

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600
UMI'
\square

NOTE TO USERS

This reproduction is the best copy available.

(

PHYSIOLOGIC SFECIALIZATION IN PUCCINIA CORONATA AVERAE (CORDA) ERIKS. AND HENN.

By
Hickman Charles Hurphy

A Thesis Submitted to the Graduate Facultrr
for the Degree of
DOCTOR OF PHILOSOPHY
Major Subjecta - Plant Patholo, and Grop Breeding

npproved:

Signature was redacted for privacy.

Signature was redacted for privacy.
In Charge of hajor Work

Signature was redacted for privacy.

Signature was redacted for privacy.
Head of Majar Department

Signature was redacted for privacy.
Dean of craduate College

> Iowa State College 1930

UMI

UMI Microform DP14506

Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346

Ann Arbor, MI 48106-1346
$\therefore \because A B O 6$
$\because P$
TABIE OF CONTENTS
Page
IMTRODUCTION 3
PERTIMENT LITERATURE 4
MATERIALS AND METHODS. 13
Selection of possible differential hosts. 25
Types of crown rust infection 17
Field test of varieties and selections. 18
IDEATIFICATION OF PHYSIOLOGIC FORMS 21
Gultures collected during 1927 and 1928 22
Cultures colleoted during 1929 and 1930 25
Key for identification of physiologic forms 29
Nature of physiologic forms identified. 30
PREVAIENCE AND GEOGRAPHIC DISTRIBUTION OF PHYSIOLOGIC FORMS IDENTIFIED 34
Physiologic forms collected on Rhemnus. 51
Phyalologic foms collected on Avena 53
RESPONSE OF VARIETIES, SELECTIONS, AND SPECIES 56
GRARINEOUS HOST RANGE OF CERTAIN PHYSIOLOGIC FORAS 72
DISCUSSION AND CONGLOSTOHS 78
SUTMARY 81
ACKNONLEDGHENTS 83
LITERAIURE CITED 84
EXPIANATION OF PLATES. 91
$T 3381$

PHYSIOLOGIC SPECIALIZATION IN PUCCINIA CORONATA

> AVENAE (CORDA) ERIKS. AND HENN.

INTRODUCTION

The presence of physiolojic specialization in the rusts was first demonstrated in 1894 by Friksson and Henring (29). and since that time many rusts have been shown to consist of two or more entities, each having a specific host relationship. Two developments have come about in our uncerstanding of these specialized entities, first that major physiologic units exist within such species of rust as Puccinia graminis Pers. and P. cononota corda and are distinguished by their ability to infect certain host species; second, that there are minor units which are separated by their specific reaction on Varieties. the former are consicered as physiologic varieiles and the latter as physiologic roms.

In the present investigation an attempt has been made to identify, and detemmine the prevalence and distribution of physiologic forms of P. coronata avenae (Corda) Eriks. and Henn. present in the oat-growing regions of the United states and Ganada during the years 1927, 1928, 1929, and 1930. The relationship of the occurrence of these forms to the specific host from widch they were collected, and the host ranges of the most important forms has also been studied.

PERTINENT LITERATURE

Our knowledge of physiologic specialization in the rust fungi berins with schroeter (59). In 1879 he calls attention to the presence of physiologic variation in certain rusts on Carex. Similar variation in Puccinia graminis Pers. anc other rust fungi were reported by Dietel (13), in 1887. It remined for Eriksson and Henning (29) in 1394 to first cefinitely cemonstrate physiologic specialization based on pathogenicity. They showed thet there were present within Puccinia coronata Coria at least four physiologic varieties anc \quad fithin p. ajspersa Eriks. two such varieties, which vere distinguished by their ability to infect certain nosts. Later in the same year mriksson (24) described six physiologic varieties in P. coronata; four in P. disperse; five in \underline{P}. graminia, and five in \underline{P}. glumarum (Schm.) Eriks. and Henn. Three physiologic varieties were adied to P. coronata by Klebahn (41, 42, 43) and three by Eriksson (25, 28), while Muhlethaler (49), using a difierent host relationship as the basis of his classification, described twelve ghysiologic varieties. Eriksson (26) later added two physiologic varieties to \underline{P}. dispersa and ruised ali of these to specific rank. One physiologic variety was acied to \underline{E}. graminis by Eriksson (27) and three by Jaczewsiki (36), winile in the United States Stakman and Piemeisel (65) have adaed the physiologic variety $P \cdot$ graminis tritici conapacti and sugeest the establish-
ment of P. phiei-pratensis Eriks. and Herm. as an adicitional variety under P . graminis. This same phenomenon has been observed and sludied in many adiltional species of rust by liagnus (44), Rostrup (57), Klebahn (42), Fietel (19), Hard (68), Bandi (3), Probst (56), Jordi (37, 38), and others.

That it is jossible to further civide certain of these physiologic varieties descrived by Eriksson and Henning (29), Eriksson (24), Klebahn (42), and otiers,into physiologic forms distinguisned by their specific reaction on varieties or species, Has first shom by stakman and Piemeisel (55). Forhing with tho physiologic variety Puccinia sraminis tritici Eriks. and Henn., Stakman and Levine (62) were aiole to distinguish 37 physiologic forms on the basis of the differential reaction of 12 varieties of wheat. The existence of four physiologic forms within P graminis avenge Eriks. and Henn. was demonstrated by Stakmen, Levine and Bailey (63). Later Bailey (8) described a fifth form, and in 1928 Gordon (31) and Gordon and Bailey (32) reported a sixth physiologic form occurring in canada.

The presence of physiologic forms within the rust species is not linited to P. Eraminis. Rains and Jackson (46) were able to distinguish 12 physiologic forms of . triticina Eriks. by their specific reaction on 11 varieties of wheat. Scheibe (53) workine in Germany discovered four forms of P. triticina, one

-6-

Mains (45) reports the presence of two physiolocic forms in P. aispersa, two in \underline{P}. anomala Rostr., and four in \underline{P}. sorghi schw. Stakman and Christensen (60) earlier reported the presence of three and jossibly five physioloeic forms of P. sorghi. Later Stakman, Christensen and Brewbaker (61) recoignized seven physiologic forms of P. sorghi by their specitic reaction on eight selfed lines of corn. Hungerfiord and Owens (35) reported incication of the presence of two or more specialized forms of P. Elumarum tritici Eriks. and Fenn. Bailey (7) demonstrated the presence of at least three, and possibly four, forms of P. relianthi Schw.

It is clear that with the increase in our knowledge of physiological specialization, at least in $\underset{\sim}{P}$. graminis, we have gone from a rather wide grouping as proposed by Eriksson and Henning (29), Eriksson (24), and others to a more narrow groupIng as set out by Stakman and Piemeisel (65). The work that inas been done on P. coronata seems to terd in the same course. The dovelopment of our knowledge of specialization in this species begins with de Bary (11), when he discovered in 1865 that the aecial stage of P. coronata occurred on Rhamnus cathartica L. and R. frangula L. Nielsen (52) in 1877 secured infection on Lolium perenne L. With aeciospores from Rhamnus cathartica and in turn infected oats with the urediniospores from Lolium perenne. Then Cornu (13) in 1880 infected oats directly with
aeciospores from Rhannus cathartica. Plowright (54) in 1839 suggested the presence of two species within Puccinia coronata. His conclusions were based mainly apon the fact that teliospores from Lolium perenne would not infect Rhamnus frangula, while teliospores from Dactylis glomerata L. and Festuca sylvetica Vill. readily produced aecia on Rhamnus frangula. Klebohn (39) reported in 1892 that there were two species of crown rust. That species which bore teliospores on Dactylis giomerata, Festuca syivatica and other grasses, and vore aeciospores on Rhamms frangula, he called Fuccinia coronata. Thile the species which produced teliospores on Lollum perenne, Avena sativa L., Festuca elatior L., Arrhenatherum elatius (L.) Beauv. and other erasses, and produced aeciospores on Rhamnus cathartica and other Fhamus species, he called Puccinia coronifera Klebahn. The conclusions of Klebahn were supported in later investigations by Klebahn (40, 41, 42), Eriksson (25, 28), Eriksson and Henning (30), and whlethaler (49).

Eriksson and Henning (29) were probsijly the first to recognize the presence of physiologic varieties in crown rust. They divided puccinia coronata into three series and certain of these were subdivided into "Formen". Series I, with aecial stage on Khamus cathartica (Puccinia coronifera Kleb.), was divided into two "Formen": Avenae and Alopecuri; series II, with aecial stage on R. frangula (Puccinia coronata Kleb.), consisted of
one "Formen" cccurring on Dactylis siomerata and Pectuca silVatica; and series III, an aecial stage on Rhamnus dahurica (Puccinia coronata var. himalensis Barcly, corsisted of one
 were not included in the seriea because their aecial stage was unknown. Later Eriksson (24) Givided crown rust into four series and certain of these series were subdivided into "forme species." Series I (Puccinin coronifera Kleb.) was àviaed into four "forme species": Avenae, Alopecuri, Festucae, and Lolii; series II (\underline{P}. coronata (Coraj) Klev.) contained onily one "forme species": Calamagrostis; series III (\underline{P} coronata var. himalensis Barcl.) contained no "forme species"; ana sories IV (aecial stage unknown) contained one "forme species": Melicae. Adiftional "forme species" were added to series I and II by Klebahn (42) and Eriksson (25). In 1911 fuhlethaler (49) presented a somewhat aifferent arranegement. Ho dividad crown rust into five series: I. \underline{P}. coronifera Kleb.; IT. P. himalensis (Barcl.) Diet.; III. P. Alpinae-coronata nov. sp.; IV. P. coronata (Corda) Kleb.; V. P. coroneta Corda s. lat. Series I contained nine "forme species", series IV three "forme species", series IV three "forme species" and series y one "forme species."

Treboux (65), working with crown rust in southern Fussia, did not secure the differential reaction on Rhamnus species
reported by Klebahn (42), Eriksson (24), and iluhlethaler (49).
 fect Avena sativa, a host belonging to \underline{p}. coronifera kleb., and using aeciospores secured from Phannus cathartica he was able to infect Agrostis stolonifera, Calamagrostis aruncinacea, and Phalaris amundinacea, all of which are nosts of puccinia coronata (Corda) Kleb. Treboux (66) concluded that the existence of separate species of crown rust upon either kinamns cathartica or R. Irangula is doubtful.

In the United States, Arthur and Fromme (5), Arthur and Holway (6), Carleton (12), Helhus, Dietz and willey (47), Helhus and burrell (48), Lietz (21), and others prefer to retain the name puccinia coronata corda. The marised differentiation on Rhamnus species reported by Klebahn (41) has not been reported in America. Arthur and Holvay (6) were able to produce infection on Avena sativa using aeciospores secured from Rhamnus lanceolata. Carleton (12) used aeciospores produced on 조. Ianceolata and prounced infection on Phalaris caroliniana. The host range of puccinia coronata has been extended, both on the alternate hosts and on the gramineous hosts, by Arthur (2, 3, 4), Helhus and Durrell (48), Welnus, Fletz and Willey (47), and Dietz (21). Melhus, Iletz and Willey (47) using teliospores produced on avena sativa were able to secure pyonia on Rharmus frangula.

Dietz (21) secured normal aecia on R. dahurica using teliospores produced on Avena sativa. The results secured by investigators in the United states do not justify the division of crown rust into the various species reported in Iurope by Klebahn (39), Eriksson (24), and mulethaler (49).

Helhus, Dietz and pilley (47) studied four "biologic forms" (physiologic varieties) of crown rust: P. coronata avenae, P. coronata lolif, P. coronata calamagrostis, and P. coronata holci. They determined the reaction of various gramineous species to each of these physiologic varieties. The mamineous host ranges of these four physiologic varieties overlap somewhat, but the reaction of each host wes specific for each physiologic variety.

Dietz (21) found that the alternate host range of crown rust was not Imited to the genus phamnus, or to the family Rhamnaceae. He secured aecial infection of crown rust on Berchemia scandens (Hill) Trel. of the family Rhamaceae, and Lepargyrea canadensis of the family Eleagnaceae, in adaition to thirteen species of Rhamnus. Nietz (21) secured a marked specislization in reaction on the alternate hosts with different varieties of crown rust. This specialization of varieties and the wide alternate host range of crown must is further evidence, fietz believes, that the crown rust organism should be considered as one species.

Hoerner (34) was the first to report the presence of physio-
logic specialization within the variety \underline{P}. coronata avenae.
He distinguished four physiologic forms on the basis of their reaction on Iowa 73 (Ruakura) and Iowa 96 (Green Russian):

Form I. infects both varieties normally.
Form. 2. infiects both varieties weakly.
Form 3. infects Iowa 73 weakly and Iowa 96 normally.
Form 4. infects Iowa 73 nomally and Iowa 96 weakly.
Popp (55) identified 22 cultures of \underline{P}. coronata avenae
collected from five provinces of Canada. Using Iowa 96 (Green Russian), Sterilis Selection, and Minnesota 539 (White Russian) as differential hosts, he was able to distinguish four physiologic forms as follows:

Form 1. (Eight cultures) infects Sterilis Selection weakly; Minnesota 539 (Vhite Russian) normally, and Iowa 96 (Green Russian) normally.
Form 2. (Eight cultures) infects all three varieties weakly. Form 3. (Two cultures) infects Sterilis Selection normally; Minnesota 539 (mhite Russian) weakly, and Iowa 96 (Green Russian) weakly.
Form 4. (Four culitures) infects all varieties more or less normally.

Parson (53) obtained 15 collections of crown rust from the United States and Canada. Using four varieties as differential hosts, he was able to distinguish five physiologic forms as follows:

```
Ruakura - resistant (Hoerner's Form 3)
    Avena sterilis nigra - resistant . . . . . form 3
        A. sterilis nigra - susceptible
            Red Kustproof - resistant . . . . . . . form 5
            Red Rustproof - susceptible. . . . . . . form 4
Ruekura - susceptible (Hoerner's Form 1)
    Green Hountain - resistant . . . . . . . . form 2
    Green Mountain - susceptible . . . . . . . . form 1
```

Parson determined the reaction of each of his forms on 27 varieties, selecifons, and species of oats, and found that none were resistant to more than three physiologic forms.

Murphy (50) secured 45 collections of puccinia coronata avenae, of which 32 were collected on Avena and 13 on Rhamnus. An equal number of cultures isolated from these collections Were each tested on pure line selections of 33 varieties and species of oats. Eight of these acting as differential losts disclosed the following nine physiologic forms:

Belar - resistant
Red Rustproof (C.I. 1079 ${ }^{\text {1 }}$) - resistent
College Algerian (C.I. 2052) - resistant . . form 3
College Algerian (C.I. 2052) - susceptible. form 8
Red Rustproof (C.I. 1079) - susceptible
Cowra - resistant. form 9
Cowra - susceptible. form 7
Belar - susceptible
Iowa No. 69 - resistant
Avena strigosa - resistant
Anthony (C.I. 2143) - resistant form 4
Anthony (C.I. 2143) - susceptible form 2 Avena strigosa - susceptible
Iowa No. 69 - susceptible
Iowa No. 102 - resistant form 6
Iowa No. 102 - susceptible form 5
The 13 aecial collections on five species of Rhamrus were identified as follows: four collections on Rhemnus cathartica Were form 3; six collections on R. lanceolata were form 5; one each from R. tinctoria, R. spo. (from montana), and R. infectoria were forms 7, 8, and 9, respectively.

[^0]
MATERIAL AND METHODS

Leaves infected with Puccinia coronata avenae were collected on naturally infected oat plants and on Rhamnus naturally and artificially infected, during the years 1327, 1928, 1929, and 1930. For each collection, the name of collector, date, place, and the name of the host were recorded. During transit, crown rust spores retain their viability much longer When the infected leaves are allowed to dry Immediately after collection and are placed in an ordinary manila envelop. necial collections, due to their short viability, were immediately used to infect oat plants, and the rosulting uredinial stage continued, or the iniected leaves stored in the refrigerator. AII cultures were maintained on the variety Iomine (C.I. 2327) durm ins 1928. However, this variety showed partial resistance to ceriain forms and markton (C.I. 2053) was substituted for it during 1929 and 1930.

Single uredinium cultures sere isoleted by inoculating Markton or Iomine plants sparsely with spores from a particular collection. About six or seven days after inoculation and before any uredinia had broken through the epidermis, a plant was selected which bore a single uredinium. This plant was then placed under a covered lamp chimney (Plate I, fig. 2) and the uredinicspores allowed to mature. Because of the possibility of the presence of more than one physiologic form in a collec-
tion, two single-ureainlal isolations were usually made from each collection. Each culture had as its source a single uredinfum.

Seedlins plants were usually inoculated between 4 and 6 D.m. The first leaf of each plant was gently arawn between the moistened forefinger and thumb, then the entice plant was moistened with a constant-pressure sprayer. The plants were then moved to the room containing the stock cultures and each plant was indiviaually inoculated with the desired culture by applying a smaji amount ori crown must spores to the moistened surface of the first leaf with a flattened needle. The plants were again sprayed and placed in a moist inoculation chomber where they were kept for approximately 14 hours. In order that the plants might not dry too quickly or othermise become injured, the chambers were opened at about $8 \mathrm{a} . \mathrm{m}$. and the plant retained in the open chamber until about 4 p.m.

Where types of infection were to be determined, the plants Were glaced in muslin compartments (Plate I, fig. I) similar to those described by Helhus, Dietz and Willey (47); while those used for stock cultures were held under lamp chimneys. The tops of the chimneys were covered with a thin layer of cotton held between two pieces of cheese-cloth ana this all fastened with a mbier band (Plate I, fig. 2). Each lamp chimey would cover the contents of a three-inch flower pot. These pots were

Variety used as a differential host by Parson (53).
At the beginning of the investigation, approximately 200 vaileties, selections, and species, reported as peing resistant to crom rust, were inoculated with ten cultures wich fumished a basis for the selection of possible differential hosts. From these investigations, a set of 33 differential hosts was selected. This preliminary study gave evidence that certain of the conmercial varioties and so-called pure-line selections on hand were not homozygous for reaction to all crown rust cultures. Because of this heterozycous reaction, a single-panicle selection was made of each of the possible difforential hosts at the beginning of the exporiment. Unless otherwise stated, pure-line selections were used throughout these investigations for differentiating physiologic forms.

The differential hosts were inoculated with each culture of crown rust. When pure lines were used as possible differential hosts. five plants of each were inoculated and their reaction recorded. Ten or more plants wera inoculated when the possible differential host was not a pure line. Mhenever a variety of species appeared heterozygous for resistance to a particular culture, a larger number of plants vere inoculated and the predominating reaction recorded.

Types of Crom Hust Infection

In recording the reaction of different varieties, selections, and species to crom rust, it was necessary to adopt a series of rust ranifestations $\#$ ich wrild describe the classes of host reactions observed. The types of erom rust infection observed are shown in Plate II, fig. 2, and a description follows:

Irmane	I. - Wo macroscopic eviaence of infection.
Completely resistant	0. - No uredinia formed, necrotic aress present.
Highly resistant	1. - Urodinia few, small, always in necrotic areas, also moro or less necrotic areas produced without the development of urodinia.
Soderately rcsistant	2. - Uredinia fairly abundant, sman to medium size, almays in necrotic or very chlorotic areas.
Soderately susceptible	3. - Urodinia abundant, medium in size, and surrounded by chlorotic areas.
Completely susceptible	4. - Uredinia abundant, large, no necrosis or chlorosis inmediately surrounding the uredinia.

The reaction of all plants to crown rust was recorded 10 and 14 days after inoculation. During the interval between the time of inoculation and recording, the plants were kept under optimum conditions for the normal development of the oat plants. The type of infection on a particular pure line inoculated with
a particular physiologic form is quite constant when environmental conditions are uniform and favorable. During cloudy weather, artifiscial light is necessary in order to secure normal types of infection. A "green-island" type of infection may be developed on a completely susceptible plant by reducing the light intensity for a period of two days. Excessive drought, wilting, excessive nigh or low temperature, and abnormal nutrition also tend to produce subnomal types of infection. In the pressent investigation, a difference of at least two types of infection was considered necessary to establish a new form, that is, a type 0 contrasted with a type 2 , a type 1 with a type 3, or a type 2 with a type 4. It was unusual for the roaction of a pure ine to a particular physiologic form to vary more than one type under nomal greenhouse conditions.

Field Test of Varieties and Selections

A knowledge of the field reaction of varieties studied under greenhouse conditions is very desirable. This is especially true of those varieties used as differential losta, and of those aditional varieties used in detemining the lost range of a particular physiologic form. During 1926, 1927, and 1928, a uniform oat crown-rust nursery was erown at Ames, Iowa, and Experiment, Georgia. This uniform nursery contained pure-Iine selections of 100 varieties which were selected for their lmom reaction to crom rust. During 1929 a new uniform
oat crown-rust nursery containing pure-line selections of 100 Ferieties, species, and selections was grow at eight lifferent experiment stations in the contral and southern poztions of the United States. The locations of these murse ies and the names of the cooperstors were as follows:

Iocation :	Cooperator
Ames, Iowa	----
Knoxville, Tennessee	S.H. Essary
Experiment, Georgia	R.P. Bledsoe
Tifton, Georgia	W.J. Davis
A. \& M. College, 位ssissippi	J.E. Milos
Denton, Texas	P.B. Dunicle
Stilimater, Oklahoma	J.C. Ireland
fanhattan, Kansas	J.H. Farler and C.O. Johneton

During 1929, 660 additional verieties, selections, and species were grown at Manhattan, Kansas, and Anes, Iowa. Three hundred of these were introduced foreisn varieties supplied by T.R. Stanton, office of Cereal Crops and Diseases, Bureau of Plant Industry, Fiashington, D.C.

The percentages of crow rust infection on the difforent pure lines, varieties, selections, and species included in the oat crown-rust nurseries were detemined according to the scale illustrated by Durrell and Parker (23). Types of crown rust are often very difficult to determine undor field conditions, because of the maturity of the oat plant and the prosence of
uredinia in different stages of development. menevor a variation was observed, the range fron the aosi resistant to the most susceptible was recorded.

IDENTIFICAMION OF RHYSIOLOGIC FORXAS

One hundred seventr-ono collections of Puccinia coronata evenae were secured durins $2927,1923,1929$, and 1030, on varieties and species of Avena, and species of hamus. Two mundred forty-five must caltures wore isolated from these collections. Tho distribition of these collections according to the time and the state or province from which they were collected $\{g$ given in table 1.

Table 1. Distribution of collections of puccinia coronata avenne during 1927, 1928, 1929, and 1930, In states and provinces.

state or Province	Munber of collections: Total				
Alabama			1		1
California		5			5
Florida		1		12	13
Georsia		4	4		8
Illinois	1				1
Iowa	2	16	29	21	68
Kansas	2		10		12
Minnesota			2		2
Hississippi		4	4		8
珽ssouri	1	1	4		6
Nebraska		1			1
Morth Dakota	1	1	1		3
Ohio		1			1
Oklahoma	1	1	3		5
Ontario		1			1
oregon		1	3		4
Queboc	1				1
South Dakota			1		1
Tennessee		1	6		7
Texas	1	6	4		11
Virginia			3		3
West Virginia		1	8		9
Total	10\%	45	83	33	171
FNine collections securea in 1927 were furnished oy hr lid.					
Leach, who mad tion and ident	praj	$\begin{aligned} & \ln \mathrm{ph} \\ & \\ & \hline \end{aligned}$	tudy	orms	ogic specia npublished

The number of collections secured on different hosts during the yoars 1927, 1928, 1929, and 1930 is given in table 2. Table 2. Host and number of collections of crown rust secured during 1927, 1928, 1929, and 1930.

Host	Number collections					
	1927	1928	:	1929	:	1930
Avena species	10	32		66		12
Rhamnus cethartica	-	4		1		5
* chlorophore	-	-		-		2
" infectoria	-	1		13		5
" lanceolata	-	6		-		2
montana	-	1		3		3
\because tinctoria	-	1		-		4
Total	10	45		83		35

All the collections on Rhamus species were from artificially inoculated plants, except one on Thamnus lanceolata secured during 1928, and three on Rhamms cathartica (two during 1928 and one during 1929). The coilections on Avera species were all taken from naturally infected plants in the field.

Cultures Collected During 1927 and 1928
Fifty-fitu cultures of crown rust vere isolated from an equal number of collections taken during 1927 and 1928. A uniform sot of 33 pure lines, selected fron different varioties, seloctions, and species of outs mas separately inocuiated with each of these cultures. Nine physiologic fomas werc identified among these 55 cultures by the differential reaction of oight of the 33 pure lines. In table 3 is siven the name of each of the 33 pure-line-selected: Varieties, selections, and speciea, used as possible differential hosts, and the averase type of

Table 3. Reaction of 33 pure-line selections to the nine physiologic forms of puccinia coronata avenae identified from collections wade during 1927 and 1928.

Taole 3. Concluded.

infection of each to the nine identiried physiologic forms. The nine physiologic forms discovered during 1927 and 1928 may be identified by arranging the first eisht ure lines in table 3 in a dichotomous key (50).

Cultures Collected During 1929 and 1930
The finst 17 pure-line-selected: varieties, selections, and species given in table 3 were retained as possivle difierontial hosts for use during 1929 and 1930. Eight adaitional wure lines, seven varieties, and one species were added. Tho of the foreisn varieties, "Avena victoria" (C.I. 2764), and "Avena capa" (G.I. 2765), were obtai ned from lir. Jose k. Scasso of 解oron, Argentina, while "Avena 1095a" (C.I. 2766) and "Avena 64s" (C.I. 2767) were obtained Prom Doctor Alberto Boerger, Senior Director del Instituto Fitotecnico, Departmento Colonia, Uruguay. These four varieties wore reported resistant to crom rust by imp. Scasso\%. The other three varieties Hay (C.I. 1622), Schoolmam (C.I. 2057), and Victorla (C.I. 2401) were inciuded because of their unusual rosistance during a natural epiphytotic of crown mast in the summer of 1929 at Amos, Iowa, and manhattan, Kansas. Avena strigosa glaberscens (C.I. 2630) was apparentiy invane during the same apipliytotic at both stations.

स्These varieties were reported as being resistant to crown rust in Argentine, by Nr. Scasso, in a personal letter to the ¥riter dated April 20, 1929.

One hundred ninety cultures of crom rust were isolated from 116 collections during 1929 and the spring of 1930. Uniform groups of 25 pure lines, seven varieties and one species of oats mere inoculated separately with each of these cultures and eight physiologic forms were identified. Four of these were forms previously identiried in collections secured during I927 and 1928, and four were first isolated in 1929.

In table 4 is fiven the reaction of pure lines, mumers 1 to 17, to physiologic forms numbers $1,3,5,6,10,11,12$, and 13 collected during the years 1927, 1928, 1929, and 1930, and the reaction of pire lines, varieties, and species, mumbers 18 to 33 , for the same physiolozic forms collectod during 1929 and 1930. As physiologic forms 2, 4, 7, 8, and 9 wore not recovered during 1929 and 1930 , the reaction of only pure lines numbers I to 17 is recorded.

I'able 4. Reaction of 33 pure-line selections, varicties, and species to 13 pliysiologic forms of puccinia coronata avenae identifiod during 1927, 1928, 1929, and 1930.

Fure-ilne selections

1 Belar (C.I. 2760)
2 Red Fustproof (C.I. 1079)
3 College Algerian (C.I. 2052)
Cowra (C.I. 2761)
Iowa 69 (C.I. 2463)
Avena strigosa (C.I. 1782)
Anthony (C.I. 2143)
Iowa 102 (C.I. 2464)
Avena brevis (C.I. 2762)
Red Fustproof (C.I. 775)
Sunrise (C.I. 982)
12 Black Algerian (C.I. 204)
Nortex (C.I. 2382)
14 Ruakura (C.I. 2025)
15 Early Burt (C.I. 2763)
16 Red fustpfoof (G.I. 1805)
17 Green Mountain (C.I. 1892)
18 Bathurst (C.I. 1810)
19 Glenn Innis (C.I. 980)
Varietios

20	Milte Russian (C.I. 2460)	0	4	4	0	0	0	0	1
21	White Fussian (C.I. 2461)	4	4	4	4	4	4	4	4
22	Green Russian (C.I. 2342)	4	4	4	4	4	4	4	4
23	Green Fussian (C.I. 2344)	4	4	4	4	4	4	4	4
24	Avena brevis (C.I. I783)	0	0	4	4	4	4	4	4
25	Markton (C.I. 2053)	4	4	4	4	4	4	4	4

Table 4. Concluded.

	Number and name of pureIine selections, varfeties, and species	Avarage type of Infection with plysiolesic form number:							
		1	3	5	6				
Varieties									
26	Hay (C.I. 1622)	4	4	4	4	4	4	4	4
27	Schoolmam (C.I. 2057)	4	4	4	4	4	4	4	4
28	Victoria (C.I. 2401)	0	0	0	0	I	0	I	0
29	"Avena victoria" (C.I. 2764)	0	0	0	0	I	0	I	0
30	"Avena capa" (C.I. 2765)	3	0	3	4	I	0	0	0
31	"Avena 1095a" (G.I.2766)	4	0	4	4	0	1	0	0
32	"Avena 64s" (C.I. 2767)	3	0	3	4	0	0	0	0
	Species								
33	$\frac{\text { Avena gtrigose glaberscens }}{\text { C.I. }}$	0	0	0	0	4	0	I	0

Key for Identification of Physiolofic Forms

Thirteen physiologic forms were identified among the 245 cultures studied by using the differential reactions of eight pure lines and one species, Avena strigosa glaberscens (C.I. 2630). A. strigosa glaberscens (C.I. 2630) was not pure-1ine selected, however, it always gave a homozygous reaction to physiologic forms 1, 3, 5, 6, 10, 11, 12, and 13. whe eight pure-line-selected: varieties, selections, and species; and one species not pure-line-selected, may be arranged in a aichotomous key as follows:

```
Belar (C.I. 2760) - resistant
    Red Rustproof (C.I. 1079) - resistant
        Iova 102 (G.I. 2464) - resistant
            \(\frac{\text { Avena }}{\text { resistrigosa }} \frac{\text { slaberscens }}{}\) (C.I. 2630) -
            resistant.............. . . . . . . . . . . 12
            Avena strigosa slaberscens (C.I. 2630) -
        rowa 102 (C.I. 2464) - susceptible
            College Algerian (C.I. 2052) - resistant
                    Anthony (C.I. 2143) - resistant . . . . form 13
                    Anthony (C.I. 2143) - susceptible . . . form 3
            College Algerian (C.I. 2052) - susceptible. form 8
    Red Rustproof (C.I. 1079) - susceptible
        Comra (C.I. 2761) - resistant . . . . . . . torm 9
        Cowra (C.I. 2761) - susceptible . . . . . . . form 7
Belar (C.I. 2760) - susceptible
    Anthony (C.I. 2143) - resistant
        Avena strigosa (C.I. 1782) - resistant. . . . form 4
        Avena strigosa (C.I. 1782) - susceptible
            IOWa IOZ (C.I. 2464) - resistant. . . . . form 1
            Iowa 102 (C.I. 2464) - susceptible. . . . form 11
    Anthony (C.I. 2143) - susceptible
        Iowa 102 (C.I. 2464) - resistant . . . . . form 6
        Iow 102 (C.I. 2464) - susceptible. . . . .
            Iowa 69 (C.I. 2463) - resistant . . . . . form 2
            Iowa 69 (C.I. 2463) - susceptiole . . . . form 5
```

Physiologic forms 1, 3, 5, 6, 10, 11, 12, and 13, may be identified by the differential reaction of the pure-line-selected varieties: Belar (C.I. 2760), Anthony (C.I. 2143), Iova 102 (C.I. 2454); and the species Avena strigosa glaberscens (C.I. 2630). The reaction of each one of these differential hosts along with that of Victoriz (C.I. 2401) and a pure-line selection of markton (C.I. 2053), to each of the eight physiologic forms identified from collections secured during 1929 and 1930 is illustreted in plates III-VI.

Nature of Physiologic Forms Identified

The 13 physiologic forms identified, differ greatly in their ability to infect normally the possible differential hosts given in table 4. A cescriptive formula may be given to each form by writine the number (riven in table 4, column 1) representing each of the 33 possible differential hosts that sliow a resistant reaction to it. Theee formulae would then appear as follows:

Physiologic

torm number

Formula

1	5, 7, 8, 17, 20, 24, 28, 29, 33.
2	\%5, 6, 9, 11, 17.
3	$1,2,3,4,6,11,12,13,14,15,16,18,24,$ $23,29,30,31,32,33$
4	\%5, 6, 7, 8, 9, 11, 17.
5	23, 29, 33.
6	8, 20, 23, 29, 33.
7	シ1, 11, 12, 15.
8	\%1, 2, 4, 11, 12, 14.
9	\#1, 4, 14.
10	$\begin{aligned} & 1,2,3,4,5,7,8,11,12,13,14,15,16,17, \\ & 18,20,23,29,30,31,32, \end{aligned}$
11	5, 7, 14, 17, 20, 28, 29, 30, 31, 32, 33.
12	$\begin{aligned} & 1,2,3,4,5,7,8,11,12,13,14,15,16,17, \\ & 18,20,28,29,30,31,32,33 . \end{aligned}$
13	$1,2,3,4,5,7,11,12,13,14,15,16,17,20,$ 28, 29, 30, 31, 32, 33.

The 13 physiologic forms, as shown by their abllity to infect normally the 33 possible differential hosts given in table 4, rank from the most virulent to the least as follows: $5,6,9,7,1,11,2,8,4,3,13,10,12$.

Physiologic form 5 is a virulent form. In adcition to the possible differential hos ts given in tables 3 and 4, approximately 400 additional pure lines, varieties, selections, and species have been inoculated with this form. With the exception of the varieties, Victoria (C.I. 240I) and "Avena victoria" (C.I. 2764), and the species Avena strigosa glaberscens (C.I. 2630), no resistant pure lines, varieties, selections, or species have been found. Form 6, apparently little less virulent than

FThese physiologic forms were not iaentified in collections secured during 1929 and 1930. For thet reason their reaction to numbers 18-33 is not known.
form 5, was tested only with the possible differential hosts Given in tables 3 and 4.

Physiologic forms 9, 7, 1, 11, 2, 8, and 4 are intermediate in vimulence, while forms 3, 13, 10, and 12 are comparatively weak forms. Forms 10 and 12 aiffer only in reaction on Avena strigosa Elaberscens (C.I. 2630).

Under similar conditions, cultures identified as physiologic forms 3, 10, 12, and 13 tended to form tellospores earlier than cultures identified as formn $1,2,4,7,8,9$, and 11. while cultures iantificed as foms 5 and 6 rarely showed any teliospore formation. Teliospore formation sems to be characteristic of narrowly specialized forms. It did not seem to be correlated with any paritcular pure lines, varieties, species, or selections, and it was not linited to plants showing a resistant type of infection. Certain plants with a type 4 infection consistently snowed early tellospore formation with certain cultures. However, early teliospore formation occurred more frequently on plants showing a type 1 or type 2 infection. Different cultures belonging to the same physiologic form and erowing under similar conditions mould sometimes vary greatly in their ability to produce teliospores on certain pure-line selections and varieties. Certain cultures identified as-form 12 consistently formed teliospores 10 to 12 days after inoculation on pure-line selections and varieties, numbers: 9, 10, 17, 20, 21,
and 26. Thile other cultures also identifiea as form 12 aid not form teliospores on these same hosts unitil 21 to 33 days after inoculetion. Apparently it would be possible to subdivide certain physiologic forms on the busis of their relative ability to form teliospores on certain hosts.

Plate VII illustretes the relative ability of two cultures to form teliospores. Two panicles of onts were selected, one from Fulchum (C.I. 650-203) and the other from Dookie igricultural College No. 10 (C.I. 2829). Seed from these paricles Were planted at the same time. The resulting seeding plants Were inooniated and held under the same conditions until after the photoeraph in plete VII was secured. Tho cultures of crown rust representing forms 3 and 5 were separately inoculated to incividual plants from each of the two panicles. Sixteen afys after inoculation the culture identified as form 3 had formed abuidant telia on both selections, while the culture identified 4 form 5 had formed only uredinia. The relative ability of these tro cultures to form telia mas typical of all other cultures iodentified as forms 3 and 5.

PREVALENCE AND GEOGR:PHIC DISTRIBUTION OF

PHYSIOLOGIC FORMS IDENPIFIED
Tho hundred forty-five cultures of crom rust iere isolated from 171 collections secured during the years 1927, 1923, 1929, and 1930. Fach of these as identified as belonging to one of the 15 physiologic fomm described in table 4 . In tejle 5 is Iven the place of collection, name of collector, name of sost fron which the original collection was secured, and date of this orisinal collection, for each of the 245 cultures identified. This information is grouped according to the physiolegic form to which the culture belonged and in order of the date of collection.

Table 5. Source, date of collection and cultures of Fuccinia coronata avenae identified.

Physiologic form	: Place collected	: Collector	: Host	$\begin{aligned} & \text { Dato } \\ & \text { :collocted } \end{aligned}$
Pucoinia	Ames, Ia.	L.D. Leach	Cultivated oats	8-1-27
coronata	Glydo, Kan.	do	Volunteer oats	9-14-27
avenae	Manhattan, Kan.	C.0. Johnson	do	9-18-27
Formil	Stillwater, Oxia.	Fred Griffe	do	10-11-27
	College Station, Tex.	P.C. Manselsdorff	Cultivated oatis	2-6-28
	Hollywood, Calfi.	J.pr. Raedor	Volunteer oats	4-14-28
	Redondo, Calif.	do	do	4-16-28
	San Diego, Calif.	do	do	4-23-28
	San Antonio, Tex.	do	Red Rustproof	5-12-28
	Napa, Calif.	L.D. Leach	Cultivated oats	7-2-28
	$\begin{aligned} & \text { Experiment, Ga. } \\ & \text { do } \end{aligned}$	H.C. 角urphy do	Iomine do	$\begin{gathered} 5-15-29 \\ \text { do } \end{gathered}$
	do	do	Sunrise (C.I. 982)	do
	Tifton, Ga.	do	Iomine	5-16-29
	A.\& M. College, Miss.	do	Anthony (C.I. 2143)	${ }_{5-22-29}^{\text {do }}$
	do	do	Avena brevis (C.I.	1783) do
	do	do	Sunrise (C.I. 982)	do
	do	do	do	do
	Greenville, Tex.	do	Nortex (C.I. 2382)	5-30-29
	Denton, Tex.	do	Iomine	6-1-29
	do	do	do	do
	Lawton, Okla.	do	Colburt (C.I. 2019)	6-4-29
	Manhattan, Kan.	do	Iomine	6-11-29
	do	do	do	do
	do	do	Anthony (C.I. 2143)	do
	do	do	Sunrise 73	do
	do	do	Fustless (C.I. 724)	do
	Columbus, Kan.	C.O. Johnston	Cultivated ozts	6-15-29

Table 5. Continued.

Table 5. Continued.

Puccinia	Ste Anno de la			
Coronata	Pocatiere, zue.,Can.	H.B. Humphrey	Victory (near Rhamms	
avenae			cathartica	8-23-27
Porm 3	Jackson CO., Ia.	J.h. Steddens	Rhammus cathartica	5-23-28
	Millard, Nebr.	P.W. Rohrbaugh	do	5-27-28
	\#averly, Ohio	J.7. Baringer	Cultivate? onts	$7-13-28$
	kontrose, 7.Va.	S.H. Murinhy	Iogold (C.I. 2329)	7-10-28
	Kingston, ont.	\#.P. Raleigh	Cultivated oats	7-29-28
	Ames, Ia. do	H.C. iturphy	Iowa 102 (C.I. 2464)	$\begin{gathered} 9-23-28 \\ \text { do } \end{gathered}$
	do	do		4-26-29

Table 5. Continued.

Table 5. Continued.

Table 5. Continued.

Phyoiologic form	: Place collected	: Collector	$:$ Host	$\begin{aligned} & \text { : Date } \\ & \text { :collected } \end{aligned}$
~	Ames, Ia.	H.C. Hupphydo	$\frac{\text { Rhamnus }}{(\text { infectaria }}$	\cdots
	do		do, (necial	
	Knoxville, Tenn.	do	oup No. 8) Iomine	$\begin{gathered} \text { do } \\ 5-13-29 \end{gathered}$
	do	do	do	do
	do	do	Anthony (G.I. 2143)	do
	do	do	do	do
	Experiment, Ga.	do	do	5-15-29
	do	do	do	do
	Tifton, Ga.	do	do	5-16-29
	do	do	do	do
	Auburn, Ala.	do	Cultivated oats	5-20-29
	do	do	do	do
	A. \& M. College, Ifiss.	do	Iomine	5-22-29
	do	do	do	do
	do	do	Anthony (C.I. 2143)	do
	do	do	Avena brevis	
			(C.I.1783)	do
	do	do	Sunilise (C.I. C82)	do
	Denton, Tex.	do	Anthony (C.I. 2143)	6-1-29
	do	do	do	do
	do	do	Sunrise (C.I. 982)	do
	Iawton, Okla.	do	Golburt (C.I. 2019)	6-4-29
	Stillwater, Okla.	do	Iomine	6-6-29
	do	do	do	do
	do	do	Anthony (C.I. 2143)	do
	do	do	do	do
	Fanhattan, Kan.	do	do	6-11-29
	do	do	Sinrise Sel. 73	do
	Knorville, Tenn.	T.R. Stanton	Whito Tartax (C.I.	1) $6-19-29$

T'able 5. Continued.

Table 5. Continued.

Table 5. Continued.

Table 5. Concluded.

-45-

Seventy cultures collected during the years 1927, 1928, 1929, and 1930 wore identified as physiologic form 1. This form is apparently widely distributed throughout the United states and common in occurrence. (Fig. 1). Form 1 mas not identified in cultures collected from Khamnus and $16 s$ distribution may be independent of an alternate host. It apparently hibernates in the south and probably moves north during the spring and summer.

Physiologic form 2 was identified in only one culture, collected in North Dakota in 1927 by Dr. S. m. Dietz. It may have originated on Rhamnus and it is apparently a comparatively rare form.

Wirty-three cultures were identified as physiologic form 3. Although a comparatively meak form and limited to the central and northeastern oat-growing regions of the United states, form 3 is important becuuse fer of the northern oat varieties are resistant to it. The principal source of collection of form 3 was on Rhamus cathartica, both naturally and artificially infected. It was also collected on oats in Iova, Ohio, lest Virginia, Ontario, and quebec. However, all of the cultures collected from oats were either, from plants srowing near infected R. cathartica, or from a réion wiere tivis spectes is comion. Thercfore, it seems probable that from 3 is disseminated from R. cathartica.

Figure 1. Geographic distribution of Puccinia coronata avenae, physiologic form 1 , during 1927-30.

Fhamus cathartica bushes are midely distributed in this northern oat growing region and will probably continue to furnish a source of inoculum of form 3. Dietz (20) has shown thit R. cathartica is effective in disseminating eroum mist. Rhamnus infectoria, another host for this form, is not native in America.

Physiologic form 4 was collected only once, at Uribana, Illinois, by fr. I.D. Jeach. It is somewhat similar to form 2 in vimulence.

The most prevalent, widespread, and vimalent form studied is number 5. Finety-one of the 245 cultures coliedted during 1927, 1928, 1929, and 1930, were identified as belonging to this form. It is common in occurrence throughout all rogions of the United States from which collections were secured (Fig.2). This form was collected on oats and on both R. lanceolata and R. infectoria. The fomer, which is widely distributed in the central portion of the United States, probably disseminates this Form. Form 5 hibernates in the south and probably moves northward during tho spring end sumor.

Physiolofic form 6, collected only on oats, was identified in cultures: once from Denton, Texas, in 1927; once from Iowa Falls; Iowa, in 1930, and twice from Ames, Iowa, in 1930.

Physiologic forms 7, 8, and 9, collected respectively from R. tinctoria, R. spp. (from Iontana), and R. infectoria, wero each identified once.

Physiologic form 10, identified in 12 eultures, ten from Avena in Hest Vireinia and Iowa, anc two from Thamnus, one from R. infectoria and one from R. spp. (from montana), is apparently a comparatively rare form.

Physiologic form 11, a comparatively rare form, was identified in eight cultures collected in Kinsas, iissouri, Iowa, and West Virginia. This form was not collected on Rhamnus.

Physiologic forms 12 and 13 came only from Rhamnus. Form 12 was identified in 18 cultures isolated from collections secured from R. infectoria and E. tinctoria. Form 13 was identified in four cultures coming from R. infectoria, R. chlorophora, and R. spp. (from Montana).

The prevalence of each of the 13 forms during the years 1927, 1928, 1929, and 1930 and their distrikution on Rhamnus and sivena hosts is siven in table 6.

Table 6. Distribution of 13 physiologic iorms of Puccinia coronata avenae on ivena and Rhamnus hosts during 1927, 1928, 1929, and 1930.

Physiologic form number	: Number of cultures from avena and Rhamnus during:								Total
	1927				-1329		1930		
	ve	T	vens	Rha	Ave	, m	ve	am	
1	4	-	6	-	56	-	4	-	70
2	1	-	-	-	-	-	-	-	1
3	1	-	3	4	13	5	-	7	33
4	1	-	-	-	-	-	-	-	1
5	2	-	23	6	47	2	8	3	91
6	1	-	-	-	3	-	-	-	4
7	-	-	-	1	-	-	-	-	1
8	\cdots	-	-	1	-	-	-	-	1
8	-	-	-	1	-	-	-	-	1
10	-	-	-	-	10	-	-	2	12
11	-	-	-	-	8	-	-	-	8
12	-	-	-	-	-	12	-	6	18
13	-	-	-	-	-	1	-	3	4
Total per species	10	-	32	13	137	20	12	21	245
Total per year			45						245

Eight of the 13 forms were each icientified in more than one culture. In order of their prevalence, these forms are 5, 1, 3, 12, 10, 11, 15, and 6. Forms 1, 2, 4, 0 , snd 11 were collected only from Avenc species. While forms 7, 3, 9, 12, and 13 were collected only from Rhamus specles. Forms 3, 5, and 10 were collected on both Rhamnus and Avena.

Physiologic Forms Collected on Rhamnus

The dis ribution of the forms obtained from khamnus according to the species from which they were collected is given in table 7.

Taile 7. Physiologic forms identified and number of cultures collected from different species of Rhamnus during 1020, 1929, and 1930.

In these data certain species of Rhamnus jroduced only one physiologic form of crown rust, while other species produced as muny as five. Both naturally and aritificially infected
plants of Rhamnus lanceolatia have consistently prociuced only physiologic form 5. While naturally and artificially infected piants of $\underline{\text { k }}$ cathartica have consistently produced oniy form 3. A total of five physiologic forms have been isolated from R . infectoria. In the light of the investigations conaucted by Dietz (21), Craigie ($14,15,16,17,18$), Hanria (33), We:ton, Johnson and Brown (51), Stakman, Levine and Cotter (64), and Allen (1), it seems probaile that certain of these forms, particularly those of rare occurrence, may have arisen as a result of hybridization.

On September 23, 1928, a collection of volunteer Iowa 102 (C.I. 2464) oat plants was secured at Ames, Iowa. These plants heavily infected with crown rust, both in the telial and uredinial stages. Nine different single-uredinium cultures were identified, from the urediniospore material collected, using the possible differential hosts given in taile 4. six of these cultures were found to be physiologic form 5 and tinree physiologic form 3. Early in Harch, 1929, the telial naterial of this same collection was used to inoculate plants of R. Infectoria and R. spp. (from Montana). Abundant infection was secured on both species. A total of 16 unopened aecial cups, 13 from \underline{E}. infectoria and 3 from R. spp. (from Montana), were carefully picked with sterilized forceps. The aeciospores from each of these aecial cups were used to inoculate markton plants end the single-uredinium
isolations were identified in the usual maner. The thirteen cultures obtained from the same number of aecial cups from R. infectoria were identified as follows: nine mere form 12; two were form 5; one was form 3, and one wes form 13. The three cultures from $\underset{R}{ }$. spp. (from Montana) were laentified as form 12.

The above evicience, although circumstuntial, 3 \%rongly indicates that new physiologic forms are being procuced on certain species of Rhamnus. This may partly account for the number of new forms collected only on Rharnus. The fiaci thet the tellospores were collected irom a pure-line selection of Iowa 102 (C.I. 2464), which is inighly resistant to form 12, is still further evidence that this form was probably not present in the original collection and that it may have orisinated on R. infectorla and R. spp. (from Montana).

Physiologic Forms Collected on Oats

Crown rust of oats probably does not hibernate farther north than the northern limit of over-wintering of volunteer Oats. Those physiologic forms that hibernate in this southern region should be available for collection before those forms that originate on Rhamnus have appeared. Physiologic form 1 was collected as early as February 6 at Denton, Texss, during 1928, and both forms 1 and 5 were collected March 30, 1930, at Gainesville, florida. The occurrence of the thirteen physiologic

Figure 3. Physiologic forms of Puccinia coronata avenae collected from different states and Canada durinf the period 1927-30.

-56-

RESPONSE OF VARIETIES, SELECTIONS, AND SPECIES

It is very desirable to know the reaction of the most important agronomic varieties of outs to the most videly distributed physioloeic forms. The forms identiried most frequently were numbers: $1,3,5,10,11$, and 12.

A uniform oat crown must nursery was grown at Ames, Iowa, and Experiment, Georgia, during 1926, 1927, and 1928, and again in 1929, with a few changes, at Ames, Iowa, Experiment, Georgia, Knoxville, Tennessee, Tifton, Georgia, A. \& M. College, fississippi, Baton Rouge, Louisiana, Denton, Texas, Etiliwater, Oxlahoma, and Eanhattan, Kansas. The per cerit of crown rust infection on each of the varieties, selections, and species Incluced in these various nurseries was determined. In adiltion the seedinge reaction of these sane varieties, selections, and species, to physiologic foms 1, 3, 5, 10, 11 , and 12 was determined under greenhouse conditions.

In table 8 is siven the average tipe of infection on each of these varieties, selections, anc species with physiologic forms 1, 3, 5, 10, 11, and 12, and the percentage of crom rust infection observed on these same varieties, selections, and species, under field conditions at various locations in the United states. The nurseries omitted either escaped infection or the observations were untimely for satisfiactory comparisons.

varioty, beloction, or. sgecios	Q. T . :17namivox \qquad		TVB23.5日 typa 0 seveditis reaction to mays $070 \mathrm{c}^{2} \mathrm{c}$ fown nusurer:											
ALabuna lyyorica	37	4	4	4	4	a	4	75	10	70	30	55	30	
tivion	720	4	4		4	4	4					25	60	
Alcot		4	4	4	0	4	0	40	t	70	40	26	50	
A 2 garian	3570	3	1	3	4	4	4	20	3	20	80	10	16	
do	040	4	0	4	0	4	0					20	30	
do	2052	4	0	4	2	1	1					5	30	
do	909	4	4	4	4	6	4					25	26	
Alserian (60)		4	0	4	4	4	4	35	4	3	45	15	25	
A1Esaran (140)		4	4	4	1	4	1					15	65	
Alsertan capa	1002	A	0	4	0	1	8					5	35	
Algmxian x csicutta	2807	4	4	4	1	4	4	5	5		00	20	40	
anthony	2143	0	4	4	0	0	0					15	45	
Argontine	903	4	4	4	8	2	2					5	60	
"urest	B63	4	4	4	4	4	4					60	65	
Awinloss Culisod	1776	4	4	4	4	4	4					85	80	
Ambloas ranaroh	2879	4	4	4	4	3	4					15	35	
Ammaes frobstias	11303	4	4	4	4	参	4					25	40	
Auniess funtpreof	3776	4	4	4	4	4	4					35		
Avona abbysinica (225)		0	4	4	4	4	4					15	50	
E* Brevis	1708	0	0	4	4	4	4					5	5	
F Wrovis (70)	2762	3	0	4	4	3	2					10	10	
A. Drevis (200)		4	3	4	5	*	2					t	10	
I. Evamioma (226)		4	4	4	4	4	4					\%	25	
- Co	1782	4	0	3	4	4	4					5 0	$1 E$	
A. stais. G3avorscens	2030	0	0	0	4	8	0					\%	0	
In Etarin ${ }^{\text {a }}$ (220)		4	4	4	4	4	4					80	45	


```
ongta upenme, und trie pey cont of oromm
    #nder Eham"a comattwons.
```


Fabze 8. Continuea.

\square

Sable 8. Continuod.

7able 8. Contintion.

rable 8．contimed．

\qquad	C．I． ：manoor $:$		\％od		yis eac gio E C	$\begin{aligned} & \text { on } \\ & \text { ors } \\ & \hline \end{aligned}$		－	\％				con O4s att 888 20	$\begin{aligned} & n \text { rua } \\ & 3 \text { 2ub } \\ & 13601 \\ & 1029 \end{aligned}$
Veho	1000	\leq	4	8	4	4	4					20	56	
Eakin sel．	2330－459	4	1	1	3	4	0					35	45	
Emajum	2074	4	6	4	4	${ }_{4}$	4					40		
Pxtira sazaly（213）		4	0	$\stackrel{4}{4}$	4	9	4					25	80	
Ferguan heavarmo	9e6	4	4	4	4	3	4						60	
Flores de ivita	1822	6	4	4	4	4	4					45	55	
Framaxid	22048	4	4	缶	4	4	4					40	65	
Fowlas	3996	4	4	4	$\stackrel{4}{4}$	3	4							
portima	1983	4	4	4	4	4	4					20		
Franies	765	4	4	4	4	4	㘼					28	E0	
do	$765-19$	4	0	4	4	4	4					30	60	
do	0351	套	＊	4	6	4	${ }^{4}$						60	
Ficiginua	650－805	4	4	4	家	4	4	76	20	20	30	30	70	
do	650m804	4	4	4	4	4	8	50	10	70	4	10	70	70
20	699－202	${ }_{4}$	4	4	4	0	6	$6)$	26	75	60	40	25	70
do	990－2091	8	4	${ }_{4}^{4}$	\％	4	4	76	23	70	00	70	80	50
do	095－201．	4	4	4	4	4	6	72	40	70	35	00	80	85
do	707	4	3	a	$\stackrel{*}{6}$	需	4					80	80	06
do	700	4	4	4	4	4	4					70	80	
do	703－204	4	4	4	4	4	4	75	20	70	6.5	70	80	70
do	1360－217	6	4	4	4	4	4	50	10	d6	53	30	60 60	ES
Funcinam（93）		4	4	令	4	4	4	75	20	40	30	40	40	40
Fuldrun x tatobett	（218）	4	4	4	${ }_{4}^{4}$	4	4					40	00	20
	1959－1	4	4	4	4	4	4					35	80	
（andion No．${ }^{\text {ara }}$	1633	4	4	6	4	4	4					25	75	
Gaxton 120． 740	1362	4	4	4	4	4	4					25	50	
Garton \％io． 5	1304	4	4	药	4	8	4					15	0	
\％canems	1930	${ }_{3}$	4	4	4	4	4					20	40	
\}uremen s Yellow (96)		4	4	4	4	A	4	36	25		80	33	50	60

lng reaction									variour locations ruxine the yoars inmicated				
zumber：				 －coorera									
4	${ }_{8}$	4	4					20	55				
1	2	4	0					35	45				
4	4	4	4					40	46				
4	4	0	4					25					
4	4	3	4						60				
4	＊	4	4					45	65				
4	4	4	4					40	0				
4	4	5	4										
4	4	4	\％					80					
4	4	4	4					25	56				
4	$\stackrel{1}{2}$	4	4					30	60				
4	6	4	4						60				
4	4	4	4	76	20	40	50	30	70	75	10	35	56
4	4	4	4	50	1.0	70	0	20	95	70	15	30	30
4	4	0	＊	0.	20	75	40	40	45	65	15	45	30
4	采	4	4	76	25	70	60	70	45 80	50	15	40	40
4	4	4	6	76	40	70	85	00	80	65		40	46
4	$\stackrel{8}{6}$	4	4					60	80	05		w	－6
1	4	4	4					70	60				
玧	0	4	4	75	20	70	65	70	80		15	45	50
4	4	4	4	50	10	86	85	30	80	\％	60	40	35
8	4	4	4	76	10	80	30	40	40	40	20	29	25
4	4	4	＊					40	0	3			
4	4	4	4					35	80				
感	4	4	4					25	36				
4	4	4	4					25	70				
4	4	4	2					1.3	50				
4	4	4	4					20	40				
3	4	4	复	35	23		80	30	56			se	80
									50	60	t	\cdots	20

Tab3e 8. Continuod.

$\begin{gathered} \text { Variety, } \\ \text { selootion, } \\ 05 \\ \text { specios } \end{gathered}$	C.I					$\begin{aligned} & 02 \\ & i, 00 \\ & \text { fox } \\ & 0 \end{aligned}$		Ceo	a				601 048 04 208
Garton's Yelzow	1612	4	4	4	4	4	1					25	60
Glenn Inmia	530	4	4	4	6	4	4	20		45	20	20	10
Gopiner	8927	4	4	4	4	4	4					25	60
colden	2806	4	4	8	4	4	4	80	10	20	13	16	30
Golden mop	2780	4	4	4	4	4	4					20	50
do	1933	3	4	4	4	4	4					20	35
Golanon Mlant	1606	4	4	4	4	d	4					80	50
Oolcen Mhene	2050	4	4	4	4	4	4	73	t	50	30	20	25
Gothlind	1893	4	4	4	4	4	4					30	56
camy	2014	3	0	4	9	2	1.	75	1	48	30	5	25
Grost Nowthomm (74)		4	4	4	4	4	4	$\times 50$	t	36	5	40	30
Grann lowntain	1992	0	6	4	3	3.	0					25	35
Green fuasixim	1040	0	4	4	4	4	4					20	S
do	1578	A	4	4	4	4	4					23	60
do	2342	4	4	4	4	4	4					40	46
do	2544	A	4	4	4	4	4					5	10
Giyma	681	4	0	4	0	0	0	t	t	76	43	40	60
do	8084	3	8	4	4	3	4					35	50
Ouyra (51)	2768	4	4	4	${ }^{2}$	4	4	30	t	20	40	45	10
	1901	2	1	6	3	2	4					25	35
Manclton	1250	6	4	4	4	4	4	80	13	S	60	30	80
Hatohott	6.33	8	令	4	4	${ }_{4}^{4}$	4					60	50
flay	1032	4	${ }^{1}$	6	4	4	4					10	15
Iundred mushes	2797	名	O	4	${ }^{6}$	3	0					5	45
Tritohzon (217)		$\stackrel{8}{2}$	4	4	4	4	4					50	60
Tdamine	2334	4	2	4	4	4	4					40	6
Iogold	2329	4	4	3	4	4	4					25	
Iosman	2924	4	4	4	8	4	4					30	35
Eomino	2827	4	4	a	${ }_{4}$	4	6					$\therefore 0$	80

Table 8. Contimued.

Tuble 8. Gcatamxa.

Fabla 8. Contimua.

rable 8．Cemtinuad．

$$
4020
$$

684
$0_{0} 0400080$ 온요 옹․ 8
虫品

73 $\theta \quad \infty \quad \infty$ 8 en in 10 0 θ 业

Trivio 8. contanued.

xatag Cazacomad.
numbers at Ames, Iowa.

A total of 316 varieties, selections, and species were inoculated with physiologic forms $1,3,5,10,11$, and 12. Physiologic form 5 was again the most virulent form, only two varieties and one species being resistant to it. Victoria (C.I. 2401) and "Avena victoria" (C.J. 2764), apparently identical or similar varietien, were both completely resistant to form 5 . Avena strigosa glaberscens (C.I. 2630) was also completely resistant to form 5 .

Sixteen varieties and selections, distributed among the following species: Avena aboysinrica, A. brevis, A. byzantina, A. sativa, A. strigosa, and A. strigosa glaberscens, were resistant to physiologic form 1. Next to form 5 this was the most vimulent form tested.

Form 11 was of medium virulence. Mirty-one varieties, celections, and sjecies were resistant to it. Ten of the varieties, selections, and species resistant to form 1 were also resistant to form 11.

Forms 3, 10, and 12 were comparatively weak forms. A total of 77, 76, and 74 varieties, selections, and species (including those in comon) were, respectively, resistant to these forms. Forms 10 and 12 are very similar in their reaction on the 316 varieties, selections, and species tested. Tho of the three varieties thet are resistant to foms 1, 5 , and 11 are also resistant to these two forms. The oat varieties belonging to
the species A. byzantina, and especially the Red rustproof varieties, are more resistant to form 3 than to the other five forms tested.

Only the two varieties Victoria (C.I. 2401) and "ivena victoria (C.I. 2674) were resistant to the six forms tested. Avena strigosa Elaberscens (C.I. 2630) vas resistant to all except form 10, and Calcutta x Cape (C.I. 2802) was resistant to all except form 5. Twenty varieties vere resistant to four of the six forms used. Hinety-nine of the 316 varieties, solections; and species tested were resistant to one or more physiologic forms.

Because of the prevalence and wide distribution of form 5, it is aifficult to correlate seeding reaction in the greenhouse with percentage of infection in the ileld. Those varieHes and species that were resistant to form 5 were uniformy resistant in all field tests. kany varieties that were uniformly susceptible to all physiologic forms in the greenhouse show a low percentage of infection under certain ficld conditions. However, a low percentage of infection is apparently not always due to physiologic resistance. Usually the type of infection on these plants would be "completely susceptible", and when artificially inoculated with spores produced on themselves they Yould produce a larger percentage of infection, depending upon the amount of inoculum used. the resistance in such instances
is probably functional instead of physiologic.
A number of the Red Rustproof varieties procuced a relaSively low percentage of infection under field conditions, while adjoining plants of another variety vould produce a hifh percentage of infection. Wumerous collections from the red Rusproof and adjoining plants vere all Identified as either physiologic form 1 or 5. When Red Rustproof plants of these came varieties, of equal age were inoculated uncer ereenhouse conditions with either form 1 or form 5 they procuced a high percentage of infection. But uncer ifeld concitions with an acundance of the same inoculum, they were epparently partially resistant, at least at cortain locations. A viriety woula often show a low percentage of infection at one station and a high percentage of infection at anothrir where the same forms were apparently present in equal abu dance. It would seem that this is not true physiologic resistance anc that it is aftected by environmental conditions.

Certain varicties anc species were outstanding for their resistance to crown rust under field conditions. Victoria (C.I. 2401) mas observed during 1929 at Ames, Io. a, and at Lanhattan, Kansas. At Manhattan, Kansas, it sliowed a trace of croin rust iafection of type 0-1, wile at Ames, Iowa, there was a trace of type 0. The uiusual field resistance oi Victoria (C.I. 2401), combined with its resistance to eight of the 13 physiologic

> iorms desciibed, should make this variety very valuaule for hyoridization anó selection.
> Avena strigosa glaberscens (C.I. 2630) shoved a trace of type 0 infection at Ames, Iowa, and Manhatian, Kansas, during 1928. It was "completely resistant" or "irmune" to all except one of the efght physiologle foms identified during 1929 and 1930.

Other vaideties ana species showing a comparatively low percentage of crown rust infection under field conditions were: Mite lussian (C.I. 2460 and 2461), Green Kussian (C.T. 1040 and 23太4), Glenn Innis (C.I. 980), Belar (C.I. 2760), Avena irevis (C.I. 2762), Red Rustproof (C.I. 1079 and 1089), Schoolmam (C.I. 2057), Sunrise (C.I. 982 and 1799), Algerian (C.I. 35'79), and Nortex (C.I. 2382). While none of these varieties or species mere equal to Victoria (C.I. 2401) in resistance curing 2929, they were notaile for their low percentage of iniection as compared to the average coamercial variety.

GRAMINEOUS HOST RANGE OF GERTAIN

PHYSIOLOGIC PORMS
An attempt yas made to determine the gramineous host range of physioloeic forms 2, 3, 5, 10, 11, and 12. is many as possible of the various Eramineous species that have been reported as hosts for Puccinia coronata were secured. The seedling reaction of each of these, and other spacies, to the above wentioned physiologic forms was determired.

The reaction of certain species of erass to a particular pinyiologic form of crown mast was not nearly as constant as was the reaction of ont varleties, selections, and species. Abnomal types of reaction, and much variation on incivicual plants and between different plants of the same species mere observed.

In table 9 is given the reaction of 79 species, belonging to the tribes Abrostideae, Andropogoneae, iveneae, Chlonideae, Festuceae, Hordeae, and phalarideae, to each of the physiologic torms mentioned above.
specien

80	8
2404	

300	8	9
H\%	m	

 $\begin{array}{lll}30 & 0 & 0 \\ 3 & 0 \\ 4 & 3\end{array}$

 5 150 $\mathrm{I}+0$
$\mathrm{O}=\mathrm{O}_{2}^{2}$
$\mathrm{I}+0$

Table 9. continued.

aciee											
ivera entiva mutica (c.It diat	4		4		4		4		4		4
do (G.I. 2124)	4		4		4		曻		4		4
ivern antiva Jocetalis (G.I. 2137)	4		4		4		4		4		4
गvena atrigoea (Coz. 2732)	4		0		3		4		4		4
	0		0		0		4		0		I
	4		4		4		4		4		4
Eeckuratyla exucautarinis	I		I		1		\pm		I		I
Bromus cilinta	I		I		\underline{T}		1		I		1
Tromus punpollianus	I		1		I		1		1		I
Hromam richardsonit	I		I		I		1		I		5
	\underline{L}		I		I		I		1		I
	I		T		1		J.		1		I
Capriola dactyion	I		$\underline{1}$		E		1		1		1
Chlonis caymum	I		1		1		1		1		1
Tactylia sionemata Oma	3	$0-1$	0	$0-2$	0	Im 0	0	$\underline{1} 0$	0	Im 0	0
Elymua curadenata	I		I		\underline{L}		I		I		I
westuoa arundinadea	T		I		I		\pm		I		I
Fertaca cosithas	I		1		I		$\underline{1}$		I		I
Testuea turiuscula	I		篤		I		I		I		I
Peatuen eletion Imo	0	3-0	0	1*0	0	I-0	0	$1-0$	0	y-0	0
Ferfuca ejunatca	I		$\underline{2}$		I		I		I		I
	I		\boldsymbol{I}		I		I		\underline{L}		1
Veetuct octofiore \quad - 4	3	$3=4$	3	2 cos	3	0m3	2	25004	3	$0-3$	0
Feseuce ovina	I		I		I		I		I		I
Fersuca fubrra	I		I		1		\boldsymbol{x}		I		I
	1		I		I		I		I		Σ
	5		I		\pm		I		I		I
Festuca tematodata	$\frac{5}{7}$		1		I		1		I		1
Solcus :ndope:c1.	I		I		$\frac{1}{r}$		$\frac{1}{5}$		I		4
Foroenm distionon	I		I		1		3.		I		3

able 9. Conoluted.

spocies												
Horcouse jubatum		1		I		2		1		I		I
tloncoum vilgare		$\underline{1}$		I		I		I		I		1
Lollum 1falicum		I		I		1		I		1	Im 0	0
Lolium malticlormas		I		I		I		I		1		$\underline{1}$
Tolinm paxemio		I	I-0	0		I		x		I	I-0	0
Loliun temalontura		1		I	1-0	0		1		I		I
celica mutioa		I		I		I		I		I	1-0	0
Totholcus innatue		1		1	I-0	0		$\underline{1}$		1		1
Phleum pratenme	$0-2$	2	0-2	2	$0-3$	8	0-2	1	I-0	0	O-2	1
Pos animua	$0-1$	0	0 ml	0	0.1	0	0-1	0	$0-1$	0	$0-1$	0
Pon arachujeora		I		I		I		1		1		1
Poa cumpiteose		1		3		1		0		1		0
Poa nembmilis		$\underline{1}$		1		I		I		$\underline{1}$		$\underline{1}$
Poa prethants		1		\pm		I		I		$\underline{1}$		I
roa tribvalla		\pm		I		1		I		I		1
secale corctio		I		1		x		I		I		1
Sporobolua ciwpeacdmus		1		1		1		1		1		4
Trisetura mbicrums		I		I		I		I		I		5
Tritideum vaimara		\pm		1		I		I		I		I

Forty of the 79 species were apparently immune to each of the six physiologic forms tested. Eighteen speries (including 15 Avena species) gave a sisceptible raction to each of the six forms. Three of these (Achroyien aureum Boehmer, Anthoxanthum odoratum Le, and Festuca octoflore falt.) are wild srass species. Anthoxanthum odoratum and Festuca octoflora are comnon in occurrence throughout the United States, while Achroyden aureum is a native of Europe and is naturalized only in southern California. Lactylis glomerata L. gave a susceptiole reaction to physiologic form 1 , and minute uredinia Here produced when it was inoculated with forms 3 , and 5. The other forms (10, 21, and 12) produced only necrotic areas on this species. winute uredinia were produced on poa annua L. by each of the six physiologic foms used. Phloum pratense L. mas quite variable in raction. Uredinia were produced on this spe cies by all forms, except form number 11 and repeated trials failed to produce uredinia when it was used. There was much variation in the production of chlorotic and necrotic areas on the different species. Apparently this tipe of infection is creatly influerced by enviromment and the age and condition of the nost tissue. Newly developed leaves often gave a more susceptible reaction than older leaves.

It is evident from the data given in table 9 that certain of the species tested differ in their reaction when inoculated

With different physiologic forms. However, outside of the Avena group, this evidence of physiologic specialization is slight. Before physiologic forms colle be accurately differentiated using gramineous hosts, other than Avena, it would be necessary to secure pure lines of the various species.

Nelhus, Dietz and illiey (47), using Puccinia coronata avenae, obtained normal infection on Alopecuris pratensis I. and Arrhenatherum elatius (L.) Mert. and Roch., while in the present investigati ons the maximura infection observed on these species was type 0. It is possible that they were using a physiologic form to which these species were particularly susceptible, or it may be that the variance in results is due to variation within the two gramineous species.

The following species produced uredinia, when inoculated With some one or more of the six physiologic forms used:

Achroyden aureum	Avena sativa diffusa
Anthoxanthum odoratum	Avena sativa mutica
Avena abysinmica	Avena sativa vegetalis
Avena barbata	Avena strigosa
Avena brevis	Avena strigosa glaberscens
Avena nuda	Avena miestia
Avena nuda brevis	Dactylis glomerata
Avena sativa	Festuca octoflora
Avena sativa aristata	Phleum pratense
Avena sativa aurea	

DISCUSSION AND CONGLUSIONS

Forms 1, 3, and 5 seem to be common, occurring regularly from year to year. In adaltion there are evidently a number of comparatively rare rorms of more or less infrequent occurrence. The source of these rare rorms is not definitely know, but certain of them apparently originate on Hhamnus. If so, it is very probaile that these and other new forms wili continue to appear from year to year and it is altogether oossible that new forms more virulent than form 5 will appear and that they will becone midespread in distribution. However, the chances of such torms being procuced are probably no greater for the future than they have been for the past.

Apparently the number of physiologic forms of crom rust present in certain localities is not constant from year to year. Hew forms seem to apperz and certain of the old forms disappear. Mis is especially true in those regions where the alternate host functions. By collecting from different species of Rhamnus it may be ossible to indefinitely continue the discovery of nev physiologic forms.

The discovery of new differential hosts suggests the idea that they may also be a liniting factor in the discovery of new physiologic forms. It seems very probable that a more careful search would disclose additional differential nosts and that it might even be possible to sub-divide some of the physiologic
forms now known. Also, the discovery of certain varieties possessing unusual resistance to the different physiologic forms and under field conditions, encourages further search for varieties resistant to all physiologic forms.

The varieties Victoria (C.I. 2401) and "ivena victoria" (C.I. 2764) are outstancing for their resistance to the eight physiologic forms secured during 1929 and 1930. Using resistant varicties of this type, it should be possible to produce, by hybridization, a hybrid selection resistant to crown rust, stem mut, loose smut, and covered smut. Such varieties as Iogold (C.I. 2329), Anthony (C.I. 2143), and Hajira (C.I. 1001) should iurnish resistance to all physlologic forms of puccinia graminis avenae now present in the United states. While Jaricton (C.I. 2053), Biack hesdag (C.I. 1877), and other smut-resistant varieties and selections, should furmish resistance to loose and covered smat. Appropriate crosses between these varieties, and between their hybricis should be of great value both from the standpoint of producing high pielding, resistant selections, and for a study of the inheritance of resistance to these varlous diseases. By crossing Victoria (C.I. 2401) or "Avena victoria" (C.I. 2764) with the different differential hosts, it should also be oossible to determine the number of factors involved in the inheritance of resistance to aifferent physiologic forms of crown rust.

The investigation of physiologic specialization in crown rust should be continued, and apparently the relation of the alternate host to physiolojc specialization and the production of new physiolosic forms should be especially emphasized.

In Europe Klebahn (42) First divided Puccinfa coronata Corda into two species P. coronata (Corda) Kleb. and P. coronifera kleb. He believed that Rnamms frargula acted as a differential host for these two species. Nietel (19) raised Barclay's (10) variety himalensis to a species rank thereoy adine a third species. The aecial stage of Puccinia himalensis (Barcl.) Tiet. was on phamnus dahurica. Then tuhlethaler (49) adaed a fourth species, Puccinia alpinae-coronata Fuhl. with an aecial stege on Rhamnus purshiana.

In Amorica, wellus, Dietz and filley (47) and Lietz (22) have shown that certain spectes of Rhamnus act as Alfferential hosts for the physiologic varieties of Puccinia coronata corda.

The data secured in the present investigation indicates that certain species of Rinamus may also act as differential iosts for physiologic forms of the physiologic variety p. coronata avenae.

Therefore, it is only logical to retain all physiologic varieties and forms of crown rust under the one morohologic species puccinia coronata Corda. Physiologic specialization in the species is highly developed and is evident on joth the Rhamnus and gramineous hosts.

SUMIXA RY

Two hundred forty-five cultures of fuccinia coronata avenae wore obtained from I71 collectiona made during the years 1927, 1928, 1929, and 1930. One or the other of two uniform sets of 33 possible differential hosts were individually inoculated with each of these 245 cultures.

Thirteen physiologic forms were distinguishod among these cultures by the differential reaction, of seodings, of elght pure-line-selected: varieties, selections, and species of oats, and one species thet was not pure-line-selected.

Physiologic form 5 mas the most virulont fom described, only the two varioties Victoria (C.I. 2401) and "ivena victoria" (C.I. 2764), and the species Avena strigosa Glaborscens (C.I. 2630) being resistant to it. Forms 5, 1 , and 3 were the most widely distributed forms, the former two predominating in the south.

Bvidence is presented which indicates that ceriain physiologic forms may originate on certain species of Rhamnus.

The secdling reaction of 310 varioties, seiections, and species to physiologic forms $1,3,5,10,11$, and 12 is fiven. The percentage of crown rust on certain of these same varieties under field conditions at seven locations in the United states is also recorded.

The variety Victoria (C.I. 2401) was outstanding for its
resistance to eight physiologic forms collected curing 1029 and 1930, and to opiphytotic of crown rust under fleld conditions at Ames, Iowa, and Manhattan, Kansas, during 1929. A study of the eramineous host rarge of physiolo:sic forms $1,3,5,10,11$, and 12 is reported. The reaction oí all species, cutside the Avena group, to ench of these physiologic forms is very similar.

ACKNOWLEDGMENTS

The writer wishes to express his appreciation to Ir. S.M. ILetz for timely assistance given tinroughout the investigation, and to Dr. I.E. Hielhus and Professor L.C. Burnett for cooperation, and assistance in preparing this manuscript. Appreciation is expressed also to Dr. H.B. Humphrey, Bureau of Plant Incustry, ashington, D.C., under whose direction these investieations were concucted, and to ir. T.R. Stanton, Bureau of Plant Industry, washington, D.C., who furnished seed of the new and foreign varieties and species of onts studied. The writer is indebted to Mr. L.D. Leach for the nine collections of crown mast secured during 1927, and much adattional material and information furnished at the beginning of the investigations. To the cooperators mentioned earlier in this manuscript and to inose men who so kindly sent in collections of crom rust, the writer wishes to express his sincere gratitude.

IITERATUNE CITHD

(1) Allon, Futh F.
1930. A cytological study of heterothallism in Fuccinia Graminis. Jour. Agr. Res. 40: 585-614.
(2) Arthur, J.C.
1905. 11: 50-67.
(3)

(4)

(5)
and Frome: F.D.
1920. Wredinales: Dicaeoma on Poaceae. N. Amer.
Flora 7: $277-341$.
(G)

Clage and Holway, E.H.D.
1898. Descriptions of American Uredineae. II. Bul. Lai. Mat. Hist. State Univ. Ia. 4: 377-402.
(7) Bailey, D.L.
1923. Sunflower rust. Ninn. Agr. Exp. Sta. Tech. Bul. 16. 31 p.
(8)

(9) Bandi, W. 1903.

Beitrige zur Biologio der Uredineen (Phragmidium subcorticium (Schrank) Uinter, Pu cinia Caricismontanae Ed. Fischer). Hedwigia 42: 118: 152.
(10) Barclay, A.
1891. On the life-history of Puccinia coronata, var. himalensis. Trans. Iinn. Soc. (II.) 3: 227-236.
(11) Bary, A. do 1866.

Neue Untersuchungen tiber Uredineen. Fionatsber. K. Preuss. Akad. Wiss. Berlin. 1865: 205-215.
(12) Carleton, 远.A.
1899. Cereal rusts of the United States: a physiological investigation. Bul. U.S. Dept. Agr. Div. Veg. Phys. and Path. 16. 73 p.
(I3) Comu, M. 1880.

Hote sur les generations altermantes des Uredinees: Bul. SOc. Bot. France. 27: 179.
(14) Craigie, J.H.
1927. Experiments on sex in rust fungi. Nature 120:
(15)
1927. Discovery of the function of the pyenia of the
(16) rust fungl. Nature 120: 765-767. On On the occurrence of pycnia and aecia
rust fungt. Fhytopatin. 18: 1005-1015.
)
1929.

Se Dept. Agr. Exg. Farms. Div. Bot. Rept. 1928: 78-82.
(18) Dietel: P.
1887. Beitrdge zur Morphologie und Blologie der Uredineen. Bot. Centol. 32: 54-56.
(19)

1899. Waren die Rostpilze in frdhern Zeiten pluxivor? Bot. CentbI. 79: 81-85, 113-117.
(20) Dłetz, S.M.
1923. The role of the genus Rhamnus in the dissemination of crown rust. U.S. Dept. Agr. Dopt. Bul.
(2I)
1926. The effect of the altemate host on physiologic forms. Phytopath. 16: 83-84. (Abstract).
(23) Durrell, L.W., and Parker, J. $\mathrm{H}_{\text {. }}$ 1920. Comparative resistance of varieties of oats to crom and stem rusts. Iowa Agr. Exp. Sta. Res. Bul. 62: 27-56.
(24) Eriksson, Jakob.
1894. Ueber die Specialisirung des Parasitismas bei don Gatreiderostoilzen. Ber. Deut. Bot. Gesell. 12: 292-331.
(25)
1897. Neue Beobachtungen \#ber die Natur und das Vortromen des Kronenrostes. Contbl. Balkt. (II)
(26)
 cereales. Ann. Sci. Nat. Bot. ser. 8, 9: 2sI-288.
(27)
 in Schreden und in anderen IAndern. Centbl. Batt. (II) 9: 590-607, 654-658.
(28)

Tro8. Neue studien Hber die Specialisierung der grasbewohnenden Kronenrosten. Ark. f. Botanik. 8: 1-26.
(29)
and Henning, Ermst.
18s4. Die Hauptresultate die Getreideroste. Ztschr. Prlanzenichank. 4 : 257-262.
(30)
1896. Dio Metreideroste, inre Geschichte und Natur, sowie Hassieglen gegen dieselben. Stockholm,
Norstedt. 463 p .
(31) Gordon, W.I.
1928. Physiologic forms of Puccinia graminis avent
Erikss. and Hemn. in Canada. Sci. Agri. 8:
$462-463 . ~(A b s t r a c t) . ~$
(32)

(33) Hanna, W.F.
1929. Nuclear association in the aecium of Puccinia sraminis. Nature 124 (3120): 267.
(34) Hoerner, G.R. 1919. Biologic forms of puccinia coronata on oats. Phytopath, 9: 309-314.
(35) Hungerford, C.V., and Owens, G. F. 1923. Specialized varietios of puccinia glumamum and hosts for variety tritici. Jour. Agr. Res. 25: 363-402.
(36) Jaczowski, A. V . 1910. Studien Uber das Verhalten des Schwarzrostes des Getreides in Fussland. Ztschr. pelanzenkrank. 20: 321-359.
(37) Jordi, E. 1903. Kulturversuche mit Papilionaceen bewohnenden Kostpilzen. Centbl. Bakt. (II) 10: 7777-779.
(38)
\qquad -
1904. Beitrlge zur Kenntnis der Papilionaceen bewohnenden Uromyces-Arien. Centbl. Bakt. (II) 11: 763-795.
(39) Klebahn, H. 1892.

Kuiturversuche mit heterßcischen Uredineen. ztschr. Pflanzenkrank. 2: 332-343.
1894. Kulturversuche mit heterbcischen Uredineen. 2tschr. Pflaneonkrank. 4: 129-139.
1895. EuIturversuche mit heter8cischen Rostpilzen. Ztsohr. Pflanzenkrank. 5: 149-156.
(42)
1896. Kulturversuche mit heteröcischen Fostpilzen. Ztschr. Pflanzenkrank. 6: 324-338.
(43)
1912. Eulturversuche mit Rostpilzen. Ztschr. Pelanzenkrank. 22: 321-350.
(44) Magmus, P. 1894.

Die systematische Unterscheidung nüchst vexwandter parasitischer Pilze auf Grund ihres vorscheidenen biologischen Verhaltens. Hedmigia 33: 362-366.
(45) Kains, E.B.
1926. Studies in rust resistance. Jour. Heredity 17:
(46) \qquad Ph
f must of Wheat, Puccinia triticina Erikss. Dhytopath. 16: 89-119.
(47) Molhus, I.T., Dietz, S. F., and milley, Florence 1922. Alternate hosts and biolozic specialization of orown rust in America. Iowa Agr. Fixp. Sta. Res. Bul. 72: 211-236.
(48)
 . Exp. Sta. on the crown rust of oats. Iowa Agr. Exp. Sta. Res. Bul. 49: 115-144.
(49) Munlethaler, F.
1911. Infektionsversuche mit khamus befallenden Kronenrosten. Centbl. Bakt. (II) 30: 386-419.
(50) Murphy, H.C.
1930. Physiologic specialization in Puccinia coronata avenae. Phytopath. 20: 143-144. (Abstract).
(51) Newton, Margaret, Johnson, T., and Brown, A.N.
1930. Hywridization of physiologic forms of puccinia Graminis. Phytopath. 20: 112-113. (Abstract).
(52) Nielsen, P.
1877. Bemaerimingen om nogle Rustarter. Bot. Tidsskr. 3: 39.
(53) Parson, H.E.
1927. Physiologic specialization in puccinia coronata avenae. Phytopath. 17: 783-790.
(54) Plowright, C.B.
1889. A monograph of the British Uredineae and Ustilagineao. London. Kegan, Paul Trench and Co. 347 p .
(55) Dopp, W1111am
1926. Grom rust of oats in eastern Canada. 18th Ann. Rept. Queboc Soc: Prot. Plants. 1925-1926:
(56) Probst, R. 1909. Die Spezialisation dei Puccinia Hieracif. Centbl. Bakt. (II) 22: 676-720.
(57) Rostrap, E. 1894. Biylkologiske Meddelelser (IV) Bot. Tldsskr. 19: 36-51.
(5a) Scheibe, A. 1928.

Stuaien zum Weizenbraunrost, Puccinia triticina Eriksson, I. Biol. Reichsanst. Land-Forstw. Berlin-Dahlem. 7: 575-603.
(59) Schroeter, J.
1379. Entwickiungsgeschichte einiger Rostpilze. Beitr. Biol. pelanzen. 3: 51-93.
(60) Stakman, E.C.s and Christensen, J.J. 1926. Physiologic specialization of Ustilago zeae and Fuccinia sorghi and their relation to corn improvement. Fhytopath. io: 34. (Abstract). 1928. Physiologic 3pecialization in Puccinia sorghi.

(63)
1923.
Biologic forms or Puccinia graminis on varieties
of Avena spp. Jour. Agr. Res. 24: 1013-1018.

(65)

```
(66) Treboux, 0.
        1912. Iniektionsversuche mit parasitischen Pilzen
                                    III. Ann. Bycol. 10: 557-563.
(67)
            1914. Infektionsversuche mit parasitischen Pilzen
```



```
(68) #ard, H.M.
        1001.
                                The bromes and their must-fungus (Puccinia
                                dispersa). Arin. Bot. 15: 560-562.
```


EXPLANATION OF PLATES

Plate I
Fig. I. fusiin compartments in which all sesding plants were Erom, to determine types of crom rust infection.

Fig. 2. Covered lamp chimeys used to retain crown rust cultures.

Plate II

Fis. 1. Tanks made of galvanized steel with false bottom and glass top used as inoculation chambers.

Fig. 2. Types of crown must infection:
I. No macroscopic evidence of infection.
O. No uredinia fomed, necrotic areas present.

1. Uredinia few, small, always in necrotic areas, also more or less necrotic areas produced without the development of uredinia.
2. Uredinia fairly abundant, small to mediun size, always in necrotic or very chloretic areas.
3. Uredinia abundant, medium in size, and surrounded by chlorotic areas.
4. Uredinia abundant, large, no necrosis or chlorosis imneliately surrounding the uredinia.

Plate III
Fig. 1. Puccinia coronata avenae (Physiologic form 1)

1. Belar (C.I. 2760) - type 4.
2. Anthony (C.I. 2I43) - type 0 .
3. Iowa 102 (G.I. 2464) - type 0.
4. Avena strifrosa glaberscens (C.I. 2630)-type 0.
5. Victoria (C.I. 2401) - type 0. 28. Mardtion (C.I. 2053) - type 4.

Fig. 2. Puccinia coronata avenae (Finssiologic form 3).
2. Belar (C.I. 2760) - type 0.
7. Anthony (C.I. 2143) - type 4.
8. Lowa 102 (C.I. 2464) - type 4.
11. Avena strigosa glaborscens (C.I. 2630) - type 0. 21. Victoria (C.I. 2401) - type 0. 28. Marikton (C.I. 2053) - tipe 4. Plate IV.

Fig. 1. Puccinia coronata avenae (Physiologic form 5).
I. Belar (C.I. 2760) - type 4.
7. Anthony (C.I. 2143) - type 4.
8. Iowa 102 (C.I. 2464) - trpe 4.
11. Avena strigosa glaberscens (C.I. 2630) - type 0.
21. Victoria (C.I. 2401) - type 0.
28. Markton (C.I. 2053) - type 4.

Fig. 2. Puccinia coronata avenae (Physiologic form 6).

1. Belar (C.I. 2760) - type 3.
2. Anthony (C.I. 2143) - type 4.
3. Iowa 102 (C.I. 2464) - type 0.
4. Avena strigosa glaberscens (C.I. 2630) - type 0. 21. Victoria (C.I. 2401) - type 0. 28. markton (C.I. 2053) - type 4.

Dlate V

Fig. 1. Fuccinia coronata avenae (Physiologic form 10).

1. Belar (C.I. 2760) - type 0.
2. Anthony (C.I. 2143) - type 0.
3. Iowa 102 (C.I. 2464) - type 0.
4. Avena strigosa flaberscens (C.I. 2630) - type 4.
5. Victoria (C.I. 2AOL) - type I.
6. Hariston (C.I. 2053) - type 4.

Fig. 2. Puccinia coronata avenae (Fhysiologic form 31).
I. Belar (C.I. 2760) - type 4.
7. Anthony (C.I. 2143) - type 0.
8. Iowa 102 (C.I. 2464) - type 4.
11. Avena strigosa glaberscens (C.I. 2630) - type 0.
21. Victoria (C.I. 2 01) - type 0.
28. Warkton (C.I. 2053) - type 4.

Plate VI
Fig. 1. Puccinia coronata avenae (physiologic form 12)

1. Belar (C.I, 2760) - type 0.
2. Anthony (C.I. 2143) - type 0.
3. Iowa 102 (G.I. 2464) - type 0.
4. Avena strigosa glaberscens (C.I. 2630) - type I. 21. Victoria (C.I. 2401) - type I. 28. Markton (C.I. 2053) - type 4.

Fig. 2. Puccinia coronata avenae (Physiologic Porm 13).
I. Belar (C.I. 2760) - type 0.
7. Anthony (C.I. 2143) - type 1.
8. Iowa 102 (C.I. 2464) - type 4.
11. Avena strigosa glaberscens (C.I. 2630) - type 0.
21. Victoria (C.I. 2401) - type 0.
28. Markton (C.I. 2053) - type 4.

Plate VII

Teliospore formation of physiologic forms 3 and 5 on seedling plants from two panicles of oots. All infection 16 days old and produced under identical conditions.

1. Fulchum (C.I. 650-203) - abundent telia formation, physiologic form 3.
2. Fulghum (C.I. 650-203) - abundant uredinia foma tion (no telia), physiologic form 5.
3. D.A.C. \# 10 (C.I. 2829) - abundent telia formation,
4. D.A.C. \# 10 (C.I. 2829) - abundant uredinia formation (no telia), physiologic form 5.

Plate I

Figure 1

Figure 2

Plate II

Figure 1

Figure 2

Figure 1

Figure 2

Figure 1

Figure 2

Figure 1

Figure 2

||||||

Figure 1

Figure 2

[^0]: IC.I. = Bureau of Plant Industry, Cereal Investigation accession number.

