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ABSTRACT 

A wide variety of 3,4-disubstituted isoquinolines containing an aryl, allylic, 

benzylic, alkynyl and vinylic group at the 4 position have been prepared via 

cross-coupling of 2-(1-alkynyl)benzaldimines with organic halides in the presence of 

a palladium catalyst. The best results are obtained by employing 5 mol % 

Pd(PPh3)4, 5 equiv of K2C03 in DMF at 100 °C. The electronic effect of the imine 

substrates and organic halides on the yields has been discussed. 

3-Substituted 4-aroylisoquinolines have been prepared in high yields via 

carbonylative cross-coupling of 2-(1-alkynyl)benzaldimines with aromatic iodides or 

aroyl chlorides in the presence of a palladium catalyst under 1 atm of CO pressure. 

Imine substrates having an aryl, vinylic or alkyl substituent on the distal end of the 

triple bond all undergo this palladium-catalyzed carbonylative cross-coupling 

cyclization in high yields. 

The palladium(ll)-catalyzed oxidative carbonylation of 2-(1 -alkynyl)-

benzaldimines for synthesis of the corresponding isoquinoline-4-carboxylates has 

been studied and the optimal reaction conditions have been investigated. 

Although this methodology study has not provided an efficient route to synthesize 

methyl 3-substituted isoquinoline-4-carboxylates in synthetically useful yields, it 

provides an insight into the nature of the palladium-catalyzed cyclization reactions 

promoted by organopalladium intermediates. 

A novel intramolecular alkyl-to-aryl palladium rearrangement has been 

observed by trapping the arylpalladium intermediate with an olefin by a Heck 
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reaction. The reaction conditions have been optimized and the reaction scope has 

been extensively studied. In all of the successful examples, migration products 

were isolated exclusively. In addition, this alkyl-to-aryl palladium migration can by 

controlled by simply modifying the reaction conditions. 
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GENERAL INTRODUCTION 

Transition metal-catalyzed processes have proved to be extremely effective 

in organic synthesis. More specifically, palladium-catalyzed methodology has been 

extensively utilized in recent years.1 The ability to create multiple carbon-carbon 

bonds from simple starting materials, the regio- and stereospecificity of the 

reactions, the exceptional tolerance for functionality, the insensitivity to air or 

moisture, and the procedural ease with which the reactions can be carried out have 

all contributed to the success of palladium in organic synthesis. 

The Larock group has shown in a series of recent papers that palladium-

catalyzed cyclization or annulation methods2 can be effectively employed for the 

synthesis of isoquinolines and derivatives with a wide variety of substituent patterns. 

In this dissertation, the scope of the isoquinoline synthesis methodology has been 

expanded by employing 2-(1-alkynyl)benzaldimines to provide access to a variety 

of 3,4-disubstituted isoquinolines and 3-substituted 4-aroylisoquinolines.3 

A newly discovered palladium migration reaction interests us as both an 

opportunity to study the behavior of palladium and an unusual pathway to construct 

cyclic compounds. 

The author of this manuscript was the primary investigator and the author of 

each of the papers reported in this dissertation. 
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Dissertation Organization 

This dissertation is divided into four chapters. Each of the chapters 

presented herein is written by following the guidelines for a full paper in the Journal 

of Organic Chemistry and is composed of an abstract, introduction, results and 

discussion, conclusion, experimental, acknowledgement and references. 

Chapter 1 discusses the synthesis of 3,4-disubstituted isoquinolines by the 

palladium-catalyzed cross-coupling cyclization of 2-(1 -alkynyl)benzaldimines and 

organic halides. Various imine substrates and organic halides have been 

investigated. A mechanism for this transformation is proposed. 

Chapter 2 presents an extension of the cross-coupling methodology 

described in Chapter 1. The palladium-catalyzed carbonylative cross-coupling of 2-

(1 -alkynyl)benzaldimines and organic halides affords a variety of 4-aroyl-

isoquinoline heterocycles in high yields. 

Chapter 3 describes an attempt to synthesize methyl isoquinoline- 4-

carboxylates via palladium-catalyzed oxidative carbonylative cross-coupling of 2-(1-

alkynyl)benzaldimines in the presence of carbon monoxide. 

Chapter 4 shows an intramolecular alkyl-to-aryl palladium migration reaction 

that has been observed in the Larock group. This reaction is both mechanically 

and synthetically interesting to us because it involves multiple mechanistic steps 

but still generates the products exclusively in good yields and it provides an 

unusual pathway for the synthesis of heterocyclic and carbocyclic compounds. 

Finally, all of the 1H and 13C spectra for the imine starting materials and the 

palladium-catalyzed reaction products have been compiled in appendices A-C 
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following the general conclusions for this dissertation. 
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Chapter 1. Synthesis of 3,4-Disubstituted Isoquinolines via 

Palladium-Catalyzed Cross-Coupling of 2-(1-Alkynyl)benzaldimines 

and Organic Halides 

Two papers published in Organic Letters and the Journal of Organic Chemistry 

Guangxiu Dai and Richard C. Larock 

Department of Chemistry, Iowa State University, Ames, Iowa 50011 

Abstract 

The palladium-catalyzed cross-coupling of readily available /V-terf-butyl-2-(1-

alkynyl)benzaldimines and aryl, allylic, benzylic, and alkynyl halides, as well as a 

vinylic halide, provides a valuable new route to 3,4-disubstituted isoquinolines with 

aryl, allylic, benzylic, 1-alkynyl and vinylic substituants respectively in the 4 position. 

The reaction appears to require an aryl group on the end of the acetylene furthest 

from the imine functionality. The reaction conditions have been optimized and 

reasonably good yields have been obtained. 

Introduction 

The cyclization of alkynes containing proximate nucleophilic centers 

promoted by organopalladium complexes is currently of great interest and 

developing into a most effective strategy for heterocyclic ring construction.1 This 

chemistry provides a straightforward approach to the synthesis of functionalized 

carbo- and heterocycles through the regio- and stereoselective addition of a 
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nucleophile and an unsaturated carbon unit across the carbon-carbon triple bond 

(Scheme 1). 

Scheme 1 

R = aryl, vinylic, aikynyi, allylic, benzylic 

Successful examples of this process have been reported for the synthesis of 

2,3-disubstituted indoles (eq 1),2 2,3-disubstituted benzofurans3 and other cyclic 

compounds (for an example see in eq 2).4 However, no one has thus far employed 

this chemistry to synthesize isoquinolines. 

cat. Pd(PPh3)4 R2 

KOAc 

+ R2X 

R1 = alkyl, aryl, vinylic 

R2 = aryl, vinylic, allylic, benzylic 

X = halide, triflate 

R1 (D 
NHCOCF3 MeCN, 45 °C 
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RO2C 
o + Arl 

5 % Pd(PPh3)4 

1.5 K2C03 

DMF, 60-100 °C 
,Ar (2) 4d 

R '  

The isoquinoline ring system is present in many natural alkaloids and drug 

candidates that possess interesting biological activities,5 encouraging the 

development of a variety of classical approaches6 for isoquinoline synthesis, 

including the Bischler-Napieralski, the Pictet-Spengler and the Pomeranz-Fritsch 

reactions. However, these methods employ either strong acidic conditions for the 

ring closure (Bischler-Napieralski and Pomeranz-Fritsch) or the tedious preparation 

of appropriately substituted phenethylamines as starting materials (Pictet-

Spengler). 

Palladium-catalyzed methods have been employed more and more for the 

synthesis of substituted isoquinolines in recent years. For instance, Pfeffer and co

workers reported the formation of a disubstituted isoquinoline derivative from 

cyclopalladated /V,/V-dimethylbenzylamine complexes in yields ranging from 10-

56%.7 Heck and co-workers observed the formation of 3,4-diphenylisoquinoline in 

a 22% yield from the reaction of cyclopalladated /V-te/f-butylbenzaldimine 

tetrafluoroborate with diphenylacetylene.8 Widdowson has also reported an 

isoquinoline synthesis based on cyclopalladated /V-terf-butylarylaldimines.9 These 

approaches to isoquinolines, however, suffer the major disadvantage that they are 

stoichiometric with respect to palladium, and a final pyrolysis step greatly limits the 

synthetic utility. 
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In our own laboratories, we have carried out systematic studies on the 

synthesis of isoquinolines, including the copper-catalyzed cyclization of 2-(1-

alkynyl)arylaldimines to 3-substituted isoquinolines (eq 3),10 the palladium-

catalyzed iminoannulation of internal alkynes (eq 4),11 the electrophile-promoted 

cyclization of 2-(1-alkynyl)arylaldimines (eq 5)12 and the Pd(ll)-catalyzed olefination 

of 2-(1 -alkynyl)arylaldimines followed by Heck reactions (eq 6).13 This chemistry 

provides simple approaches to 3-monosubstituted and 3,4-disubstituted 

isoquinolines, which generally proceed in excellent yields. Despite the broad 

applicability of these processes, there are still many 3,4-disubstituted isoquinolines 

that cannot be directly prepared by these approaches. 

5% Pd(OAc)2 

10% PPh3 

E+= ICI, l2, ArSeCI, ArSCI 



3NaHC03 

DMSO, 70 °C 

Therefore, we have examined the possibility of preparing 3,4-disubstituted 

isoquinolines by a more general process involving the palladium-catalyzed cross 

coupling of /V-te/Y-butyl-2-(1-alkynyl)benzaldimines and organic halides (eq 7). 

Hopefully, this approach might avoid the problem of regioselectivity that exists in 

the synthesis of isoquinolines by the iminoannulation of internal alkynes,11 and may 

offer a new way to construct the isoquinoline ring. Herein, we report a full 

investigation of this intriguing reaction.14 

Results and Discussion 

Starting Materials. The preparation of the starting materials for this 

chemistry is quite simple and straightforward. The appropriate imines are readily 

available in two steps from 2-bromoarenecarboxaldehydes and terminal alkynes. 

The first step is the Sonogashira coupling15 of the aryl halide and a terminal alkyne 

catalyzed by 2 mol % of PdCI2(PPh3)2 and 1 mol % of Cul in Et3N at 55 °C. This 

step generally gives yields of the coupled product above 90%. The second step of 

the sequence involves reaction of the 2-(1-alkynyl)arenecarboxaldehyde and 
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excess terf-butylamine at room temperature and proceeds in almost quantitative 

yields (Scheme 2). 

Scheme 2 

a: 
Optimization. Our first attempt to explore the reaction of A/-te/f-butyl-2-

(phenylethynyl)benzaldimine (1) and 3 equiv of phenyl iodide employed 5 mol % 

Pd(dba)2, 10 mol % of PPh3, 3 equiv of Na2C03 in 5 ml of DMF at 100 °C (eq 8). 

Although the desired product, 3,4-diphenylisoquinoline (2a) was formed, the 

generation of another product, 3-phenylisoquinoline (2b) was also observed. The 

3-phenylisoquinoline (2b) is believed to be formed by either the thermal or Pd(ll)-

catalyzed cyclization of imine 1.10 

1 2a 2b 

We have, thus, attempted to optimize formation of the disubstituted 

isoquinoline 2a (eq 8). Using Pd(dba)2 as the catalyst plus 2 equiv of Ph3P per 

palladium as the ligand, and raising the temperature from 80 to 100 °C significantly 

increased the yields of the 3,4-diphenylisoquinoline (2a) and the selectivity for 2a 

2% PdCI2(PPh3)2 f-BuNH 
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Table 1. Optimization of the Reaction of A/-fert-Butyl-2-(phenylethynyl)-

benzaldimine (1)  and Phi  (eq 8) . a  

Pd catalyst Phi base temp time % yield" 

(equiv) (equiv) (°C) (h)b 2a : 2b 

1 Pd(dba)2/2 PPh3 3 Na2C03 (3) 80 9 26 : 21 

2 Pd(dba)2/2 PPh3 5 Na2C03 (3) 80 9 20 : 23 

3 Pd(dba)2/2 PPh3 3 Na2C03 (3) 100 9 49 : 25 

4 Pd(dba)2/2 PPh3 5 Na2C03 (3) 100 9 61 : 10 

5 Pd(dba)2/2 PPh3 5 Na2C03 (3) 120 9 62 : 9 

6 Pd(PPh3)4 5 KOAc (5) 50 10 36 : <2 

7 Pd(PPh3)4 5 KOAc (5) 75 10 27 : 5 

8 Pd(PPh3)4 5 KOAc (5) 100 10 29 : 49 

9 Pd(PPh3)4 5 K2C03(5) 50 12 17 : 0 

10 Pd(PPh3)4 5 K2C03(5) 100 12 49 : <2 

11 Pd(PPh3)4 5 Na2C03 (5) 100 12 48 : <2 

12 Pd(PPh3)4 5 Cs2C03 (5) 100 24 22 : 0 

13 Pd(PPh3)4 5 Li2C03 (5) 100 24 28 : 36 

14d Pd(PPh3)4 5 K2C03(5) 100 24 36 : 12 

15e Pd(PPh3)4 5 K2C03(5) 100 24 24 : 45 

a All reactions were carried out in 5 ml of DMF as the solvent, using 0.25 mmol of imine 1 and 5 mol % of the palladium 

catalyst unless otherwise specified. b In most cases, monitoring by TLC showed that the reaction had reached 

completion in less time than the time specified. c Yields are given for isolated products and refer to single runs. d The 

reaction was run in 5 ml of CH3CN. e The reaction was run in 5 ml of DMSO. 
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over 2b (Table 1, entries 1-4). Further raising the temperature from 100 to 120 °C 

did not help much (entry 5). Increasing the amount of the Phi from 3 to 5 equiv 

favored formation of the desired product 2a at 100 °C (compare entries 3 and 4). 

The best result obtained was a 61% yield of 2a and 10% of 2b, acquired using 5 

equiv of Phi, 5 mol % of Pd(dba)2, 10 mol % of PPh3, 3 equiv of Na2C03 in 5 ml of 

DMF at 100 °C (entry 4). 

The replacement of Pd(dba)2 plus Ph3P by Pd(PPh3)4 and 3 equiv of Na2C03 

by 5 equiv of KOAc at 50 °C (entry 6) reduced the amount of the side product 2b to 

only a trace, but the yield of 2a was not high enough to be synthetically useful. 

Increasing the temperature from 50 °C to 75 °C to 100 °C only reduced the 

selectivity between 2a and 2b and did not significantly improve the yield of 2a 

(entries 6-8). The side product isoquinoline 2b was not observed using K2C03 as 

the base at 50 °C (entry 9), and a higher yield of 2a and relatively low yield of 2b 

were obtained when the temperature was further raised to 100 °C (entry 10). Using 

lithium, sodium and cesium carbonate as bases failed to improve the yield of 2a 

(entries 11-13). Changing the solvent from DMF to acetonitrile or DMSO did not 

enhance the yield of 2a or the selectivity between the two isoquinoline products 

(entries 14 and 15). 

The procedure summarized in Table 1, entry 10, is thought to give the best 

result, because of the distribution of the two products and the ease with which one 

can isolate pure product, although the yield of the desired product 2a suffers 

compared to the results described in Table 1, entry 4. 

Cross-coupling of yV-fert-Butyl-2-(1-alkynyl)arylaldimines with Aryl 

Halides and Triflates. When the optimized reaction conditions reported above in 
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entry 10 were applied to the reaction of /V-terf-butyl-2-(phenylethynyl)benzaldimine 

(1) and phenyl triflate, which is assumed to form the corresponding PhPdOTf 

intermediate, no desired product, 3,4-diphenylisoquinoline (2a), was observed even 

after 48 h. A 40% yield of monosubstituted isoquinoline 2b was obtained as the 

only product. 

Under the optimized reaction conditions above, the reactions of imine 1 with 

a variety of aryl iodides afforded reasonable yields of the corresponding 3,4-

disubstituted isoquinolines (eq 7; Table 2, entries 1-14). Aryl halides bearing an 

electron-withdrawing group in the para or meta positions usually lead to good to 

high yields of the 3,4-disubstituted isoquinoline products and low yields of the side 

product 3-phenylisoquinoline (2b) (entries 2, 4, 6, 7 and 9-11). Aryl iodides with an 

ortho electron-withdrawing group, such as ethyl 2-iodobenzoate and 2-

iodonitrobenzene, do not react well with imine 1 (entries 5 and 8). These two 

reactions afforded only the monosubstituted isoquinoline 2b. This is apparently the 

result of a steric problem with the ArPdX intermediate, since electron-withdrawing 

groups elsewhere in the aryl halides generally give good results. Reactions with 

aryl halides containing electron-donating groups, like o- and p-iodotoluene and 4-

iodoanisole, only afford low yields of the corresponding 3,4-disubstituted products 

and poor ratios of di- to mono-substituted isoquinoline products (entries 12-14). 

The best yield obtained with imine 1 was 75%, which was afforded by 4-

iodonitrobenzene (entry 2). The corresponding bromide, 4-bromonitrobenzene, 

affords the 3,4-disubstituted isoquinoline product 3 in a 48% yield (entry 3). The 

relatively low yield indicates that the lower reactivity of an aryl bromide toward 



Table 2. Synthesis of 3,4-Disubstituted Isoquinolines by the Pd-Catalyzed Cross-Coupling of A/-fe/?-Butyl-2-

(l-alkynyl)benzaldimines and Organic Halides (eq 8).a 

alkynyl imine r2x time (h) Isoquinoline 

R2 

% yield" 

1 m 0
 

C
T
>
 

1
 

cn
 c6h5i 12 R2 = C6H5 2a 49 (<2) 

2 1 p-OgNCgH^I 12 R2 = p-02NC6H4 3 75 (0) 

3 1 p-02NC6H4Br 24 R2 = p-02NC6H4 3 48 (0) 

4 1 m-OgNCgH^I 8 R2 = m-02NC6H4 4 49 (0) 

5 1 o-OgNCgH^I 48 R2 — o-02NC6H4 5 0(42) 

6 1 p-Et02CC6H4l 7 R2 = p-Et02CC6H4 6 67(<2) 

7 1 m-Et02CC6H4l 11 R2 — m-Et02CC6H4 7 55 (<2) 

8 1 o-Et02CC6H4l 11 R2 — o-Et02CC6H4 8 0(48) 

9 1 p-F 3CC6H4I 8 R2 = p-F3CC6H4 9 65 (0) 



10 1 A77-F3CC0H4I 

11 1 3-iodopyridine 

12 1 p-H3CC6H4l 

13 1 O-H3CC6H4I 

14 1 p-H3COC6H4l 

15 R1 = n-Bu 15 p-02NC6H4l 

16 R1 = 1-cyclohexenyl 17 p-02NC6H4l 

17 17 p-Et02CC6H4l 

18 R1 = p-MeOCeH4 20 p-02NCgH4l 

19 20 p-C H3OC6H4l 

20 23 p-02NC6H4l 

21 25 p-02NC6H4l 

10 R2 — /77-F 3CC6H4 10 51 (<2) 

12 R2 = 3-pyridyl 11 48 (0) 

10 R2 = p-CH3CgH4 12 48 (1) 

24 R2 = o-CH3C6H4 13 29(16) 

24 R2 = p-CH3OCgH4 14 13 (14) 

6 R2 = p-02NCgH4 16 35 (0) 

12 R2 — p-02NCgH4 18 60 (0) 

12 R2 — p-Et02CC6H4 19 61 (0) 

10 R2 = p-02NCgH4 21 80 (0) 

48 R2 = p-CH3OC6H4 22 30 (19) 

10 R2 — p-02NC6H4 24 59 (0) 

10 R2 = p-02NC6H4 26 23(11) 



22 18 

23 .ci 18 27 69 (0) 

24 

o 

19 27 68 (0)c 

25 •OAc 120 27 28(13) 

26 24 Ph 28 71 (0) 



27 1 

28 1 

29 1 

30 1 

31 1 
Ç02Et 

20 Ph 29 48(1) 

42 Ph 30 0 (49) 

72 Ph 31 0 

24 Ph 

Et02C 

32 0(51) 

48 
Et02 

Ph 33 59(18) 



ï1 

32 1 

33 R1 = n-Bu 15 

34 15 

35 R1 = 1-cyclohexenyl 17 

36 R1 = p-MeOC6H4 20 

Ph 34 0 (39) 

48 35 62 (0) 

48 36 55 (0) 

48 37 30 (<3) 

24 
CH3 

38 88 (0) 



37 

38 

.f-Bu 

Ph 

23 ^k/CI 

25 

39 PhCH2CI 

40 p-MeOC6H4CH2CI 

41 1 Et02C—=— I 

Ph 

Ph 

Ph 

Ph 

MeO' 

C02Et 

39 59 (0) 

40 42 (0) 

41 45 (0) 

42 52 (0) 

43 38 (0)d 



42 1 n-CgHi? 

43 1 CH3OCH2-

44 R1 = p-MeOC6H4 20 n-C8HV 

45 R1 = n-Bu 15 n-c8H17r 

"Ph 

n-CgHi7 

44 56 (0) 

10 

II 

Ph 

CH2OCH3 

45 53 (0) 

11 
•OCH3 

n-CGH-17 

46 56 (0) 

10 47 0 (<2) 

"-CgH-iy 



46 R1 = 1-cyclohexenyl 17 n-CaHv — 10 

n-CgHiy 

47 E,02<W 24 
Et02 

49 55 (0) 

a The reaction conditions are specified in the text. b Yields are given for isolated products and refer to single runs. The numbers in parentheses are the yields of the 

corresponding 3-substituted isoquinolines. c Only 2.5 equiv of K2CO3 were used as the base. d 4-lodo-3-phenylisoquinoline was isolated in an 8% yield. 



21 

formation of the organopalladium ArPdX intermediate does affect the outcome of 

the reaction. 

A variety of imines have also been tested using 4-iodonitrobenzene. 

According to the results in Table 2, the R1 group of the imine (eq 8) also plays an 

important role in the reaction. When R1 is an aryl group, the reactions work well 

with electron-deficient aryl halides. However, when R1 is an a Iky I or vinylic group, 

the yields drop significantly (entries 15-17), even when using 4-iodonitrobenzene. 

It is important to note, however, that the monosubsituted isoquinolines are not 

observed in these reactions. 

In addition to the strong dependence of the reaction on the aryl halides 

employed, the electronic nature of the substituents attached to the aromatic ring of 

the imine significantly affects the outcome of the reactions with aryl halides. The 

electron-rich imine A/-terf-butyl-2-[(4-methoxyphenyl)ethynyl]benzaldimine (20) 

affords slightly higher yields of 3,4-disubstituted isoquinoline products than imine 1 

when allowed to react with 4-iodonitrobenzene and 4-iodoanisole (entries 18 and 

19). However, placing a methylenedioxy moiety on the imine-bearing aryl ring (23) 

leads to a somewhat lower yield (entry 20). Using an electron-deficient pyridine-

containing imine 25 and 4-iodonitrobenzene leads to the 3,4-disubstituted product 

26 in only a 23% yield and the 3-monosubstituted product was isolated in an 11% 

yield (entry 21). 

Cross-coupling of A/-ferf-Butyl-2-(1-alkynyl)arylaldimines with Allylic 

Halides and Esters. Allylpalladium complexes have been used to promote the 

cyclization of alkynes containing proximate nucleophiles (N and O) to afford 3-

allylic indoles,2c,9,h3-allylic benzo[b]furans3a,b and 3-allylic furans 4a,b We here report 
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that /r-allylpalladium complexes can be successfully employed in the synthesis of 4-

allylic 3-substituted isoquinolines. 

First, we have investigated the reaction of our model imine 1 with ally! 

bromide under our optimized cross-coupling conditions. We were pleased to 

observe a 65% yield of the 4-allyl-3-phenylisoquinoline (27) and no 3-

phenylisoquinoline (2b) (entry 22). This reaction took 18 h to complete, showing 

the lower reactivity of the allylpalladium complex compared to the arylpalladium 

complex. When allyl chloride was used in the reaction (entry 23), it afforded a 

slightly higher yield, 69%, of product 27 and no side product 2b at all. Although 

allylic bromides usually possess higher reactivities than allylic chlorides in n-

allylpalladium chemistry, the stability of the halides must be taken into account in 

this case where there are 5 equiv of K2C03 present in the reaction mixture. 

We were also interested in investigating diallyl carbonate in this reaction 

(entry 24). In this case, only 2.5 equiv of K2C03 were employed, because one 

equiv of base is formed when both allyl groups are released from each equiv of 

carbonate. This reaction proceeded well and afforded a 68% yield of 27 after 18 h. 

Then we turned to allyl acetate, another important source of ^-allylpalladium 

intermediates. After 120 h, only 28% of the desired product 27 and 13% of the side 

product 2b were isolated, and 17% of the starting material 1 was recovered (entry 

25). Considering the fact that allyl acetate might not be very stable with so much 

base present in the reaction, we carried out another reaction in which only a 

stoichiometric amount of K2C03 was employed. This reaction took 30 hours to 

reach completion and gave only a 13% yield of 27 and 34% of the side product 2b. 



23 

Based on this observation, the extra base is considered to play an important role in 

improving the selectivity between the two competing processes. 

The reactions of imine 1 with methallyl chloride and cinnamyl chloride both 

proceeded smoothly to generate the corresponding 4-allylic 3-phenylisoquinolines 

28 and 29 in good yields, and the side product 2b in only 0-1% yields (entries 26 

and 27). Thus, the reactions of allylic chlorides exhibit excellent product selectivity. 

However, with 3,3-dimethylallyl bromide and 3-bromocyclohexene, two other allylic 

halides with hydrogens next to the /r-allylic moiety, the reactions of imine 1 afforded 

none of the desired products 30 and 31 and produced only 3-phenylisoquinoline 

(2b) in the former case (entries 28 and 29). 

The reactions of imine 1 and two electron-deficient allylic bromides 

displayed completely different reactivities. Ethyl 4-bromo-2-butenoate did not 

produce any of the desired product 32, but instead a significant amount of the 

cyclization product 2b was generated (entry 30). Ethyl 2-(bromomethyl)propenoate, 

however, did afford the desired product 33 in a 59% yield and 2b was produced in 

only an 18% yield (entry 31). The reaction between imine 1 and 2,3-

dichloropropene did not generate any of the expected 4-allylic-3-phenylisoquinoine 

(34) for reasons that are not obvious (entry 32). 

Unlike the reactions of imines with aryl halides, the reactions of imine 15 

with R1 = n-butyl provided good yields when methallyl chloride and allyl chloride 

were employed (entries 33 and 34). However, the reaction of imine 17 with R1 = 1-

cyclohexenyl afforded only a 30% yield of the desired product after 48 h (entry 35). 

Since the highest yield from allylic halides was obtained in the reaction of 

imine 1 with methallyl chloride, other imines were all examined with this allylic 



chloride. The influence of electronic factors present in the imines on the reactions 

is obvious. Generally the electron-rich imine substrates 20 and 23 result in better 

yields than their electron-deficient pyridine counterpart 25 (entries 36-38). The 

problem here might also be that the pyridine moiety in imine 25 could also be 

reacting directly with the allylic chloride (entry 38). 

Besides the allylic halides and esters, benzyl chloride and 4-methoxybenzyl 

chloride have also been successfully employed in the isoquinoline cyclization and 

afford reasonably good yields of the corresponding cross-coupling products 41 and 

42, respectively (entries 39 and 40). However, the reaction with 4-nitrobenzyl 

chloride failed. 

Cross-coupling of N-fert-Butyl-2-(1-alkynyl)arylaldimines with Alkynyl 

Halides. Inspired by the success of the reactions of imines with electron-poor aryl 

halides, we examined the cross-coupling of ethyl 3-iodopropiolate. This alkynyl 

halide gave a 38% yield of the desired product 43 after only 4 h (entry 41). 

Although we did not observe 3-phenylisoquinoline (2b) as a side product this time, 

we isolated another side product, 4-iodo-3-phenylisoquinoiine (2c) in an 8% yield. 

At the same time, a significant amount of l2 appeared to be generated during the 

reaction.16 The decomposition of ethyl 3-iodopropiolate to l2 could account for the 

formation of the side product 2c12 and the low yield of the 3-substituted 4-(1-

alkynyl)isoquinoline 43. 

Encouraged by this preliminary result, we next examined the reactions of 

two different alkynyl iodides that do not possess any electron-withdrawing groups. 

Both of them produced the desired products in yields of 53% and 56% (entries 42 

and 43). 
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Different imine substrates have been investigated in the reactions with 1-

iodo-1-decyne. While the electron-donating group in the imine substrate 20 did not 

affect the yield of the product 46 (entry 44), the presence of the R2 groups n-butyl in 

15 and 1-cyclohexenyl in 17 both had a very strong negative influence on the 

outcome. No 3,4-disubstituted isoquinoline products were observed in these latter 

two reactions (entries 45 and 46). The possible 3-monosubstituted isoquinoline 

side products were not observed either. 

Cross-coupling of A/-fert-Butyl-2-(1-alkynyl)arylaldimines with Vinylic 

Halides. Several vinylic halides have been utilized in this chemistry. Only ethyl 

c/s-3-iodoacrylate produced the expected 4-vinylic substituted isoquinoline in a 

good yield (entry 47). Ethyl frans-3-iodoacrylate, c/'s-/?-iodostyrene, 

(iodomethylene)cyclohexane, 3-iodo-2-cyclohexen-1 -one, and 2-iodo-2-

cyclohexen-1-one all failed to generate the expected isoquinolines. 

We also tried /V-teft-butyl-2-(phenylethynyl)cyclohex-1-enecarbox-aldimine 

(50) as a non-aromatic imine substrate in this chemistry with 4-iodonitrobenzene, 

methallyl chloride and 1-iodo-1-decyne. None of these experiments succeeded in 

producing the desired isoquinolines. 

We intended to prepare A/-tert-butyl-2-(trimethylsilylethynyl)benzaldimine 

(51 )18 and A/-te/f-butyl-2-ethynylbenzaldimine (52).19 However, our attempts to 

prepare these two imines from their corresponding aldehydes failed. 

50 51 52 
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Mechanism. The present synthesis of 3,4-disubstituted isoquinolines is 

believed to proceed as outlined in Scheme 3, which is similar to previously reported 

Pd-catalyzed syntheses of benzofurans,1h,13ab indoles,36 and other heterocyclic 

compounds4l,j The process consists of the following key steps: (1) oxidative 

addition of the organic halide to the Pd(0) catalyst,20 (2) coordination of the 

resulting palladium intermediate A to the triple bond of the imine forming complex B, 

which activates the triple bond towards nucleophilic attack,1h (3) intramolecular 

Scheme 3 

R X + L2Pd(0) 

+ HX + HX 

3-monosubstituted isoquinoline 3,4-disubstituted isoquinoline 



nucleophilic attack of the nitrogen atom of the imine on the activated carbon-carbon 

triple bond to afford intermediate C,1h (4) reductive elimination to form the carbon-

carbon bond between R2 and the carbon of the isoquinoline ring with simultaneous 

regeneration of the Pd(0) catalytic species,21 (5) cleavage of the tert-butyl group 

from the N atom to generate the 3,4-disubstituted isoquinoline and also release the 

strain between the tert-butyl group and the group R1.10-13 

If the 2-(1-alkynyl)benzaldimine does not coordinate well to the palladium(ll) 

intermediate A, cyclization by either thermal or Pd(ll) catalysis to the 

monosubstituted isoquinoline can occur. This latter chemistry can also be 

accomplished by employing a catalytic amount of Cul.10 Therefore, the selectivity 

between the mono- and disubstituted isoquinolines is determined by whether the 

triple bond of the 2-alkynyl imine coordinates the R2PdMX intermediate A. 

In the reactions of imines and aryl halides R2X, we observed a significant 

effect of the electronic nature of the substituents present in R2X on the yields of 

3,4-disubstituted isoquinolines and the ratios of the di- and monosubstituted 

isoquinolines. The strong dependence of the reaction yields on the electronic 

nature of the aryl halides used provides useful mechanistic data. For the aryl 

iodides containing a para or meta electron-withdrawing substituent, the more 

electron-deficient intermediate A would be expected to coordinate more strongly to 

the triple bond in the imine substrate producing complex B. The coordination step 

therefore may be crucial in formation of the 3,4-disubstituted isoquinoline, because 

without it the imine substrate may cyclize by either a thermal or Pd(ll)-catalyzed 

process to form the side product with no incorporation of the R2 group onto the 

isoquinoline ring.10 
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This assumption is supported by the results from the electron-rich imine 20 

and electron-deficient imine 25. Imine 20 possesses a higher electron density on 

the carbon carbon triple bond than imine 1, and imine 25 has decreased electron 

density on the triple bond. The experiments show that the higher electron density 

in imine 20 affords a slightly improved 80% yield of the corresponding 3,4-

disubstituted isoquinoline product 21 when using 4-iodonitrobenzene, compared to 

the 75% yield obtained from imine 1 and the same aryl iodide (Table 1, entries 2 

and 18). On the other hand, the corresponding reaction of imine 25 with lower 

electron density on the triple bond results in a significant decrease in the yield of 

the 3,4-disubstituted isoquinoline product 26 (23%) and 11% of the 

monosubstituted side product was also isolated (Table 1, entry 21). 

Conclusions 

In conclusion, we have developed a new, efficient, palladium-catalyzed 

synthesis of 3,4-disubstituted isoquinolines from readily available A/-te/t-butyl-2-(1-

alkynyl)ary!aldimines and various organic halides. This synthetic strategy exhibits 

considerable structural flexibility in both the types of iminoalkynes and organic 

halides that can be employed. The overall yields are reasonably good. Despite 

some limitations, such as electron-rich and o-substituted aryl halides giving lower 

yields, the process holds promise as a useful too) for the construction of complex 

heterocycles containing the isoquinoline unit. 
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Experimental Section 

General. All 1H and 13C NMR spectra were recorded at 300 and 400, and 

75.5 and 100.7 MHz, respectively. Thin-layer chromatography was performed 

using commercially prepared 60-mesh silica gel plates (Whatman K6F), and 

visualization was effected with short-wavelength UV light (254 nm) and a basic 

KMn04 solution [3 g of KMn04 + 20 g of K2C03 + 5 mL of NaOH (5 %) + 300 mL of 

H20], All melting points are uncorrected. Lower resolution mass spectra were 

recorded on a Finningan TSQ700 triple quadupole mass spectrometer (Finnigan 

MAT, San Jose, CA). High resolution mass spectra were recorded on a Kratos 

MS50TC double focusing magnetic sector mass spectrometer using El at 70 ev. 

Procedure for synthesis of the 2-(1 -alkynyl)benzaldehydes and the N-

fert-butyl-2-(1-alkynyl)arylaldimines. 

yV-ferf-Butyl-2-(phenylethynyl)benzaldimine (1). To a solution of 2-

bromobenzaldehyde (1.85 g, 10.0 mmol) and phenylacetylene (1.23 g, 12.0 mmol) 

in Et3N (40 mL) was added PdCl2(PPh3)2 (140 mg, 2 mol %). The mixture was 

stirred for 5 min and Cul (20.0 mg, 1 mol %) was added. The resulting mixture was 

then heated under a nitrogen atmosphere at 50 °C for 4 h. The reaction was 

monitored by TLC to establish completion. The reaction mixture was allowed to 

cool to room temperature, and the ammonium salt was removed by filtration. The 

solvent was removed under reduced pressure and the residue was purified by 

column chromatography on silica gel using 20:1 hexanes/EtOAc to afford 1.88 g 

(91%) of the compound 2-(phenylethynyl)benzaldehyde as a yellow oil: 1H NMR 

(CDCI3) Ô 7.37-7.40 (m, 3H), 7.45 (t, J = 7.2 Hz, 1H), 7.54-7.65 (m, 4H), 7.95 (dd, J 

= 0.8, 7.6 Hz, 1H), 10.65 (d, J = 0.8 Hz, 1H); 13C NMR (CDCI3) 5 85.1, 96.5, 122.4, 
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126.9, 127.3, 128.6, 128.7, 129.2, 131.8, 133.3, 133.9, 135.9, 191.7. To a mixture 

of the prepared 2-(phenylethynyl)benzaldehyde (0.80 g, 3.88 mmol) and H20 (0.25 

mL/mmol) was added terf-butylamine (11.64 mmol, 3 equiv). The mixture was then 

stirred under a nitrogen atmosphere at room temperature for 12 h. The excess tert-

butylamine was removed under reduced pressure and the resulting mixture was 

extracted with ether. The combined organic layers were dried (Na2S04) and 

filtered. Removal of the solvent afforded 1.00 g (97%) of the indicated compound 1 

with spectral properties identical to those previously reported:10,12,13 mp 52-53 °C 

(lit.10,12 mp 52-53 °C). 

A/-fert-Butyl-2-(1-hexynyl)benzaldimine (15). The corresponding aldehyde 

was prepared by the same method used for 2-(phenylethynyl)benzaldehyde, but 

employing 1-hexyne (0.4920 g, 1.2 equivalents). Column chromatography using 

15:1 hexanes/EtOAc afforded 1.01 g (96%) of 2-(1-hexynyl)benzaldehyde as a 

yellow oil: 1H NMR (CDCI3) 5 0.96 (t, J = 7.2 Hz, 3H), 1.43-1.58 (m, 2H), 1.60-1.68 

(m, 2H), 2.49 (t, J = 7.2 Hz, 2H), 7.34-7.40 (m, 1H), 7.48-7.52 (m, 2H), 7.88 (dt, J = 

0.9, 7.8 Hz, 1H), 10.54 (d, J = 0.9 Hz, 1H); 13C NMR (CDCI3) 5 13.79, 19.48, 22.27, 

30.77, 76.51, 98.35, 127.08, 128.03, 128.17, 133.48, 133.86, 136.17, 192.40. The 

imine was prepared by the same method used for 1, but employing 2-(1-

hexynyl)benzaldehyde (0.74 g, 4.0 mmol). Removal of the solvent afforded 0.92 g 

(95%) of the indicated compound 21 as a yellow oil: 1H NMR (CDCI3) 8 0.96 (t, J = 

6.9 Hz, 3H), 1.31 (s, 9H), 1.47-1.64 (m, 4H), 2.47 (t, J = 6.9 Hz, 2H), 7.25-7.31 (m, 

2H), 7.37-7.41 (m, 1H), 7.98-8.03 (m, 1H), 8.81 (s, 1H); 13C NMR (CDCI3) § 13.79, 

19.41, 22.19, 29.93, 30.99, 57.79, 76.80, 96.17, 124.96, 125.94, 127.97, 129.75, 
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132.42, 137.88, 154.68; IR (CHCI3) 2210, 1632 cm"1; HRMS: m/i 249.1831 (calcd 

for C17H23N, 249.1830). 

/V-ferf-Butyl-2-(1-cyclohexenylethynyl)benzaldimine (17). The 

corresponding aldehyde was prepared by the same method used for 2-

(phenylethynyl)benzaldehyde, but employing 1 -cyclohexenylacetylene (0.6360 g, 

1.2 equiv). Column chromatography using 15:1 hexanes/EtOAc afforded 1.01 g 

(96%) of 2-(1-cyclohexenylethynyl)benzaldehyde as a yellow oil: 1H NMR (CDCI3) 

8 1.61-1.73 (m, 4H), 2.11-2.20 (m, 2H), 2.23-2.27 (m, 2H), 6.29-6.32 (m, 1H), 7.37-

7.42 (m, 1H), 7.51-7.56 (m, 2H), 7.90 (d, J = 8.0 Hz, 1H), 10.54 (s, 1H); 13C NMR 

(CDCI3) 8 21.61, 22.42, 26.05, 29.19, 82.58, 98.69, 120.53, 127.26, 127.82, 128.26, 

133.22, 133.91, 135.82, 137.09, 192.25. The imine was prepared by the same 

method used for 1, but employing 2-(1-cyclohexenylethynyl)benzaldehyde (0.84 g, 

4.0 mmol). Removal of the solvent afforded 0.98 g (95%) of the indicated 

compound 19 as a yellow oil: 1H NMR (CDCI3) S 1.31 (s, 9H), 1.61-1.73 (m, 4H), 

2.14-2.27 (m, 4H), 6.22-6.25 (m, 1H), 7.29-7.33 (m, 2H), 7.41-7.43 (m, 1H), 8.00-

8.02 (m, 1H), 8.81 (s, 1H); 13C NMR (CDCI3) 8 21.70, 22.54, 26.02, 29.46, 29.99, 

57.96, 84.33, 97.12, 120.90, 124.68, 126.01, 128.29, 129.84, 132.19, 135.69, 

137.67, 154.73; IR (CHCI3) 3062, 2200, 1636 cm"1; HRMS: m/z 265.1831 (calcd 

for C19H23N, 265.1830). 

A/-ferf-Butyl-2-(4-methoxyphenylethynyl)benzaldimine (20). The 

corresponding aldehyde was prepared by the same method used for 2-

(phenylethynyl)benzaldehyde, but employing 2-bromobenzaldehyde (1.85 g, 10 

mmol) and 1 -ethynyl-4-methoxybenzene for 4 h. Column chromatography using 

5:1 hexanes/ethyl acetate afforded 2.24 g (95%) of the compound 2-(4-



methoxyphenylethynyl)benzaldehyde as a yellow solid: mp 50-51 °C; 1H NMR 

(CDCI3) 5 3.86 (s, 3H), 6.93 (d, J = 8.8 Hz, 2H), 7.44 (t, J = 7.6 Hz, 1H), 7.52 (d, J = 

8.8 Hz, 2H), 7.56-7.64 (m, 2H), 7.95 (d, J = 8.0 Hz, 1H), 10.66 (s, 1H); 13C NMR 

(CDCI3) 5 55.57, 83.97, 96.78, 114.37, 114.55, 127.38, 127.54, 128.42, 133.22, 

133.42, 133.97, 135.80, 160.40, 192.09. The imine was prepared by the same 

method used for 1, but employing 2-(4-methoxyphenylethynyl)benzaldehyde (0.92 

g, 3.88 mmol). Removal of the solvent afforded 1.04 g (95% yield) of the indicated 

compound 16 as a bright yellow oil: 1H NMR (CDCI3) 8 1.36 (s, 9H), 3.85 (s, 3H), 

6.92 (dt, J = 2.1, 9.0 Hz, 2H), 7.34-7.38 (m, 2H), 7.49 (dt, J = 2.1, 9.0 Hz, 2H), 

7.52-7.55 (m, 1H), 8.06-8.09 (m, 1H), 8.94 (s, 1H); 13C NMR (CDCI3) 8 30.05, 

55.59, 58.06, 85.67, 95.20, 114.37, 115.37, 124.50, 126.14, 128.53, 129.97, 

132.25, 133.17, 137.72, 154.66, 160.04; IR (CHCI3) 2963, 2200, 1699 cm"1; 

HRMS m/z 291.1626 (calcd forC20H2iNO, 291.1623). 

W-ferf-Butyl-6-(phenylethynyl)piperonaldimine (23). The corresponding 

aldehyde was prepared by the same method used to prepare 2-

(phenylethynyl)benzaldehyde, but employing 5-bromopiperonal (1.145 g, 5.0 mmol) 

and phenylacetylene (0.6128 g, 1.2 equiv). Column chromatography using 5:1 

hexanes/ethyl acetate afforded 1.172 g (94%) of 5-(phenylethynyl)piperonal as a 

yellow solid: mp 98-101 °C; 1H NMR (CDCI3) 8 6.10 (s, 2H), 7.03 (s, 1H), 7.34-7.39 

(m, 4H), 7.53-7.55 (m, 2H), 10.49 (s, 1H); 13C NMR (CDCI3) 8 84.98, 95.36, 102.62, 

106.32, 112.21, 122.54, 123.85, 128.74, 129.20, 131.80, 132.36, 148.93, 152.62, 

190.27. The imine 23 was prepared by the same method used for 1, but employing 

6-(phenylethynyl)piperonal (1.002 g, 4 mmol). Removal of the solvent afforded 
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1.091 g (87%) of the indicated compound 23 as a yellow solid: 88-90 °C; 1H NMR 

(CHCh) 5 1.32 (s, 9H), 6.01 (s, 2H), 6.96 (s, 1H), 7.35-7.38 (m, 3H), 7.49-7.52 (m, 

2H), 7.56 (s, 1H), 8.84 (s, 1H); 13C NMR (CDCI3) 5 30.04, 57.77, 86.93, 93.85, 

101.89, 105.93, 111.29, 118.57, 123.37, 128.58, 128.68, 131.54, 134.05, 148.82, 

149.22, 153.70; IR (CHCI3) 3018, 2970, 1612 cm"1; H RMS: m/z 305.1420 (calcd 

for C18H18N2, 305.1416). 

A/-fert-Butyl-2-phenylethynyl-3-pyridinecarboxaldimine (25). The 

corresponding aldehyde was prepared by the same method used for 2-

(phenylethynyl)benzaldehyde, but employing 2-bromo-3-pyridinecarboxaldehyde 

(0.93 g, 5.0 mmol) and phenylacetylene (0.6128 g, 1.2 equiv). Column 

chromatography using 3:1 hexanes/ethyl acetate afforded 0.88 g (85%) of 2-

phenylethynyl-3-pyridinecarboxaldehyde as a white solid22: 1H NMR (CDCI3) 5 

7.37-7.45 (m, 4H), 7.64-7.67 (m, 2H), 8.22 (dd, J = 1.6, 8.0 Hz, 1H), 8.83 (dd, J = 

2.0, 5.6 Hz, 1H), 10.68 (d, J = 0.8 Hz, 1H); 13C NMR (CDCI3) 5 84.90, 96.29, 

121.48, 123.43, 128.82, 130.08, 132.06, 132.41, 135.03, 146.32, 154.73, 191.02. 

The imine 21 was prepared by the same method used for 1, but employing 2-

phenylethynyl-3-pyridinecarboxaldehyde (0.83 g, 4.0 mmol). Removal of the 

solvent afforded 1.00 g (95%) of the indicated compound 21 as a white solid: mp 

71-72 °C; 1H NMR (CHCI3) 5 1.35 (s, 9H), 7.30 (d, J = 7.2 Hz, 1H), 7.38-7.41 (m, 

3H), 7.60-7.62 (m, 2H), 8.37 (dd, J = 2.0, 8.0 Hz, 1H), 8.64 (dd, J = 2.0, 4.8 Hz, 1H), 

8.88 (s, 1H); 13C NMR (CDCI3) 5 29.82, 58.44, 86.36, 94.57, 122.27, 123.34, 

128.73, 129.46, 132.14, 133.96, 134.19, 143.55, 151.37, 152.56; IR (CHCI3) 3057, 

2969, 2218, 1635 cm"1; H RMS: m/z 262.1476 (calcd for C18H18N2, 262.1470). 
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A/-ferf-Butyl-2-(phenylethynyl)cyclohex-1 -enecarboxaldimine (50). The 

corresponding aldehyde was prepared by the same method used for 2-

(phenylethynyl)benzaldehyde, but employing 2-bromocyclohex-1-enecarbaldehyde 

(this aldehyde is not stable at room temperature and should be used right away or 

stored in the refrigerator)23 (0.946 g, 5.0 mmol) and phenylacetylene (0.6128 g, 1.2 

equiv). Column chromatography using 25:1 hexanes/ethyl acetate afforded 0.98 g 

(93%) of 2-(phenylethynyl)cyclohex-1-enecarbaldehyde as a yellow oil: 1H NMR 

(CDCI3) 5 1.58-1.76 (m, 4H), 2.30-2.33 (m, 2H), 2.50-2.53 (m, 2H), 10.32 (s, 1H); 

13C NMR (CDCI3) Ô 21.28, 22.10, 22.31, 32.55, 86.48, 98.73, 122.53, 128.70, 

129.29, 131.85, 140.12, 142.80, 193.07. The imine 50 was prepared by the same 

method used for 1, but employing 2-(phenylethynyl)cyclohex-1 -enecarbaldehyde 

(0.84 g, 4.0 mmol). Removal of the solvent afforded 1.00 g (94%) of the indicated 

compound 50 as a yellow oil: 1H NMR (CHCI3) 5 1.25 (s, 9H), 1.68-1.69 (m, 4H), 

2.42 (br s, 4H), 7.32-7.35 (m, 3H), 7.43-7.45 (m, 2H), 8.70 (s, 1H); 13C NMR 

(CDCI3) 8 21.94, 22.58, 24.73, 30.08, 31.53, 57.55, 88.56, 95.92, 123.63, 127.23, 

128.44, 128.61, 131.56, 142.68, 156.75; IR (CHCI3) 3042, 2972, 2221, 1620 cm"1; 

HRMS: m/z 265.3938 (calcd for C19H23N, 265.3934). 

Typical Procedure for the Palladium-Catalyzed Formation of 3,4-

Disubstituted Isoquinolines. 

3,4-Diphenylisoquinoline (2a). A mixture of DMF (5.0 mL), Pd(PPh3)4 

(14.4 mg, 0.0125 mmol), K2C03 (0.1725 g, 1.25 mmol), /V-te/t-butyl-2-

(phenylethynyl)benzaldimine (1) (0.0653 g, 0.25 mmol), and phenyl iodide (0.2551 

g, 1.25 mmol) was flushed with Ar at room temperature for 5 min and then heated 

to 100 °C with stirring for 12 h. The reaction mixture was cooled to room 



temperature, diluted with diethyl ether (30 mL) and washed with brine (30 mL). The 

aqueous layer was reextracted with diethyl ether (15 mL). The organic layers were 

combined, dried (MgS04), filtered and the solvent removed under reduced pressure. 

The residue was purified by column chromatography on a silica gel column using 

10:1 hexanes/EtOAc to afford 34 mg (49%) of the indicated compound: mp 154-

155 °C (lit17 mp 154-155 °C). The spectral properties were identical to those 

previously reported.17 

4-(4-Nitrophenyl)-3-phenylisoquinoline (3). The reaction mixture was 

chromatographed using 3:1 hexanes/ethyl acetate to afford 62 mg (75%) of the 

indicated compound as a yellow solid: mp 133-134 °C; 1H NMR (CDCI3) 5 7.24-

7.25 (m, 3H), 7.30-7.33 (m, 2H), 7.46 (dt, J = 1.5, 6.6 Hz, 2H), 7.55-7.57 (m, 1H), 

7.65-7.69 (m, 2H), 8.10-8.12 (m, 1H), 8.25 (dt, J = 1.5, 6.6 Hz, 2H), 9.43 (s, 1H); 

13C NMR (CDCI3) 5 123.80, 124.85, 127.47, 127.60, 127.92, 128.20, 128.24, 

128.67, 130.41, 131.47, 132.52, 135.31, 140.12, 144.94, 147.32, 151.09, 152.98; 

IR (CHCI3) 3059, 1521 cm"1; HRMS m/z 326.1059 (calcd for C21H14N2O2, 

326.1055). 

4-(3-Nitrophenyl)-3-phenylisoquinoline (4). The reaction mixture was 

chromatographed using 5:1 hexanes/ethyl acetate to afford 39 mg (49%) of the 

indicated compound as a yellow solid: mp 131-132 °C; 1H NMR (CDCI3) 5 7.22-

7.25 (m, 3H), 7.30-7.33 (m, 2H), 7.52-7.58 (m, 3H), 7.65-7.71 (m, 2H), 8.10-8.13 

(m, 1H), 8.19 (s, 1H), 8.23 (dt, J= 1.5, 6.9 Hz, 1H), 9.43 (s, 1H); 13C NMR (CDCI3) 

5 122.66, 124.77, 126.30, 127.49, 127.53, 127.78, 128.18, 128.29, 129.61, 130.44, 

131.44, 135.44, 137.64, 139.42, 140.09, 148.36, 151.41, 152.88; IR (CHCI3) 3032, 

2969, 1532 cm"1; HRMS m/z 326.1059 (calcd for C21H14N202, 326.1055). 
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Ethyl 4-(3-phenylisoquinolin-4-yl)benzoate (6). The reaction mixture was 

chromatographed using 5:1 hexanes/ethyl acetate to afford 59 mg (67%) of the 

indicated compound as a yellow solid: mp 149-150 °C; 1H NMR (CDCI3) 5 1.42 (t, 

J = 5.4 Hz, 3H), 4.41 (q, J = 5.4 Hz, 2H), 7.20-7.23 (m, 3H), 7.33-7.36 (m, 4H), 

7.59-7.65 (m, 3H), 8.05-8.09 (m, 3H), 9.40 (s, 1H); 13C NMR (CDCI3) S 14.33, 

61.07, 125.14, 127.06, 127.27, 127.32, 127.71, 127.81, 129.44, 129.52, 129.63, 

130.78, 131.32, 135.48, 140.34, 142.28, 150.65, 152.20, 166.41; IR (CHCI3) 3019, 

1711, 1619 cm"1; HRMS m/z 353.1420 (calcd for C24H19N02, 353.1416). 

4-(3-Ethoxycarbonylphenyl)-3-phenylisoquinoline (7). The reaction 

mixture was chromatographed using 5:1 hexanes/ethyl acetate to afford 48 mg 

(55%) of the indicated compound as a yellow oil: 1H NMR (CDCI3) 6 1.37 (t, J = 3.9 

Hz, 3H), 4.38 (q, J = 3.9 Hz, 2H), 7.19-7.25 (m, 3H), 7.33-7.45 (m, 4H), 7.58-7.66 

(m, 3H), 8.03-8.09 (m, 3H), 9.40 (s, 1H); 13C NMR (CDCI3) 8 140.25, 61.07, 125.22, 

127.0, 127.21, 127.31, 127.67, 127.74, 128.50, 128.54, 129.57, 130.28, 130.54, 

130.77, 135.57, 135.70, 137.59, 140.37, 150.89, 152.08, 166.38; IR (CHCI3) 3061, 

2984, 1712 cm"1; HRMS m/z 353.1422 (calcd for C24H19N02, 353.1416). 

3-Phenyl-4-(4-trifluoromethylphenyl)isoquinoline (9). The reaction 

mixture was chromatographed using 5:1 hexanes/ethyl acetate to afford 52 mg 

(65%) of the indicated compound as a yellow solid: mp 128-129 °C; 1H NMR 

(CDCI3) 5 7.22-7.23 (m, 3H), 7.32-7.34 (m, 2H), 7.40 (d, J = 5.7 Hz, 2H), 7.57-7.65 

(m, 5H), 8.08 (d, J= 5.7 Hz, 1H), 9.41 (s, 1H); 13C NMR (CDCI3) 5 125.24, 125.50 

(q, J = 3.8 Hz, 1C, including 125.43, 125.48, 125.53, 125.58), 127.37, 127.51, 

127.64, 128.00, 128.07, 129.38, 130.00, 130.44, 131.14, 131.87, 135.69, 140.43, 



141.52, 151.03, 152.58 (one sp2 carbon is missing due to overlap); IR (CHCI3) 

3060, 3019, 2929, 1619 cm"1; HRMS m/z 349.1083 (calcd for C22H14F3N, 

349.1078). 

3-Phenyl-4-(3-trifluoromethylphenyl)isoquinoline (10). The reaction 

mixture was chromatographed using 7:1 hexanes/ethyl acetate to afford 45 mg 

(51%) of the indicated compound as a yellow oil: 1H NMR (CDCI3) 6 7.21-7.25 (m, 

3H), 7.28-7.32 (m, 2H), 7.43 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.55 (s, 

1H), 7.59-7.69 (m, 4H), 8.08-8.10 (m, 1H), 9.41 (s, 1H); 13C NMR (CDCI3) 5 126.59 

(q, J = 272.6 Hz, 1C, including 122.37, 125.98), 124.41 (q, J = 3.8 Hz, 1C, including 

124.33, 124.38, 124.43, 124.48), 125.16, 127.38, 127.57, 127.60, 128.28 (q, J = 

3.8 Hz, 1C, including 128.04, 128.26, 128.31, 128.41), 129.07, 129.30, 130.39, 

130.75, 131.18, 131.23, 134.83 (d, J = 1.2 Hz, 1C, including 134.82, 134.84), 

135.71, 138.38, 140.38, 151.33, 152.55 (one sp2 carbon is missing due to overlap); 

IR (CHCI3) 3061, 3018, 2972, 1619 cm"1; HRMS m/z 349.1083 (calcd for 

C22H14F3N, 349.1078). 

3-Phenyl-4-(3-pyridyl)isoquinoline (11). The reaction mixture was 

chromatographed using 3:1 hexanes/ethyl acetate to afford 34 mg (48%) of the 

indicated compound as a yellow solid: mp 149-150 °C; 1H NMR (CDCI3) 5 7.22-

7.24 (m, 3H), 7.29-7.34 (m, 3H), 7.55-7.62 (m, 2H), 7.63-7.69 (m, 2H), 8.08-8.12 

(m, 1H), 7.55 (d, J = 1.5, 1H), 8.60 (dd, J = 4.8, 1.5 Hz, 1H), 9.42 (s, 1H); 13C NMR 

(CDCI3) S 123.39, 125.00, 127.06, 127.42, 127.50, 127.66, 128.05, 128.12, 130.54, 

131.26, 135.89, 138.81, 140.26, 148.71, 151.76, 151.81, 152.69 (one sp2 C is 

missing due to overlap); IR (CHCI3) 3020, 1672 cm"1; HRMS m/z 282.1158 (calcd 

for C20H14N2, 282.1157). 



4-(4-Methylphenyl)-3-phenylisoquinoline (12). The reaction mixture was 

chromatographed using 10:1 hexanes/ethyl acetate to yield a yellow solid: mp 120-

121 °C (hexanes); 1H NMR (CDCI3) 6 2.30 (s, 3H), 7.07 (d, J = 8.0 Hz, 2H), 7.21-

7.29 (m, 3H), 7.58 (d, J = 8.0 Hz, 2H), 7.63-7.68 (m, 4H), 7.72, (d, J = 7.2 Hz, 1H), 

8.07-8.09 (m, 1H), 9.45 (s, 1H); 13C NMR (CDCI3) ô 21.86, 124.76, 127.09, 127.72, 

128.09, 128.43, 128.55, 129.08, 129.45, 129.67, 129.92, 131.57, 134.33, 135.17, 

139.82, 144.87, 149.82, 153.43; IR (CHCI3) 3018, 2956, 1610 cm'1; HRMS 

323.1315 (calcd for C22H17N 323.1310). 

4-(2-Methylphenyl)-3-phenylisoquinoline (13). The reaction mixture was 

chromatographed using 10:1 hexanes/ethyl acetate to yield a yellow solid: mp 99-

100 °C (hexanes); 1H NMR (CDCI3) 8 2.58 (s, 3H), 6.90 (t, J = 5.7 Hz, 1H), 7.06 (d, 

J = 5.7 Hz, 1H), 7.10 (d, J = 5.7 Hz, 1H), 7.18-7.28 (m, 4H), 7.51-7.53 (m, 2H), 7.67 

(td, J = 6.0, 0.9 Hz, 1H), 7.73 (td, J = 6.0, 0.9 Hz, 1H), 7.92 (d, J = 6.0 Hz, 1H), 8.10 

(d, J = 8.0 Hz, 1H), 9.44 (s, 1H); 13C NMR (CDCI3) 6 21.84, 124.77, 125.58, 127.26, 

127.81, 128.19, 128.31, 128.53, 129.55, 130.59, 131.84, 131.87, 132.08, 132.52, 

134.51, 137.47, 140.15, 140.37, 150.67, 153.54; IR (CHCI3) 3058, 3012, 1612 cm"1; 

HRMS 323.1315 (calcd for C22H17N 323.1310). 

4-(4-Methoxyphenyl)-3-phenylisoquinoline (14). The reaction mixture 

was chromatographed using 5:1 hexanes/ethyl acetate to afford 10 mg (13%) of 

the indicated compound as a while solid: mp 141-142 °C; 1H NMR (CDCI3) 8 3.85 

(s, 3H), 6.91 (d, J = 6.3 Hz, 2H), 7.16 (d, J = 6.3 Hz, 2H), 7.22 (t, J = 5.4 Hz, 3H), 

7.39 (d, J = 5.4 Hz, 2H), 7.59-7.65 (m, 2H), 7.72 (d, J = 6.0 Hz, 1H), 8.05 (d, J = 5.4 

Hz, 1H), 9.36 (s, 1H); 13C NMR (CDCI3) 8 55.45, 114.01, 125.87, 127.03, 127.18, 



127.66, 127.76, 127.90, 129.52, 130.47, 130.52, 130.64, 132.53, 136.48, 141.17, 

151.76, 159.04 (one sp2 carbon missing due to overlap); IR (CHCI3) 3057, 1261 

cm"1; HRMS m/z 311.3779 (calcd for C22H17NO, 311.3775). 

3-Butyl-4-(4-nitrophenyl)isoquinoline (16). The reaction mixture was 

chromatographed using 5:1 hexanes/ethyl acetate to afford 27 mg (35%) of the 

indicated compound as a yellow solid: mp 105-107 °C; 1H NMR (CDCI3) 8 0.82 (t, 

J = 7.2 Hz, 3H), 1.26 (sextet, J = 7.5 Hz, 2H), 1.62-1.72 (m, 2H), 2.68 (t, J = 7.8 Hz, 

2H), 7.23-7.25 (m, 1H), 7.52 (dt, J = 2.4, 8.7 Hz, 2H), 7.55-7.61 (m, 2H), 7.99-8.03 

(m, 1H), 8.40 (dt, J = 2.1, 9.0 Hz, 2H), 9.30 (s, 1H); 13C NMR (CDCI3) 8 14.08, 

22.87, 32.58, 35.65, 123.98, 124.54, 126.73, 126.77, 127.94, 128.47, 130.98, 

131.61, 135.35, 145.19, 147.71, 152.81, 152.91; IR (CHCI3) 3019, 1522, 1349 cm"1; 

HRMS m/z 306.1372 (calcd for C19H18N202, 306.1368). 

3-(1-Cyclohexenyl)-4-(4-nitrophenyl)isoquinoline (18). The reaction 

mixture was chromatographed using 3:1 hexanes/ethyl acetate to afford 49 mg 

(60%) of the indicated compound as an orange solid: mp 130-132 °C; 1H NMR 

(CDCI3) 8 1.47-1.54 (m, 2H), 1.58-1.66 (m, 2H), 1.94-1.99 (m, 2H), 2.19-2.22 (m, 

2H), 5.58-5.61 (m, 1H), 7.44-7.48 (m, 1H), 7.52 (dt, J = 2.1, 9.0 Hz, 2H), 5.57-7.65 

(m, 2H), 8.02-8.05 (m, 1H), 8.34 (dt, J = 2.1, 9.0 Hz, 2H), 9.30 (s, 1H); 13C NMR 

(CDCI3) 8 21.96, 22.92, 25.69, 29.26, 123.56, 124.76, 127.05, 127.22, 127.66, 

128.08, 131.10, 131.85, 131.89, 135.27, 137.68, 145.60, 147.32, 152.52, 154.11; 

IR (CHCI3) 3005, 2928, 1522, 1360 cm"1; HRMS m/z 330.1372 (calcd for 

C2iH18N202, 330.1368). 

Ethyl 4-[3-(1-cyclohexenyl)isoquinolin-4-yl]benzoate (19). The reaction 

mixture was chromatographed using 5:1 hexanes/ethyl acetate to afford 54.4 mg 



(61%) of the indicated compound as a yellow solid: mp 128-129 °C; 1H NMR 

(CDCI3) 5 1.45 (t, J =7.2 Hz, 3H), 1.48-1.52 (m, 2H), 1.56-1.61 (m, 2H), 1.95-1.97 

(m, 2H), 2.16-2.18 (m, 2H), 4.44 (q, J = 7.2 Hz, 2H), 5.63-5.66 (m, 1H), 7.41 (dd, J 

= 7.2, 1.6 Hz, 2H), 7.49-7.51 (m, 1H), 7.54-7.58 (m, 2H), 7.99-8.01 (m, 1H), 8.15 

(dd, J = 7.2, 1.6 Hz, 2H), 9.27 (s, 1H); 13C NMR (CDCI3) 5 14.61, 22.03, 23.00, 

25.71, 29.20, 61.32, 125.26, 126.76, 127.28, 127.85, 128.89, 129.51, 129.56, 

130.71, 130.98, 131.22, 135.66, 137.93, 143.09, 151.95, 154.02, 166.79; IR 

(CHCI3) 3019, 1725 cm"1; HRMS m/z 357.1734 (calcd for C24H23N02, 357.1729). 

3-(4-Methoxyphenyl)-4-(4-nitrophenyl)isoquinoline (21). The reaction 

mixture was chromatographed using 2:1 hexanes/ethyl acetate to afford 74 mg 

(80%) of the indicated compound as an orange solid: mp 181-182 °C; 1H NMR 

(CDCI3) 5 3.78 (s, 3H), 6.77 (dt, J = 2.7, 8.7 Hz, 2H), 7.27 (dt, J = 2.7, 8.7 Hz, 2H), 

7.47 (dt, J = 2.1, 9.0 Hz, 2H), 7.52-7.55 (m, 1H), 7.62-7.67 (m, 2H), 8.07-8.10 (m, 

1H), 8.27 (dt, J = 2.1, 9.0 Hz, 2H), 9.40 (s, 1H); 13C NMR (CDCI3) 5 55.35, 113.63, 

123.82, 124.65, 127.19, 127.27, 128.03, 128.19, 131.31, 131.73, 132.48, 135.32, 

145.22, 147.21, 150.65, 152.84, 159.30 (one sp2 carbon missing due to overlap); 

IR (CHCI3) 3019, 1518, 1215 cm"1; HRMS m/z 356.1167 (calcd for C22H16N203, 

356.1161). 

3,4-Di(4-methoxyphenyl)isoquinoline (22). The reaction mixture was 

chromatographed using 2:1 hexanes/ethyl acetate to afford 27 mg (30%) of the 

indicated compound as a while solid: mp 164-165 °C; 1H NMR (CDCI3) 5 3.77 (s, 

3H), 3.85 (s, 3H), 6.76 (dt, J = 6.9, 1.8 Hz, 2H), 6.93 (dt, J = 6.6, 1.8 Hz, 2H), 7.17 -

(dt, J = 6.9, 1.8 Hz, 2H), 7.34 (dt, J = 6.6, 1.8 Hz, 2H), 7.55-7.61 (m, 2H), 7.69 (d, J 



= 6.0 Hz, 1H), 8.00-8.03 (m, 1H), 9.33 (s, 1H); 13C NMR (CDCI3) 5 55.37, 55.45, 

113.36, 114.11, 125.73, 126.75, 127.44, 127.73, 129.82, 129.92, 130.53, 131.73, 

132.48, 133.63, 136.57, 150.59, 151.68, 158.83, 158.99; IR (CHCI3) 3019, 1514 

cm"1; HRMS m/z 341.1422 (calcd for C23H19N02, 341.1416). 

8-(4-Nitrophenyl)-7-phenyl-[1,3]dioxolo[4,5-g]isoquinoline (24). The 

reaction mixture was chromatographed using 3.5:1 hexanes/ethyl acetate to afford 

56 mg (59%) of the indicated compound as a yellow solid: mp 169-170 °C; 1H 

NMR (CDCI3) 6 6.11 (s, 2H), 6.78 (s, 1H), 7.18-7.24 (m, 3H), 7.25-7.29 (m, 2H), 

7.31 (s, 1H), 7.41 (dt, J = 8.7, 2.1 Hz, 2H), 8.23 (dt, J = 8.7, 2.1 Hz, 2H), 9.14 (s, 

1H); 13C NMR (CDCI3) 8 101.26, 102.17, 103.55, 123.86, 124.99, 127.73, 128.15, 

128.47, 130.27, 132.40, 133.79, 140.22, 145.33, 147.28, 148.61, 150.46, 150.56, 

152.07; IR (CHCI3) 3019, 2926, 1642 cm"1; HRMS m/z 370.0959 (calcd for 

C22H14N204, 370.0954). 

4-Allyl-3-phenylisoquinoline (27). The reaction mixture was 

chromatographed using 7:1 hexanes/ethyl acetate to afford 42 mg (69%) of the 

indicated compound as a yellow oil: 1H NMR (CDCI3) 5 3.80-3.81 (m, 2H), 4.88 (dd, 

J= 1.6, 17.6 Hz, 1H), 5.15 (dd, J= 1.6, 11.2 Hz, 1H), 6.10-6.19 (m, 1H), 7.39-7.48 

(m, 3H), 7.58-7.62 (m, 3H), 7.73 (dt, J = 1.2, 8.0 Hz, 1H), 8.01 (t, J = 8.0 Hz, 2H), 

9.24 (s, 1H); 13C NMR (CDCI3) 5 33.38, 116.98, 124.55, 125.72, 126.90, 127.89, 

128.01, 128.31, 128.39, 129.51, 130.66, 136.06, 137.15, 141.37, 151.18, 152.87; 

IR (CHCI3) 3059, 3014, 1621, 1572 cm"1; HRMS m/z 245.1206 (calcd for C18H15N, 

245.1204). 
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4-Methallyl-3-phenylisoquinoline (28). The reaction mixture was 

chromatographed using 8:1 hexanes/ethyl acetate to afford 46mg (71%) of the 

indicated compound as a yellow oil: 1H NMR (CDCI3) 8 1.87 (s, 3H), 3.67 (s, 2H), 

4.33 (s, 1H), 4.90 (d, J = 1.5 Hz, 1H), 7.40-7.46 (m, 3H), 7.47-7.49 (m, 4H), 7.57-

7.74 (m, 4H), 7.93 (d, J = 8.7 Hz, 1H), 8.00 (d, J = 7.5 Hz, 1H), 9.25 (s, 1H); 13C 

NMR (CDCI3) 8 23.63, 37.31, 112.63, 124.56, 125.70, 126.60, 127.52, 127.75, 

127.97, 128.05, 129.04, 130.32, 136.18, 141.13, 144.81, 150.99, 152.57; IR 

(CHCI3) 2928, 1621 cm"1; HRMS m/z 259.1363 (calcd for C19H17N, 259.1361). 

3-Phenyl-4-(E-3-phenyl-2-propenyl)isoquinoline (29). The reaction 

mixture was chromatographed using 7:1 hexanes/ethyl acetate to afford 39 mg 

(48%) of the indicated compound as a yellow oil: 1H NMR (CDCI3) 8 3.97 (d, J = 

4.4 Hz, 2H), 6.22 (d, J= 16.0 Hz, 1H), 6.52 (dt, J= 16.0, 5.6 Hz, 1H), 7.18-7.27 (m, 

5H), 7.41-7.48 (m, 3H), 7.59-7.64 (m, 3H), 7.73 (t, J = 5.7 Hz, 1H), 8.03 (d, J = 8.0 

Hz, 1H), 8.08 (d, J = 8.8 Hz, 1H), 9.28 (s, 1H); 13C NMR (CDCI3) 8 32.41, 124.23, 

125.60, 126.04, 126.72, 127.22, 127.69, 127.81, 128.13, 128.20, 128.48, 128.88, 

129.32, 130.61, 131.63, 135.82, 137.25, 141.04, 151.05, 152.67; IR (CHCI3) 3019, 

1673 cm"1; HRMS m/z 321.1521 (calcd for C24H19N, 321.1518). 

Ethyl 2-[(3-phenylisoquinolin-4-yl)methyl]propenoate (33). The reaction 

mixture was chromatographed using 3:1 hexanes/ethyl acetate to afford 47 mg 

(59%) of the indicated compound as an orange oil: 1H NMR (CDCI3) 8 1.34 (t, J = 

9.6 Hz, 3H), 4.06 (t, J = 2.8 Hz, 2H), 4.28 (q, J = 9.6 Hz, 2H), 6.30 (d, J = 0.8 Hz, 

1H), 7.40-7.47 (m, 3H), 7.54-7.57 (m, 2H), 7.61 (td, J= 9.2, 1.6 Hz, 1H), 7.72 (td, J 

= 9.2, 1.6 Hz, 2H), 7.83 (d, J= 11.2 Hz, 1H), 8.03 (d, J= 10.8 Hz, 1H), 9.29 (s, 1H); 
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13C NMR (CDCI3) 5 29.89, 31.43, 61.28, 124.44, 124.58, 126.70, 127.04, 127.84, 

128.17, 128.42, 129.04, 130.94, 135.82, 140.02, 140.96, 151.64, 153.38, 166.99 

(one sp2 carbon is missing due to overlap); IR (CHCI3) 2982, 1710 cm"1; HRMS 

m/z 317.1420 (calcd for C2iH19N02, 317.1416). 

3-Butyl-4-methallylisoquinoline (35). The reaction mixture was 

chromatographed using 10:1 hexanes/ethyl acetate to afford 37 mg (62%) of the 

indicated compound as a yellow oil: 1H NMR (CDCI3) 5 0.97 (t, J = 7.2 Hz, 3H), 

1.45 (pentet, J = 7.2 Hz, 2H), 1.71-1.79 (m, 2H), 1.90 (s, 3H), 2.93 (t, J = 8.0 Hz, 

2H), 3.71 (s, 2H), 4.24 (s, 1H), 4.78 (t, J = 1.2 Hz, 1H), 7.49 (td, J = 0.8, 8.0 Hz, 

1H), 7.63 (td, J = 1.6, 6.8 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 

9.12 (s, 1H); 13C NMR (CDCI3) S 14.25, 23.20, 23.68, 32.50, 35.40, 35.74, 112.02, 

123.65, 125.13, 125.90, 127.27, 128.16, 130.21, 136.19, 143.68, 150.90, 154.50; 

IR (CHCI3) 3077, 2957, 1624 cm '; HRMS m/z 239.1678 (calcd for C17H2iN, 

239.1674). 

4-Allyl-3-butylisoquinoline (36). The reaction mixture was 

chromatographed using 10:1 hexanes/ethyl acetate to afford 34 mg (55%) of the 

indicated compound as a pale yellow oil: 1H NMR (CDCI3) § 0.97 (t, J = 7.2 Hz, 3H), 

1.47 (sextet, J = 7.5 Hz, 2H), 1.70-1.81 (m, 2H), 2.96 (t, J= 8.1 Hz, 2H), 3.82 (dt, J 

= 5.4, 1.2 Hz, 2H), 4.93 (dq, J = 22.8, 2.4 Hz, 1H), 5.06 (dq, J = 13.2, 2.4 Hz, 1H), 

5.98-6.11 (m, 1H), 7.49-7.69 (m, 1H), 7.64-7.69 (m, 1H), 7.91-7.95 (m, 2H), 9.12 (s, 

1H); 13C NMR (CDCI3) 5 14.27, 23.22, 31.91, 32.63, 35.47, 116.29, 123.41, 124.92, 

125.97, 127.39, 128.32, 130.32, 135.78, 136.10, 150.93, 154.13; IR (CHCI3) 3011, 

1628 cm-1; HRMS m/z 225.1521 (calcd for C16H19N, 225.1518). 



3-(1-Cyclohexenyl)-4-methallylisoquinoline (37). The reaction mixture 

was chromatographed using 10:1 hexanes/ethyl acetate to afford 20 mg (30%) of 

the indicated compound as a yellow oil: 1H NMR (CDCI3) 5 1.71-1.86 (m, 4H), 1.88 

(d, J = 0.3 Hz, 3H), 2.18-2.24 (m, 2H), 2.39-2.44 (m, 2H). 3.74 (s, 2H), 4.22 (q, J = 

0.9 Hz, 1H), 4.80 (pentet, J = 1.5 Hz, 1H), 5.85 (pentet, J= 1.8 Hz, 1H), 7.52 (td, J 

= 1.2, 7.5 Hz, 1H), 7.65 (td, J = 1.5, 7.8 Hz, 1H), 7.81 (dd, J = 0.6, 8.4 Hz, 1H), 7.92 

(d, J = 8.4 Hz, 1H), 9.14 (s, 1H); 13C NMR (CDCI3) Ô 22.34, 23.26, 25.63, 29.26, 

37.08, 112.29, 117.66, 124.69, 125.04, 126.31, 127.38, 127.44, 128.12, 130.27, 

136.45, 138.32, 145.09, 150.80, 155.54; IR (CHCI3) 3017, 2926, 1620 cm"1; 

HRMS m/z 263.1678 (calcd for C19H2iN, 263.1674). 

4-Methallyl-3-(4-methoxyphenyl)isoquinoline (38). The reaction mixture 

was chromatographed using 5:1 hexanes/ethyl acetate to afford 67 mg (88%) of 

the indicated compound as a yellow solid: mp 81-82 °C; 1H NMR (CDCI3) 5 1.90 (s, 

3H), 3.67 (s, 2H), 3.86 (s, 3H), 4.33 (d, J = 0.8 Hz, 1H), 4.91 (t, J = 1.2 Hz, 1H), 

6.99 (dt, J = 9.2, 2.4 Hz, 2H), 7.56 (td, J = 8.4, 0.8 Hz, 1H), 7.62 (dt, J = 9.2, 2.4 Hz, 

2H), 7.69 (td, J = 8.4, 0.8 Hz, 1H), 7.89 (dd, J = 8.4, 0.8 Hz, 1H), 7.97 (d, J = 8.0 Hz, 

1H), 9.23 (s, 1H); 13C NMR (CDCI3) S 23.88, 37.65, 55.48, 112.80, 113.64, 124.68, 

125.52, 126.58, 127.52, 128.12, 130.46, 130.51, 133.80, 136.46, 145.07, 151.10, 

152.37, 159.50; IR (CHCI3) 3019, 2970, 1609 cm"1; HRMS m/z 289.1471 (calcd 

for C20H19NO, 289.1467). 

8-Methallyl-7-phenyl-[1,3]dioxolo[4,5-g]isoquinoline (39). The reaction 

mixture was chromatographed using 4:1 hexanes/ethyl acetate to afford 48 mg 

(59%) of the indicated compound as a yellow solid: mp 145-147 °C; 1H NMR 

(CDCI3) 5 1.84 (s, 3H), 3.55 (s, 2H), 4.36 (d, J = 0.6 Hz, 1H), 4.90 (t, J = 1.5 Hz, 
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1 H), 6.10 (s, 2H), 7.16 (s, 1H), 7.21 (s, 1H), 7.38-7.46 (m, 3H), 7.59-7.62 (m, 2H), 

8.98 (s, 1 H); 13C NMR (CDCI3) 5 23.74, 38.00, 101.30, 101.80, 103.51, 112.74, 

125.13, 125.54, 127.82, 128.20, 129.16, 134.85, 141.45, 144.61, 148.01, 148.95, 

151.39, 152.30; IR (CHCI3) 3018, 2970, 1616, 1583 cm"1; HRMS m/z 303.1264 

(calcd for C20H17NO2, 303.1259). 

8-Methallyl-7-phenyl[1,6]naphthyridine (40). The reaction mixture was 

chromatographed using 3:1 hexanes/ethyl acetate to afford 27 mg (42%) of the 

indicated compound as a yellow solid: mp 66-67 °C; 1H NMR (CDCI3) 8 1.88 (d, J 

= 0.4 Hz, 3H), 3.90 (s, 2H), 4.11 (dd, J= 1.6, 0.8 Hz, 1H), 4.82 (dt, J = 3.2, 1.2 Hz, 

1H), 7.41-7.50 (m, 3H), 7.52 (dd, J = 8.0, 4.0 Hz, 1H), 7.69 (dt, J = 6.8, 1.6 Hz, 2H), 

8.30 (dd, J = 6.8, 1.6 Hz, 1H), 9.16 (dd, J = 4.0, 1.6 Hz, 1H), 9.28 (s, 1H); 13C NMR 

(CDCI3) Ô 24.11, 35.48, 111.62, 122.19, 122.29, 128.24, 128.28, 129.15, 129.24, 

135.90, 140.83, 146.11, 150.51, 151.02, 154.53, 156.35; IR (CHCI3) 3019, 1606 

cm"1; HRMS m/z 260.1318 (calcd for C18H16N2, 260.1314). 

4-Benzyl-3-phenylisoquinoline (41). The reaction mixture was 

chromatographed using 4:1 hexanes/ethyl acetate to afford 33 mg (45%) of the 

indicated compound as a pale yellow solid: mp 133-4 °C; 1H NMR (CDCI3) 6 4.49 

(s, 2H), 7.05 (d, J = 5.7 Hz, 2H), 7.17 (t, J = 5.4 Hz, 1H), 7.21-7.25 (m, 2H), 7.34-

7.41 (m, 3H), 7.52-7.63 (m, 4H), 7.84 (d, J = 6.0 Hz, 1H), 8.02 (d, J = 6.0 Hz, 1H), 

9.30 (s, 1H); 13C NMR (CDCI3) 5 35.10, 124.79, 125.92, 126.21, 126.84, 128.01, 

128.31, 128.39, 128.77, 129.48, 130.84, 141.02, 141.16, 151.48, 153.28 (one sp2 

carbon missing due to overlap); IR (CHCI3) 3019, 1639, 1216 cm"1; HRMS m/z 

295.1366 (calcd for C22H17N, 295.1361). 



4-(4-Methoxybenzyl)-3-phenylisoquinoline (42). The reaction mixture 

was chromatographed using 3:1 hexanes/ethyl acetate to afford 41 mg (51%) of 

the indicated compound as a white solid: mp 136-137 °C; 1H NMR (CDCI3) 5 3.76 

(s, 3H), 4.43 (s, 2H), 6.79 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 7.36-7.42 (m, 

3H), 7.52-7.56 (m, 2H), 7.57-7.64 (m, 2H), 7.86 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 5.7 

Hz, 1H), 9.30 (s, 1H); 13C NMR (CDCI3) S 34.20, 55.39, 114.16, 124.82, 126.24, 

126.89, 127.97, 128.02, 128.34, 128.35, 129.22, 129.48, 130.77, 133.06, 136.27, 

141.24, 151.42, 153.19, 158.02; IR (CHCIa) 3019, 1510 cm"1; HRMS m/z 

325.1473 (calcd for C23H19NO, 325.1467). 

Ethyl 3-(3-phenylisoquinolin-4-yl)prop-2-ynoate (43). The reaction 

mixture was chromatographed using 5:1 hexanes/ethyl acetate to afford 29 mg 

(38%) of the indicated compound as a yellow solid: mp 92-93 °C; 1H NMR (CDCI3) 

S 1.36 (t, J = 7.2 Hz, 3H), 4.30 (q, J = 7.2 Hz, 2H), 7.45-7.56 (m, 3H), 7.69 (td, J = 

7.5, 0.9 Hz, 1H), 7.86 (td, J = 7.2, 1.2 Hz, 1H), 8.04-8.08 (m, 3H), 8.39 (d, J = 8.7 

Hz, 1H), 9.34 (s, 1H); 13C NMR (CDCI3) S 14.34, 62.43, 82.66, 90.04, 109.27, 

125.52, 126.54, 128.28, 128.33, 128.44, 129.43, 130.05, 132.37, 137.40, 139.21, 

153.75, 154.04, 157.31; IR (CHCI3) 2208, 1701 cm1; HRMS m/z 301.1104 (calcd 

for C20H-15NO2, 301.1103). 

4-(1-Decynyl)-3-phenylisoquinoline (44). The reaction mixture was 

chromatographed using 8:1 hexanes/ethyl acetate to afford 47 mg (56%) of the 

indicated compound as a brown oil: 1H NMR (CDCI3) 5 0.89 (t, J = 6.8 Hz, 3H), 

1.26-1.44 (m, 10H), 1.63 (quintet, J = 2.8 Hz, 2H), 2.51 (t, J = 7.2 Hz, 2H), 7.41 (tt, 

J = 2.4, 7.2 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.77 (td, J = 



1.2, 6.8 Hz, 1 H), 7.98 (d, J = 8.0 Hz, 1 H), 8.07 (dd, J = 0.8, 8.0 Hz, 2H), 8.38 (d, J = 

8.4 Hz, 1 H), 9.23 (s, 1H); 13C NMR (CDCI3) S 14.33, 20.19, 22.89, 28.69, 29.23, 

29.39, 29.43, 32.07, 76.70, 101.31, 113.55, 126.07, 126.84, 127.53, 127.92, 

128.00, 128.42, 130.00, 131.15, 137.37, 140.43, 150.90, 154.29; IR (CHCI3) 3009, 

2928, 2218 cm"1; HRMS m/z 341.2150 (calcd for O^H^N, 341.2144). 

4-(3-Methoxy-1-propynyl)-3-phenylisoquinoline (45). The mixture was 

chromatographed using 6:1 hexanes/ethyl acetate to afford 36 mg (53%) of the 

indicated compound as a yellow oil: 1H NMR (CDCI3) 8 3.42 (s, 3H), 4.41 (s, 2H), 

7.41-7.44 (m, 1H), 7.49 (t, J = 7.2 Hz, 2H), 7.65 (td, J = 8.0, 0.8 Hz, 1H), 7.80 (td, J 

= 7.6, 1.2 Hz, 1H), 8.00-8.05 (m, 3H), 8.38 (d, J = 8.4 Hz, 1H), 9.28 (s, 1H); 13C 

NMR (CDCI3) 8 58.01, 60.82, 82.59, 95.39, 112.17, 125.81, 126.75, 127.79, 128.05, 

128.16, 128.70, 129.96, 131.57, 137.14, 140.12, 151.86, 155.03; IR (CHCI3) 3019, 

2219, 1619 cm"1; HRMS m/z 273.1158 (calcd for C19H15NO, 273.1154). 

4-(1-Decynyl)-3-(4-methoxyphenyl)isoquinoline (46). The reaction 

mixture was chromatographed using 10:1 hexanes/ethyl acetate to afford 52 mg 

(56%) of the indicated compound as a brown oil: 1H NMR (CDCI3) 8 0.89 (t, J = 6.8 

Hz, 3H), 1.29-1.31 (m, 8H), 1.42-1.49 (m, 2H), 1.66 (sextet, J = 3.2 Hz, 2H), 2.54 (t, 

J = 6.8 Hz, 2H), 3.88 (s, 3H), 7.01 (d, J = 8.8 Hz, 2H), 7.59 (td, J = 7.6, 0.8 Hz, 1H), 

7.75 (td, J = 6.8, 1.2 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 8.07 (d, J = 8.8 Hz, 2H), 8.36 

(d, J = 8.4 Hz, 1H), 9.20 (s, 1H); 13C NMR (CDCI3) 8 14.32, 20.21, 22.88, 28.76, 

29.27, 29.41, 29.46, 32.07, 55.49, 76.94, 101.08, 112.70, 113.39, 125.93, 126.60, 

127.23, 127.89, 131.08, 131.34, 132.96, 137.50, 150.81, 153.81, 159.92; IR 
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(CHCI3) 3009, 2928, 2218, 1607 cm'1; HRMS m/z 371.2253 (calcd for C26H29NO, 

371.2249). 

Ethyl (Z)-3-(3-phenylisoquinolin-4-yl)propenoate (49). The mixture was 

chromatographed using 7:1 hexanes/ethyl acetate to afford 42 mg (55%) of the 

indicated compound as a red oil: 1H NMR (CDCI3) 5 0.78 (t, J = 7.2 Hz, 3H), 3.83 (t, 

J = 7.2 Hz, 2H), 6.30 (d, J = 12.0 Hz, 1H), 7.25 (d, J= 12.0 Hz, 1H), 7.38-7.47 (m, 

3H), 7.58-7.72 (m, 4H), 7.91 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 9.30 (s, 

1H); 13C NMR (CDCI3) 6 13.78, 60.39, 124.56, 125.63, 125.90, 127.70, 127.13, 

128.18, 128.19, 128.23, 160.26, 130.84, 134.42, 140.08, 140.75, 149.93, 152.09, 

165.54; IR (CHCI3) 3020, 2980, 1720, 1620 cm'1; HRMS m/z 303.1265 (calcd for 

C20H17NO2,303.1259). 
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Chapter 2. Synthesis of 3-Substituted 4-Aroylisoquinolines via Palladium-

Catalyzed Carbonylative Cyclization of 2-(1-Alkynyl)benzaldimines 

and Aryl Halides 

Two papers published in Organic Letters and the Journal of Organic Chemistry 

Guangxiu Dai and Richard C. Larock 

Department of Chemistry, Iowa State University, Ames, Iowa 50011 

Abstract 

A number of 3-substituted 4-aroylisoquinolines have been prepared in good 

yields by treating A/-terf-butyl-2-(1-alkynyl)benzaldimines with aryl halides in the 

presence of CO and a palladium catalyst. Synthetically the methodology provides 

a simple and convenient route to isoquinolines containing an aryl, alkyl or vinylic 

group at C-3 and an aroyl group at C-4 of the isoquinoline ring. The reaction is 

believed to proceed via cyclization of the alkyne containing a proximate 

nucleophilic center promoted by an acylpalladium complex. 

Introduction 

Alkyne-based palladium-catalyzed reactions provide some of the most 

versatile and efficient routes to heterocyclic derivatives (Scheme 1).1 A variety of 

heterocycles have been prepared through in situ hydroarylation 

(hydrovinylation)Zcyclization reactions,2 in situ coupling/cyclization reactions,3 and 

annulation reactions promoted by a-vinyl- and a-arylpalladium complexes.1,4 
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Heterocyclization promoted by a-vinyl- and a-arylpalladium complexes is extremely 

valuable, since generation of the heterocyclic skeleton accommodates 

functionalities amenable to further functional group manipulation and affords a 

rapid increase in molecular complexity. 

When such reactions are carried out in the presence of carbon monoxide, 

activation of the carbon-carbon triple bond appears to involve the intervention of a-

acylpalladium complexes. During the process, one carbon-heteroatom bond and 

two carbon-carbon bonds are generated in a single synthetic operation. 

There are two pathways for carbonylative cyclization that have been 

discovered. The first pathway involves coordination of the in situ formed 

acylpalladium complex (R2COPdX) to the carbon carbon triple bond, followed by 

nucleophilic attack in either an endo or exo manner on the triple bond and 

subsequent reductive elimination (Scheme 1). Cacchi and co-workers have 

reported the Pd-catalyzed carbonylative cyclization of 2-(1-alkynyl)trifluoro-

acetanilides by employing this strategy. It was shown that 2-substituted 3-

acylindoles could be produced regioselectively from the palladium-catalyzed 

reaction of 2-(1-alkynyl)trifluoroacetanilides and aryl halides or vinylic triflates (eq 

1).5a In addition to this example, this methodology has been employed in the 

synthesis of 2-substituted 3-acylbenzo[jb]furans.1 Moreover, as an extension of this 

synthetic method, a tandem reaction of functionalized alkynes with 

organopalladium complexes has been reported (eq 2).5b 
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Scheme 1 

PdCOR' 
PdCOR' 

ay-R^ 

rr1 11 » 
H 

R1 = alkyl, aryl 

R2 = aryl, vinylic 

X = I, OTf 

+ RX + CO 
NHCOCF3 

5% Pd(PPh3)4 

5 K2C03 

MeCN, 45 °C 

HoN. 

5% Pd(PPh3)4 

5 K2C03 

+ Arl + CO • || "| y—(2) 

'NHCOCF3 MeCN, 45 °C 

The second pathway for carbonylative cyclization involves nucleophilic 

displacement of one ligand from the palladium complex [R2PdXL(CO)], while the Pd 

coordinates to the alkyne triple bond at the same time. This is followed by 

intramolecular addition of the organopalladium intermediate to the triple bond and 
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reductive elimination as depicted in Scheme 2. Although numerous examples of 

related reactions suggest that this addition proceeds with syn stereochemistry,6 

Cacchi and co-workers have found that it is possible to get both stereoisomers (eq 

3)7 

Scheme 2 

R2 

5% Pd(PPh3)4 

5 K2C03 

MeCN, 45 °C 

R = vinylic 

Since the acylpalladation of alkynes containing oxygen and nitrogen 

nucleophiles near the carbon-carbon triple bond has been employed in the 

synthesis of ketone-containing indoles5 and benzo[£>]furans,1,6 we thought that 

analogous chemistry might be used to generate the isoquinoline skeleton. We 

have recently reported convenient methods for the preparation of 3-



57 

monosubstituted8 and 3,4-disubstituted isoquinolines,9 disubstituted /?- and y-

carbolines10 and monosubstituted fi- and ^carbo lines11 by the palladium-promoted 

cyclization of alkynylimines. Herein we report analogous acylpalladation chemistry 

of A/-fe/Y-butyl-2-(1-alkynyl)benzaldimines for the synthesis of 3-substituted 4-

aroylisoquinolines (eq 4).12 

cat. Pd(0) 

+ CO + ArX r "R (4) 
base ' 

Results and Discussion 

Starting Materials. The starting material /V-te/t-butyl-2-(1-

alkynyl)benzaldimines can be easily prepared by the Sonogashira coupling of a 2-

bromoarenecarboxaldehyde and a terminal acetylene in the presence of 2 mol % 

PdCI2(PPh3)2, 1 mol % Cul and Et3N at 55 °C,13 followed by condensation with tert-

butylamine (Scheme 3). Both steps proceed smoothly in high yields. 

Scheme 3 

CHO 
2% PdCI2(PPh3)2 f-BuNH 
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Optimization. Our first attempt to explore the reaction of /V-tert-butyl-2-

(phenylethynyl)benzaldimine (1) and 5 equiv of 4-iodoanisole under 1 atm of CO 

employed 5 mol % Pd(PPh3)4 and 5 equiv of K2C03 in DMF at 100 °C (eq 5), 

reaction conditions that were used in our earlier Pd-catalyzed synthesis of 3,4-

disubstituted isoquinolines.9c,d The desired ketone product 2 was formed in only a 

40% isolated yield. Two other isoquinoline products, 3 and 4, were also isolated in 

14% and 11% yields, respectively (Table 1, entry 1). 4-(4-Methoxybenzoyl)-3-

phenylisoquinoline (3) is formed without incorporation of CO by a process reported 

previously by us.9c,d The formation of 3-phenylisoquinoline (4) is assumed to 

proceed by the thermal or Pd(ll)-catalyzed cyclization of the 2-(1-

alkynyl)benzaldimines 1.® 

OMe f-Bu 
Ph Ph 

base, 100 °C 

MeO' 
ÔMe 

1  2  3 4  

Decreasing the amount of the aryl iodide from 5 equiv to 3 equiv and thus 

increasing the ratio of CO to aryl iodide in the reaction did not improve the yield 

(entry 2). The use of KOAc failed to afford any of the desired ketone product (entry 

3) presumably due to acetate attack on the acylpalladium intermediate (see the 

later mechanistic discussion). 

Vastly improved yields were obtained by substitution of the inorganic base 

K2C03 by the organic amine bases Et3N and (n-Bu)3N. Both of these bases led to 

cleaner reactions, affording the desired product 2 in greater than 70% yields with 
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none of the side product 3 and very little of the side product 4 (entries 4 and 5). 

Lower yields were observed by using a more hindered amine, /V,/V-diisopropyl-

ethylamine, or the less basic organic amines pyridine and /V,/V-dimethylaniline 

(entries 6-8). Between Et3N and (n-Bu)3N, the two best amines for this reaction, we 

chose (A7-Bu)3N over Et3N, because (/>Bu)3N has a higher boiling point than Et3N 

and is less easily lost during the reaction at 100 °C. 

Table 1. Optimization of the Pd-Catalyzed Cross-Coupling of /V-ferf-Butyl-2-

(phenylethynyl)benzaldimine (1) and 4-lodoanisole (eq 5). a 

base (equiv) temp (°C) time (h) % 2 % 3 % 4 

1 K2CO3 (5) 100 20 40 14 11 

2b KzC03(5) 100 7 36 13 14 

3C KOAc (5) 100 11 0 0 5 

4 Et3N (5) 100 10 73 0 7 

5 (A7-Bu)3N (5) 100 12 74 0 5 

6 (/-Pr)2NEt (5) 100 9 64 0 11 

7 pyridine (5) 100 48 45 0 12 

8 A/./V-dimethylaniline (5) 100 48 52 0 27 

9 (A?-BU)3N (1.5) 100 8 56 0 4 

10 (/?-BU)3N (5) 80 40 74 0 3 

11 (n-Bu)3N (5) 120 12 50 16 23 

a All of the reactions were run employing 1 (0.0653 g, 0.25 mmol), 4-iodoanisole (0.2925 g, 1.25 mmol), Pd(PPh3)4 (14.4 

mg, 0.0125 mmol), and the base (1.25 mmol) in the presence of 1 atm of CO in 5 ml of DMF. b 3 Equiv of 4-iodoanisole 

were employed. c A 65% yield of 2-(phenylethynyl)benzaldehyde was also obtained. 
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The optimal amount of the organic amine base has been studied. While 5 

equiv of (n-Bu)3N were initially employed, mechanistically only 1 equiv of the base 

is required. We therefore examined the reaction using less base. However, a 

significantly lower yield of 2 was observed when only 1.5 equiv of (A?-BU)3N were 

employed (entry 9). 

The temperature of the reaction has also been investigated. At 80 °C, the 

reaction takes a longer time, 40 h, to reach completion, but the results are 

comparable to those obtained at 100 °C (compare entries 10 and 5). At the higher 

temperature of 120 °C, the reaction displays poorer selectivity between the three 

cyclization products 2, 3 and 4 (entry 11). 

By optimization, the combination of /V-terf-butyl-2-(phenylethynyl)-

benzaldimine (1, 0.25 mmol), 5 equiv of 4-iodoanisole, 5 mol % of Pd(PPh3)4, 5 

equiv of tri-n-butylamine in 5 mL of DMF at 100 °C under 1 atm of CO gave the 

best results. This procedure provided the three isoquinolines 2, 3 and 4 in 74%, 

0% and 5% yields, respectively (Table 1, entry 5). 

Carbonylative Cross-Coupling of N-fe/t-Butyl-2-(1 -alkynyl)benz-

aldimines with Aryl Halides. We next investigated the reaction scope employing 

different aryl halides under the optimal reaction conditions reported above. Aryl 

iodides with a methoxy group in the para, meta and ortho positions afforded the 

corresponding ketone products 2, 5 and 6 in 74%, 76%, and 50% yields, 

respectively (Table 2, entries 1-3). 



Table 2. Synthesis of 3-Substituted 4-Aroylisoquinolines by the Pd-Catalyzed Carbonylative Cyclization 

of AZ-tert-Butyl-2-(1-alkynyl)benzaldimines and Aryl Halides (eq 4).a 

alkynyl imine ArX /ArCOCI time (h) isoquinoline ketone % yield" 

1 R= C6H5 1 p-MeOC6H4l 12 Ar =  p-MeOC 6 H 4  2 74 (0, 5) 

2 1 /T?-MeOCgH4l 48 Ar = m-MeOC6H4 5 76 (0, 5) 

3 1 o-MeOC6H4l 48 Ar = o-MeOC6H4 6 50 (9, 6) 

4 1 p-MeOC6H4Br 24 Ar =  p-MeOC 6 H 4  2 0 (0, 20) 

5 1 p-MeC6H4l 24 Ar = p-MeC6H4 7 77 (9,6) 

6 1 m-MeC6H4l 48 Ar =  m-MeC 6 H 4  8 83 (0,6) 

7 1 o-MeCgH4l 72 Ar — o- MeCgH4 9 66 (0, 4) 

8 1 c6h5i 24 m
 

I
 to 

o
 

II <
 10 84 (9, 4) 

9 1 1-iodonaphthalene 48 Ar = 1-naphthyl 11 73 (0, 0) 

10 1 2-iodothiophene 24 Ar = 2-thienyl 12 61 (0, 0) 

11 1 3-iodothiophene 24 Ar = 3-thienyl 13 69 (0, 0) 

12 1 p-BrC6H4l 24 Ar =  p-BrC 6 H 4  14 74 (0, 7) 



13 1 m-Et02CC6H4l 48 

14 1 o-Me02CC6H4l 24 

15 1 m-F 3CC6H4I 48 

16 1 p-F 3CC6H4I 24 

17 1 p-02NC6H4l 12 

18° 1 p-02NCeH4l 12 

19d 1 p-02NC6H4l 48 

20e 1 p-02NC6H4l 24 

21 1 m-02NC6H4l 72 

22 1 O-02NC6H4I 24 

23 1 p-02NC6H4Br 24 

24 R = 1 -cyclohexenyl 23 m-Et02CC6H4l 24 

25 R = n-butyl 25 m-Et02CC6H4l 24 

26 R = 3-cyanopropyl 27 CGHGL 24 

27 R ~ CH2OMe 29 C6H5I 24 

Ar = m-Et02CC6H4 

Ar = o-Et02CC6H4 

Ar= m-F gCCgH^ 

Ar = p-F 

Ar = p-02NC6H4 

Ar = p-02NCgH4 

Ar = p-02NC6H4 

Ar = p-02NC6H4 

Ar = m-02NC6H4 

Ar = O-02NC6H4 

Ar = p-02NC6H4 

Ar= m-Et02CC6H4 

Ar = m-Et02CC6H4 

Ar ~ CgHs 

Ar = C6H5 

15 68 (0, 7) 

16 0 (0, 42) 

17 63 (5, 5) 

18 52 (0, 11) 

19 31 (37, 7) 

19 56(11,4)  

19 52 (10, 5) 

19 66 (7, 0) 

21 40 (13, 10) 

22 0 (0, 60) 

19 28 (22, 16) 

24 55 (0, 0) 

26 64 (0, 0) 

28 62 (0, 0) 

30 57 (0, 0) 



28 31 p-MeOC6H4l 15 Ar — p-MeOC6H4 32 75 (0, 0) 

29 31 ATI-F gCCgH^I 24 Ar = /77-F3CC6H4 33 69 (0, 0) 

( 
^ x x i  A^O 'OMe 

30 34 p-MeOC6H4l 24 Ar = p-MeOC6H4 35 79 (0, 0) 

31 34 m-Et02CC6H4l 48 Ar = m-Et02CC6H4 36 73 (8, 4) 

32 1 PhCOCI 48 Ar = CgH$ 10 62 (0, 13) 

33f 1 PhCOCI 48 

I
 CD o
 

II <
 10 42 (0, 20) 

a See the text for the procedure used. b The numbers in parentheses are the isolated yields of the corresponding 3-substituted 4-arylisoquinolines and 3-

monosubstituted isoquinolines in that order. cThe reaction was run under 3.5 atm of CO. dThe reaction was run at 80 °C. eThe reaction was run under 3.5 

atm of CO at 80 °C. 'The reaction was run with no CO present. A 12 % yield of 2-(phenylethynyl)benzaldehyde was also isolated. 
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Steric hindrance due to an ortho substituent thus appears to lower the yield 

significantly. Employing 4-bromoanisole generated none of the desired ketone 

product (entry 4). A pattern similar to that of the iodoanisoles has been observed 

for the isomeric iodotoluenes, although a smaller drop in yield was observed 

(entries 5-7). Phenyl iodide and 1-iodonaphthalene also afforded good yields 

(entries 8 and 9), as did two isomeric iodothiophenes (entries 10 and 11). In most 

of these reactions, only a very small amount of or no 4-aryl 3-substituted 

isoquinoline was isolated. Thus, these reactions exhibit good reaction selectivities. 

The lower yield from 2-iodoanisole versus the meta and para isomers and 

the relatively long reaction time show the negative effect of the steric hindrance of 

the o-OMe on the reaction (entry 3). Since 2-iodotoluene gave a higher yield (entry 

7) than 2-iodoanisole, this suggests that besides the steric effect of the ortho-

substituent, possible chelation of the ortho methoxy substituent to the Pd(0) 

catalyst could also perhaps have a negative effect on the yield. 

Because aryl bromides do not react with the imine substrate under the 

optimal reaction conditions, 4-bromoiodobenzene was employed (entry 12). The 

bromide-containing product was cleanly produced in a 74% yield. 

The reactions of 1 and aryl iodides with electron-withdrawing groups, such 

as C02Et and CF3 groups in the meta or para positions, afforded the corresponding 

4-aroyl-3-phenyiisoquinolines in reasonable yields, although we did generally 

observe a slight decrease in the yields compared to aryl iodides with no electron-

withdrawing groups (entries 13, 15 and 16). An aryl iodide containing a C02Me 

group in the ortho position afforded none of the desired ketone product (entry 14). 
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The reaction of 1 and 4-iodonitrobenzene afforded a low yield of the 4-(4-

nitrobenzoyl)-3-phenylisoquinoline (19) and a slightly higher yield of the 4-(4-

nitrophenyl)-3-phenylisoquinoline (20) (entry 17). Because the p-nitro group has a 

strong electron-withdrawing effect and 4-iodonitrobenzene gave the best result of 

any aryl iodide in the palladium-catalyzed cross-coupling of A/-te/t-butyl-2-

(phenylethynyl)benzaldimine (1) and aryl halides without CO to form 4-(4-

nitrophenyl)-3-phenylisoquinoline (20),9cd this result was not unexpected. The low 

yield of 4-(4-nitrobenzoyl)-3-phenylisoquinoline (19) and the poor selectivity 

between 19 and 20 apparently result from the very similar reactivities of the ArPdl 

and ArCOPdl intermediates towards the o-alkynyl imine, both of which promote 

cyclization to isoquinolines. In an attempt to improve the selectivity of the reaction 

and the yield of the desired ketone, we carried out three further experiments in 

which we increased the CO pressure12 and decreased the reaction temperature 

(entries 18-20). We were pleased to observe that these experiments provided 

higher yields of the desired product 19 and better selectivity between the two 3,4-

disubstituted isoquinolines 19 and 20. Using both a lower temperature and higher 

CO pressure improved the yield of the ketone product 19 to 66 % and afforded an 

improved ratio of 19/20/4 (entry 20). While 3-iodonitrobenzene gave a modest 

yield of ketone under our usual reaction conditions (entry 21), 2-iodonitrobenzene 

did not afford any of the desired ketone-containing isoquinoline (entry 22). 

Contrary to the electron-rich 4-bromoanisole, which failed to produce any of the 

CO-incorporated product 2, 4-bromonitrobenzene gave a 28% yield of the 

corresponding 4-aroylisoquinoline 19, 22% of 20 and 16 % of 4 (entry 23). 



The 2-(1-alkynyl)benzaldimines containing a 1-cyclohexenyl (23), n-butyl 

(25), 3-cyanopropyl (27) and CH2OMe (29) group as R afforded good yields when 

allowed to react with ethyl 3-iodobenzoate or phenyl iodide (entries 24-27). 

The electron-rich imine substrates 31 and 34 displayed good reactivities 

toward 4-iodoanisole, 3-iodobenzotrifluoride and ethyl 3-iodobenzoate, affording 

high yields of the desired 4-aroylisoquinolines (entries 28-31). 

Carbonylative Cross-Coupling of an /V-ferf-Butyl-o-(1 -alkynyl)-

benzaldimine with Benzoyl Chloride. Acyl halides readily undergo oxidative 

addition to Pd(0) to form acylpalladium intermediates, RCOPdX, which 

subsequently undergo a wide range of useful transformations.14 We have, 

therefore, studied the utility of benzoyl chloride in our chemistry. Under 1 atm of 

CO (Table 2, entry 32) and with no CO present (entry 33), neither reaction afforded 

any 3,4-diphenylisoquinoline (3) at all, indicating that the initially formed 

acylpalladium intermediate PhCOPdX does not undergo decarbonylation to the 

corresponding arylpalladium species very easily.15 However, whether there is 

external CO or not does make a difference in the yields of the product 10 and the 

reaction rates. The reaction was complete after 48 h under 1 atm of CO, and was 

not complete after the same amount of time without CO. Better results were 

obtained using 1 atm of CO, in which case a 62% yield of ketone 10 was obtained. 

With no CO present, only a 42% yield was obtained. 

Attempts to react the 2-(1 -alkynyl)benzaldimine 1 with diallyl carbonate, 3-

bromocyclohexene, benzyl chloride, ethyl c/s-3-iodoacrylate, 1-iodo-1-decyne and 

p-tosyl chloride under 1 atm of CO failed to afford any recognizable ketone-

containing products. 
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The electron-deficient A/-ter£-butyl-2-phenylethynyl-3-pyridinecarboxaldimine 

(37), non-aromatic A/-fe/t-butyl-2-phenylethynyl-1-pentenecarboxaldimine (38) and 

A/-te/t-butyl-2-phenylethynyl-1-hexene-carboxaldimine (39) did not react with 4-

iodoanisole under our "optimal" reaction conditions to afford the desired ketone. 

Mechanism. The mechanism shown in Scheme 4 is proposed for this 

process. It is similar to mechanisms proposed in previously reported Pd-catalyzed 

syntheses of furans,16 benzofurans1 and indoles.5 It consists of the following key 

steps: (1) oxidative addition of the aryl halide to the Pd(0) catalyst, followed by CO 

insertion,17 (2) the resulting acylpalladium intermediate A coordinates to the alkyne 

triple bond to form complex B, which activates the triple bond towards nucleophilic 

attack,5 (3) intramolecular nucleophilic attack of the nitrogen atom of the imine on 

the activated carbon-carbon triple bond to afford intermediate C,5,16,17 (4) reductive 

elimination to form a carbon-carbon bond between the carbonyl group and the 

isoquinoline ring in D and simultaneous regeneration of the Pd(0) catalyst,5,16,19 and 

(5) cleavage of the tert-butyl group from the nitrogen to release the strain between 

the te/t-butyl group and the 3-phenyl group with simultaneous generation of the 3-

substituted 4-aroylisoquinoline.8"11 Two competing processes are (1) cyclization of 

the starting material by a thermal or Pd(ll)-catalyzed process to afford the 3-

monosubstituted product,8 and (2) cyclization of the imine starting material 

37 38 39 
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promoted by an arylpalladium intermediate to afford a 3-substituted 4-

arylisoquinoline.9c,d 

Scheme 4 

PdJ R 

ArOC 

ArCOPdX 

f-Bu 

+ H+ 

3-monosubstituted isoquinoline 

- L 
+.f- Bu 

ArCOPdL 

ArX + CO + L2Pd(0) 

N+>BU 

COAr 

+ H+ 

COAr 

3-substituted 4-aroylisoquinoline 

The yields of ketones obtained by this process are less dependent on the 

nature of the substituents present in the aryl iodide than the yields of 4-

arylisoquinolines obtained from arylation of these same alkynyl imines.9c,d This is 

easily understood when one considers that the key step in the present synthesis 

apparently involves attack of an electron-deficient acylpalladium species on the 

carbon-carbon triple bond. The nature of the substituents present in the 
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aroylpalladium intermediate is not going to change their electronics as profoundly 

as they would the electronics of the corresponding arylpalladium species. 

The presence of steric hindrance in the aryl iodide is also less likely to affect 

the yield in the carbonylative cyclization, because of the presence of the carbonyl 

group in the aroylpalladium intermediates. However, possible chelation of the o-

substituent could prevent the reaction from proceeding as desired. 

Conclusions 

In summary, we have developed an efficient synthetic approach for the 

carbonylative cyclization of /V-te/f-butyl-2-(1 -alkynyl)benzaldimines and aryl halides 

to the corresponding 3-substituted 4-aroylisoquinolines. The reaction utilizes readily 

available starting materials, employs mild reaction conditions and tolerates a 

variety of functional groups. It also works with a wide variety of substituents on the 

remote end of the alkyne triple bond. 

Experimental Section 

General. All 1H and 13C NMR spectra were recorded at 300 and 400, and 

75.5 and 100.7 MHz, respectively. Thin-layer chromatography was performed 

using commercially prepared 60-mesh silica gel plates (Whatman K6F), and 

visualization was effected with short-wavelength UV light (254 nm) and a basic 

KMn04 solution [3 g of KMn04 + 20 g of K2C03 + 5 ml, of NaOH (5 %) + 300 ml. of 

H20], All melting points are uncorrected. Lower resolution mass spectra were 

recorded on a Finningan TSQ700 triple quadupole mass spectrometer (Finnigan 
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MAT, San Jose, CA). High resolution mass spectra were recorded on a Kratos 

MS50TC double focusing magnetic sector mass spectrometer using El at 70 ev. 

For the procedure for the synthesis of the /V-te/?-butyl-2-(1-alkynyl)imines 

(compound 1, 23, 25, 31, 34, 37, 38 and 39), see the Experimental Section in 

Chapter 1. The following new 2-(1 -alkynyl)benzaldimines were prepared using the 

same procedure. 

/V-te/t-Butyl-2-(5-cyano-1-pentynyl)benzaldimine (27). A yellow oil: 1H 

NMR (CDCI3) Ô 1.32 (s, 9H), 2.00 (quintet, J = 6.8 Hz, 2H), 2.59 (t, J = 6.8 Hz, 2H), 

2.68 (t, J = 6.8 Hz, 2H), 7.31-7.34 (m, 2H), 7.40-7.43 (m, 1H), 8.01-8.03 (m, 1H), 

8.75 (s, 1H); 13C NMR (CDCI3) 5 16.49, 18.88, 24.90, 29.93, 57.91, 79.97, 92.62, 

119.12, 123.96, 126.16, 128.58, 129.88, 132.65, 137.97, 154.08; IR (CHCI3) 3031, 

2963, 2312, 2200, 1699 cm"1; HRMS 252.1262 (calcd C17H2oN2 252.1259). 

/V-fe/t-Butyl-2-(3-methoxy-1-propynyl)benzaldimine (29). A yellow oil: 1H 

NMR (CDCI3) 8 1.31 (s, 9H), 3.48 (s, 3H), 4.39 (s, 2H), 7.31-7.37 (m, 2H), 7.46-

7.48 (m, 1H), 8.03-8.05 (m, 1H), 8.79 (s, 1H); 13C NMR (CDCI3) 5 29.93, 57.85, 

57.96, 60.62, 83.97, 90.59, 123.42, 126.15, 128.98, 129.86, 132.73, 138.16, 

154.12; IR (CHCI3) 3027, 2983, 2200, 1695 cm"1; HRMS 229.1145 (calcd 

C15H19NO, 229.1142). 

General Procedure for the Synthesis of 3-Substituted 4-

Aroylisoquinolines. DMF (5 ml_), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), (n-Bu)3N 

(0.2317 g, 1.25 mmol), the /V-te/t-butyl-2-(1-alkynyl)benzaldimine (0.25 mmol) and 

the aryl halide (1.25 mmol) were stirred at room temperature for 5 min. The 

mixture was flushed with CO and fitted with a CO filled balloon (cautious!). The 

reaction mixture was heated to 100 °C with vigorous stirring for the specified time 
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and then cooled to room temperature, diluted with diethyl ether (25 mL) and 

washed with brine (20 mL). The aqueous layer was reextracted with diethyl ether 

(15 mL). The organic layers were combined, dried (MgS04), filtered and the 

solvent removed under reduced pressure. The residue was purified by column 

chromatography on a silica gel column. 

4-(4-Methoxybenzoyl)-3-phenylisoquinoline (2). The reaction mixture 

was chromatographed using 2:1 hexanes/ethyl acetate to afford 63.0 mg (74%) of 

the indicated compound as a yellow solid: mp 124-125 °C; 1H NMR (CDCI3) 5 3.78 

(s, 3H), 6.75 (d, J= 9.2 Hz, 2H), 7.24-7.31 (m, 4H), 7.65-7.67 (m, 3H), 7.68-7.69 (m, 

2H), 7.73-7.75 (m, 1H), 8.08-8.10 (m, 1H), 9.45 (d, J = 0.4 Hz, 1H); 13C NMR 

(CDCIg) 5 55.57, 113.97, 124.83, 127.12, 127.70, 128.05, 128.43, 128.55, 129.13, 

129.63, 130.76, 131.54, 132.22, 134.35, 139.86, 149.68, 153.35, 164.10, 196.54; 

IR (CHCI3) 3019, 1655, 1597 cm-1; HRMS m/z 339.1264 (calcd for C23H17NO2, 

339.1259). 

4-(3-Methoxybenzoyl)-3-phenylisoquinoline (5). The reaction mixture 

was chromatographed using 2:1 hexanes/ethyl acetate to afford 63.8 mg (76%) of 

the indicated compound as a yellow solid: mp 116-117 °C; 1H NMR (CDCI3) 5 3.76 

(s, 3H), 6.96-7.00 (m, 1H), 7.12-7.15 (m, 2H), 7.23-7.29 (m, 2H), 7.31-7.33 (m, 2H), 

7.61-7.69 (m, 4H), 7.71-7.76 (m, 1H), 8.08-8.11 (m, 1H), 9.46 (s, 1H); 13C NMR 

(CDCI3) S 55.60, 113.27, 120.62, 123.10, 124.75, 127.13, 127.82, 128.18, 128.53, 

128.68, 128.96, 129.71, 129.74, 131.71, 134.38, 138.97, 139.85, 150.11, 153.63, 

159.86, 198.04; IR (CHCI3) 3019, 1663 cm"1; HRMS m/z 339.1264 (calcd for 

C23H17NO2, 339.1259). 



4-(2-Methoxybenzoyl)-3-phenylisoquinoline (6). The reaction mixture 

was chromatographed using 2.5:1 hexanes/ethyl acetate to afford 39.1 mg (50%) 

of the indicated compound as a yellow solid: mp 108-109 °C; 1H NMR (CDCI3) 5 

3.43 (s, 3H), 6.68 (d, J = 8.0 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 7.20-7.26 (m, 3H), 

7.30 (td, J = 0.8, 8.0 Hz, 1H), 7.50 (dd, J = 0.8, 8.0 Hz, 1H), 7.53-7.55 (m, 2H), 7.64 

(t, J = 7.2 Hz, 1H), 7.70 (td, J = 0.8, 8.4 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 8.07 (d, J 

= 8.4 Hz, 1H), 9.39 (s, 1H); 13C NMR (CDCI3) 8 55.74, 111.90, 120.44, 124.75, 

127.25, 127.46, 128.04, 128.18, 128.31, 129.79, 131.48, 131.77, 132.02, 134.00, 

134.70, 140.06, 149.80, 152.89, 159.21, 196.87 (one sp2 carbon is missing due to 

overlap); IR (CHCI3) 3019, 1665 cm"1; HRMS m/z 339.1264 (calcd for C23H17NO2, 

339.1259). 

4-(4-Methylbenzoyl)-3-phenylisoquinoline (7). The reaction mixture was 

chromatographed using 4:1 hexanes/ethyl acetate to yield a yellow solid: mp 120-

121 °C (hexanes); 1H NMR (CDCI3) 8 2.30 (s, 3H), 7.07 (d, J = 8.0 Hz, 2H), 7.21-

7.29 (m, 3H), 7.58 (d, J = 8.0 Hz, 2H), 7.63-7.68 (m, 4H), 7.72, (d, J = 7.2 Hz, 1H), 

8.07-8.09 (m, 1H), 9.45 (s, 1H); 13C NMR (CDCI3) S 21.86, 124.76, 127.09, 127.72, 

128.09, 128.43, 128.55, 129.08, 129.45, 129.67, 129.92, 131.57, 134.33, 135.17, 

139.82, 144.87, 149.82, 153.43, 197.76; IR (CHCI3) 3018, 1658 cm"1; HRMS 

323.1315 (calcd for C23H17NO 323.1310). 

4-(3-Methylbenzoyl)-3-phenylisoquinoline (8). The reaction mixture was 

chromatographed using 4:1 hexanes/ethyl acetate to yield a yellow solid: mp 124-

125 °C (hexanes); 1H NMR (CDCI3) 8 2.26 (s, 3H), 7.14 (t, J = 7.6 Hz, 1H), 7.20-

7.30 (m, 4H), 7.42 (d, J = 8.0 Hz, 1H), 7.54 (s, 1H), 7.61-7.63 (m, 2H), 7.65-7.70 (m, 



2H), 7.73-7.75 (m, 1H), 8.09-8.11 (m, 1H), 9.47 (s, 1H); 13C NMR (CDCI3) § 21.38, 

124.80, 127.16, 127.33, 127.81, 128.19, 128.48, 128.58, 128.62, 129.11, 129.72, 

130.08, 131.71, 134.40, 134.71, 137.58, 138.52, 139.83, 150.05, 153.56, 198.38; 

IR (CHCI3) 3019, 1659 cm'1; HRMS 323.1315 (calcd for C23Hi7NO 323.1310). 

4-(2-Methylbenzoyl)-3-phenylisoquinoline (9). The reaction mixture was 

chromatographed using 4:1 hexanes/ethyl acetate to yield a yellow solid: mp 99-

100 °C (hexanes); 1H NMR (CDCI3) Ô 2.58 (s, 3H), 6.90 (t, J = 5.7 Hz, 1H), 7.06 (d, 

J= 5.7 Hz, 1H), 7.10 (d, J= 5.7 Hz, 1H), 7.18-7.28 (m, 4H), 7.51-7.53 (m, 2H), 7.67 

(td, J = 6.0, 0.9 Hz, 1H), 7.73 (td, J = 6.0, 0.9 Hz, 1H), 7.92 (d, J = 6.0 Hz, 1H), 8.10 

(d, J = 8.0 Hz, 1H), 9.44 (s, 1H); 13C NMR (CDCI3) 5 21.84, 124.77, 125.58, 127.26, 

127.81, 128.19, 128.31, 128.53, 129.55, 130.59, 131.84, 131.87, 132.08, 132.52, 

134.51, 137.47, 140.15, 140.37, 150.67, 153.54, 199.84; IR (CHCI3) 3019, 1659 

cm"1; HRMS 323.1315 (calcd for C23H17NO 323.1310). 

4-Benzoyl-3-phenylisoquinoline (10). The reaction mixture derived from 

phenyl iodide was chromatographed using 3:1 hexanes/ethyl acetate to afford 65.1 

mg (84%) of the indicated compound as a yellow solid: mp 124-125 °C; 1H NMR 

(CDCI3) S 7.20-7.29 (m, 5H), 7.42 (t, J = 7.2 Hz, 1H), 7.62 (dd, J = 1.2, 8.0 Hz, 2H), 

7.64-7.71 (m, 4H), 7.74 (d, J = 8.0 Hz, 1H), 8.10 (dd, J = 2.0, 8.4 Hz, 1H), 9.47 (s, 

1H); 13C NMR (CDCI3) 5 124.73, 127.15, 127.83, 128.19, 128.49, 128.65, 128.68, 

128.88, 129.75, 129.77, 131.74, 133.82, 134.35, 137.59, 139.71, 150.16, 153.64, 

198.26; IR (CHCI3) 3019, 1669 cm"1; HRMS m/z 309.1159 (calcd for C22H15NO, 

309.1154). 
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4-(1-Naphthoyl)-3-phenylisoquinoline (11). The reaction mixture was 

chromatographed using 3:1 hexanes/ethyl acetate to yield a yellow solid: mp 160-

161 °C (hexanes); 1H NMR (CDCI3) 8 7.01 (t, J = 7.6 Hz, 1H), 7.08-7.16 (m, 3H), 

7.35 (d, J = 7.2 Hz, 1H), 7.53-7.60 (m, 3H), 7.67-7.74 (m, 3H), 7.80 (d, J = 8.4 Hz, 

1H), 7.85 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H), 9.12 

(d, J = 8.4 Hz, 1H), 9.48 (s, 1H); 13C NMR (CDCI3) 8 124.21, 124.82, 126.22, 

126.74, 127.24, 127.83, 128.16, 128.27, 128.31, 128.54, 128.75, 129.53, 130.80, 

131.10, 131.96, 132.42, 133.90, 134.50, 134.80, 135.00, 139.98, 150.89, 153.66, 

199.79; IR (CHCI3) 3019, 1657, 1216 cm"1; HRMS 359.1315 (calcd C26Hi7NO, 

359.1310). 

3-Phenyl-4-(2-thienylcarbonyl)isoquinoline (12). The reaction mixture 

was chromatographed using 4:1 hexanes/ethyl acetate to yield a yellow solid: mp 

117-118 °C (hexanes); 1H NMR (CDCI3) 8 6.84 (dd, J = 5.2, 3.6 Hz, 1H), 7.11 (dd, 

J = 3.6, 1.2 Hz, 1H), 7.24-7.28 (m, 1H), 7.30-7.34 (m, 2H), 7.55 (dd, J = 5.2, 1.2 Hz, 

1H), 7.65 (td, J = 8.0, 1.2 Hz, 1H), 7.71-7.73 (m, 3H), 7.87 (d, J= 8.0 Hz, 1H), 8.08 

(d, J = 8.0 Hz, 1H), 9.45 (s, 1H); 13C NMR (CDCI3) 8 124.62, 129.09, 127.86, 

128.10, 128.30, 128.57, 128.71, 128.74, 129.67, 131.80, 134.08, 135.42, 135.61, 

139.83, 145.09, 149.89, 153.78, 190.03; IR (CHCI3) 3019, 1640, 1216 cm"1; 

HRMS 315.0723 (calcd C20H13NOS 315.0718). 

3-Phenyl-4-(3-thienylcarbonyl)isoquinoline (13). The reaction mixture 

was chromatographed using 4:1 hexanes/ethyl acetate to yield a yellow solid: mp 

153-154 °C (hexanes); 1H NMR (CDCI3) 8 7.16 (dd, J = 5.4, 3.0 Hz, 1H), 7.24-7.35 

(m, 3H), 7.41 (dd, J = 5.1, 1.2 Hz, 1H), 7.57 (dd, J = 3.0, 1.2 Hz, 1H), 7.64-7.70 (m, 
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4H), 7.73 (dd, J = 6.9, 1.5 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 8.08-8.11 (m, 1H), 9.45 

(s, 1H); 13C NMR (CDCI3) 5 124.71, 126.69, 127.18, 127.42, 127.87, 128.16, 

128.60, 128.74, 129.56, 129.71, 131.79, 134.08, 135.62, 139.88, 143.19, 149.84, 

153.67, 191.63; IR (CHCI3) 3019, 1641, 1216 cm'1; HRMS 315.0723 (calcd 

C20H13NOS 315.0718). 

4-(4-Bromobenzoyl)-3-phenylisoquinoline (14). The reaction mixture 

was chromatographed using 3:1 hexanes/ethyl acetate to yield a yellow solid: mp 

139-140 °C (hexanes); 1H NMR (CDCI3) 5 7.25-7.32 (m, 3H), 7.41 (d, J = 8.8 Hz, 

2H), 7.52 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 6.4 Hz, 2H), 7.66-7.53 (m, 3H), 8.12 (d, J 

= 7.2 Hz, 1H), 9.48 (s, 1H); 13C NMR (CDCI3) Ô 124.52, 127.18, 127.97, 128.28, 

128.30, 128.63, 128.90, 129.20, 129.75, 131.14, 131.93, 132.07, 134.24, 136.36, 

139.64, 150.24, 153.89, 197.22; IR (CHCI3) 3019, 1658, 1216 cm-1; HRMS 

387.0266 (calcd for C22H14BrNO 387.0259). 

4-(3-Ethoxycarbonylbenzoyl)-3-phenylisoquinoline (15). The reaction 

mixture was chromatographed using 2:1 hexanes/ethyl acetate to afford 64.3 mg 

(68%) of the indicated compound as a yellow solid: mp 138-139 °C; 1H NMR 

(CDCI3) S 1.35 (t, J =7.2 Hz, 3H), 4.33 (q, J = 7.2 Hz, 2H), 7.20-7.23 (m, 2H), 7.25-

7.28 (m, 1H, DCCI3 also present), 7.33 (t, J = 7.8 Hz, 1H), 7.58-7.62 (m, 2H), 7.67-

7.74 (m, 2H), 7.77-7.82 (m, 2H), 8.08 (td, J = 1.5, 7.8 Hz, 1H), 8.11-8.14 (m, 1H), 

8.31 (t, J = 1.5 Hz, 1H), 9.49 (s, 1H); 13C NMR (CDCI3) 5 14.41, 61.46, 124.45, 

127.20, 127.90, 128.18, 128.29, 128.52, 128.77, 129.75, 130.61, 131.08, 131.88, 

133.65, 134.21, 134.35, 137.63, 139.72, 150.43, 153.96, 165.61, 197.29 (one sp2 
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carbon missing due to overlap); IR (CHCI3) 3019, 1719, 1671, 1216 cm"1; HRMS 

m/z 381.1370 (calcd for C25H19NO3, 381.1365). 

3-Phenyl-4-(3-trifluoromethylbenzoyl)isoquinoline (17). The reaction 

mixture was chromatographed using 3:1 hexanes/ethyl acetate to yield a yellow 

solid: mp 130-131 °C; 1H NMR (CDCI3) 5 7.20-7.28 (m, 3H), 7.37 (t, J = 8.0 Hz, 

1H), 7.55-7.58 (m, 2H), 7.64 (d, J = 7.6 Hz, 1H), 7.69-7.78 (m, 3H), 7.83 (d, J = 8.0 

Hz, 1H), 7.90 (s, 1H), 8.15 (dd, J = 3.2, 1.2 Hz, 1H), 9.51 (s, 1H); 13C NMR (CDCI3) 

5 127.23 (q, J = 273.1, 1C, including 121.804, 125.421, 129.034), 124.39, 126.33 

(q, J = 3.9 Hz, 1C, including 126.26, 126.31, 126.36, 126.41), 127.26, 127.79, 

128.07, 128.41, 128.62, 128.96, 129.25, 129.82, 129.90 (q, J = 3.6 Hz, 1C, 

including 129.881, 129.928, 129.975), 131.16 (q, J = 33.1 Hz, 1C, including 130.50, 

130.94, 131.38, 131.81), 132.12, 132.71-132.73 (m, 1C, including 132.71, 132.73), 

134.22, 138.04, 139.64, 150.78, 154.25, 196.80; IR (CHCI3) 3019, 1671, 1323, 

1216 cm"1; HRMS m/z 377.1031 (calcd for C23H14F3NO, 377.1028). 

3-Phenyl-4-(4-trifluoromethylbenzoyl)isoquinoline (18). The reaction 

mixture was chromatographed using 3:1 hexanes/ethyl acetate to afford 48.9 mg 

(52%) of the indicated compound as a yellow solid: mp 132-133 °C; 1H NMR 

(CDCI3) 8 7.21-7.29 (m, 3H), 7.51 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H), 

7.68-7.77 (m, 5H), 8.13 (d, J = 8.0 Hz, 1H), 9.49 (s, 1H); 13C NMR (CDCI3) Ô 

123,60 (q, J = 273.08 Hz, 1C)), 124.38, 125.70 (q, J = 32.92 Hz, 1C), 127.19, 

128.07, 128.39, 128.68, 129.01, 129.82, 129.90, 130.43, 132.09, 134.20, 134.95 (q, 

J = 3.78 Hz, 1C), 139.58, 140.25, 150.58, 154.14, 197.27; IR (CHCI3) 3019, 1671, 

1323, 1216 cm"1; HRMS m/z 377.1031 (calcd for C23H14 F3NO, 377.1028). 
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4-(4-Nitrobenzoyl)-3-phenylisoquinoline (19). The reaction mixture was 

chromatographed using 2:1 hexanes/ethyl acetate to afford 27.6 mg (31%) of the 

indicated compound as a yellow solid: mp 115-116 °C; 1H NMR (CDCI3) 8 7.19-

7.28 (m, 3H), 7.56 (dd, J = 1.2, 8.0 Hz, 2H), 7.68-7.77 (m, 4H), 7.81 (d, J = 8.4 Hz, 

1H), 8.05 (d, J = 8.8 Hz, 2H), 8.14 (d, J = 7.6 Hz, 1H), 9.50 (s, 1H); 13C NMR 

(CDCI3) 8 123.73, 124.14, 127.16, 127.51, 128.16, 128.44, 128.71, 129.16, 129.87, 

130.38, 132.26, 134.05, 139.46, 142.06, 150.28, 150.82, 154.43, 196.59; IR 

(CHCI3) 3022, 1671, 1526 cm"1; HRMS m/z 354.1008 (calcd for C^H^N^, 

354.1004). The yield can be improved to 66 % by lowering the temperature to 80 

°C and raising the CO pressure to 3.5 atm (see entry 11 in Table 2). 

4-(3-Nitrobenzoyl)-3-phenylisoquinoline (21). The reaction mixture was 

chromatographed using 2:1 hexanes/ethyl acetate to yield a yellow solid: mp 128-

1 2 9  ° C ;  1 H  N M R  ( C D C I 3 )  8  7 . 1 8 - 7 . 2 7  ( m ,  3 H ) ,  7 . 4 3  ( t ,  J  =  8 . 0  H z ,  1 H ) ,  7 . 5 7  ( d ,  J  =  

7.6 Hz, 2H), 7.70-7.79 (m, 2H), 7.84 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 7.6 Hz, 1H), 

8.16 (d, J = 8.0 Hz, 1H), 8.22 (dt, J = 8.0, 1.2 Hz, 1H), 8.40 (s, 1H), 9.54 (s, 1H); 

13C NMR (CDCI3) 8 124.19, 124.26, 127.30, 127.31, 127.69, 128.28, 128.55, 

128.73, 129.15, 129.80, 129.87, 132.34, 134.14, 134.87, 138.83, 139.51, 148.27, 

150.89, 154.53, 195.86; IR (CHCI3) 3021, 1667, 1619, 1534 cm"1; HRMS m/z 

354.1008 (calcd for C22H14N2O3, 354.1004). 

3-(1 -Cyclohexenyl)-4-(3-ethoxycarbonylbenzoyl)isoquinoline (24). The 

reaction mixture was chromatographed using 3:1 hexanes/ethyl acetate to afford 

53.5 mg (55%) of the indicated compound as a yellow solid: mp 108-109 °C; 1H 

NMR (CDCI3) 8 1.16-1.25 (br m, 2H), 1.35-1.40 (m, 5H), 1.87 (s, 2H), 2.35 (s, 2H), 
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4.37 (q, J  =  7.2 Hz, 2H), 5.80-5.82 (m, 1 H), 7.50 (t, J  = 7.8 Hz, 1 H), 7.64 (t, J  =  7.2 

Hz, 1H), 7.71 (td, J= 1.5, 7.2 Hz, 1H), 7.90 (tt, J= 1.5, 7.5 Hz, 2H), 8.06 (d, J = 7.8 

Hz, 1 H), 8.22 (dt, J = 1.5, 7.8 Hz, 1H), 8.30 (t, J= 1.8 Hz, 1H), 9.34 (s, 1H); 13C 

NMR (CDCIs) Ô 14.48, 21.59, 22.45, 25.95, 27.76, 61.57, 124.56, 127.06, 127.31, 

127.54, 128.32, 128.82, 129.75, 131.12, 131.86, 132.76, 133.92, 134.44, 134.69, 

138.72, 139.49, 153.76, 154.28, 165.89, 197.18; IR (CHCI3) 3019, 1662 cm"1; 

HRMS m/z 385.1683 (calcd for C25H23NO3 385.1678). 

3-Butyl-4-(3-ethoxycarbonylbenzoyl)isoquinoline (26). The reaction 

mixture was chromatographed using 2:1 hexanes/ethyl acetate to afford 57.8 mg 

( 6 4 % )  o f  t h e  i n d i c a t e d  c o m p o u n d  a s  a  y e l l o w  l i q u i d :  1 H  N M R  ( C D C I 3 )  5  0 . 8 1  ( t ,  J  =  

7 . 2  H z ,  3 H ) ,  1 . 2 7  ( s e x t e t ,  J  =  7 . 2  H z ,  2 H ) ,  1 . 3 8  ( t ,  J  =  7 . 2  H z ,  3 H ) ,  1 . 7 2  ( q u i n t e t ,  J  =  

7.8 Hz, 2H), 2.72 (t, J = 7.8 Hz, 2H), 4.38 (q, J = 7.2 Hz, 2H), 7.44-7.48 (m, 1H), 

7.51-7.62 (m, 3H), 7.95 (d, J = 7.8 Hz, 1H), 8.01-8.06 (m, 1H), 8.29 (dt, J= 1.2, 7.8 

Hz, 1H), 8.54 (s, 1H), 9.34 (s, 1H); 13C NMR (CDCI3) 5 14.00, 14.46, 22.83, 32.17, 

36.25, 61.66, 123.99, 126.67, 127.18, 128.17, 128.23, 129.32, 130.59, 131.46, 

131.77, 133.88, 134.03, 135.01, 137.96, 152.27, 153.62, 165.71, 197.76; IR 

(CHCI3) 3019, 1664 cm"1; HRMS m/z 361.1682 (calcd for C23H23NO3 361.1678). 

4-Benzoyl-3-(3-cyanopropyl)isoquinoline (28). The reaction mixture was 

chromatographed using 1:1 hexanes/ethyl acetate to yield a yellow oil: 1H NMR 

(CDCI3) S 2.15 (quintet, J = 7.2 Hz, 2H), 2.36 (t, J = 7.2 Hz, 2H), 2.86 (t, J = 7.2 Hz, 

2H), 7.45-7.50 (m, 3H), 7.59-7.66 (m, 3H), 7.82 (d, J = 7.2 Hz, 2H), 8.01-8.06 (m, 

1H), 9.32 (s, 1H); 13C NMR (CDCI3) S 16.88, 25.39, 34.69, 119.62, 124.34, 126.88, 

127.58, 128.14, 129.28, 129.59, 129.95, 131.57, 133.87, 134.67, 137.38, 149.34, 
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153.49, 198.14; IR (CHCI3) 3064, 2234, 1667 cm'1; HRMS m/z 300.1266 (calcd 

for C2OH16N20, 300.1263). 

4-Benzoyl-3-(methoxymethyl)isoquinoline (30). The reaction mixture was 

chromatographed using 1:1 hexanes/ethyl acetate to yield a white solid: mp 99-100 

°C; 1H NMR (CDCI3) S 3.18, (s, 3H), 4.66 (s, 2H), 7.45 (t, J = 8.0 Hz, 2H), 7.58-

7.64 (m, 4H), 7.82 (d, J = 7.2 Hz, 2H), 8.04-8.06 (m, 1H), 9.34 (s, 1H); 13C NMR 

(CDCI3) S 58.80, 124.58, 127.70, 127.88, 128.19, 128.98, 129.32, 129.56, 131.61, 

133.93, 134.14, 137.99, 148.30, 153.24, 197.01; IR (CHCI3) 3064, 1659 cm"1; 

HRMS m/z 277.1106 (calcd for C18H15N02, 277.1103). 

8-(4-Methoxybenzoyl)-7-phenyl-[1,3]dioxolo[4,5-g]isoquinoline (32). 

The reaction mixture was chromatographed using 1:1 hexanes/ethyl acetate to 

yield a yellow solid: mp 160-161 °C; 1H NMR (CDCI3) § 3.75 (s, 3H), 6.06 (s, 2H), 

6.73 (d, J = 8.8 Hz, 2H), 7.00 (s, 1H), 7.19-7.27 (m, 3H), 7.59-7.64 (m, 4H), 9.15 (s, 

1H); 13C NMR (CDCI3) 5 55.57, 101.23, 102.08, 103.47, 113.94, 124.73, 128.34, 

128.91, 129.50, 130.68, 132.20, 132.66, 139.99, 148.72, 149.14, 150.94, 152.05, 

164.07, 196.75; IR (CHCI3) 3019, 1654 cm"1; HRMS m/z 383.1164 (calcd for 

C24H17N03, 383.1158). 

7-Phenyl-8-(3-trifluoromethylbenzoyl)-[1,3]dioxolo[4,5-g]iso-quinoline 

(33). The reaction mixture was chromatographed using 1:1 hexanes/ethyl acetate 

to yield a yellow solid: mp 139-140 °C; 1H NMR (CDCI3) 5 7.10 (s, 1H), 7.17-7.26 

( m ,  3 H ) ,  7 . 3 2 - 7 . 3 7  ( m ,  2 H ) ,  7 . 4 9 - 7 . 5 2  ( m ,  2 H ) ,  7 . 6 2  ( d ,  J  =  7 . 6  H z ,  1 H ) ,  7 . 7 3  ( d ,  J  =  

8.0 Hz, 1H), 7.84 (s, 1H), 9.21 (s, 1H); 13C NMR (CDCI3) 5 100.89, 102.30, 103.77, 

124.93, 127.23 (q, J = 272.9 Hz, 1C, including 121.81, 125.43), 126.35 (q, J = 3.85 



Hz, 1C, including 126.727, 126.32, 126.37, 126.42), 127.54, 128.54, 128.76, 

129.19, 129.71, 129.82 (q, J = 3.62 Hz, 1C, including 129.75, 129.79, 129.84, 

129.89), 130.65 (q, J = 33.0 Hz, 1C, including 130.87, 131.30), 132.65-132.70 (m, 

1C, including 132.65, 132.70), 138.12, 139.80, 145.29, 149.00, 150.25, 151.78, 

152.62, 197.08; IR (CHCI3) 3019, 1654 cm"1; HRMS m/z 383.1164 (calcd for 

C24H14 F3NO3, 383.1158). 

4-(4-Methoxybenzoyl)-4-(4-methoxyphenyl)isoquinoline (35). The 

reaction mixture was chromatographed using 1:1 hexanes/ethyl acetate to yield a 

yellow solid: mp 141-142 °C; 1H NMR (CDCI3) Ô 3.77 (s, 3H), 3.80 (s, 3H), 6.77 (d, 

J = 8.4 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 7.61-7.73 (m, 7H), 8.08 (d, J = 7.6 Hz, 1H), 

9.44 (s, 1H); 13C NMR (CDCI3) 5 55.37, 55.61, 113.96, 114.02, 124.70, 126.92, 

127.46, 128.11, 128.45, 130.75, 131.02, 131.52, 132.26, 132.48, 134.48, 149.37, 

153.29, 159.94, 164.13, 196.87; IR (CHCI3) 3019, 1654, 1216 cm"1; HRMS m/z 

369.1370 (calcd for C24Hi9N03, 369.1365). 

4-(4-Ethoxycarbonylbenzoyl)-4-(4-methoxyphenyl)isoquinoline (36). 

The reaction mixture was chromatographed using 1:1 hexanes/ethyl acetate to 

yield a yellow solid: mp 152-153 °C; 1H NMR (CDCI3) 5 1.38 (t, J = 7.2 Hz, 3H), 

3.72 (s, 3H), 4.33 (q, J = 7.2 Hz, 2H), 6.78 (dt, J = 8.8, 2.4 Hz, 2H), 7.33 (t, J = 8.0 

H z ,  1 H ) ,  7 . 6 6  ( d t ,  J  =  8 . 8 ,  2 . 4  H z ,  2 H ) ,  7 . 6 4  ( t d ,  J  =  8 . 0 ,  1 . 2  H z ,  1 H ) ,  7 . 6 9  ( t d ,  J  =  

8 . 0 ,  1 . 2  H z ,  1 H ) ,  7 . 7 6  ( d ,  J  =  8 . 4  H z ,  1 H ) ,  7 . 7 9  ( d t ,  J  =  8 . 0 ,  1 . 2  H z ,  1 H ) ,  8 . 0 9  ( d d ,  J  

= 8.0, 1.2 Hz, 2H), 8.34 (t, J = 1.2 Hz, 1H), 9.46 (s, 1H); 13C NMR (CDCI3) 5 14.43, 

55.34, 61.47, 114.02, 124.30, 126.96, 127.46, 127.63, 128.30, 128.82, 130.61, 

131.11, 131.15, 131.82, 132.34, 133.70, 134.31, 134.37, 137.64, 150.11, 153.88, 



160.07, 165.68, 197.54; IR (CHCI3) 3064, 1720, 1667 cm'1; HRMS m/z 411.1478 

(calcd for C26H2iN04, 411.1471). 
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Chapter 3. Palladium-Catalyzed Oxidative Carbonylation of 

2-(1-Alkynyl)benzaldimines 

Guangxiu Dai and Richard C. Larock* 

Department of Chemistry, Iowa State University, Ames, Iowa 50011 

Abstract 

The Pd(ll)-catalyzed oxidative carbonylation of 2-(1-alkynyl)benzaldimines 

has been studied and the optimal reaction conditions have been investigated for 

formation of the corresponding isoquinoline-4-carboxylates. Unfortunately, this 

methodology study has not provided an efficient route to synthesize methyl 

3-substituted isoquinoline-4-carboxylates in synthetically useful yields. 

The carbonylation of unsaturated compounds containing a suitably placed 

nucleophilic group is an important method for the synthesis of functionalized 

heterocyclic compounds.1 When carbon monoxide inserts between the 

nucleophile and the unsaturated moiety of the substrate, an endocyclic carbonyl 

group is obtained in the final cyclocarbonylation products (eq 1).2 

Introduction 

+ CO 
catalyst 

+ (1) 
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In other cases, however, carbonylation is accompanied by ring closure 

without CO incorporation into the cycle, so that an external carbonyl group is 

obtained in the final products, as depicted, for example, in eq 2. This kind of 

reactivity has been observed in the oxidative cyclization-alkoxycarbonylation of 

4-alken-1-ols, 5-alken-1-ols, 4-alken-1-amines, 5-alken-1-amines, unsaturated 

ureas, and carbamates.3 The ring closure of functionalized alkynes, followed by 

carbonylation, has also been reported using 2-(1-alkynyl)anilines,4 

2-(1-alkynyl)phenols and their derivatives (eq 3),4,5 prop-3-ynylamides6, 

prop-3-ynylureas7 and (Z)-2-alken-4-yn-1 -ols8 to afford heterocycles. 

NuH 
+ CO + Nu'H 

catalyst 

- [2H] 

/—CONu' 

Ou (2) 

+ CO + MeOH 

5% Pdl2-thiourea 
5 CBr4 

6 Cs2C03, 45 °C 

COoMe 

(3) 5d 

The sequential oxidative carboxylation-cyclization-alkoxycarbonylation of 

prop-3-ynylamines gives 5-[(alkoxycarbonyl)methylene]oxazolidin-2-ones (eq 4).9 

-CRz'NHR + R"OH + 1/2 02 

CO 
Pdl2 - Kl 

- HoO "r02C 

R'x ,R' R'x ,R' 

NR + "R02C (4) 

o H 
It is important that most examples of oxidative carbonylation have been 

carried out cyclizing a four- or five-membered ring. The only attempt to cyclize a 
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six-membered ring failed.4b Our success in preparing 3-monosubstituted10 and 

3,4-disubstituted isoquinolines11 from 2-(1-alkynyl)benzaldimines prompted us to 

explore the oxidative carbonylation of a 2-(1 -alkynyl)benzaldimine to form the 

six-membered isoquinoline ring (eq 5). 

+ CO + MeOH 

Results and Discussion 

The mechanism for this process is expected to be similar to that of other 

oxidative carbonylation processes4 (Scheme 1), which involve (1) a 

methoxycarbonylpalladium(ll) species A, generated from carbon monoxide insertion 

into PdX2 followed by methoxylation, attacks the alkyne triple bond of the 

2-(1-alkynyl)benzaldimine to form complex B. The triple bond in B is activated 

towards nucleophilic attack by coordination of XPdC02Me (A); (2) nucleophilic 

attack of the neighboring imine nitrogen on the triple bond generates the 

six-membered ring and forms the isoquinolinium salt C; (3) reductive elimination 

affords intermediate D and releases the Pd(0) species, which is then reoxidized to 

Pd(ll) and returns to the catalytic cycle; (4) the resulting intermediate D undergoes 

fragmentation of the fe/t-butyl group from the nitrogen and leads to the methyl 

3-substituted isoquinoline-4-carboxylate as the desired product. 
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Scheme 1 

oxidizing reagent 
CO + MeOH 

Pd(0)L2 

t-f-Bu 
XPdC02Me A 

MeO O 

+^f-Bu 

R 

PdC02Me 

MeO O 

f-Bu 

x.PdO R g 
C02Me 

In this catalytic cycle, the nature of the base (B"), the Pd(ll) catalyst and the 

oxidizing agent (OA) are all paramount to the success of the reaction. The base 

should allow the desired catalytic cycle to proceed, while minimizing the unwanted 

direct cyclization of the 2-(1-alkynyl)benzaldimine to a 3-monosubstituted 

isoquinoline. The intermediate XPdC02Me complex (A) has to be active enough to 

coordinate to the acetylene to form complex B, in which the C-C triple bond is 

therefore activated towards nucleophilic attack. The reoxidizing agent (OA) has to 

efficiently promote the turnover of the palladium catalyst from Pd(0) to Pd(ll) without 

disrupting the carbonylative cyclization.50 

We have carried out a systematic study using /V-te/t-butyl-2-

(phenylethynyl)benzaldimine (1) as the substrate to identify the appropriate base 
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(B"), Pd(ll) catalyst, and oxidative agent (OA) that are best for the carbonylative 

heterocyclization (eq 6). 

We first employed the reaction conditions that promoted the carbonylative 

cyclization of 2-(1-alkynyl)phenols to 2,3-disubstituted benzo[b]furans (eq 3).5d 

Those conditions include 5 mol % Pdl2, 5 mol % thiourea as a ligand and 5 equiv of 

CBr4 as the oxidant in methanol at 45 °C under 1 atm of CO. 

Base. When 3 equiv of the base Cs2C03 were employed, the ester product 

2 was isolated in a 36% yield, alongside a 10% yield of 3-phenylisoquinoline (3) as a 

by-product (Table 1, entry 1). Other carbonate bases, such as Na2C03, K2C03, 

l_i2C03, NaHC03 and Na0C02Me did not improve the results at all (entries 2-6). 

When CsOAc was utilized, a 41% yield of 2-(phenylethynyl)benzaldehyde, was 

recovered after hydrolysis and a 30% yield of the side product 3 was isolated after 

22 h (entry 7). No ester product 2 was observed. NaOAc did promote the 

formation of the ester product 2, although the yield was low (entry 8). Organic 

bases, such as triethylamine and pyridine, completely inhibited formation of the 

ester (entries 9 and 10). 

After several inorganic and organic bases were examined, Cs2C03 was 

considered the base of choice, although we hoped to be able to further optimize the 

yield of product 2. 

CO, cat Pd(ll) 

base, MeOH 
(6) 

2 3 
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Table 1. Carbonylative Cyclization of A/-fert-Butyl-2-(phenylethynyl)-

benzaldimine (1) Under 1 atm of CO in Methanol (eq 6).a 

base (3 equiv) time (h) % 2 % 3 % 1b 

1 Cs2C03 39 36 10 0 

2 Na2C03 22 33 14 0 

3 k2co3 48 26 20 22 

4 Li2C03 24 0 30 48 

5 NaHC03 24 0 trace -

6 Na0C02Me 24 0 trace -

7 CsOAc 22 0 30 41 

8 NaOAc 48 26 46 0 

9 Et3N 28 0 trace -

10 pyridine 24 0 12 70 

a All reactions were run using substrate 1 (0.0653 g, 0.25 mmol), Pdlz (4.5 mg, 0.0125 mmol), thiourea (0.9 mg, 0.0125 

mmol), CBr4 (0.4147 g, 1.25 mmol) and the base indicated in 5 ml of methanol under 1 atm of CO. "This is actually the 

percent yield of 2~(phenylethynyl)benzaldehyde obtained by hydrolysis of 1 upon work-up. 

We then continued to examine the amount of the base that is best for the 

reaction. We selected Cs2C03 and Na2C03 as the preferred bases based on the 

results shown in Table 1. When no base was used in the reaction, no ester product 

was detected. Only 3-phenylisoquinoline (3) was isolated in a yield of 65% (Table 

2, entry 1). With 6 equiv of Cs2C03, the yield of 2 was slightly improved to 41% 
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(entry 2), while 3 equiv or 10 equiv of Cs2C03 (entries 2 and 4) slightly lowered the 

yield of 2. Using different amounts of Na2C03 did not increase the yield at all 

(entries 5-8). Thus, we chose to use 6 equiv of Cs2C03 as the base for the rest of 

this project. 

Table 2. Carbonylative Cyclization of A/-terf-Butyl-2-(phenylethynyl)-

benzaldimine (1) Under 1 atm of CO in Methanol.3 

base time (h) % 2 % 3 % 1b 

1 none 21 0 65 10 

2 CszCOsfS) 39 36 10 0 

3 Cs2C03 (6) 39 41 12 trace 

4 Cs2C03 (10) 24 37 17 20 

5 Na2C03 (1 ) 21 0 trace -

6 Na2C03 (3) 22 33 14 0 

7 Na2C03 (6) 22 32 15 0 

8 Na2C03 (10) 24 11 0 68 

a All reactions were run using substrate 1 (0.0653 g, 0.25 mmol), Pdk (4.5 mg, 0.0125 mmol), thiourea (0.9 mg, 0.0125 

mmol), CBr4 (0.4147 g, 1.25 mmol) and the base indicated in 5 ml of methanol under 1 atm of CO. 6 This is the percent 

yield of 2-(phenylethynyl)benzaldehyde obtained by hydrolysis of 1 upon work-up. 

Ligand. Next, we set out to investigate the effect of different ligands on the 

reaction to prevent the Pd(0) formed from precipitating out. The ligand that was 
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used in the optimization up to this point was thiourea, a ligand that has been 

employed in several other carbonylation reactions.12 With 5 mol % of thiourea 

combined with the rest of the reaction conditions shown in Table 3, entry 2, we were 

able to obtain the ester product 2 in a 41% yield. Without any thiourea, while 

keeping everything else the same, the reaction went faster and afforded the same 

yield of product 2 (Table 3, entry 1). With 17.5 mol % of thiourea13 present in the 

reaction, none of the desired ester was formed. Neither product 2 nor 3 was 

observed (entry 3). 

Changing the thiourea to a phosphine as the ligand, including PPh3(entry4), 

the bidentate phosphines dppf and dppe (entries 5 and 6), electron-rich and 

electron-deficient phosphines (entries 7 and 8), and highly electron-rich, extremely 

bulky phosphines (entries 9 and 10), did not improve the yield. 

Kl has also been an effective ligand in some carbonylation reactions.7,8,93 

However, Kl did not improve the yield of 2 (entry 11). Using urea, instead of 

thiourea, did not produce any ester product 2 (entry 12 ). P(OEt)3 did not increase 

the yield of 2 either (entry 13). 
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Table 3. Carbonylative Cyclization of N-tert-Butyl-2-(phenylethynyl)-

benzaldimine (1) Under 1 atm of CO in Methanol Using Different Ligands. 

ligand time (h) % 2 % 3 % 1a 

1 none 24 42 12 0 

2 thiourea (5 mol %) 39 41 12 -

3 thiourea (17.5 mol %) 10 0 0 -

4 PPh3 (10 mol %) 24 39 20 trace 

5 dppf (5 mol %) 20 37 14 0 

6 dppe (5 mol %) 20 32 12 0 

MeQ 

7 pH~^-OMe)3 (10 mol %) 24 38 14 0 

MeO 

8 pf-^^-S03Na)3 (10 mol %) 24 42 7 0 

9 PCy3 (10 mol %) 36 17 22 0 

P(f-Bu)2 

10 (10 mol %) 24 24 12 trace 

11 Kl (10 mol %) 24 32 10 0 

12 urea (10 mol %) 22 trace 30 -

13 P(OEt)3 (10 mol %) 18 32 10 0 

a All reactions were run using substrate 1 (0.0653 g, 0.25 mmol), Pdlz (4.5 mg, 0.0125 mmol), CS2CO3 (0.4887 g, 0.15 

mmol), CBr< (0.4147 g, 1.25 mmol) and the ligand indicated in 5 ml of methanol under 1 atm of CO. 
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Reoxidizing Agent. In our initial studies, we relied on CBr4 as the 

reoxidant to promote the turnover of Pd(0) to Pd(ll) and complete the catalytic cycle 

(Table 4, entry 1). After examining the base and the ligand, we started to work on 

the next important factor mentioned earlier in the introduction, the oxidizing agent 

(OA). In all of the reactions shown in Table 4, 6 equiv of the reoxidizing agent were 

utilized to be consistent. 

We examined three organic halides as possible reoxidizing agents.13,14 

Unfortunately, none of these oxidants worked as well in our carbonylative cyclization 

(Table 4, entries 2-4). It is assumed that iodobenzene is not applicable to the 

catalytic process owing to a possible competitive pathway leading to 

3,4-diphenylisoquinoline.5d,11ab 

Cu(ll) salts are good oxidants for the conversion of Pd(0) to Pd(ll) in 

situ453'b'12b However, both Cu(OAc)2 and CuCI2 gave low yields as oxidizing 

agents (entries 5 and 6). It is suspected that the reason why Cu(ll) did not work 

well as an oxidizing agent in this reaction is that Cu2+ can be reduced by the I" that 

exists in the palladium catalyst. In the presence of CuCI2, 4-chloro-3-

phenylisoquinoline was also isolated in a 15% yield. 1,4-Benzoquinone did not 

promote the cyclization at all (entry 7). 

Although silver salts are good at oxidizing Pd(0) to Pd(ll), they are also 

known for their ability to catalyze the cyclization of /V-terf-butyl-2-(1 -alkynyl)-

benzaldimines to 3-monosubstituted isoquinolines.119,11 This is presumably the 

reason why the major product from this reaction was 3, the side product without 

incorporation of CO (entry 8). Therefore, we have settled on CBr4 as the oxidizing 
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agent. 

Table 4. Carbonylative Cyclization of /V-ferf-Butyl-2-(phenylethynyl)-

benzaldimine (1) Under 1 atm of CO in Methanol Using Different Reoxidizing 

Agents. 

OA time (h) % 2 % 3 % 1a 

1 CBr4 39 41 12 trace 

2 CHI3 18 15 20 -

3 Mel 18 0 trace -

4 Phi 18 0 0 -

5 Cu(OAc)2 24 15 trace 62 

6b CuCI2 24 26 24 30 

7 benzoquinone 23 0 0 -

8C Ag2C03 23 trace 49 trace 

a All reactions were run using substrate 1 (0.0653 g, 0.25 mmol), Pdh (4.5 mg, 0.0125 mmol), thiourea (0.9 mg, 0.0125 

mmol), CS2CO3 (0.4886 g, 1.5 mmol) and the reoxidizing agent indicated in 5 ml of methanol under 1 atm of CO. b 

4-Chloro-3-phenylisoquinoline was also isolated in a 15% yield. c At 45 °C, an extremely polar spot was observed within 

the indicated time period and no ester product 2 was observed when the reaction was monitored by TLC. After the 

reaction mixture was heated up to 100 °C for another 24 h, 3-phenylisoquinoline (3) was isolated in a 49% yield. 

Palladium Catalyst. Next we turned our attention to the palladium catalyst. 

Although PdX2 (X = CI, Br, I) often show very different reactivities in Pd(ll) 
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chemistry,5c,11e they perform very similarly (Table 5, entries 1, 2, 4 and 5) in this 

chemistry, even when twice as much Pdl2 was employed in the reaction (entry 2). 

Surprisingly, with stoichiometric amounts of Pdl2 and no oxidizing agent, none of the 

desired ester 2 was formed (entry 3). 

Table 5. Carbonylative Cyclization of A/-fert-Butyl-2-(phenylethynyl)-

benzaldimine (1) Under 1 atm of CO in Methanol Using Different Pd(ll) 

Catalysts. 

Pd reagent (5 %) time (h) % 2 % 3 % 1a 

1 Pdl2 24 42 12 0 

2b Pdl2 18 39 10 0 

3C Pdl2 24 0 0 -

4 PdBr2 24 36 6 10-15 

5 PdCI2 24 34 7 10-15 

6 Pd(OAc)2 72 16 56 -

7 PdCI2(PPh3)2 72 21 48 -

a All reactions were run using substrate 1 (0.0653 g, 0.25 mmol), thiourea (0.9 mg, 0.0125 mmol), CBr4 (0.4147 g, 1.25 

mmol), CS2CO3 (0.4886 g, 1.5 mmol) and the palladium catalyst indicated in 5 ml of methanol under 1 atm of CO. b 10 

Mol % Pdlz was employed in the reaction. c A stoichiometric amount of Pdl2 and thiourea and no oxidizing agent were 

used. 

Although it has been claimed in the palladium-catalyzed carbonylative 
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cyclization of 2-(1-alkynyl)anilines that the reaction proceeds more smoothly when 

X is OAc" than when X is halide,4 this is not the case in this chemistry. With 

Pd(OAc)2 as the catalyst, the reaction proceeded slowly and compound 3 was 

isolated as the major product (entry 6). The complex PdCI2(PPh3)2 also provided 

unfavorable results (entry 7). 

CO Pressure. We next turned to the pressure of CO, hoping that a higher 

CO pressure would enhance the CO insertion and eventually favor formation of the 

ester product 2, since higher CO pressures improved similar reactions described in 

references 11c and 11 d. However, this proved not to be the case. Using 3.5 atm 

of CO, we isolated compound 2 in only a yield of 30% and compound 3 in a yield of 

25%. It is assumed that under a higher CO pressure it is easier to form methyl 

formate with CO and methanol, which would not benefit the carbonylative 

cyclization. These results perhaps suggest that the lower yield of the oxidative 

carbonylation of 2-(1 -alkynyl)benzaldimines is not due to slow CO insertion. 

Solvent. In all of the previous experiments, methanol was employed as 

both one of the reactants and the solvent. When the reaction was run in four 

different solvents, DMF, DMSO, CH3CN and THF with only 10 mmol of methanol, 

none of the desired ester was observed. We did not observe formation of either of 

the isoquinolines 2 or 3, as determined by TLC analysis. 

Temperature. Using methanol as the solvent limited the range of reaction 

temperatures under which the reaction could be run using a balloon filled with CO. 

At room temperature, the reaction afforded a much lower yield of product 2, 

indicating that the transformation requires a higher temperature. 
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In order to employ a higher reaction temperature, we tried the reaction at 65 

°C in ethanol as a reagent and also as the solvent. However, ethanol did not afford 

any of the desired ethyl ester product. 

After extensive experimentation, we had to settle for the reaction conditions 

first employed, namely 5 mol % Pdl2, 5 mol % of thiourea, 5 equiv of CBr4, and 6 

equiv of Cs2C03 at 45 °C in methanol under 1 atm of CO, although the best yield of 

product 2 we obtained was only 41%. 

We also investigated other reaction conditions, in which 2-(1-alkynyl)phenols 

and 2-(1-alkynyl)aniiines were successfully converted to methyl benzo[b]furan-3-

carboxylates and methyl indole-3-carboxylates respectively.4 Those conditions are 

6.3 mol % PdCI2, 2 equiv of CuCI2, 2 equiv of NaOAc, 2 equiv of K2C03 at 1 atm of 

CO in methanol at room temperature. Under these conditions, the reaction of 

A/-terf-butyl-2-(phenylethynyl)benzaldimine (1) and CO in methanol afforded product 

2 in only an 11% yield. Increasing the temperature to 45 °C did not improve the 

yield of product 2, and led to formation of another side product, 

4-chloro-3-phenylisoquinoline, which was also observed in a Pd(ll)-catalyzed 

olefination reaction of /V-te/t-butyl-2-(phenylethynyl)benzadimine (1) when CuCI2 

was employed as a reoxidant.11® Changing the reoxidant to Cu(OAc)2 only 

afforded the side product 3, without any formation of 2. 

We have also tried an alternative route to prepare methyl 

3-phenylisoquinoline-4-carboxylate (2) using methyl chloroformate (eq 7). This 

Pd(0)-catalyzed transformation is similar to our previous research employing imine 

1 and benzoyl chloride to synthesize 4-benzoyl-3-phenylisoquinoline.11c,d In this 
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case, Pd(0) and methyl chloroformate might be expected to generate CIPdC02Me in 

situ,15 which is expected to promote the cyclization leading to the ester product. 

However, this approach did not work. Only compound 3 was isolated from this 

experiment. 

5% Pd(PPh3)4 

Organopalladium Intermediate. We were interested in looking into the 

reasons for the poor yields obtained in this project from the perspective of the nature 

of the organopalladium promoted cyclization of alkynes. The reactions in these 

three isoquinoline projects carried out by us (see thesis Chapters 1, 2 and 3) 

basically proceed by the same mechanism. In these transformations, the 

cyclization of a 2-(1-alkynyl)benzaldimine is promoted by an organopalladium 

complex. In Chapter 1, this is RPdX (R = aryl, allylic, benzyl, alkynyl and vinylic; X 

= I, Br, CI) (eq 8). In Chapter 2, this is ArCOPdX (X = I, CI) (eq 9), and in the 

current chapter this is XPdC02Me (eq 6). Thus, the reactivity of the 

organopalladium complex most likely determines the success of the reaction. 

Assuming that all of these intermediate organopalladium complexes (RPdX, 

ArCOPdX and XPdC02Me) are successfully generated in situ under their respective 

reaction conditions,16 based on the results that we have obtained during the three 

projects, it is clear that the intermediate organopalladium complexes indeed have 

different reactivities in this chemistry. 
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-f-Bu 

ArX 

5% Pd(PPh3)4 

5 K2CO3 
DMF, 100 °C 

(8) 

-f-Bu 

ArX + CO 

5% Pd(PPh3)4 

5 n-Bu3N 
DMF, 100 °C 

(9) 

Ar O 

For example, the reaction of 1 and 4-iodoanisole (eq 10) in the first project 

generated the 3,4-disubstituted isoquinoline in only a 13% yield (see the discussion 

in Chapter 1).11a,b On the other hand, the reaction of 1 and 4-iodoanisole in the 

presence of CO (eq 11) in the second chapter produced the 4-acylisoquinoline in a 

much higher yield, 74%.11c'd The ArCOPdl complex is apparently more reactive 

than ArPdl based on the two results. Their different reactivities can be explained 

by their electrophilicity. Having a carbonyl group between the Pd and the Ar 

significantly increases the electrophilicity of the Pd. The resulting electron-deficient 

ArCOPdl complex should be more likely to coordinate the triple bond in the imine 

substrate to form the resulting heterocyclic palladium complex. The coordination 

step is presumably crucial to the cyclization, because, without it, the triple bond is 

not activated towards nucleophilic attack by the imine nitrogen, and therefore no 

organic substituent is incorporated into the 4 position of the isoquinoline ring. 

5% Pd(PPh3)4 
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f-Bu 
Ph 

+ CO + MeO 
5 n-Bu3N 

DMF, 100 °C Ph 
MeO' 74% 

The reactivity difference between ArCOPdX and XPdC02Me is exemplified 

by the results shown in eqs 12 and 13. ArCOPdX is more effective than 

XPdC02Me in promoting the cyclization of compound 1. The low reactivity of 

XPdC02Me15 might be the reason for the poor performance in this reaction, which 

by nature is very sensitive towards the strength of the organopalladium alkyne 

complex.113,13 

f-Bu 

Ph 

f-Bu 

Ph 

+ PhCOCI 

+ CIC02Me 

5% Pd(PPh3)4 

5 n-Bu3N 
DMF, 100 °C 

5% Pd(PPh3)4 

5 (n-Bu)3N 
DMF, 100 °C 

(12) 

42% 

COoMe 

(13) 

0% 

It has been our experience in working on the cyclization of benzaldimines to 

isoquinolines that the transformation of a 2-(1 -alkynyl)benzaldimine to an 

isoquinoline usually requires an elevated temperature (above 80 °C) in order to 

initiate the oxidative addition step. During the optimization work discussed in 

Chapters 1 and 2, it was established that at lower temperatures, the reactions 

usually proceed much more slowly and sometimes afford much lower yields. 
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However, employing methanol as the solvent basically limited us from using a 

higher temperature. This is assumed to be another reason for the consistently 

lower yields. 

Conclusions 

In summary, we have carefully investigated the reaction of a 

2-(1-alkynyl)benzaldimine under carbon monoxide in the presence of a Pd(ll) 

catalyst to form an isoquinoline-4-carboxylate. Although this has not proven to be 

an efficient way to synthesize disubstituted isoquinolines containing an ester group 

in the 4 position, our work has provided some insight into the nature of the 

Pd-catalyzed cyclization reactions promoted by organopalladium intermediates. 

Experimental Section 

General. All 1H and 13C NMR spectra were recorded at 300 and 400, and 

75.5 and 100.7 MHz, respectively. Thin-layer chromatography was performed 

using commercially prepared 60-mesh silica gel plates (Whatman K6F), and 

visualization was effected with short-wavelength UV light (254 nm) and a basic 

KMn04 solution [3 g of KMn04 + 20 g of K2C03 + 5 ml of NaOH (5 %) + 300 ml_ of 

H20]. All melting points are uncorrected. Lower resolution mass spectra were 

recorded on a Finningan TSQ700 triple quadupole mass spectrometer (Finnigan 

MAT, San Jose, CA). High resolution mass spectra were recorded on a Kratos 
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MS50TC double focusing magnetic sector mass spectrometer using El at 70 ev. 

JV-ferf-Butyl-2-(phenylethynyl)benzaldimine (1). For the preparation of 

this compound, see the Experimental Section in Chapter 1.11a"d 

Methyl 3-phenylisoquinoline-4-carboxylate (2). The following is a 

representative procedure for the reactions carried out in this chapter. A mixture of 

Pdl2 (4.5 mg, 0.0125 mmol), thiourea (1.0 mg, 0.0125 mmol), CBr4 (0.4146 g, 1.25 

mmol), Cs2C03 (0.4885 g, 1.5 mmol), A/-terf-butyl-2-(phenylethynyl)benzaldimine (1) 

(0.0653 g, 0.25 mmol) in 5 ml_ of methanol was flushed with CO at room 

temperature for 5 min, fitted with a CO filled balloon (cautious!), and then heated to 

100 °C with stirring for 12 h (Table 2, entry 3). The reaction mixture was cooled to 

room temperature, diluted with diethyl ether (30 ml_) and washed with brine (30 ml_). 

The aqueous layer was reextracted with diethyl ether (15 ml_). The organic layers 

were combined, dried (MgS04), filtered and the solvent removed under reduced 

pressure. The residue was purified by column chromatography on a silica gel 

column using 3:1 hexanes/ethyl acetate to afford 27.6 mg (41%) of the indicated 

compound. For the full characterization of ester 2, see reference 17. 
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Chapter 4. Observation of a Novel Intramolecular Alkyl-to-Aryl Palladium 

Rearrangement 

A paper to be submitted to the Journal of the American Chemical Society 

Guangxiu Dai, Marino A. Campo and Richard C. Larock 

Department of Chemistry, Iowa State University, Ames, Iowa 50011 

Abstract 

The reaction of ethyl acrylate or methyl vinyl ketone plus an aryl halide 

bearing an olefin side chain affords unique 1,2,3,4-tetrahydronaphthalenes and 

heterocyclic analogues in which a novel intramolecular alkyl-to-aryl palladium shift 

has been observed by trapping the arylpalladium intermediate by an olefin in a Heck 

reaction. The reaction conditions have been optimized and the reaction scope has 

been extensively studied. The mechanism appears to involve: (1) oxidative 

addition of the aryl iodide to Pd(0), (2) intramolecular addition of the resulting 

arylpalladium intermediate to the double bond of an alkene affording an 

alkylpalladium intermediate with no /3-hydrogen, (3) intramolecular palladium shift 

from an alkyl to an aryl position transforming an alkylpalladium intermediate to an 

arylpalladium intermediate, and (4) olefination of the resulting arylpalladium leading 

to the isolated product. This is the first time that a clean intramolecular alkyl-to-aryl 

palladium shift has been observed. 
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Introduction 

Like carbon migration that has been reported in a multitude of reactions,1 

palladium has also been shown to migrate from carbon to carbon within a molecule 

given appropriate reaction conditions. In our own laboratory, it has been 

established that palladium is able to migrate intramolecularly between two aromatic 

positions (Scheme 1).2 When 2-iodo-4'-methylbiphenyl (1) was employed in a 

Heck reaction with ethyl acrylate, a 1:1 mixture of two regioisomeric Heck products, 

Scheme 1 

ethyl acrylate 

5% Pd(OAc)2 

5% dppm 

2.0 Cs02CCMe3 

DMF, 100 °C 

C02Et 

3a 

ethyl acrylate 

5% Pd(OAc)2 

5% dppm 

c°2Et 2.0 Cs02CCMe3 

DMF, 100 °C 

3b 

1 : 1 

3a and 3b, were obtained in an overall yield of 88%. Apparently, the originally 

formed 2-biphenylpalladium intermediate undergoes Pd migration to the 2' position 

to form the Heck product 3b. What is even more interesting is the fact that the 

corresponding reaction with the isomeric 2-iodo-4-methylbiphenyl (2) affords the 

same two Heck products, 3a and 3b, in the same 1:1 ratio. Similar results have 

been observed when the methyl substituent was replaced by OMe, NMe2, C02Et 

and N02. Gallagher and co-workers observed minor amounts of similar 

intramolecular palladium migration products involving migration from a pyridine ring 
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to another aromatic ring under different reaction conditions.3 

In our own laboratory, palladium has also been observed to rearrange from a 

vinylic to an aryl carbon during the Pd-catalyzed reaction of phenyl iodide and 

diphenylacetylene to generate 9-benzylidene-9H-fluorene (4) under the reaction 

conditions illustrated in Scheme 24 

Scheme 2 

5% Pd(OAc)2 

10% PPh3, 2 NaOAc 

Pdl 

D 

Pdl 

C 

Pd 

The vinylpalladium intermediate A, formed from the carbopalladation of 

diphenylacetylene by an arylpalladium iodide, apparently undergoes oxidative 

addition to the neighboring aryl C-H bond to generate a Pd(IV) intermediate B, 
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followed by reductive elimination leading to arylpalladium(ll) intermediate C. 

Intermediate C eventually cyclizes to the fluorene product 4, which confirms the 

formation of intermediate C. During this process, palladium migrates from a vinylic 

to an aryl position. 

An intramolecular alkyl-to-aryl migration of a palladium intermediate was first 

reported by Heck in 1972.5 When 2-methyl-2-phenylpropylmercury acetate (5) was 

allowed to react with methyl acrylate in the presence of a stoichiometric amount of 

Pd(OAc)2, a 65:35 mixture of two isomeric Heck products 8 and 9 respectively were 

isolated (Scheme 3). 

Scheme 3 

HgOAc Pd(OAc)2 
PdOAc 

^'COoMe 

C02Me 

PdOAc 

7 

<^C02Me 

CO2M6 

The major product was the expected methyl £-5-methyl-5-phenyl-

2-hexenoate (8), generated by transmetallation of 5, followed by Heck coupling. 

The other product was found to be methyl E-o-terf-butylcinnamate (9). This 

product was assumed to arise from a rearrangement of the alkylpalladium 
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intermediate 6 to the arylpalladium intermediate 7. This was the first time that an 

alkyl-to-aryl palladium shift has been described. No detailed mechanism was 

proposed or discussed to explain the migration process. 

Hu and co-workers discovered the first example of a catalytic alkyl-to-aryl 

palladium rearrangement while investigating the Heck reaction of a-(chloromethyl)-

naphthalene (10) with olefins (eq 1).6 Most of the reactions reported proceeded 

normally to produce products 11 and 12. When R = succinimido, the reaction 

afforded the unexpected rearrangement product 13 in a yield of 25%, besides the 

isomerized, thermally more stable Heck product 11 isolated in a 20% yield. No 

normal Heck product 12 was isolated. Analogous products were also obtained in 

the same yields when R = phthalimido. However, no rearrangement was found 

when R = C02Et, Ph, CONH2, CN, p-MeOC6H4, or OCOMe.6 

1% Pd(OAc)2 

R 2 Et3N 

DMF, 130 °C 

Me 

(1) 

10 11 12 13 
R = succinimido, phthalimido 

Migration in this system was considered to happen as depicted in Scheme 4. 

The in situ formed benzylic palladium chloride F inserts into the C-H bond at the 8 

position of the naphthalene. Reductive elimination of the Pd(IV) intermediate G 

then selectively takes place between the H and methylene, affording the 

intermediate H, followed by a Heck reaction. The fact that the unusual 
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rearrangement happened only in the reactions of the two A/-vinylimides suggests 

that the nitrogen may be involved as a coordinating ligand in stabilization of the 

intermediates to ensure that the intermediate F has time to undergo cyclopalladation. 

In these two literature examples of alkyl-to-aryl Pd rearrangements, both 

rearrangement and non-rearrangement products were formed, and the 

rearrangement products were always obtained in low yields, which is not 

synthetically useful. 

Scheme 4 

In our independent research, a new reaction was discovered employing 

2-iodobenzyl methallyl ether (14), ethyl acrylate and a palladium catalyst (eq 2).2b 

We did not observe any of the direct Heck coupling product 16. Compound 15 was 

obtained exclusively in a 56% yield. This appeared to us to be a novel example of 

an intramolecular alkyl-to-aryl palladium rearrangement, which proceeds cleanly in 

synthetically useful yields (see the later mechanistic discussion). The exclusive 

formation of a single rearrangement product facilitated identification of the product 

and our mechanistic understanding of the reaction. 
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+ •^•C02Et 

5% Pd(OAc)2 

5% dppm 

2 CsPiv 
DMF, 100 °C 

(2) 

14 C02Et 15 16 

56% 0% 

Results and Discussion 

Mechanism. The overall process shown in equation 2 is believed to 

proceed mechanistically by the following steps as illustrated in Scheme 5: (1) 

oxidative addition of the aryl iodide to Pd(0) produces arylpalladium intermediate I, 

in which the palladium also coordinates to the C=C bond, (2) subsequent 

intramolecular carbopalladation affords a six-membered ring and generates the 

alkylpalladium intermediate J, (3) palladium then inserts into the neighboring C-H 

bond forming the organopalladium(IV) intermediate K, (4) intermediate K undergoes 

reductive elimination affording a new C-H bond and arylpalladium intermediate L, (5) 

the resulting arylpalladium species L is trapped by the olefin, ethyl acrylate, 

affording the Heck product 15 and simultaneously regenerating Pd(0). During 

this process, an alkylpalladium intermediate rearranges to an arylpalladium 

intermediate. 
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Scheme 5 

IPd 

l-P.d-

Pd(0) 

Pdl 0 

15 

Optimization. We started our research on this reaction by optimizing the 

reaction conditions with 2-iodobenzyl methallyl ether (14) and ethyl acrylate (eq 3). 

The conditions shown in Table 1, entry 1, utilizing 5 mol % Pd(OAc)2, 5 mol % dppm, 

2 equiv of CsPiv in 4 ml of DMF at 100 °C, generated the rearrangement product 15 

in a 56 % yield. No direct Heck coupling product 16 was isolated. Replacing the 

diphosphine dppm with PPh3 gave very similar results (entry 2). Changing the 10 

mol % of PPh3to 5 mol % of PPh3, 5 mol % of dppe or 10 mol % 2-(di-f-butyl-

phosphino)biphenyl did not make a significant difference in terms of either the yield 

of 15 or the ratio of 15 to 16 (entries 3-5). Thus, the nature of the phosphine ligand 

appears to have no profound effect on the reaction. 
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Tabel 1. Optimization of the Reaction of 2-lodobenzyl Methallyl Ether (14) 

and Ethyl Acrylate (eq 3).a 

ligand base % yield of 15 

1 5 % dppm 2 CsPiv 56 

2 10% PPh 3  2 CsPiv 54 

3 5 % PPh3 2 CsPiv 49 

4 5 % dppe 2 CsPiv 48 

5 10 % 2-(di-f-butylphosphino)biphenyl 2 CsPiv 48 

6b 10 % PPh3 2 CsPiv 43 

7° 10% PPh 3  2 CsPiv 35 

8 10% PPh 3  2 CsOAc 30 

9d 10% PPh 3  2 CS2CO3 18 

10 10 % PPh3 2 Et3N none® 

a All of the reactions were carried out employing 14 (0.0719 g, 0.25 mmol), ethyl acrylate (0.0375 g, 0.375 mmol), 

Rd(OAc)2 (2.8 mg, 0.0125 mmol) in 4 ml of DMF under 100 °C unless otherwise specified. b The reaction was carried 

out with 0.075 g of ethyl acrylate (0.75 mmol). c The reaction was carried out with 0.025 g of ethyl acrylate (0.25 mmol). 

d Compound 16 was isolated in a 44% yield. e Product 16 was isolated in a 17% yield. 
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We next investigated the amount of ethyl acrylate used in the reaction. In all 

previous experiments, 1.5 equiv of ethyl acrylate were employed. When the 

amount was raised to 3 equiv, we were able to obtain 15 in only a 43% yield, and the 

reaction became more complicated, although we were unable to isolate and identify 

any of the minor side products formed (entry 6). Reducing the amount of the ethyl 

acrylate to 1.0 equiv significantly lowered the yield (entry 7). This might be caused 

by the high volatility of ethyl acrylate, resulting in a significant loss of ethyl acrylate 

during the reaction and hence a lower yield. 

Since the nature of the base can be critical in this type of reaction,4 we 

examined a variety of bases. While CsOAc still promoted a clean reaction, 

affording 15 as the single product in a significantly lower yield (entry 8), Cs2C03 

afforded compound 16 instead as the major product, albeit in a rather low yield 

(entry 9). With Et3N as the base, the reaction failed to produce any of the migration 

product 15, and produced a 17% yield of Heck product 16. 

Although dppm and PPh3 performed similarly when using ethyl acrylate as 

the olefin, a difference between dppm and PPh3 was apparent when methyl vinyl 

ketone was utilized as the olefin (eq 4). Using 5 mol % dppm gave a 50 % yield, 

but 10 mol % PPh3 gave only a 40% yield. Thus, we have employed dppm as the 

ligand for the rest of this investigation. 

+ ^"COMe 

5% Pd(OAc)2 

phosphine ligand 

2 CsPiv 
DMF, 100 °C 

(4) 

14 COMe 
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We next investigated a variety of olefins in this reaction (eq 5). To our 

surprise, not all olefins performed as well as ethyl acrylate and methyl vinyl ketone. 

As shown in Table 2, the reactions of many other olefins which usually give good 

results in traditional Heck reactions gave rather messy reactions and the isolated 

products were often hard to purify and identify. 

5% Pd(OAc)2 

5% dppm 
» /\ (5) 

2 CsPiv 
DMF, 100 °C 

14 

Table 2. Reactions of Compound 14 with Different Olefins (eq 5). 

olefin % yield 

1 H2C=CHC02Et 56 

2 H2C=CHCOMe 50 

3 H2C=CHC02Bu-f ca 30 

4 H2C=CHC02Bu-n ca 25 

5 H2C=CHPh ca 20 

6 H2C=CHCN 0 

7 h2c=chcho 0 

8 H2C=CHCH(OH)Me 0 

Next we proceeded to define the scope and limitations of the rearrangement 

reaction utilizing different substrates and olefins under the optimal reaction 
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conditions summarized in Table 1, entry 1. The reaction of 2-bromobenzyl 

methallyl ether (18) with ethyl acrylate was much slower and afforded a lower yield 

of 15 (Table 3, entry 3) than the corresponding iodide 14, presumably due to slow 

oxidative addition of the aryl bromide to Pd(0). 

We studied the reaction of 2-iodobenzyl allyl ether (19) with ethyl acrylate in 

order to determine if the methyl group on the carbon-carbon double bond is 

necessary (entry 4). The reaction afforded no migration product. Instead, 

compound 20 was formed in a good yield. This discovery confirmed the 

significance of the substituent on the double bond. Also it indicates that /3-hydride 

elimination is faster than the palladium migration (Scheme 6). 

Scheme 6 

Pdl 

19 20 



Table 3. Intramolecular Alkyl-to-Aryl Pd Rearrangement/" 

substrate olefin time (h) product % yield 

cor „ 24 

o 

C02Et 

15 56 

14 ^^COMe 24 ' N 17 50 

COMe 

Br 

18 <^co,Et 72 

C02Et 

15 25 



4 [I 19 <=^C0oEt 

5 II 'I ̂  ° CO^Et 21 ^COzEt 

6 23 <^CO?ET 

23 <^COME 

24 O? 20 84 

COMe 



8  Y^T  0  r  26 ^C0,Et 24 

26 <^C0Me 24 

10 ^ ' 29 ^CO,Et 24 

11 fjj 0 Ï 31 ^C02Et 24 

C02Et 

MeO. 

COMe 

27 53 

28 57 

Me?N 

C02Et 

30 46 

"o 

32 

C02Et 



12 33 ^cOgEt 18 

13 II J MS [ 35 ^C0,Et 12 

14 35 T^GOME 15 

15 38 <^CO?Et 15 

C02Et 

34 ca 30 

^NMs 

COMe 

37 67 



16 38 <^COMe 16 

18 41 t^COMe 18 

COMe 

/C02Et 

vC02Et 

42 62 

C02Et 

/C02Et 

vC02Et 

43 64 

COMe 



19 II S [ 44 <^co,Et 24 

o 

20 46 <^co,Et 24 

o 

21 ' 48 <^co,Et 18 

o 

22 50 ^co,Et 18 

C02Et 

45 0 



23 

o. 

52 <^cOoEt 

24 
54 <^CO; Et 

E = C02Et 

25 o 56 
<^CO,Et 

26 56 ^"COMe 

C02Et 

53 0 

aOCOCMe3 

^co2e, 57 47 

^^OCOCMeg 
22 h T 58 47 



3 All reactions were run under the conditions summarized in Table 1, entry 1. b Fifteen percent of compound 18 was recovered. 
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The reaction of compound 21 and ethyl acrylate was not ideal and did not 

afford the desired product 22 (entry 5). There are two possible reasons for this 

disappointing result. (1) Palladium migration requires an exo cyclization of the 

arylpalladium intermediate to the carbon-carbon double bond, but the Heck reaction 

of this electron-deficient olefin is more likely to occur in an endo manner resulting in 

a seven-membered ring product M (Scheme 7). Thus, formation of a 

six-membered ring in this case is not easy or favored. Should endo cyclization 

occur, the palladium intermediate M formed is incapable of migration and would be 

expected to undergo /3-hydrogen elimination. (2) Once the six-membered ring is 

formed, the palladium intermediate N (Scheme 7) might be stabilized via chelation 

of the neighboring carbonyl group. It might be difficult for the stabilized palladium 

intermediate to migrate. 

Scheme 7 

Compound 23 was prepared and allowed to react with ethyl acrylate and 

methyl vinyl ketone (entries 6 and 7). Structurally the rearrangement should 

happen, but the increased electron density on the arene would be expected to slow 

the oxidative addition, which is not good for the overall reaction. The results show 
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that the increased electron density caused by the oxygen attached to the aromatic 

ring does not hurt the reactions. In fact, it may facilitate Pd migration. 

In an attempt to further investigate the influence of electronic effects on the 

reaction, compounds 26 and 29 were employed (entries 8-10). The reactions 

proceeded in decent yields. The migration products 27, 28 and 30 were isolated 

as a single product from each of these reactions in reasonable yields. This again 

indicates that electron-rich substituents on the arene do not negatively impact the 

migration. 

The electron-deficient substrate 31 did not afford any migration or direct Heck 

product at all (entry 11). Gallagher's results indicate that a pyridyl bromide will 

undergo palladium migration chemistry.3 Therefore, we considered that the failure 

of substrate 31 to afford any migration product was mainly due to its 

electron-deficient nature. 

The reaction of another electron-rich substrate 33 was very messy (entry 12). 

The product 34 was isolated in a low yield and it proved difficult to purify. Two 

factors may account for this disappointing result. (1) Introduction of a second 

oxygen on the aromatic ring further increases the electron-density of the aryl iodide 

and therefore further slows down the oxidative addition step. (2) Introduction of the 

second oxygen at the 4 position causes steric hindrance to the migration. The 

migration terminus, the 5 position, is crowded with a methylenedioxy moiety and a 

tertiary carbon, making migration more difficult. When migration does occur, the 

arylpalladium intermediate formed is sterically hindered and may fail to undergo the 

Heck coupling (Scheme 8). According to another ongoing study of this type of 
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palladium rearrangement, it has been observed that the palladium migration can be 

completely inhibited by steric hindrance.2 

The reactions of A/-2-iodobenzyl-/V-(methallyl)methanesulfonamide (35) with 

ethyl acrylate and methyl vinyl ketone afforded the migration products 36 and 37 in 

64% and 67% yields respectively under the standard reaction conditions (entries 13 

and 14). The electron-rich isomeric compound 38 also gave good yields of 

migration products (entries 15 and 16). When compound 41 containing a 

2-iodobenzyl and a methallyl moiety linked by a carbon was employed, the 

rearrangement products 42 and 43 were also cleanly isolated in good yields (entries 

17 and 18). 

However, 2-iodobenzyl methallyl thioether (44) did not afford any of the 

desired product 45 or the direct Heck product (entry 19). Eighty six percent of the 

starting material 44 was recovered after 24 h. The failure to react might be 

because the sulfur atom in the substrate can strongly chelate the palladium moiety 

in the initial arylpalladium intermediate and prevent further reaction. 

The reaction of the carboxylic acid derivative 46 has also been examined 

(entry 20). Unfortunately, this compound failed to give the expected migration 

Scheme 8 

33 
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product. Compound 46 may react to form a ^--allylpalladium intermediate in the 

presence of a Pd(0) catalyst. It is well established that in the presence of a Pd(0) 

catalyst, allylic benzoates can form a ^--allylpalladium intermediate after losing a 

benzoate ion (eq 6).7 

Compounds 48 and 50 are expected to be stable in the presence of a Pd(0) 

catalyst, but they did not produce the expected rearrangement products (entries 21 

and 22). Compound 48 afforded the Heck product 49 in a 75% yield. The 

existence of a carbonyl group in the side chain can completely change the electronic 

and conformational properties of the intermediate analogous to intermediate I 

(Scheme 5). The carbonyl group may chelate the Pd moiety in the arylpalladium 

intermediate derived from 46, 48 or 50 and presumably this reduces its reactivity. 

We next extended our investigation to rearrangements involving five- and 

seven-membered ring systems. Compounds 52, 54, 56 and 59 were synthesized 

to study the migration in a five-membered ring system (entries 23-27). 

Compounds 52 and 54 (entries 23 and 24) did not afford any recognizable product 

under our "optimal" migration conditions. Compound 52 may not be stable at 100 

°C because of a possible Claisen rearrangement. Alternatively, this substrate 

might react with Pd(0) to again form a ^-allylpalladium intermediate, since a 

phenoxy group is a pretty good leaving group.8 However, no similar problems are 
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possible with substrate 54 and it too failed to afford any of the anticipated 

rearrangement product. 

2-lodophenyl methacrylate (56) generated surprising products with ethyl 

acrylate and methyl vinyl ketone (entries 25 and 26). The major products, 57 and 

58, were both direct Heck coupling products. However, the methacrylate moiety in 

these substrates was replaced by a pivalate group from the base. It is assumed 

that 57 is generated mechanistically as shown in Scheme 9 by the following steps: 

Scheme 9 

CSO2CCM63 

H2C=CHC02Et 

(1) oxidative addition of the aryl iodide to Pd(0) in 56 produces intermediate O, in 

which palladium chelates the carbonyl group and therefore enhances the 

electrophilicity of the carbonyl group, (2) addition/elimination of cesium pivalate to 

the carboxylate O affords intermediate phenolate P and anhydride Q, (3) reaction 

of P with the anhydride followed by a Heck reaction generates the isolated product 

57. Alternatively, it is highly possible that the Heck coupling of the arylpalladium 

intermediate precedes the ester exchange. No migration product was isolated. 

The ester exchange was further confirmed by isolating product 58 from the reaction 
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of substrate 56 and methyl vinyl ketone. A/-2-lodobenzyl methacrylamide (59) 

failed to afford any recognizable products when allowed to react with ethyl acrylate 

(entry 27). 

Compounds 61 and 63 were examined in order to determine if cyclization to a 

seven-membered ring could take place. No intramolecular cyclization products 

were obtained (entries 28 and 29). Only direct Heck products 62 and 64 were 

isolated in good yields. 

Based on our present studies, the intramolecular palladium migration from an 

alkyl to an aryl position requires certain key structural features: 

(1) Migration occurs only when the cyclization involves formation of a 

six-membered ring. So far, no migration has been observed when a five or 

seven-membered ring is formed. 

(2) The rearrangement of an alkylpalladium to an arylpalladium intermediate is 

negatively affected when the migration terminus is sterically hindered. 

(3) No carboxylate derivatives have been observed to produce migration 

products no matter whether a five, six or seven-membered ring is being 

formed, even though the corresponding non-carbonyl substrates work well. 

This may indicate that the carbonyl group is somehow involved in a process 

that prevents the rearrangement from proceeding. For example, the 

carbonyl group might coordinate with the initial arylpalladium intermediate as 

depicted in Figure 1. If this intermediate is formed, it would direct the C=C 

bond away from the palladium and make it impossible for the palladium to 

add across the internal C=C bond. According to our proposed mechanism 
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(Scheme 5), when carbopalladation of the internal C=C bond by the 

arylpalladium intermediate cannot occur, no palladium rearrangement can 

take place either. 

(4) In no case have we observed products resulting from cyclization to an 

alkylpalladium intermediate which then undergoes coupling with the external 

olefin. Apparently palladium migration occurs faster than the Heck reaction 

of this hindered alkylpalladium intermediate under our reaction conditions. 

Although we have clearly shown that palladium migration from an alkyl to an 

aryl position does occur, we also hoped to be able to find reaction conditions that 

would prevent migration and produce the product of cross-coupling between an 

alkylpalladium intermediate like J (Scheme 5) and the external olefin or perhaps the 

direct Heck coupling product like ester 16. During earlier optimization studies of 

this type of palladium migration, we found that the nature of the base is very 

important in preventing migration (eq 7). Also, to enhance the direct Heck coupling 

at the expense of the migration process, the concentration of the olefin ethyl 

acrylate needs to be increased by raising the amount of ethyl acrylate and 

decreasing the amount of the solvent used. The results of our efforts to affect 

direct Heck coupling are summarized in Table 4. It is clear that employing Et3N as 

Figure 1 
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the base only afforded the non-migration product 16 and none of the 

cyclization/migration product 15. No products derived from cyclization and 

subsequent alkylpalladium cross-coupling with the ethyl acrylate were ever 

observed. Therefore, we can control the migration by simply modifying the 

reaction conditions reported in Table 1, entry 1 to those shown in Table 4, entry 3. 

_ 5%iTaê* UV 
^ c o = b  — j a  •  u v c 0 [ e t  m  

DMF, 100 °C I 
14 C02Et 15 16 

Table 4. Effect of the Base on the Heck Coupling of Substrate 14 (eq 7). 

base % 15 % 16 

1 NaHC03 13 41 

2 Cs2C03 20 59 

3 Et3N 0 64 

a All reactions were run with 14 (0.072 g, 0.25 mmol) and ethyl acrylate (0.10 g, 1.0 mmol) in the presence of 5 mol % 

Rd(OAc)2 (2.8 mg, 0.0125 mmol), 1 equiv of TBAC (0.069 g, 0.25 mmol), and 2 equiv of the base indicated in 1 ml of DMF 

at 100 "C. 

Conclusions 

We have discovered and developed a new catalytic intramolecular 

alkyl-to-aryl palladium rearrangement involving the formation of a new 6-membered 
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ring and 2 new carbon-carbon bonds in a single reaction. After we optimized the 

reaction conditions and the olefins that can be employed in these Heck reactions, 

substrates with wide structural variety have been examined so we might better 

understand the reaction mechanism and the factors that affect the reaction. 

Experimental Section 

General. All 1H and 13C NMR spectra were recorded at 300 and 400, and 

75.5 and 100.7 MHz, respectively. Thin-layer chromatography was performed 

using commercially prepared 60-mesh silica gel plates (Whatman K6F), and 

visualization was effected with short-wavelength UV light (254 nm) and a basic 

KMn04 solution [3 g of KMn04 + 20 g of K2C03 + 5 mL of NaOH (5 %) + 300 ml_ of 

H20], All melting points are uncorrected. Lower resolution mass spectra were 

recorded on a Finningan TSQ700 triple quadupole mass spectrometer (Finnigan 

MAT, San Jose, CA). High resolution mass spectra were recorded on a Kratos 

MS50TC double focusing magnetic sector mass spectrometer using El at 70 ev. 

2-lodobenzyl methallyl ether (14). 2-lodobenzyl chloride (0.2360 g, 1.0 

mmol) was added to a suspension of NaH (60% suspension in mineral oil, 0.0676 g, 

1.3 mmol) in 10 mL of DMF at 0 °C. The mixture was stirred for 10 min at 0 °C, 

followed by the addition of methallyl chloride (0.13 ml, 1.35 mmol). The resulting 

mixture was stirred at room temperature overnight, then diluted with diethyl ether, 

and washed with water. The combined organic layers were dried over anhydrous 

Na2S04, concentrated and purified by flash chromatography (12:1 hexanes/ethyl 

acetate) affording 0.2601 g (91%) of the indicated compound as a colorless oil: 1H 
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NMR (CDCI3) 8 1.80 (s, 3H), 4.20 (s, 2H), 4.47 (s, 2H), 4.95 (s, 1H), 5.05 (s, 1H), 

6.98 (dt, J = 8.0, 1.2 Hz, 1 H), 7.35 (t, J = 8.0 Hz, 1 H), 7.47 (d, J = 8.0 Hz, 1 H), 7.81 

(dd, J = 8.0, 1.2 Hz, 1H); 13C NMR (CDCI3) ô 19.84, 74.86, 75.93, 97.82, 112.71, 

128.41, 128.86, 129.27, 139.31, 140.90, 142.22; IR (CHCI3) 3022, 1610 cm"1; 

HRMS: m/z 273.9860 (calcd for CnH13IO, 273.9855). 

General procedure for the Pd-catalyzed coupling. Ethyl (2E)-3-(4,4-

dimethyl-3,4-dihydro-1H-isochromen-5-yl)propenoate (15). A 4-dram vial filled 

with 14 (0.0719 g, 0.25 mmol), Pd(OAc)2 (2.8 mg, 0.0125 mmol), dppm (4.8 mg, 

0.0125 mmol), CsPiv (0.1170 g, 0.5 mmol), ethyl acrylate (0.0375 g, 0.375 mmol) 

and DMF (4 mL) was quickly flushed with argon and heated up to 100 °C in an oil 

bath for 24 h. The reaction mixture was then diluted with ethyl ether, washed with 

satd NaHC03, dried over Na2S04, concentrated, and purified by flash 

chromatography to afford 15 (36.4 mg, 56%) as a colorless oil: 1H NMR (CDCI3) 5 

1.35 (t, J = 7.2 Hz, 3H), 1.39 (s, 6H), 3.54 (s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 4.81 (s, 

2H), 6.19 (d, J= 15.6 Hz, 1H), 6.98 (d, J = 7.2 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 7.31 

(d, J = 7.6 Hz, 1H), 8.30 (d, J = 15.6 Hz, 1H); 13C NMR (CDCI3) 8 14.50, 26.52, 

34.05, 60.70, 69.64, 78.90, 119.78, 126.10, 126.32, 127.50, 134.89, 134.96, 141.50, 

145.70, 167.03; IR (CHCI3) 3056, 2962, 1711 cm"1; HRMS: m/z 260.1416 (calcd 

for CI6H20O3, 260.1412). 

(3£)-4-(4,4-Dimethyl-3,4-dihydro-1H-isochromen-5-yl)but-3-en-2-one 

(17). A yellow oil: 1H NMR (CDCI3) 8 1.40 (s, 6H), 2.40 (s, 3H), 3.55 (s, 2H), 4.81 

(s, 2H), 6.49 (d, J = 15.6 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 

7.33 (d, J = 7.6 Hz, 1H), 8.16 (d, J = 15.6 Hz, 1H); 13C NMR (CDCI3) 8 26.67, 28.12, 
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34.06, 69.66, 78.86, 126.38, 126.42, 127.49, 128.49, 134.83, 135.07, 141.75, 

144.30, 198.34; IR (CHCI3) 3056, 2966, 1707 cm"1; HRMS: m/z 230.1311 (calcd 

for C15H1802, 230.1307). 

2-Bromobenzyl methallyl ether (18). This compound was prepared by the 

same method used for 2-iodobenzyl methallyl ether (14), but employing 

2-bromobenzyl alcohol and methallyl chloride. The resulting product is a colorless 

oil: 1H NMR (CDCI3) 5 1.79 (d, J = 0.6 Hz, 3H), 4.02 (s, 2H), 4.56 (s, 2H), 4.94-4.95 

(m, 1H), 5.04-5.05 (m, 1H), 7.14 (m, 1H), 7.32 (td, J = 7.5, 1.2 Hz, 1H), 7.50-7.55 (m, 

2H); 13C NMR (CDCI3) 5 19.77, 71.42, 74.89, 112.66, 122.78, 127.58, 128.99, 

129.14, 132.65, 138.04, 142.23; IR (CHCI3) 3022, 1610 cm"1; HRMS: m/z 

240.0152 (calcd for CnH13BrO, 240.0150). 

Allyl 2-iodobenzyl ether (19).9 This compound was prepared by the same 

method used for 2-iodobenzyl methallyl ether (14), but employing 2-iodobenzyl 

alcohol and allyl chloride. It was obtained as a colorless oil: 1H NMR (CDCI3) 8 

4.11 (dt, J = 5.4, 1.2 Hz, 2H), 4.50 (s, 2H), 5.23 (dd, J = 10.2, 1.2 Hz, 1H), 5.35 (qt, J 

= 17.4, 1.5 Hz, 1H), 5.93-6.04 (m, 1H), 6.98 (dd, J = 7.5, 1.5 Hz, 1H), 7.35 (t, J = 7.5 

Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H); 13C NMR (CDCI3) 5 

71.87, 76.08, 97.89, 117.53, 128.41, 128.88, 129.32, 134.72, 139.33, 140.78. See 

reference 7 for full characterization. 

4-Methylene-3,4-dihydro-1 A/-isochroman (20). A colorless oil: 1H NMR 

(CDCI3) 5 4.45 (t, J = 1.2 Hz, 2H), 4.82 (s, 2H), 5.02 (s, 1H), 5.61 (s, 1H), 7.02-7.05 

(m, 1H), 7.22-7.24 (m, 2H), 7.67-7.70 (m, 1H); 13C NMR (CDCI3) 5 69.15, 71.18, 

107.09, 123.62, 124.84, 127.15, 128.25, 131.23, 134.75, 138.48; IR (CHCI3) 3010, 
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1613 cm"1; HRMS: m/z 146.1866 (calcd for C10H10O, 146.1863). 

Ethyl 2-(2-iodobenzyloxymethyl)propenoate (21). A colorless oil: 1H 

NMR (CDCIs) 5 1.31 (t, J = 7.2 Hz, 3H), 4.24 (q, J = 7.2 Hz, 2H), 4.33 (s, 2H), 4.56 (s, 

2H), 5.97 (s, 1H), 6.35 (s, 1H), 6.99-7.01 (m, 1H), 7.35 (t, J = 7.2 Hz, 1H), 7.46 (d, J 

= 7.2 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H); 13C NMR (CDCI3) 5 14.42, 60.98, 76.72, 

97.76, 126.12, 128.45, 128.82, 129.41, 137.42, 139.38, 140.53, 166.02; IR (CHCI3) 

3015, 1726 cm"1; HRMS: m/z 346.0071 (calcd for C14H15I02, 346.0066). 

2-lodophenyl 3-methyl-3-butenyl ether (23). This compound was 

prepared by the same method used for 2-iodobenzyl methallyl ether (14), but 

employing 2-iodophenol and 3-methyl-3-butenyl tosylate (see the following 

procedure for the preparation). It was obtained as a colorless oil: 1H NMR (CDCI3) 

5 1.84 (s, 3H), 2.57 (t, J = 6.9 Hz, 2H), 4.12 (t, J = 6.9 Hz, 2H), 4.84-4.85 (m, 1H), 

4.85-4.86 (m, 1H), 6.70 (td, J = 7.5, 1.5 Hz, 1H), 6.81 (dd, J = 8.4, 1.2 Hz, 1H), 

7.25-7.31 (m, 1H), 7.76 (dd, J = 7.8, 1.5 Hz, 1H); 13C NMR (CDCI3) S 23.22, 37.31, 

68.19, 86.89, 112.31, 112.60, 122.65, 129.57, 139.70, 142.29, 157.68; IR (CHCI3) 

3021, 1610 cm"1; HRMS: m/z 273.9860 (calcd for CnH13IO, 273.9855). 

3-Methyl-3-butenyl tosylate.10 To a mixture of Et3N (2.026 g, 20 mmol) 

and 3-methyl-3-buten-1-ol (0.8620 g, 10 mmol) in CH2CI2 at 0 °C in an ice bath was 

slowly added p-tosyl chloride (1.909 g, 10 mmol). The reaction mixture was stirred 

at 0 °C for 3 h, then diluted with CH2CI2, washed by 10% aq HCI solution, 10% aq 

NaHC03 solution, and water and then concentrated, dried over anhydrous Na2S04 

to afford the indicated compound (2.015 g, 84%) as a yellow oil, used without further 

purification. 
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Ethyl (2E)-3-(4,4-dimethyl-3,4-dihydro-2H-chromen-5-yl)propenoate (24). 

A yellow oil: 1H NMR (CDCI3) Ô 1.34 (t, J = 7.2 Hz, 3H), 1.46 (s, 6H), 1.84 (t, J = 7.2 

Hz, 2H), 4.15 (t, J = 7.2 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 6.18 (d, J= 15.6 Hz, 1H), 

6.84 (dd, J = 7.5, 1.5 Hz, 1H), 6.98-7.10 (m, 2H), 8.32 (d, J = 15.6 Hz, 1H); 13C 

NMR (CDCI3) 5 14.52, 30.42, 31.64, 41.12, 60.68, 62.54, 119.50, 119.64, 121.62, 

127.40, 129.92, 136.03, 146.28, 154.69, 169.18; IR (CHCI3) 3018, 2966, 1712 

cm"1; HRMS: m/z 260.1416 (calcd for C16H20O3, 260.1412). 

(3£)-4-(4,4-Dimethyl-3,4-dihydro-2H-chromen-5-yl)but-3-en-2-one (25). 

A yellow oil: 1H NMR (CDCI3) 5 1.47 (s, 6H), 1.85 (t, J = 5.2 Hz, 2H), 2.38 (s, 3H), 

4.15 (t, J = 5.2 Hz, 2H), 6.47 (d, J = 15.0 Hz, 1H), 6.86 (dd, J = 6.0, 0.9 Hz, 1H), 7.01 

(dd, J = 5.7, 1.2 Hz, 1H), 7.09 (t, J = 5.7 Hz, 1H), 8.17 (d, J = 15.0 Hz, 1H); 13C 

NMR (CDCI3) 5 28.23, 30.53, 31.64, 41.09, 62.50, 119.77, 121.58, 127.46, 128.30, 

130.06, 135.95, 144.81, 154.74, 198.32; IR (CHCI3) 3020, 2964, 1705 cm"1; 

HRMS: m/z 230.1311 (calcd for C15H1802, 230.1307). 

2-lodo-5-methoxybenzyl methallyl ether (26). This compound was 

prepared by the same method used for 2-iodobenzyl methallyl ether (14), but 

employing 2-iodo-5-methoxybenzyl alcohol11 and methallyl chloride. It was 

obtained as a colorless oil: 1H NMR (CDCI3) 5 1.80 (s, 3H), 3.80 (s, 3H), 4.02 (s, 

2H), 4.43 (s, 2H), 4.95 (s, 1H), 5.05 (d, J = 0.8 Hz, 1H), 6.59 (dd, J = 8.4, 3.2 Hz, 1H), 

7.08 (d, J = 3.2 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H); 13C NMR (CDCI3) ô 19.86, 55.57, 

74.83, 75.72, 85.74, 112.69, 114.44, 115.38, 139.65, 141.91, 142.14, 160.24; IR 

(CHCI3) 3032, 1640, 1210 cm"1; HRMS: m/z 318.0123 (calcd for C12H1502, 

318.0117). 
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Ethyl (2E)-3-(7-methoxy-4,4-dimethyl-3,4-dihydro-1H-isochromen-5-yl)-

propenoate (27). A colorless oil: 1H NMR (CDCI3) 8 1.34-1.37 (m, 9H), 3.52 (s, 

2H), 3.79 (s, 3H), 4.28 (q, J = 7.2 Hz, 2H), 4.78 (s, 2H), 6.19 (d, J = 15.6 Hz, 1H), 

6.51 (d, J = 2.4 Hz, 1H), 6.86 (d, J = 2.8 Hz, 1H), 8.27 (d, J = 7.2 Hz, 1H); 13C NMR 

(CDCI3) 8 14.55, 26.77, 33.61, 55.48, 60.82, 69.85, 79.15, 110.80, 113.20, 119.96, 

133.95, 136.18, 136.34, 145.60, 157.45, 167.01; IR (CHCI3) 3020, 2952, 1712 

cm"1; HRMS: m/z 290.1524 (calcd for C17H22O4, 290.1518). 

(3E)-4-(7-Methoxy-4,4-dimethyl-3,4-dihydro-1H-isochromen-5-yl)but-3-en 

-2-one (28). A yellow oil: 1H NMR (CDCI3) 8 1.36 (s, 6H), 2.40 (s, 3H), 3.53 (s, 

2H), 3.79 (s, 3H), 4.77 (s, 2H), 6.48 (d, J = 15.6 Hz, 1H), 6.53 (d, J = 2.1 Hz, 1H), 

6.88 (d, J = 2.1 Hz, 1H), 8.12 (d,J= 15.6 Hz, 1H); 13C NMR (CDCI3) S 26.91, 28.10, 

33.60, 55.50, 69.86, 79.11, 111.06, 113.20, 128.69, 134.20, 136.14, 136.48, 144.18, 

157.53, 198.38; IR (CHCI3) 3020, 2954, 1707 cm"1; HRMS: m/z 260.1416 (calcd 

for CI6H2O03, 260.1412). 

5-Dimethylamino-2-iodobenzyl methallyl ether (29). This compound was 

prepared by the same method used to prepare 2-iodobenzyl methallyl ether (14), 

but employing 5-dimethylamino-2-iodobenzyl alcohol12 and methallyl chloride. It 

was obtained as a colorless oil: 1H NMR (CDCI3) 8 1.80 (s, 3H), 2.93 (s, 6H), 4.00 

(s, 2H), 4.43 (s, 2H), 4.94 (d, J = 0.4 Hz, 1H), 5.05 (d, J = 1.2 Hz, 1H), 6.38 (dd, J = 

8.8, 3.2 Hz, 1H), 6.87 (d, J = 3.2 Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H); 13C NMR 

(CDCI3) 8 19.88, 40.63, 74.64, 76.02, 80.90, 112.50, 113.75, 139.16, 139.18, 140.64, 

142.32, 150.80; IR (CHCI3) 3020, 1625 cm"1; HRMS: m/z 331.0441 (calcd for 

C14H18INO, 331.0433). 
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Ethyl (2£)-3-[7-(dimethylamino)-4,4-dimethyl-3,4-dihydro-1H-isochro-

men-5-yl]propenoate (30). A colorless oil: 1H NMR (CDCI3) 5 1.34-1.37 (m, 9H), 

2.93 (s, 6H), 3.51 (s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 4.77 (s, 2H), 6.20 (d, J = 15.6 Hz, 

1H), 6.33 (d, J = 3.2 Hz, 1H), 8.30 (d, J = 15.6 Hz, 1H); 13C NMR (CDCI3) 5 14.55, 

26.87, 33.30, 40.66, 60.71, 70.10, 79.35, 109.44, 111.81, 119.34, 129.75, 135.50, 

135.65, 146.72, 148.51, 167.16; IR (CHCI3) 3022, 1712 cm"1; HRMS: m/z 

303.1842 (calcd for Ci8H25N03, 303.1834). 

6-lodopiperonyl methallyl ether (33). This compound was prepared by 

the same method used for 2-iodobenzyl methallyl ether (14), but employing 

(6-iodo-1,3-benzodioxo-5-yl)methanol13 and methallyl chloride. It was obtained as 

a colorless oil: 1H NMR (CDCI3) 5 1.79 (s, J = 0.3 Hz, 3H), 3.98 (s, 2H), 4.94-4.95 

(m, 1H), 5.02-5.03 (m, 1H), 5.96 (s, 2H), 7.00 (s, 1H), 7.23 (s, 1H); 13C NMR 

(CDCI3) 5 19.84, 74.67, 75.79, 85.68, 101.79, 109.34, 112.72, 118.62, 134.42, 

142.19, 147.94, 148.68; IR (CHCI3) 3032, 1620 cm"1; HRMS: m/z 331.9914 

(calcd for C12H13I03, 331.9910). 

/V-2-lodobenzyl-A/-(methallyl)methanesulfonamide (35). This compound 

was prepared by the same method used for 2-iodobenzyl methallyl ether (14), but 

employing 2-iodobenzyl chloride and A/-(methallyl)methanesulfonamide (see the 

following procedure for the preparation). It was obtained as a colorless oil: 1H 

NMR (CDCI3) Ô 1.71 (s, 3H), 2.96 (s, 3H), 3.82 (s, 2H), 4.56 (s, 2H), 4.89 (s, 1H), 

4.92 (s, 1 H), 6.98 (td, J = 7.5, 1.5 Hz, 1 H), 7.37 (dd, J = 7.8, 0.9 Hz, 1 H), 7.50 (dd, J 

= 7.5, 1.5 Hz, 1 H), 7.81 (dd, J = 7.8, 0.9 Hz, 1 H); 13C NMR (CDCI3) ô 20.36, 40.22, 

53.86, 55.92, 98.64, 114.70, 128.70, 129.13, 129.44, 138.30, 139.64, 139.66; IR 
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(CHCI3) 3020, 1620, 1352 cm"1; HRMS: m/z 364.9773 (calcd for C12H16IN02S, 

364.9769). 

A/-(Methallyl)methanesulfonamide.14 Methallylamine (0.2240 g, 3.15 

mmol) was placed in a 25-ml flame-dried, round bottom flask, sealed with a rubber 

septum, and maintained under a slight flow of N2. Dry CH2CI2 (5 ml) was added, 

followed by Et3N (0.44 ml, 3.15 mmol), and the solution was cooled to -78 °C. 

Methanesulfonyl chloride (0.24 ml, 3.17 mmol) was added dropwise by a syringe. 

The reaction was stirred at -78 °C under N2 for 1 h, and then quenched by pouring 

onto ice. After extraction with ether, the combined ether solution was washed with 

water, 10% aq NaHC03 solution, and water and then dried over Na2S04. 

A/-(Methallyl)methanesulfonamide (0.4188 g, 89%) was obtained as a colorless oil: 

1H NMR (CDCI3) 5 1.79 (d, J = 0.3 Hz, 3H), 2.97 (s, 3H), 3.69 (m, 2H), 4.64 (br s, 

1H), 4.93-4.95 (m, 1H), 4.99-5.00 (m, 1H); 13C NMR (CDCI3) 5 20.24, 41.06, 

49.12, 112.96, 141.12. See reference 14 for full characterization. 

Ethyl (2E)-3-(4,4-dimethyl-2-methanesulfonyl-1,2,3,4-tetrahydroisoquin-

olin-5-yl)propenoate (36). A pale yellow solid: mp 108-109 °C; 1H NMR (CDCI3) 

5 1.35 (t, J = 7.2 Hz, 3H), 1.48 (s, 6H), 2.89 (s, 3H), 3.14 (s, 2H), 4.29 (q, J = 7.2 Hz, 

2H), 4.42 (s, 2H), 6.18 (d, J = 15.6 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 7.20 (t, J = 7.5 

Hz, 1H), 7.33 (d, J = 6.9 Hz, 1H), 8.28 (d, J = 15.6 Hz, 1H); 13C NMR (CDCI3) Ô 

14.48, 27.54, 34.87, 36.39, 49.23, 58.25, 60.80, 120.25, 126.76, 128.32, 128.43, 

131.94, 135.26, 141.18, 145.69, 166.88; IR (CHCI3) 3040, 2985, 1712, 1360 cm'1; 

HRMS: m/z 337.1353 (calcd for C17H23N04S, 337.1348). 

(3E)-4-(4,4-Dimethyl-2-methanesulfonyl-1,2,3,4-tetrahydroisoquinolin-5-
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yl)but-3-en-2-one (37). A white solid: mp 149-150 °C; 1H NMR (CDCI3) 5 1.49 (s, 

6H), 2.40 (s, 3H), 2,90 (s, 3H), 3.15 (s, 2H), 4.43 (s, 2H), 6.48 (d, J = 15.6 Hz, 1H), 

7.10 (d, J = 7.5 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 7.34 (dd, J = 7.5, 0.6 Hz, 1H), 8.14 

(d, J = 15.6 Hz, 1H); 13C NMR (CDCI3) Ô 27.68, 28.23, 34.89, 36.41, 49.26, 58.24, 

126.85, 128.42, 128.57, 128.80, 132.07, 135.25, 141.42, 144.20, 198.13; IR 

(CHCIs) 3032, 2984, 1707, 1360 cm"1; HRMS: m/z 307.1246 (calcd for 

C16H2iN03S, 307.1242). 

/V-2-lodophenyl-A/-(3-methyl-3-butenyl)methanesulfonamide (38). This 

compound was prepared by the same method used to prepare 2-iodobenzyl 

methallyl ether (14), but employing /V-(2-iodobenzyl)methanesulfonamide (see the 

following procedure for the preparation) and 4-iodo-2-methylbut-1 -ene10 

(3-methyl-3-butenyl tosylate did not work). It was obtained as a colorless oil: 1H 

NMR (CDCI3) 6 1.69 (s, 3H), 2.29 (t, J= 8.1 Hz, 2H), 3.07 (s, 3H), 3.59-3.92 (m, 2H), 

4.69 (s, 1H), 4.78 (s, 1H), 7.05-7.11 (m, 1H), 7.38-7.46 (m, 2H), 7.94 (dd, J = 7.8 Hz, 

1H); 13C NMR (CDCI3) 5 22.68, 36.83, 40.91, 50.00, 101.60, 112.26, 129.31, 

130.30, 132.48, 140.60, 141.05, 142.09; IR (CHCI3) 3056, 1620, 1350 cm"1; 

HRMS: m/z 364.9773 (calcd for C12H16IN02S, 364.9769). 

W-(2-lodophenyl)methanesulfonamide.15 Methanesulfonyl chloride (0.6 

ml, 6.0 mmol), 2-iodoaniline (1.096 g, 5.0 mmol) and 4-(dimethylamino)pyridine 

(0.062 g, 0.5 mmol) were dissolved in Et3N (10 ml), and the resulting mixture was 

heated under reflux for 12 h. The reaction mixture was allowed to cool, diluted with 

CH2CI2 and washed with 2 M aq HCI and 2 M aq NaOH. The combined aqueous 

extracts were acidified with conc HCI and then extracted with CH2CI2. The 
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combined organic extracts were dried over MgS04 and then concentrated, affording 

the indicated compound in a 70% yield (1.043 g). See reference 15 for full 

characterization. 

Ethyl (2E)-3-(4,4-dimethyl-1 -methanesulfonyl-1,2,3,4-tetrahydroisoquin-

olin-5-yl)propenoate (39). A pale yellow solid: mp 120-121 °C; 1H NMR (CDCI3) 

5 1.35 (t, J = 7.2 Hz, 3H), 1.47 (s, 6H), 1.85-1.87 (m, 2H), 2.92 (s, 3H), 3.80-3.83 (m, 

2H), 4.28 (q, J = 7.2 Hz, 2H), 6.15 (d, J = 15.2, 1H), 7.16-7.23 (m, 2H), 7.74 (dd, J = 

8.0, 1.6 Hz, 1H), 8.36 (d, J =15.2 Hz, 1H); 13C NMR (CDCI3) Ô 14.50, 30.44, 33.96, 

39.88, 41.16, 42.90, 60.82, 120.70, 125.20, 126.73, 126.95, 139.30, 136.34, 136.78, 

146.49, 166.91; IR (CHCI3) 2956, 1712, 1355 cm'1; HRMS: m/z 337.1353 (calcd 

for C17H23NO4S, 337.1348). 

(3E)-4-(4,4-Dimethyl-1-methanesulfonyl-1,2,3,4-tetrahydroisoquinolin-5-

yl)but-3-en-2-one (40). A white solid: mp 135-137 °C; 1H NMR (CDCI3) 5 1.48 (s, 

6H), 1.86-1.89 (m, 2H), 2.39 (s, 3H), 2.94 (s, 3H), 3.80-3.83 (m, 2H), 6.46 (d, J = 

15.6 Hz, 1H), 7.18-7.24 (m, 2H), 7.75 (dd, J = 7.6, 1.6 Hz, 1H), 8.22 (d, J = 15.6 Hz, 

1H); 13C NMR (CDCI3) S 28.46, 30.51, 33.93, 39.89, 41.12, 42.83, 125.36, 126.64, 

126.97, 129.05, 136.24, 136.49, 136.82, 144.90, 198.04; IR (CHCI3) 2960, 1707, 

1355 cm"1; HRMS: m/z 307.1246 (calcd for C16H2iN03S, 307.1242). 

Diethyl 2-(2-iodobenzyl)-2-(methallyl)malonate (41). This compound 

was prepared by the same method used for 2-iodobenzyl methallyl ether (14), but 

employing diethyl 2-(2-iodobenzyl)malonate and methallyl chloride. It was 

obtained as a colorless oil: 1H NMR (CDCI3) S 1.16 (t, J= 7.2 Hz, 6H), 1.71 (s, 3H), 

2,81 (s, 2H), 3.53 (s, 2H), 4.06-4.17 (m, 4H), 4.75 (m, 1H), 4.88 (t, J = 1.5 Hz, 1H), 
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6.87 (td, J = 7.5, 1.5 Hz, 1H), 7.23 (td, J = 7.2, 1.2 Hz, 1H), 7.35 (dd, J = 7.8, 1.8 Hz, 

1H), 7.81 (dd, J= 8.1, 1.2 Hz, 1H); 13C NMR (CDCI3) 5 14.02, 23.83, 42.30, 43.11, 

58.36, 61.63, 103.19, 115.53, 128.15, 128.47, 130.38, 139.89, 140.49, 141.07, 

171.24; IR (CHCI3) 2969, 1760, 1741 cm"1; HRMS: m/z 430.0652 (calcd for 

Ci8H19I04, 430.0641). 

Diethyl 5-[(1£)-3-ethoxy-3-oxoprop-1-enyl]-4,4-dimethyl-3,4-dihydro-

naphthalene-2,2(1H)-dicarboxylate (42). A colorless oil: 1H NMR (CDCI3) 5 

1.25 (t, J = 7.2 Hz, 6H), 1.34 (t, J = 7.2 Hz, 3H), 1.41 (s, 6H), 2.33 (s, 2H), 3.24 (s, 

2H), 4.12-4.30 (m, 6H), 6.10 (d, J = 15.3 Hz, 1H), 7.11-7.27 (m, 3H), 8.37 (d, J = 

15.6 Hz, 1H); 13C NMR (CDCI3) 5 14.14, 14.50, 31.15, 35.12, 36.76, 46.28, 51.28, 

60.64, 61.60, 120.09, 126.56, 128.41, 131.24, 134.32, 135.10, 141.79, 147.44, 

167.12, 171.76; IR (CHCI3) 1760, 1740, 1712 cm"1; HRMS: m/z 402.2042 (calcd 

for C23H30O6, 402.2053). 

Diethyl 4,4-dimethyl-5-[(1E)-(3-oxobut-1-enyl)-3,4-dlhydronaphthalene-

2,2(1 H)-dicarboxylate (43). A colorless oil: 1H NMR (CDCI3) 8 1.25 (t, J = 7.2 Hz, 

6H), 1.42 (s, 6H), 2.34 (s, 2H), 2.37 (s, 3H), 3.25 (s, 2H), 4.13-4.23 (m, 4H), 6.41 (d, 

J= 15.6 Hz, 1H), 7.12-7.26 (m, 3H), 8.23 (d, J = 15.6 Hz, 1H); 13C NMR (CDCI3) 5 

14.13, 28.16, 31.29, 35.14, 36.74, 46.28, 51.80, 61.63, 126.62, 128.36, 128.86, 

131.49, 134.44, 135.03, 141.99, 146.03, 171.72, 198.36; IR (CHCI3) 1760, 1740, 

1707 cm"1; HRMS: m/z 372.1941 (calcd for C22H19O5, 372.1937). 

2-lodobenzyl methallyl sulfide (44). This compound was prepared by the 

same method used for 2-iodobenzyl methallyl ether (14), but employing 

2-iodobenzyl thiol (see the following procedure for the preparation) and methallyl 
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chloride. It was obtained as a colorless oil: 1H NMR (CDCI3) 5 1.85 (t, J = 0.9 Hz, 

3H), 3.10 (d, J = 0.9 Hz, 2H), 3,71 (s, 2H), 4.89 (q, J = 0.9 Hz, 1H), 4.92 (t, J = 1.5 

Hz, 1H), 6.93 (dt, J = 7.5, 1.5 Hz, 1H), 7.26-7.36 (m, 2H), 7.84 (dd, J= 7.8, 1.2 Hz, 

1H); 13C NMR (CDCI3) 5 21.12, 39.51, 40.69, 101.03, 114.19, 128.40, 128.82, 

130.23, 140.04, 140.99, 141.31; IR (CHCI3) 3055, 1624 cm'1; HRMS: m/z 

303.9789 (calcd for CnH13IS, 303.9783). 

2-lodobenzyl thiol.16 2-lodobenzyl chloride (1.008 g, 4.30 mmol) was 

added to a solution of thiourea (0.6321 g, 8.3 mmol) in dioxane (10 ml). The 

mixture was slowly warmed to 95 °C. An oily phase separated and the reaction 

mixture was refluxed for an additional 3 h. After the mixture was allowed to cool, 

aq NaOH (1.07 g in 3 ml of water) was added. After refluxing an additional 3 h, the 

solution was acidified with dilute H2S04 and extracted with hexanes. The organic 

layer was washed with water, dried over anhydrous Na2S04 and concentrated, 

affording a crude product suitable for use without further purification. 

Methallyl 2-iodobenzoate (46). Methallyl alcohol (0.2480 g, 3.44 mmol) in 

dry pyridine was cooled to 0 °C. 2-lodobenzoyl chloride (0.8304 g, 3.16 mmol) was 

added and stirred for 6 h at room temperature. The reaction mixture was 

quenched by adding ice, and extracted using dichloromethane. The organic layer 

was then washed successively with cold 5% aq HCI solution, 5% aq NaHC03 

solution and brine, and dried over Na2S04 and concentrated, affording the indicated 

compound (0.8314 g, 87 %) as a colorless oil: 1H NMR (CDCI3) 5 1.86 (s, 3H), 

4.76 (s, 2H), 5.01 (s, 1H), 5.10 (s, 1H), 7.16 (td, J= 7.8, 1.8 Hz, 1H), 7.41 (td, J = 7.8, 

1.2 Hz, 1H), 7.84 (dd, J = 7.8, 1.8 Hz, 1H), 8.01 (dd, J = 7.8, 1.2 Hz, 1H); 13C NMR 
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(CDCIa) 8 19.99, 69.12, 94.35, 113.97, 128.12, 131.17, 132.88, 135.28, 139.77, 

141.60, 166.37; IR (CHCI3) 1727, 1622 cm"1; HRMS: m/z 301.9810 (calcd for 

CnHuIOz, 301.9804). 

2-lodobenzyl methacrylate (48). To 1.0 g of powdered 3 A molecular 

sieves and 2-iodobenzyl alcohol (0.7018 g, 3.0 mmol) in a stirred solution of 5 ml of 

CCI4 was added methacryloyl chloride (0.37 ml, 3.75 mmol). The reaction mixture 

was heated to reflux for 24 h. The mixture was then filtered. The filtrate was 

concentrated, and then chromatographed (6:1 hexanes/ethyl acetate), affording the 

indicated compound (0.6825 g, 75%) as a colorless oil: 1H NMR (CDCI3) 8 1.99 

(dd, J= 1.5, 1.5 Hz, 3H), 5.20 (s, 2H), 5.62 (qt, J = 1.5 Hz, 1H), 6.21 (dd, J = 1.5, 1.5 

Hz, 1H), 7.03 (td, J = 6.6, 2.1 Hz, 1H), 7.35-7.41 (m, 2H), 7.86 (dd, J = 7.8, 0.9 Hz, 

1H); 13C NMR (CDCI3) 8 18.58, 70.30, 98.43, 126.36, 128.51, 129.60, 129.99, 

136.24, 138.70, 139.72, 167.11; IR (CHCI3) 1724, 1610 cm"1; HRMS: m/z 

301.9810 (calcd for CnHnl02, 301.9804). 

2-[(1 £)-3-Ethoxy-3-oxoprop-1 -enyl]benzyl 2-methylpropenoate (49). A 

colorless oil: 1H NMR (CDCI3) 8 1.34 (t, J = 7.2 Hz, 3H), 1.95 (q, J = 0.9 Hz, 3H), 

4.27 (q, J = 7.2 Hz, 2H), 5.32 (s, 2H), 5.58 (quintet, J = 1.5 Hz, 1H), 6.14 (m, 1H), 

6.39 (d, J= 15.9 Hz, 1H), 7.36-7.45 (m, 3H), 7.61-7.64 (m, 1H), 8.01 (d, J =15.9 Hz, 

1H); 13C NMR (CDCI3) 8 14.46, 18.45, 60.75, 64.43, 120.89, 126.26, 127.04, 

129.06, 130.12, 130.20, 134.20, 135.03, 136.18, 141.29, 166.74, 167.08; IR 

(CHCI3) 1724, 1711, 1620 cm"1; HRMS: m/z 274.3129 (calcd for C16H1804, 

274.3125). 

2-lodophenyl methallyl ether (52).17 This compound was prepared by the 
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same method used for 2-iodobenzyl methallyl ether (14), but employing 

2-iodophenol and methallyl chloride. It was obtained as a colorless oil: 1H NMR 

(CDCI3) 5 1.87 (s, 3H), 4.48 (s, 2H), 5.02 (s, 1H), 5.20 (s, 1H), 6.71 (td, J = 7.6, 1.2 

Hz, 1H), 6.80 (dd, J= 7.6, 0.8 Hz, 1H), 7.26-7.30 (m, 1H), 7.78 (dd, J= 7.6, 1.6 Hz, 

1H); 13C NMR (CDCI3) S 19.67, 72.72, 86.77, 112.49, 113.13, 122.77, 129.55, 

139.70, 140.43, 157.36. See reference 17 for full characterization. 

Ethyl 2-(2-iodophenyl)-4-methylpent-4-enoate (54). This compound was 

prepared by the same method used for 2-iodobenzyl methallyl ether (14), but 

employing ethyl (2-iodophenyl)acetate (see the following procedure for the 

preparation) and methallyl chloride. It was obtained as a colorless oil: 1H NMR 

(CDCI3) 5 1.21 (t, J = 7.2 Hz, 3H), 1.78 (s, 3H), 2.38-2.44 (m, 1H), 2.69-2.77 (m, 1H), 

4.04-4.20 (m, 2H), 4.26 (dd, J = 9.1, 4.5 Hz, 1H), 4.73 (s, 1H), 4.77 (s, 1H), 6.94 (td, 

J = 7.5., 1.5 Hz, 1H), 7.31 (td, J = 7.5, 1.2 Hz, 1H), 7.40 (dt, J = 8.4, 1.8 Hz, 1H), 

7.85 (dd, J = 8.4, 1.5 Hz, 1H); 13C NMR (CDCI3) Ô 14.34, 22.91, 41.41, 53.65, 

61.12, 101.71, 112.65, 128.05, 128.76, 129.04, 139.99, 141.83, 142.53, 173.15; 

IR (CHCI3) 1743, 1640 cm"1; HRMS: m/z 344.0279 (calcd for CI4H17I02, 

344.0273). 

Ethyl (2-iodophenyl)acetate.18 To a 50-ml round-bottom flask was added 

(2-iodophenyl)acetic acid (0.8652 g, 3.30 mmol), ethanol (10 ml) and conc H2S04 

(0.3 ml). The mixture was refluxed for 3 h, then poured into 30 ml of 5% aq 

NaHC03 solution, extracted with ethyl ether, dried over Na2S04, and concentrated, 

affording the indicated compound (0.8577 g, 90%) as a colorless oil: 1H NMR 

(CDCI3) 5 1.28 (t, J = 7.2 Hz, 3H), 3.79 (s, 3H), 4.19 (q, J = 7.2 Hz, 2H), 6.96 (td, J = 
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7.2, 2.0 Hz, 1 H), 7.27-7.34 (m, 2H), 7.85 (d, J = 7.6 Hz, 1 H). See reference 18 for 

full characterization. 

2-lodophenyl methacrylate (56). This compound was prepared by the 

same method used for 2-iodobenzyl methacrylate (48), but employing 

2-iodophenol and methacryloyl chloride. It was obtained as a colorless oil: 1H 

NMR (CDCI3) 5 2.11 (s, 3H), 5.82 (t, J = 1.2 Hz, 1H), 6.46 (s, 1H), 6.98 (td, J = 7.6, 

1.2 Hz, 1H), 7.15 (dd, J = 8.0, 1.2 Hz, 1H), 7.38 (td, J= 8.0, 1.2 Hz, 1H), 7.84 (dd, J 

= 7.6, 1.2 Hz, 1H); 13C NMR (CDCI3) 5 18.64, 90.52, 123.29, 127.71, 128.35, 

129.59, 135.71, 139.62, 151.47, 165.14; IR (CHCI3) 1725, 1615 cm'1; HRMS: 

m/z 287.9651 (calcd for CI0H9IO2, 287.9647). 

Ethyl (2E)-3-{2-[(2,2-dimethylpropanoyl)oxy]phenyl}propenoate (57). A 

colorless oil: 1H NMR (CDCI3) 5 1.32 (t, J = 7.2 Hz, 1H), 1.42 (s, 9H), 4.25 (q, J = 

7.2 Hz, 2H), 6.42 (d, J = 16.0 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 7.24-7.27 (m, 1H), 

7.38-7.42 (m, 1H), 7.64 (dd, J = 8.0, 1.6 Hz, 1H), 7.77 (d, J = 16.0 Hz, 1H); IR 

(CHCI3) 1722, 1714 cm"1; HRMS: m/z 276.1366 (calcd for C16H2o04, 276.1362). 

Insufficient material was available to obtain a good 13C NMR spectrum. 

2-[(1 E)-3-Oxo-1 -butenyl)phenyl pivalate (58). A colorless oil: 1H NMR 

(CDCI3) 5 1.43 (s, 9H), 2.35 (s, 3H), 6.69 (d, J = 16.2 Hz, 1H), 7.08 (dd, 7 = 8.1, 1.2 

Hz, 1H), 7.26 (t, J = 7.2 Hz, 1H), 7.42 (dt, J = 7.5, 1.5 Hz, 1H), 7.60 (d, J =16.5 Hz, 

1H), 7.66 (dd, J = 7.8, 1.8 Hz, 1H); 13C NMR (CDCI3) 8 27.22, 27.40, 27.56, 39.56, 

123.21, 126.46, 127.36, 129.01, 131.53, 136.68, 150.03, 176.86, 198.18; IR 

(CHCI3) 1736, 1725 cm"1; HRMS: m/z 246.1256 (calcd for C15H18I02, 246.1251). 

AZ-(2-lodophenyl)methacrylamide (59).19 2-lodoaniline (0.6572 g, 3.0 
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mmol) was dissolved in 10 mL of pyridine. The solution was cooled to 0 °C in an 

ice bath. Methacryloyl chloride (0.3139 g, 3.0 mmol) was added dropwise to the 

mixture and the mixture was stirred for another 2 h. The precipitated salts were 

filtered and the filtrate was washed with water, extracted using ethyl ether, 

concentrated, and dried over anhydrous Na2S04. Removal of the solvent afforded 

a yellow solid: mp 48-49 °C. All spectral data were consistent with those reported 

in reference 19. 

2-lodobenzyl 3-methyl-3-butenyl ether (61). This compound was 

prepared by the same method used to prepare 2-iodobenzyl methallyl ether (14), 

but employing 2-iodobenzyl chloride and 3-methyl-3-buten-1 -ol. It was obtained as 

a colorless oil: 1H NMR (CDCI3) 5 1.77 (s, 3H), 2.39 (t, J = 6.9 Hz, 2H), 3.67 (t, J = 

6.9 Hz, 2H), 4.50 (s, 2H), 4.77-4.78 (m, 1H), 4.80-4.81 (m, 1H), 6.97 (td, J = 7.8, 1.8 

Hz, 1H), 7.34 (td, J = 7.5, 0.9 Hz, 1H), 7.44 (dt, J = 6.0, 0.9 Hz, 1H), 7.81 (dd, J = 7.8, 

0.9 Hz, 1H); 13C NMR (CDCI3) Ô 22.99, 38.03, 69.55, 76.80, 97.82, 111.82, 128.41, 

128.80, 129.25, 139.28, 140.92, 142.98; IR (CHCI3) 3062, 2985, 1622 cm"1; 

HRMS: m/z 302.0172 (calcd for C12H15IO, 302.0168). 

Ethyl (2£)-3-[2-(3-methyl-3-butenyloxymethyl)phenyl]propenoate (62). 

A colorless oil: 1H NMR (CDCI3) 5 1.34 (t, J = 7.2 Hz, 3H), 1.75 (s, 3H), 2.36 (t, J = 

6.9 Hz, 2H), 3.64 (t, J = 6.9 Hz, 2H), 4.27 (q, J = 7.2 Hz, 2H), 4.62 (s, 2H), 4.75 (q, J 

= 0.9 Hz, 1H), 4.78 (s, 1H), 6.37 (d, J= 15.9 Hz, 1H), 7.29-7.42 (m, 3H), 7.57-7.60 

(m, 1H), 8.00 (d, J = 15.9 Hz, 1H); 13C NMR (CDCI3) 8 14.49, 22.88, 37.92, 60.63, 

69.35, 70.86, 111.74, 120.24, 126.87, 128.35, 129.51, 130.00, 133.78, 137.45, 

141.82, 142.87, 167.01; IR (CHCI3) 1711, 1625 cm"1; HRMS: m/z 274.1573 
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(calcd for C17H2203, 274.1569). 

3-Methyl-3-butenyl 2-iodobenzoate (63). This compound was prepared 

by the same method used for methallyl 2-iodobenzoate (35), but employing 

2-iodobenzoyl chloride and 3-methyl-3-buten-1-ol. It was obtained as a colorless 

oil: 1H NMR (CDCI3) 5 1.81 (s, 3H), 2.50 (t, J = 6.9 Hz, 2H), 4.46 (t, J = 6.9 Hz, 2H), 

4.82 (m, 1H), 4.85 (s, 1H), 7.41 (td, J = 7.5, 1.5 Hz, 1H), 7.39 (td, J = 7.5, 1.2 Hz, 

1H), 7.79 (dd, J = 7.5, 1.5 Hz, 1H), 7.99 (dd, J = 8.4, 0.9 Hz, 1H); 13C NMR (CDCI3) 

S 22.71, 36.85, 63.95, 94.30, 112.79, 128.09, 131.11, 132.76, 141.50, 141.66, 

166.68; IR (CHCI3) 2960, 1727 cm"1; HRMS: m/z 315.9960 (calcd for C12H13I02, 

315.9969). 

Ethyl (2E)-3-[2-(3-methyl-3-butenyloxycarbonyl)phenyl]propenoate (64). 

A colorless oil: 1H NMR (CDCI3) 8 1.33 (t, J = 7.2 Hz, 3H), 1.80 (s, 3H), 2.49 (t, J = 

6.9 Hz, 2H), 4.27 (q, J = 7.2 Hz, 2H), 4.45 (t, J = 6.9 Hz, 2H), 4.80 (s, 1H), 4.83 (s, 

1H), 6.28 (d, J =15.9 Hz, 1H), 7.42 (dt, J = 7.5, 1.5 Hz, 1H), 7.51 (dt, J = 7.5, 1.2 Hz, 

1H), 7.57 (dd. J = 7.8, 1.5 Hz, 1H), 7.94 (dd, J = 7.8, 1.5 Hz, 1H), 8.42 (d, J =15.9 

Hz, 1H); 13C NMR (CDCI3) 8 14.51, 22.61, 36.93, 60.72, 63.70, 112.74, 121.24, 

128.06, 129.48, 130.276, 130.92, 132.43, 136.56, 141.68, 143.94, 166.70, 166.89; 

IR (CHCI3) 1727, 1711 cm"1; HRMS: m/z 288.1367 (calcd for C17H2o04, 288.1362). 
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GENERAL CONCLUSION 

In this dissertation, the scope and limitations of several palladium-catalyzed 

processes have been presented. Specifically, the scope of the palladium-catalyzed 

cross-coupling of 2-(1-alkynyl)benzaldimines has been investigated for the 

synthesis of 3,4-disubstituted isoquinolines with organic halides, for the synthesis of 

3-substituted 4-aroylisoquinolines with carbon monoxide and aryl halides, and 

3-substituted isoquinoline-4-carboxylates with carbon monoxide and methanol. 

Chapter 1 describes the synthesis of a wide variety of 3,4-disubstituted 

isoquinolines containing an aryl, allylic, benzylic, alkynyl or vinylic substituent at the 

4 position of the isoquinoline. These isoquinolines have been prepared in 

moderate to high yields by employing mild reaction conditions, short reaction times 

and starting materials that are easily available. The electronic and steric effects of 

the organic halides on the reaction yields are discussed. A mechanism is 

proposed for this process. 

Chapter 2 describes the synthesis of 3-substituted 4-aroylisoquinolines in 

high yields and excellent chemical selectivities under mild reaction conditions. The 

success of the palladium-catalyzed carbonylative cyclization of 2-(1 -alkynyl)-

benzaldimines expands the application of this methodology. 

Chapter 3 describes our efforts in a methodology study of the 

palladium-catalyzed oxidative carbonylative cyclization for the synthesis of methyl 

3-substituted isoquinoline-4-carboxylates employing 2-(1-alkynyl)benzaldimines, 

carbon monoxide and methanol. Although it has not been fully developed into a 



156 

useful synthetic method, it enables us to look into the nature of palladium-catalyzed 

cross-coupling cyclization reactions. 

Chapter 4 describes a new palladium migration reaction that has been 

recently discovered in the Larock group. A mechanism involving a palladium 

migration step is proposed. The reaction scope has been studied. In addition, 

preliminary results indicate that the occurrence of this palladium migration is highly 

dependent on the reaction conditions. 
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APPENDIX A. CHAPTER 1 1H AND 13C NMR SPECTRA 
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APPENDIX B. CHAPTER 2 1H AND 13C NMR SPECTRA 
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