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Abstract 13 

The heavy metals lead and cadmium have become important pollutants in the environment, which exert 14 
negative effects on plant morphology, growth and photosynthesis. It is particularly significant to uncover 15 
the genetic loci and the causal genes for lead and cadmium tolerance in plants. This study used an IBM 16 
Syn10 DH population to identify the quantitative trait loci (QTL) controlling maize seedling tolerance to 17 
lead and cadmium by linkage mapping. The broad-sense heritability of these seedling traits ranged from 18 
65.8%-97.3% and 32.0%-98.8% under control (CK) and treatment (T) conditions, respectively. A total 19 
of 53 and 64 QTL were detected under CK and T conditions, respectively. Moreover, 42 QTL were 20 
identified by using lead and cadmium tolerance coefficient (LCTC). Among these QTL, five and two 21 
major QTL that explained > 10% of phenotypic variation were identified under T condition and using 22 
LCTC, respectively. Furthermore, eight QTL were simultaneously identified by T and LCTC, explaining 23 
5.23% to 9.21% of the phenotypic variations. Within these major and common QTL responsible for the 24 
combined heavy metal tolerance, four candidate genes (Zm00001d048759, Zm00001d004689, 25 
Zm00001d004843, Zm00001d033527) were previously reported to correlate with heavy metal transport 26 
and tolerance. These findings will contribute to functional gene identification and molecular marker-27 
assisted breeding for improving heavy metal tolerance in maize. 28 
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Introduction 30 

In recent years, heavy metal pollution has become a globally environmental problem, which shows a 31 
potential threat to the ecosystem due to its concealment, irreversibility and long-term characteristics. 32 
Lead (Pb) and cadmium (Cd) are two of the main heavy metals in the soil, which enter the plants mainly 33 
through soil (Alloway 2015). High concentrations of lead and cadmium both have toxic effects on plant 34 
growth and development, resulting in leaf discoloration, root necrosis and growth retardation, 35 
etc.(Sandalio et al. 2001; Fediuc and Erdei 2002). In recent years, the previous studies have focused on 36 
the revelation of mechanism underlying plant tolerance to single stress of lead or cadmium (Lagriffoul 37 
et al. 1998; Pál et al. 2006; Sengar et al. 2008). However, various heavy metals are often associated with 38 
each other owing to their similar chemical properties, easily causing compound hazards to the 39 
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environment (Chen et al. 2000). The toxic effects of combined heavy metals on ecosystem are different 40 
from those of single heavy metal, and the mechanism of the interactions between various heavy metals 41 
is very complex. Under the combined stresses of lead and cadmium, lead significantly inhibited the 42 
absorption of cadmium in a dose-effect manner in mosses (Tian et al. 2015). With the enhanced lead 43 
concentration, the cadmium content in mosses was gradually decreased (Tian et al. 2015). Si et al. (2021) 44 
reported that the lead and cadmium have a synergistic effect under the combined stress. The increased 45 
concentration of the combined metals resulted in the stronger the inhibitory effects on mulberry seed 46 
germination, seedling growth, and photosynthesis. Furthermore, the transportation and accumulation 47 
were both different between lead and cadmium ions in mulberry (Si et al. 2021). However, there were 48 
few reports on the combined stress of lead and cadmium in maize. 49 

Due to its nutritional value and yield-increasing potentials, corn serves as an important food, feed, and 50 
industrial raw material. Root system is one of the major components of plant architecture and it plays a 51 
crucial role in fixing plants, absorbing water and nutrients (Comas et al. 2013). As a direct connection 52 
between plants and soil, root system participates in the defense of abiotic stresses (Malamy and 53 
Environment 2005). Maize roots can be divided into five types: crown, seminal, primary, lateral, and 54 
brace roots (Hochholdinger 2009). The embryonic root system is mainly composed of primary and 55 
seminal roots, which is mainly determined by genetic factors (Hochholdinger 2009). In addition, branch 56 
and crown roots are formed below and above the soil surface , respectively (Hoppe et al. 1986). Several 57 
studies have shown that heavy metal stress directly affects crop yield and quality by affecting plant root 58 
system architecture (RSA) (Cao et al. 2005; Nie et al. 2013; Xia et al. 2016). Moreover, it has been 59 
reported that total root length (TRL) , total surface area (TSA) , volume (VOL) and bushiness (BSH) are 60 
important factors affecting the accumulation and transport of Cd in different cabbage varieties (Xia et al. 61 
2016). 62 

Quantitative trait loci (QTL) mapping has been widely used for uncovering the genetic basis of many 63 
agronomic traits and economic traits in different crops, such as yield, disease resistance, stress response, 64 
quality, growth period (Young and N. 1996; Lima et al. 2006; Courbot et al. 2007; Buckler et al. 2009). 65 
Recently, researchers utilized linkage and association mapping to identify QTL involving heavy metal 66 
tolerance of plants. Among 230 maize inbred lines, 46 QTL associated with the accumulation of AS were 67 
identified by genome-wide association analysis (GWAS), which explained 9.70%-24.65% of the 68 
phenotypic variation (Zhao et al. 2018c). By linkage mapping, 60 putative QTL were found to affect 69 
shoot height (SH), root length (RL), shoot fresh weight (SFW), shoot dry weight (SDW), root dry weight 70 
(RDW), shoot water content (SWC) and shoot ion concentrations (SFe or SZn) of rice seedlings under 71 
iron and zinc treatments. The explained phenotypic variations of each QTL ranged from 5.5%-13.5% 72 
and 3.8%-11.8% in iron and zinc treatments, respectively (Zhang et al. 2017). Using the IBM syn10 DH 73 
population, seven QTL responsible for cadmium accumulation in leaves were identified in maize, which 74 
resided on chromosomes 2, 5, 7, 8, and 9, respectively, and explained 3.36%-41.24% of the phenotypic 75 
variations (Zhao et al. 2018b). 76 

In this study, the IBM Syn10 DH population that was previously constructed from the parents B73 and 77 
Mo17 was subjected to the investigation of 19 seedling traits under normal condition and the combined 78 
stress of lead and cadmium conditions, respectively. Using a high-resolution genotype of this population, 79 
we carried out QTL mapping for these investigated traits. The objectives of this study are to: (i) evaluate 80 



the phenotypic variations and heritability estimates of these seedling traits including plant biomass, 81 
shoot-related traits, root system architecture (RSA); (ii) detect the correlations between different traits 82 
under CK and T conditions. (iii) identify the QTL for the tolerance of maize seedling to the combined 83 
stress of lead and cadmium; (iv) uncover the candidate causal genes involving heavy metal tolerance. 84 
Our study will provide insights into understanding the mechanism of maize tolerance to combined stress 85 
of heavy metals and breeding heavy metal-tolerant maize varieties. 86 

Materials and methods 87 

Plant materials and experimental treatment  88 

The IBM Syn10 DH population used for QTL mapping in this study included 187 double haploid lines 89 
(DHLs), which were previously constructed from the parents B73 and Mo17 and has a high 90 
recombination frequency (Jansen et al. 2015).  91 

To measure the phenotypes, 15 seeds of each line were successively soaked with 0.8% sodium 92 
hypochlorite for 15% and 10% hydrogen peroxide for 1 min, followed by twice-rinse with double-93 
distilled water and treatment with saturated calcium sulfate for 6 h (Canadas et al. 2014; Abdel-Ghani et 94 
al. 2016). The sterilized seeds were rolled up with germination paper (Anchor Paper, St. Paul, Minnesota, 95 
USA), placed in a bucket filled with ultrapure water and cultivated in an artificial climate chamber (The 96 
parameters were set as: light/darkness photoperiod of 16 h/8 h and temperature of 25/22°C) (Abdel-97 
Ghani et al. 2016). At two-leaf stage, these seedlings were divided into two groups, with one group 98 
cultured in the Hoagland solution (CK) and the other in the Hoagland solution added with 3 mM Pb2+ 99 
and 3 mM Cd2+ (T) (Rauser 1987). At 7 d after culture, the following traits were manually measured 100 
using a ruler: seedling height length (SHL), shoot fresh weight (SFW), root fresh weight (RFW). Shoot 101 
nitrogen content (NC) was determined using Kjeldahl nitrogen determination (Miller and Houghton 102 
1945). Meanwhile, Expression 10000XL root scanner was employed to scan the root system-related traits. 103 
These included bushiness (BSH), coverage area (CVA), depth (DEP), diameter (DIA), length distribution 104 
(LED), median (MED), maximum number of root (MNR), network area (NWA), perimeter (PER), 105 
secondary root length (SEL), total number of root (TNR), total root length (TRL), total surface area 106 
(TSA), width/depth ratio (WDR), and width (WID). Finally, TAIR high-throughput analysis software 107 
(Pace J et al. 2014) was used to calculate these root system-architecture phenotypes.  108 

Phenotypic data analysis 109 

SPSS 20.0 software (http://www.spss.com) was used for descriptive statistical analysis, analysis of 110 
variance (ANOVA) and correlation analysis for these investigated traits. The generalized heritability (H2) 111 
estimate of each trait was evaluated as described by Knapp et al (Knapp et al. 1985; Hallauer and Miranda 112 
Filho 1988). For each trait, the lead and cadmium tolerance coefficient (LCTC) referred to the ratio of 113 
phenotypic performance under T condition to that under CK condition. 114 

QTL mapping 115 

WinQTLCart2.5 software was used to analyze QTL of various traits under different conditions based on 116 



the composite interval mapping (CIM) (Wang et al. 2005). The walk speed was set to 1.0 cM, the LOD 117 
threshold was determined according to permutation times (1000) (Churchill and Doerge 1994). The 118 
naming rules of QTL were as follows: q + trait name + T or CK + chromosome number + identified QTL 119 
sequence number (McCouch and Xiao 1998). For instance, in “qTRLCK2-1,” “q” stands for QTL, “TRL” 120 
denotes total root length, the next capital “CK” stands for normal condition, “2” is chromosome 2, and 121 
“1” represents the first QTL in chromosome 2. In this study, QTL with a phenotypic variation (R2) greater 122 
than 10% was considered as a major QTL. 123 

Identification of candidate genes 124 

We converted the genetic distance of the previously mapped QTL segment into the corresponding 125 
physical distance and then used the maize B73 reference genome (B73 RefGen_v2, 126 
https://www.maizegdb.org/) to identify candidate genes with Perl (Perl FetchGeneFormLocis.vo.l.pl -a 127 
Zma_v2_gene.location.xls -l IN.txt -o result.txt). Finally, Gramene 128 
(http://ensembl.gramene.org/tools.html) was used to uniformly convert candidate genes into v4 version 129 
for the subsequent research.  130 

Real-Time PCR 131 

The inbred line 178 (a heavy metal-tolerant line in maize, Shen et al., 2013) were subjected to qRT-PCR 132 
of the candidate genes. Specifically, the two-leaf seedlings of the line 178 was treated with 3 mM Pb and 133 
3 mM Cd for 72 h. The roots were separately collected at 0 h, 24 h, 48 h, and 72 h under treatment. Total 134 
RNA was extracted by Trizol (Invitrogen) and mRNA reverse transcription was performed by 135 
"PrimeScript™ RT Reagent Kit with gDNA Eraser (Perfect Real Time)". The gene Actin1 136 
(Zm00001d010159) was used as the internal reference gene. The qRT-PCR was performed by using ABI 137 
7500 fluorescence quantitative analyzer (Thermofisher Scientific, USA). The “Applied Biosystem™ 138 
SYBR™” kit (Thermofisher Scientific, USA) was employed for the relative quantification of gene based 139 
on the "△△Ct" method. Primers for qRT–PCR are shown in Table S5. 140 

Results 141 

Phenotypes of maize seedling traits under the combined stress of lead and cadmium   142 

The most of the 19 phenotypes showed significant (P<0.05) difference between the parents B73 and 143 
Mo17 under T condition except for NWA, TNR, and NC (Table 1). Under both conditions, the frequency 144 
distributions of each trait among the IBM population conformed to normal distributions, indicating that 145 
these traits were quantitative traits (Fig. 1 and Fig. 2) (Pace et al. 2015). The heritability ranged from 146 
65.8% to 97.3% and 32.0% to 98.8% under CK and T conditions (Table 2), revealing that genetic factors 147 
played important roles in the phenotypic variations of all the traits in this study. Among the population, 148 
these seedling traits had abundant phenotypic variations with the variation coefficients ranging from17.7% 149 
to 49.3% and 16.9% to 48.38% under CK and T conditions, respectively (Table 2).  150 

T-test indicated that the values of most traits were significantly decreased under the T condition relative 151 
to CK, indicating that the combined stress of lead and cadmium effectively inhibited the growth and 152 



development of maize seedling. Moreover, NC showed a lower value in T condition than in CK, 153 
demonstrating that the combined stress negatively regulated nitrogen absorption. However, BSH and 154 
LED were slightly increased by the treatment, as compared to CK. No significant difference was 155 
observed between the two conditions for DEP, DIA, and MNR, implying that these three traits were 156 
insensitive to the combined heavy metal stress (Table 2).  157 

Correlations between different traits under two conditions  158 

Correlation analysis revealed that the aboveground traits (SFW and SHL) both significantly (P<0.05) 159 
positively correlated with RFW under CK and T conditions, verifying that the development of root 160 
systems positively affects the growth of shoots in maize seedlings (Table 3). Positive correlations (P<0.05) 161 
were commonly observed between these root-related traits such as BSH, DEP, MED, and WID, 162 
indicating that maize RSA is coordinately developed during the seedling stage. Meanwhile, NWA, SEL, 163 
and TSA were significantly (P<0.01) positively related to each other under both conditions, with the 164 
correlation coefficients varying between 0.930 and 0.994 (Table 3), implying that the root length and 165 
number of secondary roots contribute largely to the total root surface area in seedling stage. This is 166 
consistent with the previous studies (Pace et al. 2015). 167 

Notably, BSH showed significant (P<0.05) correlations with the other 17 traits in CK, whereas only 168 
seven traits were significantly (P<0.05) associated with BSH under T condition. In contrast, six and 15 169 
traits significantly (P<0.05) correlated with LED, under CK and T conditions, respectively (Table 3). 170 
These were supported by the findings that BSH and LED out of all traits were exclusively increased in 171 
T condition. Moreover, no significant correlations were found between NC and any other traits under 172 
two conditions. 173 

QTL detected by linkage mapping 174 

In this study, a total of 159 QTL were detected under two conditions and using LCTC values, which were 175 
distributed at different positions on 10 maize chromosomes (Fig. 3). The LOD of these QTL ranged from 176 
2.074 (qTSACK3-1) to 6.786 (qNCT10-1), and the phenotypic variability explained (PVE) varied 177 
between 4.13% (qTSACK3-1) and 12.91% (qNCT10-1). Among them, 53 QTL were detected in CK and 178 
the LOD of these QTL ranged from 2.074 (qTSACK3-1) to 4.945 (qBSHCK6-2), with the PVE ranging 179 
from 4.13% (qTSACK3-1) to 9.65% (qCVACK9-1) (Table S1). A total of 64 QTL were independently 180 
detected under T condition and their LOD changed from 2.543 (qSELT7-1) to 6.786 (qNCT10-1), with 181 
the PVE ranging from 4.53% (qTRLT2-1) to 12.91% (QNCT10-1) (Table S1). Among them, the 5 QTL 182 
qBSHT1-1 (10.56%), qDIAT1-1 (11.64%), qNCT10-1 (12.91%), QWDRT2-1 (10.65%), and qWIDT7-183 
1 (11.62%) that resided on chromosomes 1, 2, 7, and 10 had the PVE > 10% (Table 4), which were 184 
thereby considered as the major QTL. The additive effect values of qBSHT1-1, qDIAT1-1 and qNCT10-185 
1 were 0.197, 0.006 and 0.090 respectively, indicating that the alleles with synergistic effects were 186 
derived from the parent B73. Meanwhile, the other two QTL presented negatively additive effects with 187 
the effect values of -0.024 and -0.285, respectively, suggesting that the synergistic alleles of the two QTL 188 
were from Mo17 (Table 4). 189 

In total, 42 QTL were identified using LCTC values and the LOD scores of these QTL ranged from 2.384 190 



(qRFWLCTC7-1) to 6.604 (qRFWLCTC2-1), with the PVE changing between 4.41% (qRFWLCTC7-191 
1) and 12.78% (qRFWLCTC2-1) (Table S1). Similarly, we detected two major QTL responsible for the 192 
combined heavy metal tolerance, qRFWLCTC2-1 and qSHLLCTC2-2, and their corresponding LOD 193 
values were 6.604 and 5.105, with the PVE varying between 12.78% and 10.68%. The additive effects 194 
of these two QTL were -0.127 and -0.06, respectively, indicating that the synergistic effect came from 195 
Mo17 (Table 4). Remarkably, 8 QTL were simultaneously detected under T and by using LCTC, 196 
including qCVA2-1, qDIA2-1, qPER2-2, qPER4-1, qRFW2-1, qSEL7-1, qSFW2-2 and qWID2-1. They 197 
individually explained 5.23% (qSEL7-1) to 9.21% (qSFW2-2) of phenotypic variations and the LOD of 198 
these QTL ranged from 2.543 to 4.738 (Table 4). 199 

Expression patterns of candidate genes under heavy metal stress 200 

To identify the candidate genes involving maize tolerance to the combined stress, we further focused on 201 
the major QTL detected under T condition and using LCTC, as well as all the QTL commonly detected 202 
by T and LCTC. Within these physical intervals of these QTL, a total of 308 gene models were identified 203 
by referring to B73 v4 genome. According to the functional annotations (Table S2), 31 genes that were 204 
previously reported to correlate with abiotic stress were selected as the prioritized candidate genes in this 205 
study (Table 5). Our previous studies analyzed the transcriptomes of maize root under lead and cadmium 206 
stresses, respectively (Shen et al. 2013; Peng et al. 2015). By referring to the transcriptome data, 22 out 207 
of the 31 candidate genes were differentially expressed under lead or cadmium treatments, with the 208 
change fold >2 and the FDR <0.001 (Table S3). To further identify the response of these differentially 209 
expressed genes (DEGs) to the combined stress of lead and cadmium, we randomly selected 11 DEGs 210 
for qRT-PCR to obtain their expression patterns under the combined stress. Ten genes were significantly 211 
differentially expressed in the stress when compared to CK (Fig. 4.). Among them, six were continuously 212 
downregulated with the process of combined treatment (Fig. 4.) and three (Zm00001d004731, 213 
Zm00001d004744, and Zm00001d002275) were specifically upregulated at one of the treatment stages 214 
(Fig. 4.). Combined these findings indicated that most of the DEGs respond to the combined stress of 215 
lead and cadmium. 216 

Discussion 217 

Using IBM Syn10 DH population to map QTL for heavy metal tolerance in maize 218 

High recombination ratios and considerable phenotypic variations in linkage populations are both 219 
beneficial to dissect the genetic architecture concerning the target traits (Williams et al. 1995; Austin and 220 
Lee 1996). The IBM Syn 10 DH population was constructed through additional six generations of open 221 
pollination and haploid doubling of the IBM Syn4 RIL. Compared with the common RIL populations, 222 
the IBM population has higher rate of genetic recombination and the higher resolution of genetic 223 
localization (Dudley et al. 2004; Liu et al. 2017a). In this study, the IBM Syn10 DH population showed 224 
coefficients of variation ranging from 0.18 to 0.49 (CK) and 0.17 to 0.48 (T) for the investigated traits 225 
(Table 2). Especially, in T condition, WDR and MED exhibited the larger phenotypic variations (0.43 226 
and 0.45) among the population, when compared with those (from 0.043 to 0.21 and from 0.17 to 0.32) 227 
reported by Sanchez et al and Ma et al (Sanchez et al. 2018; Ma et al. 2020). The genetic linkage map 228 
was composed of 5935 bin markers, and the total length of the map was 1767.45 cM. The mean genetic 229 



distance between the two adjacent bin markers was 0.29 cM (Ma et al. 2018), which was suitable for 230 
QTL fine mapping. In this study, many smaller intervals of QTL were detected, including qLEDCK3-1 231 
(PC: 3.5-3.8 Mb), qBSHT1-1 (PC: 290.9-291.2 Mb), qRFWT9-2 (PC: 154.3-154.6 Mb), qWIDT7-1 (PC: 232 
7.8-8.1 Mb) and qTRLCK8-1 (PC: 165.1-165.4 Mb), which benefits to the identification of causal genes 233 
for heavy metal tolerance. In the previous study, 20 QTL responsible for lead content in maize different 234 
tissues were identified by using the IBM Syn 10 DH population (Zhao et al. 2018a). Among them, 5 QTL 235 
(qSPC4-1, qLPC4, qKPC5, qKPC2 and qRPC2) overlapped with 8 QTL (qPERT4-1、qPERLCTC4-1、236 
qMNRT1-1、qMNRLCTC5-1、qDIAT2-1、qSHLT2-1、qTRLT2-2、qWIDLCTC2-1) detected in this 237 

study. In addition, the physical intervals of the two QTL (qTNRCK5-1 and qNCLCTC8-1) identified in 238 
this study were individually consistent with those of our previously reported QTL (qLCd5 and qLCd8) 239 
in the IBM Syn 10 DH population which regulated Cd content in maize leaves (Zhao et al. 2018b). These 240 
genetic overlaps between the combined heavy metal stress and Pb/Cd single stress demonstrated the 241 
reliability of our QTL mapping in this study. Meanwhile, the remaining QTL detected in this study 242 
probably represented the genetic loci that specifically controlled maize tolerance to the combined stress 243 
of heavy metals. 244 

Candidate genes for maize tolerance to the combined stress of lead and cadmium 245 

In these QTL identified in this study, 308 gene models were obtained by according to B73 v4 genome, 246 
among which 31 genes were annotated related to abiotic stress (Table 5). The gene model 247 
Zm00001d004689 encodes a methyltransferase (O-methyltransferase ZRP4, SBP1), which was detected 248 
to correlate with SFW under T condition. Dutilleul et al. reported that Arabidopsis SBP1 played a key 249 
role in plant cadmium detoxification by binding Cd. Overexpression of SBP1 in Arabidopsis can enhance 250 
the accumulation of Cd in seedling roots and thereby reduce the sensitivity of Arabidopsis to Cd 251 
(Dutilleul et al. 2008). Zm00001d004843 was annotated as an abscisic acid stress ripening protein (ASR), 252 
which controlled SFW under T condition. ASR proteins are unique to plants, playing an important role 253 
in regulating the tolerance to various abiotic stresses in plants. Zhang et al. reported that heterologous 254 
expression of maize ASR genes (ZmASR1, ZmASR2, ZmASR4 and ZmASR5) in cadmium-sensitive 255 
yeast all significantly increased the tolerance to cadmium in yeast (Zhang et al. 2019). The gene model 256 
Zm00001d048759 belongs to the putative laccase family (lac10), which was associated with PER under 257 
T condition. Laccase is a kind of copper-containing glycoprotein oxidase and is involved lignin synthesis 258 
and resistance to stress in higher plants. The homologous gene, OsLAC10, participates in lignin 259 
biosynthesis in rice, and overexpression of OsLAC10 reduced the absorption of copper and thereby 260 
improved the tolerance of plants to copper (Liu et al. 2017b). Zm00001d033527 encodes a Mg2+ 261 
(magnesium transporter 12, mgt12) transporter, which was detected to affect DIA under T condition in 262 
this study. ZmMGT12 is a Mg2+ transporter in maize which transports Mg2+ to the chloroplast (Li et al. 263 
2018a). In addition, Zm00001d002275, Zm00001d002216 and Zm00001d004762 genes were all 264 
annotated as ABC transporters (ABC transporter C family member 2, ABC transporter I family member 265 
1, and ABC transporter G family member 25)，respectively. Huang et al. showed that ABC transcription 266 

factors affect the tolerance of rice to aluminum (Huang et al. 2009). Moreover, RNA-Seq expression data 267 
from MaizeGDB (https://www.maizegdb.org/) showed that these genes were generally highly expressed 268 
in maize roots and most of them responded to heavy metal stress. In summary, these candidate genes 269 
identified in this study exhibited potentially regulatory function in the tolerance of plants to heavy metals. 270 
These findings provided a theoretical basis for uncovering the molecular mechanism underlying maize 271 
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tolerance to heavy metals and implementing molecular marker-assisted breeding in maize. 272 

QTL clusters of maize seedling traits under the combined stress of lead and cadmium 273 

A single QTL region (or the overlapped several QTL) that control(s) multiple traits was called a QTL 274 
cluster (Liu et al. 2014), which could reveal the genetic overlap among different traits. In our study, the 275 
QTL cluster mapped on chromosome 8 (PC: 165.1-170.5 Mb) involved four QTL responsible for SEL, 276 
TRL, LED and SHL traits. In the previous study, several QTL for maize root trait MAPriLen were also 277 
mapped within this region (chr8: 169.7 Mb) (Burton et al. 2014). Moreover, in our study, the QTL cluster 278 
(chr9: 151.6-154.6 Mb) simultaneously controlled TSA, RFW, CVA, and NWA and the physical interval 279 
(chr2, PC: 6.6-10.2 Mb) harbored four QTL controlling SHL, WID and TRL traits. Zhao et al. also 280 
mapped the QTL for lead content of maize roots in the consistent region (qRPC2, Pos: 7.25-7.92 Mb) 281 
(Zhao et al. 2018a). The phenomenon of QTL clusters scattering across the genome may be caused by 282 
pleiotropic genes or regulators (Tuberosa et al. 2002; Ookawa et al. 2010). Therefore, these QTL clusters 283 
are usually distributed at fixed positions on chromosomes to regulate functional genes that control some 284 
related traits. 285 

Conclusions 286 

In briefly, 15 QTL controlling maize seedling tolerance to the combined stress of lead and cadmium were 287 
identified by linkage mapping using the IBM Syn10 DH population with a high genetic recombination. 288 
Four candidate genes (Zm00001d048759, Zm00001d004689, Zm00001d004843 and Zm00001d033527) 289 
were proposed to be associated with heavy metal transport and tolerance. The molecular mechanisms on 290 
maize lead/cadmium tolerance mediated by these genes need to be elucidated in our future studies. The 291 
detected QTL contribute to the application of marker-assisted selection (MAS) for the improving maize 292 
tolerance to lead and cadmium. 293 
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Table 1 Statistical descriptions of these phenotypes in parent B73 and parent Mo17 under CK and 
T conditions 

Traits 
CK T 

B73±SEa Mo17±SEa B73±SEa Mo17±SEa 

BSH 2.25±0.17 4.96±0.98* 1.91±0.17 4.75±0.77* 

CVA 159.01±13.54 152.83±10.84 243.21±25.09 148.89±9.89** 

DEP 28.59±1.34 26.71±2.12 30.38±0.50 33.63±0.81** 

DIA 0.10±0.01 0.18±0.02** 0.12±0.01 0.18±0.01** 

LED 0.57±0.04 1.17±0.23* 0.66±0.07 1.69±0.18** 

MED 3.00±0.36 2.67±0.80 3.83±0.48 1.83±0.17** 

MNR 107.50±14.09 81.00±15.63 124.80±1.49 76.50±7.70** 

NWA 0.83±0.06 1.01±0.07 1.00±0.12 1.01±0.07 

PER 113.93±7.41 117.62±8.36 157.63±3.58 139.04±3.78** 

RFW 0.40±0.03 0.73±0.06** 0.59±0.06 0.80±0.04* 

SEL 117.03±9.48 143.47±11.92 153.12±6.50 131.39±6.32* 

SFW 0.61±0.05 0.58±0.04 0.45±0.01 0.57±0.02** 

SHL 24.52±0.80 20.87±1.17* 23.40±0.33 20.17±0.28** 

TNR 6.50±0.50 10.17±1.54* 6.83±0.48 8.17±0.83 

TRL 153.99±9.21 179.04±11.25 205.27±9.25 168.71±8.57* 

TSA 8.15±0.49 12.12±0.67** 11.93±0.80 14.22±0.46* 

WDR 0.33±0.03 0.41±0.07 0.36±0.04 0.25±0.01* 

WID 9.26±0.96 10.15±1.18 12.14±0.85 8.36±0.48** 

NC 1.32±0.05 1.33±0.05 0.97±0.05 0.98±0.05 
a standard error; * significant at P< 0.05, ** significant at P< 0.01. 

 



Table 2 Statistical descriptions of these phenotypes in the IBM Syn10 DH population under CK and T conditions 

Traits 
CK T 

Mean SDa  Skewness Kurtosis CV (%)b H2c Mean SDa  Skewness Kurtosis CV (%)b H2c Sig 

BSH 2.43 0.77 2.45 8.38 0.32 0.93 2.53 0.748 1.74 5.18 0.3 0.71 ** 

CVA 47.12 19.456 0.78 0.59 0.41 0.77 39.44 16.277 0.92 1.03 0.41 0.92 ** 

DEP 18.78 3.926 -0.24 0.75 0.21 0.92 18.51 4.342 0.05 0.76 0.23 0.94 NS 

DIA 0.13 0.023 0.82 2.15 0.18 0.66 0.13 0.022 0.77 1.67 0.17 0.74 NS 

LED 0.58 0.22 0.99 2.54 0.38 0.74 0.65 0.255 1.26 5 0.39 0.85 ** 

MED 4.65 2.291 0.84 0.62 0.49 0.91 3.81 1.715 0.71 0.56 0.45 0.94 ** 

MNR 69.71 26.589 0.62 0.42 0.38 0.83 69.86 27.507 0.44 0.03 0.39 0.92 NS 

NWA 0.79 0.362 0.9 0.84 0.46 0.94 0.67 0.27 0.66 0.56 0.4 0.98 ** 

PER 107.68 29.975 0.24 0.31 0.28 0.88 99.98 30.966 0.42 0.34 0.31 0.9 ** 

RFW 0.45 0.157 0.72 0.7 0.35 0.96 0.43 0.146 0.49 0.11 0.34 0.99 ** 

SEL 123.73 56.411 0.91 0.81 0.46 0.95 101.75 41.249 0.51 -0.09 0.41 0.94 ** 

SFW 0.44 0.198 0.82 0.66 0.45 0.97 0.37 0.179 1.25 2.84 0.48 0.98 ** 

SHL 21.99 5.888 0.69 0.47 0.27 0.96 19.74 4.381 0.55 1.24 0.22 0.87 ** 

TNR 10.31 4.074 0.87 1.01 0.4 0.92 8.96 3.216 0.37 -0.17 0.36 0.32 ** 

TRL 144.41 58.367 0.83 0.66 0.4 0.97 122.28 44.282 0.52 -0.04 0.36 0.93 ** 

TSA 7.76 2.953 0.93 1.33 0.38 0.93 6.89 2.377 0.63 0.44 0.34 0.88 ** 

WDR 0.22 0.086 1.17 1.71 0.39 0.89 0.2 0.085 1.4 2.65 0.43 0.95 ** 

WID 3.96 1.491 1.59 6.13 0.38 0.92 3.5 1.304 1.37 3.33 0.37 0.81 ** 

NC 1.34 0.238 -0.2 0.04 0.18 0.77 1.22 0.272 -0.04 0.97 0.22 0.81 ** 
a standard deviation; b coefficient of variation; c broad-sense heritability; * significant at P< 0.05, ** significant at P< 0.01. 

 
 

 



Table 3 Correlation coefficients between the traits of IBM Syn10 DH population under CK and T conditions 
  BSH CVA DEP DIA LED MED MNR NC NWA PER RFW SEL SFW SHL TNR TRL TSA WDR WID 

BSH 1 -0.114 -0.033 0.021 .267** -.515** .144* -0.106 -.151* -0.095 -0.116 -0.134 -.183* -.229** -0.083 -0.129 -.162* -0.021 -0.109 

CVA .707** 1 .723** .264** .366** .563** .270** 0.077 .877** .826** .683** .830** .753** .638** .627** .849** .827** -0.019 .753** 

DEP .996** .709** 1 0.095 .499** .145* .610** 0.05 .678** .819** .476** .578** .557** .454** .207** .644** .600** -.632** .214** 

DIA .150* .207** .145* 1 0.079 .349** -0.043 0.008 .371** .167* .497** .391** .312** .386** .437** .384** .529** 0.133 .260** 

LED .268** 0.126 .259** -0.113 1 -0.059 .312** -0.113 .309** .370** .235** .260** .209** 0.135 .149* .294** .271** -.306** .185* 

MED .275** .698** .280** .356** -.172* 1 -.171* 0.137 .752** .454** .613** .777** .608** .628** .874** .743** .723** .316** .636** 

MNR .487** .162* .483** -0.022 .189** -.170* 1 -0.038 .258** .555** 0.054 .183* .198** 0.113 -0.073 .235** 0.102 -.568** -0.108 

NC 0.039 0.001 0.041 -0.021 -0.106 0.098 -0.116 1 0.114 0.077 .167* 0.134 0.14 0.13 0.096 0.129 0.12 -0.009 0.034 

NWA .637** .858** .637** .365** 0.001 .877** 0.096 0.059 1 .825** .761** .974** .787** .744** .830** .985** .930** -0.099 .631** 

PER .745** .845** .746** .197** 0.124 .581** .494** 0.011 .783** 1 .542** .768** .665** .575** .523** .802** .686** -.309** .493** 

RFW .518** .695** .517** .446** 0.035 .704** 0.013 0.057 .805** .582** 1 .769** .782** .664** .678** .773** .878** 0.035 .551** 

SEL .567** .824** .565** .354** -0.038 .890** 0.06 0.073 .988** .752** .801** 1 .769** .751** .868** .994** .931** -0.017 .636** 

SFW .548** .689** .546** .316** -0.028 .686** 0.117 0.072 .788** .646** .840** .778** 1 .804** .613** .776** .778** -0.054 .527** 

SHL .623** .720** .622** .340** -0.001 .686** .149* 0.02 .826** .672** .774** .814** .842** 1 .621** .752** .770** -0.05 .453** 

TNR .258** .675** .258** .392** -0.085 .927** -0.102 0.097 .889** .585** .731** .912** .679** .671** 1 .835** .789** .309** .693** 

TRL .606** .841** .605** .357** -0.022 .870** 0.087 0.066 .986** .764** .806** .993** .786** .818** .891** 1 .939** -0.084 .613** 

TSA .609** .823** .608** .446** 0.005 .851** -0.009 0.078 .961** .699** .876** .956** .787** .831** .853** .955** 1 -0.029 .616** 

WDR -.615** 0.026 -.612** 0.017 -.205** .251** -.460** -0.011 -0.047 -.177* -0.027 0.008 -0.084 -.166* .287** -0.029 -0.034 1 .547** 

WID .989** .708** .992** .146* .277** .281** .489** 0.041 .643** .754** .529** .574** .548** .624** .270** .609** .615** -.596** 1 

The lower left corner is the correlation coefficients between traits under CK conditions, and the upper right corner is the correlation coefficients between traits under combined 
stress of lead and cadmium 
* Significant at P< 0.05，** Significant at P< 0.01. 

 
 



Table 4 The major QTL identified under T condition and by using LCTC as well as all the QTL simultaneously detected by T and LCTC (B73 RefGen V2) 

Traits QTL Condition Chr. Pos.(cM)a LOD Ab R2(%) GC start (cM)c GC end (cM)c PC start (Mb)d PC end (Mb)d       

BSH qBSHT1-1 T 1 231.810  5.505  0.197  0.106  231.000  232.800  290.800  291.200  

DIA qDIAT1-1 T 1 191.310  6.287  0.006  0.116  190.500  192.000  260.300  262.650  

NC qNCT10-1 T 10 46.210  6.786  0.090  0.129  45.700  46.700  92.200  108.475  

WDR qWDRT2-1 T 2 67.110  5.568  -0.024  0.107  64.500  67.800  21.900  23.175  

WID qWIDT7-1 T 7 29.310  6.219  -0.285  0.116  28.800  29.600  7.800  8.200  

RFW qRFWLCTC2-1 LCTC 2 101.010  6.604  -0.127  0.128  100.800  101.400  137.000  137.800  

SHL qSHLLCTC2-2 LCTC 2 104.110  5.105  -0.060  0.107  103.800  104.100  144.975  146.350  

CVA qCVA2-1 T and LCTC 2 99.710  3.455  -3.825  0.066  99.500  101.400  127.950  137.800  

DIA qDIA2-1 T and LCTC 2 86.210  3.661  0.004  0.066  85.600  87.100  44.600  47.300  

PER qPER2-2 T and LCTC 2 39.610  3.881  6.981  0.074  38.000  40.600  10.700  11.600  

PER qPER4-1 T and LCTC 4 14.510  3.305  6.594  0.063  9.700  15.400  3.400  4.700  

RFW qRFW2-1 T and LCTC 2 101.410  3.620  -0.044  0.068  100.200  102.600  135.725  141.400  

SEL qSEL7-1 T and LCTC 7 28.010  2.543  -8.181  0.052  26.200  28.800  6.550  7.800  

SFW qSFW2-2 T and LCTC 2 100.810  4.738  -0.057  0.092  98.800  102.000  119.525  139.525  

WID qWID2-1 T and LCTC 2 31.610  4.189  0.240  0.076  31.100  33.500  7.800  9.300  

a Position of peak with highest LOD in cM. 
b The additive effect of the QTL. Negative values indicate that the alleles for increasing trait value are contributed by B73, positive values indicate that the allele for 
increasing trait value are contributed by Mo17. 

c The genetic position of the bin makers. 
d The physical position of the bin makers.



Table 5 Candidate genes responsible for the tolerance of maize to combined stress of lead and 
cadmium 

NO. Traits chr Gene model Putative function References  

1 BSH 1 Zm00001d034562 Calcium-dependent protein kinase 2   Wei et al. 2015 

2 BSH 1 Zm00001d034571 G-box-binding factor 1 Leene J V et al. 2016 

3 DIA 1 Zm00001d033527  magnesium transporter12 Li et al. 2018a 

4 DIA 1 Zm00001d033543 Integral membrane HPP family protein Du et al. 2020 

5 DIA 1 Zm00001d033552 ATPase 4 plasma membrane-type Młodzińska et al. 2015 

6 DIA 1 Zm00001d033572 Protein UPSTREAM OF FLC Xu et al. 2011 

7 DIA 1 Zm00001d033528 Protein NRT1/ PTR FAMILY 2.9 Xia et al. 2014 

8 CVA 2 Zm00001d004728  glycine rich protein4    Shung C Y et al. 2007 

9 CVA 2 Zm00001d004725 Root cap-specific protein   Hoopes G M et al. 2019 

10 CVA 2 Zm00001d004731 Aldehyde dehydrogenase   Kirch H H et al. 2005 

11 PER 2 Zm00001d002378 Sodium transporter HKT1 Laurie S et al. 2010 

12 SFW 2 Zm00001d004812  calcium dependent protein kinase11 Ding et al. 2013 

13 SFW 2 Zm00001d004744 Transcription repressor MYB6 Fang et al. 2016 

14 SFW 2 Zm00001d004819 calcium ion binding Hoopes G M et al. 2019 

15 SFW 2 Zm00001d004762 ABC transporter G family member 25 Park Y et al. 2016 

16 SFW 2 Zm00001d004689 O-methyltransferase ZRP4 Rana R M et al. 2012 

17 SFW 2 Zm00001d004729 Aluminum-induced protein   Jang et al. 2014 

18 SFW 2 Zm00001d004843  abscisic acid stress ripening2 Virlouvet L et al. 2011 

19 WID 2 Zm00001d002204 ABC transporter I family member 1 Gao et al. 2012 

20 WID 2 Zm00001d002230 ABC transporter I family member 1 Gao et al. 2012 

21 WID 2 Zm00001d002257 Autophagy-related protein 8c Xia et al. 2012 

22 WID 2 Zm00001d002216 ABC transporter I family member 1 Gao et al. 2012 

23 WID 2 Zm00001d002266 Lysine-specific histone demethylase 1   Gu et al. 2020 

24 WID 2 Zm00001d002275 ABC transporter C family member 2 Huisman M T et al. 2005 

25 WID 2 Zm00001d002224 ABC transporter I family member 1 Gao et al. 2012 

26 WID 2 Zm00001d002200 Transcription factor bHLH112 Liu et al. 2015 

27 WDR 2 Zm00001d002842 Remorin family protein Gui et al. 2016 

28 WDR 2 Zm00001d002828 NAC domain-containing protein 26 Li et al. 2018b 

29 DIA 1 Zm00001d012527 NAC domain-containing protein 2 Rahman H et al. 2016 

30 PER 4 Zm00001d048759 Putative laccase family protein   Liu et al. 2017b 

31 PER 4 Zm00001d048732 Sodium/hydrogen exchanger   Villicaña C et al. 2016 

 
 
 
 
 



 
Fig. 1 The frequency distributions of the seedling-related traits in the IBM Syn10 DH population under 
CK condition. 
 
 
 
 



 
Fig. 2 The frequency distributions of the seedling-related traits in the IBM Syn10 DH population in the 
combined stress of lead and cadmium. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Fig. 3 Distribution of the identified QTL for the seedling-related traits on maize chromosomes. These 
colors represent the corresponding traits. The short lines, triangles and pentagrams represent CK, T and 
LCTC, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 4 Expression patterns of candidate genes under the combined stress of lead and cadmium. 


