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1. INTRODUCTION 

1.1. Introduction to the Problem 

Failure time data are often collected from groups of 

correlated individuals. This can occur for example when 

data are collected from rat litters in teratology studies, 

from pairs of eyes in ophthalmology studies, or from members 

of families in medical studies. When individuals belong to 

such groups, independence among all observations cannot be 

validly assumed, and it is desirable to apply methods that 

account for the correlation among group members in the 

analysis of the failure times. Although failure time 

methodologies based on independent observations have been 

studied extensively (e.g., Kalbfleisch and Prentice, 1980; 

Lawless, 1980; Cox and Cakes, 1984), far fewer methods are 

available for analyzing correlated failure time data, and 

the methods that have been suggested are not as general as 

the independence-based analyses. Techniques that allow for 

explanatory variables are either restricted to small groups 

of responses, or they assume a very restricted intra-group 

correlation structure. Other methods that allow for larger 

group sizes and flexible correlation structures have not yet 

been extended to permit incorporation of explanatory 
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variable information. 

In the following chapters, a methodology is described 

that permits large and variable group sizes, heterogeneous 

intra-group correlations, and the use of expilanatory 

variables. This method can be used with many types of 

failure time models, including proportional hazards models, 

and can be applied to data that are censored via a common 

interval censoring scheme (e.g., via a regular inspection 

schedule) or to exact time data, including possibly right 

censored data. 

In this chapter, some basic principles of univariate 

failure time analyses are reviewed, and past research on 

multivariate survival methods for correlated data is 

summarized. The alternative methodology that forms the 

basis of this thesis is then briefly described. 

1.2. Review of Univariate Failure Time Analysis Concepts 

Failure time, survival or event time analyses are 

concerned with estimating the distribution of failure times 

(or time to the occurrence of an event) and/or determining 

the effects of explanatory variables on the failure time 

distribution. Failure time data typically involve some form 

of censoring due to, for example, subjects dropping out of a 
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study, termination of an experiment before all individuals 

have failed, or inspection of individuals only at a specific 

finite set of time points. 

Failure time analyses are generally modeled in terms of 

survival and hazard functions. Using T to denote the 

failure time, the survival function, S(t), is defined to be 

S(t) = Pr{ T s t } . 

The hazard function, k(t), describes the risk of failure in 

the near future given survival up to timet. For interval 

censored situations, where the entire time interval [0, ») 

is divided into a set of disjoint intervals {[t^_^, t^) : h 

= 1, 2, ..., k+1; tg = 0; = 09), X(t) is defined to be a 

step function whose steps are defined by 

^h ^ f^h-1' ^h) I ^ ̂  ̂ -1 > • 

Often an underlying continuous failure time distribution 

with survival function S(t) is used to express the discrete 

hazard as 

^h = [S(th_i) - S(t^)] / S(th_i) 

= 1 - [S(t^) / S(t^_^)] . 

Each step in the discrete hazard describes the conditional 

probability of failing in an interval given success up to 

the beginning of the interval. For a continuous failure 

time distribution with density f(t), the hazard function 
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describes the instantaneous probability of failure at time t 

given success up to time t. In this case, 

\(t) = lim Pr{ T e [t, t+A) | T fc t } / A 
A-K» 

= f(t) / S(t) 

= - aiog^s(t)] . 

Note that this definition implies that the survival function 

can be written as 

S(t) = exp { - r \(u) du I . 
V J 0 V 

Parametric distributions for failure time data analyses 

are typically defined for positive valued random variables. 

Some common examples include the gamma, Weibull, lognormal 

and log-logistic families. Explanatory variables can be 

included by modeling one (or more) of the distributional 

parameters as a function of the explanatory variables, or by 

making a proportional hazards assumption in which the hazard 

is assumed to be proportional to some function of the 

explanatory variables. Maximum likelihood is usually used 

to estimate the distributional parameters and the covariance 

matrix of the estimates. 

Semi-parametric models are also available. Cox's 

proportional hazards model is frequently used when 

estimation of explanatory variable effects is the primary 

focus of the analyses. The hazard function is not 
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completely specified, but is assumed to be proportional to 

some function of the explanatory variables. The most common 

form for the hazard function is 

&(t) = &o(t) exp{X'g} , 

where &g(t) is the unspecified baseline hazard function, X 

is the vector of explanatory variables, and g is the 

parameter vector associated with the explanatory variables. 

Partial likelihood techniques are usually used to estimate 

g. 

Nonparametric models for failure time distributions 

invol-'/e fitting a step function to the data. Kaplan-Meier 

(or product limit) estimation is often used to estimate the 

hazard function. Other techniques exist for obtaining 

estimates of the cumulative hazard function (see Cox and 

Oakes, 1984). 

1.3. Multivariate Failure Time Analyses 

Much of the literature for multivariate failure time 

analyses concentrate on the bivariate case, although several 

methods are extendible to larger group sizes. One of the 

earliest approaches to analyzing paired survival times is 

that of Holt and Prentice (1974). They extend Cox's 

proportional hazards model by placing the proportional 
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hazards assumption on an unspecified baseline hazard for 

each pair. The correlation is thus treated as a nuisance 

parameter and emphasis is placed on estimating the 

explanatory variable effects. This method is limited in 

application to pairs of correlated observations. 

Another area of development in multivariate failure 

time analyses involves random effects models. Clayton 

(1978) and Oakes (1982) suggest modeling the failure time 

distribution for each pair member with a proportional 

hazards assumption. The hazard for each member of a pair is 

assumed to be proportional to a function of an unobservable 

covariate which has a common value for both members of that 

pair. Conditional on the value of the random variable, the 

failure time results for the two members of any pair are 

independent. An unconditional bivariate distribution is 

obtained by averaging the product of the hazards for each 

member of the pair with respect to a gamma distribution 

assumed for the unobservable random variable. The resulting 

unconditional bivariate distribution depends on an 

association parameter that can also be interpreted as a 

relative risk. Clayton shows that the association parameter 

is equal to the unconditional hazard for the first member of 

the pair at time t given that the second member fails at 

time t, divided by the unconditional hazard for the first 

member at time t given that the second fails after time t; 
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it can be alternatively defined by exchanging the roles of 

the members of a pair in the definition. The model proposed 

by Clayton and Oakes is developed for parametric models, 

assumes a common correlation for each pair, and can only be 

applied to uncensored data. 

Clayton and Cuzick (1985) extend the Clayton-Oakes 

distribution to include fixed explanatory variables in the 

proportionality function that links the unobservable random 

variable to the hazard for each group member (before 

averaging over the distribution of the unobservable random 

variable). However, the marginal hazard from the bivariate 

distribution (i.e., the distribution that results from 

averaging the product of the hazards for each member of the 

pair over the distribution of the unobservable random 

variable) does not follow a proportional hazards assumption. 

Hougaard (1986) notes that the explanatory variable 

parameters in this model are confounded with the association 

parameter, so that the association parameter is measuring 

more than dependence. Huster, Brookmeyer and Self (1989) 

also extend the Clayton-Oakes model to include explanatory 

variables, but do so by placing a proportional hazards 

assumption on the marginals of the parametric unconditional 

bivariate distribution. Their estimation procedures are 

considerably simpler than Clayton and Cuzick's, and their 

methods allow for censored data. Oakes (1989) extends the 
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Clayton-Oakes distribution to include negative correlations. 

All of these random effects models assume a constant 

intra-group correlation and are theoretically extendible to 

more than two members per group, although the tractability 

of the derivations for higher dimensions is not clear. 

Hougaard (1986) follows a similar random effects 

approach using a positive stable distribution for the 

unobservable random variable. Although his model is 

restricted to positive correlations that are constant across 

groups, it is extendible to hierarchical intra-group 

correlations (e.g., when twins are more highly correlated 

than other siblings). In addition, Hougaard is able to use 

explanatory variables by placing a parametric or 

semi-parametric proportional hazards assumption on the 

marginals of the unconditional multivariate distribution. 

Parameters for the parametric proportional hazards model are 

estimated by maximizing the appropriate likelihood function. 

An alternative algorithm for estimating the explanatory 

variable parameters in a semi-parametric Cox proportional 

hazards model is suggested by Hougaard, although its 

statistical properties are unknown. Crowder (1989) develops 

a similar model based on Weibull assumptions that allows 

negative correlations, although it assumes homogeneous 

intra-group correlations. Both models are adaptable to 

groups with more than two members. 
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Recently, several researchers have explored an approach 

that uses a working model based on the incorrect assumption 

of completely independent responses (often referred to as an 

"independent working model"). Consistent estimates for the 

parameters of the marginal failure time distributions are 

obtained using methods that assume independence among all 

observations, but the covariance matrix for the parameter 

estimates is estimated using methods that allow for the 

presence of correlation among responses. The intra-group 

correlations are nuisance parameters under this approach, 

and thus can follow an arbitrary structure; however, 

inference on the association among group members is not 

possible. 

Huster et al. (1989) and Wei and Amato (1989) both use 

robust estimation to obtain estimates of the covariance 

matrix for the parameter estimates. They develop covariance 

matrix estimators for parametric and semi-parametric 

proportional hazards models, respectively. Wei and Amato's 

derivations specifically assume that the group sizes are 

small relative to the number of groups. Huster et al. use 

simulations to assess the performance of this approach and 

find that it can be highly inefficient when intra-group 

correlations are high and/or if members of the pairs have 

the same explanatory variable values (e.g., received the 

same treatment). 
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Koehler and HcGovern (1990) use bootstrap methods to 

estimate the covarlance matrix of the parameter estimates by 

resampling the groups. This allows the groups to be of 

large and variable size, but their procedures have not been 

extended to include explanatory variables. 

All of the methods above, except that of Koehler and 

HcGovern (1990), are limited in application to small group 

sizes. In addition, excepting Hougaard's (1986) work, the 

random effects methods assume that correlations are 

homogeneous within and across groups. Independent working 

model methods allow for heterogeneous correlations, but 

correlations become nuisance parameters, excluding any 

investigations of association among group members. If the 

degree of correlation is not of interest, Koehler and 

McGovem's (1990) approach is appealing because it permits 

heterogeneous correlation structures and large group sizes, 

but it is limited by its inability to incorporate 

explanatory variables. 

1.4. Proposed Methodology for Correlated Failure Time Data 

The following chapters describe a method of estimating 

failure time distributions for data collected from 

independent groups of correlated individuals. The technique 
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allows for large and variable group sizes, heterogeneous 

correlation structures, and the incorporation of explanatory 

variable information. Both parametric and nonparametric 

failure time models can be estimated, and correlations may 

be modeled as well. 

The analyses rely on representing the failure times as 

conditional binary variables indicating the failure of an 

individual during a specified interval given success in the 

previous interval. For each time interval, a vector of 

binary responses is constructed for each group, consisting 

of responses for individuals belonging to the group who are 

at risk at the beginning of the interval and not censored 

during the interval. Each vector of responses has a mean 

vector whose elements are hazard probabilities and are thus 

functions of the failure time distribution parameters. The 

covariance matrix for a vector of binary responses is a 

function of the corresponding mean vector and parameters 

describing the correlations among the elements of the 

observed response vector. To obtain estimates of the 

failure time distribution parameters, multivariate nonlinear 

least squares estimation is used based on a Gauss-Newton 

algorithm. When the Gauss-Newton iterations are initiated 

with consistent estimates of the mean model (i.e., failure 

time distribution) and correlation parameters, the estimated 

mean model parameters have a joint asymptotic normal 



12 

distribution under mild regularity conditions. Furthermore, 

since this estimation procedure uses information on 

covariances, it may be more efficient than estimators based 

on a working model that assumes independent responses. 

Chapters 2 and 3 describe the methodology in detail for 

the common interval censoring and exact time cases. 

Examples of applications are given for both types of data. 

Asymptotic properties of the estimators are developed in 

Chapter 4. In Chapter 5, the properties and performance of 

several estimators of correlation coefficients for clustered 

binary data are discussed. 
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2. FAILURE TIME ANALYSES FOR 

INDEPENDENT GROUPS OF CORRELATED INDIVIDUALS 

UNDER A COMMON INTERVAL CENSORING SCHEME 

2.1. Introduction 

Survival studies based on groups of individuals 

generally yield correlated outcomes within groups. 

Correlations may arise from social relationships among 

members of a group, such as pairs of spouses, or from 

genetic relationships, such as groups of siblings. Data 

with this structure may involve groups of varying sizes, and 

correlations within groups may not be identical for all 

pairs. Interval censoring occurs when individuals are 

checked at the end of specific time intervals to determine 

whether the individual has failed since the previous 

inspection time. In such cases, the exact time to censoring 

or failure is not observed, but the event is known to have 

occurred within a particular interval. 

This chapter introduces a failure time methodology for 

commonly interval censored data collected from independent 

groups of correlated individuals. The approach allows for 

variable group sizes and heterogeneous correlations among 

individuals within groups. In addition, a wide range of 
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failure time models may be used, including models that 

depend on explanatory variables. 

In this approach, the outcome for any individual at 

risk during a specific interval is modeled as a conditional 

binary variable indicating the failure or success of the 

individual given success in the previous interval. For each 

time interval, a separate vector of binary responses is 

constructed for each group, whose length is equal to the 

number of individuals in the group who are at risk or are 

not censored during the interval. The elements of the 

corresponding mean vector are hazard probabilities and are 

thus functions of the failure time distribution parameters. 

The covariance matrix for each binary response vector is a 

function of the mean vector and parameters describing the 

correlation structure among the elements of the observed 

response vector. The parameters of the failure time 

distribution are estimated using least squares estimation 

for multivariate nonlinear models. 

This chapter describes how the binary response vector 

and associated mean vector and covariance matrix for each 

group and interval are constructed. Estimators for the 

failure time distribution parameters are presented, followed 

by a discussion of specific models for the hazard 

probabilities. The approach is then illustrated with an 

analysis of data from a study in which three smoking 
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cessation programs are compared. 

2.2. Binary Response Vector Definition and Distribution 

Suppose that the data consist of observations from m 

independent groups of individuals and that failure or censor 

times for each individual are observed to fall into one of 

k+1 < 00 disjoint intervals, {[t^^^, tj^) : h = 1, 2, ..., 

k+1; tg = 0; = *}' where time tj^ represents the last 

time of inspection or follow-up. Let n^^^ be the number of 

individuals in the risk set for group i at time t^_^ minus 

the number of individuals who are censored during interval 

h, and let m^ denote the number of groups in interval h with 

"hi ̂  Note that n^^^ i ~ ° for all i and m^^^ = 0. 

Define Y^ij s^ch that 

= 1 if individual j in group i fails during 

interval h given success up to t^_^y 

=0 if individual j in group i succeeds during 

interval h given success up to t^^^, 

where i = 1, 2, ..., m^ groups and j = 1, 2, n^^^ 

individuals, ^jjij is not defined for any individual who is 

censored during interval h or has failed or been censored 

before t^^^. This implies that is undefined for all 

i and j, so that the sums over h in the following sections 
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end at h = k. 

The mean and variance for can be constructed by 

observing that Yjjij ® Bernoulli random variable with a 

mean equal to the hazard probability for individual j in 

group i during interval h. The hazard probability is 

derived from assumptions on the failure time distribution. 

Using Tj^j to represent the continuous exact failure time for 

individual j in group i with hazard function (t) and 

survival function (t), 

Bt^hij) ® "hij 

= Pr{individual j in group i fails in interval 

h given success up to tjj_^} 

= Pr{ T^j e [th_i, t^) I Tij ^ } 

= 1 - [Sij(th) / Sij(Vi)] 

= 1 - exp I ~ J ^ Xij(s) ds j- . (2.1) 

The variance of is (l-n^ij)• 

The binary variables can be used to construct an 

nhi X 1 response vector, 

-hi ̂  (^hil' *hi2' ^hin^i)' ' 

for each group and each interval for which n^^ > 0. The 

mean vector for Y^^ is 
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-hi '  "hi2' * 

The covariance matrix for denoted consists of 

variances ̂ hij^^~"hij^ along the diagonal and covariances 

1/2 
Phijj' [*hij(^-"hij *"hij'(^""hij'^ ̂ ' 

on the off-diagonals, where Pjj^jj/ is the correlation 

between and Y^^^j,. Because groups are assumed to be 

independent, individuals in different groups (i*i') have a 

covariance of zero. Also, by conditioning on previous 

responses, observations from different intervals have zero 

covariance. 

2.3. Parameter Estimation 

2.3.1 Model for Y^^ 

The observed response vector can be modeled as a 

function of its mean vector plus a vector of errors. In 

general, the mean vector is a nonlinear function of the 

parameters, %, and possibly explanatory variables, that 

define the failure time distribution. In addition, the 

covariance matrix for the response vector is a function of 

the mean vector and another set of parameters, oc, associated 

with the correlation coefficients for individuals in the 

response vector. For the purposes of the model definition. 
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let = "(Z'Xhij)' Shi = 2(Z,Xhi)' ^hi = V(§'2hi^' 

where 9 ~ (a', %')'. 

The model for is assumed to be 

-hi " Zd/^hi) Shi ' (2.2) 

where % is an s x 1 vector of fixed, unknown parameters 

belonging to the parameter space T; r is a compact subset of 

ghi = (%hii' •••' 2hin is an rn^i x 1 vector 

™hi 
belonging to a compact subset of IR and containing the 

r X 1 explanatory variable vectors associated with each of 

the n^j^ individuals contributing to the hi-th observed 

response vector; n is an n. j x 1 vector whose elements are 
mhi 

continuous functions from r x IR into [0,1] with 

continuous and uniformly bounded first and second and 

continuous third partial derivatives with respect to %; the 

-hi independent across h and i with mean 0 and 

nonsingular covariance matrix V(g,X^^) for 8 = (%', a'); a 

is a u X 1 vector of fixed, unknown parameters belonging to 

parameter space and $ is a compact subset of IR*. 

2.3.2. Estimating the Mean Model Parameters 

If the covariance matrices for are known, 

multivariate nonlinear least squares estimation can be used 

to obtain estimates of the parameters in %. This is 

achieved by minimizing the weighted residual sum of squares 



19 

Q(jf) = k"^ Z jZh { [Y^^- 3(1,Xhi)]' V(g,Xhi)"^ 
h=i 1=1 

X CXhi" 2(Z'%hi)] ) 

with respect to %. 

In the usual case where the are unknown, a 

Gauss-Newton algorithm can be used to obtain nonlinear least 

squares parameter estimates. The algorithm is derived from 

a first order approximation to (see Chapter 4). The 

estimator for % is calculated using an iterative process in 

which the c-th step is defined by 

£(c)  ^  

+ k"^ Z m^l zh 
h=l " i=l 

where 

D(Z,X) = a%(z,X)/8z' , 

W(8) = k"^ Z mT^ D(z,X. .)' V-l(e,X. .) D(2f,X .) , 
h_i n ni ax nx 

and a'°' is the initial value for a (which could 

alternatively be updated at each iteration). By initiating 

the Gauss-Newton iterations with a consistent estimator of 
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9, say (where consistency Is achieved 

as the number of groups Increases), the conditions cited for 

model (2.2) plus some mild regularity conditions are 

sufficient to show that the Gauss-Newton estimator 

terminated at any step c is asymptotically noirmal with mean 

2 and covariance matrix [km ^(0^)]""^ (see Chapter 4). A 

consistent estimator for the covariance matrix of % is 

(km where 

V = k~^J^ D(î,Xjj.)' v"^(i,Xj^.) D(î,Xjj.) , 

© = (%', g^°*')', and % is the least squares estimator of % 

obtained from the Gauss-Newton algorithm. 

2.3.3. Consistent Initial Estimators for the Mean Model 

Parameters 

Consistent initial estimators for the parameter vector 

in the mean model, can be obtained by either of two 

methods. First, standard estimation procedures based on the 

working assumption of Independent observations for the 

assumed survival model (e.g., maximum likelihood, partial 

likelihood or nonparametric methods) can be used to obtain 

estimates of the failure time distribution parameters from 

the original failure time data. Although these methods 

assume Independence, they are generally consistent when data 

are correlated. For example, Huster, Brookmeyer and Self 
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(1989) and Wei and Amato (1989) demonstrate the consistency 

under an arbitrary correlation model of the parameter 

estimators for parametric and semi-parametric proportional 

hazards models using maximum and partial likelihood methods, 

respectively. 

Alternatively, nonlinear regression techniques can be 

used to provide consistent initial estimators for jr by 

regressing the individual binary responses on the 

appropriate mean model. Dummy variables are used to 

incorporate the mean models for the binary responses from 

all time intervals into a single model as follows. Let 

=1 if data arise from individual j in group i 

in interval h (i.e., current dependent 

variable is Y^^j) 

= 0 otherwise , 

where h = 1, 2, ..., k , i = 1, 2, ... m^^ , and j = 1, 2, 

... • Then 

^hij " ̂lij^lij + ••• + ^kij^kij ®hij ' 

it 
where e. .. is an error term with zero mean. The entire 

hi] 

binary data set can be used in a nonlinear regression 

program that assumes independence among the observations to 

obtain a consistent estimate of %. The nonlinear regression 

approach may be computationally expensive for large data 

sets or complicated mean models. In these cases, the first 



22 

approach may be more easily and successfully implemented. 

2.3.4. Consistent Initial Estimators for the Correlation 

Parameters 

Auxiliary parameters in the covariance matrix consist 

of correlation coefficients or parameters from a model for 

the correlation coefficients. Consistent estimators of 

correlation coefficients are developed in Chapter 5 for 

clustered binary data with constant intra-group variances 

and for arbitrary intra-group variance structures. Recall 

that consistency is associated with increasing the number of 

groups. Hence, these estimators are appropriate when models 

for intra-group correlations can be applied within 

reasonably large subsets of the groups in the sample. 

When the common correlation model is inadequate, it may 

be possible to partition all possible intra-group pairs of 

individuals into distinct classes, each with a distinct 

common correlation coefficient. For example, classes may 

correspond to the sexes of pairs of litter mates 

(female-female, male-male, female-male), or to social and 

biological relationships among human subjects. The 

consistency of the correlation estimators for different 

correlation classes is based on pooling information from 

intra-group pairs of individuals belonging to the same 

correlation class in a number of different groups. Under 
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these conditions, the estimators of correlation developed in 

Chapter 5 can be applied to each correlation class according 

to the assumptions under which the specific estimator is 

consistent. 

The correlation coefficient may also be modeled as a 

function of explanatory variables. For example, one 

possible model is 

2"^(Phiij' +!)=[!+ Gxp{Z^^jj,a}]"l exp{Z^^jj,a} , 

(2.3) 

where Sjiijj' ® vector of explanatory variables associated 

with pair jj' in group i during interval h, and a is the 

corresponding vector of parameters. Explanatory variables 

may include continuous and classification variables, and 

possibly functions of time or order. The parameters a in 

model (2.3) may be estimated using a nonlinear regression 

program with data generated by substituting 

(^hij " *hij)(*hij' " *hij') 

(^hij " ̂hij)(^hij' " "hij') 

l(*hij " "hij^^^hij' " "hij'^' 

or some other suitable estimator for Pj^^jj/ into the left 

hand side of equation (2.3). Although the estimator for a 
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is evaluated under the incorrect assumption that all 

estimated pairwise correlation coefficients are independent, 

it still produces a consistent estimate of a. 

Because of requirements necessary to achieve 

consistency (i.e., averaging over groups), it is not 

possible to form consistent estimators for models where each 

group has its own arbitrary level of correlation among pairs 

of individuals. If inconsistent estimators for the 

correlation coefficient are used, then the mean model 

parameter estimators may not retain the asymptotic 

properties derived in Chapter 4. 

2.4. Examples of Mean Models 

2.4.1. Models Without Explanatory Variables 

Either parametric or nonparametric models can be used 

to model in the absence of explanatory variables. A 

simple nonparametric model can be developed by defining the 

hazard probability for interval h to be an arbitrary 

constant The vector of hazard probabilities for this 

case is modeled as 

"hij W = ^h ' 

where % = ... Alternatively, the mean can be 

constructed by assuming a parametric distribution and using 
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equation (2.1). Two-parameter distributions are commonly 

used for this purpose, including the Weibull, gamma and 

lognormal distributions. 

Both the nonparametric and parametric models assume a 

homogeneous failure time curve for all individuals, but can 

be easily modified to allow for different failure time 

distributions for distinct classes of individuals by using a 

distinct set of parameters for each class. 

2.4.2. Proportional Hazards Models 

It is often of interest to include explanatory 

variables in the analysis of failure time data. One common 

regression model is the proportional hazards model. An 

assumption of proportional hazards implies that each 

individual's hazard function X(t) is proportional to a 

baseline hazard function X^ft). The proportionality 

constant is typically taken to be exp{X'g}, so that the 

hazard function for an individual with r explanatory 

variables X is 

A(t) = X^ft) exp{X'g} . 

In the interval censored case, an alternative 

expression for the baseline survival function S^ft) is 

useful in constructing the proportional hazards model. 

Sg(t) can be written as a function of a discrete baseline 

step function : h = 1, 2, ..., k), whose steps 
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correspond to the hazard probability for each Interval: 

s„(t) = n CI - Pg(T € t^)|T « »))] 

= n (1 -

(Kalbfleisch and Prentice, 1980). Thus, under the 

proportional hazards assumption, the survival function 

S(t,X) is expressed as 

S(t,X) = 

= n (1 - ' 

h:t^at 

implying that the mean model is 

"(ï.ïhij) = 1 - (1 - • 

where jr = g')'. As noted in Section 

2.4.1, the discrete baseline hazard may be assumed to be an 

arbitrary step function or it can be derived from a 

parametric assumption on the baseline failure time 

distribution. The semi-parametric Cox proportional hazards 

model cannot be applied in this framework because the 

unspecified baseline hazard does not provide enough 

information to develop an explicit function for the mean 

model. 
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2.4.3. Other Regression Models 

It is possible to construct other regression models by 

placing models on the parameter(s) of any parametric 

distribution. One common model is the accelerated failure 

time model, which assumes that failure times follow a 

Weibull distribution with a log-linear model on the scale 

parameter. The Weibull accelerated failure time model is a 

proportional hazards model where the baseline hazard X^ft) 

is assumed to follow a Weibull distribution; however, this 

relationship between the accelerated failure time model and 

proportional hazards model does not exist for most other 

parametric assumptions. 

2.4.4. Time-Dependent Explanatory Variables 

By viewing the hazard probabilities as conditional on 

the past process of stochastic variables and success up to 

the beginning of the interval, both internal and external 

time-dependent explanatory variables (sensu Kalbfleisch and 

Prentice, 1980) can be incorporated into the mean model, and 

the associated parameter estimates can be obtained via . 

multivariate nonlinear least squares estimation as described 

above. For internal time-dependent variables, however, 

conditioning on the past process of the variable implies 

that the usual relationship between the hazard function and 

the survival function no longer exists. 
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2.5. Application of Methodology to Smoking Cessation Data 

2.5.1. Overview 

Treatment programs to help individuals quit smoking can 

be evaluated by collecting information on recidivism from 

participants in the program. Such data are often analyzed 

using categorical methods on the observed frequency of 

recidivists and abstainers. If actual dates of recidivism 

or information on smoking status at various points in time 

are known^ the success of smoking cessation programs can be 

assessed using failure time methods. For smoking cessation 

data, time zero represents the initial quit date and the 

failure event is defined to be the resumption of the smoking 

habit according to some criterion of recidivism. 

Data from smoking cessation studies arise from a 

mixture of two subpopulations: failers (recidivists) and 

permanent abstainers. The relative size of these two 

subpopulations in the treatment population is one measure of 

the success of a smoking cessation treatment. If all of the 

potential failures in a sample are observed, then the 

estimated relative size of the failing subpopulation is the 

observed proportion of recidivists. However, it is rarely 

known whether all failures have occurred during the study 

period, and if the recidivism data for an individual is 

right censored, it is not known to which subpopulation the 
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individual belongs. Hence it is necessary to use more 

sophisticated techniques to estimate the proportion of the 

failing subpopulation. 

In addition to the success rate of a treatment program 

as measured by the proportion of failers, failure time 

analyses provide valuable information on the patterns of 

recidivism over time. For example, it may be determined 

that one program has an extremely high recidivism rate at a 

particular phase in the treatment process, indicating the 

need for more intensive intervention measures during that 

phase of the program. Failure time analyses that 

incorporate explanatory variable information also provide a 

convenient means for determining the effects of various 

factors on the shape of the recidivism hazard function. 

In the sections that follow, the failure time methods 

outlined in this chapter are applied to data from a 

comparative evaluation of smoking cessation clinics. The 

study is described, and appropriate mean models are 

developed. Results of the failure time analyses are then 

presented and discussed. 

2.5.2. Description of Smoking Cessation Clinic Study 

The effectiveness of three smoking cessation programs 

was evaluated in a study conducted in Iowa. This study is 

described in detail by Lando, McGovern, Barrios and Etringer 
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(1990). The clinics under consideration were developed by 

the American Cancer Society (ACS), the American Lung 

Association (ALA), and by Dr. Harry Lando (LANDO) (Lando, 

1977; Lando and McGovem, 1982). All three programs were 

conducted in Des Moines, Iowa City and Waterloo. Treatment 

programs were administered to groups of individuals. The 

groups provided a framework in which participants discussed 

the benefits of abstinence, coping strategies for quitting, 

and maintaining a smoke-free life style. The format for 

addressing these issues varied with smoking cessation 

treatment. 

The ACS program consisted of an orientation session 

plus four one-hour sessions over a two week period. Each 

facilitator was responsible for developing a clinic format 

that fostered active involvement of group members and that 

addressed the individual members' needs. No target date was 

set for quitting. Although participants were expected to 

quit in the latter half of the program, they were informed 

that smokers who take two weeks to quit are as likely to be 

successful as those who take two months to quit. 

The ALA clinics involved an orientation session plus 

seven one-and-a-half to two-hour sessions over a seven week 

period, with a target quit date set at the third session. 

The format of the program was specifically outlined by the 

ALA. The first four sessions covered specific topics 
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related to the quitting process (session 1: health effects; 

session 2: coping strategies; session 3: declaration of 

commitment to quitting on the actual quit date; session 4: 

reiteration of quitting benefits and discussion of 

withdrawal symptoms). Meetings 5 and 6 focused upon 

maintenance and development of healthy enjoyable nonsmoking 

lifestyles. A celebration was planned for the seventh 

meeting to reward the successful participants. 

The LANDO program consisted of sixteen three-quarter to 

one-hour sessions over nine weeks, again with a relatively 

specific agenda for the meetings. The first eight sessions 

were held in the first three weeks, and focused upon 

preparation for quitting. The treatment included nicotine 

fading by use of increasingly strong cigarette filters or by 

switching to lower nicotine brands as the quit date 

approached. After the quit date, the second eight sessions 

were conducted over the remaining six weeks to help 

participants maintain abstinence. Group sessions consisted 

of relatively unstructured group discussion with emphasis on 

problem solving. Participants also signed contracts calling 

for specific rewards for abstinence. 

Data on recidivism were collected during the treatment 

program. After the treatment program was terminated, 

follow-up contacts were made for each participant at 3, 6, 

9, 12, 18, 24 and 36 months after the quit date. If at the 
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time of contact, the participant admitted to having smoked 

at least one puff per day for seven consecutive days since 

the last follow-up contact, the participant was considered 

to have failed the quit attempt during the preceding time 

interval. If participants could not be reached, the data 

were considered to be right censored. Individuals who did 

not abstain initially for at least 24 hours were not 

considered to have quit and were omitted from the analyses. 

Recidivism dates were often reported by the participant 

with some degree of imprecision. For example, an individual 

who resumed smoking at "three weeks" may have resumed 

anywhere between two-and-a-half and three-and-a-half weeks. 

To account for this, the following intervals for reported 

failure or censor times in units of days were constructed: 

first few days [0, 4), one week [4, 11), two weeks [11, 18), 

three weeks [18, 25), one month [25, 32), one to two months 

[32, 65), two to three months [65, 100), three to six months 

[100, 190), six to twelve months [190, 370), twelve to 

eighteen months [370, 550), eighteen to 24 months [550, 

735), 24 to 36 months [735, 1080). Since early reported 

failure times were considered to have been fairly precisely 

recorded, early intervals were defined to be correspondingly 

short. After three months, the intervals were constructed 

in accordance with follow-up times. These intervals were 

extended by a few days beyond the scheduled follow-up date 
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to Include follow-up contacts that were made after the 

assigned follow-up date. 

Additional data were collected from each participant to 

be related to failure times. Variables included in the 

analyses below were age; baseline cigarette consumption; 

baseline confidence in ability to quit; proportion of 

friends who smoke; number of previous, quit attempts; clinic 

site; number of reasons to quit; indicators for health, cost 

and family reasons to quit; sex; number of years participant 

has smoked; and smoking treatment. 

2.5.3. Assumptions on the Failure Time Distribution 

Analyses from a similar comparative study (Koehler and 

McGovern, 1990) indicated that a separate Weibull limited 

failure population model (Meeker, 1987) for each treatment 

is reasonable for these data. This model assumes that the 

failure times for the failing subpopulation follow a Weibull 

distribution. A parameter is included that measures the 

relative size of the failing subpopulation. Meeker (1987) 

notes that precise estimates for the parameters in this 

model may not be obtained if less than 80% of those who will 

eventually fail are actually observed; according to McGovern 

(personal communication; School of Public Health, University 

of Minnesota), approximately 96-97% of the true failures had 

been observed by the end of the study. 
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Explanatory variables were included in the analyses by 

modeling the log of the Weibull scale parameter as a linear 

function of the explanatory variables. Exploratory analyses 

were performed on the data to determine which explanatory 

variables appeared to Influence failure times. The LIFEREG 

procedure in SAS (1985) was used with a Weibull assumption 

and a log-linear model on the Weibull scale parameter. The 

procedure was applied to the recorded (not Interval 

censored) failure and right censor times with most of the 

individuals who were abstinent at the end of the study 

omitted from the data set. The deletion of these 

participants was used to create a data set that represented 

the falling subpopulation only. The LIFEREG procedure 

assumes Independence, but this was not of great concern 

since violations of the independence assumption generally 

affect estimated variances of the parameter estimators much 

more than the realized values of the parameter estimators. 

Although the data set consisted of 915 individuals who 

actually made a quit attempt, complete data for all 

variables were available for only 88% of the individuals. 

An initial regression for each treatment was performed to 

select a smaller set of Important variables. The variables 

selected from this initial pass were the proportion of 

friends who smoked, the baseline cigarette consumption, 

whether the participant had a cost reason to quit, and the 
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baseline quit confidence. Further analyses indicated that 

baseline quit confidence, scaled from 0 (no confidence) to 

100 (complete confidence), appeared to be the only important 

factor for the treatment failure time distributions. Thus, 

the log-linear model on the scale parameter for the analyses 

below was taken to be a function of baseline quit confidence 

for each treatment. There were 871 complete records for 

this model. Attributes of this data set, including the 

total number of participants and groups and the number of 

failures in each interval, are listed for each treatment in 

Table 2.1. 

2.5.4. The Mean Model 

The mean of a binary response for a particular 

treatment can be derived from a mixture of the distributions 

for the failing and abstaining subpopulations. Consider 

first the Weibull failure time distribution for the failing 

subpopulation. Using a log-linear relationship between the 

scale parameter and the explanatory variables, the survival 

function for failure times in this subpopulation is 

Sf(t) = exp{ - texp(-X'g) t]^ } , 

where t\ is the Weibull shape parameter and g is the vector 

of parameters associated with the explanatory variables X. 

In the specific model used below, X' = (1, X^), where X^ 

contains the value for the baseline quit confidence, and 
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Table 2.1. Some attributes of the smoking cessation data 
set used to estimate the mean model parameters 

Treatment 

Attribute ACS ALA LANDO 

Number of 260 312 299 
Participants 

Number of 33 31 33 
Groups 

Average Quit 64.1 63.6 66.7 
Confidence 

Number of 
Failures/ 
Censors in 
Interval 

[ 0, 4) 48 / 0 

00 

/ 0 38 / 0 

[ 4, 11) 43 / 1 55 / 0 34 / 0 

[ 11, 18) 28 / 0 21 / 0 18 / 0 

[ 18, 25) 28 / 0 24 / 0 18 / 0 

[ 25, 32) 16 / 0 23 / 0 28 / 0 

[ 32, 65) 28 / 0 35 / 0 33 / 0 

[ 65, 100) 11 / 0 14 / 0 20 / 0 

[100, 190) 16 / 0 16 / 0 23 / 1 

[190, 370) 5 / 0 12 / 0 12 / 1 

[370, 550) 2 / 0 2 / 0 4 / 1 

[550, 735) 0 / 0 5 / 0 0 / 1 

[735, 1080) 2 / 32 2 / 55 2 / 65 

Total 227 / 33 257 / 55 230 / 69 
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g = (pQ, g^)'. For the abstaining subpopulation, an 

individual never fails. Thus S^(t) a 1. 

The hazard probability for the entire population during 

interval h can be calculated from the hazard definition, 

Pr{ failing in interval h | success up to ty^_^ } 

= Pr{ T 6 t^) ) / Pr{ T > t^_i } . 

Let (p be the proportion of failers in the population; i.e., 

the probability that an individual belongs to the failing 

subpopulation. The expression for the numerator can be 

derived as follows. 

Pr { T 6 IVl' > 

= Pr { T 6 tj^) I abstainer } Pr{ abstainer } 

+ Pr { T e [t^_^, tjj) I failer } Pr{ failer } 

= [Sa(th-i) - a - 1» 

+ - Sf(tj^)] 0 

= 4> [exp{ - [exp(-X'g) Vi]" } 

- exp{ - [exp(-X'g) t^]^ }] . 

Using the same mixture argument, 

Pr { T > t^_^ ) 

= S^(tj^) (1 - 0) + Sgft^) 0 
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= 1 ~ ̂  [1 - exp{ - [exp(-X'g) )] . 

Thus, the mean model for the response of individual i in 

group j during interval h is 

"hij = - 1 + exp{ - [exp(-X^^jg) 

X [exp{ - [exp(-%^jg) tj^_i]'' } 

- exp{ - [exp(-X^^jg) t^]* }] . 

The mean model parameters to be estimated from the data are 

4», V, pQ and /3^. 

2.5.5. The Correlation Model 

Observations during the course of the study indicated 

that related individuals, for example married couples, 

tended to have more highly correlated failure times than 

unrelated individuals. Although cohesiveness sometimes 

increases in support groups over time, the short duration of 

the treatment program relative to the length of the study 

did not suggest that the correlations should be allowed to 

vary across time as well. Two classes of correlation were 

assumed to exist among the binary responses of group members 

to account for differences in relationships among 

participants. The correlation classes correspond to related 

pairs (married couples and pairs with the same last name) 

and unrelated pairs (all other pairs of individuals). This 



39 

is a simplification of the true correlation structure; more 

levels of correlation could have been constructed if more 

information had been illicited from the subjects, such as 

which subjects in the group were friends or sharing living 

accommodations. The effect of this type of correlation 

structure is that groups with a higher proportion of related 

individuals tend to have higher "average" correlations among 

binary responses. The auxiliary covariance parameters to be 

estimated under this model are a = (p^, Pg)'' where is 

the correlation coefficient for related pairs and is the 

correlation coefficient for unrelated pairs. 

2.5.6. Consistent Initial Estimators for % and a 

Consistent initial estimates of % were obtained using 

the maximum likelihood approach assuming independence among 

individuals. A FORTRAN program to estimate Weibull limited 

failure population models (Meeker, 1983) was modified to 

allow explanatory variables to be included in a log-linear 

model for the scale parameter. The likelihood accounted for 

interval and right censoring. Let 

=1 if individual j in group i failed during 

interval h 

= 0 otherwise 

and 
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^2hij ~ ̂  if the failure time for individual j in 

group i is right censored during interval h 

= 0 otherwise . 

The likelihood used to obtain was 

Si k jS' " 
Ô 

X 1<I> Sf(Vl^ + (1 - *)] . 

Estimates of % from this procedure for each treatment are 

listed in Table 2.2. 

To estimate the two correlation coefficients for the 

covariance matrix, intra-group pairs of individuals were 

separated into two disjoint classes, related pairs and 

unrelated pairs. Pairs of participants were considered to 

be related if they were known to be married or if they 

shared a common last name. Estimator (5.7) in Chapter 5 was 

used to estimate the correlation coefficient corresponding 

to each correlation class. This estimator was selected 

based on the simulation results cited in Chapter 5. 

Estimates for the pairwise correlation coefficients for 

each correlation class in each treatment are listed in Table 

2.3. The high degree of correlation among related pairs 

relative to unrelated pairs for all treatments is evident 

from the estimates. The related correlation estimate for 

the ACS treatment is much higher than the estimates for the 
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Table 2.2. Initial estimates (and standard errors) of the 
mean model parameters for each smoking cessation 
treatment assuming independence among all 
observations 

Treatment 

Parameter ACS ALA LANDO 

Proportion 0.873 0.816 0.776 
of Failers (.020) (.022) (.024) 

Shape 0.822 0.738 0.831 
(.044) (.037) (.043) 

Intercept 4.28 3.84 4.02 
(.22) (.23) (.19) 

Baseline -0.0069 0.0038 0.0033 
Quit (.0031) (.0032) (.0027) 
Confidence 

Table 2.3. Initial estimates of the correlation 
coefficients for related and unrelated pairs for 
each smoking cessation treatment 

Treatment 
Correlation 
Class ACS ALA LANDO 

Related .687 
Pairs 

Unrelated .028 
Pairs 

.249 .133 

.032 .017 
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other treatments. One possible interpretation of this 

result is that the lower number of group meetings in the ACS 

program does not provide individuals with as many tools for 

self-discipline, vehicles for positive reinforcement, and 

coping strategies for withdrawal stress, and this causes the 

success of related couples to be more highly linked for the 

ACS treatment than for the other treatments. 

2.5.7. Results of Analyses and Discussion 

Using the Gauss-Newton algorithm described in Section 

2.3.2, the four mean model parameters and their standard 

errors were estimated for each treatment. Results are 

presented in Table 2.4. The estimated baseline quit 

confidence parameters and standard errors indicate that 

baseline quit confidence is not significant for any 

treatment. 

Contrasts comparing the remaining parameters across 

treatments (the ACS versus the average of the ALA and LANDO 

parameters, and the ALA versus the LANDO parameter) were 

tested using two-sided t-tests. Based on the asymptotic 

normality of the parameter estimates, approximate t-tests 

were constructed by assuming that parameter estimates for 

different treatments were independent and that variances of 

the parameter estimates were homogeneous across treatments. 

Since four parameters were estimated in each model, the 
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Table 2.4. Mean model parameter estimates (with estimated 
standard errors) for each smoking cessation 
treatment from nonlinear least squares 
estimation accounting for intra-group 
correlations 

Treatment 

Parameter ACS ALA LANDO 

Proportion 
of Failers 

0.854 
(.022) 

0.801 
(.024) 

0.766 
(.025) 

Shape 0.517 
(.035) 

0.524 
(.035) 

0.593 
(.038) 

Intercept 3.59 
(.27) 

3.54 
(.28) 

3.77 
(.29) 

Baseline 
Quit 

-0.0034 
(.0036) 

0.0029 
(.0040) 

0.0026 
(.0040) 

Confidence 
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degrees of freedom for the standard errors were 29 for the 

ACS and LANDO treatments and 27 for the ALA treatment so 

that the pooled estimate of variance had 85 degrees of 

freedom. Values for the t-statistics are listed in Table 

2.5. 

Test results for the estimated proportion of failers 

indicate that the more intensive ALA and LANDO treatments 

have higher success rates than the ACS program. No 

difference was detected between the ALA and LANDO programs 

for the relative size of the recidivist population. These 

patterns were also observed in analyses conducted by Lando 

et al. (1990). 

The results also suggest that the shape and intercept 

parameters are nearly constant across all treatments. The 

value of the shape parameter is less than one, indicating 

that the hazard function declines monotonically over time. 

The shape of the hazard reflects the fact that the risk of 

failure is much higher in the early phases of smoking 

cessation. 

These tests indicate that a limited failure population 

Weibull model with common shape and scale parameters across 

treatments and separate failing proportion parameters for 

each treatment may be appropriate for these data. 

The estimated values for some parameters in Table 2.4 

differ from the initial consistent estimates cited in 
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Table 2.5. Approximate t-statistlcs for contrasts of the 
mean model parameters comparing smoking 
cessation treatments 

Parameter 

Contrast 

ACS vs. Others ALA vs. LANDO 

Proportion 
of Fallers 

Shape 

Intercept 

2.42' 

•0.94 

•0.19 

1.04 

-1.33 

-0.58 

^Reject null hypothesis at a - .05 on 85 degrees of 
freedom If |t| > 1.99. 
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Table 2.2. Estimates of the intercept and particularly the 

shape parameters are substantially lower when within-group 

correlations are considered. The effects of these changes 

in the parameter values on the failure time distribution 

offset one another to some extent, but the least squares 

estimates of the hazard functions for the three treatments 

are more skewed than the corresponding independence-based 

estimates. The estimated proportion of recidivists is also 

slightly smaller for each treatment when within-group 

correlations are included in the model; these changes are 

probably a result of the increased skewness in least squares 

estimate of the recidivist distribution. 

The new methodology is expected to produce more 

accurate (i.e., usually larger) estimates of the standard 

errors for the parameter estimates by accounting for 

correlation among observations. Estimated standard errors 

for the least squares procedure were about 10% higher than 

those for the independence-based procedure for the estimated 

proportion of failers, and about 30% higher for the 

regression coefficients (Tables 2.2 and 2.4). However, 

estimated standard errors from the Gauss-Newton algorithm 

were about 10% lower for the shape parameter estimates than 

from the independence-based analysis. One possible 

explanation is that since the shape parameter is bounded 

below by zero, the variance estimate is related to the 
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parameter estimate; hence the lower estimated standard 

errors from the Gauss-Newton algorithm may be a consequence 

of the lower shape estimate from this estimation method. 

The relatively small differences in estimated standard 

errors between the two estimation procedures are the result 

of very low estimated correlations for most pairs of 

responses in the data. In general, larger intra-group 

correlations will lead to larger differences in estimated 

standard errors between the independence-based and least 

squares procedures. 
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3. ANALYSES FOR EXACT FAILURE TIME DATA 

COLLECTED FROM INDEPENDENT GROUPS OF CORRELATED I^IVIDUALS 

3.1 Introduction 

In Chapter 2, a method is developed for analyzing 

commonly interval and possibly right censored failure time 

data from independent groups of correlated individuals. 

Another common form for failure time data arising from 

grouped individuals is exact time and right censored data. 

Methods currently available for analyzing this type of data 

are discussed Chapter 1. These approaches are limited in 

their application by restrictions placed on group size, 

intra-group correlations and/or the ability to incorporate 

explanatory variables into the analyses. 

One alternative approach for analysis of exact failure 

time data for grouped individuals is to extend the nonlinear 

least squares estimation techniques described in Chapter 2 

by expressing the observed failure time data as conditional 

binary variates. The binary variables are constructed from 

the observed failure and censor times using appropriately 

defined intervals for the exact time data. This approach 

permits large, variable group sizes and heterogeneous 

intra-group correlations. In addition, a wide variety of 
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failure time distributions can be estimated, including 

distributions that depend on explanatory variables. 

Another possible approach to analyzing exact time data 

from groups of correlated individuals is to employ methods 

related to the generalized estimating equation approach of 

Liang and Zeger (1986) using the observed failure and censor 

times. This method is a multivariate extension of 

guasilikelihood methods for generalized linear models and is 

closely related to multivariate nonlinear least squares 

estimation. Like the analyses based on conditional binary 

variates, this methodology allows for large and variable 

group sizes with a variety of correlations structures, and 

permits analysis of explanatory variable effects. However, 

right censored times are not easily incorporated into the 

estimating equations. 

In this chapter, estimation methods using exact failure 

times and conditional binary variates are described and 

compared. An illustration of the conditional binary variate 

approach is presented using data from a toxicological study. 
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3.2 Analyses Based on 

Observed Exact Failure and Censor Times 

Liang and Zeger (1986) and Zeger and Liang (1986) 

describe a multivariate extension of guasilikelihood methods 

for generalized linear models. Univariate guasilikelihood 

methods, described in McCullagh and Nelder (1983), are used 

to model the means of random variables as a known function 

of a linear combination of explanatory variables when the 

variance of the random variable is related to the mean. An 

underlying family of distributions that has a form related 

to the exponential family is assumed for the data. 

Explanatory variable effects are incorporated by taking the 

mean of this family to be a known function of a linear 

combination of the explanatory variables, X'g, where X is 

the vector of explanatory variables and § is the parameter 

vector to be estimated. Estimates of the mean model 

parameters can be obtained by solving the system of 

equations derived from setting this partial derivatives of 

the log-likelihood with respect to the elements of g equal 

to zero. For a set of independent observations, this system 

is defined by 

E Ûi - J^i) / v(Mj^) = 0 , 

where is the realized value for observation i, is the 
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mean of depending on g, v(w^) is the variance of and a 

known function of u^, and dj^ = 

Liang and Zeger (1986) extend the univariate 

guasilikelihood approach to the case where groups of 

observations are correlated. They make the same assumption 

on the marginal distribution of the responses as in 

univariate guasilikelihood, but the full multivariate 

likelihood is not explicitly defined. Instead, a 

correlation matrix is constructed describing the 

relationships among the correlated observations. The system 

of equations for obtaining estimates of g for independent 

groups of correlated observations is defined by 

I D- (îi - ëi) = 0 , 

where T^ is the vector of realized values for group i, is 

the mean of T^ depending on g, V(y^) is the covariance 

matrix for Tj^ and a known function of Tj^ is the vector 

of correlated observations, and = 3y^/ag'. If the 

variance of the j-th element of T^ is defined to be , 

can be decomposed such that 

Vi((Xi) = A^/2 R^(a) , 

where = diag{ g(Mj^j) } and R^(a) is the working 

correlation matrix describing the relationships among 

observations in group i. R^(a) is said to be a "working" 

correlation matrix because it does not need to be correctly 
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specified for the asymptotic properties of the estimators 

described below to hold. Hence if nothing is known about 

the intra-group corrections, R^(a) may be taken to be the 

identity matrix. 

Liang and Zeger show that these equations produce 

consistent and asymptotically normal parameter estimates 

regardless of the specification of the correlation matrix 

R^(@). They also provide a consistent estimator of the 

covariance matrix of the parameters based on the observed 

covariance matrix of T^. However, these results require ju^j 

to be a function of a linear combination of the parameters. 

For many failure time models, the mean may be intrinsically 

nonlinear in the parameters. When this is the case, 

multivariate nonlinear least squares estimation can be used 

to obtain asymptotically normal parameter estimates by 

inserting the observed failure times and the appropriate 

mean models and covariance matrices into the equations for 

the Gauss-Newton algorithm. However, a sufficient condition 

for the asymptotic properties of Gauss-Newton estimators is 

the correct specification of the covariance matrix of 

(see Chapter 4). 

Analyzing uncensored exact failure time data via 

generalized estimating equations or nonlinear least squares 

estimation is relatively straightforward. Suppose that 

uncensored exact failure times, T.., are available from 
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independent groups of correlated individuals, where i = 1, 

2, ..., m groups and j = 1, 2, ..., n^ individuals in group 

i. Several types of assumptions may be used to model the 

mean of . For example, any parametric distribution may 

be used to derive a mean model for T^j. If an estimate of 

the hazard function is of interest, a parametric model is 

easier to work with. However, a nonparametric model can be 

used to derive the mean as a function of the steps defining 

the nonparametric hazard function. To incorporate 

explanatory variables, location-scale distributions 

(Lawless, 1980) can be used to model the log failure times 

with a linear function of the covariates. The variance of 

log(T^j) is modeled in accordance with the underlying 

distribution. If effects of the explanatory variables in a 

proportional hazards setting are of primary interest, an 

explicit model for the baseline hazard is required. Hence, 

Cox's semi-parametric proportional hazards cannot be used 

since the mean model for T^^j depends on an unspecified 

hazard function. 

Consider the case of exact failure time data that 

include right censored times. Such data are comprised of 

two types of random variables corresponding to failure times 

and censor times. To implement either the generalized 

estimation equation or nonlinear least squares estimation 

approach, means and variances are required for the censor 
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times as well as for the uncensored failure times. It may 

be difficult to choose a model for the means and variances 

of randomly right censored times due to lack of information 

i.e., since the failure times represent censored censor 

times, most of the censor times are themselves censored. 

In many instances, censored observations may not 

contribute to estimation of the failure time distribution 

parameters. For example, in studies that are terminated at 

a predetermined time, the mean censor time for truncated 

observations is the time of truncation and the variance and 

covariances of this time are zero. Since the corresponding 

elements of V(y^) and (Tj^ - are zero, the deletion of 

these observations is necessary. Hence truncated 

observations do not contribute to estimation of the failure 

time distribution. Regardless of the type of censoring, 

under the usual assumption of independence between the 

failure and censoring mechanisms, the mean models for the 

failure and censoring times cannot be functionally related. 

Hence the parameters for the censoring mean model are 

nuisance parameters, and unlike most other failure time 

analyses, censored data will not contribute to the 

estimation of the failure time distributions. 

An alternative method of approaching right censored 

data using the generalized estimation equation approach is 

to return to the marginal distribution assumption and 
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determine the appropriate univariate contributions to the 

likelihood, S(T^j), where S is the survival function for 

Tij. However, the log-likelihood contribution from 

log[S(t)] is unlikely to have a form that would allow 

censored observations to be conveniently incorporated into 

the generalized estimation equations. 

3.3 Analyses Based on Conditional Binary Variables 

Although observed failure times are referred to as 

exact, it is rare that "exact" times are actually observed. 

More often failure times are recorded to the nearest unit, 

such as to the nearest day or hour. A censoring interval of 

unit length is implicitly defined in this process, which is 

typically a small length relative to the duration of the 

study. Consequently the data may be viewed as censored 

according to a common interval censoring scheme, and the 

conditional binary variable approach described in Chapter 2 

can be used to estimate parameters in the failure time 

distribution. 

Without loss of generality, define the intervals to be 

of unit length (data can be rescaled if necessary). The 

disjoint set of intervals covering the study is {[tj^, 

h = 1, 2, ...,k)= {[h-1, h): h = 1, 2, ..., k ), where k 
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is the largest observed failure or right censored time. 

Recall from Section 2.2 in Chapter 2 that the observed 

failure times for individuals in group i can be expressed as 

a set of conditional binary response vectors for each 

interval : h = 1, 2, ..., k intervals). The elements 

of this vector, ï^ij' defined from the observed failure 

or censor time T^j for individual j in group i as follows: 

= 1 if observed failure time T^j e [h-1, h) 

given s h-1 , 

=0 if observed failure or censor time a h 

given & h-1 , 

where i = 1, 2, ..., m^ groups in interval h and j = 1, 2, 

'^hi individuals in the risk set (individuals surviving 

up to h-1) minus the censor set (individuals censored in 

[h-1, h) ) of group i during interval h. ^hij 

undefined if the failure occurred in a previous time 

interval or the individual was censored prior to time h. 

Given (t), the survival function for individual j in 

group i, the mean of for the unit-interval censored 

data is a hazard probability calculated from 

"hij = ^ " [Sij(h) / Sjj(h-l)] . (3.1) 

The mean of is defined to be whose elements are the 

hazard probabilities corresponding to individual j in 

group i during interval h. The covariance matrix of Y^^, 
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denoted Vj^^, is a function of as well as a function of 

auxiliary parameters such as correlation coefficients 

describing the correlation structure within group i during 

interval h (see Section 2.2 in Chapter 2). 

Multivariate nonlinear least squares estimation based 

on a Gauss-Newton algorithm can be used to estimate the mean 

model (i.e., failure.time distribution) parameters. When 

the Gauss-Newton iterations are initiated with consistent 

estimates of the mean model and covariance matrix 

parameters, the estimated parameters can be shown to be 

jointly asymptotically normal under mild regularity 

conditions (Chapter 4). 

In the event that exact failure times are actually 

observed, an approximate mean can be derived. Since the 

hazard function for individual j from group i, is 

defined to be 

X..(t) = lim Pr( T.. e [t, t+A) | T.. a t } , 
A^O 

for small A 

Pr{ 6 [t, t+A) I £ t } a A (t) . 

If A = 1, the smallest unit of time encountered in the 

study, is small relative to the lifetime of the individual, 

the mean for the conditional binary variate is 

approximately 
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S! (h) « (3.2) 

Results from mean models (3.1) and (3.2) should be similar 

since 

1 - CSij(h) / Sjj(h-l)] 

= Pr{ T^j e [t, t+A) I s t } 

es A &ij(t) . 

The conditional binary variable approach can be used 

with many types of failure time models. As in the approach 

based on the observed exact times, exceptions include a 

proportional hazards model with an unspecified baseline 

hazard function. The form of the assumed correlation matrix 

is limited only by the ability to obtain a consistent 

initial estimate of the covariance matrix parameters (see 

Section 2.3.4 in Chapter 2 for a discussion of acceptable 

models). In addition, unlike the approach based on exact 

failure times described in Section 3.2, censored data always 

contribute to the estimation of the failure time 

distribution parameters when binary variables are used. 

Hence, nonlinear regression based on conditional binary 

variables uses more of the information contained in the data 

than the analyses described in Section 3.2 based on exact 

failure and censor times. 
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3.4. Application of 

the Conditional Binary Variable Approach 

to Collaborative Behavioral Toxicological Study Data 

3.4.1. Study Description 

The Collaborative Behavioral Toxicological Study was 

designed by the National Center for Toxicological Research 

to study the reliability and sensitivity of behavioral 

testing methods to the effects of prenatal chemical exposure 

in rats. A complete description of the study objectives, 

design and analyses are available in a series of articles in 

Neurobehavioral Toxicology and Teratology, 1985, Volume 7. 

In this section, the focus is on the effects of 

methylmercuric chloride on the time to occurrence of two 

developmental landmarks, eye opening and first incisor 

eruption. A brief summary of the design for this part of 

the study follows. 

The study was conducted at six different laboratories 

in the US. At each lab, four replicates of the 

methylmercuric chloride experiment were run. The design for 

each replicate included four treatment levels, with four rat 

litters assigned to each treatment. Litters were culled to 

contain two males and two females. Occasionally litter 

sizes were reduced to less than four pups due to death or 

unavailability of a pup of a particular sex. In eight 
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cases, a whole litter was lost from a replication. For both 

the eye opening and incisor eruption data, there were 376 

litters and 1476 pups. 

To avoid excessive censoring due to death, the high 

dose level for methylmercuric chloride was selected to 

mitigate problems with infant mortality. In particular, for 

the developmental landmarks, the high dose was selected so 

that the average day of occurrence was not shifted by more 

than one day from the control pups. Treatments included 

untreated control, vehicle control (nitrogen-purged 

distilled water), 2.0 mg methylmercuric chloride / kg body 

weight, and 6.0 mg methylmercuric chloride / kg body weight. 

Doses were administered to pregnant females on gestation 

days six through nine. 

Rat pups were inspected daily after birth for the 

occurrence of eye opening and incisor teeth eruption. 

Although this type of data is generally considered to be 

exact, this inspection schedule is more accurately described 

as interval censored, with intervals of length one day. The 

occurrence of both landmarks was noted for all rats retained 

in the study; hence no right censoring is present in the 

data. 

The objective of the following analyses is to estimate 

the effects of treatments, labs and sex on the event time 

distributions for eye opening and incisor eruption. 



61 

3.4.2. Exploratory Analyses 

Event time data for each landmark variable were 

examined to determine an adequate event time model. The 

number of events occurring for each variable on each day 

following birth are listed in Table 3.1. These data suggest 

that the eye opening event time distribution is fairly 

symmetric, but that the data for incisor eruption are 

skewed. It is also clear that a shift parameter is 

necessary to set the lower bound of each event time 

distribution at an appropriate positive value. The shift 

parameter for each variable was selected to be the minimum 

day of occurrence minus one (11 days for eye opening, 7 days 

for incisor eruption). Probability plots for shifted 

Weibull, lognormal and log-logistic distributions (without 

explanatory variable effects) suggest that a Weibull model 

most closely fits the distribution of both event time 

variables. 

PROC LIFEREG (SAS, 1985) was used to estimate a Weibull 

distribution with the scale parameter modeled as a 

log-linear function of four treatment indicator variables, 

five lab indicator variables, and a sex indicator variable. 

For both event time variables, treatment and lab effects 

were significant in the preliminary analyses, but sex 

effects were not. Residual plots indicated that the shifted 

Weibull distribution with the scale parameter modeled as a 
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Table 3.1. Frequency of rat pups observed to exhibit 
developmental landmark on each day following 
birth for eye opening and incisor eruption 

Eye Opening Incisor Eruption 

Pup Age Frequency Pup Age Frequency 
(days) (days) 

12 4 8 17 
13 85 9 70 
14 422 10 305 
15 601 11 544 
16 308 12 363 
17 51 13 135 
18 5 14 33 

15 7 
16 2 
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log-linear function of explanatory variables provides a 

fairly reasonable fit for both eye opening and incisor 

eruption (Figure 3.1). 

3.4.3. Mean Model 

Since the exploratory analyses indicated that a Weibull 

distribution with a log-linear model on the scale parameter 

is appropriate for these data, the mean model for the binary 

response for individual j in group i during interval h was 

defined to be 

"hij " ̂ ' Gxp{ exp(-Xijg)% [(h-S)" - (h-l-g)%] } , 

where 7) is the Weibull shape parameter, S is the known shift 

parameter, X^j is the vector of explanatory variables for 

individual j in group i, and g is the parameter vector for 

the explanatory variables. More specifically, the vector of 

explanatory variables was defined to be 

X — Xg f ...f Xg , X^g)' 

= (indicator for untreated control, indicator for 

vehicle control, indicator fôr low methylmercuric 

chloride dose, indicator for high methylmercuric 

chloride dose, indicator for lab 2, ..., indicator 

for lab 6, indicator for males)' . 

PROC LIFERE6 in SAS (1985) was applied to the observed 

event times to obtain the consistent estimates of the 
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EYE OPENING 

y 

INCISOR ERUPTION 

Figure 3.1. Smallest extreme value probability plot for the 
residuals from the shifted Weibull model with 
log-linear model on the scale parameter for day 
of eye opening and incisor eruption. 
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parameters in the above Weibull model that were used to 

initiate the Gauss-Newton algorithm. These initial 

estimates and estimated standard errors, calculated under 

the assumption of independence for all individuals, are 

listed in Table 3.2 for both eye opening and incisor 

eruption. 

3.4.4. Covariance Matrix Model 

The auxiliary covariance matrix parameters for the two 

event time variables consist of correlation coefficients 

describing the intra-group correlation structure. For eye 

opening and incisor eruption, it is possible that male-male 

(mm), male-female (mf), and female-female (ff) correlations 

may differ. Although estimator (5.7) in Chapter 5 is a 

consistent estimator for this model, it produced an 

estimated correlation exceeding one for the incisor eruption 

female-female correlation. Consequently, estimator (5.8) in 

Chapter 5 was used. Since the only factor that changes in 

the means for group members is gender, estimator (5.8) is 

consistent for male-male and female-female correlations. 

Furthermore, the parameter estimate for the sex indicator 

variable is quite small relative to the estimates of the 

other parameters, so estimator (5.8) is nearly consistent 

for the male-female correlation. The values of the 

estimated correlation coefficients using estimator (5.8) are 
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Table 3.2. Initial estimates (and standard errors) assuming 
independence among all individuals for eye 
and incisor eruption event time distribution 
parameters 

Event Time Variables 

Eye Incisor 
Parameter Opening Eruption 

Shape 4.851 4.060 
(.020) (.019) 

Untreated 1.454 1.672 
Control (.017) (.020) 

Vehicle 1.477 1.705 
Control (.017) (.020) 

Low 1.410 1.649 
Dose (.017) (.020) 

High 1.399 1.565 
Dose (.017) (.021) 

Lab 2 0.029 -0.145 
(.018) (.022) 

Lab 3 0.132 -0.093 
(.019) (.022) 

Lab 4 -0.137 -0.129 
(.019) (.022) 

Lab 5 0.006 -0.208 
(.019) (.022) 

Lab 6 -0.074 -0.243 
(.019) (.022) 

Male 0.014 0.016 
(.011) (.012) 
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Table 3.3. Estimated correlations for each gender pair for 
eye opening and incisor eruption 

Event Time Variable 
Correlation 
Class Eye Opening Incisor Eruption 

Male-Male .602 .242 

Male-Female .575 .131 

Female-Female .541 .680 
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listed In Table 3.3. 

Estimated correlation coefficients for each class of 

pairs are large and relatively homogeneous for eye opening. 

For Incisor eruption, correlations for different sex pairs 

are quite different, with a particularly large female-female 

correlation relative to the estimates for the other 

correlation classes. The large Intra-lltter correlations, 

particularly for eye-opening, may Indicate a strong genetic 

component In the occurrence of developmental landmarks. 

3.4.5. Results and Discussion of Gauss-Newton Estimation 

Parameters of the event time distributions for eye 

opening and Incisor eruption were estimated using the 

Gauss-Newton algorithm described in Chapter 2. Results are 

presented in Table 3.4. 

From the magnitude of the parameters, it is clear that 

treatments have the greatest effect on the day of eye 

opening and incisor eruption. Lab effects are not as 

strong, although most lab parameters are significantly 

different from zero. Sex of the pup has smaller effects on 

the event times; for incisor eruption, the parameter for the 

male indicator variable is not significantly different from 

zero. 

Two-sided t-tests for contrasts of the treatment 

parameters were constructed to test specific hypotheses 



69 

Table 3.4. Nonlinear least squares estimates (and standard 
errors) accounting for intra-litter correlations 
for eye opening and incisor eruption event time 
distribution parameters 

Event Time Variables 

Eye Incisor 
Parameter Opening Eruption 

Shape 3.975 2.973 
(.101) (.057) 

Untreated 1.299 1.516 
Control (.025) (.023) 

Vehicle 1.309 1.513 
Control (.024) (.024) 

Low 1.233 1.592 
Dose (.026) (.024) 

High 1.243 1.403 
Dose (.026) (.026) 

Lab 2 0.034 -0.143 
(.028) (.026) 

Lab 3 0.150 -0.074 
(.024) (.024) 

Lab 4 

Lab 5 

Lab 6 

Male 

-0.131 
(.033) 

0.017 
(.028) 

-0.063 
(.030) 

0.0138 
( .0068) 

0.062 
(.022) 

-0.196 
(.027) 

-0.246 
(.028) 

-0.024 
(.014) 
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regarding treatment effects. Tests comparing the two types 

of controls, the two methylmercuric chloride doses, and the 

average of the control and methylmercuric chloride dose 

parameters were calculated and are listed in Table 3.5. 

Since there were 365 degrees of freedom (376 groups minus 11 

estimated parameters), calculated t-values were compared to 

a normal table. 

For both landmark variables, no difference exists 

between the untreated and treated controls. Similar results 

were obtained by Buelke-Sam et al. (1985) using an analysis 

of variance model for event times that accounted for the 

nested structure of the experiment. 

For eye opening, there is no difference between effects 

of the low and high methylmercuric chloride doses, but the 

average of the two dose parameters is significantly smaller 

than the average of the control parameters. These results 

imply that either dose of methylmercuric chloride leads to a 

smaller scale parameter for the eye opening event time 

distribution, effectively shifting the eye opening 

distribution towards earlier ages. Buelke-Sam et al. (1985) 

also found that the average day of eye opening was earlier 

for methylmercuric chloride treated pups. 

There is no difference between the average of the 

control parameters and the average of the dose parameters 

for the incisor eruption distribution. However, a 
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Table 3.5. Calculated t-values for contrasts of eye opening 
and incisor eruption treatment parameters 

Contrast 

Event Time Variable 

Eye Opening Incisor Eruption 

Untreated versus 
Vehicle Control 

-0.56* 0.11 

Low versus High 
Methylmercurlc 
Chloride Dose 

-0.43 7.72 

Average Control 
versus Average Dose 

4.24 1.07 

^Reject null hypothesis of no difference at a = .05 
with 365 degrees of freedom if |t| > 1.96. 



72 

significant difference is evident between the low and high 

dose parameters. The low dose parameter is larger than the 

high dose parameter (and the controls). This indicates that 

low methylmercuric chloride doses depress and high doses 

accelerate incisor development. This contradicts previous 

analyses by Buelke-Sam et al. (1985), who found that the 

effect of both doses of methylmercuric chloride is to 

accelerate the process of incisor eruption. 

In terms of the objectives of the study, it is clear 

that treatment effects are stronger than the other effects 

in the experiment. This is a desirable result indicating 

the relatively low sensitivity of the landmark variables to 

laboratory differences. Also, for both event time 

variables, gender does not appear to play a very important 

role in treatment effects, which may enable experimenters to 

use rats of only one sex in determining methylmercuric 

chloride effects on developmental landmarks. If it is 

legitimate to restrict the experiment to one sex and 

intra-sex correlations differ for males and females, lower 

standard errors for the estimated parameters of the event 

time distribution may be achieved by choosing pups belonging 

to the gender associated with lower intra-sex correlations. 

Clear interpretation of the methylmercuric chloride 

dose effects is enhanced by that fact that the untreated and 

vehicle controls do not differ in their effects. Hence dose 
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effects can be attributed to administrations of 

methylmercuric chloride rather than possible side effects of 

the vehicle used to inject the methylmercuric chloride into 

pregnant females. 

Comparing results of the independence Weibull 

regression with results of the binary variable regression 

accounting for intra-litter correlations indicates that as 

expected, in nearly all cases, estimated standard errors for 

the binary variable regression are larger. The increase is 

largest for the shape parameter (500% for eye opening, 300% 

for incisor eruption). Increases in estimated standard 

errors for treatment and lab parameters are smaller for both 

eye opening (50%) and incisor eruption (10-30%). These 

results imply that failure to account for intra-group 

correlations leads to overstatement of the significance of 

the treatment comparisons. For the eye opening male 

indicator parameter, the estimated standard error is cut in 

half; for incisor eruption, this standard error remains 

about the same. Since gender is a within-group effect, it 

is possible that accounting for intra-group correlations 

reduces the estimated standard error for the sex parameter. 

As expected, the higher intra-group correlations observed in 

the eye opening data lead to larger increases in the 

standard errors for eye opening parameters relative to the 

incisor eruption standard errors. 
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For both event time variables, the lab and sex 

parameter estimates appear to be quite similar for both the 

independence-based and least squares estimates. However, 

shape and treatment parameter estimates shift significantly 

for both eye opening and incisor eruption. In the case of 

incisor eruption, these changes led to a different ordering 

of the treatment effects. The shift in the shape and 

treatment parameters and the large standard errors for the 

shape parameter may be partially due to the representation 

of the data as interval censored for the Gauss-Newton 

estimation rather than as exact times for the 

independence-based estimation. 
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4. ASYMPTOTIC PROPERTIES OF MULTIVARIATE NONLINEAR LEAST 

SQUARES ESTIMATORS FOR FAILURE TIME DATA COLLECTED FROM 

INDEPENDENT GROUPS OF CORRELATED INDIVIDUALS 

4.1. Introduction 

Correlation among individuals is frequently encountered 

in survival data. One common form of correlation arises 

when individuals are arranged in groups, for example as pups 

in a litter, or as patients treated by a particular 

physician or medical center. Methodologies developed to 

analyze survival data with this type of structure have 

generally been limited to small group sizes, often involve 

restrictive assumptions on the correlation structure within 

and across groups, and/or are unable to incorporate 

explanatory variable information (see Chapter 1). 

Chapters 2 and 3 describe a new method that is 

appropriate for interval censored or exact failure time data 

collected from independent groups of correlated individuals. 

The method accommodates large groups sizes with 

heterogeneous correlation structures, and allows for the use 

of explanatory variables. The analyses rely on representing 

the failure times as conditional binary variables indicating 

the failure of an individual during a specified interval 
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given success in the previous interval. For each time 

interval, a separate vector of binary responses is 

constructed for each group, which has a mean whose elements 

are hazard probabilities and are thus functions of the 

failure time distribution parameters. The covariance matrix 

for the binary response vector is a function of the mean 

vector and parameters describing the correlation structure 

among the elements of the observed response vector. The 

parameters of the failure time distribution are estimated by 

assuming that the response vector is equal to the mean 

vector plus an error vector, and using multivariate 

nonlinear least squares techniques. 

Nonlinear least squares estimators based on the 

Gauss-Newton algorithm are considered in this chapter. 

Early work in this area was performed by Jennrich (1969), 

who derived the asymptotic properties of nonlinear least 

squares estimators for univariate models. Many extensions 

of this work are outlined in Gallant (1987), including 

methods for multivariate nonlinear models. 

For multivariate problems, nonlinear least squares 

estimators are typically based on response vectors of 

constant dimension, and a weighted residual sum of squares 

is minimized to obtain parameter estimates for the nonlinear 

model. In contrast, for the conditional binary response 

vector formulation, the residual sum of squares is summed 
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over Intervals and groups, and the length of the response 

vectors that make up the weighted squared deviates varies 

over intervals and groups. 

The purpose of this chapter is to define a multivariate 

nonlinear least squares estimator that is appropriate for 

grouped survival data, and to outline sufficient conditions 

under which this estimator is asymptotically normal. After 

introducing a general model for the survival data, an 

estimator for the case of known covariance matrices is 

defined. For the more common case of unknown covariance 

matrices, estimators based on the Gauss-Newton algorithm are 

developed and shown to be asymptotically normal under mild 

regularity conditions as the number of groups becomes large. 

4.2. Data Formulation and Model 

Suppose that the data consist of observations from m 

independent groups of individuals and that failure or censor 

times for each individual are observed to fall into one of 

k+1 < 09 disjoint intervals, {[t^_^, t^) : h = 1, 2, ..., 

k+1; tg = 0; t^+^ = 09), where time t^ represents the end of 

the observation period for the study. Let n^^ be the number 

of individuals in the risk set for group i at time t^_^ 

minus the number of individuals who are censored during 
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interval h, and let denote the number of groups in 

interval h with n^j^ > 0. Note that i ~ ° for all i and 

m^^^^ = 0. Define such that 

- 1 if individual j in group i fails during 

interval h given success up to t^^^, 

=0 if individual j in group i succeeds during 

interval h given success up to t^^^, 

where i = 1, 2, , m^ groups and j = 1, 2, , n^^^ 

individuals. Y^^j is not defined for any individual who is 

censored during interval h or has failed or been censored 

before ty^_^. This implies that Y^^^ is undefined for all 

i and j, so that the sums over h in the following sections 

end at h = k. 

Each conditional binary variable, Y^^j, follows a 

Bernoulli distribution with the mean given by hazard 

probability and variance j ( 1 - The 

covariance of two observations in the same group and 

interval is 

1/2 
fhijj' [*hij(l " ̂hij) "hij'^^ " *hij')^ 

where is the correlation between the two responses. 

Because groups are independent and responses in different 

intervals are conditioned on previous responses, 

observations from different groups and different intervals 

have zero covariance. Examples of models for are 
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described in Chapter 2. 

An n^j^ X 1 observed response vector, 

-hi ^^hil' *hi2' ^hin^^^ ' 

can be constructed for each group and each interval with 

mean and covariance matrix The elements of 

2hi (^hil' "hi2' **• ^hin^^^ 

are functions of the parameters and possibly explanatory 

variables that define the underlying failure time 

distribution. The elements of are functions of and 

additional parameters describing the correlation structure 

among observations for group i during interval h. 

For the purposes of this chapter, and will be 

written as explicit functions of the failure time 

distribution parameters, %, explanatory variables, and 

correlation parameters, a. and will be denoted 

71(2,Xhi) and V(e,Xj^j^), respectively, where 8 = (%', a')'. 

The model for is assumed to be 

ïhi = ïï(ï/2hi) + Shi ' 

where % is an s x 1 vector of fixed, unknown parameters 

belonging to the parameter space T; r is a compact subset of 

!îhi - (%ii Kin, ,)' is an x 1 vector 

riL 1 
belonging to a compact subset of IR containing the r x 1 

explanatory variable vectors associated with each of the n^^ 
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individuals contributing to the hi-th observed response 

vector; n is an n^. x 1 vector whose elements are continuous 
rn. j  

functions from r x IR into [0,1] with continuous and 

uniformly bounded first and second and continuous third 

partial derivatives with respect to jr; the e^^ are 

independent across h and i with mean 0 and nonsingular 

covariance matrix V(g,Xj^^) for © = (%', a'); a is a u x 1 

vector of fixed, unknown parameters belonging to parameter 

space and $ is a compact subset of IR^. Let @ = r x $ 

denote the parameter space for (s+u) x 1 fixed, unknown 

parameter vector, g. Note that 8 is a compact subset of 

4.3. Preliminary Convergence Theorems 

Two theorems regarding convergence of means of matrix 

products as the number of groups, m, tends to infinity are 

required to develop the asymptotic properties of the 

nonlinear least squares estimators for model (4.1). Several 

assumptions are required to prove these and other theorems 

in this chapter. 

It is convenient to partition the response vectors for 

each value of h into groups whose vectors are of equal 

dimension, S. The first assumption states that there exists 
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a finite maximum group size, n, for the population of 

groups. This provides a maximum length for the data vectors 

and implies that S ranges from 1, 2, n. 

Assumptions A4.1. There exists a maximum group size, n < *, 

for the population of groups. 

Let m^g denote the number of response vectors that have 

length n^^ = S during interval h. Note that 

= z • 

Both m^ and m^g are assumed to be positive. For a given h, 

it is assumed that the proportion of response vectors with 

dimension S converges to a constant as m^ gets large. 

Assumption A4.2. For each value of h and S, 

Um ' 
°h-*° 

where 0 s a 1 and Z A^g = 1 . 
Ô 

This assumption implies, for example, that for any interval 

h, the relative proportion of the sampled data vectors for a 

given length does not fluctuate unstably as the number of 

groups with n^^ > 0 increases. A condition is also needed 

indicating that a change in the limit index from m^ to m^g 
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can occur without altering the limit of matrices averaged 

over groups. 

Assumption A4. 3. Let {A^^} be a sequence of p x g matrices 

of real numbers. For each value of h and S, 

lim m^p Z j ~ lim m. * Z A^ « 

whenever the right hand side limit exists. 

A similar set of conditions is required for the 

behavior of m^^ in relation to m, with stricter bounds on the 

limiting proportion of groups remaining in interval h. 

Assumption A4.4. For each value of h, 

lim mT^m. = 6^ , 
m- »oo  

where 0 < A. < 1 and Z A. = 1 . 
h h ^ 

Assumption A4. 5. Let {A^^} be a sequence of p x q matrices 

of real numbers. For each value of h, 

lim mT^ ̂  A. . = lim mT^ Z^ A. . 
m^ "h "hi n^^"h "hi 

whenever the right hand side limit exists. 

The following assumption places a restriction on the 
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vectors of explanatory variables. 

assumption Aé.6. For each value of h and 5, the empirical 

distribution function of an rS x 1 vector of explanatory 

variables, denoted F , converges to some distribution 
*hS 

function Fg as m^g tends to infinity. 

This condition insures, for example, that the sample values 

of the explanatory variable vectors cannot oscillate 

indefinitely over certain areas of the explanatory vector 

space in a way that does not provide increasing information 

as the number of groups is increased. For survival data, 

assumption A4.6 is satisfied for fixed explanatory variable 

vectors that appear with some probability specific to each h 

and Ô, or when the {X^^} are a random sample from Fg. This 

assumption also admits the use of time-dependent explanatory 

variables since conditioning the hazard on past processes 

allows the time-dependent explanatory variables to be 

thought of as fixed. 

The following theorem outlines sufficient conditions 

for the uniform convergence of means of matrix products with 

variable inner dimensions. 

Theorem 4.1. Let be an rn^^ x 1 vector belonging to 

(R ; 2 and g be t x 1 parameter vectors belonging to 0, a 
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compact subset of and A(oç,X^j^) and B(g,Xj^j^) be p x n^^^ 

and n^^. x q matrices, respectively, with elements that are 
rn.. 

uniformly bounded and continuous functions on 6 x IR 

Suppose that assumptions A4.1 - A4.3, A4.5 and A4.6 hold. 

Then 

converges uniformly for all a and g e 0. 

P r o o f .  Using the assumptions on A and B, assumption A4.6, 

and a multivariate extension of Theorem 2 in Jennrich (1969) 

derived for matrix products with common inner dimensions for 

all i (see Theorem 3.3.1 in Morel, 1987), for each h and S, 

converges uniformly for all a and g € 6. Since the elements 

of A and B are continuous on a compact set, by Theorem 4.15 

in Rudin (1976) the elements of are also uniformly 

bounded. Hence for any value of h. 

lim k 
m-xo 

lim ZA(a,Xjji) B(g,Xj^^) H Cjj3(a,g) 
®hS^ 

my,-»» s 

= Z { lim (mT^m. g) 
S ĥ"̂  
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X lim «hi , Z _,A(S'%hi) B(ê'Xhi) > 

(by assumption A4.3) 

" I ̂ hS SiÔ^2/ê) 

• Ch(a,g) 

(by assumption A4.2), whose elements are uniformly bounded. 

Hence 

lim k"^ Z mT^ A(g,X. .) B(g,X..) 
m-M» h=l " i=l 

= Z lim nC^ Z^ A(*,X. .) B(g,X. .) 
h=l mjj-»oo " i=l 

1 k 
= k"^ Z C. (a,g) , 

h=l ^ 

(by assumption A4.5) which converges uniformly for all a and 

g e e .  •  

The following theorem is concerned with the convergence 

of weighted averages of differences. An assumption on the 

inverse of V(8,X^^) is required for its proof. 

Assumption A4. 7. The elements of V~^(0,Xjjj^) are uniformly 

bounded. 
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Theorem 4.2. Assume that model (4.1), assumptions A4.1 -

A4.3 and A4.5 - A4.7 hold. Let be a p x n^^j^ matrix 

with elements consisting of uniformly bounded and continuous 
rn. i 

functions on r x R . Then 

lim k"^ Z mJl zh F(3r,Xj^i)V'^(g,Xj^i) [Yj^i-Tr(ï,X^) ] = 0 
m-x» h=l " i=l 

uniformly for all % e T. 

Proof. By a multivariate extension of Theorem 3 in Jennrich 

(1969) (see Theorem 3.3.2 in Morel, 1987) and assumptions 

A4.6 and A4.7, for each value of h and S, 

^ [%hi- ZtZ'Shi)] 

— 0 & # s # 

uniformly for all % e T. Hence 

lim ,2% P(z,Xhi) v'l(g.Xhi) Cïhi" H(ï.2hl'J 
m^-^w i=l 

X v"i(2,Xhi) tïhi" 3(ï,x^i)]) 

(by assumption A4.3) 

~ ̂  ̂ hô 2 B'S" 
5 
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uniformly for all % e r (by assumption A4.2) 

= 0 a.s. 

uniformly for all jr e r. Hence 

l i M  l c - 1  Z  z h  F t l . ï h l '  l ï h l -  S d ' ï h i ' I  
m-K» n=i 1=1 

= Z lim mT^ F(z,X^i) v"^(0,X. .) 
h=l mj^-^ ^ i=l 

* [%hi- 2(Z'%hi)] 

(by assumption A4.5) 

= 0 a.s. 

uniformly for all jr 6 r. 

4. Nonlinear Least Squares Estimation of 

Mean Model Parameters 

4.4.1. A Nonlinear Least Squares Estimator for % When 

V(e,Xjjjl^) is Known 

Consider the case where V(8,X^^), the covariance matrix 

of is known for all h and i. The unknown parameter 

vector % in model (4.1) can be estimated using a modified 

version of the traditional multivariate nonlinear least 

squares estimator. For m groups, define the nonlinear least 
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squares estimator of % to be the value of % that minimizes 

«md) = < lïhi- a(ï'ïhi)J' v'^tS'Shl) 
n=l 1=1 

X [Xhi- n(Z'%hi)] > • (4-2) 

In practice, V(g,X^^) is rarely known. In this case, 

least squares estimators based on the Gauss-Newton algorithm 

can be used to estimate %. Before discussing least squares 

estimators obtained from the Gauss-Newton algorithm, the 

following result will be proven for use in deriving the 

asymptotic distribution of Gauss-Newton estimators. 

4.4.2. An Asymptotically Normal Pseudo Estimator 

In this section, a pseudo estimator, is developed 

along with sufficient conditions for asymptotic normality as 

the number of groups, m, gets large. Let the true value of 

8 be denoted a^)'. As will be seen below, is 

not a true estimator since it depends on and thus cannot 

be calculated from the data. 

An approximate expression for 

Shi " ïhi - S'ïo'ïhi) 

can be derived by using a first order Taylor series 

approximation of nfZ'^hi) &b°ut 

2(1,ghi) = EfZo'Xhi) + D(2o'^hi> (Z - 2o> + Ehi(%hi) ' 
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where 

D( Z,X) =  a n ( i , X ) / a i '  ,  

-hi^^^hi^ is the remainder term depending on the second 
it 

derivative of and (% - i^), and lies on the 

line segment between % and for each h and i. Thus 

Shi = - ïo' + tïhi - S<ï'ïhl' + Ehi'ïhl" • 

Hence consider the linear model 

Shi " o(Zo'%hi)(Z - ïo' + Shi ' (4-3) 

where the u^^ are independent random vectors with mean 0 and 

covariance matrix . This model implies that % -

= 0; i.e., the estimated value for % is an estimate of gr^. 

Although Varfu^^) is a function of 0^, the development in 

this section is concerned only with the estimation of 

and it will be convenient to think of oc^ as a nuisance —o 

parameter and as a function of 

An estimator of y , i, can be constructed as the value *"0 ^m 

of 1 that minimizes 

Ômd) = (jr - z,)]' 

X v"l(go'%hi) IShi - D<ïo'ïhi'<ï-ïo'l » 

over 2 e r. 
A few regularity conditions are required in order to 

prove the asymptotic normality of 
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Assumption A4. 8. jr^ belongs to the interior of r. 

Consider 

"mdl = Dti.x^j)' v-i(e,.Xhi) D(ï,x^^) . 
n=i 1=1 

(4.4) 

Under the assumptions of model (4.1), the elements of 

D(2^Xj^i) are continuous functions on a compact set and hence 

are uniformly bounded. Also, by assumption A4.7, the 

elements of v"^(g,X^^) are uniformly bounded. So by Theorem 

4.1, W^(2r) converges uniformly for all jr e r to a limit, say 

W(%). One additional assumption is needed concerning the 

nonsingularity of W(z). 

Assumption A4.9. There exists a neighborhood of denoted 

N(2q)/ such that W(%) is nonsingular for all jr e NfZg). 

We will now prove the asymptotic normality of the 

pseudo estimator 

Theorem 4.3. Suppose model (4.3) and assumptions A4.1 -

A4.9 hold. Then 

- ïo) "sfO. [k W(Ï^)]-1) 

as m-)co . 
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P r o o f .  We begin by finding a useful expression for - jr^. 

A multivariate central limit theorem is then applied to this 

expression to derive its limiting distribution. 

First consider d^(i)/dj[_'. Observe that the derivative 

of the hi-th term of Qj^(ï) with respect to is 

H [Shi - D(Zo'%hi)(I - ïo>l' 

X [Shi " D(Zo,Xhi)(z - lo)] }/az' 

= - 2 D(Io'Xhi)' V-^(g„,X^i) e^i 

+ 2 D(ïo'ïhi>' 0(Zo'%hi) (Zo-Z) • 

Thus, setting 30^^(2)/^Z' to 0 yields 

-  '  " u ,  D ( Z o ' % h i ) '  S h i  
n=i 1=1 

- W(Zo)(Z - Zo) • 

Note that by definition z^ is a solution to this equation. 

Further, assumption A4.9 implies that is nonsingular 

for large m. So for sufficiently large m, 

Zm - Zo = f (Zo) 

^ "'^5, D(z..Xhi)'V^(@o'%hi)ehi • 
11—1 1—1 

(4.5) 

Consider 
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"(ïo'ïhi'' Shi <•' 

for any h. A multivariate central limit theorem in Rao 

(1973, p. 147) can be used to show that (t) is 

asymptotically normal as m-x». This theorem requires that 

two conditions be met. First note that 

Shi = °<ïo'ïhi>' V'^(So'%hil Shi 

are independent for all i with mean 0 and covariance matrix 

D(Zo'%hi)' ?"^(2o'%hi) 0(Zo'%hi) • 

Then, since the elements of Var{Z^^} are uniformly bounded 

for all h and i, 

'"<Shi) • "h<ïo> 
m-x» 1=1 

exists and is a nonzero matrix, and the first condition is 

satisfied. For second condition required is that 

-1 Hh lim mT^ f Ilzll ^dG. . (z) = 0 , 
m^oo ^ i=l J|lzll>eVm " hi - -

where 11*11 denotes the euclidean norm of a vector and is 

the distribution function of Since the elements of 

are uniformly bounded, there exists a constant B such that 

for all m, 

llZhi"^ s B 

for all h and i. Then for any e > 0, 
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0 ̂  J ^ dG^^i(2) 
•'llzll>ev^ 

® I ^ dG^i(2) 
"' llzll>ci/m 

= B Pr{IIZjj^ll > eVm} 

a (c^m)"^ B E{IIZ^^II^} 

(by Chebychev's inequality) 

s B^ . 

Hence, 

0 s lim nC  ̂  ̂ f HzII ^dG. . (z) 

a lim (mj^^m) lim (e^m)"^ B^ 
m-»m in->oo 

= 0 

(by assumption A4.4). 

Since the conditions necessary for application of the 

multivariate central limit theorem are met, as m-^ 

^  D( i , v - ^ e ^ , X h i )  S h i l  
1=1 

N g [ 0 ,  W ^ ( ï ^ ) ]  ,  

implying that as m-xo 
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^ fh D(Ï„,X^^)' Shi] 
h=l 1=1 

NgCg, k"^ W(2^)] 

Finally, since converges uniformly to W and is 

nonsingular for sufficiently large m, and the elements of 

w"^ are continuous functions of W„, m m 

lim W"^(2) = W"l(z) . 
m-x» 

So by Corollary 5.2.6.2 in Fuller (1976), 

- Zo) Ng{0, [k W(2^)]-^) . 

as mHKo. • 

4.4.3. Nonlinear Least Squares Estimation for % When 

V(§,Xjji) is Unknown 

In practice, the variance of is rarely known and is 

related to the mean of in addition to other unknown 

parameters, a. To address this situation, consider the use 

of multivariate nonlinear least squares estimators based on 

the Gauss-Newton algorithm (Gallant, 1987). These 

estimators are constructed by approximating the model for 

-hi using a first order Taylor series approximation about 

for the nonlinear mean function. Model (4.1) is 

approximated by 
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Xhi = 2(Zo'%hi) + D(Zo,Xhi)'(Z - Zo) + Hhi ' (4'G) 

where the are independent random vectors with mean 0 and 

covariance matrix The derivation for this model 

is the same as that for the model described in equation 

(4.3). 

Obtaining parameter estimates using Gauss-Newton 

estimation involves an iterative procedure that adjusts the 

previous estimate at each step. The updating adjustment for 

the parameter estimate from the previous iteration is 

derived from (4.6) by noting that 

(z - I.) = ID(ïo'3îhi)' 

Hence the estimated value of from the c-th iteration can 

be obtained from 

C(c) ̂  
Zm Zm 

h=l 1=1 

X [Yhi - S(zr"'2(hi)] )' 

(4.7) 

where 
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w„(9) - Dd'Shii' v^(».2hi) D(ï'ïhi' ' 
11=1 1=1 

(4.8) 

and Of'"' is the initial estimate of a (alternativei^^a*®' 

can be updated at each step). The estimator defined by c 

Gauss-Newton iterations is often referred to as the c-step 

Gauss-Newton estimator of jr^. Note that (4.7) is of the 

same form as the pseudo estimator defined in (4.5). If 

consistent estimators, of the true mean and 

correlation parameters, §^, are used to initiate the 

iterative procedure, can be shown to be asymptotically 

normal. 

The asymptotic distribution of the one-step 

Gauss-Newton estimator [equation (4.7) with c = 1] is 

derived in Section 4.4.5 for data collected from independent 

groups with correlations among responses for individuals 

within groups. The asymptotic distribution of the general 

c-step Gauss-Newton estimator is then developed in Section 

4.4.6 from the properties of the one-step Gauss-Newton 

estimator. 

4.4.5. The One-step Gauss-Newton Estimator 

Assume that there exist consistent estimators of and —o 
A / ^ A ' A //>% ' ' 

j T Q, denoted g = (a ,% ) , such that for some 

sequence of constants {a^^ with lim a^ = 0, 
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To prove the asymptotic normality of ', three 

additional assumptions are required. 

Assumption A4.10. The elements of V~^(0,Xjj^) are continuous 

functions of g e 8, with continuous first and second 

derivatives with respect to g. 

Assumption A4.11. belongs to the interior of $. 

Recall W^(g) as defined by equation (4.8). Since 

D(%,X) and v"^(g,X) are continuous on compact sets, 

lim W (g) = W(g) a.s. 
m-x» 

uniformly for all g € 9. The last assumption required is an 

extension of assumption A4.9. 

Assumption A4.12. For some neighborhood of g^, N(gQ) = 

N(a^) X N(2Q), W(g) is nonsingular for all g g N(g^). 

To begin with, an asymptotically useful expression for 

is needed. The following theorem provides this 

expression. 
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Theorem 4.4, Assume that model (4.1) holds, and that 
A / Q \  

assumptions A4.1 - A4.8 and A4.10 - A4.12 hold. Let 9 be 

a consistent estimator of 8^ such that for some sequence 

{a^} with lim a^ = 0 , 

= So + Op(^m) • 

Let be the one-step Gauss-Newton estimator defined in 

equation (4.7). Then 

;(!)_ y 
m 

= 0(So> D(Z..Xhi)' m -o- - hiA ' <2o'2hl) Shi 

+ OpCi«ax(m-V2a^, a=)] 

P r o o f .  An expression for - Xq will be derived, and 

then its asymptotic behavior will be examined. 

E 

yields 

A /Q\ 
Expanding n(%g,X^^) in a Taylor series about % 

S'ïo'ïhi' -ï(ï'°''ïhi> 

= D(ï'°',Xhi' <ïo - z'°') + E<ï'°''ïhi> 

where 

\hi £(ï'°''>Sht) 

= 2"^[(ïo - Z'{«'"i(Zhi'2hi)/«Zo^Zo'}(Zo - Z'°')' 
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'  '  '  ( Z o " Z ' % h i ) / ^ l o ^ Z g '  j ( I Q - Z ^  ' ) ]  

* 
and where the elements of lie between the corresponding 

elements of and for all h and i. Using this 

expression, under model (4.1), 

Xhi - z(z'°''%hi) 

= "(Zo'Shi) + Shi - z(z'°''%hi) 

= D(z'°',Xhi)(Zo-z"") + E(z'°'.Xhi) + Shi ' (+) 

which implies that for sufficiently large m 

(z"' - Z„) 

^ D(z'°',Xhi)' = - r k-l 2 mT^ 
L h=l ̂  i=l 

X D(z'°',Xhi) ]'^ 

X k"^ Z m^^ zh D(£'°\Xj^.)' .) 
h=l " i=l 

X { [Xhi - %(z(°',Xhi)] - E(z'°',Xhi) 

- Shi ) ' 

= - w-i(e<°') k"^ z m^i zh { D(î<°>,Xj^.)' 
™ h=l " i=l 

X V'l(g'°',Xhi) tïhi - S(ï'°''ïhi'l ' 

™ h=l " i=l 
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* V-l(g'°',Xhi) Shi • 

From this expression for and the definition for o *-m 
<»_y 
m 'o In equation (4.7) with c = 1, °an be rewritten as 

2m ' - 2« 

= î'°' - 1, 

+ "m (g'°'l I D(z"",W' 
n—1 X—1 

X [Yhi - n(z"",Xhi)] } 

® h=l " 1=1 

X V-l(g(°',Xh.) r(z"<°;Xhi) } 

+ w;M"") k-ij^ I D(î"»,x^.)' 

X v-\g"",Xhi) Shi > 

= term 1 + term 2 . 

Consider the asymptotic behavior of term 1 ,  which will 

be shown to be Oi (a^). Let the j-th row of p m 
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X ( r k"l Z mTl Z { Ô7I .)/ay. 
I L h=l " l:nhi=* ^ 

X V®''(g'°',x^^) 2-h\(z*^,x^^)/3^^ara ) ] 

X (foe- r^°') (r^a- r^°') } • 

Now since and are 

uniformly bounded and continuous, as m-Ko 

k"  ̂ z m-1 z [ an (i,x .̂)/ar. v® (̂g,x )̂ 
h=l " i:nhi=y a ni ] nx 

converges uniformly for all g e $ x T to say ^ijabcd^-)' 

which by Theorem 4.15 in Rudin (1976) is also bounded. 

Likewise, 

k"^ Z [ aX(ï,x^i)/«Vd 
n—1 i s y 

converges uniformly for all © e 4 x r to bounded limit 

^ïjabcd(-) ' Hence, for all > 0, there exists an integer 

M^l such that for all m > 

I k-^ Z mj;^ Z [ 3*3(1,Xh.)/ayj v^^(0,Xj^.) 
h=l i : n^^=y 

" Lljabcdte) I < ^1 

and 

k"  ̂ z m"  ̂ z [ d \ ( i , x  . ) / a r  a r ^  
h=l IzHhi^* 
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" I^jabcdfë) I ®1 

for all 8 e Ï X r. Further, 

g'"' - go = Op(V 

implies that for all > 0, there exists an integer 

such that for all m > 

Pr( 6 }i(e^) } > 1 - Gg . 

Hence for m > max{Mg^, and e Nfe^), by the 

Cauchy-Schwartz inequality, 

k"  ̂ z m î z { an (ï"»,Xhi)/ayj ) 
h=l " i:nhi=y a ni 3 

s 2 ^Tk"  ̂ z mT  ̂ z ian.(i,x..)/a7. v^ (̂©,x •)]• 
L h=l " i:nhi=y a nx 3 

X k"  ̂ z m"  ̂ z [8%(l,%i)/aygayj]̂  
h=l i : n^^=y 

1/2 

= 2"^ [ Op(l) Op(l) 

= Op(i) • 

Further, because (Tq^,- 7^^) and (Tojj- are Opfa^), ($) 

is 0 (a2). Finally, since each element of W (0) is a p * in m — 

continuous function on a compact space (i.e., is uniformly 
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continuous), 

W„(â'°') = W(8^) + Op(a^) . 

So for m sufficiently large such that is nonsingular, 

w;^(ê"») . w;^(9g) + Op(i) , 

implying that 

= Op(l) . 

Therefore, term l is Op(a^)» 

Now consider the j-th row of 

n=i 1=1 

in term 2, denoted z^j . By derivations similar to 
A /«\ 

those for z,.(0 ), Ij 

2j 

I I r, -1 S -1 Sh 

Z,4(g"") 

= E s Z r k"^ Z m"^ P { d n  ( i ^ ° \ x . . ) / a r .  
y a=l b=l L h=l i=l 

a Z Z Z Z„.. 
y a 

The asymptotic behavior of z^jabm/- ) can be examined 

by expanding ^ a Taylor series about e^. For 

e**. . whose elements lie between the corresponding elements 
-coni 

of 0'°' and 8 for all c, d, h and i. 
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:2jabm(S"") 

^2jabm(-o) 

s+u 
+ a:2jabm(So)/a*c (^c " *oc) 

_ s+u s+u 2 ** 

" c-l d=l' ° '2jabm<Sc<l'/«V«d 

=' (®c" - ®oc) <®r - ®od) I 

where 

** _ **' **' **' **' 

Scd ~ (zedii' Zcdim^, Scd21' ' ' ̂cdkinj^' ' 

»Z2jabm(2o)/**c 

.-1 y _-l 5h , ,.2_ ..ab, 
h= = k ""h "a'ïo'ïhi>''«Vj f®o'ïh 

+ «"a'ïo'ïhi'/®"! av*^\go'%hi)/a*ci ®hla > 

1 k 
= k"^ E =1 Pjabc(9o'%hi) ®hia ' 

and 

o ** 

a :2iabm(2 )/^V®c 

-1 S _-l 2h, r «3_ ,_** 
" ̂ h=l™^ i=l^ ^ "a^2cdhi'-hi^/^®d®®c^^j 
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+ 3na(Zcahi'%hi)/»fj (Sodhi'2hi'/«V®cl 

* ®hia > 

® ^ \=1 ^jabcd^-cdhi'-hi^ ®hia * 

Considering 3Z2jabin^-o^/^®c since the 

derivatives of 5 and the elements of Vj^^Cg^X) are uniformly 

bounded, 

""'X Pjabo<So'ïhl)' ?(«hia) 
h=l 1=1 

converges to a constant depending on j, a, b, c and 6^. 

Hence, 

PjabctSo-ïhi' ^ial' > 

' Pjabc(§o'ïhi) "®hia) 

= 0(m"^) . 
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So by Corollary 5.1.1.1 in Fuller (1976), 

Pjabc'So-ïhi' «hia - OpP»"^^') ' 

implying that 

% «^2jabm<êo'/«''c <®ô°' - ®oc' " ' 

For Theorem 4.2 implies that 

k K m. 
lim lim k" Z m^. Z tj_, e^j_ = 0 a.s. 
k-4«9 m-»oo h =1 ̂  i=i ^jabcd(2'%hi) ®hia 

uniformly for all g e 4 x F. Thus, 

1  '=jabed<ScShi'2hi) ®hia- ' 

which implies that this is expression is 0^(1). Hence 

s+u s+u k m. ** 

e=l d=l " h=l 1=1 ' '=jabed<2odhi'ïhi' =hia 

X (S;°' - e^) (è^°> - ) = Op(a^) , 

and term 2 is Op[max{m"^/^a^, a^^]. 

Putting together the asymptotic expressions for term 1 

and term 2 of - jr^, 

im"- ÏO = C <§o) k-\zZh ( V-l(g^,X^.) 
h=l 1=1 

* Shi > + 0 [max{m"l/2a^, a^}] . • 
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Note that the asymptotic expression for 1^^- 2q  in 

Theorem 4.4 is equal to 

(Zm - Zo) + Op[max{m-^/^a^, a^)] . 

Since by Theorem 4.3 m^^^- jr^) converges in 

distribution, 

(Zm - Z.) - • 

Furthermore, since a^ < 1, 

max{m-^/^a^, a^} s a^ . 

Hence 

(Zm - Zo) + Op[max(m-l/2an. 4" 

« 0 a^)] , 

which is less than or equal to a„ if a a„. This ^ m m 

implies that if the order in probability of the error in the 

initial estimator 0'°' is greater than or equal to 

(i.e., the error in the initial estimator is bounded in 

probability at a rate equal to or slower than , then 

the order in probability of error in is less than or 

equal to that of 2^°! 

Theorem 4.4 will now be used to prove the asymptotic 

normality of 2^^'-
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Theorem 4.5. Assume that model (4.1) holds, that A4.1 -

A4.8 and A4.10 - A4.12 hold, and let 0^°' be a consistent 

estimator of such that —o 

= go + Op(=m) 

for some sequence (a^^ with lim a^^ = 0 . Let 
m->oo 

Shi ' ïhi - S'ïo'ïhi' 

follow model (4.3) and let be the one-step Gauss-Newton 

estimator defined in equation (4.7) with c = 1. Then 

2o> —^ ̂̂{0, [k W(0^)]-^} 

as m-»«, where 

w(go) = z <°<ïo'ïhi'' 
m-^w h—1 1—1 

*  D ( Z o ' X h i ) ^  '  

P r o o f .  By equation (4.5) and Theorem 4.4, 

- ïo' = - ïo' + ' 

So by Theorem 4.3 and by Corollary 5.2.6.1 in Fuller (1976) 

Zg) —^ N^(0, [k W(9^)]-^) 

as m-x». • 

Note that since the order in probability of the error 

for y_) must be less than one, we must have *>in 
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Hence to achieve an improved asymptotically 

normal one-step Gauss-Newton estimator, the order in 

probability for g'"' must lie in the interval 

[m-1/:, m-1/4). " 

4.4.6. The c-step Gauss-Newton Estimator 

The c-step Gauss-Newton estimator is defined in (4.7) 

and constructed iteratively starting with the one-step 

Gauss-Newton estimator. If m"^/^ s a < then by m 

Theorem 4.5, will have the same limiting distribution 

as ' To see this, consider c = 2 and note that 

Zm' = 2o + Op(bm) ' 

where 

bm = înax{a^, m^/^a^} . 

Hence the order in probability of m^/^" 2©^ is 

max{bn, ml/^b^} = max{aQ, m^/^a^}. 
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5. ESTIMATORS OF CORRELATION BETWEEN BINARY RESPONSES FOR 

FAILURE TIME DATA COLLECTED FROM 

INDEPENDENT GROUPS OF CORRELATED INDIVIDUALS 

5.1. Introduction 

The previous chapters have described methods of 

estimating failure time distributions for data collected 

from independent groups of correlated individuals. The 

analyses involve estimating parameters in models for means 

of binary response vectors for each group and inspection 

interval. The elements of the mean vectors are hazard 

probabilities and are thus functions of the failure time 

distribution parameters. The covariance matrix for each 

binary response vector depends on the mean vector and 

parameters describing the correlations among the elements of 

the observed response vector. Multivariate nonlinear least 

squares estimation based on a Gauss-Newton algorithm is used 

to obtain estimates of the failure time distribution 

parameters. When the Gauss-Newton iterations are initiated 

with consistent estimates of the mean model and correlation 

parameters, the estimators have a joint asymptotic normal 

distribution. Many techniques exist for obtaining 

consistent estimates of the mean model parameters, but 
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little information is available on consistent estimation of 

correlation coefficients for clustered binary data. 

In this chapter, estimators of the correlation 

coefficient for the conditional binary variables are 

considered. Sufficient conditions for the consistency of 

these estimators are presented, and results from a small 

simulation to evaluate the performance of these estimators 

are discussed. The sufficiency conditions and simulation 

results are used to assess the advantages and disadvantages 

for each estimator under various model and data conditions. 

5.2. Correlation Estimators 

This section is concerned with developing consistent 

estimators of the correlation between binary responses for 

individuals belonging to the same group who are at risk 

during a specific interval. For data collected from groups 

of individuals, consistency implies that the estimator 

converges in probability to the true correlation as the 

number of groups increases. Hence, pairs of individuals 

whose responses have a common true correlation must be 

distributed across groups in order for a consistent 

estimator of the true correlation coefficient to be 

developed. For the purposes of this chapter, the 
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correlation between binary responses for Individuals 

belonging to the same group will be assumed to be 

homogeneous within and across groups for a particular 

interval. Although this assumption appears to be 

restrictive, results based on this condition can be applied 

to groups with heterogeneous correlation structures for 

which pairs of individuals can be categorized into 

correlation classes (e.g., male-male, male-female, 

female-female). In this case, the results are applied to 

each correlation class. 

To construct a consistent estimator of the correlation, 

estimators for the covariances and variances of the 

conditional binary variables are needed, and the estimator 

must pool information over groups in some fashion. To 

understand how the proposed consistent correlation 

estimators are constructed, estimation of the Intra-group 

correlation for one group is Initially considered. The 

averaging process for the development of consistent 

correlation estimators is then discussed. 

The data for estimation consist of conditional binary 

responses, , for individual j in group 1 during interval 

h, where 
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= 1 if individual j in group i fails during 

interval h given success in the previous 

interval, 

- 0 if individual j in group i succeeds during 

interval h given success in the previous 

interval, 

j = 1, 2, n^j^ individuals in group i during interval h, 

i = 1, 2, ..., mjj groups in interval h, and h = 1, 2, ...,k 

intervals. Y. .. remains undefined if the individual has 
hi] 

previously failed or is censored during or prior to interval 

h. Let denote the mean of Y^^j, and recall that 

is the hazard probability for individual j in group i during 

interval h. The variance of Y^^j is ̂ ^ij^^~"hij^ 

n... be a consistent estimator of the mean as the number of 
hi] 

groups, m, gets large. 

Consider estimation of the homogeneous intra-group 

correlation between the elements of a single response vector 

for group i during interval h. One possible estimator for 

Phi is 

(*hij""hij ) (^hii ' "''hij ' ̂ 

9 

?>?,[<^hij-"hij > ^(^hij 
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(*hij"^hij)(^hij'""hij'> 

5 ?, I(Yhij"*hij)(*hij'"*hij')I 
J ^ J 

Note that will always provide an estimate that lies in 

the parameter space of the true correlation However, 
A 

when pooling over groups, estimators based on are not 
A 

consistent; and hence estimators which pool p^^^ over groups 

are not considered further. An alternative estimator, based 

on ^hij^^""hij^ rather than (*hij~"hij^^ as an estimator for 

Var(Yjjij), is 

(*hij""hij)(Yhij'"*hii') 

Pghi ~ . (5.1) 
PA a  A A 2  1  1/2  

["hij(i-^hij)"hij' (^-"hij') r 

While provides a better estimate of Var(Y^^j) 

than (^hij~"hij^^2hi the disadvantage of not being 

constrained to the parameter space. For example, if n^^ = 

"hil = "hi2 = ^hil = "hia = then = 1.5. 

Another possible pair of estimators for Pj^^ can be 

fashioned after an estimator cited in Morrison (1976) for 

the case when individual variances within groups are 
A 2 

homogeneous. The first estimator, based on as 

an estimate of Var(Y^^j), is 
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^3hi " 

[ ̂ (*hij"*hij)^/"hi ^*hij' ""hij'^ ̂/"hi] 

E <''hij-"hij>^ / » 'hi 

( 5 . 2 )  

where is the number of individuals in group i who 

succeeded in interval h-1 and are not censored during 

interval h. Note that 

P3hi " 

^ ^*hij""hij^^*hij'""hij'^ ^^hij"^hij^ 

(Hhi-l) 

' [ ? ̂ ^hij""hij^j 

^ <^hij-"hij) 

- 1 

since 

<" [ Ç "^hijAij)] 

the bounds on are 

'hi"^ ' ^ P3hi ̂  
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indicating that the possible values for this estimator form 

a subset of the correlation parameter space. The lower 

bound of -(n^^-l)"^ will not in general be restrictive since 

intra-group correlations among individuals are typically 

positive. Further, a sufficient condition for the 

consistency of estimators based on (5.2) [and (5.3) below] 

is that correlations and variances are constant for a given 

group. In this case, the parameter space for the true 

correlation is identical to the space defined by the 
A 

bounds on 
A A 

By estimating Var(Y^j^j) with ̂ hij ̂ ̂ ~"hij ̂ 

alternative estimator for the correlation between two 

responses in group i during interval h is 

/ '"hi 

^4hi = — ; • 

E / "hi 

(5 .3 )  

As with Pghi' is possible for values of this estimator to 

assume values larger than one or smaller than minus one. 

For example, if n^j^ = 2, s .4, = 1» then 

P2hi - IS-

Consider the case where intra-group responses during a 

specific interval h for a sample of groups have an 

intra-group correlation that is constant across all groups. 

Denote the common true value of the correlation p^. Pooling 
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information across groups to estimate can be achieved via 

ratio estimation, in which averaging is performed separately 

for the numerator and denominator of the ratios in (5.1) -

(5.3), or via averaging of the ratios. Ratio estimators for 

Pjj based on (5.1) - (5.3) for the case when intra-group 

correlations are assumed to be homogeneous within and across 

groups for interval h are constructed as follows: 

^ (^hij""hij)(^hij'""hij'^ 

P2h " : : (5-4) 

^ ^*hij""hij^^*hij'""hij'^ / ["hi("hi"l)/2] 

f3h " — 2 

? I (Yhij"*hij) / "hi 

(5.5) 

? L?, ̂*hij""hij^ ̂ *hij'""hij'^ / ^"hi 
A ^ J 

^4h = —: : • 

E E "hij<^-"hij> / "hi 

(5.6) 

In Section 5.3, estimator (5.4) will be shown to be 

consistent under quite broad conditions. However, 

sufficient conditions for the consistency of estimators 

(5.5) and (5.6) include the more restrictive condition of 

homogeneous variances within groups, although variances may 
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vary across Intervals and groups. This condition is met, 

for example, when all members of a group have the same 

marginal survival distribution. 

Estimators for which the ratios in (5.1) - (5.3) are 

averaged over groups can also be constructed, although ratio 

estimators are generally less variable for this type of 

problem. These averages were considered in the simulation 

described in Section 5.3, but as predicted, their 

performance was poor and they will not be addressed in this 

chapter. 

If the common intra-group correlation is assumed to be 

constant across intervals as well as groups, the ratio 

estimators in (5.4) - (5.6) can be pooled across intervals 

to obtain consistent estimators of the correlation. Using 

ratio estimation techniques, estimators of the common 

correlation p are defined to be 

h i j^j\(*hij"*hii)(Yhij'"*hij') 

Pg = — 

h i ^'>%\L*hij(l"*hij)*hij'(l"*hij')]^^^ 

(5.7) 
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- [ g E E (ïhijAij)" / "hi ]"^ 

* [ h i J>j' 

/ tn„i(n^j-l)/2] ] (5.8) 

'4 ° [ h S j "hij(l-"hij> / "hi ]"^ 

j>j' 

/ [nhi(nhi-l)/2] ] • (5.9) 

5.3. Consistency of Correlation Estimators 

5.3.1. Assumptions 

One condition that is used to show that the ratio 

estimators converge in probability to as the number of 

groups, m, gets large is that the denominator of each 

estimator converges in probability to a positive number. 

Assumption A5.1 is applied to estimator (5.4), and 

assumption A5.2 is applied to estimators (5.5) and (5.6). 
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Assumption A5.1. For some c > 0, 

i j>j' 

converges in probability to c as m-xn. 

Assumption AS. 2. For some c > 0, 

converges in probability to c as m-xo. 

As in Chapter 4, an assumption about switching limits 

from m to m^ is needed to demonstrate convergence in 

probability as m, the number of groups in the sample, gets 

large. This assumption is required for convergence of the 

numerators of the estimators. 

Assumption AS.3. For any h, 

(^hii'^hij)^^hij'""hij'^ 

" m^5« i (*hij"*hij)(*hij'"*hij') 

whenever the right hand side limit exists. 

Assumption AS. 4. For any h. 
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/ [nhi(*hi-l)/2] J 

whenever the right hand side limit exists. 

A finite maximum group size is also assumed to exist. 

Assumption A5. 5. There exists a finite maximum group size 

for the population of groups, denoted by n. 

In the context of data collected from independent groups, 

group sizes are not expected to increase without bound, 

making such an assumption reasonable. 

One additional assumption is used to prove the 

consistency of estimators (5.5) and (5.6). While estimators 

(5.5) and (5.6) can be shown to be consistent under the 

following assumption, they may not provide consistent 

estimates in more general situations. 

Assumption AS. 6. For each h and i, is constant for all 

j; i.e., ® "hi i' 

Consistency for all estimators can be demonstrated by 

showing that as the number of groups gets large, the 

numerator and denominator divided by the number of groups 
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converge in probability to means of covariances and means of 

products of standard deviations, respectively. The proof 

for the consistency of estimator (5.4) is described in 

detail below. Proofs for the consistency of the other two 

estimators rely on the same argument, and hence will only be 

briefly outlined. The consistency of estimators (5.7) -

(5.9) follow immediately from that of (5.4) - (5.6), 

respectively. The notation Op(l) refers to convergence in 

probability as the number of groups, m, gets large. 

5.3.2. Consistency of Pgjji 

Theorem 5.1. Suppose that assumptions A5.1, A5.3 and A5.5 

hold, and that the binary variable ̂ ^ij mean for j 

= 1, 2, ..., n^j^ individuals in group i, i = 1, 2, ..., m^^, 

during interval h, h = 1, 2, ..., k. Consider any interval, 

say, interval h. Let s Corr(Y^^j,Y^^j,} for all i and j 

* j', and let m denote the number of groups present in the 

sample. Let be a consistent estimator such that for 

each h, i, and j, 

lim in probability. 
m-K» J 

Then 
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\ '""hij') 

^ [^hij (^"'^hij)^hij' ̂ ^'"hij 

converges in probability to as m-xw. 

A 
Proof.  Pick any h. The numerator of divided by m^ can 

be expressed as 

"h^ i j>j' ̂*lïij""hij^ (Yhij'"*hij') 

+ *h^ ̂  (%hii"*hij) ̂"hij'""hij'^ 

"*" "h^ ? ?^?, (Yhij"*hij) (^hii'^^hij') 

+ E j>j' ̂ ^hijAij>(^hij'Aij'> 

= term 1 + term 2 + term 3 + term 4 . 

Since 

(^hij'^hij) ̂^hij'""hij'^ ̂ 

^ h  f " h i j ^ ^ ~ " h i j ^ " h i j ' '  

it follows from Theorem 5.1.1. in Chung (1974) and 

assumption A5.5 that term 1 converges in probability as m-xo 

to 

\ Z>E,Ph ''hij<i-"hij> 'hlj'"'-''hii') 
if 
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Var{£^E^ (Yhij-TTjjij) (ïhij'""hij'^ ̂ 

has a common bound for all i. Since 

I^*hij""hij^^*hij'""hij'^I ^ ^ ' 

it follows that 

^*hij""hij^^*hij'""hij'^^ I ^ ̂  

and 

I(*hij""hij)(^hij'""hij ' * 

B{(Yhij""hij)(*hij'"*hij'))l ^ ̂  ' 

Hence by assumptions A5.5 

Var{E^E^(Yhij-Hhij)^*hij'""hij'^ ̂ 

' j >j ' 1>1' ^ "^hij ) (^hii ' "''hij ' ) 

" ̂^(^hii"''hii) (^hii'""hii')^^ 

* [ (%hil"*hil) ̂\il'""hil' ̂ 

E{(Yhil""hil^ ̂ ^hil'""hil'^ 

s 4n(n-l) . 

Thus, for term 1, 

™h^ i j>j'(*hij"*hii)^^hij'""hij'^ 
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+ Op(l)' 

For terms 2 and 3, it follows from 

and 

"hij - "hij = °p<i' 

that 

- °p'^' ' 

implying that terms 2 and 3 are 0^(1). Finally, term 4 is 
A A 

Op(l) since is consistent. Hence, the numerator of 

is 

^h ™h^ ? ^"hij ̂^""hij^^hij'^^~"hij'^ •*• °p^^^ * 

A 

The denominator of divided by m^ is a continuous 

function of {Rhij)' and thus can be expressed as 

"ii^ ? '•"hij ̂ ^""hij^"hij'^^""hij'^ °p^^^ * 

Finally, by assumption A5.1, 

Since Pjjj is a continuous function of the numerator and 

denominator, converges in probability to p^. • 
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5.3.3. Consistency of 

Theorem 5,2.  Suppose that assumptions A5.2 and A5.4 - A5.6 

hold, and that the binary variable has mean for j 

1, 2, n^j^ individuals in group i, i = 1, 2, m^, 

during interval h, h = 1, 2, .k. Consider any interval 

say, interval h. Let = Corr{Y^^j,Y^^j,} for all i and j 

* j', and let m denote the number of groups present in the 

sample. Let be a consistent estimator such that for 

each h and i, 

lim = n^. in probability. 
m^ 

Then 

E (Yhij-"hi) (^hij'Ai) / ["hi(nhi-l)/2] 

f3h - — 

I E (Yhij-^hi) / "hi 

converges to in probability as m-*». 

Proof.  Pick any h. From the proof of Theorem 5.1, 

= + °p(l) 

and 
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is bounded, so that the numerator of divided by m^ can 

be written 

"h + °p<i) • 

Using the same argument for j=j', the denominator divided by 

m^ is equal to 

•"h^ I + °p<i' • 

Hence converges to p^ in in probability. • 

5.3.4. Consistency of p^^^ 

Theorem 5.3.  Suppose that assumptions AS.2 and AS.4 - AS.6 

hold, and that the binary variable has mean for j = 

1, 2, ..., n^j^ individuals in group i, i = 1, 2, ..., m^, 

during interval h, h = 1, 2, ..., k. Consider any interval, 

say, interval h. Let p^ s Corr{Y^^j,Y^^j,} for all i and j 

# j', and let m denote the number of groups present in the 
A 

sample. Let be a consistent estimator such that for 

each h and i, 

lim n . .  = TT. . in probability. 
m->09 

Then 
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? L?, / '^"hi 
A ^ J 
p4h = — ; ^ 

I "hifi-'hi' 

converges in probability to as Bw*. 

Proof.  Pick any h. From the proof of Theorem 5.2, 

the numerator of divided by m^ is equal to 

"h ""h^ I + °p<^> • 

Since the denominator divided by m^ is a continuous function 

of it can be written as 

I ^/hic-^hi' + °p'i' • 

Hence converges to in in probability. • 

5.4. Simulation to Evaluate Performance of Estimators 

5.4.1. Simulation Objectives and Design 

A simulation was planned to evaluate the performance of 

correlation estimators for conditional binary variables 

constructed from failure time data that are collected from 

independent groups of correlated individuals. The objective 

of the study was to investigate the effect of several 

factors on the bias of these estimators, and to check 

consistency by seeing if bias improves as the number of 
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groups in the sample increases. 

Factors under consideration included the value of the 

true correlation coefficient, the underlying failure time 

distribution, the number of groups, and the degree to which 

the generated survival data are interval censored. Because 

of the interest in determining how interval censoring 

affects the estimators, the common intra-group correlation 

was assumed to be constant across time as well as across 

groups. Hence estimators (5.7) - (5.9) were considered in 

the simulation. 

Two levels for the true correlation, failure time 

distribution and interval censoring factors and three levels 

for the number of groups were selected. These levels are 

presented in Table 5.1. The two interval censoring schemes 

were selected to simulate interval censored data from a 

regular inspection schedule (10 intervals of length 5 units) 

and interval censored data that more closely approximate 

exact time data (50 intervals of length 1 unit). For the 

failure time distributions, shape parameters were chosen to 

provide specific distributional shapes (monotonically 

decreasing and unimodal densities). The scale parameters 

for the failure time distributions were determined such that 

for the given shape parameter, 99% of the failures occur by 

t = 50. Note that since the failure time distribution is 

constant for all individuals (i.e., no explanatory variable 



131 

Table 5.1. Specific factors investigated in the simulation 
to assess the performance of correlation 
estimators 

Factor Levels 

True 0.3 
Correlation 0.6 

Failure Time 
Distribution 

Honotonically decreasing Weibull density 
(scale = 6.5, shape = 0.75) 

Unimodal Weibull density 
(scale = 23, shape = 2) 

Number 
of Groups 

20 
50 
100 

Interval 
Censoring 
Scheme 

[0,10) [10,20) ... [40,50) [50,00) 
[0,1) [1,2) ... [49,50) [50 , 00 )  
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effects were Included), each response for a given interval 

has the same mean and variance. This restriction insures 

that the data generation scheme provides constant 

correlation among members of a group. It also provides 

suitable conditions for assessing the consistency of 

estimators (5.8) and (5.9). 

Because of limited resources, the simulation was run 

only for small group sizes. The distribution used to 

randomly select the number of individuals in a given group 

was patterned after the rat litter data discussed in Chapter 

3, which typically consisted of four individuals per group. 

The probabilities that a group contains two, three or four 

individuals were set at.005, .070 and .925, respectively. 

Data generation took place in two phases. First, data 

were generated according to the following scheme for 50 

intervals of length one for each individual in each of 50 or 

100 groups according to a specified correlation and failure 

time distribution. For each group, a random group size was 

generated. Then binary responses were generated for each 

group member at risk during the interval. This was 

accomplished for each interval by generating a value for a 

Bernoulli(n^) variable, where is the hazard 

probability for interval h calculated from the assumed 

failure time distribution. This variable was used to 

correlate the responses of each member by generating the 
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response of the j-th individual in group i during interval h 

in the following way. Let the true correlation be denoted 

p, and define ij " Given = 0, 

Yhij = the value of with probability 

= a new value generated from a Bernoulli (tTj^) 

distribution with probability 1 - . 

No value was assigned for individuals that failed in a 

previous interval, and no individuals were right censored 

until 50 time units. 

For each level of correlation and failure time 

distribution, the data generation algorithm resulted in sets 

of Y^^j values that had a common intra-group correlation 

coefficient for all intervals. These data were arranged in 

a grid with rows corresponding to the individuals from all 

of the 50 or 100 groups, and columns corresponding to the 50 

intervals. For the second phase of the program, the 

correlation estimates were calculated for each level of the 

number of groups and interval censoring scheme factors by 

subsetting the grid for the correct number of groups and 

collapsing responses over intervals for the interval 

censoring factor when necessary. One hundred replications 

of the entire algorithm were conducted. 

The simulation was run in two phases. Initially, the 

maximum number of groups under consideration was 50, and 

grids were subsetted to obtain 20 groups. However, results 
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from 100 replications of all combinations of correlation, 

failure time distribution, number of groups (20 or 50) and 

interval censoring scheme indicated that bias did not 

improve for most estimators when comparing the average bias 

for 20 and 50 groups. Hence another set of 100 runs was 

conducted for 100 groups and each combination of 

correlation, failure time distribution and interval 

censoring scheme to further check the consistency property 

of the estimators. This design confounds comparisons 

involving 20 and/or 50 groups versus 100 groups with the 

simulation experiment; however, the mean values are not 

greatly influenced by the confounding. 

To analyze the simulation results, an ANOVA was run on 

the bias for each estimator with correlation and failure 

time distribution as "whole plot" factors arranged in a 

completely randomized design, and number of groups.and 

interval censoring scheme as the "split plot" factors. 

F-values from the ANOVA were used to identify the most 

important factors affecting the bias of each estimator. 

Sample standard deviations for each factor combination were 

also calculated to assess the variability of the estimators. 

5.4.2. Simulation Results 

Results from the ANOVAs on bias for each estimator 

indicate that the average bias for each estimator is not 
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very large, and that the dominant factor influencing bias is 

the interval censoring scheme. All estimators tend to 

slightly underestimate p for the partition of 10 five-unit 

intervals (Table 5.2). For the 50-interval partition, on 
A A A 

average, both and slightly overestimate p ,  while 

appears to be unbiased. The ANOVAs and the means listed in 

Table 5.2 also indicate that the number of groups in the 

data set seems to have little effect on the bias of the 

estimators. 

Average estimated standard deviations for all 

estimators are quite high (Table 5.3). Standard deviations 

are about 25% larger for data involving 20 groups relative 

to standard deviations based on 50 or 100 groups. The same 

trend is present for the monotonically decreasing versus the 

unimodal distribution. Mixed results for the correlation 

and interval censoring factors are related to the type of 

variance estimator used in the denominator. Variability is 

about 25% higher for p=.6 relative to p=.3 and for the 

50-interval relative to the 10-interval partition when 
A A ^ 

n^^j(l-n^^j) IS used to estimate Var{Y^^j}. The opposite 
A A 2 

trends are seen for p^, which is based on (^hij~"hij^ as an 

estimator of VarfY^^j). It is not clear whether any of 

these differences are actually significant. 

Inspection of the simulation results for parameter 

estimates that exceed the parameter space for correlations 
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Table 5.2. Average bias and standard errors for number of 
intervals and number of groups for each 
estimator 

Number 
Esti- of In-
mator tervals 20 

Number of Groups 

50 100 Mean 

A 

P- 10 
50 

,033* 
034 

040 
008 

-.035 
.026 

-.036* 
.023 

A 

P r  10 
50 

.036 

.0001 
048 
008 

.038 

.008 
.041 
,000 

A 

P. 10 
50 

.025 

.047 
,042 
,016 

.033 

.036 
033 
033 

^Each cell mean is based on 400 observations. Standard 
A A A 

errors of cell means for and are .0068, .0063 and 

.0086, respectively. 

^Each marginal mean is based on 1200 observations. 
A A A 

Standard errors of marginal means for p^, p^ and p^ are 

.0035, .0036 and .0049, respectively. 
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Table 5.3. Average standard deviations for estimated 
correlation values for each level of each factor 
and for the entire data set. 

Estimator 

Factor Level 
A 

P-
A 

P' 
A 

P A  

Number 20 
of 50 
Groups 100 

.158' 

.115 

.126 

.161 

.131 

.135 

216 
173 
177 

Number 10 .119 
of 50 .148 
Intervals 

V 

Distri- Decreasing .147 
bution Unimodal .120 

.162 

.123 

.153 

.132 

,177 
.200 

,213 
,164 

Corre
lation 

.3 
. 6  

.121 

.146 
.153 
.131 

182 
195 

Entire Data Set .133 .142 189 

^Cell means are based on 8 estimated standard 
deviations. 

^Cell means are based on 12 estimated standard 
deviations. 

°Grand means are based on 24 estimated standard 
deviations. 
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indicated that estimated values for and exceed one 

only when the true correlation coefficient is .6. Of the 
A 

1200 values for p = .6, 1.9% are greater than one for p^ and 

4.4% are greater than one for p^. Of the estimated values 

exceeding one for p=.6, nearly all occur for the 50-interval 

censoring scheme, about half are associated with data based 

on only 20 groups, and about two thirds are linked with 

monotonically decreasing distributions. 

Since most groups contained four individuals, an 

approximate (but overestimated) lower bound on p is -1/3. 

No Pg values and only one p^ and p^ value fall below -1/3 

(Pg = -.41, p^ = -.40 in the same replication for p = .3, 20 

groups, and the monotonically decreasing failure time 

distribution). 

5.4.3. Discussion 

Estimator p^ is suited for estimation when few 

restrictions are present on the structure of the means. 

Obtaining estimates exceeding one is the major problem 

associated with p^. This is a problem particularly for high 

correlations and more finely partitioned interval censoring, 

although the probability of obtaining estimates outside of 

the correlation parameter space is not particularly high 

(<.05). The risk of obtaining such a value is also reduced 

for larger numbers of groups and unimodal distributions. 
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A A 
Use of estimators and is appropriate when the 

individuals within a given group have the same intra-group 

correlations and variances. Variability is always larger 

for than for p^, and bias for is often worse than that 

of pg. In addition, p^ is not restricted to the parameter 

space, and behaves much more poorly than p^ in this respect. 

Hence p^ appears to be a better estimator with respect to 

bias, variability and parameter space constraints. It is 

also appealing that bias for p^ diminishes as the interval 

censoring scheme provides more precise information on 

failure times. Although Pg could also be used in this 

situation, it is clear that p^ is a better estimator under 

these conditions. 

Although none of the estimators exhibits an obvious 

improvement in bias as the number of groups increases from 

20 to 100, the variability of all the estimators declines as 

the number of groups in the sample increases. Further, 

average bias for the estimators is not particularly large. 

All estimators exhibit a large degree of variability 

indicating that any particular estimated value may not be 

very accurate. 

As with all simulations, there are several limitations 

inherent in the design of this simulation study. The 

performance of these estimators for large group sizes may be 

quite different, and this is not addressed by the 
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simulation. In addition, the effects of right censoring 

before study termination or of different truncation points 

prior to 50 time units are not considered. The presence of 

heterogeneous means, even across groups, is also not 

studied. It is possible to adapt the data generation scheme 

to allow means to vary across groups while maintaining a 

constant correlation. The performance of estimators for 

correlations that change over Intervals could also be 

investigated by outputtlng estimates for each Interval 

separately. 
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6. SUMMARY 

A method of estimating failure time distributions for 

data collected from independent groups of correlated 

individuals is developed. This method is appropriate for 

commonly interval censored data (e.g. when individuals are 

inspected at regular common intervals) or exact time data, 

including possibly right censored data. The technique 

improves upon previously published methods by allowing for 

large and variable group sizes, heterogeneous correlation 

structures, and the incorporation of explanatory variable 

information. Both parametric and. nonparametric failure time 

models can be estimated, and correlations may be modeled as 

well. 

The outcome for any individual at risk during a 

specific time interval is modeled as a conditional binary 

random variable indicating the failure or success of the 

individual given success in the preceding interval. For 

each time interval, a separate vector of binary responses is 

constructed for each group, consisting of the responses for 

individuals belonging to the group who are at risk at the 

beginning of the interval and not censored during the 

interval. The elements of the corresponding mean vector are 

hazard probabilities and are thus functions of the failure 
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time distribution parameters. The covariance matrix for 

each binary response vector is a function of the 

corresponding mean vector and parameters describing the 

correlations among the elements of the observed response 

vector. Multivariate nonlinear least squares estimation 

based on the Gauss-Newton algorithm is used to obtain 

estimates of the parameters of the failure time 

distribution. These estimators are shown to have a joint 

asymptotic normal distribution under mild regularity 

conditions when a Gauss-Newton iterations are initiated with 

consistent estimates of the mean model and correlation 

parameters. 

The new methodology is applied to commonly interval 

censored data from a study comparing the effectiveness of 

three smoking cessation programs, and to an exact time data 

set assessing the developmental responses of rat pups to 

prenatal doses of methylmercuric chloride. Results from 

both analyses indicate that estimated standard errors for 

the estimates of parameters associated with variables whose 

values differ between groups are generally higher when the 

analysis accounts for the presence of correlation. This 

result is expected since failing to account for correlation 

among group members results in the underestimation of 

standard errors of the parameter estimates, and thus 

overstatement of the significance of tests involving these 
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parameters. Estimated standard errors that account for the 

presence of correlation may be smaller than 

independence-based estimates when the parameter is 

associated with a within-group explanatory variable, such as 

sex in the rat litter data. 

When comparing independence-based estimates with least 

squares parameter estimates, it appears that parameters are 

not equally sensitive to the effects of correlation. For 

both data sets, only a subset of the estimated parameters 

obtained from the independence-based and least squares 

estimation procedures are significantly different from the 

corresponding subset obtained using least squares 

estimation. For exact time data, this shift may be due in 

part to treating the data more accurately as interval 

censored. 

Research is also presented on the properties and 

performance of estimators of correlation coefficients for 

clustered binary data. Several consistent estimators are 

developed and their empirical performance is evaluated in a 

small simulation. The estimators are only slightly biased, 

but can be quite variable. The degree of interval censoring 

generally affects the sign, but not necessarily the 

magnitude of the bias. Increasing the number of groups from 

20 to 100 does not provide a substantial reduction in bias, 

although variability does decline. 
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