resistance compared to presently used 

materials. The mechanical properties of selected biomaterials are compiled in Table 7. 
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Table 7. Properties of common biomaterials 

Material Compressive 
strength (MPa) 

Tensile strength 
(MPa) 

Elastic modulus 
(GPa) 

Density0 

(g/cm ) 
316L Steel ——— 505-860 190 7.9 
TÎ-6AI-4V —— 860 116 4.5 
Co-Cr-Mo —— 430-1038 210 9.2 
PMMA bone cement 92 30 3 1.1 
Alumina (100% dense) 4,000-5,000 260-350 365 -400 3.9 
Alumina (25% porosity) 500 — 150 2.9 
Glass-ceramic 300 200 30-35 2.5 
Hydroxyapatite0 917 40-200 40-120 3.2 
(S-TCP6 10-28 40-120 90-120 3.14 
Calcium aluminate" 118-186 124-141 2.8-3.0 

From Rainer et al., 1996 and Park and Lakes, 1992. cJarcho, 1981. Mendoza et al., 1989. 

2. Ceramic biomaterials 

As mentioned above, ceramics are strong but brittle, non-ductile materials. The mechanical 

properties of ceramic materials are generally much higher in compression than in tension. Failure 

often generates at cracks or sites of imperfections and results in catastrophic failure. The strength of 

ceramic materials often decreases exponentially as porosity increases. When a ceramic biomaterial 

is implanted, the chemical nature of the material and its structure influence the response. Ceramics 

having interconnecting pores with a minimum size of 75-100 (im have been found to allow the 

ingrowth of bone into porous structures (Hulbert et al., 1970). 

A disadvantage of ceramic biomaterials is that they are generally only available in preshaped 

forms and sizes. Powders or beads of ceramic have been used to provide flexible sizes and shapes, 

but were found to migrate from the original site after implantation (Driessens, 1995). 

a). Calcium phosphate 

Calcium phosphates are the most widely used ceramics for orthopaedic applications. The 

CaO ' P2Os phase diagram in Figure 6 displays the various phases of anhydrous calcium phosphate 

that form depending upon the molar ratio of reactants and the firing temperature for the ceramic. 

The calcium phosphates common for biological applications are listed in Table 8 along with their 

common abbreviation, calcium to phosphate ratio, and solubility product. Hydroxyapatite, HA, and p-

tricalcium phosphate, (S-TCP, can also be precipitated from aqueous solutions, although this involves 
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a complex series of events that can be affected by subtle changes in the reaction conditions as well 

as the presence of trace elements (Jarcho, 1981 ). 
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Figure 6. Calcium phosphate phase diagram (Welch and Gut, 1961) 

Table 8. Common calcium phosphates and selected properties 

Calcium phosphate Symbol Formula Ca.P 
ratio 

Solubility product (calc.f 

Hydroxyapatite HA Ca10(PO4)6(OH)2 1.67 6.62x10"" 

p-tricalcium phosphate P-TCP Ca3(P04)2 1.50 2.07 x 10'" 

a-tricalcium phosphate cc-TCP Ca3(P04)2 1.50 8.46x10^ 

Dicalcium phosphate DCP CaHPO* 1.00 2.59 x 10" 

Octacalcium phosphate OCP Ca4H(P04)32.5 HzO 1.33 5.01 x 10" 

Biological apatite — 1.61 
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The use of calcium phosphates in orthopaedic applications has been of great interest due to 

its favorable tissue response. Calcium phosphates with a calcium to phosphate ratio between 1 to 2 

have good in vivo response, while compounds with ratios in the range of 1.50 to 1.67 Ca:P have been 

found to have excellent bioactivity (Bhaskar, 1971, Driessens, 1995, Donath, 1990). After 

implantation of calcium phosphates there is a lack of local or systemic toxicity, lack of inflammatory or 

foreign body response, absence of fibrous tissue at the implant-tissue interface, and the apparent 

ability to become directly bonded to bone tissue (Jarcho, 1981 ). HA has a limited solubility and 

normally appears integrated, but not resorbed when implanted, whereas p-tricalcium phosphate is 

biodegradable and is replaced with bone overtime, due to its higher solubility (Driessens, 1995, 

Figure 7). 
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Figure 7. Calculated solubility isotherms for common calcium phosphates (Elliot, 1994) 
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b). Calcium aluminate 

Calcium aluminate ceramic is prepared by combining calcium oxide with aluminum oxide and 

sintering to the given temperature, as displayed in the phase diagram (Figure 8). When referring to 

calcium aluminates, C = CaO, A = Al203l and H = H20. Research has been conducted since the 

1970's on calcium aluminate ceramics for use as a biomaterial. In vitro culture testing as well as in 

vivo studies in rats, rabbits, canines, rhesus monkeys and humans have been performed without 

serious, adverse response to the material (Autian, et al., 1972, Hentrich et al., 1971, Carvalho et al., 

1975, Hulbert et al., 1970, Hulbert et al., 1981). Despite the large amount of research regarding 

calcium aluminate ceramics that has been done from 1970 through the 1980 s, direct comparisons of 

the results are difficult due to variations in composition, processing, and porosity of the calcium 

aluminate ceramics that were used. 
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Figure 8. Phase diagram of calcium aluminate (Nurse et al., 1965) 
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to achieve a high strength within 24 hrs, durability in saline environments and proposed 

biocompatibility has led to its evaluation for use in bone cement. 

The main phases of calcium aluminate cement are CA, CA2, C3A, and C12A7. The hydration 

products: hexagonal, low density CAH10; C2AH8; high density, cubic CsAHg; and AH3 are the same for 

all calcium aluminate cements, only the relative concentrations differ (Lea et al. 1973). CAH10 is a 

metastable hydrate that can convert to C2AH8 and later CaAHe depending on the environmental 

conditions. Conversion from the low density CAH10 to CaAHe involves a 53% decrease in volume 

(Taylor, 1997). The strength of the calcium aluminate cement is primarily determined by the 

concentration of CA (Lea, 1971 ). 

Factors influencing the properties of the resulting hydrated cement include water to cement 

(w/c) ratio, temperature during setting, pH, presence of additives, and the storage environment 

(Sersale, 1957). The setting reactions for calcium aluminate cements are exothermic. Gitzen et al. 

(1957) reported a temperature rise between 10 and 28°C for 2.5 inch cubes of neat cements cured 

nonadiabatically at 32°C. 

i) Effect of water to cement ratio 

Additional water contributes to porosity in the cement, thus decreasing the strength. 

According to Midgley (1990) the water to cement (w/c) ratio for high aluminate cement must be less 

than 0.4 for enduring strength. The theoretical w/c ratios for complete hydration are as follows: 

Reaction w/ç volume o of hydrate (a/cm3) 

CA + 10H20 -> CAH10 1-14 3.64x 1.7 

2 CA + "/2H2O -> C2AH8 + AH3 0.63 2.31 x 1.9 

CA + 4H20 -> 1/3C3AH6 + 2/3AH3 0.46 1.7b 2.45-2.54 

In a cement prepared with a high w/c ratio, all of the calcium aluminate hydrates. If a low w/c 

ratio is used, only a portion of the calcium aluminate hydrates. A subsequent conversion of calcium 

aluminate hydrates releases water that can be used for further hydration, usually resulting in strong 

cement with low porosity (Taylor, 1997, Figure 9). 
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Figure 9. Strength of cements with varying water to cement ratios (Taylor, 1997) 

ii) Effect of temperature during setting and storage 

According to Capmas et al. (1990), as the temperature is increased from 18°C to 30°C, the 

setting is retarded due to the difficult nucleation of CAH10. As temperatures increase above 30°C, the 

setting rate accelerates. Lea (1971 ) reports that temperatures greater than 56°C during setting and 

hardening over the first 24 hrs cause a considerable loss in strength and a regression at later ages. 

The strength after conversion is affected by the rate at which it occurs, the crystallization of AH3, and 

the initial w/c ratio (Taylor, 1997, Midgley, 1967). 

Figure 10 shows the hydration products after hydration at various temperatures. Depending 

upon temperature, conversion and further hydration can proceed from the initial hydration as follows: 

at T< 21 °C CA + 10H -> CAH10 

3CAH10 -> % C2AH8 + % AH3 + 27/2 H 

at27°C <T<54°C 2CA + 11H -> C2AHa + AH3 

% C2AH8 CaAHs + % AH3 + 9/2 H 

at T > 50°C 3 CAH10 -» C3AH6 + 2AH3 + 18H 
3CA + 12H CsAHe + 2AH3 (Kosmac et al., 1993). 
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Figure 10. Calcium aluminate hydration products at various temperatures (Taylor, 1997) 

CAH10 is the hydrate formed at temperatures below 20°C, while C3AH6 is formed at 

temperatures greater than 50°C (George, 1990). In cement that is hydrated at low temperatures and 

later exposed to higher temperature, the low-density hydrate converts to the high-density form. The 

higher the temperature, the faster the conversion takes place (George, 1990). 

iii) Effect of additives and aggregates 

The use of admixtures is common to alter the properties of cement. Of most interest in the 

present study is the use of accelerators to reduce the working and setting time of the cement. The 

effect an additive has on a cement is often complicated and can depend on concentration, ambient 

temperature, and the use of other additives. 

Parker (1952) and Robson (1967) found that a decrease in setting time is observed with the 

addition of basic additives that increase the pH. Conversely, acids were found to promote a delay in 

the hydration process in high alumina cement (Lea, 1971 ). Curell et al. (1987) state that the setting 

times of calcium aluminate cement with additives follow: 

Li* < Na* < pure water < K*, Ca2* < Mgz\ Sr2* < NhT4 and 

OH* < pure water < CI", N03 < Br < Acetate. 

Nilfoushan and Sharp (1995) studied the effect of alkaline-earth metal chlorides (MgCI2, 

CaCI2, SrCI2, and BaCI2) from 0.025-0.5M on the setting behavior of calcium aluminate cements. At 

12°C, all chlorides retarded set time and increased their effect with increasing concentration. At 

20°C, low concentrations brought about acceleration, while high concentrations retarded setting. At 
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28°C and 36°C, retardation of setting was observed and increased in effect with increasing 

concentration of the additive. 

CaCI2 has long been used as an accelerator and allows near normal strength without 

significantly influencing the workability, air content, or water to cement ratio of the cement into which it 

is incorporated (Rixom and Mailvaganam, 1986). The addition of 2% CaCI2 cement was not found to 

adversely affect the long-term strength of concrete (Glenkinsop, 1963). Addition of finely ground 

calcite to cement was found to prevent loss of strength through the formation of the hydrate 

C4ACO2H11, which limited or prevented conversion (Cussino and Negro, 1980). Also, concrete made 

with equal parts cement and blast furnace slag were found to increase in compressive strength over 

one year, while neat cement samples showed the normal decrease in compressive strength typically 

associated with conversion (Majumdar et al., 1990). 

iv) Other factors 

Concretes made with calcium aluminate cement are highly resistant to sulfate solutions, 

seawater, and dilute acids with pH greater than 4. The resistance increases with decreasing w/c 

ratios and increasing cement concentration (Crammond, 1990). 

Kurdowski et al. (1990) studied the behavior of high alumina cement in chloride solutions. 

Shrinkage of 11 mm/m was observed in one month, after which the cement was stable. The formation 

of a thin, dense layer of AH3 and CAH10 was observed on the external layer of the cement sample 

while the internal region had cubic CsAHe and high strength. 

d). Calcium aluminate chloride hydrates 

Previous work in the field of calcium aluminate chloride hydrates has focused on concretes 

and mortars of various compositions, often containing Si02 or Fe02 and C3A as the calcium aluminate 

phase. It is not known if results from these studies correlate with the calcium aluminate based 

cement used in the present study. They are the only such compounds found in available literature. 

The findings are presented here in hopes of better understanding the current system under 

investigation. 
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When CaCI2 is added to calcium aluminate cement, it reacts with the calcium aluminate 

phases to form chloroaluminates that generally conform to the formula: C3ACaX2 nH20 or 

C3ACaCI2nH20 (Poellman, 1986). C3A'CaCI2 H10 has been found to crystallize in thin hexagonal 

p l a t e s .  T h i s  m o n o c l i n i c  a - C s A  C a C U  H 1 0  i s  s t a b l e  a t  2 5 ° C ,  b u t  t r a n s f o r m s  t o  r h o m b o h e d r a l  p -

C3A CaCI2 H10 at 35°C through a reversible reaction (Kuzel, 1968). In practice, a solid solution of 

these two phases is often found (Poellman and Kuzel, 1988). 

The addition of CaCI2 to calcium aluminate cements retards or prevents the formation of the 

cubic C3AH6 phase (Traetteberg and Bellow, 1975). Darr and Ludwig studied the incorporation of 

chloride into calcium aluminum hydrates (1974). Additions of 0.33 or 0.66 mole CaCI2 per mole of 

hydrate (C4AHi3) were incorporated within four and seven days, respectively. The maximum amount 

of chloride incorporation was 0.92 mole CaCI2 at 5°C and 0.82 mole at reaction temperatures 

between 20° and 40°C with a considerably longer time required to reach equilibrium. 

Hannawayya reported that the addition of CaCI2to cement reduced the alkalinity of the 

aqueous phase in the hydrating cement (1990). The system compensates for the lower pH, by 

liberating more lime through an increased rate of hydrolysis of the cement. Hannawayya also found 

that reinforced concrete with CaCI2 added did not suffer any serious or rapid damage from steel 

corrosion (1990). 

3. Bone cements 

Bone cement is used for cavity filling, bone replacement, fixation of prostheses, and transfer 

of the load from the stiff prosthesis to the relatively less rigid bone. Cements discussed in this section 

include PMMA, calcium phosphate cements, and OC-cement. The only ASTM standard for bone 

cement is that for acrylic cement. This specifies a maximum working time of 5.0 minutes, a setting 

time of 5-15 minutes, a maximum temperature less than 90°C during setting, and a minimum 

compressive strength after 7 days of 70 MPa while not losing more than 10% of the initial 

compressive strength as measured after 24 hrs (ASTM 451, 1986). 
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a). Poly(methyl-methacrylate) 

PMMA is currently the most commonly used cement for orthopedic applications. This 

cement is primarily composed of PMMA powder and methyl methacrylate monomer liquid, with 

additions of hydroquinone to prevent premature polymerization, N, A/-dimethyl-p-toluidine to 

accelerate the curing, barium sulphate or zirconium dioxide to add radiopacity, and dibenzoyl 

peroxide as an initiator. The use of PMMA led to the widespread practice of the total hip replacement 

(Charnley, 1972) and after three decades of use, it remains the gold standard in joint replacement 

surgery. 

The main advantage of PMMA is its rapid strength development that allows for fast recovery 

following joint replacement. Although the mechanical properties of PMMA may vary with 

temperature, environment, mixing procedure, porosity, strain rate, and the brand of cement, a typical 

range of values is as follows: elastic modulus 2.2-3.7 GPa, compressive strength 78-120 MPa, and 

tensile strength 13.2- 48.2 MPa (Planell, 1995). In vivo experiments have found that the mechanical 

properties increase during an initial time period, generally days to months, followed by a slow 

decrease over the succeeding years. The fatigue behavior of PMMA bone cement in vivo depends 

mostly on the behavior of crack propagation (Planell, 1995). 

The bonding at the cement-prosthesis interface depends on the surface roughness of the 

prosthesis; mechanical interlocking predominates for rough surfaces while atomic interactions 

predominate for smooth surfaces. The strength of the interfacial bonding also depends on the type of 

metal used to form the prosthesis. It has been found that 316L stainless steel has the highest 

interfacial strength, followed by Co-Cr-Mo, and lastly Ti-6AI-4V (Planell, 1995). The bonding at the 

cement-bone interface relies upon mechanical interlocking from the protrusion of the cement into the 

trabeculae of the bone. 

The biological response to PMMA is generally the formation of fibrous membrane between 

the cement and bone. In animal models, this membrane has been found to contain macrophages, 

giant cells, and granuloma formation (Planell, 1995). 
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The main disadvantage of PMMA bone cement for use in joint replacement surgery is that 

approximately 10% of the patients may require a revision within 10 years (Planell, 1995). Aseptic 

loosening often occurs which has been attributed to: lack of chemical bonding, mechanical failure of 

the cement, fibrous tissue formation resulting from heat induced necrosis, and osteolysis induced by 

wear debris particles (Planell, 1995). Another concern in the use of PMMA is the suspected toxicity 

of the monomer. 

b). Calcium phosphate cements 

As mentioned previously, calcium phosphate ceramics have been found to have good tissue 

response and no mutagenic effects (Driessens, 1995). In addition, tissue may attach directly to the 

implant without the formation of a fibrous capsule. A calcium phosphate cement would allow the 

benefits of the ceramic material, but could also be shaped to the desired form at the time of 

implantation or in vivo. Current research efforts to develop calcium phosphate cements (CP-

cements) are based on an aqueous reaction of calcium and phosphate containing compounds 

resulting in the precipitation of hydroxyapatite, dicalcium phosphate, dihydrate, or octacalcium 

phosphate. The temperature rise during setting is generally negligible; less than 1°C. The pH during 

setting ranges from 6.5 to 10 depending on the specific formulation (Driessens et al., 1995). The 

handling of CP-cements does not appear to cause allergy for either patient or the practitioner. 

The properties of the CP-cements depend upon formulation, mixing environment, particle 

size, porosity, and additives, among other factors. The working time of these cements has ranged 

from 4-25 minutes and the setting time from 10-100 minutes, with full strength generally achieved 

within 1 to 14 hrs. Driessens et al. (1995), report that for CP-cements compressive strength can vary 

from approximated 4-120 MPa, with typical values between 20-40 MPa. Tensile strength ranged from 

0.5 to 8 MPa. It should be noted that the storage conditions and length of aging time before testing 

often were not indicated. 

Disadvantages of calcium phosphate cements include the brittleness of the resulting porous 

cement, difficulties of setting in vivo, wash out of implanted cement paste, and the relatively low 
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strength. Much research is currently underway to study these issues and to improve the mechanical 

characteristics of CP-cements. 

c). OC-cement 

An OC-cement has been developed at ISU in response to the need for an improved cement 

for prosthesis fixation and other orthopedic applications. This cement is a combination of a calcium 

aluminate binder and calcium phosphate that sets when mixed with water. The setting properties of 

the cement can be controlled with additives. Additives and other methods are also being investigated 

to optimize the flow characteristics of this cement. The OC-cement is expected to have sufficient 

mechanical properties for load bearing applications as well as a friendly tissue response. 

Initial study of the mechanical properties of OC-cement showed that compressive strength 

after aging 1 wk under simulated physiological conditions ranged from 91-138 MPa (Roemhildt, 

1998). The study of the mechanical properties of OC-cement and the effects of aging continue with 

ongoing efforts to improve the overall properties of OC-cement. A major difference between OC-

cement compared to traditional PMMA cement is that OC-cement is a dilatent mixture in that the 

shear is dependent upon the rate of strain. This cement flows best when vibration is applied as 

opposed to solely pressure. 

D. Assessment of Compatibility of Biomateriai Implants 

1. Tissue reaction to biomaterials and evaluation 

The body's response to the implantation of a biomateriai involves a complex series of events. 

A local response occurs due to damage of surrounding tissue from the implantation procedure and 

the presence of the biomateriai in the tissue. The sequence of the local responses to the implantation 

of a biomateriai is injury, acute inflammation, chronic inflammation, formation of granulation tissue, 

foreign body response, and fibrosis (Figure 11). The tissue reaction varies in response to the 

physical and chemical nature of the biomateriai, including the size, shape, angularity, surface 

roughness, and porosity of the material (Anderson, 1996). In addition to any tissue response to the 
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biomateriai, micromotion, loosening, degradation products, and wear debris also affect the overall 

tissue reaction (Ratner, 1996). 

• Acute Cnrcnic Granulation tissue -

Macrophages 
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Foreign body giant cells 

Fibroblasts 

PMN's 

Fibrosis 

Mononuclear 

Leukocytes 

Figure 11. Timetable of body's response to biomateriai (Anderson, 1996) 

Inflammation is a nonspecific response to tissue damage that is characterized by redness, 

swelling, pain, and heat (Black, 1999). Acute inflammation generally lasts a matter of minutes to 

days, during which time monocytes and neutrophils try to phagocytize the foreign material. In cells, 

lysosomes are present to digest dead or foreign material (Anderson, 1996). However, if the implant is 

large, it will not be possible to engulf the foreign matter, which leads to chronic inflammation. 

Monocytes, macrophages, lymphocytes, blood vessels and connective tissue are prevalent during 

chronic inflammation. The formation of granulation tissue is a normal part of the healing process that 

occurs 3-5 days after tissue damage. During this stage monocytes differentiate into macrophages, 

fibroblasts and vascular endothelial cells proliferate at the implant site, and granulation tissue begins 

to form (Black, 1999). Foreign body reaction occurs as monocytes and macrophages fuse together to 

form foreign body giant cells (FBGC) and a continuation of granulation tissue formation. The end-

stage in the healing process is often fibrosis or fibrous tissue encapsulation to isolate the implant from 

the local environment. Cells surrounding the implant regenerate, fibroblasts form, and scar tissue 

results (Anderson, 1996). 

Deep infection is a serious complication that can result from implantation of a biomateriai. 

Infections occur in approximately 1% of joint replacement surgeries and often require a subsequent 

surgery and/or implant removal for effective treatment (Black 1999). Due to the difficulty of treating 
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deep infections, efforts have been made to decrease the incidence of infection by incorporating 

antibiotic into PMMA bone cement. 

The biocompatibility of a biomateriai may be tested using a variety of in vitro and in vivo 

techniques. In the field of orthopaedic biomaterials, microradiography, light microscopy, fluorescent 

microscopy, and/or scanning electron microscopy (SEM) are often utilized to analyze local tissue 

response of the explanted tissue in contact with a biomateriai. Radiography is used to show the 

gross structure of the bone and the biomateriai. This technique is often useful to confirm proper 

placement of the implant. Light microscopy in conjunction with thinly sliced, stained sections can be 

used to identify the types of cells present. Fluorescence microscopy can be used to analyze 

specimens from test subjects that have received bone-labeling agents to observe regions and time 

frame of bone mineralization. Tetracycline antibiotics form stable tetracycline-calcium chelates that 

fluoresce at specific wavelengths. In vivo, tetracyclines bind to Ca2+ and can be used as bone labels. 

Chelates form only at sites of new bone deposition where bone contains 20% or less of the maximum 

mineral content (Gruber and Stasky, 1999). These chelates remain immobile until resorption occurs. 

Lastly, scanning electron microscopy, SEM, can be used analyze the 3-d surfaces of specimens at a 

much higher magnification than the other techniques mentioned here. 

2. Mechanical testing of bone-biomaterial interface 

Push-out and pull-out tests are commonly used to measure the shear strength of the ex vivo 

bone-implant interface of orthopaedic and dental implants (Berzins and Sumner, 2000). A load is 

applied to the implant via a fixture connected to the crosshead of a materials testing machine. The 

test is run until the interface fails, which is represented on a force versus displacement curve as a 

sudden displacement of the implant. The ultimate shear strength is calculated by dividing the 

maximum force by the interfacial area. A combination of factors such as friction, mechanical 

interlock, and chemical bonding determine this shear strength. For smooth materials the shear 

strength is mainly due to chemical bonding, while the shear strength for rougher materials is primarily 

due to mechanical interlocking between the implant and bone (McKoy et al., 2000). A number of 



30 

aspects have been found to affect the strength at the bone-biomaterial interface including implant 

characteristics, local factors, medications, surgical factors, and patient factors as detailed in Table 9. 

Table 9. Factors affecting the strength at bone-biomaterial interfaces 

Implant and local factors 

surface configurations, surface coatings, implant geometry, 
material properties, quality of cementing procedure, particle 
debris, design and stress shielding 

Medications affect bone growth and resorption 

In vitro factors storage before testing, specimen preparation 

Surgical and hospital factors skill of surgeon, post operative care 

Patient factors age, lifestyle, inflammation, infection 

From McKoy et al, 2000. 

a). Pull-out test 

Pull-out tests are frequently used to evaluate the stability of orthopaedic implants such as 

posts, screws, or nails. These can be placed directly in bone to compare implant materials or surface 

treatments, or cemented in place to study the stability of the cement and implant. There is a wide 

variety of test conditions for pull-out test protocols, which could bias the test results. As with push-out 

tests, care must be taken to avoid comparing results of pull-out tests with differences in boundary 

conditions or material or design arrangements (Berzins and Sumner, 2000). For intramedullary pull-

out tests it is recommended that the post occupy at least 80% of the cross-sectional area of the 

medullary canal (Canale, 1998). 

Mueller and Schurmann found the shear strength of the PMMA-metal interface in vitro varies 

greatly with the metal surface texture as well as the storage condition during aging. Smooth and 

rough specimens aged 60 days under physiological conditions failed at the cement-metal interface 

with a shear strength of 0 MPa (1999). 
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b). Push-out test 

Push-out specimens are typically implanted transcortical̂  in a long bone such as the femur 

or longitudinally in the medullary canal. After the allotted time the specimen is retrieved and prepared 

for testing. Interfacial shear strength can be determined from: S = F / (%*d * t); where S is the 

interface shear strength (MPa), F is the push-out force (N), d is the plug diameter (mm), and t is the 

average bone thickness in contact with the implant (Dhert et al., 1992). 

Critical aspects of push-out tests include precise alignment of the implant and the testing 

fixture and clearance between the specimen support and the implant to be displaced. Dhert et al. 

found that a clearance no less than 0.7 mm is required to minimize non-uniform stress distribution 

(1992). Because the strength calculation assumes uniform stress distribution at the interface, one 

must avoid comparisons between implants with different interfacial stress distributions (Berzins and 

Sumner, 2000). 
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III. MATERIALS AND METHODS 

A. Materials 

Characterization of the calcium aluminate cement, (3-tricalcium phosphate, hydration solution, 

and stainless steel posts is given below. 

1. Calcium aluminate cement 

Commercial calcium aluminate (La Farge Calcium Aluminates, Inc., Chesapeake, VA) was 

used. The molar ratio of calcium to alumina was approximately 0.82 to 1.00. This cement contained 

only calcium aluminate phases CA, CA2, and C12A7 and alumina without any detectable additives 

(Table 10, Figure 12). 

Table 10. Manufacturer's specification for the chemical composition of CA 

Al203 >68.5 bulk density: 1.04-1.23 g/cm 
CaO <31.0 specific density 3.0 g/cm3 

Si02 < 0.8 fineness: 3600-4100 cm2/g 
Fe203 < 0^3 residue at 90 microns < 5% 
MgO < 0.5 
TiOz <0.25 
S03 < 0.3 
K2Q + Na2Q soluble < 0.5 
From La Farge product data 

a 

2500 

2000 

a. 

5 15 25 35 45 55 65 

2 theta (degrees) 

Figure 12. XRD of calcium aluminate cement 
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The median particle size was 5.91 pm, standard deviation of 7.16 pm and the particle size 

distribution shown in Figure 13, as determined with a Horiba CAPA-700 Particle Size Distribution 

Analyzer (Horiba Ltd., Kyoto, Japan) based on liquid-phase sedimentation. 

Particle Size Distribution of CA 
25 

Diameter (pm ) 

Figure 13. Particle size distribution of calcium aluminate cement 

2. B-tricalcium phosphate 

(3-tricalcium phosphate (Fluka Chemicals, Neu-Ulm, Switzerland) was used. The chemical 

composition is shown in Table 11 and x-ray diffraction in Figure 14. The median particle size of the p-

tricalcium phosphate was found to be 3.62 pm with a standard deviation of 2.10 pm and the particle 

size distribution is shown in Figure 15. Particle size measurements were conducted using a Horiba 

Particle Size Analyzer as above. 

Table 11. Manufacturer's specification for the chemical composition of p-TCP 

Cu <0.005% K < 0.01% 
CI < 0.05% Na <0.01% 
S04 < 0.1% Ni < 0.005% 
Cd < 0.005% Pb < 0.005% 
Co < 0.005% Zn < 0.005% 
Fe < 0.02% 
From Fluka product data 
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Figure 14. XRD of p-tricalcium phosphate 
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Figure 15. p-Tricalcium phosphate particle size distribution 

3. Hydration solution 

The hydration solution for the cement was 2.00 M calcium chloride prepared from calcium 

chloride (Fisher Scientific, Fairlawn, NJ) and de-ionized water that had been boiled for at least 10 

minutes to remove carbon dioxide. The solution was acidic with a pH of 4.1 ± 0.5 and had a density 

of 1.2 g/cm3. 
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4. Stainless steel posts 

Metal posts, 6 mm diameter x 100 mm length, were machined from medical grade 316L 

stainless steel for use in the pull-out experiment. Care was taken not to scratch or mar the surface. 

Prior to testing, posts were washed in a mixture of mild detergent and water, placed in an ultrasonic 

cleaner for 5 minutes, rinsed with de-ionized water and dried. The surface roughness of the posts 

was measured using a Dektak IIA profilometer (Veeco, S. A., Plainview, NY). A typical scan is 

displayed in Figure 16. The average surface roughness was determined by a sample of 15 posts with 

three measurements collected per post. The mean surface roughness was found to be 2322 ± 388 A. 

Before using the posts for pull-out testing, the bottom tip was coated in paraffin wax to act as a 

release agent. The second shipment of 316 L stainless steel that was received had a rougher 

surface finish. These posts were polished with 0.3 nm alumina to obtain a surface roughness 

comparable to the initial 316L stainless steel posts. 
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Figure 16. Typical surface roughness graph 

f : 
m : 

fljff 
M-Lli ' ULJ-J— 



36 

B. Methods 

1. Preparation and characterization of OC-cement 

OC-cement was prepared according to the formula: 10.00 g calcium aluminate cement, 

5.00 g p-tricalcium phosphate and 4.70 g of 2.00 M CaCI2 solution. The dry powders were mixed 

together with in a mortar and pestle until uniform. The dry components were then added to the pre-

measured amount of hydration solution, the components were mixed for 1 minute, and vibration was 

applied with a hand massager for 45 seconds at high speed to aid in mixing and removal of 

entrapped air. 

2. Measurement of flow 

The consistency of the cement was that of a thick paste. To measure the flow of the OC-

cement, procedures by Katsumura et al. (1998) and the American Dental Association Specification 

No. 8 for zinc dental cement (1977) were followed with appropriate modifications. The cement was 

placed in a syringe with an inner diameter of 0.8 cm and a disc was prepared using 0.5 ml of cement. 

The cement disc was placed on a smooth glass plate. An additional glass plate and weight (120 g 

total) were placed on top of the cement disc for 20 minutes. For the vibrated condition, immediately 

after disc formation, vibration with a hand massager was applied to the lower glass plate for the 

designated time. In general, the cement flowed outward between the plates in a radial manner. The 

diameter of the cement disc was measured initially, immediately after vibration, and subsequently at 

five-minute increments. The average disc diameter for each trial was calculated from three 

measurements taken at 60° increments. The mean diameter for each condition was determined from 

10 trials. 

3. Measurement of working and setting time 

Working and setting times were estimated by a procedure similar to that used for calcium 

phosphate cements and dental cements (Mirtichi et al., 1990, Driessens et al., 1995). Working time 

was determined to be the point of zero flow, which indicates the end of moldability without damage to 

the developing cement structure. The working time was considered to have ended when a small, 

stainless steel spatula inserted into the paste could be withdrawn without pulling out any cement. 
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The setting time was defined as the point beyond which it is possible to handle the cement without 

causing damage to the cement (Driessens et al., 1995). It was determined as the time at which a 

small, stainless steel spatula pressed against the surface of the cement with moderate force did not 

damage the cement nor leave a noticeable mark on the surface. 

4. Strength testing 

Specimens, 12 mm diameter x 16 mm height, were prepared for compressive strength 

testing. Following preparation the cement paste was next placed in a Plexiglas mold and allowed to 

set in a water bath maintained at 37°C. 20 minutes after setting, the specimens were removed from 

the molds and placed in small containers containing lactated Ringer's solution (Abbott Laboratories, 

North Chicago, IL). Samples were stored at 37°C until tested. The force required for failure was 

measured using an Instron 4202 universal testing machine (Instron Corp., Canton, MA), equipped 

with a 50 kN load cell and the cross-head speed was set at 1 mm/min. The compressive strength 

(CS) was calculated as follows: CS = Force max/ Area. The mean compressive strength from at least 

6 specimens is reported for each condition. 

The tensile strength of the cement was measured using a diametral tensile test with the same 

Instron settings as used for compressive strength testing. Specimens approximately 12 mm diameter 

x 4.8 mm in height were prepared and stored as described above for compressive testing. The mean 

diametral strength determined from at least 10 specimens is reported for each condition. Diametral 

tensile strength (DTS) was calculated as: DTS = Force max/ (n * t * %), where t is the thickness and d 

is the diameter of the cement disc. 

5. Physical changes 

Changes in the mass and diameter of OC-cement specimens prepared and stored in the 

same manner as for compressive strength testing were recorded from 1 hour after setting up to 14 

months. Each specimen was labeled and the diameter was measured with calipers using care to 

take readings from the same location on the specimen each time. Specimens were blotted dry with 

paper towels before measuring the mass. 
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applied to the post to facilitate its placement. Following the setting of the cement, test specimens 

were stored at 37°C for the desired time period. The cement was kept moist by irrigation with 

lactated Ringer's solution after setting until testing. 

Pull-out tests were conducted at 4 hrs, 24 hrs, and 60 days after preparation. At least 7 

specimens were tested for each cement type at each of the three time periods. Specimens were 

randomly assigned a testing period of 4 or 24 hrs. Due to complications in aging femurs under test 

conditions longer than 24 hrs, rigid, textured, plastic tubing was used to simulate femurs for the 

specimens tested at 60 days. 

Femur- Cement 

Testing fixture 

Plaster of Paris 

Adapter to Instron 
base 

Figure 17. Drawing of pull-out test fixture and specimen 
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Figure 18. Centered, cemented post for pull-out testing 

After the designated time, the potted specimens were fixed to the testing jig and attached to 

the Instron machine (Figure 19). The rate of displacement for the crosshead was 1 mm/minute. The 

maximum tensile force to displace the prosthesis and method of failure were recorded for each 

specimen. Interfacial shear strength was determined by calculating the force/area for failure. 

Figure 19. Instron set-up for pull-out testing 
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9. In vivo testing 

In vivo testing was used to assess the tissue response to the experimental cement and to 

measure the shear strength between the implanted cement and cortical bone. In vivo testing was 

performed following guidelines from ASTM procedures F 763-87, Standard practice for short-term 

screening of implant materials, and F 981-93, Assessment of compatibility of biomaterials for surgical 

implants with respect to effect of materials on muscle and bone as applicable to this experimental 

material and projected applications. ASTM 763-87 provides a procedure for evaluating the short-term 

tissue response to biomaterials that have been implanted into muscle tissue (1987), whereas ASTM 

981-93 assesses the long-term response to biomaterials in bone or muscle. Both procedures 

assume a solid biomaterial that is formed to desired shape before surgical implantation. Next, these 

small specimens are implanted into muscle or transcortical!/ into a long bone. However, to best 

evaluate the OC-cement under conditions similar to its proposed use, tissue response was evaluated 

after the cement paste was placed in the medullary canal of the femur. 

Adult, mixed breed canines were used for in vivo testing. Historically, canines have had a 

dominant role in orthopaedic research and are thought to be the closest in vivo condition to human, 

aside from primates (An and Friedman, 1999). Also influencing the selection of canines, as the 

animal model in this study was their availability and the relative ease of the surgical procedure in 

dogs as compared to smaller, commonly used experimental animals. 

The experimental design is given in Table 12. Twelve animals were used for the 

experimental conditions and 9 for control. The implant and surrounding tissue were evaluated 2, 6, 

and 12 wks following implantation. Seven animals were sacrificed at each time period: 4 

experimental and 3 control. Femurs that had been implanted with cement were retrieved and 

radiographed. From each femur, at least 4 specimens for tissue analysis and 5 specimens for push-

out testing were prepared. 
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Table 12. Experimental design for in vivo tests 

n 
Implantation 
time (wks) 

Cement 
type PSR 

Time ofFI 
label (wks) 

Histology 
specimens 

Push-out test 
specimens 

1 2 OC Z - - - z z 
2 2 OC • - - - z z 
3 2 OC • - - - z z 
4 2 OC Z - - - z z 
5 2 PMMA • - - - z z 
6 2 PMMA • - - - z z 
7 2 PMMA • - - - z z 
8 6 OC • 2 5 - z z 
9 6 OC • 2 5 - z z 

10 6 OC • 2 5 - z z 
11 6 OC • 2 5 - z z 
12 6 PMMA z 2 5 - z z 
13 6 PMMA Z 2 5 - z z 
14 6 PMMA • 2 5 - z z 
15 12 OC Z 2 7 11 z z 
16 12 OC • 2 7 11 z z 
17 12 OC • 2 7 11 z z 
18 12 OC • 2 7 11 • z 
19 12 PMMA • 2 7 11 z z 
20 12 PMMA • 2 7 11 z z 
21 12 PMMA Z 2 7 11 z z 

PSR: post surgery radiograph, Fl = fluorescent labeling 

Prior to surgery, the dry, OC-cement powder was gas sterilized with ethylene oxide. Calcium 

chloride powder was autoclaved, then diluted with sterile, de-ionized water to the proper 

concentration. OC-cement prepared under aseptic conditions was cultured and no aerobic or 

anaerobic growth was found after 48 hrs or 4 days incubation, confirming that the sterilization 

procedures used were sufficient. 

a). Pre-surgery Conditioning 

Approval was obtained for the experimental protocol by the Animal Care and Use Committee 

at Iowa State University. Upon procurement of the dogs used in this study, their health was 

evaluated by Laboratory Animal Resource Veterinary Faculty. Following vaccination (Vanguard®, 

Pfizer Animal Health, Exton, PA), animals were quarantined for two weeks before beginning 

experimental procedures. Throughout the test period animals were cared for according to Laboratory 

Animal Resources protocol. Animals were free to roam about the caged area and given food and 

water ad libetum. 
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b). Premedication and anesthesia 

Animals were pretreated with Acepropzine (0.04 mg/kg) and Butorphanol (0.4 mg/kg). 

Thiopental (10 mg/kg) was given before intubation. Once intubated, animals were placed on 

Isoflourane (1.5-2.0%) in oxygen until completion of the surgical procedure. Heart rate and 

respiratory rate were monitored throughout the procedure. 

Implant surgeries were performed by a skilled, veterinary orthopedic surgeon. The 

implantation procedure was similar to that by Takahasi and Koshino (1995). The right, rear leg was 

clipped from the hock to the midline of the animal's back. Following a 5 minute sterile surgical 

preparation, an approach was made to the greater trochanter. The medullary canal of the femur was 

entered with an intramedullary pin. Intramedullary pins of increasing size and a bone file were used 

to increase the size of the opening. A 6.0-8.0 mm opening was created in the greater trochanter to 

the marrow cavity of the diaphysis. Suction was used to clean the medullary canal. 

The selected cement was prepared as described previously and the medullary canal was 

filled. PMMA cement was placed in a 20 ml disposable syringe and inserted under pressure. OC-

cement was placed inside a Teflon tube, pressure was applied to the top end of the tube, and the OC-

cement was pushed out and slid into place in the intramedullary canal. Fluoroscopy was used 

throughout the procedure to guide location of the opening and proper placement of the cement. Once 

the cement had set, the fascia was closed with 3-0 polydioxanone sutures in a simple interrupted 

pattern and the skin closed using 2-0 nylon sutures. 

c). Postoperative care 

Postoperative analgesic (Morphine, Elkins-Sinn, Inc., Cherry Hill, NJ, 08003) was given, once 

immediately after coming out of anesthesia and a second dose four hours later. The animals and 

their surgical incisions were monitored daily throughout the study. Animals were given recommended 

laboratory care and feeding. Fluorescent bone labeling agents were administered approximately 3, 6, 

and 11 wks post surgery as shown in Table 13. Tetracycline hydrochloride and oxytetracycline 

(Sigma Chemical Co., St. Louis, MO) were used. Depending on weight, animals were given 200 or 

250 mg orally, approximately every eight hours, for a three-day period. 
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Table 13. Schedule of fluorochrome administration 

Animal Implant Cement Days Total dose Days Total dose Days Total dose 
ID# time (wks) type F1 (mg) F2 (mg) F3 (mg) 
6629 2 PMMA — — 

6668 2 PMMA —- —— — —- — — 

6672 2 PMMA — — — 

6657 6 PMMA 24, 25, 26 2000 34, 35, 36 1800 — — 

6596 6 PMMA 25, 26, 27 2000 36, 37,38 1800 — — 

6649 6 PMMA 24, 25, 26 2000 34, 35, 36 1800 — — 

6615 12 PMMA 24, 25, 26 2000 49, 50, 51 1800 78, 79, 80 2000 
6587 12 PMMA 24, 25, 26 2000 49, 50, 51 1800 78, 79, 80 1750 
6640 12 PMMA 22, 23, 24 2000 47, 48, 49 1800 76, 77, 78 2000 
6673 2 OC —— — — --- — 

6669 2 OC —— —- —-

6746 2 OC — — —- --- — 

6740 2 OC — — — -— — 

6569 6 OC 23, 24, 25 2250 34, 35,36 2250 —- — 

6698 6 OC 21, 22, 23 2250 34, 35, 36 2250 
6656 6 OC 22, 23, 24 2250 36, 37, 38 2250 — 

6661 6 OC 22, 23, 24 2250 36, 37, 38 2250 — 

6662 12 OC 21,22, 23 2200 47, 48, 49 2250 74, 75, 76 2250 
6663 12 OC 21,22, 23 2200 47, 48, 49 2250 74, 75, 76 2250 
6652 12 OC 21,22, 23 2250 53, 54, 55 2250 75, 76, 77 2250 
6681 12 OC 21,22, 23 2250 53, 54, 55 2250 75, 76, 77 2250 

F1 = tetracycline hydrochloride, F2 = oxytetracycline, F3 = tetracycline hydrochloride 

d). Sacrifice and implant retrieval 

After the given time interval, animals were euthanized using Beuthanasia™ (Schering-Plough 

Animal Health, Union, NJ) given intravenously at 2 ml/10 kg body weight. Operated femurs were 

harvested, taking care to note physical observations such as color and any abnormalities of 

surrounding tissue. Femurs were wrapped in towels saturated with lactated Ringer's solution. 

Medial-lateral and cranial caudal macroradiographs were taken of each femur immediately after it 

was retrieved. Next, femurs were transversely sectioned using an Isomet low-speed saw (Buehler 

Ltd., Evanston, IL) and lactated Ringer's solution as a cutting fluid. At least 5 slices, approximately 3-

4 mm thick, were prepared for push-out testing while four additional sections were collected for tissue 

analysis (Figure 20). Immediately after sectioning, specimens for tissue analysis were placed in the 

appropriate fixative and push-out specimens were kept moist using lactated Ringer's solution. 
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testing. Push-out testing was performed as soon as possible after sectioning, typically within four 

hours of harvesting. 

The push-out force was measured using an Instron universal testing machine, a 1 kN load 

cell, and a crosshead speed of 0.5 mm/min. The maximum force for interface failure was determined 

as a sudden drop in force on a force vs. displacement chart. The maximum shear force and mode of 

failure were recorded for each specimen. Initially the maximum diameter at the cement-bone 

interface was measured, the specimen was rotated 90 degrees and a secondary diameter was 

measured. Measurements were taken on the top and bottom surfaces. The area of the cement-bone 

interface was approximated by assuming an elliptical shape for the bone-cement interface and 

averaging the circumference of the top and bottom surfaces. Since some specimens did not have 

complete contact between the bone and cement, the above calculation of interfacial surface area was 

not always accurate. Therefore, a digital image was collected of each specimen at the Iowa State 

University Image Analysis Facility using a Zeiss Image analysis system (Zeiss-Kontron; BAS version 

2.00). Images were captured using a Sony 3CCD color video camera. The area of direct contact 

between the cement and bone was calculated for each specimen. Using these area measurements, 

the shear strength was calculated as the force divided by area. The mean interfacial shear strength 

was determined for each experimental condition. 

Push-out specimen 

Figure 21. Push-out testing fixture 



47 

11. Evaluation of tissue response 

Evaluation of tissue response included gross observation, light microscopy, fluorescent 

microscopy and microradiography. 

a). Light microscopy 

Specimens for light microscopy work were fixed with 10% neutral buffered formalin for at 

least 24 hr before processing by Iowa State University Veterinary Histology Services. Specimens 

were demineralized using 25% formic acid. Ammonium oxalate solution was used to determine the 

endpoint of decalcification. Following demineralization, specimens were dehydrated in a series of 

graded alcohol solutions and xylene, and embedded in paraffin. Thin sections, 5 urn thick, were cut 

from the paraffin blocks using a microtome. These thin sections were mounted on glass slides. 

Slides were stained with hematoxylin and eosin or Gomori's trichrome to facilitate the observation of 

cellular elements, fibrous tissue, and new bone. Slides from at least one cortical bone section and 

one cancellous bone section were prepared from each experimental femur. 

The cellular response to implanted cement was evaluated by a veterinary pathologist from 

the Iowa State University Veterinary Pathology department. A general, qualitative assessment was 

made for each slide based on the cellular elements present, the degree of necrosis, and the presence 

of any fibrous capsule. Slides were examined using a Zeiss Axioplan 2 microscope equipped with an 

Axioplan HRc camera to acquire digital photos. A stage micrometer was used to calibrate the internal 

scaling feature of the software. 

b). Fluorescence microscopy 

Specimens for analysis using fluorescence microscopy were fixed in 70% ethanol for at least 

24 hr. Non-decalcified sections were dehydrated using a graded series of ethanol solutions and 

acetone. The specimens remained in for each of the following solutions for at least 24 hr 70% 

ethanol, 90% ethanol, 95% ethanol, 100% ethanol, 100% ethanol, acetone, acetone. Control 

specimens containing PMMA cement were dried for 24 hr under vacuum after being removed from 

100% ethanol, then embedded in Spurr's resin because acetone would have dissolved the PMMA 

cement. After dehydration, specimens were placed in Spurr's media: 10.0 g 4-vinylcyclohexene 
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dioxide, 6.0 g diglycidyt ether of polypropylene glycol, 26.0 g nonenylsuccinic anhydride, and 0.40 g 

of dimethylamino ethanol. The specimens in unpolymerized Spurr's resin were placed under vacuum 

and shaken for 2-3 days to remove residual acetone and to promote complete infiltration of the resin 

into the bone specimen. After the resin had begun to thicken, generally around day 5, the specimens 

were placed in an oven at 70° for at least 24 hr to complete polymerization. 

The hardened blocks containing embedded bone specimens were cut into sections 

approximately 500 nm thick using an Isomet, low-speed saw and water as a lubricant. After being 

cut, the sections were rinsed thoroughly, dried on paper towels, and stored in the dark. The 

sectioned wafers were next mounted on Lexan® slides using Duro® superglue and pressed for 24 hr. 

The mounted sections were polished to 300 ± 50 pm using a series of 400, 600,1200 grit paper, and 

0.3 urn alumina on a lapping wheel. 

These sections were examined on an Olympus AH-2 microscope (Olympus Corp., Lake 

Success, NY) or Zeiss D-7082 Photomicroscope (Carl Zeiss Microimaging, Inc., Thornwood, NY) with 

reflected light using blue or violet filters. 

c). Microradiography 

After fluorescence microscopy, microradiographs of the thick sections were collected to study 

mineralization around the implanted cement. Digital microradiographs were obtained using 

specialized, high-resolution, x-ray equipment at the Center for Nondestructive Evaluation, an IPRT 

Center at Iowa State University. Equipment included a Kevek microfocus x-ray tube at 30-35 kV with 

a 5 urn spot size, Varian amorphous silicon detector with a gadolium sulfyotide screen, x-ray detector, 

with a Daedel 4 axis micro stepper positioner. 

d). Scanning electron microscopy 

The resin embedded cement-bone sections used for fluorescence analysis were analyzed 

without coating with a Hitachi 2460N Scanning electron microscope, SEM, (Hitachi Scientific 

Instruments, Pleasanton, CA), using secondary electrons (SE) or backscattered electrons (BSE) 

operating between 5-30 kV. 
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12. Statistical analysis 

Means and standard deviation are presented for the experimental data. The Student's t-test 

was used to assess whether the observed differences between the means of different groups were 

statistically significant. 
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IV. RESULTS AND DISCUSSION 

A. Cement Characterization 

1. Characterization of OC-cement 

The setting, flow properties, strength overtime in a simulated body environment, change in 

mass and size over time, and phases present during hydration were studied to further understand the 

composition and characteristics of OC-cement. 

a). Setting 

The working and setting times of OC-cement are dependent on cement composition, the 

presence of additives, and the mixing environment. Setting properties have been evaluated from 10-

40°C and are displayed in Table 14 and Figure 22. Both working and setting times were highly 

influenced by temperature. The working time decreased progressively: 28.2,14.2, 8.6, 6.3, 4.4 

minutes, with increasing temperature. Similarly, the setting times decreased: 64.4, 27.5,17.92,12.8, 

10.2 minutes, as the temperature increased. The setting time of OC-cement at 37°C was found to 

range from 12.5 to 13.5 minutes. This is similar to that of commercial PMMA cements such as 

Palacos R1®, Simplex P®, and Zimmer D® (Kindt-Larsen et al., 1995). 

The graph of In time vs. absolute temperature"1 in Figure 23 shows high correlation and 

approximately the same slope for both the working and setting times. With the slopes from the 

regression line, the AH was estimated to be -42 kJ/mole. 

Table 14. Setting properties of OC-cement 

Working and setting times of OC-cement (minutes) 
10 °C 20 °C 30 °c 37 °C 40 °C 

n WT ST WT ST WT ST WT ST WT ST 
1 27.0 61.0 15.0 27.0 9.0 19.0 6.5 12.5 4.0 10.5 
2 37.0 68.0 15.0 28.0 9.0 18.5 6.0 13.0 4.5 10.5 
3 27.0 63.0 14.0 27.0 8.5 16.0 6.5 12.5 4.5 10.5 
4 27.0 64.5 14.0 29.0 9.0 20.0 6.0 12.5 3.5 10.0 
5 26.0 64.0 13.5 28.0 8.0 17.5 6.5 13.5 4.8 10.3 
6 24.5 66.0 13.5 26.0 8.0 16.5 6.5 13.0 5.0 9.5 

AVG 28.7 64.4 14.2 27.5 8.6 17.9 6.3 12.8 4.4 10.2 
SD 4.5 2.4 0.7 1.1 0.5 1.5 0.3 0.4 0.5 0.4 

WT = Working time, ST = Setting time 
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Setting of OC-cement 
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Figure 22. Working and setting times of OC-cement vs. temperature (mean ± standard deviation) 
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b). OC-cement flow 

The experimental cement mixture exhibits dilatent flow, the resistance to flow is increased as 

the rate of shear increases. The cement is similar to Portland cements in that it flows better under 

light vibration. The effect of vibration on the flow of the cement was studied to aid in effectively 

placing the cement. For OC-cement, the average diameter of a standard cylinder, under a standard 

load, without vibration increased from 0.938±0.72to 1.395+0.218 cm, 49%, over the 20 minute 

period. The greatest change took place during the initial 5 minute period (Table 15, Figure 24). OC-

cement that had been vibrated showed an immense increase in mean diameter following vibration. 

Total increases in diameter over the 20 minute test period of 438%, 442% and 629% were found for 

OC-cement vibrated 15, 30, and 45 seconds, respectively (Tables 16,17,18). Following vibration up 

to 20 minutes, the mean diameters increased 3.2%, 1.8%, and 0.9%, respectively, for the 15, 30, and 

45 second vibration durations. These small changes were not statistically different. 

These results show that under specific conditions, OC-cement flows readily and its unique 

flow properties could be advantageous for some applications. The dilatent nature of the cement 

could prevent cement from being forced into the cavities of trabecular bone, as frequently occurs with 

PMMA cement implanted with applied pressure. However, adapting to the differences in flow may 

require modifications to the typical PMMA cement placement procedure. 

Table 15. Flow of OC-cement - no vibration 

Diameter of OC-cement disc (cm) 
N Omin 5 min 10 min 15 min 20 min 
1 0.970 1.217 1.300 1.363 1.333 
2 0.873 1.180 1.180 1.170 1.200 
3 0.873 1.040 1.280 1.290 1.300 
4 0.857 1.183 1.293 1.317 1.327 
5 0.860 1.083 1.430 1.430 1.447 
6 1.033 1.597 1.877 1.883 1.883 
7 0.993 1.833 1.467 1.490 1.490 
8 0.920 1.240 1.373 1.353 1.353 
9 1.050 1.020 1.030 1.080 1.080 
10 0.950 1.350 1.480 1.520 1.540 

Total AVG 0.938 1.274 1.371 1.390 1.395 
SD 0.072 0.258 0.224 0.220 0.218 
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Table 16. Flow of OC-cement - vibrated 15 seconds 

Diameter of OC-cement disc (cm) 
N 0 min After Vib. 5 min 10 min 15 min 20 min 
1 0.922 4.977 5.167 5.180 5.183 5.183 
2 0.906 5.387 5.417 5.417 5.417 5.610 
3 0.868 4.763 5.097 5.103 5.103 5.103 
4 0.863 5.467 5.573 5.607 5.610 5.723 
5 0.917 4.660 4.687 4.690 4.693 4.695 
6 0.962 5.553 5.723 5.723 5.723 5.723 
7 0.982 5.540 5.633 5.643 5.643 5.643 
8 0.988 2.003 2.003 2.033 2.037 2.037 
9 0.973 4.867 4.967 4.967 4.967 4.967 
10 0.995 5.617 5.683 5.700 5.700 5.700 

Total AVG 
SO 

0.936 
0.047 

4.883 
1.074 

4.995 
1.106 

5.006 
1.101 

5.008 
1.100 

5.038 
1.117 

Table 17. Flow of OC-cement - vibrated 30 seconds 

Diameter of OC-cement disc (cm) 
n 0 min After Vib. 5 min 10 min 15 min 20 min 
1 1.067 5.200 5.230 5.320 5.320 5.320 
2 1.140 4.610 4.613 4.627 4.627 4.627 
3 1.146 6.683 6.850 6.863 6.863 6.863 
4 1.347 6.620 6.650 6.680 6.680 6.680 
5 1.133 6.767 6.800 6.803 6.837 6.837 
6 1.157 5.313 5.370 5.380 5.383 5.383 
7 1.050 5.997 6.080 6.130 6.130 6.130 
8 0.983 6.337 6.503 6.553 6.560 6.560 
9 1.017 6.417 6.523 6.570 6.587 6.587 
10 1.290 6.463 6.493 6.503 6.517 6.517 

Total AVG 
SD 

1.133 
0.115 

6.041 
0.743 

6.111 
0.771 

6.143 
0.766 

6.150 
0.771 

6.150 
0.771 

Table 18. Flow of OC-cement - vibrated 45 seconds 
Diameter of OC-cement disc (cm) 

N 0 After Vib. 5 min 10 min 15 min 20 min 
1 0.977 5.490 5.523 5.537 5.537 5.537 
2 1.017 7.387 7.570 7.583 7.583 7.583 
3 0.923 6.647 6.667 6.667 6.667 6.667 
4 0.920 7.330 7.658 7.658 7.658 7.658 
5 0.930 6.490 6.983 7.097 7.097 7.097 
6 0.933 6.087 6.870 6.887 6.887 6.887 
7 0.937 6.750 6.513 6.513 6.513 6.513 
8 0.903 7.573 6.127 6.127 6.127 6.127 
9 0.903 6.983 6.803 6.803 6.803 6.803 
10 0.907 6.860 7.347 7.347 7.347 7.347 

Total AVG 0.935 6.760 6.806 6.822 6.822 6.822 
SD 0.036 0.632 0.654 0.657 0.657 0.657 
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Flow of OC-cement 
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Figure 24. OC-cement flow: standard and vibrated conditions 

c). Strength 

The compressive strength (CS) was used to evaluate the mechanical properties of OC-

cement. The compressive strength of the cement was measured for OC-cement aged 1 day up to 2 

years. These results are displayed in Table 19 and Figure 25. Initially, OC-cement was prepared 

using either 20 or 33wt% p-tricalcium phosphate. Compressive strength results for the cement made 

with 33wt% p-TCP were significantly higher when measured at 1 month and 6 months; therefore, 

33wt% p-TCP was used in subsequent experiments. For OC-cement (33wt% p-TCP), the mean 

compressive strength progressively increased from 61.70±14.89,108.93+22.41,139.93+19.74 MPa 

at 1 day, 1 week, to 1 month. The compressive strength at 6 months showed a reduction in 

compressive strength, approximately 30%, as compared to 1 month values. Mean strength values for 

OC-cement (33wt p-TCP) at 6 months and 1 year were not found to be significantly different, but a 

decrease was noted from 1 to 2 years. 
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Table 19. Compressive strength of OC-cement over time (MPa) 

Cement A: 20wt% p-TCP Cement B: 33wt% p-TCP 
n 1 d 1 wk 1 m 6 m 1 d 1 wk 1 m 6 m 1 yr 2yr 
1 79.45 134.03 78.91 54.10 79.89 95.16 108.55 98.34 99.03 67.68 
2 90.03 108.81 78.24 62.61 46.38 125.35 163.44 81.43 74.24 80.03 
3 63.95 83.15 86.25 33.70 78.70 139.16 151.69 134.19 109.80 78.27 
4 61.59 91.28 110.09 87.44 72.55 97.16 143.73 88.17 68.85 65.03 
5 75.23 102.78 109.51 80.25 50.87 95.41 152.50 82.76 87.82 73.90 
6 82.78 101.17 43.60 64.67 70.01 126.59 146.34 112.33 86.71 87.44 
7 62.12 68.43 53.89 43.66 40.85 122.07 168.66 87.83 85.43 68.88 
8 78.91 83.16 51.38 43.28 70.53 84.99 149.45 88.17 99.43 49.92 
9 76.10 97.26 103.70 94.42 42.97 142.13 129.13 50.67 78.43 109.42 
10 68.16 114.67 93.59 56.67 72.75 89.39 111.65 124.87 89.77 61.85 
11 63.21 118.98 91.99 35.15 53.25 80.85 116.28 87.18 — 63.04 
12 ——— 94.75 59.12 ——- 137.74 108.11 ——— 65.72 

AVG 72.87 99.87 81.92 59.59 61.70 108.93 139.93 95.34 87.95 72.60 
SD 9.63 17.83 23.44 19.72 14.89 22.41 19.74 22.19 12.41 15.16 

OC-cements: compressive strength over time 

• OC-cement A • OC-cement B 

Figure 25. Compressive strength of OC-cement over time (mean ± standard deviation) 

Throughout the above segment of testing, improvements were made in the mixing, forming, 

and testing techniques. The compressive strength experiment was repeated with the addition of 

several time periods. Testing was performed at 1 hr, 4 hr, 12 hr, 24 hr, 48 hr, 5 d, 1 wk, 4 wk, 8 wk, 
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16 wk, 32 wk and 52 wk. Mean compressive strengths were 30.34, 71.26, 77.94, 74.73, 66.16, 

92.27,105.91,111.56,101.20,111.75, 99.71, and 92.00 MPa, respectively. The same trend of 

compressive strength over time that was observed in the first experiment was confirmed with similar 

values for compressive strength (Table 20, Figure 26). Although a small, temporary decease in 

strength was observed at 48 hours, the general trend in strength increased up to 1 month. The mean 

strength after 52 wk was 82% of the maximum strength that was measured at 1 month. 

Table 20. Compressive strength of OC-cement over time (MPa) 

n 1 hr 4hr 12 hr 24 hr 48 hr Sd 1 wk 4 wk 8 wk 16 wk 32 wk 52 wk 
1 31.58 69.56 92.72 77.88 68.54 82.70 95.44 95.87 78.27 123.89 82.23 128.01 
2 26.71 66.05 69.11 75.08 64.43 96.04 122.08 111.86 120.96 81.23 78.29 75.59 
3 34.33 70.54 70.04 74.95 63.70 97.48 94.26 97.25 75.64 105.99 117.09 93.37 
4 32.29 76.15 63.62 78.08 60.97 73.28 106.59 94.88 111.09 120.14 116.76 109.01 
5 33.13 68.64 64.47 67.26 73.42 76.92 122.21 112.48 112.78 97.71 96.85 87.07 
6 32.12 75.40 78.94 67.04 69.50 109.86 109.13 102.83 87.72 125.73 114.32 71.39 
7 27.54 75.20 89.44 67.15 83.59 73.29 116.95 116.67 113.29 102.74 94.09 99.87 
8 30.07 79.59 95.56 72.72 60.62 85.16 86.97 120.49 111.20 136.60 114.98 87.21 
9 28.97 60.19 70.81 77.40 66.75 114.51 99.59 134.15 99.81 98.01 80.26 79.62 
10 28.52 74.13 85.78 80.94 60.34 113.48 — 113.38 — 125.47 102.32 88.81 
11 28.52 82.30 81.66 82.08 55.92 — — 127.35 — 99.57 — 
1 2 — 75.06 73.10 76.18 — — — — — — — — 

AVG 30.34 71.26 77.94 74.73 66.16 92.27 105.91 111.56 101.20 111.75 99.71 92.00 
SD 2.49 5.98 12.02 5.22 7.61 16.31 12.77 12.94 16.70 17.16 14.93 16.85 

The diametral tensile strength of OC-cement was measured at 1 day and 1 week. Values for 

mean diametral tensile strength were 7.O2+O.79 and 11.34+1.3 MPa, respectively (Table 21 ). This is 

approximately Vio of the compressive strength for the same time periods which is typical for ceramic 

materials. 
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OC-cement: compressive strength over time 
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Figure 26. Compressive strength of OC-cement over time (mean ± standard deviation) 

Table 21. Diametral tensile strength of OC-cement 

24 hr 1 wk 
Diameter Thickness Load DTS Diameter Thickness Load DTS 

n (cm) (cm) (N) (MPa) (cm) (cm) (N) (MPa) 
1 1.271 0.420 562 6.71 1.278 0.546 1129 10.30 
2 1.270 0.415 592 7.15 1.270 0.533 1059 9.95 
3 1.270 0.486 775 7.99 1.280 0.538 1468 13.56 
4 1.265 0.384 452 5.93 1.275 0.538 1346 12.48 
5 1.275 0.411 509 6.18 1.273 0.521 1225 11.77 
6 1.277 0.462 777 8.39 1.270 0.523 1281 12.27 
7 1.276 0.495 729 7.35 1.270 0.536 1454 13.60 
8 1.271 0.496 652 6.59 1.278 0.513 1111 10.79 
9 1.278 0.549 742 6.74 1.278 0.538 1210 11.20 
10 1.291 0.468 717 7.55 1.285 0.533 1236 11.48 
11 1.272 0.462 616 6.67 1.288 0.538 1258 11.55 
12 1.271 0.461 725 7.88 1.283 0.516 1093 10.52 
13 1.286 0.345 505 7.24 1.280 0.533 952 8.87 
14 1.275 0.456 501 5.48 1.280 0.541 1254 11.53 
15 1.266 0.907 1313 7.28 1.283 0.538 1106 10.19 

AVG 
SD 

7.02 
0.79 

11.34 
1.30 
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OC-cement achieves high strengths within 4 hours of preparation. The mixing technique and 

experience of the processor are thought to affect the resulting strength. Although the values for 

compressive strength of OC-cement are comparable with values for commercial PMMA bone cement, 

the tensile strength is approximately V3 to V» values reported for PMMA (Haas et al., 1975). In the 

future, it may be possible to further improve the strength properties of OC-cement by decreasing 

porosity through techniques such as vacuum mixing. 

2. Hydration of OC-cement 

a). Physical changes during hydration 

OC-cement pellets were immersed in lactated Ringer's solution and stored at 37°C. Mass 

and diameter were measured from 1 hour after setting up to 14 months. Over a one-month period, 

the mass of the pellets was found to increase 5.95+0.51 % (Table 22 and Figure 27). During the 

remainder of the experimental period, the mass of cement pellets continued to increase, but at a 

slower rate. A total increase in mass of 8.23+0.65% was observed after 14 months. This increase in 

mass is thought to be a result of absorption of water from the Ringer's solution that allows for 

continued hydration of calcium aluminate in the cement. The diameter of the same pellets increased 

0.71+0.39% over the 14 month test period. (Table 23 and Figure 29). 

These effects may be diffusion controlled, as the correlation of percentage change versus 

time1'2 is highly correlated and typical of diffusion-controlled reactions (Figures 28 and 29). The 

continued uptake of water may lead to the continued hydration of calcium aluminate phases present. 

With time, conversions in calcium aluminate phases occur. The variation in densities of these 

hydrated phases in the cement is also believed to play a role in the physical changes observed. 
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Table 22. Percentage change in mass of OC-cement pellets over time 

n 1 hr 2hr 4 hr 18 hr 24 hr 48 hr 5 d 7 d 1 m 4 m 6 m 9 m 14 m 
1 0.23 0.91 1.33 2.27 2.50 3.62 4.20 4.41 5.40 6.12 6.12 6.38 7.31 
2 0.32 0.82 1.34 2.21 2.53 3.72 4.74 5.13 6.06 6.93 6.95 7.41 8.46 
3 0.23 0.68 1.27 2.19 2.44 3.21 4.91 5.54 6.86 7.71 7.74 8.17 8.71 
4 0.41 0.82 1.18 1.93 2.18 3.04 5.08 5.64 6.59 7.48 7.61 8.18 8.91 
5 0.56 1.08 1.52 2.45 2.64 3.25 4.96 5.38 6.45 7.18 7.32 7.81 8.32 
6 0.49 0.90 1.28 2.09 2.29 3.44 5.05 5.37 6.18 6.96 7.17 7.59 8.58 
7 -0.64 0.41 0.75 1.68 1.84 2.75 4.25 4.75 5.84 6.81 6.84 7.04 7.47 
8 -0.84 0.21 0.64 1.53 1.60 2.48 3.87 4.26 5.24 6.13 6.04 6.36 7.13 
9 -0.70 0.68 1.20 2.12 2.17 3.32 5.03 5.42 6.39 7.54 7.68 7.93 8.29 
10 0.61 0.68 0.92 1.58 1.73 2.41 3.94 4.21 5.33 6.10 6.19 6.46 7.67 
11 0.63 0.72 0.93 1.54 1.67 2.53 4.34 4.72 5.83 6.84 7.03 7.21 8.54 
12 0.68 0.74 1.04 1.71 1.96 2.75 4.41 4.80 5.90 6.98 7.20 7.27 8.33 
13 0.74 0.90 1.13 1.78 2.07 2.79 3.87 4.12 5.18 5.85 6.08 6.05 7.56 
14 1.07 1.14 1.39 1.99 2.29 3.50 4.78 5.10 6.27 7.36 7.64 7.94 9.31 
15 1.02 1.12 1.32 1.89 2.23 3.41 4.42 6.08 5.78 6.94 7.15 7.46 8.81 

avg 0.32 0.79 1.15 1.93 2.14 3.08 4.52 4.99 5.95 6.86 6.98 7.28 8.23 
SD 0.60 0.25 0.25 0.29 0.33 0.43 0.44 0.59 0.51 0.58 0.61 0.70 0.65 

OC-cement: change in mass over time 
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Figure 27. Change in mass overtime (mean ± standard deviation) 
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OC-cement: change in mass over time 
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Figure 28. OC-cement change in mass versus square root of time (mean ± standard deviation) 

Table 23. Percent change in OC-cement pellet diameter over time 

n 1 hr 2hr 4 hr 18 hr 24 hr 48 hr 5d 7d 1m 4 m 6 m 9 m 14 m 
1 0.000 0.000 -0.211 0.000 0.000 0.000 0.000 0.000 0.211 0.000 0.211 -0.211 1.01 
2 -0.210 0.000 0.000 0.000 0.210 0.210 0.420 0.630 0.630 0.420 0.420 0.420 0.67 
3 0.000 0.214 0.214 0.000 0.000 0.214 0.642 0.214 0.642 0.642 0.642 0.642 0.84 
4 0.427 0.427 0.427 0.427 0.427 0.427 0.855 0.641 0.855 1.068 0.855 0.855 0.96 
5 0.000 0.000 0.000 0.216 0.216 0.216 0.431 0.431 0.431 0.647 0.647 0.431 0.88 
6 0.211 0.211 0.211 0.211 0.211 0.632 0.842 0.632 0.842 0.842 0.842 0.842 0.84 
7 -0.215 -0.215 -0.215 -0.215 -0.215 0.000 0.215 0.000 0.215 0.215 0.429 0.429 0.39 
8 0.210 -0.210 0.000 0.000 0.000 0.210 0.630 0.420 0.420 0.630 0.630 0.630 0.53 
9 0.000 0.000 0.213 0.213 0.000 0.213 0.426 0.426 0.640 0.853 0.853 0.640 1.07 
10 -0.421 -1.053 -1.053 -1.053 -0.842 -0.842 -0.842 -0.842 -0.632 -0.421 -0.421 -0.632 -0.53 
11 0.210 0.000 0.210 0.210 0.419 0.419 0.419 0.629 0.629 0.629 0.629 0.629 1.01 
12 0.419 0.000 0.210 0.210 0.210 0.210 0.629 0.629 0.419 0.629 0.629 0.419 0.73 
13 0.210 0.210 0.210 0.210 0.210 0.210 0.420 0.420 0.630 0.840 0.840 0.630 0.84 
14 0.210 0.000 0.210 0.210 0.000 0.000 0.210 0.419 0.419 0.629 0.419 0.419 0.63 
15 0.630 0.420 0.420 0.420 0.420 0.630 0.840 0.840 0.630 0.840 0.840 0.630 0.80 

AVG 0.112 0.000 0.056 0.071 0.084 0.183 0.409 0.366 0.466 0.564 0.564 0.452 0.71 
SO 0.275 0.348 0.361 0.354 0.317 0.346 0.426 0.409 0.359 0.381 0.336 0.390 0.39 
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OC-cement: diameter expansion over time 
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Figure 29. OC-cement diameter expansion over time (mean ± standard deviation) 

b). X-ray diffraction analysis 

X-ray diffraction (XRD) was used to study the phases present in the hydrated OC-cement 

overtime. XRD scans were collected at 1.5, 7,14, 28 days, 6,14 months and 2 years. Graphs of 

XRD scans from each time, a table showing changes in peaks over time, and an XRD scan of OC-

cement with peak matching are compiled in Appendix A. Figure 30 shows a compilation of XRD 

scans for all times, while characteristic XRD peaks of key components are shown in Figures 31 and 

32. 

The CA peak decreased significantly within the first 7 days. It continued to decrease and was 

hardly discernible at 14 months. The CA2 peak showed little change up to 28 days. A decrease was 

noted at 6 and 14 months while some CA2 remained present up to 2 years. The p-TCP peak was not 

observed to change during the testing period. Of particular interest was the initial absence of the 

typical calcium aluminate hydration peaks: CAHi0, C2AHa, and CsAHg. Instead, the CaCI2 in the 

hydration solution led to the formation of calcium aluminate chloride hydrates. There are multiple 



62 

types and phases of calcium aluminate chloride hydrates and given that hydrate peaks often appear 

broad; at times up to 6 months it was not possible to resolve the peaks to determine which ones were 

present. Additional slower rate scans collected at 11-12 degrees and 21.5-23.0 degrees 2 theta on 

the 14 months and 2 year samples found hydrate peaks consistent with ar-Ca4AI2H0.34 06.34 Cli.67and 

Ca2AI(OH)6Cr 2H20. Most likely, a solid solution exists as was reported for the hydrated calcium 

chloride aluminate studied by Poellman and Kuzel (1988). At seven days, the presence of AH3 was 

observed. After 2 years, the AH3 peaks had become more prominent and sharpened. Small peaks 

corresponding to CaAHe began to emerge after 28 days; over time, they became slightly larger and 

more defined. 

a * ,  a  * _ i . .  i .  r: & 

v- _r<v>4-
.̂.v- .•'••.y 

'w ; w : 

20 25 30 

2 theta (degrees) 

35 40 45 

2yr 
14 m 
6 m 
28 d 
14 d 
7 d 
5 d 
1 d 

n B-tricalcium phosphate (no change) & C^AHg ( f ) 
• CA ( 1 ) A C2AH8 (not present) 
° CA2( i ) A CAH10 (not present) 
* AH3 ( t ) * Calcium aluminate chloride hydrate ( t ) 

Figure 30. Compilation of XRD scans of OC-cement: 1 day to 2 years 
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Characteristic C A peaks Characteristic C2AH8 peaks 
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Figure 31. Characteristic XRD peaks: A) calcium aluminate, CA, peaks decreased with time B) 
calcium aluminate hydrate, C2AH8. peaks were not present C) calcium aluminate, CA2, decreased 
over time D) Calcium aluminate hydrate. CaAHe, peaks became more prominent at later time periods 
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Characteristic CAH10 peaks 
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Figure 32. Characteristic XRD peaks: A) calcium aluminate hydrate, CAH10, peaks were not 
observed B) p-tricalcium phosphate peaks were prominent and remained unaltered throughout the 
test period C) aluminum oxide hydrate, AH3, peaks emerged and sharpened with time D) Calcium 
aluminate chloride hydrate, CA2AI(OH)6CI-2H20 and a-Ca4AkH0.34Oe.34 li e/, peaks were initially 
observed and increased in intensity during the next few time periods. 
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3. Cement-prosthesis bonding strength 

The cement-prosthesis bond strength was measured using canine cadaver femurs. During 

pull-out testing, failure occurred at the cement-prosthesis interface for all specimens. Macroscopic 

evaluation of specimens that had been cut longitudinally showed good filling and close contact of the 

cement with the post. A summary of the data is shown in Table 24 and Figure 33. Mean interfacial 

shear strengths (ISS) for OC-cement were 1.18+0.27,1.11+0.21 and 1.18+0.34 MPa at 4 hr, 24 hr, 

and 60 days, respectively; PMMA results for corresponding time periods were 1.45±0.70,1.18+0.66 

and 1.48+0.92 MPa. The differences in means for OC-cement and PMMA at each time were not 

found to be statistically significant (p < 0.05). 

The values obtained for the PMMA-prosthesis ISS at 60 days were greater than anticipated. 

Other researchers have reported high initial shear strength for PMMA-prosthesis interface when 

stored under dry conditions (Beaumont et al., 1977), but a decrease was found after 18 hours 

submersion in saline, (Davies et al., 1994) and values decreased to 0 MPa when test specimens 

were aged for 60 days in saline at 37°C (Millier et al., 1999). Even for the dry interface, a range of 

values has been given in the literature. Some authors have tried to explain these variations based on 

shrinkage of the PMMA cement that results from polymerization (Muller et al., 1999, Ahmed et al., 

1984, Kuhn, 2000). The temperature gradient between the inner and outer surface of the PMMA 

cement can influence whether polymerization begins at the inner surface leading to shrinkage onto 

the prosthesis or at the outer surface inducing shrinkage of the cement away from the prosthesis. 

Table 24. Summary of interfacial shear strengths (MPa) 

OC-cement PMMA 
n 4 hr 24 hr 60 d 4 hr 24 hr 60 d 
1 1.21 1.39 0.85 1.11 2.45 2.63 
2 0.91 1.17 1.17 1.09 1.01 2.69 
3 1.14 0.92 1.03 1.05 1.51 1.50 
4 1.13 1.11 1.04 2.58 0.36 2.06 
5 0.90 0.85 0.87 1.07 1.16 1.11 
6 1.70 0.98 1.71 2.35 0.84 0.28 
7 1.26 1.37 1.61 0.88 0.91 1.12 
8 0.43 

AVG 1.18 1.11 1.18 1.45 1.18 1.48 
STDEV 0.27 0.21 0.34 0.70 0.66 0.92 
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Pull-out Strength 

3.0 

4 hr 24 hr 60 d 

Time Q OC-cement DPMMA 

Figure 33. Interfacial shear strength of OC-cement and PMMA (mean ± standard deviation) 

Force versus displacement was recorded during testing. Typical plots are shown in Figures 

34 and 35. The initial portion of the graphs typically indicated a gradual increase in load as the fixture 

and specimen became firmly seated. This was followed by a linear segment that rapidly increased in 

load until failure. Failure was sometimes accompanied by an audible "pop". Following failure there 

was a dramatic reduction in load to a new level referred to as the residual load. This residual load 

continued to decline until the post was completely withdrawn. These were the general features of 

most plots. Differences where found in the shape of the graph following failure that appear related to 

cement type and aging time. For nearly all specimens the shape of the plot following failure was 

smooth as in Figure 34 or saw-toothed as in Figure 35 indicating "slip-stick" failure mechanism. 

Differences observed in the residual strength, width and height of saw-teeth are summarized in Table 

25. 
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Pull-out test: T1-12 (24 hrs) 
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Figure 34. Typical force displacement graph with "normal" behavior following failure 

Pullouttest: T1-10 (PMMA-24 hrs) 
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Figure 35. Typical force vs. displacement graph showing "slip-stick' behavior A) tightening of testing 
fixture and specimen B) maximum load at failure C) residual load after failure D) magnification of 
saw-tooth region: W - width of saw-tooth slip, h - height of saw-tooth slip 



68 

Overall, the residual loads for OC-cement at 4 and 24 hr were higher than for PMMA at 4 and 

24 hr; 74 and 59% compared to 38 and 36%, respectively. "Slip-stick" failure occurred in all the OC-

cement: 4 hr graphs, most PMMA: 4 hr and 24 hr graphs, and some OC-cement: 24 hr graphs. The 

average length moved during each slip was approximately 0.01 mm for OC-cement at 4 and 24 hr. 

Others have correlated the width of the saw-tooth to the distance between valleys of roughness on 

the metal posts (Beaumont et al., 1977). In the present research the width of the teeth appear of the 

same magnitude of the surface irregularities of the steel posts, but are more regular than the distance 

between the surface irregularities of the stainless steel posts. Furthermore, the variation of this 

distance between test groups indicates that factors beyond post surface features influence the 

distance moved per slip. 

Table 25. Approximate values for residual load, h, and W 

OC-cement PMMA 

Avg. residual load 
(Percent of original load) 4 hr 

74% 38% 

24 hr 59% 36% 
60 days >95 % 15% 

H 4 hr 568 N 390 N 
24 hr 500 N 533 N 

60 days <50 N < 50 N 
W 4 hr .01 mm .05 

24 hr .01 mm .075 
60 days — 

The shape of typical OC-cement: 60 days graphs displayed unique behavior following failure. 

The graphs were mountain-shaped and retained most of their interfacial shear strength after failure 

(Figure 36). The residual load gradually decreased from the maximum value as the post was pulled 

out. The mean values for ISS of OC-cement did not change over the 60 day test period. The initial 

ISS value is thought to be due to bonding and the residual load attributable to friction. The slight 

expansion that occurs in the OC-cement over time likely explains the increase observed in residual 

load in the 60 days specimens. 
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Pull-out test: T2-2 (OC 60 days) 
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Figure 36. Force vs. displacement graph for OC-cement at 60 days 

B. In vivo Testing 

1. Implantation observations 

The surgical procedure to implant the cement was demanding; skill in the formation of the 

defect and proper alignment of the reaming device were critical. If the reaming device was not in 

proper alignment, a hole could be created in the wall of the diaphysis of the femur through which 

cement was able to leave the femur and enter the soft tissue. Since PMMA was inserted under 

pressure any hole in the diaphysis resulted in a significant amount of PMMA outside of the femur. If 

possible, this cement was removed prior to closing the incision. 

Initially the OC-cement was placed under vibration so that it could flow into the medullary 

canal. This approach proved problematic and resulted in the OC-cement mixing with blood or being 

inadvertently spread on the surrounding soft tissue, as in animal #6569. To avoid these 

complications, plugs of OC-cement paste were formed that were next slid into position. This 

technique was preferred and used throughout the remaining surgeries. Implantation using the "plug" 

technique was most successful when the size of the defect created closely matched the size of the 
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medullary canal. This allowed insertion of the largest possible size of cement plug and resulted in a 

better fill of the medullary canal. 

Comments regarding the surgical procedure and observations regarding the animal after 

surgery are compiled in Appendix C. Fluoroscope images taken after implantation to confirm cement 

placement are compiled in Appendix D. OC-cement was innately radiopaque and easily visible on 

the images collected. 

2. Post-suraerv and recovery observations 

All dogs recovered from surgery without complications. Animals typically began using their 

surgical leg immediately after surgery or within days. Full-weight bearing and normal use generally 

occurred within one week. Sutures were removed within two weeks of surgery. Blood was collected 

from select animals at various times post surgery. The bloodwork results presented in Appendix C 

did not indicate any abnormalities. All animals were taken outdoors for walks daily while housed at 

Iowa State University Laboratory Animal Resources. Observations regarding animal activity at the 

end of the experimental period are also given in Appendix C. Animals were healthy and active, aside 

from dog #6569. The incision on this animal started to drain after approximately 2 weeks and a drain 

was placed. This animal was lethargic during periods when its incision was draining and lost weight 

over the course of the study. It should be noted that during surgery on this animal, OC-cement mixed 

with blood and covered much of the soft tissue surrounding the incision site. 

3. Post retrieval radiographs 

Radiographs were collected on the femurs with implanted cement immediately after removal. 

Observations from the radiographs are compiled in Appendix E. From the radiographs the success of 

filling the intramedullary canal could be evaluated, as well as, any new bone formation. 

With optimal conditions, it was possible to fill the intramedullary canal with OC-cement as 

shown in Figure 37. The cement was observed to remain in place and intact throughout the testing 

period. The cement implanted into animals #6652 and #6681 was fragmented in some locations. In 

animal #6652, the fragmented segment was outside of the bone. In both occurrences it is believed 

that the fragmentation occurred at the time of implantation and was a result of applying force to the 
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cement after the working time, but before the cement was completely set. Porosity was readily 

apparent in many PMMA cement specimens. Some porosity existed in OC-cement as well as a few 

defects created by the plunger used to slide the cement into the medullary canal. Also apparent in 

the radiographs were a fracture of the cement and diaphysis in #6587 and a defect in a section of 

cortical bone in #6640. Both conditions were held to be iatrogenic. 

Figure 37. Radiograph of retrieved femur from # 6663,12 wk after implantation 

In the proposed application of using OC-cement for prosthesis anchoring in total joint 

replacement, it is common procedure to remove the head of the femur. If this procedure were used, 

access to the intramedullary canal, alignment and placement of the cement would be facilitated due 

to an improved physical approach and ease of creating a large entry to the medullary canal. 

Furthermore, insertion of a prosthesis into the cement would shift the cement outward and promote 

good contact between the bone and OC-cement. 

4. Light microscopy 

Tissue specimens from each experimental animal were qualitatively examined using light 

microscopy to evaluate the tissue that surrounded the implanted cement. In order to create paraffin 

embedded blocks that could be cut with a microtome, the specimens were decalcified after fixation. 

An extended decalcification period was necessary to soften or remove the OC-cement, while PMMA 

specimens were placed in acetone following the dehydration series to remove the polymethyl­

methacrylate) cement. It was possible to produce sections suitable for analysis using these 
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procedures; however, some sections, shattered when cut with the microtome and suitable sections 

could not be obtained. It is thought that the procedures for decalcification and cement removal led to 

these difficulties. Extreme attention must be exercised not to leave specimens in the decalcification 

or cement removing solutions past the end-point for these procedures. 

Sections from cortical bone specimens proved more consistent than sections from cancellous 

bone specimens in regard to the defect created and contact between the bone and implanted cement. 

In light of this, the present analysis focuses primarily on sections prepared from cortical bone 

specimens. Since the cement had been removed, the implant-bone interface was no longer intact. 

Fibrous tissue growth between the cement and bone remained in the specimens, although sometimes 

it had pulled away slightly from the bone. Similarly, cement or cellular debris particles in the 

specimens remained intact adjacent to the lumen of the bone. 

a). Cement-cortical bone sections 

OC-cement 2 wk: No reaction was observed in the bone surrounding the implanted cement 

2 weeks following implantation of OC-cement. Some cellular and cement debris was observed 

adjacent to the inner circumferential bone, but fibrous tissue was not observed (Figure 38-A). 

OC-cement 6 wk: In specimens 6 weeks following implantation, some sections contained 

particulates from OC-cement, which were being walled off in #6656. Other sections were clean with 

no particles or fibrous tissue observed (#6661, Figure 38-B). Some lacunae appeared empty 

adjacent to the lumen and more osteocytes were observed as distance from the lumen increased. 

The bone was considered healthy and the scattered empty lacunae were thought to result from the 

trauma of the surgical procedure. Newly formed bone was found in the medullary canal several 

inches below the implanted cement in animal #6656 (Figure 38-A). The marrow cavities in this area 

appeared normal apart from some isolated areas where fibrous tissue and macrophages were 

present. The reason for this bone growth in the medullary canal is not understood. 

OC-cement 12 wk: Cortical bone sections from 12 weeks (#6663) showed a similar reaction 

as at 6 weeks (Figure 38-C). Apart from some cement and cellular debris, the sections were clean 

and showed no fibrous tissue formation. Similarly, the number of osteocytes in the inner 
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circumferential bone may have been fewer than in outer regions of the bone, still the bone was 

considered healthy (Figure 40-A). 

PMMA 2 wk: Osteoclasts and the beginning of fibrous tissue formation were observed 

between the bone and implanted cement 2 weeks after implantation (Figure 39-A). Osteocytes were 

present throughout the cortical bone. Along the exterior edge of the cortical bone, periosteal 

remodeling and growth were observed as well as fibrosis. 

PMMA 6 wk: A thin band of fibrous tissue, usually continuous, was observed around the 

lumen of the cortical bone (Figure 39-B). Some granulation tissue was also observed, but the bone 

under the fibrous tissue was normal. As in PMMA 2 wk specimens, remodeling and growth were 

observed along the outer edge of the cortical bone. 

PMMA 12 wk: A thicker, irregular band of fibrous tissue was observed with mature 

connective tissue at 12 weeks (Figure 39-C). A thin area of necrosis of bone was observed in bone in 

contact with fibrous tissue in #6615. The underlying bone was mature and healthy. Sections from 

#6640 showed osteomylitis extending into the marrow cavity. The defect in the cortical bone was 

filled in by connective tissue. Neutrophil reaction, macrophages, plasma cells, and blood vessels 

were observed as well as acute/chronic inflammatory cells and fibrous tissue formation between the 

cement and bone. 

b). Cement-cancellous bone sections 

Evaluation of cancellous bone sections was more complicated due to variations in bone 

structure and cement filling. Bone fragments resulting from the formation of the surgical defect were 

found in the cancellous bone around the defect site. PMMA cement frequently penetrated deeply into 

the cavities of the cancellous bone structure while OC-cement may or may not completely fill the 

defect that was created. The outer band of OC-cement in this area had generally mixed with some 

blood and particles of cement at times had washed out and were observed in adjacent marrow 

cavities of the cancellous bone. 
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PMMA: The response to PMMA cement in cancellous bone was consistent with results in 

cortical bone. A fibrous tissue was typically observed between the PMMA cement and cancellous 

bone (Figure 40-B). Heat-induced necrosis was less prominent in the cancellous bone sections. 

OC-cement: In cancellous bone, no response was observed in the 2 wk specimens (#6740) 

while in section (#6673) inflammation, necrosis, and minimal fibrous tissue formation were noted 

(Figure 41-B, C). Sections at 6 weeks showed normal bone. Bony spicule fragments had not yet 

been removed and appeared there to stay. Marrow appeared normal and occasional giant cells were 

observed. At 12 weeks the inflammation was generally minimal, osteoid was being laid down 

adjacent to the cement in places, but had not yet calcified. A band of fibrous connective tissue 

formed in some locations, but was not complete. Figure 40-C shows an adjacent cancellous cell 

filling with collagen and fibroblasts (#6656). In #6681, cement particles had spread through many 

cancellous cells and bone fragments had not yet been removed. Macrophages were observed 

surrounding cement particles, while no reaction was noted in other areas. In summary, the reaction 

of OC-cement in cancellous bone depends greatly on how successfully the cement was implanted. 

The presence of OC-cement particles in cancellous bone tended to initiate fibrous tissue formation, 

as would be expected for most known biomaterials in particle form. Fibrous tissue formation would 

also be anticipated around any implant that was not securely placed and allowed movement. 

Reaction of cancellous bone to OC-cement appeared delayed at times as cellular and cement debris 

as well as dead bone fragments had not yet been removed. Additional analysis is recommended to 

better understand the tissue response to OC-cement in cancellous bone. 

c). Lymph tissue 

Popliteal lymph nodes were retrieved from animals #6669, 6740, 6746, 6596, 6569, and 

6681. Analysis of the lymph nodes revealed reactive lymph nodes with prominent follicles and active 

germinal centers. The paracortical and medullary zones contained increased numbers of plasma 

cells. The sinusoids were infiltrated by plasma cells and hemosiderin-laden macrophages. No 

particulate materials or bacteria were observed in the lymph node sections. This response is 

considered a normal reaction to hemorrhage induced by the surgical procedure. 
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Figure 38. Light micrographs of decalcified cortical bone sections from OC-cement groups, H&E 
stain, x 40: A) 2 wk (#6673) B) 6 wk (#6661 ) C) 12 wk (#6663) * indicates cellular and cement 
debris. Sections were typically free of fibrous tissue and clean as shown in B and C or contained a 
layer of cement and cellular debris as in A. 

Figure 39. Light micrographs of decalcified cortical bone sections from PMMA cement groups, H&E 
stain, x 40: A) 2 wk (#6629) B) 6 wk (#6657) C) 12 wk (#6615), F indicates fibrous tissue formation. 
A layer of fibrous tissue was typically observed around the lumen of the cortical bone sections. In 
general, the thickness of the fibrous tissue increased over the testing period. 
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Figure 40. Light micrographs of decalcified bone sections, H&E stain: A) cortical bone-OC-cement 
section (#6663), x 40, showing osteocytes (O) in lacunae adjacent to the cement at 12 wk B) 
cancellous bone-PMMA cement section at 12 wk (#6587), x 40, showing trabeculae (T) with 
scalloped edges on the left, indicative of bone resorption, and a band of fibrous tissue separating the 
bone from implanted cement. Normal marrow cavity (MC) is present on the right side of the 
trabeculae C) cancellous bone-OC-cement section (6656) 6 wk, x 40, trabeculae in contact with 
cement cavity on the upper edge showing no reaction in contact with OC-cement. The nearby 
marrow cavity filled with collagenous soft tissue (ST) and fibroblasts 

Figure 41. Light micrographs of decalcified bone sections: A) cortical bone-OC-cement section 
(#6569), Gomori's stain, x 5, showing new bone growth in the medullary canal at 6 wk B) cancellous 
bone-OC-cement section (#6740) 2 wk, Gomori's stain, x 40, cement and cellular debris adjacent to a 
trabeculae, but no reaction C) cancellous bone-OC-cement section (#6673) 2 wk, H&E stain, x 10, 
cement and cellular debris (*), thin band of fibrous tissue (F), and osteoclasts eroding bony spicules, 
(T) indicates trabeculae, and (MC) identifies the marrow cavity 
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5. Fluorescence microscopy 

Fluorescence microscopy was used to qualitatively assess the amount and location of 

fluorescent bone labels around the implant and throughout the cement-bone specimen. All animals in 

the 6 and 12 wk groups received bone labels. Typically, at least one specimen from cortical bone 

and one specimen from cancellous bone were evaluated from each animal. A table summarizing the 

observations for each specimen is given in Appendix G. 

OC-cement 6 wk: Specimens containing OC-cement characteristically showed a very, thin 

incomplete or thin continuous band of growth at the periosteum at 6 weeks (Figure 42-A, B, C). 

Growth and remodeling of haversian systems were prevalent throughout the cortical bone. However, 

very little growth was observed in direct contact with the cement at the cement-bone interface (Figure 

42-D, E). In specimens from cancellous bone, growth and remodeling were active throughout the 

bone and occasionally in direct contact to the cement. There was often a band of cellular and cement 

debris separating the cement and bone. In these instances, bone activity was observed at the bone-

debris interface. A soft tissue layer between the implanted cement plug and surrounding bone was 

observed in #6698-3b. In animal #6569, growth of new bone was observed in the medullary canal 

below the area where the cement had been implanted (Figure 42-F). A portion of the cement was 

placed outside the bone in animal #6698; no bone growth was observed surrounding this portion of 

the cement. 

PMMA 6 wk: In PMMA specimens at 6 weeks, a thicker, irregular, complete band of growth 

occurred at the periosteum (Figure 43-A, B, C). Throughout the whole of the cortical bone, less 

mineralization was observed compared to the OC-cement specimens. Short, thin lines of growth 

were observed near the cement-bone on #6649-5b and 6657-6a (Figure 43-D). In cancellous bone 

specimens, an irregular band of growth was generally observed at the periosteum, as in the cortical 

specimens. Where cement had infiltrated deeply into the marrow cavities of the cancellous bone, 

mineralization activity was sometimes observed in direct contact with the bone. Bone mineralization 

activity decreased with increased proximity to the central plug of cement (Figure 43-E). Although 

there was some activity at the cement-bone interface, it was usually separated by soft tissue. 
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OC-cement 12 wk: Thin rings of growth were observed at the periosteum of cortical bone in 

#6652 and 6663-5a, while specimens #6662 and 6681 displayed very little periosteal bone growth 

(Figure 44-B, C). Mineralization activity was observed throughout the cortical bone for all specimens. 

Generally, no activity was observed in direct contact with the cement, however, #6652 and 6662 did 

show small areas with mineralization activity adjacent to cement (Figure 44-0. E, F). In cancellous 

bone, a thin band of growth around the periosteal bone was found in specimens #6662-4c and 6663-

4. Growth and remodeling was observed throughout cancellous bone (Figure 44-A). In #6681-4b 

and 6663-4 small areas were observed with bone growth in direct contact to cement. In specimens 

where there was no direct contact between bone and implanted cement (#6652 and 6662-4), soft 

tissue formed in the gap and bone mineralization activity was observed adjacent to the soft tissue. As 

in the 6 wk specimens, when the cement was placed outside the bone in soft tissue, no bone 

mineralization was observed. 

PMMA 12 wk: The right femur and implanted cement fractured in animal #6587. Before this 

occurred, a ring of growth near the original periosteum was observed. Following the fracture, a 

massive, mineralized callus around the exterior of the bone was formed for stabilization. Little growth 

was observed throughout the original cortical bone, but active mineralization was observed 

throughout cancellous bone. Soft tissue separated the bone and cement in cancellous and cortical 

bone. A portion of the cortical bone was missing from the femur in animal #6640; this defect is 

thought to have occurred during surgery. The gap created was filled in with soft tissue. The 

remaining cortical bone showed a large amount mineralization and the cortical wall had thickened 

significantly. Specimens from the final animal in this group displayed a band of bone growth of 

medium thickness emanating from the periosteum in the cortical bone specimen and a thin, irregular 

band of growth at the periosteum in the cancellous bone specimen. Bone mineralization was 

observed throughout the cortical and cancellous bone. A very thin line of growth was observed 

around 80-90% of bone surrounding implanted cement. Soft tissue was present between the cement 

and bone in all specimens in this group. 
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Figure 42. Fluorescence photomicrographs of OC-cement- bone specimens at 6 wk, cortical bone is 
labeled CB and the implanted cement labeled OC: A) #6661-5c, x 3.125, mineralization throughout 
cortical bone B) #6656-6b, x 3.125 C) #6661-4, x 25, mineralization of small band at the periosteum 
and in the remodeling of haversian systems in cortical bone D) #6661-5, x 25, thin line of 
fluorescence adjacent to cement E) #6661-5, x 25, remodeling of haversian systems close to 
implanted cement F) #6569-5a, x 1.6, growth of bone in the intramedullary canal below area with 
implanted cement 
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Figure 43. Fluorescence photomicrographs of PMMA cement—bone specimens at 6 wk, cortical bone 
is labeled CB and the implanted cement labeled PMMA: A) #6649-5b, x 3.125, significant growth at 
the periosteum. Little growth through-out original cortical bone B) #6657-6c, x 1.6 C) #6657-6b, x 
25, close-up of bone at outer edge D) #6649-5b, x 25, thin line of mineralization adjacent to PMMA 
cement E) #6596-4c, x 3.125, mineralization in outer regions of cortical bone 
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Figure 44. Fluorescence photomicrographs of OC-cement-bone specimens at 12 wk, cortical bone is 
labeled CB and the implanted cement OC: A) #6663-4a, x 1.6, mineralization throughout cancellous 
bone B) #6681-6b, x 25, mineralization near periosteum C) #6681-7c, x 3.125, mineralization 
throughout cortical bone D) #6663-5a, x 3.125, mineralization throughout cortical bone E) #6663-5n, 
x 25, close-up of osteonal systems near cement F) #6663-5a, x 12.5, osteonal systems near 
medullary canal 
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Figure 45. Fluorescence photomicrographs of PMMA cement-bone specimens at 12 wk, cortical 
bone is labeled CF and the implanted cement labeled PMMA: A) #6615-4b, x 1.6, mineralization 
around outer edge of bone B) #6615-5nc, x 1.6 C) #6587-5b,x 25, close up of region showing 
cortical bone-ring of outer growth interface D) #6615-5nc, x 25, close-up of new bone along the outer 
edge of the cortical bone E) #6615-5nc, x 25, cortical bone showing a thin line of mineralization along 
the endosteum 
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6. Microradiography 

Microradiography of polished, thick sections of specimens from cancellous and cortical bone 

and a summary of observations are compiled in Appendix F. Qualitative evaluation assessed bone 

structure, mineral density, and if applicable, the thickness of the gap between the bone and cement. 

Contingent on successful placement of OC-cement, the microradiographs showed good 

contact between OC-cement and cortical bone with no gap detected as illustrated in Figure 46. Bone 

surrounding the implanted cement appeared normal and a thin band of periosteal bone growth was 

typically observed. In cancellous bone, OC-cement penetrated very little if at all into the surrounding 

marrow cavities as shown in Figure 47. The trabeculae surrounding the implant appeared normal 

and remained in direct contact with the cement. Very little periosteal bone growth was observed in 

cancellous bone implanted with OC-cement. No differences based on implantation time were 

observed for these specimens. 

Figure 46. Close-up microradiograph of OC-cement (#6746-2 wk) 
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Figure 47. Microradiograph of OC-cement in cancellous bone (#6656-6 wk) 

Representative microradiographs for PMMA cement in cancellous and cortical bone are 

displayed in Figure 48. Analysis of control specimens found that the PMMA cement frequently 

penetrated deeply into the marrow cavities of cancellous bone during placement (Figure 48-A). A gap 

between the bone and cement was present in all samples, and was not found to change in thickness 

over the time-period studied. Periosteal bone growth was observed in both cancellous and cortical 

specimens at 2 weeks. Mineralization of the periosteal bone continued in the 6 and 12 wk 

specimens. The periosteal growth was much more prevalent in PMMA specimens as compared to 

OC-cement specimens. This growth is believed to be induced by tissue necrosis caused by the 

exothermic setting reaction of the PMMA cement. 

Anomalous microradiographs from PMMA sections occurred in animals #6587 and #6640, 

both euthanized at 12 weeks. Animal #6587 had fractured the right femur and implanted cement 

Although the exact time of the fracture is not known, a band of initial periosteal bone growth is 

observed that was later surrounded by an immense callus formation. Animal #6640 was missing a 
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section of cortical bone. From intraoperative fluoroscope images, it is evident that a defect was 

created in the diaphysis through which a large amount of PMMA cement was unintentionally placed 

outside of the femur. After the cement had hardened, the exterior portion was removed. It is unclear 

whether the bone defect evident in the microradiograph was due solely to the surgical defect created 

or if bone resorption occurred in response to heat necrosis from the polymerization of the cement. An 

extensive callus has formed around the remaining % to V* of the cortical bone. 

Also of interest is the intramedullary surface of the cortical bone sections. As the 

microradiographs demonstrate, the medullary canal is not perfectly elliptical in shape and the bone 

surface can contain small irregularities in shape. The effect of these small protrusions of bone and 

conversely the intrusions of cement into the bone on the strength of the bone-cement interface will be 

discussed in more detail in the later cement-bone interfacial strength section. 

Figure 48. Microradiographs of PMMA specimens: A) Cancellous bone (#6649- 6 wk), B) Cortical 
bone (#6657- 6 wk), * Indicate areas of periosteal bone growth. 
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7. Scanning electron microscopy analysis 

Polished bone-cement specimens previously used for fluorescent microscopy and 

microradiography were analyzed using scanning electron microscopy (SEM) with x-ray analysis and 

elemental mapping. The implanted OC-cement was found to contain a calcium aluminate chloride 

phase as well as discreet particles of calcium phosphate and calcium aluminate (Figures 49, 50 and 

51). The energy dispersive spectrum confirmed the presence of calcium, phosphate, aluminum, 

chlorine and oxygen. Additionally, carbon was identified in the OC-cement indicating that the Spurr's 

resin had infiltrated some pores of the cement, confirming a porous pathway whereby calcium 

phosphate could be leached from the cement to promote bone growth. Figure 49 demonstrates direct 

contact between OC-cement and bone 2 weeks after implantation. The line scans shown in Figures 

50 and 51 illustrate the differences in elemental composition in bone, hydrated cement, calcium 

phosphate, and unhydrated calcium aluminate. Compositional mapping of the area displayed in 

Figure 49 did not reveal any variation in the composition of phases at the interface surfaces of the 

OC-cement or bone (Figure 52). 
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Figure 49. Scanning electron micrograph of OC-cement 2 wk (#6673) 
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Figure 50. Scanning electron micrograph of OC-cement 2 wk (#6673) showing line scan 
CA = calcium aluminate, CP = calcium phosphate, CA-CI-H = calcium aluminate chloride hydrate 
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Figure 51. Line scans of C, O, P, Al, CI, and Ca corresponding to the line indicated on Figure 25 
(OC-cement 2 wk #6673) 
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Figure 52. Scanning electron micrograph and compositional mapping of OC-cement 2 wk (#6673) 

Similarly, a scanning electron micrograph of an OC-cement specimen that had been 

implanted for 12 weeks is shown Figure 53. In this specimen, the cracking was an artifact that 

occurred in processing. Compositional maps in Figures 54 and 55 show the distribution of calcium, 

phosphorus, chlorine, oxygen, and aluminum in the sample. Variations in composition naturally exist 

throughout a sample of OC-cement. Analysis did not find evidence of leaching of any elements from 

the cement surface at 12 weeks. 
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Figure 53. Scanning electron micrograph OC-cement 12 wk (#6663) 
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Figure 54. Scanning electron micrograph and compositional map of OC-cement 12 wk at 500x (#6663) 
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Figure 55. Scanning electron micrograph and compositional mapping of OC-cement 12 wk, 2000x 
(#6663) 

8. Mechanical testing of cement-bone interface 

Results from push-out tests of cement from cortical bone after 2, 6, and 12 weeks of 

implantation in the canine femur are presented in Tables 26 and 27 for OC-cement and PMMA 

cement, respectively. Full data is given in Appendix I and a summary is presented in Figure 56. The 

average push-out strength that was calculated for each experimental femur as well as the overall 

average for all specimens in the given cement type-time group are given. The overall mean push-out 

strengths for OC-cement were 3.93+2.39, 3.30+1.34, and 2.70+1.28 MPa at 2,6, and 12 weeks. For 

PMMA cement, the overall mean push-out strengths were 0.46+1.27,0.52+O.42, and 0.54+0.65 MPa 

at 2,6, and 12 weeks. The experiment was designed to have each femur filled with cement provide 

at least 6 push-out test specimens. For some animals, it was not possible to prepare six suitable 

specimens due to incomplete filling of the medullary canal, less than optimal cement-bone contact, or 

unexpected defects in the femur. Therefore, specimens from each cement-time group are grouped 

together, and the overall mean and variance are used for statistical comparisons. 
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Table 26. Mean push-out strengths for OC-cement specimens 

AVG Push-out 
Strength (MPa) 

Standard 
Deviation (n) 

OC-2 wk 4.34 
2.21 
1.68 
5.54 

3.00 
0.50 
0.58 
1.79 

8 
8 
4 

12 
Total 3.93 2.39 32 

OC-6 wk 2.71 
2.84 
4.19 

1.68 
0.82 
1.13 

6 
8 
8 

Total 3.30 1.34 22 

OC-12 wk 2.20 
3.31 
2.17 

1.35 
0.82 
1.51 

5 
11 
8 

Total 2.70 1.28 24 

Table 27. Mean push-out strengths for PMMA cement specimens 

AVG Push-out 
Strength (MPa) 

Standard 
Deviation (n) 

PMMA-2 wk 0.07 
0.03 
1.42 

0.08 
0.04 
2.14 

6 
8 
6 

Total 0.46 1.27 20 
PMMA-6 wk 0.12 

0.83 
0.49 

0.09 
0.40 
0.27 

8 
11 
6 

Total 0.52 0.42 25 

PMMA-12 wk 0.27 
0.42 
1.25 

0.32 
0.36 
0.90 

13 
3 
5 

Total 0.54 0.65 21 

The mean push-out strengths of OC-cement from cortical bone decreased over the test 

period, but means were not found to be statistically different for 2 wk vs. 6 wk and 6 wk vs. 12 wk. 

However, the difference between the 2 and 12 wk means was statistically significant (p < 0.05). It is 

evident from radiographs that the filling of the femur was not as complete for many of the OC-cement 
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12 wk specimens as for the 2 wk specimens. Many of the animals in the 12 wk group underwent the 

implantation surgery earlier than the animals in the 2 wk group. The downward trend in the data may 

not represent a degradation of the cement-bone interface, but rather a sign of improved placement of 

the OC-cement with increased surgical experience. The means for the PMMA push-out strengths at 

2, 6, and 12 weeks were not statistically different. The means for OC-cement were significantly 

higher compared to PMMA means for the corresponding time periods; p < 0.001 for each. 

Push-out strength of cement in cortical bone 

D OC-cement-AVG DPMMA-AVG 

Time (weeks) 

Figure 56. Push-out strengths forcement in cortical bone (mean ± standard deviation) 

Typical forces versus displacement charts collected with the Instron test machine are 

presented in Figures 57 and 58 for OC-cement and PMMA cement, respectively. As testing was 

performed, a flat segment was observed on the chart as the specimen and testing fixture became 

firmly seated, after which there was a linear segment where the load quickly increased, followed by 

interface failure and a dramatic decrease in load. 
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Figure 57. Typical push-out graph of OC-cement in cortical bone 

Push-out test: 6629-3 
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Figure 58. Typical push-out graph for PMMA cement in cortical bone 

Using the described testing procedure, failure of the cement-bone interface and displacement 

was observed on some PMMA-bone specimens while the load continued to increase. This 
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phenomenon was observed only for PMMA specimens. It was previously shown from histological 

work and microradiographs, that a layer of fibrous tissue generally separated the PMMA cement from 

the surrounding cortical bone. It was also noted that the inner surface of the medullary canal is not 

completely smooth or free from surface artifacts. It is believed that if fibrous tissue exists between the 

cement and bone, the actual interfacial shear strength would be low as noted by previous researchers 

(Matsuda, et al., 1997). If, however, cement protruded into pores in the bone or vice versa, the force 

observed at failure would indicate the force required to shear these PMMA cement or bone spicules; 

therefore, a much higher shear force would be observed, as found by Stone et al. (1996) and 

MacDonald et al. (1993). Previous researchers also found that the shear strength of the cement-

bone interface was dependent on location, cement penetration, and the gap interface (Stone et al., 

1996). Dai et al. (1991) observed a decrease in interfacial shear strength of serially cut PMMA-bone 

specimens as the anatomic location of the specimens became more distal. In the diaphysis of canine 

femurs, mean interfacial shear strengths of 0.41, 0.23 and 0.32 MPa were reported which are 

supported by the present data. 

It is observed from the force vs. displacement charts that the distance traveled from onset of 

load until failure was approximately 3 times greater for PMMA as compared to OC-cement specimen, 

0.6 mm versus 0.2 mm. Although OC-cement is a stiffer material than PMMA cement, PMMA would 

require less force to deform. The force required to create this amount deformation in the PMMA 

cement would be more than a 100 times greater than the forces observed during push-out testing. 

Presumably, shrinkage of the PMMA cement during polymerization creates a small gap between the 

cement and bone allowing for movement at the interface before failure is detected on a force vs. 

displacement chart. The PMMA cement was inserted under pressure and cement was often forced 

into any openings in the bone, while much less pressure was applied to place the OC-cement. This 

difference in applied pressure during insertion may explain why displacement before load failure was 

observed only in PMMA specimens. 
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V. CONCLUSIONS 

A novel cement consisting of calcium aluminate and p-tricalcium phosphate was evaluated 

for use as a bone cement. Hydration with a calcium chloride solution achieved working and setting 

times appropriate for orthopaedic applications. Calcium aluminate chloride hydrate phases were 

formed during hydration and aging while the p-tricalcium phosphate remained stable. The 

compressive strength of this cement was 70 MPa four hours following hydration. The strength 

continued to increase up to 1 month and a high strength was maintained when tested up to 2 years. 

These values for setting times and compressive strength are comparable to values reported for 

commercially used PMMA bone cement. 

Shrinkage of PMMA bone cement resulting from polymerization is well documented and is 

thought to give rise to low interfacial strengths, micromotion of the implant, and aseptic loosening. 

The experimental OC-cement was found to expand slightly, 0.11% within 1 hour of hydration up to 

0.71% after 14 months. This slight expansion of the OC-cement overtime may be beneficial and help 

promote implant stability. The mean interfacial shear strengths of the OC-cement-prosthesis bond 

did not change significantly over the test period and ranged from 1.11-1.18 MPa. Mean values for the 

PMMA-prosthesis interfacial strength were slightly higher ranging from 1.18-1.48 MPa. 

The OC-cement was successfully implanted into the femoral, medullary canal in canines. 

Care was necessary to avoid washout of the cement and dispersing particles of cement in 

surrounding tissue. The OC-cement set in situ. Intact OC-cement was not found to produce any 

adverse response in cortical bone for implantation times up to 12 weeks. The patterns of 

mineralization and remodeling, as observed using fluorescence microscopy, were distinct for PMMA 

and OC-cement sections. A heavy band of growth emanating from the periosteum was observed for 

PMMA sections with little activity occurring in the original cortical bone, while bone from OC-cement 

sections displayed less growth around the outer edge of the cortical bone, but more remodeling 

throughout the existing cortical bone. 

In PMMA sections, a gap was observed between the cement and bone that generally filled in 

with fibrous tissue. In well-filled OC-cement specimens, direct contact between the cement and bone 
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was found with no intermediary fibrous tissue. In scattered locations, osteocytes were absent from 

lacunae adjacent to the implanted OC-cement; however, this response was not atypical given the 

trauma of the surgical procedure. Furthermore, the filling of the intramedullary canal with cement 

would presumably disrupt the blood supply to the bone in the inner circumferential system. 

Histological evaluation found the bone healthy for both PMMA and OC-cement sections from cortical 

bone. 

SEM analysis found no evidence of OC-cement materials leaching into surrounding bone or 

variation in the composition of bone surrounding the implanted cement after 2 to 12 weeks 

implantation. At times up to 12 weeks, no bone growth into the OC-cement was observed. Push-out 

tests used to measure the cement-bone interfacial shear strength found the mean interfacial shear 

strengths of the OC-cement-bone interface generally 5-8 times greater than the values obtained for 

PMMA-bone interface at corresponding time periods. 

Results of these tests indicate that OC-cement has appropriate and sufficient physical and 

mechanical properties for orthopaedic applications. Initial evaluations of the short-term tissue 

response indicate that this experimental OC-cement is biocompatible when implanted into the femoral 

medullary canal in canines. Although particles of cement in soft tissue induced fibrous tissue 

formation, when OC-cement was implanted into cortical bone no adverse response was observed 

and the surrounding cortical bone was healthy. 

Future recommendations in the development of OC-cement include increasing the volume of 

P-tricalcium phosphate in the composition through additional powder or the addition of larger 

aggregates. If the cement is to be placed in an area in direct contact with blood, the investigation of 

additives to decrease the effects of wash out is recommended. The present in vivo research 

assessed the relatively short-term response to implanted cement. A long-term study is recommended 

to evaluate the performance of the OC-cement in vivo and tissue response over a number of years as 

well as performance while bearing a load, as would be the case if this cement were used for 

prosthesis fixation. 
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APPENDIX A: X-RAY DIFFRACTION OF OC-CEMENT 
(Scans performed from 10-70 degrees at 1.00 deg/min) 

XRD of OC-cement over time 
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XRD of OC-cement over time 
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Analysis of XRD of OC-cement over time 

Compound Characteristic 
peaks 

1 day 5 days 7 days 14 days 28 days 6 mos 
14 

mos 2yrs  

CA 
19.00, 30.10, 

30.21 + U U <=> <=> U - -

ca2 

20.01, (25.54, 

34.45) + <=> <=> cz> <=> U U <=> 

CAHio 

12.47, 21.17, 

25.17 - - - - - - - -

C2AH8 16.42, 24.76 + + u <=> u u •u 

CaAHs 
17.28, 39.26, 

44.43 - - - - -• - - -

P-TCP 27.8,31.05, 34.36, + <=> <=> o <=» co <=> 

CACImHn 11.2-11.6, 22.5-
22.8. (31.0-31.2) 

- ft ft <=> ft <=> ft ft 

AH3 18.3-18.5 - - ft ft <=> ft ft 

CaCI22H20 31.63 - - - - - - - -

CaCI26H20 41.86 - - - - - - - • 

+ peak is present, - absence of the peak, " possibility of small peak 
ft increase since previous time period, U decrease since previous time period, <=> no significant change 
The location of the three principle peaks is given. Numbers in brackets indicate peaks that overlap with others. 
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APPENDIX B: GRAPHS OF PULL-OUT DATA 
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T1-3: OC (24 hrs) 
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T1-31: PMMA (24hrs) 
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APPENDIX C. SURGICAL NOTES, RECOVERY OBSERVATIONS, RETRIEVAL NOTES AND 

RADIOGRAPH SUMMARY. 

This appendix contains tables compiling observations regarding the surgical procedure, 

animal observations prior to euthanasia, observations made during the recovery of the femurs that 

had been implanted with cement, and comments regarding radiographs collected immediately 

following retrieval of the femur. The second table included compiles results from routine blood tests 

on select dogs from 4 to 16 days after cement implantation. 
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Summary of implantation notes, animal observations, retrieval notes, and post retrieval radiographs 

ID Type Implantation 
Notes Observations i Retrieval Notes Post retrieval 

Radiograph 
6629 PMMA 

2 wks 
Ok Incision is 

healing. Dog 
using leg fine. 

No abnormal 
tissue 
surrounding 
cement. Good 
fill. 

Not available 

6668 PMMA 
2 wks 

Ok Incision is 
healing. Dog 
is walking and 
running on leg 
fine. 

No abnormal 
tissue 
surrounding 
cement. Good fill 

Not available 

6672 ; PMMA 
2 wks 

Hole made in 
the diaphysis. 
Large amount 
of PMMA 
placed outside 
femur, but most 
was removed. 
Small amount 
of cement 
remained. 

Incision is 
healing. Dog 
is using leg 
normally. 

Some PMMA on 
the outside of 
femur. Scar 
tissue present at 
femur head. 
Narrow plug of 
cement 
implanted. 
Spongy bone not 
completely 
removed. 

Not available 

6596 PMMA 
6 wks 

IM nail pushed 
through femur. 
Large amount 
of PMMA 
outside femur. 

Incision is 
healed. Dog 
is "walking" on 
leg, but not 
bending knee. 
Cannot 
balance on 
surgical leg. 
Suspect nerve 
damage. 

Surrounding 
tissue looks ok. 
Synovial fluid in 
joint ok. Mass of 
cement present 
outside femur. 
Top part of femur 
has roughened 
texture on the 
outside. 

Femur was poorly filled. 
Large amount of cement 
was placed outside the 
femur in two separate 
masses. Cortical bone 
was slightly thickened in 
some areas. 

6649 | PMMA 
I 6 wks 

Ok Incision was 
healed. Dog 
was using leg 
normally. 

No noticeable 
abnormalities. 

Femur was fully filled. 
Some porosity apparent in 
the cement. Trabecular 
bone around the head of 
the femur filled with 
cement. Exterior surface 
of the cortical bone 
appears irregular in some 
areas in upper portion of 
the bone. Good contact 
between cement and bone 
in upper half of the femur. 
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ID Type 

6657 PMMA 
6 wks 

Implantation 
Notes Observations I Retrieval Notes 

Ok. A little 
cement placed 
outside the 
femur. 

Incision was 
healed. Dog 
was very 
active and 
walking and 
running 
normal. 

Some PMMA 
was outside bone 
(-2ml) that was 
surrounded by a 
large amount of 
scar tissue. 

Post retrieval 
Radiograph 

Femur was fully filled. 
Some porosity was 
observed in the cement. 
Trabecular bone was 
completely filled with 
cement. There was a very 
thin space between 
cement and bone in the 
middle of the of the femur 
shaft. Some regions of 
increased cortical bone 
thickness. 

6587 ! PMMA 
! 12 wks 

Smooth I Incision Diaphysis of 
procedure, one healed and femur appeared 
hole made in j using leg enlarged, with 
the diaphysis. normally. large amount of 
Some cement Femur had tissue adhering to 
placed outside fractured 35 the bone. 
femur. days after 

i surgery. 
Apart from 3-5 
days after 
fracture, dog 
was active 
and using leg 
normally. 

Smooth Incision Normal, no 
procedure, ; healed. Dog noticeable 
good filling of I was using leg abnormalities. 
the canal. I normally. 

/3 filled. Large mass of 
cement outside bone. 
Fracture of diaphysis and 
cement below the exterior 
cement mass. Cement 
broke at 45 degrees. Bone 
broke at 45 degrees and 
splintered. Massive callus 
formation. 

6615 ! PMMA 
12 wks 

Fully filled. Some porosity 
within the PMMA cement. 
Trabecular bone filled with 
cement. Very thin space 
between cement and bone 
in some areas. Cortical 
bone is a little thickened in 
some areas. 

6640 PMMA 
12 wks 

Hole through 
diaphysis. 
Large amount 
of PMMA 
initially placed 
outside femur. 
Most of this 
was removed, 
but a small 
piece 
remained. 

Incision 
healed. Using 
leg ok. Slight 
favoring of 
non-surgical 
leg. 

Knee only able to 
bend V* way. 
Top portion of the 
femur appeared 
enlarged and was 
surrounded by 
scar tissue. 
Some PMMA 
outside femur. 

Approximately Î4 filled. 
Cortical bone appears thin 
or missing from 1A cm 
section of femur. Other 
view shows callus 
formation adjacent to this 
section. 
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ID Type Implantation 
Notes Observations | Retrieval Notes Post retrieval 

Radiograph 
6669 OC 

2 wks 
Some cement 
placed outside 
femur near 
greater 
trochanter. 
Cement didn't 
flow well, 
pushed in with 
tube & packed. 

Incision 
healed. Dog 
using leg 
normally. 

Some necrosis of 
muscle tissue 
around head of 
femur. Some 
cement outside of 
femur. Bone 
marrow was 
darkened around 
the implant. 

^Willed. Cement in 
intramedullary canal is 
fragmented. Upper plug is 
intact. Cement is not in 
direct contact with bone in 
the diaphysis region. 

6673 : OC 
2 wks 

Approach 
through greater 
trochanter. 
Minimal 
amount on soft 
tissue. Same 
solution as 
6656. 

Incision 
healing. 
Using leg 
normally. 

; No obvious 
i adverse tissue 
i reaction. Scar 
! tissue not 
I evident. Small 
I ring of darkened 
| blood around 
; cement at most 
; locations. 

Fully filled. Cement is 
intact, mostly in close 
contact with the bone. 
Thin space between bone 
and cement in some 
places. 

6740 : OC i Smaller than Incision 
2 wks : expected healing. 

I bones. 2 vials : Using leg 
of cement normally. 

; inserted with 
: 6mm funnel. 
No 

: complications. 

Normal post 
surgical 
granulation 
tissue. Some 
scar tissue closer 
to the greater 
trochanter. 

Yx filled. Cement of the 
lower Vz of the cement plug 
had fragmented. Direct 
contact with bone in some 
locations. 

6746 OC ; 2 vials of 
2 wks ; cement 

inserted with 
i smaller than Vi" 
I tube. 

Incision 
began to drain 
slightly at 2 
wks. Dog 
using leg 
normally. 

Some cement 
was outside 
femur, perhaps 
some fibrous 
tissue forming. 

% filled. Middle portion 
has imprint from post in 
center of the cement plug. 
A small amount of cement 
was placed outside the 
greater trochanter. 
Relatively good contact. 

6569 ; OC ; Tried to vibrate ' Incision site 
; 6 wks i cement in : drained 

I place. periodically. 
; Significant ; At times of 
! amount of drainage, 

cement on soft decreased 
: tissue. • use of leg. 

Some scar tissue 
around the top of 
the femur. 

% filled. Anterior V* of the 
intramedullary canal has 
increased radioopacity. 
Thickening of cortical bone 
thickness evident at mid-
length of the diaphysis. 
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ID Type Implantation 
Notes Observations Retrieval Notes Post retrieval 

Radiograph 
6656 OC Approach Incision Ok. No i 7z to % filled. Top portion 

6 wks through the healed. Dog abnormalities j had close contact with 
greater using leg noticed. i bone. Lower Vi of the 
trochanter. normally. ; cement was fragmented. 
Used 

; cement was fragmented. 

anhydrous 
CaCI2. Mixed 
cement a bit 
more fluid. 
Some cement 
on soft tissue, 
tried to rinse off 
with Ringer's 
solution. 

6698 OC Drilled hole Incision Appears that Yz to V3 filled. Inner 
6 wks through bone, i healed. Dog insertion hole segment not fully filled. 

some cement ! using leg fine. went through Good cement contact with 
outside. Three Swinging leg diaphysis of , bone in regions. Cement 
plugs of ; out a bit. femur and a in the middle section of the 
cement considerable femur was somewhat 
inserted. amount of 

cement was 
placed outside 
adjacent to the 
diaphysis. Some 
scar tissue 
formed around 
this. 

fragmented. 

6652 OC Cement : Incision Cement outside V3 filled, but radiograph 
12 wks inserted with healed. Dog femur diaphysis. showed that insertion hole 

plug method. using leg No noticeable went through the femur 
i Minimal normally. adverse and half of the cement was 

amount on soft response. Some ! actually placed outside the 
tissue. fibrous tissue 

growth around 
top of femur. 

1 bone. 

6661 OC Same : Incision OK. Small Fully filled. Cement was in 
; 6 wks approach and : healed. Dog amount of close contact with bone. 

| solution as using leg cement outside. i One area of space 
j 6656. Minimal i normally. between cement plugs. 
! amount on soft 

tissue. 
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ID Type Implantation 
Notes Observations ™„o,es | 

6662 OC 
12 wks 

Hole drilled 
through femur. 
Partial fill, 
some cement 
on soft tissue. 

Incision j Some cement ; % filled. Initially inserted 
initially : outside bone. : small plug of cement, 
healed, but j Gelatinous | Some cement was located 
small abscess j material ; on the outside. 
at surgical site i consisting of 
occurred later, j fascia and 
A little weak in I cement mass 
the surgical j outside of femur. 
leg. | 

6663 OC | Good fill, 
12 wks | minimal 

j amount on soft 
; tissue. 272 

vials inserted. 

Incision j Ok. Fibrous ; Fully filled with cement, 
healed. Dog ; tissue on top Mostly close contact 
using leg j portion of femur between cement and bone, 
normally. (around top of 

cement plug) 

6681 | OC 
I 12 wks 
| 

Plugs from 3 i Incision ' Ok. Very small Femur % filled. Middle 
vials inserted, j healed. Using I amount of portion of the cement was 

j Small amount leg normally, j cement on fragmented. 
on soft tissue. | muscle tissue. 



Table of results from routine blood tests 

I D #  Type Time WBC RBC HGB HCT MCV MCH MCHC PLT Neuts ABband Lymph Monos Eos Basos ROW MPV 
6587 PMMA 15 11.90 8.06 17.8 51.1 63.4 22.1 34.9 683 6.66 0.0000 3.21 0.95 1.07 0.0 15.3 -— 

6596 PMMA 16 8.87 6.28 15.5 43.6 69.4 24.7 35.5 479 6.74 0.0887 0.98 0.98 0.09 0.0 14.4 -— 

6615 PMMA 15 11.50 6.96 16.1 46.3 66.5 23.1 34.8 469 7.13 0.1150 3.11 0.69 0.46 0.0 15.2 7.2 
6672 PMMA 12 13.70 5.34 13.3 37.2 69.6 25.0 35.9 620 8.77 0.1370 3.01 1.37 0.41 0.0 14.7 9.23 
6640 PMMA 14 5,35 7.11 16.5 47.8 67.1 23.1 34.5 319 3.10 0.0535 1.55 0.27 0.37 0.0 15.2 8.32 
6649 PMMA 15 14.40 7.63 17.6 50.7 66.4 23.1 34.7 448 10.37 0.0000 2.30 1.44 0.29 0.0 15.0 8.48 
6657 PMMA 15 13.50 7.41 17.1 49.8 67.2 23.1 34.4 363 10.80 0.2700 1.76 0.54 0.14 0.0 16.2 — 

6652 OC 8 12.90 6.04 13.6 40.0 66.3 22.5 34.0 366 6.71 0.0000 4.52 1.16 0.52 0.0 14.3 ». 

6656 OC 8 14.40 5.89 14.2 40.3 68.4 24.0 35.1 413 10.80 0.0000 2.30 0.86 0.43 0.0 14.0 10.6 
6661 OC 8 9.70 8.71 19.4 56.7 65.0 22.3 34.2 342 7.57 0.0000 1.26 0.68 0.19 0.0 14.7 9.98 
6662 OC 5 9.80 7.01 16.5 47.3 67.5 23.5 34.8 350 7.45 0.0000 1.47 0.78 0.10 0.0 13.9 9.64 
6663 OC 4 9.66 6.12 13.8 39.9 65.2 22.6 34.7 403 6.18 0.0966 1.93 0.68 0.77 0.0 14.9 8.23 
6673 OC 9 18.20 7.77 18.1 51.7 66.5 23.3 35.0 223 13.83 0.1820 1.82 2.00 0.36 0.0 14.9 —-

6681 OC 8 12,20 7.26 16.8 48.4 66.7 23.2 34.8 321 6.47 0.0000 4.27 0.73 0.73 0.0 16.1 
6698 OC 8 15.00 7.52 17.4 49.8 66.3 23.1 34.8 461 7.05 0.0000 4.50 3.00 0.45 0.0 14.8 12.7 

Normal (L) 
Range (H) 

6.00 
17.00 

5.50 
10.00 

12 
18 

37.0 
55.0 

60.0 
77.0 

19.5 32.0 
36.0 

200 
500 

3.00 
11.40 

0.0000 
0.3000 

1.00 
4.80 

0.15 
1.35 

0.10 
0.75 

0.0 
0.1 

13.6 
16.8 

6.3 
11 

Type = Cement type 
Time = Number of days following implantation surgery until blood sample was collected 
WBC = White blood cells (10%l) 
RBC = Red blood cells (10"%l) 
HGB = Hemoglobin (gr/dl) 
HCT = Hemocrit (%) 
MCV = Mean cellular volume (fl) 
MCH = Mean corpuscular hemoglobin (pg) 
MCHC = Mean corpuscular hemoglobin concentration (gr/dl) 
PLT = Automated platelets (10"%l) 

Neut = Neutrophils (10*3/nl) 
AB band = Absolute bands (10 7|il) 
Lymph = Lymphocytes (10*%!) 
Monos = Monocytes (10 ^J) 
Eos = Eosinophils (10 ^1) 
Basos = Basophils (107^1) 
ROW = Red cell distribution width(%) 
MPV = Mean platelet volume (fl) 

V3# 
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APPENDIX 0: INTRAOPERATIVE FLUOROSCOPY IMAGES 

Intraoperative Fluoroscope images: A) 6640 B) 6596 C) 6587 D) 6569 E) 6615 F) 6629 
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Intraoperative Fluoroscope images: G) 6649 H) 6652 I) 6656 J) 6657 K) 6661 L) 6662 
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APPENDIX E: MACRORADIOGRAPHS 

Radiographs #6596: PMMA 6 wks A) Cranial-caudal B) Medial-lateral 

Radiographs #6649: PMMA 6 wks C) Cranial-caudal D) Medial-lateral 



130 

Radiographs #6657: OC 2 wks A) Cranial-caudal B) Medial-lateral 

1 «•••••••••••I 
Radiographs #6615: PMMA 12 wks C) Cranial-caudal D) Medial-lateral 
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Radiographs #6587: PMMA 12 wks A) Cranial-caudal B) Medial-lateral 

Radiographs #6640: PMMA 12 wks C) Cranial-caudal D) Medial-lateral 
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Fluoroscope image #6669: OC 2 wks A) Cranial-caudal 

Radiographs #6673 (left femur): OC 2 wks B) Cranial-caudal C) Medial-lateral 
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Radiographs #6740: OC 2 wks A) Cranial-caudal B) Medial-lateral 

Radiographs #6746: OC 2 wks C) Cranial-caudal D) Medial-lateral 
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Radiographs #6569: OC 6 wks A) Cranial-caudal B) Medial-lateral 

Radiographs #6656: OC 6 wks C) Cranial-caudal D) Medial-lateral 
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Radiographs #6661 : OC 6 wks A) Cranial-caudal B) Medial-lateral 

Radiographs #6698: OC 6 wks C) Cranial-caudal D) Medial-lateral 



Radiographs #6652: OC 12 wks A) Cranial-caudal B) Medial-lateral 

Radiographs #6662: OC 12 wks C) Cranial-caudal D) Medial-lateral 
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Radiographs #6663: OC 12 wks A) Cranial-caudal B) Medial-lateral 

Radiographs #6681 : OC 12 wks C) Cranial-caudal D) Medial-lateral 
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APPENDIX F: MICRORADIOGRAPHY- SUMMARY AND MICRORADIOGRAPHS 

Summary of microradiograph analysis (Animal number - section number) 

Specimen LD. Grouping Microradiograph observations 

6629-4b PMMA 
2 wks 

Cancellous bone. Some penetration of cement into cancellous 
cells. Close contact between cement and bone. Very little 
periosteal bone growth. 

6629-6C PMMA 
2 wks 

Cortical bone. Incomplete fill of medullary cavity in this section. 
Thin gap between cement and bone. Significant periosteal bone 
growth. 

6668-6b1/6b2 PMMA 
2 wks 

Cancellous bone. Penetration of cement into cancellous cells. 
Gap between cement and bone. Periosteal bone growth in some 
areas. 

6672-5C PMMA 
2 wks 

Cortical bone. Incomplete filling of medullary cavity in this section. 
Very little periosteal bone growth. Medullary canal contains some 
spongy bone surrounding the cement plug. 

6657-4b PMMA 
6 wks 

Cancellous bone. Penetration of cement deep into cancellous 
cells. Small gap between bone and cement in most areas. 
Significant amount of periosteal bone growth. 

6657-5a PMMA 
6 wks 

Cancellous bone. Penetration of cement deep into cancellous 
cells. Significant gap between bone and cement in most areas and 
much periosteal bone growth. 

6657-6a PMMA 
6 wks 

Cortical bone. Gap between bone and cement. Significant 
periosteal bone growth. 

6596-3b PMMA 
6 wks 

Cancellous bone. Cement penetration into cancellous cells. 
Shows good contact between bone and cement in most areas. 
Woven bone formation in upper right hand corner filling in hole in 
bone from surgery. 

6596-4C PMMA 
6 wks 

Cortical bone. Incomplete fill of medullary canal in this section. 
Very thin gap between bone and cement. Significant periosteal 
bone growth. 

6649-4a PMMA 
6 wks 

Cancellous bone. Cement penetrated deeply into most of the 
cancellous cells. Active periosteal bone growth. Very small gap 
between bone and cement. 

6649-5b PMMA 
6 wks 

Cortical bone. Small gap between bone and cement. Less 
periosteal bone growth. 
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Specimen I.D. Grouping Microradiograph observations 

6587-4C PMMA 
12 wks 

Cancellous bone. Some PMMA infiltration into adjacent cancellous 
cells. Some PMMA placed outside bone. Thinning of periosteal 
bone on remote side. 

6587-5b PMMA 
12 wks 

Cancellous bone. Some PMMA infiltration into adjacent cancellous 
cells. Large amount of PMMA placed outside bone. Some bone 
growth and callus formation. 

6587-7b PMMA 
12 wks 

Cortical bone. Fracture of diaphysis and cement. Ring of 
periosteal bone surrounding original cortical bone growth that is 
surrounded by massive callus formation. Gap between cement 
and bone. 

6615-4 PMMA 
12 wks 

Cancellous bone. Cancellous cells completely filled with cement. 
Gap between bone and cement. 

6615-5nc PMMA 
12 wks 

Cortical bone. Close contact between cement and bone in % of 
circumference. Significant periosteal bone growth ring that has 
been highly mineralized. 

6640-4b PMMA 
12 wks 

Cancellous bone. Little penetration into surrounding cancellous 
cells. Continuous gap between cement and surrounding bone. 
Intense densification of trabeculae on the right side and lower left 
corner. 

6640-5b PMMA 
12 wks 

Cortical bone. % to V3 the circumference of the cortical wall is 
missing. Massive periosteal bone growth and callous formation 
around z/3 to V* of the implant. 

6669-3b OC 
2 wks 

Cancellous bone. Cement and blood mixture in direct contact with 
bone. Some periosteal bone growth. 

6669-Sb OC 
2 wks 

Cortical bone. Cement and bone mixture in contact with bone. 
Little periosteal bone growth. 

6673-1 b OC 
2 wks 

Cancellous bone. Trabeculae surrounding implanted cement were 
damaged in surgical procedure. Little penetration of cement into 
cancellous cells. Some woven bone formation in some of the 
surrounding cancellous cells and a little periosteal bone growth. 

6673-2b/2c OC 
2 wks 

Cortical bone. Direct contact between cement and bone. Very little 
periosteal bone growth. 

6740-4a OC 
2 wks 

Cancellous bone. Little penetration of the cement into cancellous 
cells. Cement is in contact with bone. A few cancellous cells 
appear slightly more radio-opaque. Little or no periosteal bone 
growth. 

6740-ôb OC 
2 wks 

Cortical bone. Cement is in direct contact with bone. Little 
periosteal bone growth. 
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Specimen I.D. Grouping Microradiograph observations 

6746-4a OC 
2 wks 

Cancellous bone. Cement partly placed outside of the bone. 
Some cancellous cells appear slightly more radio-opaque. 

6746-5b OC 
2 wks 

Cortical bone. Cement not penetrated into cancellous cells. Direct 
contact between bone and cement. Very little periosteal bone 
growth. Hole in the center of cement was inadvertently created at 
the time of implantation. 

6569-4a/10e OC 
2 wks 

Cancellous bone. Direct contact between bone and cement. 
Some infiltration of soft tissue or cement particles into cancellous 
cells. 

6569-5d/6e OC 
2 wks 

Cortical bone. No implant in these sections. Medullary canal 
shows infiltration of mineralized tissue that was not present on the 
initial post surgical fluoroscope image. Some periosteal bone 
growth. 

6656-5a OC 
2 wks 

Cancellous bone. Direct contact between bone and cement. Very 
little infiltration of cement into cancellous cells. No periosteal bone 
growth. 

6656-6b OC 
2 wks 

Cortical bone. Direct contact between bone and cement. Little 
periosteal bone growth. 

6661-4c OC 
2 wks 

Cancellous bone. Direct bone-cement contact. Some filling of 
cancellous cells with cement particles. 

6661-4d OC 
2 wks 

Cancellous bone. Direct contact between bone and cement. Little 
to no filling of cancellous cells. Growth of trabecular bone 
surrounding implanted cement. 

6661-5c OC 
2 wks 

Cortical bone. Direct bone-cement contact. Some periosteal bone 
growth on upper edge of the bone. 

6698-5a/4b OC 
2 wks 

Cancellous bone. Cement is in direct contact with bone. Little or 
no infiltration of the cement into cancellous cells. Growth of 
trabecular bone surrounding implant. 

6698-3b OC 
2 wks 

Cortical bone. Incomplete fill of medullary canal. Cement plug in 
medullary canal with spongy bone surrounding cement. 

6652-4b OC 
2 wks 

Cancellous bone. Cement placed outside of bone. Woven bone 
filling in surgical defect that was created on the top edge. 

6662-4C OC 
2 wks 

Cancellous bone. Surgical defect was not completely filled with 
cement. Some direct bone-cement contact. A lot of periosteal 
bone growth in the lower left corner. 

6662-7b OC 
2 wks 

Cancellous bone. Direct contact between bone and cement. 
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Specimen I.D. Grouping Microradiograph observations 

6662-5a OC 
2 wks 

Cortical bone. Small cement plug in oversized defect. Spongy 
bone surrounding defect. New bone growth surrounds defect. 
Cement is not in direct contact with new bone growth. 

6663-4a OC 
2 wks 

Cancellous bone. No penetration of cement into cancellous cells. 
Cement plug placed in circular defect with some direct bone 
contact. Trabecular bone around the defect area has become 
denser. 

6663-5a OC 
2 wks 

Cortical bone. Direct contact between cement and bone. Some 
periosteal bone growth. 

6681-4b OC 
2 wks 

Cancellous bone. Cement is in contact with bone. A small amount 
of cement in cancellous cells immediately adjacent to the implant. 

6681-6b OC 
2 wks 

Cortical bone. Cement plug is surrounded by marrow or blood in 
most places. Very small area of direct cement bone contact. Little 
periosteal bone growth evident. 
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MICROCRADIOGRAPHS OF BONE-CEMENT SECTIONS 

PMMA 2 wk: A) 6629-4b B)6629-6c C) 6668-6b1 D) 6668-6b2 
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PMMA 2 wk: A) 6672-Sc, 6 wks: B) 6657-4b C) 6657 5a D) 6657 6a 
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PMMA 6 wk: A) 6596-3b B) 6596-4c C) 6649-4a D) 6649-5b 
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PMMA 12 wk: A) 6587-4c B) 6587-5b C) 6587-7b1 D) 6587-7b2 



147 

OC-cement2 wk: A) 6669-3b B) 6669-5b C) 6673-1 b D)6673-2b 
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OC-cement 2 wk: A) 6740-4a B)6740-5b C)6746-4a D)6746-5b 
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OC-cement 6 wk: A) 6569-1 Oe B)6569-4a C)6569-5d D)6569-6e 
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OC-cement 6 wk: A) 6656-5a B)6656-6b C) 6661-4c D)6661-4d 
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OC-cement 6 wk: A) 6661-5c B)6698-5a C)6698-4b D)6698-3b 



OC-cement 12 wk: A) 6652-4b B) 6662-7b C) 6662-4c D)6662-5a 
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OC-cement 12 wk: A) 6663-4a B)6663-5a C) 6681-4b D) 6681-6b 
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APPENDIX G: FLUORESCENCE MICROSCOPY NOTES 

Slide I.D Grouping Observations 

6569-4a OC 
6 wks 

Massive periosteal bone growth. Mineralization present throughout 
bone. Mixture of blood and cement present between cement and 
growing bone. 

6569-5a,b/ 
6c,d,e 

OC 
6 wks 

Thick periosteal bone formation. Some mineralization present 
throughout cortical bone. Thin hairline of growth observed around the 
lumen with spongy bone growing into intramedullary canal. 

6569-1 Ob OC 
6 wks 

Massive periosteal bone growth. Growth and mineralization throughout 
bone. Bone directly adjacent to cement was not as active as other 
areas throughout the bone. Bone growth was observed along areas 
where a mixture of cellular and cement debris was present. 

6656-5a OC 
6 wks 

Thin band of growth around the periosteum. Growth in trabecular bone 
observed. Little growth observed at the cement-bone interface, but 
appeared consistent with the amount of growth in the surrounding bone. 

6656-6b OC 
6 wks 

Thin band of growth around the periosteum. Mineralization and 
remodeling was prevalent throughout the cortical bone. Typical amount 
of growth and thin areas of direct bone growth surrounding areas of 
cellular and cement debris. Very few areas of bone growth adjacent to 
cement. 

6661-4c OC 
6 wks 

Growth at the periosteum and mineralization throughout the cancellous 
bone. Direct contact between bone growth and cement in some 
trabeculae. Generally, a band of practically no growth was observed 
between cement and surrounding bone. 

6661-5c/4d OC 
6 wks 

Very thin band of periosteal bone growth around half of the bone. 
Prevalent mineralization and remodeling throughout cortical bone, but 
very little growth in bone directly adjacent to the cement. Very, thin line 
of growth along lumen in one, small area. 

6698-3b OC 
6 wks 

Fluorescence appeared faded on this slide. Very, thin band of growth 
around approximately 10% of periosteum. Mineralization and 
remodeling was observed throughout cortical bone. Mostly soft tissue 
surrounding cement; no direct contact between cement and bone was 
observed. 

6698-4a/4b OC 
6 wks 

Fluorescence appeared faded on this slide. Growth was observed 
around the periosteum. Mineralization of cancellous bone was 
observed throughout the specimen. Typical growth was observed up to 
and adjacent to cement. 

6698-5a/5b OC 
6 wks 

Very, thin line of growth around periosteum. Mineralization and 
remodeling was observed throughout cortical and cancellous bone. 
Little growth was found directly along implant, although occasionally 
observed in cancellous bone areas. 
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Slide I.D Grouping Observations 

6698-6e OC 
6 wks 

Cement was implanted into soft tissue. No bone growth observed. 

6596-3b PMMA 
6 wks 

Band of periosteal bone growth of irregular thickness observed. 
Mineralization adjacent to cement in trabecular bone was observed. 
Growth at lumen was generally separated from cement by soft tissue. 

6596-4c PMMA 
6 wks 

Complete, thick band of growth around periosteal bone. Typically, no 
growth closer to the cement. Some growth of spongy bone adjacent to 
the cement in the marrow cavity. 

6649-4b PMMA 
6 wks 

Irregular, thick band of growth found around periosteum. Mineralization 
was observed throughout cancellous bone. Some growth was noted 
adjacent to cement in areas where cement infiltrated cancellous cells. 

6649-5b PMMA 
6 wks 

Irregular, thin band of growth around periosteum. Very, little 
mineralization and remodeling were observed throughout cortical bone. 
A couple very, thin lines of growth in bone surrounding the lumen was 
observed, possibly a very, small amount of direct contact. 

6657-4b PMMA 
6 wks 

Large amount PMMA infiltrated into cancellous cells. Irregular, thin 
band of growth was found around the periosteum. Large amount of 
mineralization was observed in outer trabecular bone. Trabecular bone 
closer to cement showed less activity, but was sometimes in direct 
contact with cement. Mineralization was observed at bone-cement 
interface, but was typically separated by soft tissue. 

6657 6a PMMA 
6 wks 

Complete band of growth of medium thickness was observed around 
periosteum. Little mineralization or remodeling was found throughout 
the cortical bone. Very, thin line of growth found in approximately 10% 
of bone around lumen. 

6652-4b/5c OC 
12 wks 

A portion of the implant was placed outside of the bone. No bone 
growth was observed between cement and soft tissue. Where the 
cement was placed in the bone, a layer of cellular and cement debris 
was present between bone and implant. Bone mineralization was 
observed along debris-bone interface throughout the specimen. Rings 
of growth were present along the periosteum. Prevalent mineralization 
and remodeling was observed throughout cortical bone. Very, thin line 
of growth was present along the marrow cavity (not in direct contact 
with cement). 

6662-4C OC 
12 wks 

Implant was placed in bone, but not in direct contact with bone. 
Cement was surrounded by layer of cellular and cement debris. Growth 
was observed along the periosteum and mineralization was present 
throughout the cancellous bone. Soft tissue was observed between the 
cement and bone; no bone growth was found in direct contact with 
cement. 
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Slide I.D Grouping Observations 

6662-5a/7a OC 
12 wks 

Very, little growth was observed at the periosteum. Some 
mineralization was present throughout the cortical bone and up to the 
soft tissue interface between the cement and bone. In a small area, 
there was direct bone-cement contact, a little bone with consistent 
amount of growth was in contact with cement. 

6663-4a/4c OC 
12 wks 

Thin ring of new bone was observed around periosteum. Growth 
throughout cancellous bone. Very little bone growth in direct contact 
with cement. Area of cement and cellular debris surrounded the 
implant; this layer was typically surrounded by soft tissue. 

6663-5a OC 
12 wks 

Bone growth around periosteum was observed. Mineralization and 
remodeling observed throughout cortical bone. No mineralization was 
observed in ring of bone directly adjacent to the cement. 

6681-4b OC 
12 wks 

Little growth was observed around the periosteum. Small locations of 
mineralization were found adjacent to the cement, but not as much 
activity as in the surrounding cancellous bone. 

6681-5b/6b OC 
12 wks 

Very, thin, incomplete band of growth was observed at peiosteum. 
Mineralization and remodeling was present throughout cortical bone. 
Very, thin line of growth was present at bone interface with soft tissue 
(along approximately 10% of the diameter). 

6681-7c OC 
12 wks 

Entire slide had very little fluorescence. Very, little growth of periosteal 
bone was observed. Some remodeling and mineralization was present 
throughout cortical bone. No mineralization was present around the 
lumen. 

6587-4C PMMA 
12 wks 

Thin, irregular growth of periosteal bone was observed. Mineralization 
was found in cancellous bone. Soft tissue separated cement and bone. 
Approximately 50% of the trabecular bone in contact with the soft tissue 
showed mineralization. 

6587-5b,d PMMA 
12 wks 

Some periosteal bone formation was observed, followed by massive 
callus formation. Little mineralization and remodeling were observed 
throughout the original bone. Very thin line of mineralization was found 
around 20% of the lumen. 

6615-4b PMMA 
12 wks 

Thin, irregular band of growth was observed at the periosteum. 
Mineralization and remodeling were present throughout cancellous 
bone. A very, thin line of mineralization surrounded approximately 90% 
of the lumen, but the bone and cement were separated by soft tissue. 

6615-5nc PMMA 
12 wks 

Band of bone growth of medium thickness was present around 
periosteum. Mineralization and remodeling was observed throughout 
cortical bone. Two very, thin lines of mineralization were present 
around approximately 80% of the lumen. Cement was separated from 
the surrounding bone by soft tissue. 
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Slide I.D Grouping Observations 

6640~4b PMMA 
12 wks 

Thin, irregular band of growth was observed along the periosteum. 
Prevalent mineralization was observed throughout cancellous and 
cortical bone and around the lumen. Typically, there was soft tissue 
between the cement and bone growth, however, some areas in the 
cancellous bone appeared to have direct contact between growth and 
cement. 

6640-5b/6b PMMA 
12 wks 

Cortical bone was missing from approximately 74 of the bone's diameter 
and was filled-in with soft tissue. Massive bone growth was observed 
around periosteum of the original bone. Growth and mineralization was 
prevalent throughout the cortical bone and around the lumen. Soft 
tissue generally separated the bone and cement. Direct contact 
between cement and growth of spongy bone in a few, isolated areas. 
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APPENDIX H: PUSH-OUT TEST DATA 

Charts showing individual data points for push-out tests are compiled for OC-cement and 

PMMA in addition to charts presenting the average push-out strength that was determined from each 

animal. 
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Mean push-out strength of OC-cement 
in bone for each animal 
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Push-out strength of OC-cement in bone-individual points 
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Mean push-out strength of PMMA cement 
in bone for each animal 
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