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A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced

martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model

considers a single order parameter to describe the austenite↔martensitic transformations, and another N order

parameters describing N variants and constrained to a plane in an N -dimensional order parameter space. In

the free energy model coexistence of three or more phases at a single material point (multiphase junction),

and deviation of each variant-variant transformation path from a straight line have been penalized. Some

shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation

deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a is a

linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation

deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with

the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic

theory. The instability criteria for all the phase transformations have been derived for all the kinematic models,

and their comparative study is presented. A large strain finite element procedure has been developed and

used for studying the evolution of some complex microstructures in nanoscale samples under various loading

conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the

triple junctions, and twinned microstructures have been studied. The present approach can be extended for

studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.

Keywords: Multiphase phase field approach; Martensitic transformation; Variant-variant boundary; Twinning;

Multiphase junction; Instability of phase; Interfacial stress; Finite strain; Size effect.
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1. Introduction

Multivariant martensitic transformations (crystallographic theory). Martensitic phase transformation (PT)

plays the central role in exhibiting some important phenomena, such as shape memory effect, pseudoelasticity,

and pseudoplasticity (Bhattacharya (2004); Pitteri and Zanzotto (2003)). Such transformations usually result

in complex microstructures, including austenite-twinned martensites, wedge, twins within twins etc. (Ball and

James (1987); Bhattacharya (2004); Pitteri and Zanzotto (2003); Schryvers (1993); Wayman (1964)). In this

paper we denote the austenite phase (parent phase) by A, the martensite (product phase) by M, and the N

variants of martensites by M1, M2, . . ., Mi, Mj , . . . ,MN . In actual microstructures we seldom see interface

between A and a single martensite variant, as the lattices of stress-free A and a single Mi are not geometri-

cally compatible in the sense of Hadamard’s compatibility. The system rather prefers to form microstructures

consisting of mixture of austenite and twinned martensite, which are laminated microstructures with planar

interfaces, and are minimizer of the total elastic energy of the system (Ball and James (1987); Bhattacharya

(2004); Pitteri and Zanzotto (2003)). The interface between A and twinned martensite in such microstructures

is diffused, i.e. has a finite width. The compatibility condition therein is satisfied in an average sense, and

the local incompatibility is accommodated by elastic strains. However, away from the A-M interface the elastic

stresses vanish. On the other hand, twin boundaries are compatible sharp interfaces, and hence the elastic

stresses are vanishing, both within the variants and twin boundaries.

Multiphase phase field approach to martensitic PTs. Besides various continuum studies of multivariant marten-

sitic PTs within a sharp interface approach (Ball and James (1987); Levitas and Ozsoy (2009a,b); Petryk

and Stupkiewicz (2010a,b); Roytburd (1974); Roytburd and Slutsker (2001)), the phase field approaches (also

known as the Ginzburg-Landau approaches) have been widely used for studying microstructure evolution dur-

ing martensitic PTs (Artemev et al. (2000, 2001, 2005); Chen (2002); Clayton and Knap (2011a,b); Hildebrand

and Miehe (2012); Idesman et al. (2008); Jin et al. (2001); Lei et al. (2010); Levin et al. (2013); Levitas and

Javanbakht (2011); Levitas and Lee (2007); Levitas and Preston (2002a,b); Levitas et al. (2003, 2013, 2009);

Li et al. (2001); Seol et al. (2002, 2003); Tůma and Stupkiewicz (2016); Tůma et al. (2016)). The central idea

in all the phase field approaches is to introduce the order parameters for describing the PTs in a continuous

way. The free energy of the system and the transformation strains are functions of the order parameters. These
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functions include interpolation of all material properties between their values in each phase, the energy barrier

between phases, and the terms related to the gradient of the order parameters penalizing interfaces between

phases. The interfaces are therefore of finite width and their structures are also resolved.

The evolution of the order parameters is governed by a system of Ginzburg-Landau equations. Here we

consider the transformation strain related order parameters, (see, e.g. Artemev et al. (2001); Levitas (2014);

Levitas and Preston (2002b); Levitas et al. (2003)), in contrast to the total strain related order parameters in

Barsch and Krumhansl (1984); Falk (1983); Jacobs (1992). The latter cannot be used to satisfy some important

requirements formulated in Levitas (2013a); Levitas and Preston (2002a,b); Levitas and Roy (2016).

A critical analysis of the multiphase phase field approaches (MPFA) to PTs is now presented, highlighting

their main features and drawbacks (see also Levitas and Roy (2015, 2016); Tóth et al. (2015)).

MPFA-I: In this approach N volume fraction related order parameters ηi along with a single constraint∑N
i=1 ηi = 1 are considered for a system with N + 1 phases; see Refs. Ankit et al. (2013); Bollada et al. (2012);

Garcke et al. (1999); Kim et al. (2006); Moelans et al. (2008, 2009); Nestler (2005); Steinbach et al. (1996);

Steinbach and Pezzolla (1999); Tóth et al. (2011a,b, 2015). The models have been mostly used for studying

solid↔liquid transformations and grain growth without mechanics, as well as for PTs between solid phases with

mechanics (Schneider et al. (2015); Steinbach and Apel (2006)). The constraint plane is schematically shown

in ηi-ηj-ηk space in Fig. 1(a), and all the liquid↔solid (or A↔ Mi) transformation paths belong to this plane.

This single constraint alone cannot ensure that each of the PTs can be described by a single order parameter,

which is an important condition for calibrating the model parameters, and also to prevent the appearance of a

third (if spurious) phase between two others (Levitas and Roy (2015, 2016)). A specialized model for a three

phase system was derived by Folch and Plapp (Folch and Plapp (2003, 2005)) which successfully prevents the

spurious phase, but yields a restriction on the kinetic coefficients. Also, it is not clear how to generalize the

model for a system with more phases. Conversely, there can be instances where a third phase can actually

nucleate between two others and plays an important role; see, e.g. solid-solid PT via intermediate (virtual)

melt (Levitas et al. (2004, 2012)). Hence a robust model should have a provision to control the nucleation of

a third phase between two others and also the quantity. The disadvantages of imposing the constraint using

the Lagrangian multipliers (used in Folch and Plapp (2003, 2005)) are analyzed and overcome in Ref. Bollada
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Figure 1: Schematics of the order parameter space and the transformation paths from various models. (a) Models used in Ankit et

al. (2013); Bollada et al. (2012); Garcke et al. (1999); Kim et al. (2006); Moelans et al. (2008, 2009); Nestler (2005); Steinbach et al.

(1996); Steinbach and Pezzolla (1999); Tóth et al. (2011a,b, 2015) where all the transformation paths lie within the ηi + ηj + ηk = 1

plane. (b) Model used in Artemev et al. (2000, 2001); Jin et al. (2001); Levitas (2013a); Levitas and Preston (2002a,b); Li et al.

(2001); Seol et al. (2002, 2003), for which variant↔variant transformation paths cannot be described with a single order parameter

and are not controlled. (c) & (d) Models with polar (c) and hyperspherical (d) order parameters (Levitas et al. (2003, 2013)). (e)

Model developed in Levitas and Roy (2015, 2016), for which transformation paths between martensitic variants are controlled by

penalizing the energy term. (f) & (g) Present model with two variants and three variants, respectively.

et al. (2012). Further improvement of the model is presented in Tóth et al. (2015) where the drawbacks of the

previous models are analyzed in detail. The last model was analyzed in Levitas and Roy (2016). Note that none

of these models containing the constraint describe the instability criteria, which are very important in PTs.

In this context, we also mention that the volume fraction related order parameters have also been used
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to study martensitic PTs, e.g. in Refs. Idesman et al. (2005); Lei et al. (2010); Levitas et al. (2004); Tůma

and Stupkiewicz (2016); Tůma et al. (2016), where all the interpolation functions are linear and represent the

simple mixture rule. Such models work well in microscale modelings, in which the interface width is either

artificially increased from its actual size of one to a few nanometers by one to several orders of magnitude. At

the nanoscale, when one mimics actual processes practically at the atomistic scale, the interpolation functions

must be smooth. The first derivative of the interpolation functions must vanish within the bulk – a criterion

imposed by the thermodynamic equilibrium condition (Levitas (2013a); Levitas and Preston (2002a,b)). We

will focus here on the nanoscale models.

MPFA-II: The authors in Refs. Artemev et al. (2000, 2001); Jin et al. (2001); Li et al. (2001); Seol et al.

(2002, 2003) considered N order parameters ηi for a system with N variants, where each ηi describes A ↔ Mi

transformations (ηi = 0 in A and ηi = 1 in Mi). Additional conditions for such a choice have been imposed

in Levitas (2013a); Levitas and Preston (2002a,b) for small and large strains, which in particular include

lattice instability conditions, and lead to more complex thermodynamic potentials and expressions for the

transformation strains. These functions are designed in such a way that the instability criteria for A ↔ Mi

and Mi ↔ Mj transformations yield the expected phase transformation conditions. Since A ↔ Mi PTs are

described with the single order parameter ηi (Fig. 1(b)), the analytical solution for static and propagating

A-Mi interface exists, which allows one to calibrate the energy, width, and mobility of the A-Mi interfaces.

However, Mi ↔ Mj transformations cannot be described by a single order parameter, because they occur along

some curvilinear path within the ηi-ηj plane (Fig. 1(b)), which depend in some way on temperature and stresses

and thus are uncontrolled. That is why an analytical solution for Mi-Mj interface cannot be obtained. The

numerically determined energy and width of Mi-Mj interfaces therefore depend on the stresses and temperature

in an artificial way. As a result, the parameters for these interfaces cannot be calibrated, and also, interfacial

stresses cannot be introduced consistently within the theory. Also, there is no treatment for the multiphase

junctions.

MPFA-III: A phase field model based on hyperspherical order parameters was developed in Levitas et al.

(2003, 2013) for N -variant martensitic PTs (see Figs. 1(d)). In Levitas and Momeni (2014); Momeni and

Levitas (2014, 2015), a similar model for three phases was developed with polar order parameters and applied
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to transformations between two solid phases and melt, namely, for solid-solid PT via intermediate melt Figs.

1(c). Here A (or melt) was considered to be located at the center and all N martensitic variants (or solid

phases) are placed at the intersection of the Cartesian axes and the N -dimensional hypersphere. The radial

coordinate Υ was used as the order parameter for A ↔ M transformations and N angles πϑi/2 between the

radius vector Υ and N Cartesian axes related to Mi were utilized as angular order parameters describing

Mi ↔ Mj transformations. Obviously, all the ϑi satisfy a nonlinear constraint
∑N

i=1 cos2(πϑi/2) = 1 (Levitas

et al. (2013)). The radial lines along the Cartesian axes represent the A ↔ Mi transformation paths, and the

Mi ↔ Mj transformation paths belong to the quarter circle. Thus, each transformation path is described by

a single order parameter; analytical solutions for all the order parameters exist; all interfacial parameters can

be calibrated; the interfacial stresses can be introduced in consistent manner. The desired lattice instability

conditions for hyperspherical order parameters have been proved in Levitas et al. (2003) using local Cartesian

order parameters ηi. However, the constraint equation has infinite derivatives at Mi, which does not allow to

extend the proof for the hyperspherical order parameters. Thus, the lattice instability conditions cannot be

non-contradictorily implemented for the hyperspherical order parameters. Then, the nonlinear constraint was

replaced by a linear constraint (Levitas et al. (2013)), which is simpler but has the same problem with instability

conditions like in MPFA-I. However, only for a two variant system or three-phase system in polar coordinate

with single angular order parameter, the constraint was eliminated and all the issues were resolved.

MPFA-IV: The models recently developed in Levitas and Roy (2015, 2016) operate with the traditional

Cartesian order parameters ηi like in MPFA-II, see e.g. Artemev et al. (2000); Levitas (2013a); Seol et al.

(2002). However, each variant-variant transformation path (or path between phases with one of the order

parameter equal to unity) is regulated therein by penalizing the free energy for deviation of the transformation

paths from the prescribed straight lines connecting two martensitic variants. More specifically, a controlling

parameter is used within this penalizing term for each variant↔variant path. When the coefficient in the

penalizing term, K, tends to infinity, the path for Mi ↔ Mj transformation coincides with the straight line

ηi + ηj = 1 (see Fig. 1(e)), and under such condition the third phase (A in this case) is strictly prohibited

between two others. However, when the magnitude K is small, the third phase may coexist within an interface,

and the variant↔variant transformation paths (or path between two phases) for such cases are indicated by
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dashed curves belonging to the ηi-ηj plane. A↔ Mi transformation paths are along the Cartesian axes. Since

for very large K all transformation paths can be described by a single order parameter, an analytical solution

exists for all the interfaces, and all the interface parameters were consistently calibrated. Also, the model

penalizes the junctions between the martensitic variants.

Although the model in Levitas and Roy (2015, 2016) is the most advanced and consistent, the following

problems still persist:

(a) There is no free material parameter within the interpolation functions for all phases, and all the phases

are thus equivalent. That means the interpolation functions are invariant with respect to interchange of phases.

However, for martensitic PT the martensitic variants are indeed equivalent but not the austenite phase. That is

why the interpolation functions for A-Mi transformations should not be invariant with respect to an exchange

of phases, and should contain an additional material parameter to control this. Recent molecular dynamic sim-

ulations (Levitas et al. (2017)) show that such a parameter is needed to satisfy the lattice instability conditions

under multiaxial loading. Note that in all the previous models except in Levitas (2013a); Levitas and Preston

(2002a,b), the interpolation functions do not possess any free material parameters.

(b) Although the junctions between the martensitic variants were penalized, the junctions between A and

the variants were not penalized.

(c) The effective kinetic coefficient for the variant-variant interfaces determined therein (Eq. (24)2 in Levitas

and Roy (2015)) is not symmetric about the diagonal elements of the original kinetic coefficient matrix which

are basically the kinetic coefficients of the respective A-Mi interfaces. Hence it is an inappropriate expression.

(d) The model is presented for stress-free state in Levitas and Roy (2016) and small strain formulations in

Levitas and Roy (2015); the finite strain formulation is still missing.

Interfacial stresses. The interfacial stresses can play a crucial role in the nucleation of phases and propagation

of the A-M and variant-variant interfaces (Levitas and Javanbakht (2010, 2011)). Such stresses can significantly

decrease the activation energy for intermediate melt within solid-solid interfaces (Momeni et al. (2015)), or

result in PTs in nanoscale wires (Diao et al. (2003); Li et al. (2010)). Therefore, a complete phase field model

must consider these stresses. We recall that the interfaces or material surfaces are always subjected to biaxial

stresses σ̄s (Gibbs (1948)), where σ̄s is the surface Cauchy stress tensor which is a symmetric tensor tangential
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to the interface (see Gurtin and Murdoch (1975) for details). For a solid-solid interface the interfacial stress

tensor is given by the Shuttleworth equation σ̄s = γ(I − n ⊗ n) + ∂γ/∂ε̄s, where ε̄s is the average surface

strain tensor which is symmetric and tangential to the interface (Fischer et al. (2008); Gurtin and Murdoch

(1975)). The part γ(I − n ⊗ n) is called the structural stress tensor, and ∂γ/∂ε̄s is the elastic stress tensor

within the surfaces. The elastic interfacial stresses appear automatically within the solution of coupled phase

field and elasticity problems. An analytical solution for them within a variant-variant interface was found in

Basak and Levitas (2017). Structural interfacial stresses, i.e. biaxial tensile stresses with the magnitude equal

to the interface energy, were introduced in phase field for solid-solid PTs, first for small strains (Levitas and

Javanbakht (2010, 2011)), and then in the most general form for large strains with isotropic (Levitas (2014)) and

anisotropic (Levitas and Warren (2016)) interfacial energy. To introduce the interfacial stresses consistently,

one needs to have the analytical solution for a propagating interface. Since for the analytical solution for the

variant-variant interfaces was lacking for the most popular MPFA-II, the interfacial stresses were introduced

therein at a best guess. The interfacial stresses were correctly introduced for a three-phase model in the polar

order parameters (Momeni and Levitas (2016)) and the models with multivariant martensitic transformations

in Levitas and Roy (2015); Levitas et al. (2013)) (without detailed derivations). However, these models have

drawbacks as discussed above.

Goal and contribution of this paper. Our goal in this paper is to develop a thermodynamically consistent and non-

contradictory multiphase phase field approach to stress- and temperature-induced martensitic transformations

with interfacial stresses and at finite strains, in which all the shortcomings of the previous models MPFA-I to

MPFA-IV are resolved. In particular,

(i) All of the A↔ Mi and variant↔variant transformation paths are well controlled in the present approach,

and the existence of a third phase between any two other phases is regulated as desired (compare with MPFA-I

and II). The Mi-Mj interfacial energy, width, and kinetic coefficients have been calibrated.

(ii) The interpolation functions for the A ↔ M transformations contain a free material parameter for

accommodating the non-equivalence of the austenite and martensite and providing the required flexibility in

the lattice instability conditions (compare with MPFA I to IV).

(iii) All possible multiphase junctions have been consistently penalized (compare with MPFA-I to IV).
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(iv) The model is applicable for any number of variants (compare with MPFA-III).

(v) The desired instability criteria for all the phases are also established (compare with MPFA-I and II).

Our model considers N + 1 order parameters in a system with A and N martensitic variants. The key

point is to describe A ↔ M PTs separately from Mi ↔ Mj PTs. The order parameter η0 is introduced, which

describes A↔ M transformations and is assumed to be 0 in A and 1 in M. To some extent η0 is similar to radial

order parameter Υ for hyperspherical order parameters, and shown as a vector η0 in Fig. 1(f) and (g). Other

N order parameters ηi describe the martensitic variants such that ηi = 1 in Mi and ηi = 0 in Mj for all j 6= i.

We constrain all ηi such that
∑N

i ηi = 1, i.e. all the variant-variant transformation paths are constrained to a

plane in the order parameter space ηi; see the schematics in Fig. 1 for a two variant system in (f) and a three

variant system in (g). Since η0 is independent of ηi, the η0 line does not belong to the order parameter space

ηi and is just shown conventionally. It starts at 0 (A) where η0 = 0 and ends at η0 = 1 corresponding to M and

shown conventionally at the martensitic plane
∑N

i ηi = 1. The thermodynamic potential is designed in a way

that A↔ M PTs occur at some ηi = 1 and ηj = 0 for all j 6= i. That is why the line η0 may be conventionally

directed along a Cartesian axis along which a specific martensitic variant transforms.

For controlling a third phase Mk (k 6= i, j) between two others, Mi and Mj , a similar idea from Refs. Levitas

and Roy (2015, 2016) have been considered, i.e. the free energy is penalized for deviation of the Mi ↔ Mj paths

from ηi + ηj = 1, for all i, j and i 6= j. In order to prevent the third phase, the penalizing coefficient is assumed

to tend to infinity, and to allow it the coefficient is taken to be small. Also, all possible multiphase junctions,

including those made by A and various martensitic variants, have been penalized. Note that when there are

two variants, the path ηi + ηj = 1 strictly follows from the constraint
∑N

i=1 ηi = 1.

Since the analytical solutions in our model exist for all interfaces, the interfacial stresses for all interfaces can

be introduced in a manner similar to the case for a single order parameter in Levitas (2014). An appropriate

expression for the Helmholtz free energy has been developed and the dissipation inequalities are derived. Based

on these inequalities, the system of Ginzburg-Landau equations for the order parameters have been formulated.

Three different kinematic models (KMs) are assumed for the transformation deformation gradient F t:

(i) In KM-I we express F t as a linear function of the Bain tensors of all the variants multiplied with the

nonlinear interpolation functions, similar to Levitas (2013a); Levitas et al. (2013).
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(ii) In KM-II we assume the natural logarith of F t as a linear function of the natural logarithm of the Bain

tensors multiplied with the interpolation functions, similar to Basak and Levitas (2017); Tůma and Stupkiewicz

(2016); Tůma et al. (2016).

(iii) In KM-III we derive F t using the twinning equation from the crystallographic theory of martensite,

similar to Clayton and Knap (2011a); Levitas and Preston (2002a, 2005).

It is to be noted that KM-II and III yield isochoric variant-variant transformations, but for KM-I the

transformation is volume changing. The lattice instability criteria for A↔ M and Mi ↔ Mi transformations have

been established for all the kinematic models, and a comparative study of the role of F t in the transformation

work and instability criteria has been presented.

A large strain finite element procedure has been developed and implemented using an open source deal.ii

framework (Bangerth et al. (2016)). Several model problems, yielding complex microstructures, have been

solved.

The effects of external loading, penalizing the triple junctions, and the size of the sample on microstructures

have been studied. In some cases differences in the microstructures are observed for KM-I and II even when all

other parameters and conditions are exactly identical. The normal elastic stress in the longitudinal direction

for the variant-variant interfaces (including the twin boundaries) are significantly large for both KM-I and II;

in fact, it is much larger for KM-II than that for KM-I, the reason for which has been investigated in Basak

and Levitas (2017). The KM-III yields excess elastic stress-relaxed twin boundaries.

The paper has been organized in the following manner. In Section 2, the order parameters are described.

In Section 3, the essential kinematic relations are enlisted. A general theory and the thermodynamic formalism

of our multiphase phase field approach, including expression for the free energy density, derivation of the

Ginzburg-Landau equations, constitutive relations for F t, and analysis of the transformation work for all the

KMs have been presented in Section 4. The thermodynamic instability criteria for the phase transformations

are established and analyzed in Section 5. All the governing equations for the model are summarized in Section

6. The analytical solutions of our Ginzburg-Landau equations and the material parameters for NiAl alloy are

listed in Section 7. The finite element results for some model problems have been presented in Section 8. Finally,

the paper is concluded in Section 9.
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Notation: We denote the inner product and multiplication of two second order tensors as A : B = AijBji and

(A ·B)ij = AikBkj , respectively, where repeated indices assume Einstein’s summation, and Aij and Bij are the

components of the tensors in a right handed orthonormal Cartesian basis {e1, e2, e3}. The Euclidean norm of

A is denoted as |A| = (AT : A)1/2; I is the second order identity tensor; A−1 and AT , respectively, denote

the inversion and transposition of A; cofA, devA, detA and trA designate the cofactor, deviatoric part,

determinant, and trace of A, respectively; a ⊗ b is the dyadic product of two arbitrary vectors a and b. The

reference, stress-relaxed intermediate, and current configurations are denoted by Ω0, Ωt, and Ω, respectively

(script 0 means that the quantity is defined in Ω0). The symbols ∇0 and ∇ designate the gradient operators in

Ω0 and Ω, respectively; ∇2
0 := ∇0 · ∇0 and ∇2 := ∇ · ∇ are the Laplacian operators in Ω0 and Ω, respectively.

The symbol := stands for equality by definition.

2. Order Parameters

The main desired feature of our model is to decouple the description of A↔ M PTs from the description of

Mi ↔ Mj PTs. This will allow us to avoid the phase equivalence condition (which is mandatory for martensitic

variants) in the formulation for A ↔ M PTs and use the same general interpolation functions used for the

theories with single order parameter (see e.g. Levitas (2013a); Levitas and Preston (2002a,b)). That is why we

introduce a separate order parameter η0 for the description of the A↔ M PT, which is equal to 0 in A and 1 in

M. Clearly there is a similarity between η0 and the radial order parameter Υ within the hyperspherical order

parameters in Levitas et al. (2003, 2013). Martensitic variants are described by N order parameters ηi such

that ηi = 1 in Mi and ηi = 0 in Mj for all j 6= i. To focus on the variant-variant transformations we impose the

constraint
N∑
i=1

ηi = 1, (1)

which is similar to the one accepted in the multiphase phase field approaches (Bollada et al. (2012); Garcke et

al. (1999); Kim et al. (2006); Moelans et al. (2009); Nestler (2005); Steinbach et al. (1996); Tóth et al. (2015)).

Geometrically, Eq. (1) describes a plane in the order parameter space ηi (Fig. 1 (f) and (g)) passing through

all the martensitic variants. While we wrote in Levitas and Roy (2015, 2016) that accepting the constraint (1)

does not allow one to impose the instability conditions, this can however be overcome in the current approach.
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Indeed, with the penalizing energy term we will have an option to constrain ηi to the lines ηi+ηj = 1 connecting

martensitic variants, and the instability conditions will be applied when this constraint is imposed. In contrast

to the hyperspherical order parameters, for which Υ can be naturally presented geometrically along with all

other (angular) order parameters (Fig. 1 (c) and (d)), η0 is independent of ηi and does not belong to the order

parameter space ηi. Still we have shown it conventionally in Fig. 1 (f) and (g). The η0-line (shown as a vector

in those figures) starts at 0 (A) and ends at η0 = 1 corresponding to the martensitic plane
∑N

i ηi = 1. As

it will be seen later, the thermodynamic potential constrain the A ↔ M PTs to some ηi = 1 and ηj = 0 for

all j 6= i. That is why the η0-line may be conventionally directed along the Cartesian axis corresponding to a

specific martensitic variant.

We denote the set of the arbitrary order parameters as η̃ = (η0, η1, . . . , ηi, . . . , ηN ) with the subset η̃M =

(η1, . . . , ηi, . . . , ηN ) for martensitic variants. Also, denote η̂0 = (η0 = 0, η1, . . . , ηi, . . . , ηN ) for A and η̂i = (η0 =

1, η1 = 0, . . . , ηi = 1, . . . , ηN = 0) for martensitic variant Mi.

3. Kinematics

Let us denote the position vectors of a particle in the reference configuration Ω0 and the current configuration

Ω by r0 and r, respectively, where r = r(r0, t) = r0 + u, and t and u are time instance and displacement

vector, respectively. In the intermediate configuration Ωt the body is imagined to be a set of arbitrarily small

disjoint pieces which are stress-relaxed. Denoting the mapping from Ω0 to Ωt by F t and the mapping from Ωt

to Ω by F e, the total deformation gradient F := ∇0r can be multiplicatively decomposed into (see, e.g. Levitas

(2014))

F = F e · F t = V e ·Re ·Rt ·U t = V e ·Rl ·U t, (2)

where the polar decompositions for the elastic F e = V e ·Re and transformational F t = Rt · U t deformation

gradient have been used. Here, suffixes e and t stand for elastic and transformational parts, respectively; V e is

the symmetric left elastic stretch tensor; U t is the symmetric right transformation stretch tensor; Rl = Re ·Rt

is the lattice rotation tensor. Also, we define J = detF := dV/dV0, Jt = detF t := dVt/dV0, and Je = detF e :=

dV/dVt, where dV0, dVt, and dV are infinitesimal volume elements in Ω0, Ωt, and Ω, respectively. Hence by Eq.
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(2), J = JeJt. Note that the thermal strains have been neglected here for compactness and can be included in

a manner similar to Levitas (2014).

The Lagrangian total and elastic strain tensors are defined as

E := 0.5(F T · F − I) = 0.5(U2 − I), and Ee := 0.5(F T
e · F e − I) = 0.5(U2

e − I). (3)

We define the Eulerian total and elastic strain tensors as

b := 0.5(F · F T − I) = 0.5(V 2 − I), and be := 0.5(F e · F T
e − I) = 0.5(V 2

e − I), (4)

respectively, where we have used the polar decompositions F = V ·R = R ·U with V and R being the total

left stretch tensor and the rotation tensor, respectively.

4. Phase field approach: General theory and thermodynamic formalism

In this section a thermodynamically consistent general theory for our multiphase phase field approach will

be presented. Our thermodynamic formalism presented here includes the constitutive relations for the observer

invariant free energy, the derivation of the dissipation inequality and the Ginzburg-Landau equations, thermo-

dynamic equilibrium conditions of homogeneous phases, an explicit form of the free energy, the constitutive

relations for the transformation deformation gradient, and finally, an analysis of the transformation work for

the KMs.

4.1. Free energy and dissipation inequality

A thermodynamically consistent general phase field theory for martensitic PT at finite strains was developed

in Levitas (2014). While our order parameters here have different meanings than in Levitas (2014), the general

formalism is still applicable. That is why we will directly consider the dissipation inequalities from (Levitas,

JMPS, 2014), which were derived using the first two laws of thermodynamics (see Section 2 therein):

P : Ḟ
T − ρ0ψ̇ − ρ0sθ̇ +∇0 · (Qη

0η̇0) +

N∑
i=1

∇0 · (Qη
i η̇i) ≥ 0; −1

θ
h0 · ∇0θ ≥ 0. (5)

In inequality (5) P denotes the first Piola-Kirchhoff stress, ρ0 is the mass density in Ω0, ψ is the Helmholtz

free energy per unit mass, s is the specific entropy per unit mass, θ > 0 is the absolute temperature, Qη
0 and
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Qη
i are the generalized force vectors in Ω0 (yet to be determined) which were introduced into the theory for

balancing some of the terms from the inequality (5) (see (Levitas, JMPS, 2014) for details), and h0 is the heat

flux. Eq. (5)2 is the Fourier’s inequality. As usual, we can assume the Fourier’s law for the flux h0 = −Kθ ·∇0θ,

where Kθ is the heat conductivity tensor, which is symmetric positive semi-definite. The evolution equation

for temperature at any material point can be obtained using the energy balance equation and the Fourier’s law

(see (Levitas, JMPS, 2014) for details).

On the other hand, to cast inequality (5)1 into an amenable form, we need to prescribe a constitutive relation

for ψ. We assume the Helmholtz free energy per unit mass in the following form (also see Levitas (2014)):

ψ(F , η0, ηi, θ,∇η0,∇ηi) =
Jt
ρ0
ψe(F e, η0, ηi, θ) + Jψ̆θ(η0, ηi, θ) + ψ̃θ(η0, ηi, θ) + ψp(η0, ηi) + Jψ∇(∇η0,∇ηi, η0, ηi).

(6)

In Eq. (6) ψe is the strain energy density per unit volume of the intermediate configuration Ωt; ψ̆
θ is the free

energy related to the barrier heights for A ↔ M and Mi ↔ Mj transformations; ψ̃θ is the thermal energy for

A ↔ M transformations (the thermal energy of all the variants is identical); ψp is the penalizing free energy

term, which allows us to control the transformation paths between variants, and to regulate the coexistence of

three or more phases at a single material point; ψ∇ is the gradient energy which penalizes the interfaces between

the phases. Note that ψ̆θ and ψ∇ have been multiplied with J , and the gradient of the order parameters is

considered in the deformed configuration for yielding the correct expression for the structural stress tensor (see

Levitas (2014) for further details).

We now use Eq. (6) in the inequality (5)1. Using the material time derivative of ψ given by Eq. (A.4) (see

Appendix A for the derivation) in the inequality (5)1 and assuming that the dissipation rate is independent of

θ̇, ˙∇0η0, and all ˙∇0ηi, we get the constitutive relations for the specific entropy and the generalized force vectors:

s = −∂ψ
∂θ
, Qη

0 = ρ0JF
−1 · ∂ψ

∇

∂∇η0
, and Qη

i = ρ0JF
−1 · ∂ψ

∇

∂∇ηi
, (7)

respectively, and the dissipation inequality reduces to

P d : Ḟ
T

+X0η̇0 +

N∑
i=1

Xiη̇i ≥ 0 in Ω0, (8)

where

P d := P − P e − P st (9)
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is the dissipative first Piola-Kirchhoff stress tensor, and P e and P st are the elastic and structural parts of P ,

respectively:

P e = Jt
∂ψe
∂F e

· F−Tt , P st = Jρ0(ψ̆
θ + ψ∇)F−T − Jρ0

(
∇η0 ⊗

∂ψ∇

∂∇η0
+

N∑
i=1

∇ηi ⊗
∂ψ∇

∂∇ηi

)
· F−T . (10)

The thermodynamic force Xl, conjugate to the generalized rate η̇l in inequality (8), is

Xl =
(
P T
e · F e − JtψeF−1t

)
:
∂F t

∂ηl
− Jt

∂ψe
∂ηl

∣∣∣∣
F e

− ρ0J
∂(ψ̆θ + ψ∇)

∂ηl
− ρ0

∂(ψ̃θ + ψp)

∂ηl
+∇0 ·

(
ρ0JF

−1 · ∂ψ
∇

∂∇ηl

)
,

for l = 0, 1, 2, . . . , N, (11)

which can also be expressed in the following compact form (also see Levitas (2014))

Xl = −ρ0
∂ψ

∂ηl
+∇0 ·

(
ρ0J

∂ψ∇

∂∇0ηl

)
for l = 0, 1, 2, . . . , N. (12)

To obtain the last term in Eq. (12), we have used the relation ∂ψ∇

∂∇0ηl
= F−1 · ∂ψ∇

∂∇ηl which can be easily proved

using the chain rule of differentiation and F := ∇0r. We simplify our theory by assuming the dissipation due

to viscous stress power and the evolution of all order parameters to be independent, and thus decoupling the

inequality (8) into

P d : Ḟ
T ≥ 0, and X0η̇0 +

N∑
i=1

Xiη̇i ≥ 0 in Ω0. (13)

Using Eqs. (9), (10), and also the relation between σ and P ,

σ = J−1P · F T , (14)

the following expressions for the dissipative, elastic, and structural Cauchy stress tensors are obtained:

σd := σ − σe − σst, σe = J−1e
∂ψe(Ee)

∂F e
· F T

e = Jt F e ·
∂ψe(Ee)

∂Ee
· F T

e

σst = ρ0(ψ̆
θ + ψ∇)I − ρ0

(
∇η0 ⊗

∂ψ∇

∂∇η0
+

N∑
i=1

∇ηi ⊗
∂ψ∇

∂∇ηi

)
. (15)

Our general theory applies to both isotropic and anisotropic materials. For the isotropic elastic materials, which

we will consider in applications, Eq. (15)2 for the Cauchy elastic stress can be reduced to

σe = J−1e V 2
e ·
∂ψe(be)

∂be
; (16)
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see any textbook on nonlinear elasticity or Levitas (2014). The thermodynamic driving force given by Eq. (11)

can also be expressed in terms of the Cauchy stresses as

Xl =
(
JF−1 · σe · F − JtψeI

)
: F−1t ·

∂F t

∂ηl
− Jt

∂ψe
∂ηl

∣∣∣∣
F e

− ρ0J
∂(ψ̆θ + ψ∇)

∂ηl
− ρ0

∂(ψ̃θ + ψp)

∂ηl
+

∇0 ·
(
ρ0JF

−1 · ∂ψ
∇

∂∇ηl

)
for l = 0, 1, 2, . . . , N. (17)

Note that the driving force Xl depends explicitly on the elastic stresses only. Still, the structural stresses

contribute to Xl indirectly by changing the elastic stresses through the mechanical equilibrium equation

∇0 · P = 0 in Ω0, or equivalently, ∇ · σ = 0 in Ω, (18)

where body and inertial forces have been neglected for simplicity.

4.2. Ginzburg-Landau equations

Using the dissipation inequality (13)2 we will now derive the kinetic relations for the order parameters, which

are also called the Ginzburg-Landau equations. We will perform some transformations and make assumptions

which will allow us to write down kinetics equations for PT between each of the two phases independent of other

phases. Then all kinetic parameters can be calibrated using the mobilities of interfaces between each of the two

phases known from the experiments or atomistic simulations. As the first step, we assume that the dissipation

rate due to A ↔ M and Mi ↔ Mj transformations, D0 and DM , respectively, are mutually independent, and

hence the inequality (13)2 can be expressed in the following decoupled form:

D0 = η̇0X0 ≥ 0 and DM =

N∑
i=1

η̇iXi ≥ 0. (19)

Based on the inequality (19)1, we postulate the kinetic law for η0

η̇0 = L0MX0, (20)

where L0M ≥ 0 is the kinetic coefficient for an A-M interface. To derive the kinetic law for the variants, we use

Eq. (19)2 in combination with the constraint (1)

N∑
i=1

ηi = 1, ⇒
N∑
i=1

η̇i = 0, (21)
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which enforces the sum of the order parameters ηi (for i = 1, . . . , N) to lie on a prescribed plane in the

N -dimensional order parameter space; see Figs. 1(f) and 1(g).

We cannot directly write down the kinetic equations for individual η̇i based on the inequality (19)2, since

that will not lead to the physically meaningful evolution laws for the order parameters ηi. That is why we define

the new variables η̇ij = η̇i − η̇j which signify the rate of transformation between variants Mj and Mi, and also

define corresponding driving force Xij = Xi −Xj (see Idesman et al. (2005); Levitas et al. (2004) for a similar

treatment for concentration related order parameters). Obviously, η̇ij = −η̇ji, η̇ii = 0, and Xii = 0. Using the

definition of η̇ij along with the rate equation (21)2, it can be shown that

η̇i =
N∑
j=1

η̇ij
N
. (22)

Using the definitions of η̇ij and Xij , we write that

N∑
i=1

N∑
j=1

Xij
η̇ij
N

=
N∑
i=1

N∑
j=1

Xiη̇i
N
−

N∑
i=1

N∑
j=1

Xiη̇j
N
−

N∑
i=1

N∑
j=1

Xj η̇i
N

+
N∑
i=1

N∑
j=1

Xj η̇j
N

=

N∑
i=1

Xiη̇i −
N∑
i=1

Xi

N∑
j=1

η̇j
N
−

N∑
j=1

Xj

N∑
i=1

η̇i
N

+

N∑
j=1

Xj η̇j . (23)

Now using Eqs. (21)2 and the definition of DM from inequality (19)2 in Eq. (23), we obtain

DM =
1

2

N∑
i=1

N∑
j=1

Xij
η̇ij
N

=
N−1∑
i=1

N∑
j=i+1

Xij
η̇ij
N
≥ 0, (24)

where we have used Xij η̇ij = Xjiη̇ji. This is the desired form of the dissipation rate for variant-variant

transformations, which proves that Xij and η̇ij/N are the generalized thermodynamic forces and the rates for

Mi ↔ Mj transformations, respectively. In terms of these variables, we can assume that the dissipation rate

due to the Mi ↔ Mj transformations is independent of any other martensitic variant Mk (k 6= i, j). Then the

inequality (24) can be split into the following independent inequalities

Xij η̇ij ≥ 0 (no summation) for all i, j = 1, 2, . . . , N, and i 6= j. (25)

Based on the inequality (25), we postulate the simplest kinetic relations for the Mi ↔ Mj transformations which

are independent of any other martensitic variant Mk:

η̇ij
N

= LijXij (no summation) for all i, j = 1, 2, . . . , N, and i 6= j, (26)
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where Lij ≥ 0 is the kinetic coefficient for the transformations between Mi and Mj . For a convenience of further

derivations, the scalar N is not included in Lij , and Lij = Lji follows from the a comparison of Eq. (26) with

its equivalent form η̇ji/N = LjiXji (recall that η̇ij = −η̇ji and Xji = −Xij). Equation (26) yields 0.5N(N − 1)

independent equations for η̇ij for all i, j = 1, 2, . . . , N, and i 6= j, and also there are 0.5N(N − 1) independent

interfaces between martensitic variants, i.e. all Lij can be determined in terms of the known mobility of all the

variant-variant interfaces. Note that for a given i, we will have N − 1 equations from Eq. (26) involving η̇i.

Adding all those N − 1 equations and then using Eq. (22), we obtain the final form of the evolution equations

for the order parameters:

η̇i =
N∑

j=1,j 6=i
LijXij for all i = 1, 2, . . . , N. (27)

Here the kinetic coefficients for all the variant-variant interfaces are independent and not subject to any re-

striction other than that they must be non-negative, as desired in a robust theory; see Tóth et al. (2015). This

is in contrast to several existing multiphase phase field models (Garcke et al. (1999); Nestler (2005); Steinbach

et al. (1996); Steinbach and Pezzolla (1999)), where the coefficients were either identical or subjected to some

restrictions; see e.g. Tóth et al. (2015) for a more detailed analysis. Note that for the equivalent interfaces be-

tween martensitic variants, the corresponding kinetic coefficients are equal. For example, for cubic to tetragonal

transformations, all three variants and three variant-variant interfaces are equivalent and thus all the kinetic

coefficients Lij are the same.

4.3. Thermodynamic equilibrium conditions for homogeneous states

Elaborating the approach developed in Levitas (2013a); Levitas and Preston (2002a,b), we will now deter-

mine the implications of the thermodynamic equilibrium condition on the forms of the dependence of F t and

various material properties (such as entropy, elastic, and thermal properties etc.) on the order parameters η0

and ηi. This will impose restrictions on the interpolation functions. Using Eqs. (20) and (27), we see that the

stationary solutions of the system of Ginzburg-Landau equations, i.e. η̇0 = 0 and η̇i = 0, correspond to

X0 = 0, and Xi −Xj = 0 for all i 6= j. (28)

Here we are interested in obtaining the conditions for the homogeneous phases, i.e. when the gradient terms

are neglected, and hence impose the following conditions:
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The set of the order parameters for A, η̃ = η̂0, and for Mi, η̃ = η̂i, must satisfy the equilibrium conditions in

Eq. (28) at any stress P , temperature θ, and associated elastic deformation gradient F e. The condition (28)1

thus using Eq. (11) leads to

Jt
∂ψe(Ee, θ, η̂0)

∂η0

∣∣∣∣
F e

− ρ0J
∂ψ̆θ(θ, η̂0)

∂η0
− ρ0

∂ψ̃θ(θ, η̂0)

∂η0
− ∂ψp(θ, η̂0)

∂η0
= 0 and

∂F t(η̂0)

∂η0
= 0, (29)

and Eq. (28)2 yields

Jt

(
∂ψe(Ee, θ, η̂i)

∂ηi

∣∣∣∣
F e

− ∂ψe(Ee, θ, η̂i)

∂ηj

∣∣∣∣
F e

)
− ρ0J

(
∂ψ̆θ(θ, η̂i)

∂ηi
− ∂ψ̆θ(θ, η̂i)

∂ηj

)
−

ρ0

(
∂ψ̃θ(θ, η̂i)

∂ηi
− ∂ψ̃θ(θ, η̂i)

∂ηj

)
−
(
∂ψp(θ, η̂i)

∂ηi
− ∂ψp(θ, η̂i)

∂ηj

)
= 0 and

∂F t(η̂i)

∂ηi
− ∂F t(η̂i)

∂ηj
= 0 for all i, j = 1, 2, . . . , N, but i 6= j. (30)

We determine all the material properties (e.g. transformation strain, elastic moduli, specific heat etc.) using

M(η0, ηi, θ,F ) = M0(1− ϕ(a, η0)) +

N∑
i=1

Miφi(ηi)ϕ(a, η0). (31)

where M0 = M0(θ,F ) and Mi = Mi(θ,F ) are the properties of A and Mi, respectively, ϕ(a, η0) and φi(ηi)

are the interpolation functions, and a is a parameter. By definition, M(η̂0, θ,F ) = M0 and M(η̂i, θ,F ) = Mi,

which yield

ϕ(a, 0) = 0, ϕ(a, 1) = 1; and φi(0) = 0, φi(1) = 1. (32)

When Eq. (31) is used in Eqs. (29) and (30), the following additional conditions for the interpolation functions

are yielded:
∂ϕ(a, 0)

∂η0
=
∂ϕ(a, 1)

∂η0
= 0, (33)

Mi
∂φi(ηi = 0)

∂ηi
= Mj

∂φj(ηj = 1)

∂ηj
and Mi

∂φi(ηi = 1)

∂ηi
= Mj

∂φj(ηj = 0)

∂ηj
for all i 6= j. (34)

Since the conditions in Eq. (34) must be satisfied for all i and j( 6= i) with all possible distinct Mi and Mj (since

properties of the variants can be different; e.g. the transformation strains), the derivative of the interpolation

19



functions must satisfy
∂φi(ηi = 0)

∂ηi
=
∂φi(ηi = 1)

∂ηi
= 0 for all i = 1, 2, . . . , N. (35)

Within a fourth-degree potential, the general expression for the interpolation functions, which satisfy the

criteria (32), (33), and (35) are

ϕ(a, η0) = aη20 + (4− 2a)η30 + (a− 3)η40 = aη20(1− η0)2 + η30(4− 3η0) and (36)

φ(ηi) = ϕ (3, ηi) = η2i (3− 2ηi). (37)

The interpolation function φ(ηi) in addition satisfies the antisymmetry condition

φ(1− ηi) = 1− φ(ηi), (38)

and for ηj = 1− ηi, one has

φ(1− ηi) = φ(ηj) = 1− φ(ηi). (39)

With this function, all the material properties, and thus the entire theory are invariant with respect to the

exchange of two martensitic variants, i.e. (Mi, ηi)↔(Mj , ηj) for ηi + ηj = 1; see Levitas and Roy (2016). This

means that all variants are equivalent, which cannot be achieved with a more general interpolation function

ϕ(a, ηi) for a 6= 3. Function ϕ(a, η0) for A ↔ M PTs should not satisfy the antisymmetry conditions and that

is why it contains a free material parameter a as desired.

4.4. Explicit expression for Helmholtz free energy

Using a routine procedure (see Zheng (1994)) one can show that for the interfacial energy, the free energy

ψ given by Eq. (6) would be observer invariant, when

ψe(F e, η0, ηi, θ) = ψe(Ee, η0, ηi, θ), and ψ∇(∇ηi,∇ηj) = ψ̂∇(∇ηi · ∇ηj) for i, j = 0, 1, . . . N, (40)

where ψ∇ is isotropic.
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4.4.1. Local free energy

Elastic energy can be presented as a Taylor series expansion corresponding to the chosen crystal lattice

symmetry group and ηi-dependent elastic properties; see, e.g. Levitas (2013a). Here, for simplicity, we consider

a quadratic strain energy density

ψ̂e = 0.5Ee : C(η0, ηi) : Ee, (41)

where C is the fourth order elasticity tensor taken as (see Eq. (31))

C(η0, ηi) = (1− ϕ(a, η0))C0 + ϕ(a, η0)
N∑
i=1

φi(ηi)Ci, (42)

where C0 and Ci are the elasticity tensors for A and Mi, respectively.

Thermal energy. Rewriting the fourth degree potential related to the thermal energy given by Eq. (36) as

ϕ(aθ, η0) = (aθ−3)η20(1−η0)2 +η20(3−2η0) (also see Levitas (2013b, 2014)), we present the part of the thermal

energy which contributes into the interfacial stresses as (see Eqs. (6) and (10)2)

ψ̆θ = [A(θ) + (aθ − 3)∆ψθ(θ)]η20(1− η0)2 + Ā
N−1∑
i=1

N∑
j=i+1

η2i η
2
jϕ(ab, η0), (43)

and the part which does not contribute into the interfacial stresses as

ψ̃θ = ψθ0(θ) + η20(3− 2η0)∆ψ
θ(θ), (44)

respectively. Such a division of the fourth-degree polynomial in η0 into ψ̆θ and ψ̃θ is justified by analytical

solution for a propagating A↔ M interface in Section 7.1. In Eqs. (43) and (44) the symbols A and Ā denote

the barrier heights for A↔ M transformations and all Mi ↔ Mj transformations, respectively; ∆ψθ = ψθM −ψθ0;

ψθ0 and ψθM are the thermal energy of A and M, respectively (note that thermal energy of all the variants is

identical), see, e.g. Levitas (2000):

ψθl = ψθr − sl(θ − θr)− cσl θ ln(θ/θr) + cσl (θ − θr) for l = 0,M, (45)

where sl is the entropy of the corresponding phase and cσl = θ(∂s/∂θ)σ is the specific heat of phases at constant

Cauchy stresses, θr and ψθr are the chosen reference temperature and corresponding energy. We assume θr = θe,

where θe is the thermodynamic equilibrium temperature between A and M. Thus, we have

∆ψθ = ψθM − ψθ0 = −∆s(θ − θe)−∆cσ θ ln(θ/θe) + ∆cσ(θ − θe), (46)
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where ∆s = sM − s0 and ∆cσ = cσM − cσ0 . Obviously, if the specific heats of A and M are identical,

∆ψθ = −∆s(θ − θe). (47)

The barrier function and its first derivative are zero in A and in all the martensitic variants Mi, i.e. it does not

violate the thermodynamic equilibrium conditions given by Eqs. (29)1 and (30)1. For A↔ M transformations,

the second term in Eq. (43) disappears, and we are left with the traditional double-well barrier function.

For Mi ↔ Mj transformations, η0 = 1, and by choosing the proper penalizing terms we impose that the

transformation path represents straight line ηj + ηi = 1 (see below); hence ψ̆θ = Ā(θ)η2i (1− ηi)2, i.e. it has the

same functional form as for A↔ M PTs.

The penalty terms are accepted in the form:

ψp =
N−1∑
i=1

N∑
j=i+1

Kij(ηi + ηj − 1)2η2i η
2
j +

N−1∑
i=1

N∑
j=i+1

K0ijη
2
0η

2
i η

2
j (1− ϕ(aK , η0)) +

N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

Kijkη
2
i η

2
j η

2
k

+
N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

K0ijkη
2
0η

2
i η

2
j η

2
k(1− ϕ(aK , η0)) +

N−3∑
i=1

N−2∑
j=i+1

N−1∑
k=j+1

N∑
l=k+1

Kijklη
2
i η

2
j η

2
kη

2
l , (48)

where the coefficients satisfy the symmetry relations

Kij = Kji; K0ij = K0ji; Kijk = Kjik = Kjki = Kkji = Kkij = Kikj ; K0ijk = K0jik = K0jki = K0kji

= K0kij = K0ikj ; Kijkl = Kjikl = Kkjil = Kljki = Kikjl = Kilkj = Kijlk; (49)

and also they satisfy

Kii = K0ii = Kiik = Kiji = Kiii = K0iik = K0iji = K0iii = Kiikl = Kijil = Kijki = Kijjl = Kijkk = 0. (50)

Obviously, the penalty function ψp is zero in A and all martensitic variants Mi and has zero first derivatives

therein, i.e. it also does not violate the thermodynamic equilibrium conditions Eqs. (29)1 and (30)1. The

coefficient Kij ≥ 0 is a control parameter for penalizing the deviation of the Mi ↔ Mj transformation path

from the straight line ηi + ηj = 1 for ηk = 0 and k 6= i, j. Note that when Kij → ∞, ηi and ηj strictly follow

the straight line, and hence no third phase Mk (for all k 6= i, j) can nucleate within the interface between Mi

and Mj . However, a third phase can nucleate when Kij is small.
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The second and third terms in Eq. (48) penalize the coexistence of any three phases at a single material point.

Namely, the term with K0ij penalizes triple junctions between austenite and any two martensitic variants. This

term has been multiplied by 1−ϕ(a, η0) to restrict the contribution of the penalty term in a small neighborhood

of the triple junctions only. Had this multiplication factor not been there, this term would have been nonzero

in M and have a similar contribution as the second term (with Ā) in Eq. (43), which should be avoided. The

term with Kijk penalizes triple junctions between any three martensitic variants. Similarly, the terms with

coefficients K0ijk and Kijkl penalize the quadruple junctions. All other higher junctions, e.g. those in wedge

microstructures (Bhattacharya (2004)) and considered in Ruddock (1994), can be penalized in an analogous

way.

4.4.2. Nonlocal free energy

The gradient energy satisfying the observer invariance condition Eq. (40)2 is assumed to be

ψ∇ =
1

2ρ0

β0M |∇η0|2 +

N∑
i=1

N∑
j=1,6=i

βij
8
|∇ηij |2ϕ̃(η0, aβ, a0)


=

β0M
2ρ0
|∇η0|2 +

1

8ρ0

N−1∑
i=1

N∑
j=i+1

βij
(
|∇ηi|2 + |∇ηj |2 − 2∇ηi · ∇ηj

)
ϕ̃(η0, aβ, a0), (51)

where β0M ≥ 0 is the gradient energy coefficient for the A-M interface, βij = βji > 0 (i 6= j) is the gradient

energy coefficient for the Mi-Mj interface, and we have taken βii = 0 for all i. The energy ψ∇ is obviously

quadratic and positive. When only two variants are present in a system, using the constraint (21)1, we express

the gradient energy in terms of the order parameters η0 and ηi:

ψ∇ =
1

2ρ0

(
β0M |∇η0|2 + βij |∇ηi|2ϕ̃(η0, aβ, a0)

)
, (52)

which explains the factor 1/8 in Eq. (51). For a three-variant system the gradient energy takes the following

form:

ψ∇ =
β0M
2ρ0
|∇η0|2 +

1

8ρ0

[
(βij + βik) |∇ηi|2 + (βij + βjk) |∇ηj |2 + (βik + βjk) |∇ηk|2−

2 (βij∇ηi · ∇ηj + βjk∇ηj · ∇ηk + βik∇ηi · ∇ηk)] ϕ̃(η0, aβ, a0). (53)
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Several other constitutive models for the gradient energy were used within the multiphase phase field models

in Garcke et al. (1999); Nestler (2005); Steinbach et al. (1996); Steinbach and Pezzolla (1999), however, they

possess some thermodynamical issues; see Tóth et al. (2015) for analysis. In contrast, the gradient energy

within the present model is fully consistent.

Also, note that in Eq. (51) we have considered a different interpolation function:

ϕ̃(aβ, a0, η0) = aβη
2
0 − 2[aβ − 2(1− a0)]η30 + [aβ − 3(1− a0)]η40 + a0, (54)

where aβ and a0 are constant parameters. Obviously,

ϕ̃(aβ, 0, η0) = ϕ(aβ, η0); ϕ̃(aβ, a0, 0) = a0;
∂ϕ̃(aβ, a0, 0)

∂η0
=
∂ϕ̃(aβ, a0, 1)

∂η0
= 0. (55)

The interpolation function ϕ̃ is used in order to penalize Mi-Mj interfaces within A (η0 = 0). Clearly, A may

nucleate at the interface between martensitic variants, see experiments in Xu et al. (1998), 1D models in Falk

(1983); Levitas et al. (2003), and a 2D model in Levitas and Javanbakht (2011). For this case, in our phase

field model the Mi-Mj interface passes through the region with η0 = 0. If a0 = 0, the contribution of the

gradient coefficient for Mi-Mj within A vanishes, which leads to zero Mi-Mj interface width and energy and

an ill-posed problem formulation. In simulations the variant-variant interface will thus be localized within one

computational cell producing a mesh-dependent solution. However, a nonzero a0 prevents this issue. A similar

problem arises for nucleation of any third phase at the interface between two other phases, e.g. nucleation of

melt at a solid-solid interface (Levitas and Momeni (2014); Momeni and Levitas (2014, 2015)).
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4.5. Explicit form for generalized forces for phase transformations and structural stresses

4.5.1. General case

We will now obtain the explicit expressions for the generalized forces Xi. Using the local and nonlocal

energy terms listed in Eqs. (41), (43), (44), (48), and (51) into Eq. (11), we obtain

X0 =
(
P T
e · F e − JtψeF−1t

)
:
∂F t

∂η0
− Jt

2
Ee :

∂C
∂η0

: Ee − ρ0(6η0 − 6η20)∆ψθ − Jρ0Ā
N−1∑
i=1

N∑
j=i+1

η2i η
2
j

∂ϕ(ab, η0)

∂η0

−ρ0J [A(θ) + (aθ − 3)∆ψθ(θ)](2η0 − 6η20 + 4η30)− J

8

∂ϕ̃(aβ, a0, η0)

∂η0

N−1∑
i=1

N∑
j=i+1

βij |∇ηi −∇ηj |2 −

ρ0

N−1∑
i=1

N∑
j=i+1

K0ijη
2
i η

2
j +

N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

K0ijkη
2
i η

2
j η

2
k

[2η0(1− ϕ(aK , η0))− η20
∂ϕ(aK , η0)

∂η0

]
+

∇0 ·
(
β0MJF

−1 · ∇η0
)

; (56)

Xi =
(
P T
e · F e − JtψeF−1t

)
:
∂F t

∂ηi
− Jt

2
Ee :

∂C
∂ηi

: Ee − 2ρ0JĀ
N∑

j=1, 6=i
ηiη

2
jϕ(ab, η0)−

2ρ0

N∑
j=1

Kij(ηi + ηj − 1)(2ηi + ηj − 1)ηiη
2
j − 2ρ0

 N∑
j=1

K0ijη
2
j +

N−1∑
j=1

N∑
k=j+1

K0ijkη
2
j η

2
k

×
ηiη

2
0(1− ϕ(aK , η0))− 2ρ0

N−1∑
j=1

N∑
k=j+1

Kijkη
2
j η

2
k +

N−2∑
j=1

N−1∑
k=j+1

N∑
l=k+1

Kijklη
2
j η

2
kη

2
l

 ηi +

∇0 ·

Jϕ̃(aβ, a0, η0)
N∑
j=1

βij
4
F−1 · (∇ηi −∇ηj)

 for all i = 1, 2, . . . , N. (57)

The first terms on the right hand side of both Eqs. (56) and (57) are related to the transformation work. The

elastic, barrier, thermal, gradient, and local penalization energies also contribute to the forces. In Eq. (56) the

terms with penalty coefficients K0ij and K0ijk are nonvanishing only within the regions where A and the variants

coexists, which is the desired condition. Since in austenite η0 = 0 and ∂ϕ(aK , 0)/∂η0 = 0, and in martensite

ϕ(aK , 1) = 1 and ∂ϕ(aK , 1)/∂η0 = 0, all the terms with K0ij and K0ijk disappear therein. Also, note that the

penalty terms contribute to the microstructure evolutions only if the coefficients K0ij and K0ijk are comparable

with or larger than the double-well barrier heights and the thermal energy. For example, in NiAl alloy which
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undergoes cubic to tetragonal PT, A0M , Ā and ∆ψθ (at a temperature far from the thermodynamic equilibrium

temperature) are at the level of several GPa; see e.g. Levitas and Preston (2002a,b). In view of that, K0ij

and K0ijk should also be several GPas, and then only the system will avoid coexistence of A and the variants

at a single material point to minimize the total energy. However, if these coefficients are less than a GPa,

their contribution will be negligible and the multiphase junctions will not be penalized. Similarly, the penalty

coefficients (including Kij) must also be at least of the order of GPa or higher to enforce the variant↔variant

transformation paths close to the straight lines ηi + ηj = 1; see Figs. 1(f) and 1(g). Smaller Kij would yield

the transformation paths similar to the dashed curves shown in those figures. The last terms in Eqs. (56) and

(57) appear due to the gradient energy, and they determine the structure of the interfaces.

The exact expressions for the structural stresses P st and σst given by Eqs. (10)2 and (15)3, respectively,

are rewritten using Eq. (51) as

P st = Jρ0(ψ̆
θ + ψ∇)F−T − Jβ0M∇η0 ⊗∇η0 · F−T − Jϕ̃(aβ, a0, η0)

N∑
i=1

N∑
j=1

βij
4
∇ηi ⊗ (∇ηi −∇ηj) · F−T ;

σst = ρ0(ψ̆
θ + ψ∇)I − β0M∇η0 ⊗∇η0 − ϕ̃(aβ, a0, η0)

N∑
i=1

N∑
j=1

βij
4
∇ηi ⊗ (∇ηi −∇ηj). (58)

When there is just a single interface between A and Mi or between Mi and Mj , the stress σst can be easily

proved to be biaxial (a tangential tensor), and its magnitude is equal to the corresponding interfacial energy

(see below and Levitas (2014)). If in A gradient of some ηi is not zero, this corresponds to a complex Mi-A-Mj

interface, or triple and multiple junction, and the stresses have a more complex structure, which does not have

counterparts for a sharp interface. Some examples of interfacial stresses for complex interfaces can be found in

Momeni and Levitas (2016).

4.5.2. Explicit form of the equations for a system with two variants

Let us assume Kij → ∞ for the chosen i and j, i.e. the constraint ηj + ηi = 1 is imposed, and we will

obtain the explicit forms of the Ginzburg-Landau equations for a system with austenite A and two martensitic

variants Mi and Mj . When ηj is replaced by 1− ηi in Eq. (37), we have

φj(ηj) = 1− φi(ηi), and
∂φj(ηj)

∂ηj
=
∂φi(ηi)

∂ηi
. (59)
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Obviously, we can express the kinetics of this system just in terms of two independent order parameters η0

and ηi. Substituting ηj = 1− ηi and using Eq. (59) and the material property given by Eq. (31) into Eq. (20)

and Eq. (27), the Ginzburg-Landau equations are finally simplified to

η̇0 = L0MX0M

= L0M

[(
P T
e · F − JtψeI

)
: F−1t ·

∂F t

∂η0
− 0.5Jt

∂ϕ(aε, η0)

∂η0
Ee : {Cj + (Ci − Cj)φi − C0} : Ee−

ρ0∆ψ
θ(6η0 − 6η20)− ρ0ĀJ

∂ϕ(ab, η0)

∂η0
η2i (1− ηi)2 − Jρ0{A(θ) + (aθ − 3)∆ψθ(θ)}(2η0 − 6η20 + 4η30)−

ρ0K0ij

(
2η0{1− ϕ(aK , η0)} − η20

∂ϕ(aK , η0)

∂η0

)
η2i (1− ηi)2 − 0.5Jβij |∇ηi|2

∂ϕ̃(aβ, a0, η0)

∂η0
+

∇0 · (β0MJF−1 · ∇η0)
]

and (60)

η̇i = Lij(Xi −Xj)

= Lij

[
(P T

e · F − JtψeI) : F−1t ·
(

∂F t

∂φ(ηi)
− ∂F t

∂φ(1− ηi)

)
∂φi
∂ηi
−

0.5Jtϕ(aε, η0)
∂φi(ηi)

∂ηi
Ee : (Ci − Cj) : Ee − ρ0JĀϕ(ab, η0)(2ηi − 6η2i + 4η3i )−

ρ0K0ijη
2
0(2ηi − 6η2i + 4η3i )(1− ϕ(aK , η0)) +∇0 · (Jϕ̃(aβ, a0, η0)βijF

−1 · ∇ηi)
]
, (61)

respectively. Note that in the first term of Eq. (61)2 the derivatives of F t(φ(ηi), φ(1− ηi)) are with respect to

φ(ηi) and φ(1− ηi), respectively.

The derivatives of F t and ψe in Eq. (61) with respect to ηi should be determined considering ηj to be a

constant and vice versa. All other terms in Eq. (61) have been expressed after applying ηj = 1− ηi. Since the

only possible triple junctions in this system are those made by A, and variants Mi and Mj , only the penalizing

term with coefficient K0ij is nontrivial.

The structural first Piola-Kirchhoff and Cauchy stress tensors in Eq. (58) simplify to

P st = Jρ0(ψ̆
θ + ψ∇)F−T − Jβ0M∇η0 ⊗∇η0 · F−T − βijJϕ̃(aβ, a0, η0)(∇ηi ⊗∇ηi) · F−T and

σst = ρ0(ψ̆
θ + ψ∇)I − β0M∇η0 ⊗∇η0 − βijϕ̃(aβ, a0, η0)∇ηi ⊗∇ηi, (62)
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respectively, where

ψ̆θ = [A(θ) + (aθ − 3)∆ψθ(θ)] η20(1− η0)2 + Āϕ(ab, η0)η
2
i (1− ηi)2 and

ψ∇ =
1

2ρ0
(β0M |∇η0|2 + βijϕ̃(aβ, a0, η0)|∇ηi|2). (63)

In particular, for the A-M and Mi - Mj interfaces, Eqs. (62) and (63) reduce to (see Levitas (2014) for details)

σst = σ0Mst (I − k0M ⊗ k0M ), where σ0Mst = β0M |∇η0|2 = 2ρ0ψ̆
θ and k0M = ∇η0/|∇η0|, and,

σst = σijst(I − kij ⊗ kij), where σijst = βij |∇ηi|2 = 2ρ0ψ̆
θ and kij = ∇ηi/|∇ηi|, (64)

respectively. Clearly, the structural Cauchy stress tensor is biaxial within interfaces between each pair of phases.

4.5.3. Explicit form of the equations for a system with three variants

For a more complex system with austenite and three martensitic variants Mi, Mj , and Mk, using Eq. (27)

the kinetic equations can be expressed as

η̇i = Lij(Xi −Xj) + Lik(Xi −Xk),

η̇j = Lji(Xj −Xi) + Ljk(Xj −Xk),

η̇k = Lki(Xk −Xi) + Lkj(Xk −Xj) = −η̇i − η̇j , (65)

where the driving forces are expressed in terms of all the order parameters η0, ηi, ηj , and ηk:

X0 = (P T
e · F e − JtψeF−1t ) :

∂F t

∂η0
− Jt

∂ψe
∂η0

∣∣∣∣
F e

− ρ0JĀ(η2i η
2
j + η2j η

2
k + η2i η

2
k)
∂ϕ(aβ, η0)

∂η0
−

(6η0 − 6η20)ρ0∆ψ
θ − Jρ0{A(θ) + (aθ − 3)∆ψθ(θ)}(2η0 − 6η20 + 4η30)− ρ0(K0ijη

2
i η

2
j +K0jkη

2
j η

2
k +

K0kiη
2
kη

2
i +K0ijkη

2
i η

2
j η

2
k)

(
2η0{1− ϕ(aK , η0)} − η20

∂ϕ(aK , η0)

∂η0

)
−

J

8

∂ϕ̃(aβ, a0, η0)

∂η0

[
(βij + βik)|∇ηi|2 + (βij + βjk)|∇ηj |2+ (βjk + βik)|∇ηk|2 −

2 (βij∇ηi · ∇ηj + βjk∇ηj · ∇ηk + βki∇ηk · ∇ηi)] +∇0 · (Jβ0MF−1 · ∇η0), (66)
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Xi = (P T
e · F e − JtψeF−1t ) :

∂F t

∂ηi
− Jt

∂ψe
∂ηi

∣∣∣∣
F e

− 2ρ0JĀηi(η
2
j + η2k)ϕ(ab, η0)−

2ρ0Kijηiη
2
j (ηi + ηj − 1)(2ηi + ηj − 1)− 2ρ0Kikηiη

2
k(ηi + ηk − 1)(2ηi + ηk − 1)−

2ρ0η
2
0ηi(K0ijη

2
j +K0ikη

2
k +K0ijkη

2
j η

2
k)(1− ϕ(aK , η0))− 2ρ0Kijkηiη

2
j η

2
k +

∇0 ·
[
J

4
ϕ̃(aβ, a0, η0)F

−1 · {(βij + βik)∇ηi − (βij∇ηj + βik∇ηk)}
]
. (67)

For calculating the derivatives ∂F t/∂ηi and ∂ψe/∂ηi in Eq. (67), the other order parameters ηj and ηk are

taken to be constant. The expressions for Xj and Xk can be obtained just by interchanging i and j, and i and

k, respectively, in Eq. (67). Evidently, among the three kinetic relations in Eq. (65), only two are independent.

Hence one can solve any two equations in conjunction with the constraint ηi + ηj + ηk = 1 for determining all

the order parameters related to the variants.

The structural stress tensors given in Eq. (58) are expressed as

P st = Jρ0(ψ̆
θ + ψ∇)F−T − Jβ0M∇η0 ⊗∇η0 · F−T −

J

4
ϕ̃(aβ, a0, η0)[βij(∇ηi ⊗∇ηi +∇ηj ⊗∇ηj −

∇ηi ⊗∇ηj −∇ηj ⊗∇ηi) + βjk(∇ηj ⊗∇ηj +∇ηk ⊗∇ηk −∇ηj ⊗∇ηk −∇ηk ⊗∇ηj) +

βki(∇ηi ⊗∇ηi +∇ηk ⊗∇ηk −∇ηk ⊗∇ηi −∇ηi ⊗∇ηk)] · F−T , and

σst = ρ0(ψ̆
θ + ψ∇)I − β0M∇η0 ⊗∇η0 −

1

4
ϕ̃(aβ, a0, η0) [βij(∇ηi ⊗∇ηi +∇ηj ⊗∇ηj−

∇ηi ⊗∇ηj −∇ηj ⊗∇ηi) + βjk(∇ηj ⊗∇ηj +∇ηk ⊗∇ηk −∇ηj ⊗∇ηk −∇ηk ⊗∇ηj) +

βki(∇ηi ⊗∇ηi +∇ηk ⊗∇ηk −∇ηk ⊗∇ηi −∇ηi ⊗∇ηk)] , (68)

respectively, where we can eliminate, say, ηk using the constraint Eq. (21)1. The barrier energy and interfacial

energy thus take the forms

ψ̆θ = [A(θ) + (aθ − 3)∆ψθ(θ)] η20(1− η0)2 + Ā (η2i η
2
j + η2j η

2
k + η2kη

2
i )ϕ(ab, η0), and

ψ∇ =
β0M
2ρ0
|∇η0|2 +

1

8ρ0
ϕ̃(aβ, a0, η0)

[
(βij + βik)|∇ηi|2 + (βij + βjk)|∇ηj |2 + (βik + βjk)|∇ηk|2−

2(βij∇ηi · ∇ηj + βjk∇ηj · ∇ηk + βki∇ηk · ∇ηi)] , (69)

respectively.

The kinetic relations, structural stresses, barrier energy, and interfacial energy for a system with any number

of variants can be derived in a similar manner.

29



4.6. Transformation deformation gradient

The transformation deformation gradient for any intermediate state will be defined in terms of the transfor-

mation strains for the phases and the interpolation functions. Three different kinematic models KM-I, KM-II,

and KM-III will be discussed.

KM-I. In this model we assume F t as a linear function of the transformation strain tensors related to the

variants Mi and the interpolation functions ϕ and φi:

F t = U t = I +

N∑
i=1

εtiφiϕ(aε, η0), (70)

where εti = U ti − I is the transformation strain tensor and U ti is the transformation stretch tensor (Bain

tensor) for the variant Mi. Obviously, ϕ(aε, 0) = 0 and so F t = I in A. In martensitic phase M, ϕ(aε, 1) = 1

and hence F t = I +
∑N

i=1 εtiφi; in variant Mi, φi = 1 and φj = 0 for all j 6= i, and thus F t = U ti. This model

was earlier used for studying multiphase martensitic PTs in Levitas (2013a); Levitas and Roy (2015); Levitas

et al. (2013). Using the relation (see Chapter 1 of Jog (2007))

det(A+B) = detA+ cofA : BT +A : (cofB)T + detB, (71)

which holds for arbitrary second order tensors A and B, we get from Eq. (70) for A = I and B =
∑N

i=1 εtiφi

detF t = 1 + ϕ(aε, η0)I1 + (ϕ(aε, η0))
2I2 + (ϕ(aε, η0))

3I3, (72)

where I1, I2, and I3, respectively, are the first, second, and third invariants of
∑N

i=1 εtiφi. For any martensitic

variant Mi (ϕ(aε, 1) = 1, φi = 1 and φj = 0 for all i 6= j) one obtains from Eq. (72)

detF t = 1 + I1(εti) + I2(εti) + I3(εti) = det (I + εti) = detU ti. (73)

Since detU ti is identical for all i = 1, . . . , N (Bhattacharya (2004)), according to Eq. (73) the volume of all the

stress-free variants is also the same. However, detF t given by Eq. (72) varies along the entire variant-variant

transformation path 0 < ηi < 1 when ϕ = 1. This implies that although the specific volume of a particle is

the same for all variants, the variant-variant transformation process (when ϕ = 1) described by Eq. (70) is not

isochoric. According to the crystallographic theory for a sharp interface, variant-variant transformations which
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form twin boundaries, are obtained through simple shear deformation (a volume preserving deformation) of one

variant with respect to the other. But whether the entire transformation path is indeed isochoric in reality, is

not yet well-known to the best of our knowledge. In an attempt to study dislocation dynamics (known to be a

volume preserving process) using atomistic simulations Bulatov et al. (1999) observed that the entire shearing

path between two stable atomic configurations is not isochoric. Therefore, we consider the conservation of

volume during variant-variant transformation to be a plausible condition, but not a mandatory one. In any

case, we think that there should be a basic model in which this condition is met.

KM-II. Recently, an exponential-logarithmic transformation deformation gradient was suggested for studying

twinning in the phase field model (Tůma and Stupkiewicz (2016); Tůma et al. (2016)). This theory was

developed for the microscale, with volume fraction of phases as the order parameters. A simple linear mixture

rule for interpolation functions was used. The motivation in Tůma and Stupkiewicz (2016); Tůma et al. (2016)

for considering an exp-ln transformation rule was to achieve volume-preserving variant-variant transformations

along the entire path of transformation. Being motivated by this idea of volume conservation, we develop the

KM-II for our nanoscale phase field model.

We consider the natural logarithms of the transformation deformation gradient as a linear combination of

the natural logarithm of the Bain tensors multiplied with the interpolation functions:

lnF t =
N∑
i=1

ln(U ti)φiϕ(aε, η0); ⇒ F t = exp

[
N∑
i=1

ln(U ti)φiϕ(aε, η0)

]
, (74)

see, for example, Chapter 1 of Jog (2007) for the definitions of exponential and logarithm of second order

tensors. In pure A, ϕ = 0, and hence F t = I. In pure M, ϕ = 1, and hence F t = exp[
∑N

i=1 ln(U ti)φi]. Since

exp(lnA) = A for any second order tensor A, we have F t = U ti for the variant Mi (note that φi = 1 and

φj = 0 for all j 6= i therein).

If the transformation strains εti are small, i.e. |εti| � 1, by expanding Eq. (74) into series we can show

that it coincides with Eq. (70) when the higher order terms are neglected. Using the identities (see Chapter 1

of Jog (2007) and Clayton (2014))

det (expU ti) = exp(trU ti) and ln(detU ti) = tr(lnU ti), (75)
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we now prove the isochoric nature of the transformation rule Eq. (74) along the entire Mi ↔ Mj transformation

path. Here

detF t = det [exp(ϕφi lnU ti + ϕφj lnU tj)] = exp[ϕφitr(lnU ti) + ϕφjtr(lnU tj)] (76)

= exp[ϕφi ln(detU ti) + ϕφj ln(detU tj)] = (detU ti)
ϕφi(detU tj)

ϕφj = (detU ti)
ϕφi+ϕφj ,

where we took into account that for martensitic variants detU ti = detU tj for all i, j( 6= i) (see Chapter 4 of

Bhattacharya (2004)). Along the Mi ↔ Mj transformation path, we have ϕ = 1, ηi + ηj = 1, and ηk = 0 for all

k 6= i, j. According to Eq. (39), φi + φj = 1. As a consequence, (76) yields detF t = detU ti = constant, which

completes the proof.

We have just seen that KM-II has an advantage over KM-I in that the entire variant-variant transformation

path is isochoric, which is, of course, a plausible condition, but may not be a mandatory one. The authors have

recently shown that both KM-I and KM-II generate excess elastic stresses within the variant-variant boundaries,

including the twin boundaries (Basak and Levitas (2017)). In fact, KM-II results in much larger elastic stresses

compared to KM-I; we will show this in the present paper as well. The question is whether this large excess

elastic stress is real or an artifact of our transformation rules. Such question arises because, according to the

crystallographic theory of martensitic PTs, sharp twin boundaries are compatible and do not generate internal

elastic stresses. Thus, it was believed that the diffuse variant-variant interfaces also will not produce elastic

interfacial stresses. Again, this is yet to be verified using either the molecular dynamics or the first principle

simulations, which, to the best of our knowledge, has not yet been done.

Furthermore, it is necessary to note that when the phase field model is combined with the either phe-

nomenological or plasticity model or dislocation based plasticity models (Gröger et al. (2016); Javanbakht and

Levitas (2015); Levitas and Javanbakht (2015)), such high interfacial stresses might cause spurious plastic flow

within the interface, which is not geometrically necessary for the compatible sharp interface. It was recently

reported in Gröger et al. (2016), where high dislocation density was observed within variant-variant interfaces.

We believe that this is an artifact of large elastic stresses within the interfaces in that model in Gröger et al.

(2016). This motivated us to consider the KM-III which yields excess elastic stress-relaxed twin boundaries.
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KM-III. In this kinematic model we propose a relaxation method for an interfacial elastic stress within the

twin boundaries, which arises due to incompatible transformation deformation gradients in KM-I and KM-II.

Our proposal is to let a system evolve until all the twin boundaries are fully developed, using F t either from

KM-I or KM-II. Then we switch F t for the entire domain to

F t = I + ϕ(aε, η0)[φi(Qt ·U ti − I) + φj(U tj − I)], (77)

which is motivated from the crystallographic theory of martensite with sharp interfaces (see Chapter 5 of

Bhattacharya (2004)). Here Qt is a rotation tensor which is known from the crystallographic solutions. A

comparison between Eqs. (70), (74), and (77) shows that in KM-III, the relative rotation between the variants

Qt has been taken into account in the transformation deformation gradient, which was otherwise neglected (i.e.

assumed Qt = I) in KM-I and KM-II. Obviously, if one assumes Qt = I, both KM-I and KM-III would coincide

for a two variant system. Also, KM-II coincides with KM-I and KM-III in this case when the transformation

strains are small, i.e. |εti| � 1.

We can express Eq. (77) in an alternative and more convenient form

F t = I + ϕ(aε, η0)[εtj + φimt ⊗ nt] (78)

using the twinning equation (see Chapter 5 of Bhattacharya (2004))

Qt ·U ti −U tj = mt ⊗ nt, (79)

where we have used φi + φj = 1 in deriving Eq. (78); nt is the unit normal to the twin boundary and mt is

a vector related to the simple shear direction. Both nt and mt are known from the crystallographic solutions,

which depend on the constant components of the complete (after transformation) Bain tensors. Along an

Mi ↔ Mj transformation path (substituting ϕ = 1), we derive from Eq. (78) that

detF t = det (U tj + φimt ⊗ nt) = detU tj det (I + φiU
−1
tj ·mt ⊗ nt)

= detU tj (1 + φiU
−1
tj : mt ⊗ nt) = detU tj , (80)

where we have used Eq. (71), and also, applied the facts that the second and the third invariants of the rank-

one tensor U−1tj ·mt ⊗ nt are identically zero, and the vectors U−1tj ·mt and nt are mutually perpendicular
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(see Chapter 5 of Bhattacharya (2004)). Obviously, F t in Eq. (78) yields isochoric transformation between

the variants. We have shown in Basak and Levitas (2017) that the transformation rule Eq. (78) does not

generate interfacial excess elastic stresses within twin boundaries when ϕ = 1. In summary, Eq. (78) would

yield isochoric variant-variant transformations with internal stress-free twin boundaries. However, there are

difficulties is using this model for simulating complex microstructures such as zigzag twins and twins within

twins between a single pair of variants just with a single order parameter (see Levitas et al. (2013) for details).

For more than two variants, the scenario is even more complicated. On the other hand, KM-I and II can

be easily used to produce such complex solutions; say, for two variants one needs single independent order

parameter related to the variants, and for three variants two independent order parameters are needed within

our present approach.

4.6.1. F t for a system with austenite and two variants

We will write down the explicit forms of F t for all kinematic models when there is austenite and two variants

Mi and Mj in a system. The order parameters for the variants ηi and ηj follow the constraint ηi + ηj = 1 and

the corresponding interpolation functions satisfy the conditions in Eq. (59). Using these relations in the

transformation deformation gradient tensors Eqs. (70), (74), and (78) we obtain

for KM-I: F t = I + εtjϕ(aε, η0) + (εti − εtj)φiϕ(aε, η0),

for KM-II: F t = exp[lnU tjϕ(aε, η0) + (lnU ti − lnU tj)φiϕ(aε, η0)], and

for KM-III: F t = I + [εtj + φimt ⊗ nt]ϕ(aε, η0). (81)

4.6.2. F t for a system with austenite and three variants

We now consider a three-variant system with Mi, Mj , and Mk. Since KM-III can accommodate only two

variants, in this case we will write the explicit form for F t for KM-I and II only:

for KM-I: F t = I + ϕ(aε, η0)(εtiφi + εtjφj + εtkφk),

for KM-II: F t = exp[ϕ(aε, η0)(φi lnU ti + φj lnU tj + φk lnU tk)], (82)

respectively. Here the expressions have been written in terms of all three order parameters for the variants ηi,

ηj , and ηk. However, one can always express them in terms of any two order parameters using the constraint
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Eq. (1).

4.7. Analysis of the transformation work for KM-I, KM-II, and KM-III

Let us now analyze the transformation work term in the driving forces X0 and Xi given by Eqs. (56) and

(57), and make a comparative study for all three kinematic models. For simplicity, we consider a two variant

system without loss of generality, and hence use the F t listed in Eq. (81). Using Eqs. (14) and (2), the

transformation work terms are rewritten as a function of the elastic Cauchy stress:

W = (JF−1 · σe · F − JtψeI) : F−1t ·
∂F t

∂η

= (Jσe0 − Jtψe) tr
(
F−1t ·

∂F t

∂η

)
+ JF−1 · devσe · F : dev

(
F−1t ·

∂F t

∂η

)
, (83)

where σe has been decomposed into σe = σ0eI + devσe, and σ0e is the mean part of σe. Also, we have used

the fact that F−1 · devσe · F is a deviatoric tensor, which can be proved by showing that its trace is zero:

tr(F−1 · devσe · F ) = I : F−1 · devσe · F = F · F−1 : devσe = tr(devσe) = 0.

Analysis for KM-II: At first we consider Eq. (81)2 for KM-II and analyze Eq. (83). To this end, we use

Eqs. (B.4) and (B.6) in Eq. (83) and obtain the transformation work for A↔ M transformations (denoted by

W0), and for Mi ↔ Mj transformations (denoted by Wi):

W0 =
(Jσe0 − Jtiψe)
ϕ(aε, η0)

∂ϕ(aε, η0)

∂η0
tr(lnF t) +

J

ϕ(aε, η0)

∂ϕ(aε, η0)

∂η0
F−1 · devσe · F : dev(lnF t),

Wi = Jϕ(aε, η0)
∂φi
∂ηi

F−1 · devσe · F : dev(lnU ti − lnU tj). (84)

Note that in obtaining the expression for ∂F t/∂ηi for KM-II, lnU ti and lnU tj were assumed to be commutative,

which is true only for some specific kind of PTs such as cubic to tetragonal PT. For a general case where lnU ti

and lnU tj are not commutative, a similar analysis can be carried out. For η0 = 0 the limit transition in

Eq. (84)1 gives W0 = 0. Note that tr(lnF t) and dev(lnF t) represent the volumetric part of lnF t and the

isochoric change in shape of the material particle. Thus, Eq. (84)1 represents an additive split of the work of

the generalized mean stress into the volumetric part of the logarithmic transformation strain and work of the

generalized deviatoric stress on the deformation describing the isochoric change in shape, both along the entire

A ↔ M transformation path. For variant-variant transformations, the volumetric part of the transformation
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strain measure is zero, and that is why the mean stress does not contribute to the transformation work. Both

these results are desired.

Analysis for KM-III: Considering the relations for F−1t and ∂F t/∂ηi from Eqs. (B.8) and (B.9), respectively,

we see that it is not possible to decompose the transformation work additively into the work of the generalized

mean stress on the volumetric part of the transformation strain and work of the generalized deviatoric stress

on the deformation describing the isochoric change in shape. However, considering ϕ = 1 and noticing that

U−1tj ·mt and nt are mutually perpendicular (hence U−1tj ·mt ⊗ nt is a deviatoric tensor) in Eqs. (B.8)3 and

(B.9), the transformation work Wi becomes

Wi = Jϕ(aε, η0)
∂φi
∂ηi

F−1 · devσe · F : U−1tj ·mt ⊗ nt, (85)

i.e. variant-variant transformation work depends on devσe and is independent of the mean stress, as desired.

Analysis for KM-I: Using Eqs. (81)1 and (B.1)1,3 in Eq. (83) we can show that both spherical and deviatoric

parts of σe contributes in the transformation work for the variant-variant transformation Wi.

5. Thermodynamic instability criteria for A ↔ M and Mi ↔ Mj transformations

We will now analyze the stability of homogeneous phases under prescribed stresses and temperature, and

establish the instability criteria for homogeneous transformation between the phases. We will also show that

our instability criteria actually do not depend on which stress (e.g. the first Piola-Kirchhoff or Cauchy stress

tensor) is prescribed. Although, the prescribed stress is constant, the elastic deformation gradient F e may vary

along the transformation path due to variation of the elastic constants.

We define the instability criterion as follows. If for a thermodynamic equilibrium state (η̂j for j =

0, 1, 2, . . . , N) a spontaneous perturbation ∆η of the order parameters is thermodynamically admissible un-

der prescribed stresses and temperature, i.e. the dissipation rate is positive, then the equilibrium is unstable

(Levitas (2013a); Levitas and Roy (2015)):

Xi(T ,F e(η̂j + ∆ηj), η̂j + ∆ηj , θ) η̇i ≥ 0 for i = 0, 1, 2, . . . , N (86)

implies that the thermodynamic equilibrium η̂j is unstable under arbitrary prescribed stress T (= P or σ) and

temperature θ, where F e has been considered as a function of the order parameters. Based on the definition Eq.
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(86) we now determine the instability criterion for A↔ M and Mi ↔ Mj transformations for all the kinematic

models. Expanding Xi in Taylor series about the equilibrium η̂j we have

Xi(T ,F e(η̂j), η̂j + ∆η, θ) =
∂Xi(T ,F e(η̂j), η̂j , θ)

∂ηk

∣∣∣∣
T

∆ηk + o(∆ηk), (87)

where o(∆ηk) is such that o(∆ηk)/∆ηk → 0 as ∆ηk → 0 and we have considered Xi(T ,F e(η̂j), η̂j , θ) = 0. Using

Eq. (87) in Eq. (86) the instability criterion is finally obtained as

∂Xi(T ,F e(η̂j), η̂j , θ)

∂ηk

∣∣∣∣
T

η̇iη̇k ≥ 0. (88)

A↔ M transformation:

In obtaining the instability criteria for A ↔ M transformations, we assume without loss of generality that

ηi = 1 and ηj = 0 for all j 6= i, i.e. M = Mi. The instability criteria for A→ M and M→ A transformations are

A→ M
∂X0(T ,F e(η0 = 0), η0 = 0, θ)

∂η0

∣∣∣∣
T

≥ 0,

M→ A
∂X0(T ,F e(η0 = 1), η0 = 1, θ)

∂η0

∣∣∣∣
T

≥ 0. (89)

We evaluate ∂X0/∂η0 by differentiating Eq. (56) with respect to η0 and substituting ηi = 1 and ηj = 0 for all

j 6= i:

∂X0

∂η0

∣∣∣∣
T

=
∂(P T

e · F e − JtψeF−1t )

∂η0

∣∣∣∣
T

:
∂F t

∂η0
+ (P T

e · F e − JtψeF−1t ) :
∂2F t

∂η20
− Jt

∂ψe
∂η0

∣∣∣∣
F e

F−1t :
∂F t

∂η0
−

Jt
∂

∂η0

(
∂ψe
∂η0

∣∣∣∣
F e

)
T

− ρ0∆ψθ(6− 12η0)− Jρ0[A(θ) + (aθ − 3)∆ψθ(θ)](2− 12η0 + 12η20)−

ρ0[A(θ) + (aθ − 3)∆ψθ(θ)](2η0 − 6η20 + 4η30)
∂J

∂η0

∣∣∣∣
T

+
∂(P T

e · F e − JtψeF−1t )

∂F T
e

∣∣∣∣
T

:
∂F e

∂η0

∣∣∣∣
T

:
∂F t

∂η0
−

Jt
∂

∂F T
e

(
∂ψe
∂η0

∣∣∣∣
F e

)
T

:
∂F e

∂η0

∣∣∣∣
T

− ∂fl

∂F T
e

:
∂F e

∂η0

∣∣∣∣
T

, where (90)

fl = Jρ0[A(θ) + (aθ − 3)∆ψθ(θ)](2η0 − 6η20 + 4η30). (91)

Due to the properties of interpolation functions for any material properties (Eqs. (31) and (33)), ∂F t(η̂0)/∂η0 =

0. Furthermore, using Eq. (41), we have

∂

∂η0

(
∂ψe
∂η0

∣∣∣∣
F e

)
T

=
∂Ee

∂η0

∣∣∣∣
T

:
∂C
∂η0

: Ee + 0.5Ee :
∂2C
∂η20

: Ee, (92)
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where the elastic modulus C has been assumed to be independent of F e. Using the same Eqs. (31) and (33)

we readily see that ∂C(η̂0)
∂η0

= 0 and the first term of Eq. (92) vanishes at η0 = 0 and 1.

Also, it can be proved that (∂F e(η̂0)/∂η0)T = 0, and hence (∂Ee(η̂0)/∂η0)T = 0 whether T = P or T = σe

(see Levitas (2013a) for the proof). Using all these condition in Eq. (90), the expression is simplified to

∂X0

∂η0

∣∣∣∣
T

= (Jσe0 − Jtψe)tr
(
F−1t ·

∂2F t

∂η20

)
+ JF−1 · dev(σe) · F : dev

(
F−1t ·

∂2F t

∂η20

)
− (6− 12η0)ρ0∆ψ

θ(θ)

−0.5JtEe :
∂2C
∂η20

: Ee − Jρ0[A(θ) + (aθ − 3)∆ψθ(θ)] (2− 12η0 + 12η20) for η0 = 0, 1, (93)

where we have used Eq. (14) for expressing the transformation work related term as a function of the Cauchy

stress. It is clear from Eq. (93) that the instability criteria does not depend on which stress was kept constant

(also see Levitas (2013a)). Using Eq. (93) and expressions for derivatives of F t corresponding to all the

kinematic models from Appendix B into Eq. (89), we finally establish the following criteria for A → M and

M→ A transformations:

A→ M :

for KM-I: aε(Jeσe0 − ψe) tr(εti) + aεJeF
−1 · dev(σe) · F : dev(εti)− ρ0[3 + Je(aθ − 3)]∆ψθ +

0.5aεEe : (C0 − Ci) : Ee ≥ ρ0JeA(θ);

for KM-II: aε(Jeσe0 − ψe) tr(lnU ti) + aεJeF
−1 · dev(σe) · F : dev(lnU ti)− ρ0[3 + Je(aθ − 3)]∆ψθ +

0.5aεEe : (C0 − Ci) : Ee ≥ ρ0JeA(θ);

for KM-III: aε(Jeσe0 − ψe) tr(εti) + aεJeF
−1 · dev(σe) · F : dev(εtj +mt ⊗ nt)−

ρ0[3 + Je(aθ − 3)]∆ψθ + 0.5aεEe : (C0 − Ci) : Ee ≥ ρ0JeA(θ); (94)
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M→ A :

for KM-I: (6− aε)(Jσe0 − Jtiψe) tr(U−1ti · εti) + (6− aε)JF−1 · dev(σe) · F : dev(U−1ti · εti) +

[J(aθ − 3)− 3]ρ0∆ψ
θ + 0.5Jti(6− aε)Ee : (C0 − Ci) : Ee ≤ −ρ0JA;

for KM-II: (6− aε)(Jσe0 − Jtiψe) tr(lnU ti) + (6− aε)JF−1 · dev(σe) · F : dev(lnU ti) +

[J(aθ − 3)− 3]ρ0∆ψ
θ + 0.5(6− aε)JtiEe : (C0 − Ci) : Ee ≤ −ρ0JA;

for KM-III: (6− aε)(Jσe0 − Jtiψe) tr
[
U−1tj · εtj −U−1tj · (mt ⊗ nt) ·U−1tj · (εtj +mt ⊗ nt)

]
+

(6− aε)JF−1 · dev(σe) · F : dev
[(
U−1tj −U−1tj · (mt ⊗ nt) ·U−1tj

)
· (εtj +mt ⊗ nt)

]
+

[J(aθ − 3)− 3]ρ0∆ψ
θ + 0.5(6− aε)JtiEe : (C0 − Ci) : Ee ≤ −ρ0JA. (95)

All the criteria for KM-I, II, and KM-III coincide when the transformation strains εti are small, i.e. |εti| � 1,

both for Eq. (94) and Eq. (95), where we have used the fact for KM-III that |εti| and |mt⊗nt| are of the same

order (Bhattacharya (2004)).

Mi ↔ Mj transformations:

In obtaining the instability criteria for Mi ↔ Mj transformations, we consider a fully martensitic region with

variants Mi and Mj , and hence η0 = 1. The transformation path follows the straight line ηi + ηj = 1, which

is provided by large penalizing terms, Kij → ∞. The criteria for Mi → Mj and Mj → Mi transformations are

thus

Mi → Mj
∂Xi(T ,F e(η̂i), η̂i, θ)

∂ηi

∣∣∣∣
T

≥ 0, and

Mj → Mi
∂Xi(T ,F e(η̂j), η̂j , θ)

∂ηi

∣∣∣∣
T

≥ 0, (96)

respectively.

Using ηj = 1− ηi and ηk = 0 for k 6= i, j in Eq. (57) and differentiating it with respect to ηi we get

∂Xi

∂ηi

∣∣∣∣
T

=
∂

∂ηi
(P T

e · F e − JtψeF−1t )

∣∣∣∣
T

:
∂F t

∂ηi
+ (P T

e · F e − JtψeF−1t ) :
∂2F t

∂η2i
− Jt

∂

∂ηi

(
∂ψe
∂ηi

∣∣∣∣
F e

)
T

−

ρ0ĀJ(2− 12ηi + 12η2i ) +
∂

∂F T
e

(P T
e · F e − JtψeF−1t )

∣∣∣∣
T

:
∂F e

∂ηi

∣∣∣∣
T

:
∂F t

∂ηi
−

Jt
∂

∂F T
e

(
∂ψe
∂ηi

∣∣∣∣
F e

)
T

:
∂F e

∂ηi

∣∣∣∣
T

− ρ0Ā(2ηi − 6η2i + 4η3i )
∂J

∂F T
e

∣∣∣∣
T

:
∂F e

∂ηi
. (97)
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When we differentiate F t in Eq. (81) with respect to ηi and use that ∂φi/∂ηi = 0 at ηi = 0, 1 therein, we note

that all the terms on the right hand side of Eq. (97) with ∂F t/∂ηi vanish at ηi = 0 and 1. Also, using a relation

similar to Eq. (92) where the derivatives are now taken with respect to ηi and considering (∂F e(η̂i)/∂ηi)T = 0

for T = P or T = σe (see Levitas (2013a) for the proof), we simplify Eq. (97) to

∂Xi

∂ηi

∣∣∣∣
T

= (P T
e · F e − JtψeF−1t ) :

∂2F t

∂η2i
− Jt

∂

∂ηi

(
∂ψe
∂ηi

∣∣∣∣
F e

)
T

− ρ0ĀJ(2− 12ηi + 12η2i ) at ηi = 0 and 1. (98)

Finally, using Eqs. (98) and the required derivatives from Appendix B in Eq. (96), the instability criteria for

variant-variant transformations are obtained:

Mi → Mj :

for KM-I: (Jσe0 − Jtiψe) tr(U−1ti · (εti − εtj)) + JF−1 · devσe · F : dev(U−1ti · (εti − εtj))−

0.5JtiEe : (Ci − Cj) : Ee ≥
ρ0JĀ

3
;

for KM-II: JF−1 · devσe · F : dev(lnU ti − lnU tj)− 0.5JtiEe : (Ci − Cj) : Ee ≥
ρ0JĀ

3
;

for KM-III: JF−1 · devσe · F : dev(U−1tj ·mt ⊗ nt)− 0.5JtiEe : (Ci − Cj) : Ee ≥
ρ0JĀ

3
. (99)

Mj → Mi :

for KM-I: (Jσe0 − Jtiψe) tr(U−1ti · (εti − εtj)) + JF−1 · devσe · F : dev(U−1ti · (εti − εtj))−

0.5JtiEe : (Ci − Cj) : Ee ≤ −
ρ0JĀ

3

for KM-II: JF−1 · devσe · F : dev(lnU ti − lnU tj)− 0.5JtiEe : (Ci − Cj) : Ee ≤ −
ρ0JĀ

3
;

for KM-III: JF−1 · devσe · F : dev(U−1tj ·mt ⊗ nt)− 0.5JtiEe : (Ci − Cj) : Ee ≤ −
ρ0JĀ

3
, (100)

where we recall that while calculating ∂2F t/∂
2ηi for KM-II, lnU ti and lnU tj were assumed to be commutative,

and also, we have used that tr(lnU ti − lnU tj) = ln(Jti) − ln(Jtj) = 0 and U−1tj ·mt · nt = 0. As desired,

the volumetric part of the Cauchy stress does not contribute to the variant-variant transformation criteria for

KM-II and III, only the deviatoric part does. However, that is not the case for KM-I. There both the volumetric

and deviatoric parts of σe contribute to the criteria.
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6. List of governing equations

Here we collect the entire system of equations presented above, first for a general 3D system with N variants

(Box-I), and then a specialized form of the system of equations for a system with austenite and two variants

in isotropic elastic solids under plane stress condition (Box-II). We assume that the temperature is constant in

space and time; hence the heat flux h0 = 0 in Ω0 (see Section 4.1) and θ̇ = 0 for all t ≥ 0.

Box-I. List of governing equations in the general form

• Order parameters for the martensitic variants satisfy

N∑
i=1

ηi = 1. (101)

• Kinematics: strains and kinematic models for F t

F = V e ·Rl ·U t; E = 0.5(F T · F − I); Ee := 0.5(F T
e · F e − I); b = 0.5(F · F T − I);

be = 0.5(F e · F T
e − I). (102)

KM-I: F t = U t = I +

N∑
i=1

εtiφiϕ(aε, η0);

KM-II: F t = exp

[
N∑
i=1

ln(U ti)φiϕ(aε, η0)

]
;

KM-III: F t = I + ϕ(aε, η0)[φi(Qt ·U ti − I) + φj(U tj − I)], where

ϕ(aε, η0) = aεη
2
0(1− η0)2 + η30(4− 3η0), and φi = η2i (3− 2ηi). (103)

• Helmholtz’s free energy

ψ(F , η0, ηi, θ,∇η0,∇ηi) =
Jt
ρ0
ψe(F e, η0, ηi, θ) + Jψ̆θ(η0, ηi, θ) + ψ̃θ(η0, ηi, θ) + ψp(η0, ηi) +

Jψ∇(∇η0,∇ηi, ηi), where (104)
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ψe = 0.5Ee : C(η0, ηi) : Ee, where C(η0, ηi) = (1− ϕ(a, η0))C0 + ϕ(a, η0)

N∑
i=1

φi(ηi)Ci; (105)

ψ̆θ = [A(θ) + (aθ − 3)∆ψθ(θ)] η20(1− η0)2 + Ā
N−1∑
i=1

N∑
j=i+1

η2i η
2
jϕ(ab, η0); (106)

ψ̃θ = ψθ0(θ) + ∆ψθ(θ) η20(3− 2η0) with ∆ψθ = −∆s(θ − θe)−∆cσ θ ln(θ/θe) + ∆cσ(θ − θe);(107)

ψp =

N−1∑
i=1

N∑
j=i+1

Kij(ηi + ηj − 1)2η2i η
2
j +

N−1∑
i=1

N∑
j=i+1

K0ijη
2
0η

2
i η

2
j (1− ϕ(aK , η0)) +

N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

Kijkη
2
i η

2
j η

2
k +

N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

K0ijkη
2
0η

2
i η

2
j η

2
k(1− ϕ(aK , η0)) +

N−3∑
i=1

N−2∑
j=i+1

N−1∑
k=j+1

N∑
l=k+1

Kijklη
2
i η

2
j η

2
kη

2
l , where

Kii = K0ii = Kiik = Kiji = Kiii = K0iik = K0iji = K0iii = Kiikl = Kijil = Kijki = Kijjl =

Kijkk = 0; (108)

ψ∇ =
β0M
2ρ0
|∇η0|2 +

1

8ρ0

N−1∑
i=1

N∑
j=i+1

βij
(
|∇ηi|2 + |∇ηj |2 − 2∇ηi · ∇ηj

)
ϕ̃(η0, aβ, a0); (109)

ϕ̃(aβ, a0, η0) = aβη
2
0 − 2[aβ − 2(1− a0)]η30 + [aβ − 3(1− a0)]η40 + a0. (110)

• Total, elastic, and structural stresses

P = P e + P st, σ = σe + σst; (111)

P e = J−1e V e ·Re ·
∂ψe(Ee)

∂Ee
·RT

e · V e · F T ; (112)

σe = J−1e V e ·Re ·
∂ψe(Ee)

∂Ee
·RT

e · V e; (113)

P st = Jρ0(ψ̆
θ + ψ∇)F−T − Jβ0M∇η0 ⊗∇η0 · F−T −

Jϕ̃(aβ, a0, η0)

N∑
i=1

N∑
j=1

βij
4
∇ηi ⊗ (∇ηi −∇ηj) · F−T ; (114)

σst = ρ0(ψ̆
θ + ψ∇)I − β0M∇η0 ⊗∇η0 − ϕ̃(aβ, a0, η0)

N∑
i=1

N∑
j=1

βij
4
∇ηi ⊗ (∇ηi −∇ηj). (115)
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• Mechanical equilibrium equations (body forces and inertia are neglected)

∇0 · P = 0 in Ω0 or equivalently, ∇ · σ = 0 in Ω. (116)

• Ginzburg-Landau equations

η̇0 = L0MX0, η̇i =
∑
j,j 6=i

Lij(Xi −Xj) (no summation over i), where (117)

X0 =
(
P T
e · F e − JtψeF−1t

)
:
∂F t

∂η0
− Jt

2
Ee :

∂C
∂η0

: Ee − ρ0(6η0 − 6η20)∆ψθ −

Jρ0Ā

N−1∑
i=1

N∑
j=i+1

η2i η
2
j

∂ϕ(ab, η0)

∂η0
− ρ0J [A(θ) + (aθ − 3)∆ψθ(θ)](2η0 − 6η20 + 4η30)−

J

8

∂ϕ̃(aβ, a0, η0)

∂η0

N−1∑
i=1

N∑
j=i+1

βij |∇ηi −∇ηj |2 − ρ0

N−1∑
i=1

N∑
j=i+1

K0ijη
2
i η

2
j+

N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

K0ijkη
2
i η

2
j η

2
k

[2η0(1− ϕ(aK , η0))− η20
∂ϕ(aK , η0)

∂η0

]
+

∇0 ·
(
β0MJF

−1 · ∇η0
)

; (118)

Xi =
(
P T
e · F e − JtψeF−1t

)
:
∂F t

∂ηi
− Jt

2
Ee :

∂C
∂ηi

: Ee − 2ρ0JĀ

N∑
j=1,6=i

ηiη
2
jϕ(ab, η0)−

2ρ0

N∑
j=1

Kij(ηi + ηj − 1)(2ηi + ηj − 1)ηiη
2
j − 2ρ0

 N∑
j=1

K0ijη
2
j +

N−1∑
j=1

N∑
k=j+1

K0ijkη
2
j η

2
k

×
ηiη

2
0(1− ϕ(aK , η0))− 2ρ0

N−1∑
j=1

N∑
k=j+1

Kijkη
2
j η

2
k +

N−2∑
j=1

N−1∑
k=j+1

N∑
l=k+1

Kijklη
2
j η

2
kη

2
l

 ηi +

∇0 ·

Jϕ̃(aβ, a0, η0)
N∑
j=1

βij
4
F−1 · (∇ηi −∇ηj)

 for all i = 1, 2, . . . , N. (119)

• Boundary conditions for the order parameters

∇0η0 · n0 = 0, and ∇0ηi · n0 = 0 on ∂Ω0. (120)
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We now enlist the system of equations for a system with austenite and two martensitic variants (denoted by

M1 and M2) under the plane stress condition in Box-II which have been derived from the system of equations for

a 3D system enlisted in Box-I. The independent order parameter corresponding to the variants is here denoted

by η1. Under the plane stress condition σ13 = σ23 = σ33 = 0, and consequently, σe13 = σe23 = σe33 = σst13 =

σst23 = σst33 = 0. All the out-of-plane components of P , P e, and P st (i.e. 13, 31, 23, 32, and 33 components),

and all the off-diagonal out-of-plane components (i.e. 13, 31, 23, and 32 components) of F , F e, V e, Ee, be,

R, and F t are identically zero. δij denotes the Kronecker delta. The phases have been assumed to have an

isotropic elastic response of St. Venant-Kirchhoff type (see Eq. (124)), where λ and µ are the Lamé constants,

and λ′ = 2λµ/(λ + 2µ) (see Chapter 7 of Slaughter (2002) for a similar treatment with infinitesimal strains).

The Cauchy elastic stresses are obtained using Eq. (16) and the elastic first Piola-Kirchhoff by Eq. (10)1.

Their explicit forms are expressed in Eqs. (130) and (131), respectively. Also, the 33 components of various

stretch and strain tensors are given in Eq. (121). The structural stresses, free energy, interpolation functions,

mechanical equilibrium equations, Ginzburg-Landau equations, and Neumann boundary conditions for the order

parameters are also listed in Box-II. The subscripts with lowercase letters i, j, k, l = 1, 2 etc. have been used to

denote the components of the tensors in our plane stress problem. For example, Fij denotes the components

for the total deformation gradient, where i, j = 1, 2. Nonzero out-of-plane 33 component is denoted by F33. We

assume that the specific heat of A and M are identical for all the simulations, i.e. ∆cσ = 0.

Box-II. List of governing equations for a two variant system under plane stress condition

and isotropic elasticity

• Components of elastic and total strains, and the transformation deformation gradient

bij = 0.5

(
2∑

k=1

VikVkj − δij
)

; b(e)ij = 0.5

(
2∑

k=1

V(e)ikV(e)kj − δij
)

;

b(e)33 = − λ

λ+ 2µ
(b(e)11 + b(e)22); F(e)33 = V(e)33 =

√
1−

λ′(b(e)11 + b(e)22)

µ
; b33 = 0.5(F 2

33 − 1);

F33 = V(e)33U(e)33, where λ and µ are the Lamé constants, and λ′ = 2λµ/(λ+ 2µ). (121)
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J = (F11F22−F12F21)F33; Je = (F(e)11F(e)22−F(e)12F(e)21)F(e)33; Jt = (F(t)11F(t)22−F(t)12F(t)21)F(t)33.

(122)

KM-I: F(t)ij = δij + ε(t2)ijϕ(aε, η0) + (ε(t1)ij − ε(t2)ij)φ1(η1)ϕ(aε, η0);

KM-II: F(t)ij = exp[(lnUt2)ijϕ(aε, η0) + ((lnUt1)ij − (lnUt2)ij)φ1(η1)ϕ(aε, η0)];

KM-III: F(t)ij = δij + [ε(t2)ij + φ1(η1)m(t)in(t)j ]ϕ(aε, η0). (123)

• Free energy densities

ψe = 0.5λ′(E(e)11 + E(e)22)
2 + µ

2∑
i,j=1

E(e)ijE(e)ij = 0.5λ′(b(e)11 + b(e)22)
2 + µ

2∑
i,j=1

b(e)ijb(e)ij ;(124)

ρ0ψ̆
θ = ρ0[A(θ) + (aθ − 3)∆ψθ(θ)]η20(1− η0)2 + ρ0Āη

2
1(1− η1)2ϕ(ab, η0); (125)

ψ̃θ = ψθ0(θ) + ∆ψθ(θ)η20(3− 2η0) with ρ0∆ψ
θ = −∆s(θ − θe); (126)

ψp = K012η
2
0η

2
1(1− η1)2[1− ϕ(aK , η0)]; (127)

ψ∇ =
1

2ρ0

2∑
i=1

(
β0M

∂η0
∂ri

∂η0
∂ri

+ β12
∂η1
∂ri

∂η1
∂ri

ϕ̃(aβ, a0, η0)

)
; (128)

ϕ̃(aβ, a0, η0) = aβη
2
0 − 2[aβ − 2(1− a0)]η30 + [aβ − 3(1− a0)]η40 + a0. (129)

• Elastic and structural stresses

P(e)ij = Jt

2∑
k,m,n=1

V(e)ikV(e)km
[
λ′(b(e)11 + b(e)22)δmn + 2µb(e)mn

]
F−1jn ; (130)

σ(e)ij = J−1e

2∑
k,m=1

V(e)ikV(e)km
[
λ′(b(e)11 + b(e)22)δmj + 2µb(e)mj

]
; (131)

P(st)ij = Jρ0(ψ̆
θ + ψ∇)F−1ji −

2∑
k=1

Jβ0M
∂η0
∂ri

∂η0
∂rk

F−1jk −
2∑

k=1

Jβ12
∂η1
∂ri

∂η1
∂rk

F−1jk ; (132)

σ(st)ij = ρ0(ψ̆
θ + ψ∇)δij − β0M

∂η0
∂ri

∂η0
∂rj
− β12

∂η1
∂ri

∂η1
∂rj

. (133)

• Mechanical equilibrium equations (body forces and inertia are neglected)

2∑
j=1

∂Pij
∂r0j

= 0 in Ω0, or equivalently,
2∑
j=1

∂σij
∂rj

= 0 in Ω. (134)
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• Ginzburg-Landau equations (see Eqs. (61) and (60))

η̇0
L0M

=
2∑

i,j,k,m,n=1

(
JF−1ik σ(e)knFnj − Jtψeδij

)
F−1(t)jm

∂F(t)mi

∂η0
− Jt

(
0.5

∂λ′

∂η0
(b(e)11 + b(e)22)

2+

2∑
i,j=1

∂µ

∂η0
b(e)ijb(e)ji

− ρ0ĀJη21(1− η1)2
∂ϕ(ab, η0)

∂η0
− ρ0∆ψθ(6η0 − 6η20)−

Jρ0[A(θ) + (aθ − 3)∆ψθ(θ)](2η0 − 6η20 + 4η30)− ρ0K012 [2η0(1− ϕ(aK , η0))−

η20
∂ϕ(aK , η0)

∂η0

]
η21(1− η1)2 −

2∑
j=1

Jβ12
2

∂η1
∂rj

∂η1
∂rj

∂ϕ̃(aβ, a0, η0)

∂η0
+

2∑
i,j=1

∂

∂r0i

(
β0MJF

−1
ij

∂η0
∂rj

)
; (135)

η̇1
L12

=
2∑

i,j,k,m,n=1

(
JF−1ik σ(e)knFnj − Jtψeδij

)
F−1(t)jm

∂F(t)mi

∂η1
− Jt

(
0.5

∂λ′

∂η1
(b(e)11 + b(e)22)

2+

2∑
i,j=1

∂µ

∂η1
b(e)ijb(e)ji

− ρ0JĀ(2η1 − 6η21 + 4η31)ϕ(ab, η0)− ρ0K012η
2
0(2η1 − 6η21 + 4η31)×

(1− ϕ(aK , η0)) +

2∑
i,j=1

∂

∂r0i

(
ϕ̃(aβ, a0, η0)β12JF

−1
ij

∂η1
∂rj

)
. (136)

• Boundary conditions for the order parameters

2∑
i=1

∂η0
∂r0i

n0i = 0, and
2∑
i=1

∂η1
∂r0i

n0i = 0 on ∂Ω0. (137)

7. Parameter identification

The free energy and the kinetic equations derived above involve several material parameters which need to be

calibrated based on the experimental data or atomistic simulation results. Let us consider a simplified situation,
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where martensitic transformation is occurring without mechanics, i.e. ψe = 0 and J = 1, which allows us to

obtain the analytical solutions to the Ginzburg-Landau equations and calibrate the material parameters such

as the barrier heights, gradient energy coefficients, and kinetic coefficients using the known data of interfacial

energy, width, and mobility.

7.1. Analytical solutions for order parameters under stress free condition

Assuming that the interfaces are planar and the order parameters spatially vary with r01 only, and also that

A0M , A12, β0M , and β12 are constants, we simplify the Ginzburg-Landau equations (135) and (136) for A-M

(with η1 = 1) and M1-M2 (with η0 = 1) interfaces as

η̇0 = L0M

[
− ∂ψ
∂η0

+ β0M
∂2η0
∂r201

]
= L0M

[
−ρ0∆ψθ(6η0 − 6η20)− ρ0[A(θ) + (aθ − 3)∆ψθ(θ)](2η0 − 6η20 + 4η30) + β0M

∂2η0
∂r201

]
, and(138)

η̇1 = L12

[
− ∂ψ
∂η1

+ β12
∂2η1
∂r201

]
= L12

[
−ρ0Ā(2η1 − 6η21 + 4η31) + β12

∂2η1
∂r201

]
, (139)

respectively, where we have used K012 = 0. The solutions of Eqs. (138) and (139) for a given aθ are (Levitas

(2013b))

η0 = [1 + exp(−ζ0M )]−1 with ζ0M = 6(r01 − r0c − c0M t)/δ0M and

η1 = [1 + exp(−ζ12)]−1 with ζ12 = 6(r01 − r0c − c12t)/δ12, (140)

respectively, where the symbol δ denotes the width of the interface (considered to be the distance between points

where η = 0.05 and η = 0.95 (Steinbach (2009))), γ denotes the interfacial energy as introduced in Section 1,

and c is the speed of interface propagation:

δ0M =

√
18β0M

ρ0[A0M (θ) + (aθ − 3)∆ψθ(θ)]
, γ0M =

β0M
δ0M

, c0M = L0Mδ0M∆ψθ(θ),

δ12 =

√
18β12
ρ0Ā

, γ12 =
β12
δ12

, c12 = 0, (141)

r0c is the coordinate of a point where η0 = 0.5 and η1 = 0.5 in the respective expressions, and obviously, the

subscripts ‘0M ’ and ‘12’ stand for A-M and M1-M2 interfaces, respectively. For a real value for the A-M interface

width, obviously A0M (θ), aθ, and ∆ψθ(θ) must be such that A0M (θ) + (aθ − 3)∆ψθ(θ) > 0.
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It is easy to verify that the solution of η0 in Eq.(140) satisfies

∂η0
∂ζ

= η0(1− η0), (142)

using which along with the relations in Eq. (141), we show that for a propagating A-M interface its gradient

energy is (see Eq. (52))

ψ∇0M =
β0M

2
|∇η0|2 =

β0Mχ
2
0M

2

(
dη0
dζ

)2

= [A0M (θ) + (aθ − 3)∆ψθ]η20(1− η0)2 = ψ̆θ0M . (143)

Similar to Levitas (2013b), Eq. (143) justifies a choice of the term ψ̆θ0M in Eq. (43) that contributes to the

interfacial stresses. For aθ = 3, the energy ψ̆θ0M reduces to ψ̆θ0M = A0M (θ)η20(1 − η0)
2. For this case the

interfacial width, energy, and stresses are thus independent of the thermal energy ∆ψθ (also see Levitas and

Roy (2016); Steinbach (2009)). On the other hand, for aθ = 0, ψ∇0M reduces to the expression given in Levitas

(2013b). The Gibbsian divided surfaces with the propagating interface in that case passes through the point

where η0M = 0.5 (Levitas (2013b, 2014)).

7.2. Parameter values

For all our calculations, we assume the material constants for NiAl alloy, in which A and Mi (i = 1, 2)

possess cubic and tetragonal lattices, respectively; see Levitas and Preston (2002a,b); Levitas et al. (2003)

for the experimental and atomistic simulation based data. The Bain tensors are diag(β, α, α), diag(α, β, α),

and diag(α, α, β), where β and α are material constants Bhattacharya (2004). For our computations with

two variants, we consider the first two Bain tensors without loss of generality. In all the simulations, we will

consider aθ = ab = aβ = 3, a0 = 10−4 (see Momeni and Levitas (2014)), ρ0A0M = 1744.7 MPa, ρ0Ā = 5320

MPa, β0M = 0.97 × 10−10 N, and β12 = 2.96 × 10−10 N. Thus Eqs. (140) and (141) yield γ0M = 0.097 N/m,

δ0M = 1 nm, γ12 = 0.297 N/m, and δ12 = 0.75 nm. The other parameters are taken to be λ = 74.6 GPa, µ = 72

GPa, α = 0.922, β = 1.215, L0M = L12 = 2600 (Pa-s)−1, θ = 50 K, θe = 215 K, and ∆s = −1.4679 MPa/K.

The elastic constants λ and µ have been taken to be identical for A and all the variants.

8. Numerical results

We now consider some examples showing the formation of complex microstructures under various loading

conditions in 2D samples. The coupled mechanical equilibrium equations Eq. (134) and the Ginzburg-Landau
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equations (135) and (136) along with all other constitutive relations have been solved simultaneously using

the finite element method (Zienkiewicz and Taylor (2000a,b)). We have developed a large strain based finite

element code in an open source deal.ii framework (Bangerth et al. (2016)). The governing equations are solved

iteratively in a decoupled manner using the Newton’s method. The detailed computational algorithm will be

presented elsewhere. We have used the quadratic quadrilateral elements for spatial discretization of both the

mechanics and phase field equations, and a backward finite difference scheme for time discretization of the

Ginzburg-Landau equations. All the plots in this paper are shown in the reference configuration.

l1

l 2

e1

e2

u
1

=
ε̄ 1
l 1

u2 = ε̄2l2

Figure 2: Schematic diagram of the rectangular sample with displacement boundary conditions.

A. Square samples under biaxial strains

Example 1. Large biaxial strain ε̄1 = ε̄2 = 0.06. We consider an initially square sample of size l1 = l2 = 20

nm; a schematic of the sample with displacement boundary conditions is depicted in Fig. (2): u1 = 0 on r01 = 0,

and u2 = 0 on r02 = 0. We assume σ12 = 0 at all external surfaces. Normal displacements corresponding to the

homogeneous normal strains ε̄1 = ε̄2 = 0.06 on two other surfaces are applied at t = 0 and then those surfaces

are kept fixed for t > 0. Here we consider K012 = 0, i.e. the triple junctions made by A, M1, and M2 are not

penalized (the effect of finite K012 will be shown in Example 4). We assume η1 = 0.5 and randomly distributed

0 ≤ η0 ≤ 0.4 in the entire sample at t = 0. The Bain tensors are considered to be rotated by π/4 about e3-axis,
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i.e.

[U t1] =


0.5(α+ β) 0.5(α− β) 0

0.5(α− β) 0.5(α+ β) 0

0 0 α

 and [U t2] =


0.5(α+ β) 0.5(β − α) 0

0.5(β − α) 0.5(α+ β) 0

0 0 α

 . (144)

  

η0

t=0

η1

ηeq

t=1.5 ps t=264 ps

(a)

  

η0

t=0

η1

ηeq

t=1.5 ps t=241 ps

(b)

Figure 3: Evolution of order parameters in a square sample of size 20 nm ×20 nm for ε̄1 = ε̄2 = 0.06 for (a) KM-I and (b) KM-II

with K012 = 0. The last columns in both the figures show the stationary solutions of the Ginzburg-Landau equations.

The evolution of microstructures for KM-I and KM-II are shown in Figs. 3(a) and 3(b), respectively. The first

two rows show the evolution of η0 and η1, respectively. The color blue in η0 plots signifies austenite (η0 = 0), red

(η0 = 1) denotes martensite, and the other colors correspond to the intermediate values 0 < η0 < 1 and observed

within A-M interfaces. In η1 plots, the color red denotes M1 (η1 = 1), the color blue denotes M2 (η1 = 0),

and the other colors correspond to 0 < η1 < 1 and appear within M1-M2 interfaces. In the third row we have

shown the plots for an equivalent order parameter ηeq = 2η0(η1− 0.5), which describes a combined distribution

of the order parameters η0 and η1. Since both η0 and η1 vary between 0 and 1, we have −1 ≤ ηeq ≤ 1; ηeq = 0
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corresponds to the austenite or a point within the M1-M2 interface where η1 = 0.5, and ηeq = 1 denotes M1 and

appears in dark red, and ηeq = −1 denotes M2 and appears in dark blue. In all the subsequent examples also

we have used the same color scheme. The last columns in the respective figures show the stationary solutions

of the Ginzburg-Landau equations.

A high degree of undercooling, i.e. θ − θe = −165 K and a large biaxial strain yield large volume fraction

of martensite and a much smaller fraction of residual austenite. The microstructures consist of two mutually

orthogonal sets of martensitic plates of both variants. To explain it, we recall that the twinning equation Eq.

(79) in the crystallographic theory has two distinct solutions for the unit normal nt (also, for the vector mt)

which are mutually perpendicular; see Chapter 5 of Bhattacharya (2004) for the analytical solutions. The

applied biaxial strain promotes both the solutions of martensitic plates. The plots for η1 and ηeq in Fig. 3

clearly show both the variant-variant solutions for KM-I and KM-II. A certain volume fraction of residual

austenite is observed within small near-triangular regions, concentrated mainly within the region where two

mutually perpendicular M plates meet. The vertices of these triangular regions where A and two martensitic

variants meet are characterized as the triple junctions. Martensitic plates near the external surfaces are larger

than those formed inside the samples. The variant-variant interfaces interior of the samples are nearly planar.

However, those near the external surfaces are slightly curved. Intermediate structures for both models are quite

different. The number of martensitic plates in the stationary state for KM-I and KM-II also differs: for KM-II,

there are six pairs of plates aligned in the e2 direction, whereas for KM-I, there are five pairs. Obviously, the

average widths of these plates are also different. Alternating twins and intersection of two orthogonal twin

systems are the typical martensitic microstructures observed experimentally in NiAl (Schryvers (1993)).

Structural and elastic stresses within the sample across the line r02 = 10 nm have been shown in Fig. 4(a)

and (b), respectively. Only the normal stresses have been shown; the shear component σ12 is much smaller

compared to the normal components, thus not shown here. The distributions of structural stresses for both the

models are quite similar, and their maximum values also do not differ much. As expected, they are vanishing

within the plates. On the other hand, although the elastic stress σe11 for the two models are comparable,

max(σe22) across the variant-variant interfaces for KM-II is significantly larger than that for KM-I across most

of the variant-variant interfaces, in accordance with the analytical and FEM solutions for a single variant-
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Figure 4: Plots for (a) structural stresses and (b) elastic stresses across r02 = 10 nm line (passing through the middle of the sample)

when stationary solutions are reached in the same 20 nm × 20 nm sample considered in Fig. 3 (note that K012 = 0).

variant interface in Basak and Levitas (2017). The small spikes in σst11 and σe11 plots within the interfaces,

which should be absent in case of ideal plane infinite interface, appear since the interfaces here deviate from the

ideal one, the widths of the interfaces and martensitic plates are comparable, shear stress across the interfaces

is heterogeneous, and due to some numerical error. In Fig. 4(b) note that σe22 is very small within the

martensitic plates for both KM-I and II. The reason for this is that the normal components of the Bain strains

ε11t1 = ε11t2 = ε22t1 = ε22t2 = 0.0685 (obtained using Eq. (144)), which are very close to the applied biaxial strains

ε̄1 = ε̄2 = 0.06.

Example 2. Sample size effect of the solutions. To investigate the effects of sample size, we have considered

three other samples of size 15 nm × 15 nm, 30 nm × 30 nm, and 40 nm × 40 nm. All the initial conditions,

boundary conditions for the displacements and order parameters, and all other parameters are identical to those

considered for 20 nm × 20 nm sample in Example 1. The stationary solutions for the order parameters for KM-I

and KM-II are shown in Figs. 5(a) and (b), respectively. Residual austenite is observed mainly in regions where

two orthogonal martensitic plates meet producing triple junctions. We note that the number of martensitic
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Figure 5: Sample size effect on microstructures in 15 nm × 15 nm, 20 nm × 20 nm, 30 nm × 30 nm, and 40 nm × 40 nm samples

under ε̄1 = ε̄2 = 0.06 for (a) KM-I and (b) KM-II (K012 = 0 in both the KMs).

53



  η0

ηi ηeq

K
M

−
II

η1
ηeq

Figure 6: Microstructures in 30 nm × 30 nm sample under ε̄1 = ε̄2 = 0.02 for (a) KM-I and (b) KM-II (K012 = 0 in both the KMs).

plates for both KM-I and KM-II are the same for the sample sizes of 15 nm × 15 nm and 40 nm × 40 nm.

However, the numbers differ in other samples. In all the simulations, the variant-variant interface width has

been observed to be close to the stress-free analytical solution δ12 = 0.75 nm; see Basak and Levitas (2017)

for an analysis. The average width of the martensitic plates, which are aligned along e2-direction, have been

calculated to be 1.22 nm, 1.32 nm, 1.81 nm, and 1.97 nm, within the respective samples (with size in ascending

order) shown in Fig. 5(a) for KM-I. Obviously, the average width of the martensitic plates increase with increase

in size of the sample. The average width of the similar martensitic plates are 1.22 nm, 0.98 nm, 1.61 nm, and

1.97 nm, in the respective samples for KM-II. The average width of the martensitic plates decreases in the 20

nm × 20 nm sample because of a larger number of plates (six pairs for KM-II versus five pairs for KM-I), and

then the width increases as sample size increases. Also, note that in larger samples the martensitic plates are

longer, number of triple junctions are more, and variant-variant interfaces are much planar.

Example 3. Smaller biaxial strain ε̄1 = ε̄2 = 0.02. We now consider a 30 nm × 30 nm sample subjected to

boundary displacements corresponding to the smaller biaxial strains ε̄1 = ε̄2 = 0.02. All other boundary and
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initial conditions, and parameter values are identical to Example 1. Stationary solutions for η0 (first column),

η1 (second column), and ηeq (third column) are shown in Fig. 6 for both KM-I (first row) and KM-II (second

row). The η0 plots clearly show that due to relatively smaller applied strain as compared to Examples 1 and 2,

the volume fraction of the martensite is much smaller. In fact, now the volume fractions of residual austenite

and martensitic variants are comparable, and the martensitic variant-austenite interfaces are prominent. Four

short vertical variant-variant interfaces are observed for both the models; four short horizontal variant-variant

interfaces are visible for KM-II, and very small horizontal variant-variant interfaces are observed for KM-I.

Based on the transformation strains, in KM-I the A- M1 and A- M2 interfaces are at inclinations of 73.3◦ and

106.6◦, respectively, with the positive e1-axis, and in KM-II the same interfaces are at, respectively, 74.4◦

and 107.5◦ inclinations with the same axis. For KM-I the zig-zag structure fills space between two relatively

long inclined plates, similar to those observed in some experiments at the microscale (see Hornbogen (1999))

and nanoscale (see Kockar et al. (2008))). In real elastoplastic materials such a microstructure is usually

arrested by dislocations, and even with decreasing temperature it cannot grow. Instead, a smaller scale zig-zag

microstructure fills space between smaller inclined plates producing a fractal microstructure (Hornbogen (1999);

Kockar et al. (2008)). One can observe one smaller plate for KM-I. For KM-II, one can see a smooth transition

of two martensitic plates within austenite into horizontal contacting variant-variant structure.

Example 4. Effect of penalizing triple junctions. In order to show the effect of penalizing triple junctions,

we consider the same 30 nm × 30 nm sample of Example 1, where all initial and boundary conditions and

parameter values are identical to those of Example 1, except that here we penalize the triple junctions. The

stationary distribution of the order parameters for ρ0K012 = 10 GPa are shown in Fig. 7(a). We have repeated

the plots for K012 = 0 in Fig. 7(b) for convenience in comparing these two cases (the same figures in the third

column of Figs. 5(a) and (b)). Obviously, for both KM-I and II, the microstructures now have a smaller amount

of residual austenite as compared to the case with K012 = 0. It clearly indicates that when triple junctions

are penalized, the coexistence of three phases near the tips of the martensitic plates is largely prevented at the

interior of the sample, and to some extent near the external surfaces. The triple junctions are still observed near

the corners of the samples, but are mostly absent from rest of the domain. For KM-I, an additional horizontal

M2 plate appeared at the bottom of a sample making the M1 band thinner. For KM-II, a horizontal M1 plate
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Figure 7: Microstructures in 30 nm × 30 nm sample under ε̄1 = ε̄2 = 0.06 for KM-I and KM-II, and with (a) ρ0K012 = 10 GPa,

and (b) ρ0K012 = 0.

at the top of a sample splits into multiple sections leading to an increase in the length of the vertical M1 plates.

B. Twins under uniaxial strain, and study of a stress relaxation method within twin boundaries

Let us now consider a rectangular sample of size l1 = 15 nm and l2 = 20 nm, which is subjected to uniaxial

strain corresponding to ε̄2 = 0.1 at upper boundary r02 = 20 nm with respect to the lower boundary at

t = 0 (then fixed at any t > 0) and with fixed left and right boundaries in the horizontal directions (u1 = 0).

The situation is mostly similar to that depicted in Fig. (2), except we now consider roller support in all the

external surfaces except r02 = 20 nm boundary. For all the boundaries, the shear stress σ12 = 0. The initial

conditions and all other parameters and material constants are considered to be identical to Example 1. The

large undercooling and uniaxial strain promotes a single twin solution such that the twin plates are aligned

vertically. In the first row of Fig. 8(a), the stationary solutions for the order parameters are shown when F t

is considered from KM-I (i.e. Eq. (81)1). The fixed boundaries at r02 = 0 and r02 = 20 nm act like invariant

planes, near which the twin plates end with sharp tips. Although, the tips increase the interfacial area thereby

increasing the interfacial energy, such a morphology reduces the elastic energy within the finite A-M interface,

and thus reduces the total energy of the system.

The excess elastic stresses across r02 = 10 nm line of the sample are studied for both KM-I and KM-II. In
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Figure 8: Microstructures in a 15 nm × 20 nm rectangular sample with ε̄2 = 0.1, ε̄1 = 0, and K012 = 0 for KM-I (first row)

and KM-III (second row). The microstructure shown in the second row was obtained by switching to KM-III, once all the twin

boundaries were formed with KM-I. (b) Elastic stress σe22 distribution along r02 = 10 nm for KM-I (first row) and for KM-III

(second row).

KM-I, the average normal elastic stress σe11 is −5.44 GPa across that line, and the maximum value of excess

σe11 within the twin boundaries across that line is 0.09 GPa which is small and mainly caused by the numerical

error. The shear stress σe12 along that line is an order of magnitude less than a GPa, and hence negligible. The

other component σe22 is shown in Fig. 8(b) by the solid blue curve. Evidently, the excess elastic interfacial stress

σe22 can reach up to 2.42 GPa (calculated with respect to a reference value 5 GPa), which is significantly large.

In reality the magnitude of stresses in twin boundaries is not yet well known, however for sharp coherent twin

interfaces they are zero. Thus, to have a parity with the crystallographic theory, as far as the elastic stresses

within twin boundaries are concerned, we consider a method of relaxing the excess elastic stress. To this end,

we allow the twin boundaries to develop fully from the same initial condition considering F t given by Eq. (81)1
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(KM-I). All the boundary conditions and parameters are taken to be identical to those considered for KM-I.

Once the twin boundaries are fully formed, we switch F t to Eq. (81)3 (KM-III) in the entire domain. Since

F t in KM-III is compatible with vanishing excess elastic stresses within twin boundaries (Basak and Levitas

(2017)), excess elastic stresses relax from the twin boundaries, which is evident from the red broken curve in

Fig. 8(b). In this case the maximum value of the excess interfacial σe22 is 0.23 GPa (calculated with respect

to a reference stress 4.6 GPa within the variant plates). Also, we note that the shape of the tips of each twin

plate is more ‘V’-shaped in KM-III, and they are sharper than those obtained using KM-I (first row). While

KM-III works well for the model problem under consideration, it is not trivial to generalize the method for the

more realistic cases with multiple sets of twin boundaries having different orientations. The interfacial stress

relaxation method developed in Levitas and Samani (2011) for solid-melt interface may be a possible way to

obtain the excess elastic stress-relaxed twin interfaces.

9. Concluding remarks

A thermodynamically consistent novel multi-phase phase field model has been developed for studying stress-

and temperature induced martensitic PTs at finite strains. A single order parameter describes austenite to

martensitic transformations and another N order parameters have been used to describe the evolution of N

martensitic variants. An explicit constraint on the order parameters has been used, which guides in deriving

the kinetic laws for the order parameters in a physically consistent manner. The coexistence of three or more

phases at a single material point has been penalized in our observer invariant free energy model. Furthermore, to

regulate the presence of a third phase and its extent within the interface between any two variants, penalization

terms have been considered, which allow one to describe each variant-variant transformation with a single order

parameter. This allows to have the analytical solution for each interface, which can be used to calibrate the

energy and width of the interface. A comparative study of complex microstructure evolution in various 2-D

samples under different loading conditions have been studied under the plane stress condition. The sample

size effect on the stationary microstructures and the effect of the triple junction penalization term have been

discussed with examples. Three different kinematic models (KMs) for the transformation deformation gradient

have been considered. The first two of the models are as follows: in KM-I, it is a linear function of the Bain
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tensors of all the variants; in KM-II, it is exponential of a linear combination of the logarithm of the Bain

tensors of all the variants. KM-II yields isochoric variant-variant transformations, but KM-I does not.

At this moment it is impossible for the authors to conclude which of the models is to be chosen for the

applications. Because to the best of authors’ knowledge whether (a) the variant-variant transformations are

indeed isochoric or not and (b) the twin boundaries are indeed free of the excess elastic stresses or not are not

yet known. They need to be studied using the atomistic simulations. Thus all we can do here is to enumerate

the advantages and disadvantages of each of the models:

KM-I: It is simpler and generates lower interfacial stresses than KM-II. However, the volumetric transfor-

mation strains across the interfaces are not controlled, and the mechanical part of the thermodynamic driving

forces for the order parameters can not be decomposed into volumetric and isochoric parts.

KM-II: It yields isochoric variant-variant transformations and allows to decouple the mechanical part of the

driving forces into volumetric and isochoric parts. However, the model is complex and yields significantly higher

interfacial stresses.

KM-III: It yields complete relaxation of the excess elastic stresses within the twin boundaries. However, it

can be used just for two alternating twin structure, and it is not trivial to generalize the model for the more

realistic cases with multiple sets of twin boundaries having different orientations.

Currently, we would choose KM-I as the simplest model, which generates modest interfacial stresses. If it

is confirmed through the atomistic simulations that the variant↔variant transformations are indeed isochoric

and the twin boundaries are excess elastic stress-free, KM-II supplemented with a stress relaxation mechanism

would be the most promising one. A general stress relaxation method within the interfaces is needed, and the

method in Levitas and Samani (2011) used for the solid-melt interfaces may be a possible starting point for

obtaining the desired interfacial elastic stresses.

Appendix
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Appendix A. Time derivative of Helmholtz free energy

In this appendix we derive the material time derivative of the free energy given by Eq. (6) which has been

used in Section 4. Taking material time derivative in Eq. (6) we obtain

ψ̇ =
Jt
ρ0

∂ψe
∂F e

· F−Tt : Ḟ
T − Jt

ρ0
F T
e ·

∂ψe
∂F e

· F−Tt : Ḟ
T
t +

Jtψe
ρ0

F−Tt : Ḟ
T
t + J(ψ̆θ + ψ∇)F−T : Ḟ

T
+

N∑
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where we have used ˙detA = (detA)A−1 : Ȧ, and
˙

A−1 = −A−1 · Ȧ ·A−1 for any second order invertible tensor

A(t). The following term from Eq. (A.1) is rewritten as

N∑
i=0

∂ψ∇

∂∇ηi
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where we have used ∇ηi = F−T · ∇0ηi. Using (A.2) in (A.1) and rearranging the terms, ψ̇ turns out to be
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Since F t is considered to be a function of all the order parameters, Eq. (A.3) can further be rewritten as
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Appendix B. Inversions and derivatives of F t

In this appendix we derive the explicit expressions for various derivatives of the transformation deformation

gradient with respect to the order parameters, for all the kinematic models. These relations have been mainly

used in analyzing the transformation work and deriving the instability criteria in Sections 4.7 and 5, and thus
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obtained considering two martensitic variants and taking the constraint (21) into account. Under this condition

F t for all the models is listed in Eq. (81).

For KM-I: The derivatives of F t given by Eq. (81)1 are

∂F t

∂η0
=

∂ϕ(aε, η0)

∂η0
(εtj + φi(εti − εtj)),

∂2F t

∂η20
=
∂2ϕ(aε, η0)

∂η20
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∂ηi
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∂φi
∂ηi

(εti − εtj),
∂2F t

∂η2i
= ϕ(aε, η0)

∂2φi
∂η2i

(εti − εtj). (B.1)

For KM-II: Using the definition of exponential of a tensor (see Chapter 1 of Jog (2007)) we express F t for

KM-II (see Eq. (81)2) as

F t = exp (ϕ(aε, η0)H) = I +Hϕ(aε, η0) +
1

2!
(ϕ(aε, η0)H)2 +

1

3!
(ϕ(aε, η0)H)3 + . . . , (B.2)

where H = lnU tj + φi(lnU ti − lnU tj). Taking the derivative in Eq. (B.2) with respect to η0 and using Eq.

(B.2) we can easily show that

∂F t

∂η0
=
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∂η0
H · F t =

∂ϕ(aε, η0)

∂η0
F t ·H, (B.3)

where we have used that the tensors exp (ϕ(aε, η0)H) and H are commutative. Recalling that ln(expA) = A

for any second order tensor, we write from Eq. (B.3) that F−1t · ∂F t
∂η0

= 0 if η0 = 0 (using Eq. (33)) and

F−1t ·
∂F t

∂η0
=

1

ϕ(aε, η0)
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∂η0
lnF t if η0 > 0. (B.4)

Differentiating Eq. (B.3) again with respect to η0 we have
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We will also need an expression for ∂F t/∂ηi. When lnU ti and lnU tj are commutative, which is the case at

least for the cubic to tetragonal PTs considered in this paper, a simple expression for ∂F t/∂ηi can be obtained.

For other PTs the Bain tensors may not have this commutative property; for such cases the expression can be

complicated and not considered here. Taking the derivative of F t with respect to ηi we get

∂F t

∂ηi
=
∂φi
∂ηi

(lnU ti − lnU tj) · F t =
∂φi
∂ηi

F t · (lnU ti − lnU tj), (B.6)
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where it has been assumed that lnU ti and lnU tj are commutative. The second derivative is
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2 · F t +
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For KM-III: The first and second derivatives of F t given by Eq. (81)3 with respect to η0 and ηi are

∂F t

∂η0
=

∂ϕ(aε, η0)

∂η0
(εtj + φimt ⊗ nt),

∂2F t
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In analyzing the transformation work and deriving the instability criteria, we also need to invert F t, which we

can obtain in this case explicitly using the Woodbury-Sherman-Morrison formula (see, e.g. Chapter 1 of Strang

(2007)) as

F−1t = W−1 − (ϕ(aε, η0)φi/ξ)W
−1 · (mt ⊗ nt) ·W−1, (B.9)

where W = I + ϕ(aε, η0)εtj and ξ = 1 + ϕ(aε, η0)φiW
−1 ·mt · nt.
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