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DISCRETE ELEMENT MODEL CALIBRATION USING  
MULTI-RESPONSES AND SIMULATION OF CORN  

FLOW IN A COMMERCIAL GRAIN AUGER 

M. Z. Tekeste,  M. Mousaviraad,  K. A. Rosentrater 

ABSTRACT. Grain augers are primary grain conveying equipment in agriculture. Quantitative prediction of dynamic grain 
flow in grain augers using discrete element modeling (DEM) has potential to support simulation-based engineering design 
of grain handling equipment. The objective of this study was to develop a DEM corn model using a multi-response calibra-
tion methodology and validation of combine-harvested corn flow in a commercial grain auger. Using a Latin hypercube 
design of experiment (DOE) sampling from four particle interaction DEM parameters values, 27 DEM simulations were 
generated for four DEM corn shape approximations (1-sphere, 2-spheres, 5-spheres, and 13-spheres) to create virtual DEM 
experiments of bucket-discharged and anchor-lifted angle of repose (AOR) tests. A surface meta-model was developed using 
the DEM interaction parameters as predictor variables, and normalized AOR expressed as a mean square error (MSE), i.e., 
the sum of square differences between DEM simulations and laboratory-measured AOR. Analysis of the MSE percentiles 
with lower error differences between DEM simulations and laboratory AOR and the computational effort required per 
simulation (h per simulation) showed that the 2-spheres DEM model had better performance than the 1-sphere, 5-spheres, 
and 13-spheres models. Using the best stepwise linear regression models of bucket AOR MSE (R2 of 0.9423 and RMSE of 
94.56) and anchor AOR MSE (R2 of 0.5412 and RMSE of 78.02) and a surface profiler optimization technique, an optimized 
2-spheres DEM corn model was generated. The DEM predicted AOR with relative errors of 8.5% for bucket AOR and 7.0% 
for anchor AOR. A DEM grain auger simulation used as a validation step also showed good agreement with the laboratory-
measured steady-state mass flow rate (kg s-1) and static AOR (degrees) of corn piled on a flat surface, with DEM prediction 
relative error ranging from 2.8% to 9.6% and from 8.55% to 1.26%, respectively. 

Keywords. Corn, DEM, Discharge angle of repose, Discrete element modeling, Grain auger, Lift angle of repose. 

echanical screw grain augers are commonly 
used for bulk grain conveyance in self-pro-
pelled combine harvesters, for loading and un-
loading grains from grain carts, as well as fill-

ing and emptying bins on the farm (Srivastava et al., 2006). 
Understanding and quantitative prediction of grain-to-grain 
and grain-to-equipment interactions are essential to support 
the development and validation of new grain handling equip-
ment. The traditional product development cycle, including 
computer-aided design (CAD), physical prototyping, and 
functional tests in the laboratory and field, is often laborious, 
costly, and time-consuming. During machine-scale tests of 
grain handling systems, maintaining constant grain condi-
tions, such as moisture content and grain quality, is often dif-
ficult and introduces undesirable measurement errors (Ris-
ius, 2014). Analytical performance prediction equations that 
were developed based on the dimensionless analysis (Robert 

and Willis, 1962; Srivastava et al., 2006) are applicable for 
predicting volumetric conveyance efficiencies. Mathemati-
cal models that predict grain-equipment interactions have 
the potential to simulate the dynamic mechanical behavior 
and augment simulation-based design of bulk grain handling 
systems. In their experimental work on auger performance 
(e.g., volumetric and power requirements), Miao et al. 
(2014) and Robert (2015) indicated that experimental tests 
do not provide the dynamic flow from grain-to-grain and 
grain-to-rigid-body interactions. Computational tools have 
the potential to simulate the flow behavior of bulk solids and 
biomass materials in material handling equipment. 

The discrete element method (DEM), a computational 
technique initially developed by Cundall and Strack (1979), 
has become a valuable engineering analysis tool for predict-
ing the dynamic behavior of granular materials in agricul-
tural grain handling equipment (Shimizu and Cundall, 2001; 
Owen and Cleary, 2009), mixing and milling processes 
(Kalala et al., 2005; Cleary, 2013; Kretz et al., 2016), and 
tillage-soil interactions (Asaf et al., 2007; Chen et al., 2013; 
Ucgul et al., 2014). As a mesh-free technique, DEM com-
putes particle dynamics using discontinuous mechanics and 
has advantages over continuum and mesh-based techniques 
such as finite element analysis (FEA) and computational 
fluid dynamics (CFD), which have inherent problems asso-
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ciated with mesh distortion, numerical instability, and lim-
ited capability to simulate large strain deformations. 

However, integrating DEM into simulation-based engi-
neering analysis for the design of bulk grain handling equip-
ment requires a standard technique for creating realistic ap-
proximations of irregular-shaped grains, a calibration meth-
odology to determine the micromechanics contact model 
properties, and a validation methodology for simulating bulk 
grain handling applications. In general, DEM engineering 
workflow comprises: (1) efficient formulation of the particle 
simulation domain (particle size, DEM shape approxima-
tions, number of particles, and initial configurations of par-
ticles), (2) systematically scaling of the micromechanics 
model to accurately simulate bulk material behavior, and 
(3) efficient computing power. Computing power for DEM 
simulations has become affordable with the recent availabil-
ity of high-performance computers and improved explicit 
time integration to run DEM on parallel computing cores 
(EDEM, 2014). 

Researchers have used different approaches to select ap-
propriate DEM microcontact models, define the particles, 
and generate material properties. For the determination of 
material properties, one approach that has been widely used 
is the direct measurement of DEM micromechanical proper-
ties, such as single grain-to-grain and grain-to-rigid-body 
(geometry) coefficients of restitution, coefficients of friction 
(sliding and rolling), and elastic Young’s modulus. Gonzá-
lez-Montellano et al. (2012) used micromechanics measure-
ment methods for individual corn and olive particles to gen-
erate the DEM particle density, Young’s modulus, coeffi-
cients of restitution, and coefficients of friction. After lim-
ited success in predicting grain flow in a hopper, González-
Montellano et al. (2012) introduced a trial-and-error ap-
proach for adjusting the DEM coefficients to improve pre-
diction accuracy. 

An alternative approach for direct measurement is cali-
bration of the DEM model based on bulk behavior response. 
Coetzee and Els (2009a, 2009b) and Coetzee et al. (2010) 
calibrated their DEM model by running virtual direct shear 
and uniaxial compression tests. In their tests, they changed 
one DEM microparameter value while fixing the values of 
the remaining DEM parameters and virtually predicted the 
bulk grain Mohr-Coulomb failure parameters of cohesion 
and angle of internal friction. In their calibration process, 
Coetzee and Els (2009a, 2009b) applied a trial-and-error 
procedure by changing the DEM frictional coefficients and 
stiffness parameters to match the Mohr-Coulomb material 
properties. They reported a blade force DEM prediction er-
ror of 26% from simulations of blade-grain interactions. 
Coetzee et al. (2010) used uniaxial compression and angle of 
repose (AOR) calibration tests to improve the trial-and-error 
method for generating DEM properties. Coetzee (2017) re-
cently conducted an extensive review of DEM calibration 
approaches based on previous studies and showed the cali-
bration steps for a sensitivity study of one DEM parameter 
at a time. However, many of the calibration approaches ex-
plained by Coetzee (2017) still used a trial-and-error ap-
proach to determine each DEM parameter. A systematic in-
tegration of a calibration procedure and optimization of 
DEM properties for multi-response bulk behavior requires 

further research, as most researchers have used trial-and-er-
ror approaches after sensitivity studies of DEM properties. 
The interaction effects of DEM parameters on bulk material 
behavior have not been used in DEM calibration approaches 
(Coetzee et al., 2017), even though experimental studies 
(Srivastava et al., 2006; Robert, 2015) have shown that grain 
flow in a grain auger is highly influenced by the interaction 
effects of friction coefficients between bulk granular parti-
cles and between particles and the screw and casing surfaces. 

DEM shape approximation of granular materials has also 
been of interest in many studies (Coetzee, 2016; Markauskas 
et al., 2015; Stahl and Konietzky, 2011; Wiacek et al., 2012). 
In many DEM grain handling simulation studies, shape ap-
proximation was not included as a component of the calibra-
tion of the material properties, even though it appears to in-
fluence the rolling coefficient parameters and the computa-
tional effort. Developing a robust numerical methodology 
along with experimental testing for controlled, reproducible 
field-harvested grain conditions are important research chal-
lenges in using DEM for the design and performance analy-
sis of grain handling equipment. In our previous work 
(Mousaviraad et al., 2017), a single AOR calibration and op-
timization approach was introduced to generate corn DEM 
friction parameter values and resulted in DEM simulations 
of grain auger mass flow rates with prediction errors of 27% 
and 29% for 250 and 450 rpm grain auger speeds, respec-
tively. The prediction accuracy could be improved by using 
calibration for multiple-response AOR to investigate the ef-
fects of grain-to-grain, and grain-to-rigid-body interactions 
in quasi-static grain flow and by including such multi-re-
sponse effects during the surface response optimization. 

The overarching objectives of this study were to integrate 
DEM particle shape approximation into DEM material prop-
erty estimation, develop a quantitative and multi-response 
DEM calibration technique, and validate the methodology 
by simulating corn flow through an auger. The specific ob-
jectives of this study were to (1) characterize the physical 
properties of field-harvested corn using standard measure-
ment methods and simple bulk material flow tests, (2) de-
velop a DEM corn model approximating the shape of corn 
kernels and calibrate the DEM material interaction proper-
ties using a Latin hypercube design of experiments (DOE) 
calibration technique, and (3) validate the DEM calibration 
technique by simulating the corn flow through an auger. 

MATERIALS AND METHODS 
CORN PHYSICAL CHARACTERIZATION 

Material characterization for DEM calibration and vali-
dation was conducted on combine-harvested corn samples 
from the Iowa State University Agricultural and Agronomy 
farm in Boone, Iowa. 

Corn Physical Properties 
For measurement of the corn moisture content, particle 

density, and particle mass, the methods reported by 
Mousaviraad et al. (2017) were used. The moisture content 
was measured by the oven-drying method at 105°C for 24 h 
(ASABE, 2006). Corn kernels (sample size = 30) were ran-
domly selected to measure five axial dimensions (height, 
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large width, large depth, small width, and small depth) using 
a digital caliper (0.01 mm resolution) (fig. 1a) and particle 
mass using a digital scale (0.01 g resolution). Particle density 
of the corn kernels was estimated according to ASTM (2000) 
by measuring the water volume displaced by a mass of ker-
nels (sample size = 30) immersed in a 1 mm graduated cyl-
inder (100 mm3 capacity). Bulk density was measured by 
loosely filling a bucket with a known mass of corn (3 kg). A 
representative corn kernel was 3D scanned and recon-
structed in SolidWorks CAD software to generate an approx-
imate 3D corn shape (fig.1b). 

Coefficient of Restitution 
The coefficient of restitution for particle-to-particle and 

particle-to-rigid-body interactions was measured by drop-
ping a single kernel from a vertical height (hinitial) of 200 mm 
onto a cylinder randomly filled with corn and onto a flat sur-
face geometry. The maximum height (hmax) of the rebounded 
kernel after impacting the surfaces was measured from video 
captured at 240 frames s-1 (fps) with a 5 mm resolution ruler 
in the background. By analyzing the video frames, the max-
imum kernel height (hmax) for each test was estimated. The 
coefficients of restitution (e) for the corn-to-corn (ecorn:corn) 

and corn-to-geometry (ecorn:geometry) interactions were esti-

mated using i lmax nitiae h h=  according to Zhang and Vu-

Quoc (2002). 

BULK ANGLE OF REPOSE 
The bulk AOR is defined as the angle of a piled bulk ma-

terial with respect to a horizontal plane (Boac et al., 2010; 
Mohsenin, 1986). Schulze (2007) described several methods 
for measuring bulk AOR, including poured, drained, and dy-
namic AOR. Some of the factors that affect bulk AOR are 
sliding and rolling frictional forces interacting within the 
granular pile and free-surface flow (Walton and Braun, 
1993), particle shape, particle size distribution, grain mois-
ture content, and base plate material properties (Boac et al., 
2010). For calibration of DEM granular flow in material han-
dling equipment, such as grain augers, both grain-to-grain 
and grain-to-rigid-body frictional (sliding and rolling) re-
sistances influence the dynamic grain flow and equipment 
performance (Robert, 2015). In this study, two measurement 
methods were conducted: bucket-discharged AOR and an-
chor-lifted AOR. The bucket-discharged AOR test approxi-
mates the drained AOR (Schulze, 2007), which seems to be 
influenced by grain-to-grain and grain to-rigid-body interac-
tions as grains slide along the bucket walls. The anchor-lifted 
AOR test was conducted to quantify the effects of grain-to-
grain friction coefficients with minimum effects from grain-
to-rigid-body interactions on the AOR. For DEM calibration 
purposes, these two simple tests were considered to provide 
multiple responses because the formation of AOR is affected 
by grain-to-grain and grain-to-rigid-body interaction param-
eters. 

Bucket-Discharged AOR Test 
Bucket AOR (αbucket) is the fall or drained angle formed 

after loosely filled and unconsolidated corn grains in a 
bucket are discharged onto a flat plate (fig. 2, left). The 
bucket dimensions, material type, and testing procedure 
were similar to those reported by Mousaviraad et al. (2017). 
A box (height = 200 mm, length = 250 mm, and width = 

 

(a) (b) 

Figure 1. (a) Corn kernel and (b) CAD corn shape reconstructed from
3D scanned corn kernel (H = height, W1 = small width, W2 = large 
width, D1 = small depth, and D2 = large depth). 

Figure 2. (left) Simple experiments for bucket-discharged AOR (αbucket) and (right) anchor-lifted AOR (αanchor) in which an anchor (b) was lifted 
to form an angle of repose (AOR) from a cylinder (a) loosely filled with corn. 

Gate 



1746  TRANSACTIONS OF THE ASABE 

120 mm) was fabricated from acrylic sheet. A transparent 
5 mm × 5 mm grid was carefully applied to the length 
(250 mm) and height (200 mm) of the bucket. The initial 
loosely filled corn bulk density was 520 kg m-3. A gate with 
a width of 120 mm was opened vertically at an approximate 
speed of 5 m s-1, and the corn particles formed an AOR along 
the bucket length. The bucket AOR test was replicated five 
times. After AOR formation along the bucket length and 
height, the corn height was estimated for each of the 5 mm 
× 5 mm grid cells along the bucket length (0 to 250 mm). 
The corn height (hexp) was used to calculate a standardized 
error estimate for DEM calibration and the bucket AOR. 

Anchor-Lifted AOR Test 
A second test was constructed to measure the AOR as 

grains were lifted from the loosely filled material. The test 
for anchor-lifted AOR (αanchor) consisted of a cylinder with 
a diameter of 190 mm and height of 110 mm, and an anchor 
consisting of 15.7 mm diameter cylindrical tube, a square 
flat bottom (101 mm), and 90° wall (height of 12.5 mm) 
glued to the square flat bottom (fig. 2, right). To minimize 
the corn-to-wall friction coefficient, the height of the square 
bottom was set to the mean corn height measured using a 
digital caliper. The acrylic material and grain filling method 
were similar to the bucket-discharged AOR test. The anchor 
was pulled up at approximately 30 mm s-1, and the anchor 
AOR (αanchor) was estimated using an image processing pro-
cedure in Matlab (ver. 2016a) for the digitally captured im-
ages. The grain flow behavior that formed the free-surface 
AOR was affected by the grain-to-grain angle of internal 
friction, with limited influence from grain-to-rigid-body ef-
fects. The bucket and anchor AOR tests together provided 
multi-response behaviors of grain flow as influenced by 
grain-to-grain and grain-to-geometry rigid-body friction be-
haviors. 

GRAIN AUGER TEST 
A commercial grain auger (Westfield Co., Boone, Iowa), 

with total auger length of 327 mm, outer tube (shell) diame-
ter of 100 mm, grain auger diameter of 90 mm, grain auger 

shaft of 50 mm, pitch length of 100 mm, and intake length 
of 206 mm, was used to measure corn flow through a grain 
auger (fig. 3a). The dimensions of the grain auger are shown 
in figure 3b. Grain flow tests were conducted at two rota-
tional speeds (250 and 450 rpm) at 0° inclination from hori-
zontal. The rotational speed was first set to the target value. 
After the grain auger was operating at the desired rotational 
speed, corn was fed continuously into the auger intake to 
provide an approximate mass flow rate of 20 kg s-1. While 
the corn was conveyed through the auger, additional corn 
was added to the intake to maintain an approximately con-
stant mass flow rate. The transient corn mass discharged 
from the auger was measured at a 4 Hz sampling rate using 
a digital scale (0.2 kg mass resolution). A non-contact laser 
tachometer (HHT13, class 3R visible laser, Omega Engi-
neering, Norwalk, Conn.) was used to measure the rotational 
speed during the grain conveying tests. Similar to the data 
collection for mass flow versus time, tests were also con-
ducted at a 0° auger inclination angle and two rotational 
speeds (250 and 450 rpm) to estimate the poured AOR as 
corn was discharged from the auger and fell onto a flat steel 
surface. 

DEM CALIBRATION APPROACH 
DEM Contact Model Parameters 

The Hertz-Mindlin contact model is one of the most com-
monly used DEM contact models for non-cohesive particles. 
The Hertz-Mindlin model is a non-linear spring elastic con-
tact model that defines the constitutive relationships of force 
and overlap using normal and tangential spring stiffness pa-
rameters in the normal and tangential contact overlaps be-
tween particles. Frictional slip is allowed in the tangential 
direction using a slider spring response and is limited to the 
maximum value determined by Mohr-Coulomb friction be-
havior. Both normal and tangential forces have damping 
components in which the damping is related to the coeffi-
cient of restitution. The Hertz-Mindlin contact model with 
rolling friction, after Tsuji et al. (1992), was used in EDEM 
2.7 (EDEM, 2014). 

 

(a) (b) 

Figure 3. (a) Commercial grain auger at 0° inclination for the laboratory test setup and (b) 3D CAD drawing. The feed intake, the auger tube with 
a helical screw, the shaft, and the discharge bucket as shown in the CAD drawing were reproduced in EDEM 2.7. 
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EDEM 2.7 (EDEM, 2014), a commercial DEM code, was 
used to create DEM corn particles and run the DEM simula-
tions for the calibration and validation experiments. The 
corn particles were assumed to be frictional and non-cohe-
sive. The EDEM parameters needed to define corn DEM us-
ing the Hertz-Mindlin (no slip) contact model included: 
(1) the corn particle shape (particle radius and position of in-
dividual sphere elements), (2) material property parameters 
(Poisson’s ratio, shear modulus, and particle density), and 
(3) material interaction properties, including particle-to-par-
ticle coefficient of restitution, particle-to-particle coefficient 
of static friction, particle-to-particle coefficient of rolling 
friction, particle-to-rigid-wall (rigid body) coefficient of res-
titution, particle-to-wall (rigid body) coefficient of static 
friction, and particle-to-wall (geometry) coefficient of roll-
ing friction. 

DEM Corn Particle Definition 
For the DEM corn shape approximation, four DEM corn 

shapes were created in EDEM 2.7, including one sphere  
(1-sphere), two clumped spheres (2-spheres), five clumped 
spheres (5-spheres), and 13 clumped spheres (13-spheres) 
(fig. 4). The mean equivalent geometric diameter of a corn 
kernel (sample size =30) was used as the diameter for the  
1-sphere DEM corn shape (radius of 4 mm). The geometric 
mean was calculated from the corn kernel height, large 
width, and small width measurements. The 2-spheres DEM 
corn model approximately matched the aspect ratio calcu-
lated from the height and maximum width of a corn kernel 

(radius of 2.54 mm for the top sphere and 4 mm for the bot-
tom sphere). The 5-spheres DEM corn model approximately 
matched the height, maximum width, and maximum depth 
of a corn kernel (radius of 2.84 mm for the top sphere, 
2.7 mm for the middle spheres, and 2.54 mm for the bottom 
spheres). The 13-spheres DEM corn model approximately 
matched the height, maximum width, minimum width, max-
imum depth, and minimum depth of a corn kernel (radius of 
2.5 mm for the top sphere and 2 mm for the other spheres). 

DEM Material Properties Initialization 
The values of Poisson’s ratio and shear modulus for corn 

and the rigid body (acrylic) were obtained from the literature 
(Boac et al., 2010). Laboratory-measured values of corn par-
ticle density, the corn-to-corn coefficient of restitution, and 
the corn-to-wall (acrylic) coefficient of restitution were as-
signed to each DEM corn model. After the DEM particles 
were generated in EDEM 2.7, reproducing the calibration 
experiments in the bucket and anchor AOR tests, the DEM 
particle density values were adjusted to match the DEM ini-
tial bulk density to the laboratory-measured initial bulk den-
sity. Adjustment of particle density to match bulk density has 
also been used by other researchers (Coetzee, 2017). The 
DEM interaction parameters, including the coefficients of 
corn-to-corn static friction (CC_stat), corn-to-corn rolling 
friction (CC_roll), corn-to-acrylic static friction (CA_stat), 
and corn-to-acrylic rolling friction (CA_roll), were identi-
fied as independent parameters for the sensitivity study. The 
low and high settings of the four interaction parameters were 

  
(a) (b) 

 

(c) (d) 

Figure 4. EDEM corn shape approximations: (a) 1-sphere (d = 8.0 mm), (b) 2-spheres, (c) 5-spheres, and (d) 13-spheres. 
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used to generate 27 experimental combinations using a Latin 
hypercube DOE. The remaining DEM material and interac-
tion properties were fixed to the laboratory-measured values 
and literature estimates. The low and high values of the static 
frictional interaction parameters of corn and acrylic (CC_stat 
and CA_stat) were obtained from previous DEM literature 
(Boac et al., 2010; Coetzee and Els, 2009a, 2009b; Gonzá-
lez-Montellano et al., 2012). Initial DEM simulations of 
bucket AOR were run to estimate low and high values for 
the coefficients of corn-to-corn rolling friction (CC_roll) and 
corn-to-acrylic rolling friction (CA_roll). For our study, the 
AOR was assumed to be sensitive to the four DEM interac-
tion parameters (CC_stat, CC_roll, CA_stat, and CA_roll) 
and was also assumed to influence the grain flow behavior 
in the auger strongly. 

Using the Latin hypercube DOE consisting of 27 combi-
nations of the four DEM parameters (CC_stat, CC_roll, 
CA_stat, and CA_roll), a total of 216 EDEM simulation in-
put decks were generated. The 216 (4 × 2 × 27) EDEM sim-
ulation input decks were created for the four DEM corn par-
ticle shapes, the two calibration experiments, and the 27 
combinations of the four DEM friction coefficients. 

DEM Sensitivity and Optimization Criteria 
After generating DEM simulations for the 27 experi-

mental combinations in EDEM 2.7, mean square error 
(MSE) variances (mm2) were estimated from the square of 
the differences in the AOR response variables from the DEM 
simulations and laboratory experiments. The MSE from the 
bucket AOR test was calculated using equation 1: 

 
( )2

s exp
BucketAOR

1

MSE
N

i

h h

N=

−
=  (1) 

where MSEBucketAOR is the sum of the square of the difference 
in the height of corn from the DEM simulation (hs) and from 
the experiment (hexp) at every grid cell from i = 1 to N along 
the bucket length. Similar to the procedure used in the 
bucket-discharged AOR test, the height of corn (hs) from the 
DEM simulation was extracted from the 5 mm × 5 mm grid 
cells along the length of the bucket. 

The MSE (deg2) from the anchor AOR test was calculated 
using equation 2: 

 
( )2

s exp
AnchorAOR

1

AOR AOR
MSE

N

i N=

−
=  (2) 

where MSEAnchorAOR is the mean square error between the 
anchor AOR test and the DEM simulation, AORs is the AOR 
from the DEM simulation, AORexp is the AOR from the an-
chor-lifted AOR test, and N = 4 is the number of sampling 
positions. 

The mean square error (MSE), as a function of the error 
between the AOR tests and DEM simulations, was used to sta-
tistically analyze the influences of the DEM interaction pa-
rameters on the coefficients of friction, approximate the sur-
face response meta-models, and optimize the DEM properties 
(CC_stat, CC_roll, CA_stat, and CA_roll) with minimum pre-
diction errors based on the bucket and anchor AOR tests. 

Validation of DEM Grain Flow Simulation 
After the DEM calibration process using multi-responses 

from the two AOR tests was completed, DEM simulation of 
the auger system was conducted as the validation process. 
Grain augers are commonly used in bulk material handling, 
with a wide range of applications. The working principle of 
a grain auger forces the material grains to rotate and slide 
against each other and the equipment surfaces. Granular ma-
terials also experience collisions and accelerations while 
passing through an auger. The complex, dynamic behavior 
of granular material inside a grain auger makes such a sys-
tem a suitable application for validation of DEM models. Af-
ter systematic DEM calibration, simulation of the grain au-
ger with corn was assumed to validate the robustness of the 
DEM methodology applicable to grain handling equipment. 

In the DEM simulation, the auger was set at a horizontal 
position (0° incline), and tests were performed at 250 and 
450 rpm rotational speeds, similar to the laboratory experi-
ments. The corn-to-steel (auger geometry) sliding and roll-
ing coefficients were estimated as the AOR optimized corn-
to-acrylic coefficients (static and rolling) and multiplied by 
1.58, a value estimated from laboratory-measured corn-to-
acrylic and corn-to-steel coefficient ratios after Boac et al. 
(2010) and González-Montellano et al. (2012). The grain au-
ger geometry and the dynamics of the experimental setup 
(fig. 3b) were modeled in EDEM 2.7. The steady-state mass 
flow rate and the AOR of corn discharged onto a flat surface, 
as measured in the laboratory and simulated by DEM, were 
statistically compared. 

Computer Setup for DEM Simulations 
A Dell computer with an 8-core Intel Xeon E3-1271 

3.6 GHz CPU, NVIDIA Quadra K60 graphic card, and 
16 GB of RAM was used for the DEM simulations. The 
EDEM simulation settings were a time step of 5e-6 s, a grid 
cell three times the minimum sphere radius (EDEM, 2014), 
and 8-core processors. Each simulation was run for 60 s, and 
output data were exported every 0.05 s. The CPU time for 
each DEM simulation was also recorded to compare the 
computational effort required for the DEM runs. 

DATA ANALYSIS 
Statistical analysis was performed using a stepwise statis-

tical GLM procedure in JMP Pro 11.0.0 (SAS Institute Inc., 
Cary, N.C.) to identify the main factors and two-way inter-
action effects of the DEM material properties on the MSE 
from the bucket and anchor AOR tests for each DEM corn 
shape approximation. A stepwise regression technique ap-
plying the criterion of p-values between 0.05 and 0.1 was 
used to enter and leave the predictor parameter effect esti-
mates in the regression model. A stepwise regression meta-
model with a minimum root means square error (RMSE) and 
maximum coefficient of determination (R2) was used for the 
surface response optimization. Using 5,000 independent 
combinations of the four DEM parameter values and the best 
meta-model to predict MSE, the prediction surface desirabil-
ity profiler procedure in JMP Pro 11.0.0 (SAS Institute Inc., 
Cary, N.C.) with the objective of minimum MSE for both the 
bucket and anchor AOR tests was used to obtain the opti-
mized DEM parameter values. 
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RESULTS AND DISCUSSIONS 
CORN PHYSICAL PROPERTIES 

Descriptive statistics (means and standard deviations) for 
the corn kernel dimensions, aspect ratios, and material prop-
erties are presented in table 1 (Mousaviraad et al., 2017). The 
mean corn particle density was within the ranges reported by 
Boac et al. (2010) and González-Montellano et al. (2012). 
The dimensional measurements matched the values obtained 
by Boac et al. (2010). The mean corn moisture content of 
15.2% (range of 14.9% to 16.1%) was within the typical corn 
moisture content at harvest maturity of 15% to 25% (Niel-
sen, 2008; Abendroth et al., 2009). The mean coefficients of 
restitution for corn-to-corn (ecorn:corn = 0.25), corn-to-acrylic 
(ecorn:wall = 0.57), and corn-to-stainless steel (ecorn:wall = 0.61) 
interactions were obtained from the single-particle dropping 
tests. The values estimated with the drop tests were within 
the ranges reported by Boac et al. (2010) and González-
Montellano et al. (2012). 

Bucket Test AOR 
The mean bucket-discharged AOR (αbucket), as estimated 

from the middle corn height profile, was 21.1° (standard de-
viation of 1.5° and sample size = 5). The AOR from the 
bucket test described the quasi-static grain flow from emp-
tying the bucket. As the grain flowed along the 250 mm 
length and 120 mm width of the bucket, the AOR was influ-
enced by the effects of grain-to-grain and grain-to-wall fric-
tion. The mean AOR from the bucket test was slightly lower 
than the range (23.1° to 34.7°) reported by Boac et al. (2010). 
This could be associated with the relatively lower static and 
rolling resistance of corn sliding along the acrylic walls. 

Anchor Test AOR 
The measured anchor-lifted AOR (αanchor) was 29.8° 

(standard deviation of 3.5° and sample size = 5). From the 
experimental tests, αanchor was approximately 1.4 times 
higher than αbucket from the bucket test. The higher anchor 
AOR than bucket AOR showed that corn-to-corn friction 
(sliding and rolling) behaviors dominated the anchor test. As 
shown in the AOR data from the two calibration experiments 
(fig. 5), the grain flow multi-responses constituted the asso-
ciated AOR values affected by the angle of internal friction 
of corn-to-corn friction from the anchor test and the angle of 
internal friction of corn-to-corn and corn-to-acrylic friction 
from the bucket test. Having such multi-responses makes the 

two calibration experiments good candidates for the DEM 
calibration methodology of dynamic corn flow. 

Auger Test 
The steady-state mass flow rate was measured as 1.52 kg 

s-1 (standard deviation of 0.023, sample size = 3, and R2 = 
0.9996) and 2.38 kg s-1 (standard deviation of 0.075, sample 
size = 3, and R2 = 0.9986) for the 250 and 450 rpm auger 
speeds, respectively. 

DEM SENSITIVITY AND CALIBRATION 
Figures 6 and 7 show the MSE values from the 27 DEM 

runs of the bucket and anchor AOR tests, respectively, for  
1-sphere, 2-spheres, 5-spheres, and 13-spheres. For a similar 
combination of DEM parameters (27 DEM simulations), the 
DEM shape representations showed noticeable differences 
in MSE magnitude and distribution for bucket AOR (fig. 6) 
and anchor AOR (fig. 7). With the high-fidelity and compu-
tationally expensive 5-spheres and 13-spheres corn models, 
the differences in MSE were minimal. 

Using the laboratory-measured corn height (hexp in eq. 1) 
as a 95% confidence interval (mean of 8.6 mm and range of 
6.6 to 19.9 mm) for the error between DEM and laboratory-
measured height (hs − hexp in eq. 1), within the 20% percen-
tile of the height error, there were minimal differences 
among the results for 2-spheres, 5-spheres, and 13-spheres 
(fig. 8a). The computational effort required to run the DEM 
bucket simulations for 5-spheres and 13-spheres was ap-
proximately twice and three times, respectively, the effort 
required for the 2-spheres DEM bucket simulations. The 1-
sphere model had the lowest computational effort (0.1 h per 
simulation) but higher MSE than 2-spheres at the corre-
sponding DOE settings. 

From the anchor DOE simulations, the 2-spheres and  
13-spheres models showed lower percentiles (fig. 8b) of 
mean AOR errors (AORs − AORexp in eq. 2), less than the 
one standard deviation of the laboratory-measured AOR 
(3.5°). Detailed corn shape approximations, such as the  
13-spheres model, could be considered a good option for 
small-scale simulations of grain-to-equipment interaction; 
however, simulating large grain handling applications using 
the 13-spheres corn model would be computationally expen-
sive. 

Based on the lower computational effort and lower per-
centiles of MSE for bucket AOR and anchor AOR, the  
2-spheres DEM corn model was chosen as the best shape ap-
proximation for DEM parameter calibration and validation 
of grain flow in a grain auger. The two best stepwise regres-
sion meta-models from the 2-spheres DOE relationship be-
tween DEM parameters and MSE with p-values between 
0.05 and 0.1 were selected for the bucket AOR MSE (R2 = 
0.9423 and RMSE = 94.56) and anchor AOR MSE (R2 = 
0.5412 and RMSE = 78.02). 

Sensitivity of DEM Friction Coefficients  
and Calibration of 2-Spheres Model 

The two interaction effects of the DEM particle-to-parti-
cle coefficients (CC_stat and CC_roll) significantly affected 
the MSE for bucket AOR (p = 0.0171). The minimum MSE 
for bucket AOR was observed at the low settings of CC_stat 

Table 1. Physical properties of combine harvested corn samples.[a] 
Property Mean Min. Max. 
Dimensions    
 Height (mm) 12.57 11.26  14.54 
 Large width (mm) 7.99 6.83  9.84 
 Large depth (mm) 4.89 3.71  7.26 
 Small width (mm) 5.07 3.45  7.26 
 Small depth (mm) 3.23 2.93  4.04 
2D aspect ratios    
 Height/large width 1.59 1.24 2.00 
 Height/large depth 2.67 1.59  3.55 
Corn kernel mass (g) 0.35 0.20  0.47 
Moisture content (% d.b.) 15.2 14.9  16.1 
Particle density (kg m-3) 1273 1178  1363 
Bulk density (kg m-3) 771 754  801 
[a] Values were determined from 30 replicates except for bulk density, 

which was determined from five replicates. 
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(0.1) and CC_roll (0.0). At the high setting of CC_roll (0.1), 
an increase in CC_stat from 0.1 to the high setting (CC_stat 
= 0.55) resulted in a significant increase in MSE. The corn-
to-acrylic coefficient of static friction (CA_stat) showed a 
significant (p < 0.0001) effect on the MSE for bucket AOR; 
however, the corn-to-acrylic rolling friction coefficient 
(CA_roll) was not statistically significant (p = 0.0633). Ex-
cept for the two-way interaction effects of CC_stat and 
CC_roll, all other possible two-way interaction effects of 
particle-to-particle and particle-to-wall coefficients were not 
significant (p > 0.05) in influencing the MSE. 

Using the 27 DEM training parameters as independent 
variables, the MSE from the bucket AOR tests as the de-
pendent variable, and the criterion of p-values between 0.05 
and 0.1, a best stepwise regression model (R2 = 0.94 and 
RMSE = of 94.56) was developed to predict the MSE of 
bucket AOR. The stepwise regression model for the MSE of 
bucket AOR included the parameter estimates of intercept, 
CC_stat, CC_roll, and CA_stat and the two-way interactions 
effects of CC_stat and CC_roll. 

The sensitivity of DEM parameters on the MSE of the 

anchor AOR tests showed that none of the particle-to-wall 
parameters (CA_stat and CA_roll) and two-way interaction 
effects significantly (p > 0.05) influenced the anchor AOR. 
The particle-to-particle coefficients, CC_stat (p < 0.0001) 
and CC_roll (p = 0.0114), significantly affected the MSE for 
anchor AOR. For the anchor AOR tests, the results showed 
the influence of only corn-to-corn parameters on bulk AOR 
formation. A best-fit regression meta-model for MSE was fit 
using CC-stat and CC-roll as independent parameters with 
p-values between 0.05 and 0.1. The particle-to-wall static 
coefficient of friction (CC-stat) was added later even though 
its effect on MSE was not significant (p = 0.87) because the 
prediction profiler had to estimate the value of CC_stat to 
approximate the multi-responses for MSE for both bucket 
AOR and anchor AOR. The regressed meta-model for the 
MSE of anchor AOR with the parameter estimates of inter-
cept, CC_stat, CC_roll, CA_stat, and two-way interactions 
effects of CC_stat and CC_roll had R2 = 0.54 and RMSE = 
78.02. 

Using the best-fitting stepwise meta-models for MSE 
from the bucket and anchor AOR tests, 5,000 random DEM 

 

(a) (b) 

(c) (d) 

Figure 5. (a) Corn AOR from bucket test (αbucket) showing discharged AOR and (b) mean free-surface profile (sample size = 5) along the bucket 
length, and (c) corn AOR from anchor test (αanchor) showing lifted AOR and (d) measured AOR from the left and right sides of the anchor. 
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input combinations of independent and dependent (MSE) re-
sponses were used to generate the fitting surface response to 
find the optimal DEM interaction parameter values that pro-
vided the minimum MSE for the two bulk responses of AOR 
from the bucket and anchor tests. The prediction profiler de-
sirability function in JMP Pro 12 (SAS Institute Inc., Cary, 
N.C.) with the minimum MSE for bucket AOR and anchor 
AOR was used to obtain the optimal DEM input parameters 
(fig. 9). Tables 2 and 3 show the calibrated DEM model in-
put parameters for corn-to-corn and corn-to-acrylic for the 
2-spheres DEM model. 

EDEM simulations of the bucket and anchor AOR tests 
were run using the optimal DEM parameters estimated from 
the prediction profiler using the two regression meta-models 
for bucket AOR MSE (R2 = 0.94 and RMSE = 94.56) and 
anchor AOR MSE (R2 = 0.54 and RMSE = 78.02). The 
DEM-predicted AOR values from the bucket and anchor 
simulations were 22.9° and 31.9°, respectively. Compared 
with the mean laboratory-measured values (bucket AOR of 
21.1° and anchor AOR of 29.8°), the corresponding relative 
errors were 8.5% for bucket AOR and 7.0% for anchor AOR. 

Validation of DEM Corn Model 
The mass flow rate of corn through the auger and the 

shape of the corn pile discharged from the auger onto the flat 
stainless-steel plate were used as responses to validate the 
DEM simulations against the laboratory tests. The DEM-
predicted steady-state mass flow rates of corn through the 
auger at speeds of 250 and 450 rpm were 1.39 and 2.41 kg  
s-1, respectively. The DEM prediction errors compared to the 
measured steady-state mass flow rates of 1.52 kg s-1 at 
250 rpm and 2.38 kg s-1 at 450 rpm were 8.55% and 1.26%, 
respectively. The differences between the DEM-predicted 
and laboratory-measured values were not statistically signif-
icant (p = 0.6444). As the auger speed increased from 250 to 
450 rpm, the steady-state mass flow rate increased by 1.7 
times in the laboratory tests and by 1.6 times in the DEM 
simulations. For the magnitude and trend in mass flow rate, 
the calibrated DEM model showed good agreement with the 
laboratory data. 

The DEM model also showed good agreement with the 
qualitative flow of grain from the auger outlet and onto the 
static pile (fig. 10). The static AOR values estimated using 

(a) (b) 

(c) (d) 

Figure 6. Mean square error from 27 DEM simulations of bucket AOR tests for (a) 1-sphere, (b) 2-spheres, (c) 5-spheres, and (d) 13-spheres. 
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Matlab image processing of high-speed camera images 
(240 fps) and EDEM post-processing are listed in table 4. 
The static AOR was estimated at four corn masses (10, 20, 
30, and 40 kg) as discharged onto the stainless-steel surface. 
The DEM prediction errors compared to the laboratory 
measurements ranged from 2.8% to 6.9% (p = 0.2855) for 
250 rpm and from 5.7% to 9.6% (p = 0.6627) for 450 rpm 
among the four pile masses. The differences between the 
DEM-predicted and mean measured values for steady-state 
mass flow and static AOR in the auger tests were not statis-
tically significant (p > 0.05). This indicates that the cali-
brated DEM corn model was quantitatively validated. 

Previous studies have shown the qualitative prediction 
of granular flow through auger systems (McBride and 
Cleary, 2009; Shimizu and Cundall, 2001) but did not 
demonstrate quantitative prediction errors as low as 10%. 
Most previous DEM simulations of granular grain augers 
used a DEM simulation of the application, e.g., McBride 
and Cleary (2009) adjusted the input DEM properties until 

the simulation matched the grain auger performance varia-
bles. Similarly, Fernandez et al. (2011) used DEM simula-
tion of a grain auger application to obtain DEM properties 
that agreed with the experimental results before using the 
DEM for virtual screw blade designs. Using a calibration 
approach with a single bulk response from bucket AOR 
tests to obtain the minimum MSE (Mousaviraad et al., 
2017), the DEM predicted the steady-state mass flow rate 
with prediction errors of 27% and 29% for 250 and 450 
rpm, respectively. The underprediction of steady-state 
mass flow rate might have been due to limitations in cap-
turing particle-to-particle friction behaviors (sliding and 
rolling). In the current study, in addition to the bucket-dis-
charged AOR test, an anchor-lifted AOR test was added to 
provide multi-response calibration. The improved DEM 
calibration using these simple laboratory tests and a vali-
dation methodology for corn showed significant improve-
ment for the calibrated DEM-predicted mass flow rate from 
the auger, with prediction errors of 8.55% and 1.26% for 

 
(a) (b) 

(c) (d) 

Figure 7. Mean square error from 27 DEM simulations of anchor AOR tests for (a) 1-sphere, (b) 2-spheres, (c) 5-spheres, and (d) 13-spheres. 
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auger speeds of 250 and 450 rpm, respectively. With the 
multi-response calibrated DEM using the 2-spheres corn 
model, the static AOR of piled grain discharged from the 
grain auger at 250 and 450 rpm was predicted with maxi-
mum relative errors of 6.9% to 9.6%, respectively. 

 
 
 
 

CONCLUSIONS 
A laboratory methodology for calibration of a discrete el-

ement model (DEM) of corn was developed, including  
material characterization, a method for approximating the 
DEM corn shape, and multi-response calibration of static 
and rolling friction interaction parameters. The multi-re-
sponse angle of repose (AOR) from bucket-discharged tests 
and anchor-lifted tests was successfully used to show the 
sensitivity of DEM friction interaction parameters for 1-
sphere, 2-spheres, 5-spheres, and 13-spheres corn models to 
simulate the AOR. 

A Latin hypercube design of experiments (DOE) and step-
wise regression modeling were used to choose representative 
sample points from the input domain and predict the mean 
square error (MSE) of the AOR from the bucket and anchor 
tests. The calibrated DEM corn model was validated by com-
paring the predicted steady-state mass flow rate and the static 
AOR of the discharged corn pile from auger simulations. The 
DEM simulation of corn flow in the auger showed very good 
agreement in (1) qualitative comparison with the grain flow in 
laboratory images captured at 240 fps and (2) quantitative pre-
diction of the mass flow rate (within 10% error) and static 
AOR of discharged corn at 250 and 450 rpm grain auger 
speeds. With this quantitatively validated simulation of corn 
flow in a grain auger, future research will be possible to pre-
dict the relationship between grain mass flow rate and grain 
auger variables, such as rotational speed and screw diameter. 

Figure 8. Percentiles of (a) mean height error (mm) from bucket AOR test and (b) mean angle error (degrees) from anchor AOR test for the 27
DEM simulations using 1-sphere, 2-spheres, 5-spheres, and 13-spheres. 

Figure 9. Meta-model prediction profiler estimates of DEM friction co-
efficients (CC-stat, CC-roll, and CA-stat) to minimum predicted MSE
values for bucket AOR and anchor AOR. The meta-model used the re-
lationship shown in table 2. 

Table 2. Calibrated DEM interaction parameters using the stepwise regression meta-model analysis of bucket AOR MSE (R2 = 0.94 and RMSE 
of 94.56) and anchor AOR MSE (R2 = 0.54 and RMSE = 78.02). 

Parameter Material 
Interaction Material 

Corn Acrylic Smooth Steel[a] Steel Plate[b] 
Coefficient of static friction Corn 0.169 0.145 0.145 0.23 

Coefficient of rolling friction Corn 0.0045 0.1 0.1 0.1 
Coefficient of restitution Corn 0.2 0.67 0.67 0.67 

[a] The auger screw shaft and tube surfaces were smooth, and corn-to-steel coefficients of static and rolling friction were assumed similar to the calibrated
corn-to-acrylic static and rolling coefficients, based on the ratio of the coefficients of restitution of corn-to-acrylic and corn-to-smooth steel. 

[b] The steel plate on which the corn pile was measured in the auger test had a rough surface, and a value 1.58 higher than the coefficient of corn-to-acrylic 
was used, after Boac et al. (2010). 
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Table 3. DEM material properties.  Table 4. The angle of repose of corn discharged from auger outlet onto 
flat stainless-steel plate. The DEM angle of repose data were obtained 
from simulations using the calibrated DEM properties. 
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(kg) 

Grain Auger 
Rotational Speed 

(rpm) 

Angle of Repose 
(degrees) 

Test DEM 
10 250 20.3 19.6 
20 250 24.7 23.0 
30 250 25.0 23.9 
40 250 25.1 24.4 
10 450 15.8 16.7 
20 450 22.8 20.6 
30 450 23.9 23.3 
40 450 24.0 23.5 

 

Material Parameter DEM 
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 Shear modulus (MPa)[b] 1.071 
 Poisson’s ratio[b] 0.4 
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[c] From the Acrylite FF material datasheet. 
[d] Properties for steel are from the EDEM 2.7 default database. 
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