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Investigation of a grid-free density functional theory „DFT… approach
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Iowa State University, Ames, Iowa 50011
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Density functional theory~DFT! has gained popularity, because it can frequently give accurate
energies and geometries. Because evaluating DFT integrals fully analytically is usually impossible,
most implementations use numerical quadrature over grid points, which can lead to numerical
instabilities. To avoid these instabilities, the Almlo¨f-Zheng~AZ! grid-free approach was developed.
This approach involves application of the resolution of the identity~RI! to evaluate the integrals.
The focus of the current work is on the implementation of the AZ approach into the electronic
structure codeGAMESS, and on the convergence of the resolution of the identity with respect to basis
set in the grid-free approach. Both single point energies and gradients are calculated for a variety of
functionals and molecules. Conventional atomic basis sets are found to be inadequate for fitting the
RI, particularly for gradient corrected functionals. Further work on developing auxiliary basis set
approaches is warranted. ©1998 American Institute of Physics.@S0021-9606~98!30124-5#

I. INTRODUCTION

In recent years, density functional theory~DFT!, formu-
lated in terms of the spin densities (na ,nb) representing all
electrons, has gained popularity as a method for determining
molecular properties and structures as an alternative toab
initio wave functions. Functionals of the density have been
fit to the uniform electron gas,1,2 and have incorporated cor-
rections that depend upon the density gradient.3–5 ‘‘Hybrid
functionals’’ that mix in Hartree–Fock exchange can help
correct for the inadequacies of a single-reference wave func-
tion, although the meaning of terms such as single-reference
and multi-reference are not entirely clear for density
functionals.6,7 Nonetheless, a multi-reference wave function
is still necessary for some problems, e.g., to describe bond
breaking, and to obtain the correct electronic spin and space
symmetry.8,9 DFT can frequently give energies, relative en-
ergies, and geometries more accurately than second-order
perturbation theory, with significantly less computational
expense.10 DFT can also give results in qualitative agreement
with coupled cluster methods,11 although reports of failures
of DFT are not uncommon in the literature,12–14 partially
because DFT is not strictly variational.15–17

Integrating the functionals over the spin densities to ob-
tain energies would require a computational effort of order
N4 or higher, where N is the size of the atomic basis set.
Because evaluating integrals over the functionals in a closed
analytic form is usually impossible, most DFT implementa-
tions evaluate the integrals using numerical quadrature over
a finite set of grid points

E
All space

f ~na ,nb!dr' (
Grid points

f ~na ,nb!Dr . ~1!

These grids are usually organized in atom centered Lebedev
spheres.18–20Dunlapet al. eloquently discussed how the use

of grids can lead to numerical instabilities.21,22 Recently,
grid-free approaches have been developed to avoid these
difficulties.21–25 However, these analytic approaches involve
their own approximations, and their convergence with re-
spect to basis set has not been explored extensively. The
primary focus of the current work is on these basis set con-
vergence properties of grid-free DFT. In Sec. II the Almlo¨f-
Zheng ~AZ! grid-free approach to DFT is discussed, with
emphasis on its implementation into the electronic structure
codeGAMESS.26 This will require calculating several types of
integrals and doing several types of matrix manipulations.
The derivation and implementation of analytic energy gradi-
ents are also discussed in this section. In Sec. III results
based on the AZ approach are presented. Several prototypi-
cal systems are studied to explore the convergence of prop-
erties~geometries, dipole moments, singlet–triplet splittings,
isomerization energies! as a function of the basis set. These
results will demonstrate in detail the basis set dependence of
the grid-free approach.

II. A GRID-FREE APPROACH TO DFT

A. Single point energies

In this section the AZ approach of using matrix relations
to evaluate the complicated DFT integrals is explained. Ini-
tially methods of simplifying the integrals using approxima-
tions will be examined. This will result eventually in exactly
evaluating a four-center integral and a gradient integral. The
initial integral simplification uses the resolution of the iden-
tity RI.27 Consider the product of two arbitrary functions,
f (x,y,z) and g(x,y,z). In matrix representation the resolu-
tion of the identity can be expressed as

M0@ f •g#'M1@ f #M2@g#, ~2!
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whereMr are matrix representations in terms of some atomic
basis set$x i%. In terms of individual elements of the matrices
~and therefore integrals!

M0@ f •g# i , j5E x i~ f •g!x jdr . ~3a!

'(
m

E x i f umdr•E umgx jdr ~3b!

5(
m

M1@ f # i ,mM2@g#m, j . ~3c!

The foregoing expressions are exact if$um% is a complete
orthonormal set; otherwise, one expects some dependence of
the calculations on the size of the basis set. WithinGAMESS,
the average off •g andg• f is used, to preserve matrix sym-
metry. One well-defined choice for$um% is the set of ortho-
normal molecular orbitals from the current self-consistent
field ~SCF! cycle. This choice appears to maintain a propor-
tionality between the accuracy of the resolution of the iden-
tity and the accuracy of the wave function~the RI basis set
and the atomic orbital basis set are the same size!. As will be
shown in Sec. III, this is unfortunately not the case.

As an example of using the resolution of the identity,
consider the DePristo–Kress gradient corrected exchange
functional,28 which multiplies the uniform electron gas limit
of n4/3 times a term that depends on the gradient of the den-
sity. After substituting the density matrixD for one factor of
n in Eq. ~4a! and applying the resolution of the identity in
Eq. ~4b!, this functional simplifies to

E n
3
4y2

11a1y

11b1y2 dr

5 (
mn

AO’s

Dmn•E xmn
1
3y2

11a1y

11b1y2 xndr ~4a!

' (
mn

AO’s

Dmn (
m

OrthonormalE xmn
1
3umdr

•E umy2
11a1y

11b1y2 xndr , ~4b!

wherea1 ,b15fitted parameters

y5U¹n

n4/3U,
f ~n! in Eq. ~3!5n

1
3,

g~y! in Eq. ~3!5y2
11a1y

11b1y2.

This leaves complicated integrals involving functions of
the densityn and the dimensionless density gradienty. An-
other resolution of the identity is used,29 to evaluate these
integrals, because they cannot be solved directly. This new
resolution of the identity will rely upon the special properties
of diagonalized matrices.

This resolution of the identity will transformM @n# into
M @ f (n)# for an arbitrary functionf . Any function of the
density,f (n), may be represented in matrix form as follows.
M @n# is transformed into a new matrixM 8@n# using an or-
thonormal basis set

M 8@n#5ṼM @n#V. ~5!

The matrix of LCAO coefficients is chosen forV, for which
ṼSV5I , with S5overlap matrix in the atomic orbital basis
set.M 8@n# is then diagonalized by a unitary transformation
U, yielding eigenvaluesl

M 8@n#5UlŨ. ~6!

The functionf is then evaluated at the eigenvalues, and in-
corporated intoM 8

M 8@ f ~n!#'U f ~l!Ũ. ~7!

Equation~7! is exact in a complete basis~see Appendix A!.
Finally, M 8@n# is transformed back to the atomic basis, giv-
ing

M @ f ~n!#5~Ṽ!21~U f ~l!Ũ !~V!215SVU f~l!ŨṼS̃.
~8!

Therefore, once the matrix representation of the density is
determined, the matrix representation of any function of the
density can be readily obtained. Similarly, this can be shown
to be true for the matrix representations ofy, na , or nb .

The matrix representation of the densityM @n# is calcu-
lated from the first-order density matrixD and atomic orbit-
als i , j , k, and l , by

M @n# i , j5E x inx jdr

5(
k,l

DklE x ixkx lx jdr5(
k,l

Dkl~ ikl j !. ~9!

The four-center one-electron integrals (ikl j )5*x ixkx lx jdr
can be evaluated using a recursion formula similar to recur-
sion formulas used by others30,31

E xaxbxcxddr5~abcd!5S aaAx1abBx1acCx1adDx

aa1ab1ac1ad
2aaAxD ~a21xubcd!

1
ax~a22xubcd!1bx~b21xuacd!1cx~c21xuabd!1dx~d21xuabc!

2~aa1ab1ac1ad!
, ~10!
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where aa ,ab ,ac ,ad5Gaussian exponents

Ax ,Bx ,Cx ,Dx5X positions of atoms

with orbitals a, b, c, and d,

ax ,bx ,cx ,dx5exponents of thex0,x1,x2, etc.,

part of the orbital

~ for a5 f x2y orbital: ax52,ay51,az50!.

Here, the integral (b21xuacd) is the integral~abcd! with the
x component of the angular momentum of orbitalb de-
creased by one. Although the four-center one-electron inte-
grals are unusual, they do appear in other contexts, such as
the density based orbital localization method.32,33These one-
electron integrals are analogous to the two-electron integral
*x i(1)xk(1)(1/r 12)x l(2)x j (2)dr and are equivalent to the
two-electron integral *x i(1)xk(1)d12x l(2)x j (2)dr . The
one-electron (ikl j ) integrals formally scale computationally
as order N4, as do the corresponding two-electron integrals.
Screening, parallelization, vectorization, direct, and symme-
try techniques used to reduce the N4 dependence of the two-
electron (i (1)k(1)u1/r 12u1(2)j (2)) integrals34 are easily ex-
tended to the (ikl j ) integrals. For example, (ikl j ) integrals
can be screened to avoid their evaluation by using the
Schwarz inequalities

~ ikl j !<A~ i ikk !~ l l j j !, ~11a!

~ ikl j !<A~ i i l l !~kk j j !, ~11b!

~ ikl j !<A~ i i j j !~kkll !. ~11c!

Evaluation of thesetof one-electron integrals takes less time
than the set of two-electron integrals, because the index sym-
metries@( ikl j )5( i lk j )5•••# allow fewer unique integrals
to be computed. Note, however, that the dominant time
bottleneck is the number of indices, not whether the integral
involves one or two electrons. The notion that one-electron
integrals are significantly faster than two-electron integrals is
historical, since usually one-electron integrals are of the type
( i ĥ j ), whereĥ5one-electron part of Hamiltonian operator.
In the work of Almlöf and Zheng, these four-center one-
electron integrals were approximated with three-center one-
electron integrals, whose number grows as order N3, using
the resolution of the identity

~ ikl j !'(
m

~ ikum!~uml j !. ~12!

This application of the resolution of the identity is computa-
tionally equivalent to expanding the densityn in the $um%
basis and then calculatingM @n# ~see Appendix B!. This
would result in a computational savings by reducing the
number of integrals that have to be computed. In this work,
( i jkl ) integrals are evaluated directly, although an option to
use the three-center integral approximation has been imple-
mented inGAMESS. Although the integrals scale as order N4,
the matrix multiplications and diagonalizations in the AZ
grid-free approach scale as order N3.

The more popular DFT functionals involve terms that
depend upon the gradient of the density. Integrals over
u¹nu•n24/3 are computed as follows:

E xmS n24/3
dn

dxDxndr

5E xmS n24/3
dn

dx
23n21/3

d

dxDxnr

1E xmS 3n21/3
d

dxDxndr ~13a!

523E xm

d

dx
~n21/3

•xn!dr13E xmn21/3
d

dx
xndr

~13b!

'3 (
m

OrthonormalS 2E xm

d

dx
umdr•E umn21/3xndr

1E xmn21/3umdr•E um

d

dx
xndr D ~13c!

523 (
m

OrthonormalS E xm

d

dx
umdr•E umn21/3xndr

1E xn

d

dx
umdr•E umn21/3xmdr D . ~13d!

The last step follows, becaused/dx is anti-hermitian and
n21/3 is hermitian. The*x id/dxx jdr are dipole velocity in-
tegrals. Thed/dy andd/dz contributions are calculated simi-
larly. We only study the gradient of the energy, because no
popular functional uses higher order derivatives, due to nu-
merical stability problems.35,36

In order to calculate energies, the wave function must be
optimized using a~SCF! method. This requires calculating
Fock matrix elements, which are the derivatives of the en-
ergy with respect to changing the orbitals. The contribution
of functional f (na ,nb ,¹na ,¹nb) to the alpha Fock matrix
is computed from the spin densities (na ,nb), and atomic
orbitalsx i ,x j

37

Fi j
DFT,a5E S ] f

]na
~x ix j !1

] f

]¹na
¹~x ix j !

1
]2f

]¹na
2 ¹2~x ix j !1••• Ddr . ~14a!

A more easily coded, but less transparent formulation for the
first two terms is10

Fi j
DFT,a5E S ] f

]na
~x ix j !12

] f

]~¹na•¹na!
¹na

1
] f

]~¹na•¹nb!
¹nbD¹~x ix j !dr . ~14b!

It is important to note that~unlike traditional Hartree–Fock!
the dot product ofFDFT with the density matrix does not give
the DFT energy contribution; the DFT contribution to the
energy must be explicitly calculated. For example, the dot
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product of theX-a Fock matrix with the density matrix
would overestimate exchange by 1/3~see Appendix C!.

B. Analytic nuclear gradients of the energy

Chemists usually not only want the energy for a single
arbitrary geometry, but the geometry at a stationary point on
the potential energy surface as well. To efficiently search for
these geometries, the derivative of the energy with respect to
nuclear coordinates is needed. Although many DFT codes
calculate these nuclear gradients, the potential energy sur-
faces sometimes suffer from grid noise.21,22,24 Because the
grid moves with the atoms, derivatives with respect to the
grid are needed, but many DFT codes neglect these
terms.10,38,39 Such irregularities make determining saddle
points and energy minima difficult. Methods for eliminating
these effects have been developed.40,41 However, the correc-
tions can introduce numerical difficulties of their own, and
therefore other research groups now advocate relying on
tighter grids to eliminate these problems.41,42

The grid-free DFT approach can be extended to the com-
putation of gradients as follows. The Hartree–Fock formal-
ism for the derivative with respect to nuclear coordinateXA

for restricted closed shell noncomplex wave functions is

]E

]XA
5 K CS ]H

]XA
DC L 14(

i

occ

^c i8u~V̂1T̂1 Ĵ2K̂ !2e i uc i&,

~15!

where c i85( r
AOCri]x r /]XA and the other operators and

symbols have their usual meaning: operators
V̂5nuclear-electron attraction, T̂5kinetic energy, Ĵ
5Coulomb, K̂5exchange; x5atomic orbitals, C
5molecular wave function,c5spin orbitals, and e i

5orbital energy. The sum of Eq.~15! is over occupied spin
orbitals. Only the exchange termK̂ in the resulting integral

E S ]x r

]XA
D K̂xsdr ~16!

must be modified to calculate DFT gradients.K̂ is replaced
with the DFT exchange-correlation termK̂DFT. If atomic or-

bital x r is not on atomA, then the derivative is zero, because
x r has no dependence on the position of atomA. If x r is
centered on atomA, then the nuclear coordinateXA is re-
placed by the negative of the electronic coordinatex. This is
becauseXA appears in the Gaussian basis functionx r as (x
2XA)

E S ]x r

]XA
D K̂DFTxsdr52E S ]x r

]x D K̂DFTxsdr . ~17!

The resolution of the identity is then applied, giving

E S ]x r

]XA
D K̂DFTxsdr'2 (

m

OrthonormalE S ]x r

]x D umdr

•E umK̂DFTxsdr . ~18!

Evaluation of both integrals in Eq.~18! is possible, because
these are related to dipole velocity and the DFT contribution
to the Fock matrix. It is important to realize that this ap-
proach is independent of the functional chosen. Once the
grid-free gradients are implemented, they are available for all
functionals for which single point energies are available. The
resolution of the identity in Eq.~18! can introduce problems,
if the basis set$um% is inadequate. For example, the
exchange-correlation contribution to a translation of the en-
tire molecule in thex direction clearly must be zero

dTx54(
i

occ E S (
A

atom
]c i

]XA
D K̂DFTc idr

524(
i

occ E S ]c i

]x D K̂DFTc idr50. ~19!

With the application of the resolution of the identity, this
becomes

TABLE I. He energies in hartrees with the Slater exchange functional.

Basis set Hartree–Fock Grid Grid free

5s 22.858 589 22.719 253 22.722 985
10s 22.861 647 22.723 547 22.723 952
15s 22.861 679 22.723 630 22.723 731
20s 22.861 680 22.723 638 22.723 674

TABLE II. Be energies in hartrees with the Slater exchange functional.

Basis set Hartree–Fock Grid Grid free

5s 214.479 361 214.131 597 214.156 690
10s 214.571 727 214.221 960 214.224 846
15s 214.572 985 214.223 236 214.223 890
20s 214.573 021 214.223 284 214.223 487
25s 214.573 023 214.223 289 214.223 369

TABLE III. He energies in hartrees with the Becke88 exchange functional.

Basis
set Grid

Grid free
(11p)

Grid free
(13p)

Grid free
(15p)

Grid free
(110p)

Grid free
(115p)

Grid free
(120p)

5s 22.859 231 22.801 225 22.845 034 22.857 012
10s 22.863 302 22.797 241 22.848 139 22.860 223 22.863 275
15s 22.863 373 22.796 592 22.846 943 22.860 447 22.862 979 22.863 351
20s 22.863 378 22.796 338 22.846 451 22.858 871 22.862 903 22.863 271 22.863 366
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dT524(
i

occ E S ]c i

]x D K̂DFTc idr

'24(
i

occ

(
m

OrthonormalE S ]c i

]x D umdr•E umK̂DFTc idr ,

~20!

which is not necessarily zero. This also applies to transla-
tions in they andz directions, and to net rotations about the
molecule’s center of mass. These variances~which vanish in
symmetric molecules!, are projected out inGAMESS. This is
done by summing all the contributions to a translation or
torque and then subtracting it back out. This emphasizes the
need for an adequate basis set$um% to ensure that the reso-
lution of the identity has been sufficiently converged. These
variances are also present in the grid based approach, but are
reported not to occur in theX-a specific approach of Wer-
petinski and Cook.25 The sizes of the variances
dTx ,dTy ,dTz ,dRx ,dRy ,dRz can be used as diagnostics for
the adequacy of the basis set’s capability to resolve the iden-
tity.

C. The grid connection

Now that the implementation of the grid-free approach is
clearly laid out, it is worthwhile to examine its relationship
to the grid based approach. Careful analysis reveals that the
grid based approach may be thought of as a special case of
the grid-free approach. Consider the generic integral
*x i f (na)•g(nb)x jdr . An auxiliary basis set of nonoverlap-
ping normalized step functions$um% is used for the resolu-
tion of the identity. The resolution of the identity as in Eq.
~3!, which is exact in a complete basis$um%, is applied, to
give

E x i f ~na!•g~nb!x jdr'(
m

E x i f ~na!umdr

•E umg~nb!x jdr . ~21!

The atomic orbitals$x% are assumed to vary insignificantly
over an individual step functionum , therefore the atomic
orbitals act like step functions in the region ofum . This
gives

E x i f ~na!•g~nb!x jdr'(
m

j i ,mE umf ~na!umdr

•j j ,mE umg~nb!umdr , ~22!

wherej i ,m is a grid-size weighted overlap. For a fine grid,
this is the value of the orbitalx i at the step functionum

multiplied by the size ofum . Now, the matrix function rep-
resentation in Eq.~8!, which is exact in a complete basis$u%,
is used. BecauseM @ f (na)# and M @g(nb)# are diagonal in
the u basis,U5I in Eq. ~8!, so

E x i f ~na!•g~nb!x jdr'(
m

j i ,mj j ,mf S E umnaumdr D
•gS E umnbumdr D . ~23!

If the grid of step functions is very tight, then the step func-
tion is a single grid point. This gives the integral in terms of
a grid

TABLE IV. Be energies in hartrees with the Becke88 exchange functional.

Basis set Grid
Grid free
(11p)

Grid free
(13p)

Grid free
(15p)

Grid free
(110p)

Grid free
(115p)

Grid free
(120p)

Grid free
(125p)

10s 214.564 943 214.415 043 214.500 901 214.541 349 214.565 649
15s 214.566 296 214.417 206 214.502 231 214.540 217 214.564 638 214.566 347
20s 214.566 353 214.415 954 214.502 004 214.538 576 214.564 523 214.565 936 214.566 589
25s 214.566 362 214.414 982 214.501 644 214.537 827 214.564 432 214.565 804 214.566 240 214.566 420

TABLE V. Neon energies in hartrees with the Becke88 exchange functional.

Basis set Grid
Grid free
(10d)

Grid free
(11d)

Grid free
(13d)

Grid free
(15d)

Grid free
(110d)

10s10p 2128.580 485 2128.337 180 2128.424 312 2128.538 924 2128.578 138 2128.584 228
15s10p 2128.589 469 2128.351 221 2128.436 205 2128.548 799 2128.582 479 2128.588 480
15s15p 2128.589 771 2128.352 051 2128.438 204 2128.549 564 2128.583 082 2128.589 235
20s10p 2128.589 749 2128.353 294 2128.438 981 2128.549 593 2128.582 621 2128.588 607
20s15p 2128.590 051 2128.354 483 2128.440 131 2128.550 023 2128.583 751 2128.589 404
20s20p 2128.590 069 2128.354 434 2128.440 120 2128.548 917 2128.583 121 2128.589 297
25s10p 2128.589 767 2128.354 170 2128.440 521 2128.549 615 2128.582 726 2128.588 583
25s15p 2128.590 069 2128.355 356 2128.441 362 2128.550 457 2128.583 821 2128.589 407
25s20p 2128.590 087 2128.355 502 2128.441 220 2128.548 636 2128.583 303 2128.589 306
25s25p 2128.590 090 2128.355 500 2128.441 166 2128.548 669 2128.583 157 2128.589 280
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E x i f ~na!•g~nb!x jdr

'(
m

j i ,mj j ,mf ~na at grid point m!

•g~nb at grid point m!. ~24!

This is the grid based approach to evaluation of the integrals
that arise in DFT.

III. GRID-FREE DFT RESULTS

A. Functionals and methods

The grid-free approach outlined in Secs. II and III is
used to implement several DFT functionals inGAMESS:

~1! Local exchange:X2a1 which is exact in the limit of a
uniform electron gas fora52/3. The more popular em-
pirical value ofa50.7 is also available if no gradient
correction to exchange is present.

~2! Local correlation: VWN52,10 and the PW local,43 which
are designed to interpolate between the ferromagnetic
limit and paramagnetic limit of the Ceperley and Alder44

Monte Carlo results. The PW local approach is a newer
more accurate fit that is reported to give overall better
energetics and structures than the VWN fits.

~3! Local exchange and correlation: three Wigner
forms,43,45–47which are designed to model exchange and
correlation simultaneously. These are modifications of
the simple, yet effective, equation

Exc5E C1n
4/3

11C2n1/3 dr , ~25!

which in the limit of C250 is X2a. The Wigner form
does not involve any terms that depend upon the spin-

polarizationj5(na2nb)/(na1nb); therefore, the por-
tion of correlation that results froma2b interaction is
not included.

~4! Gradient-corrected exchange: DePristo-Kress,28

Becke88,48 and the CAMA43 and CAMB43 modifications
to Becke88. These all multiply a local exchange term by
functions of the dimensionless density gradienty
5u¹nu/n4/3. Becke88 is by far the most popular func-
tional.

~5! Closed shell gradient-corrected correlation: LYP49,50

which is designed to reformulate the correlation formu-
las of Colle and Salvetti51 in terms of the electron den-
sity and the local kinetic energy density. This functional
is not based upon adding a correction term to a local
correlation functional.

Naturally, combinations of these functionals, such as
BVWN with Becke88 exchange and VWN correlation are
available to the user. Hybrid functionals such as mixing half
Hartree–Fock exchange and half Becke88 exchange are
available also.

All comparisons presented below are made to the grid
based DFT code in Gaussian 92/DFT.52 A pruned ~75,302!
grid of approximately 7000 points per atom53 is used, be-
cause looser grids gave off-axis dipole components for NH3

and a net dipole moment for planar NH3. Both GAMESS and
Gaussian92/DFT calculate all nonexchange/correlation terms
explicitly from C, rather than fromn and the dimensionless
gradienty

FIG. 1. NH3 dipole with the Becke88 and 6 – 31111G(3d,3p).

FIG. 2. NH3 bend potential with the Becke88 and 6 – 31111G(3d,3p).

TABLE VI. CO and N2 results with the Becke88 functional.

Atomic and molecular energies~hartree! Grid Grid free

C 237.690 44 237.688 25
O 274.833 15 274.829 51
CO 2112.873 14 2112.872 04
N 254.400 88 254.400 26
N2 2109.086 20 2109.085 26
Binding energies~eV!
N2 7.68 7.75
CO 9.51 9.64
Bond lengths~Å!
CO 1.147 1.148
N2 1.113 1.113
Dipole moments~debye!
CO 0.1655 0.1621

TABLE VII. NH 3 and H2O dipole moments with the Becke88 functional.

H2O grid free H2O grid dipole NH3 grid free NH3 grid

cc-VDZ 1.6675 D 1.8016 D 1.3818 D 1.5027 D
cc-VTZ 1.8415 D 1.8379 D 1.4935 D 1.5084 D
cc-VQZ 1.8057 D 1.8086 D 1.4912 D 1.4832 D
cc-VPZ 1.8140 D 1.8099 D 1.4690 D 1.4661 D
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E5E @Ckineticn
5/31Cpotentialn1Cexchangen

4/3
• f ~y!#dr ,

where y5U¹n

n4/3U ~26!

as was done in older purely DFT implementations. The cur-
rent implementation of grid-free DFT inGAMESS does not
use an auxiliary basis set, so the same basis that is used for
the linear combination of atomic orbitals~LCAO! expansion
is also used for the resolution of the identity. Consequently,
as the basis set size is increased, both the accuracy of the
wave function and the accuracy of the resolution of the iden-
tity are increased. Of course, use of an auxiliary basis set for
the resolution of the identity would be more efficient and
will be implemented in a subsequent version.

B. Energies of atoms

Small closed shell atoms provide a good initial test case.
Absolute energies for atoms are calculated using even tem-
pered uncontracted basis sets.54,55He, Be, and Ne are studied
here. As can be seen in Tables I and II, the Slater functional
~X-a with a52/3! energy converges with relatively small
basis sets. Tables III–V show that gradient corrected func-
tionals require basis functions of one higher angular momen-
tum quantum number, because of the resolution of the iden-
tity introduced in Eq.~13d!. When i and j are on the same
atom, the integral*x id/dxx jdr vanishes ifi and j do not
differ by exactly one inx angular momentum. Even thoughs

functions on Ne provide a gradient correction to thep func-
tions, the addition ofd functions greatly enhances the accu-
racy of the calculation, by providing an additional gradient
correction as can be seen clearly in Table V. Although add-
ing d functions to helium would make the basis set more
complete~and therefore make the resolution of the identity
more exact!, it would not improve the accuracy of the calcu-
lation, unless the functional includes second derivatives of
the density. This is because the second derivative of the den-
sity would involve*x id

2/dx2x jdr integrals and these vanish
unlessi and j have the samex angular momentum or differ
by exactly two inx angular momentum.

C. Energies and dipole moments of diatomics

The bond distances, dipole moments, and binding ener-
gies for CO and N2 calculated with theB-null ~Becke88
exchange, no correlation! functional using uncontracted even
tempered basis sets54,55 are given in Table VI. The isolated
atoms are calculated using unrestricted wave functions. The
basis sets used are 20s13p10d3 f for N, 20s13p10d1 f for C,
and 20s13p10d1 f for O. The grid and grid-free results for
both N2 and CO are very comparable, differing by only
0.001 Å. Both approaches predict CO dipole moments that

FIG. 3. NH3 rms gradient with the Becke88 and 6 – 31111G(3d,3p).

FIG. 4. NH3 bend potential with the Becke88 functional.

FIG. 5. NH3 rms gradient with the Becke88 functional and correlation con-
sistent basis sets.

FIG. 6. NH3 energy with the Becke88 functional and correlation consistent
basis sets.
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are within 2% of each other.B null overestimates the N2
bond length compared to the experimental56 value of 1.098
Å, and underestimates the experimentally predicted56 N2

binding energy of 9.90 eV. This functional also overesti-
mates the CO bond length compared to the experimental
value of 1.128 Å,57 and underestimates the experimentally
predicted58 CO binding energy of 11.1 eV. The sign of the
CO dipole moment is predicted correctly~difficult to do59,60!
and close to the experimental61,62 value of 0.112 D.

D. Energies and dipole moments

Dipole moments and energies for H2O and NH3 are ex-
amined withB-null using correlation consistent63 basis sets
in Table VII. The water geometry is fixed atR(OH)
50.957 81 Å,u(HOH)5104.4776°, and that of ammonia is
fixed at R(NH)51.012 Å, A(HNH)5106.7°. As the basis
set size increases, the dipole moments converge to the same
answer. For the grid-free approach, a triple zeta basis set is

necessary to adequately represent the resolution of the iden-
tity, based on the agreement of grid and grid-free ap-
proaches. A quadruple zeta basis for water and a pentuple
zeta basis for ammonia is necessary to converge the dipole
moment and energy. So, for these species, the resolution of
the identity is converged with respect to basis set before the
dipole moment is. These dipole moments are within 0.04 D
of the experimentally observed62 dipole moments of 1.85 D
for H2O and 1.47 D for NH3.

E. The ammonia bend potential

The bend potential of NH3 was studied initially with the
B-null exchange functional and the 6 – 31111G(3d,3p)
basis set.64 The N–H bond distance was constrained to the
optimal X-a (a52/3) value of 1.0496 Å to match the pre-
vious work by Werpetinski and Cook.22 Because the NH
bond is optimized for theX-a functional, the gradient will
never go to zero. The energy, net dipole moment, and root-
mean-square~rms! cartesian gradient at each point along the
bend angle from 55° to 90° in 0.5° increments are presented
in Figs. 1–3, respectively. The dipole moments~Fig. 1! dif-
fer by no more than 0.116 D and 5.95%. The grid-free and
grid based energies~Fig. 2! differ by 0.0606 hartree, but the
shapes of the surfaces are very similar~the standard devia-
tion of the energy difference between the curves is 0.000 73
hartree!. This suggests that for this size basis set the grid-free
approach gives reliable relative energies, even though the
absolute energies are too high. The rms gradient is signifi-
cantly different~Fig. 3!; this is probably a result of errors
introduced by the resolution of the identity, particularly ap-
plying it to derivatives in Eqs.~13! and ~18!. Uncontracting
the 6 – 31111G(3d,3p) basis set improves the fitting of the
resolution of the identity, and therefore the quality of the
grid-free results. To further explore these issues, the system-
atic correlation consistent basis sets of Dunning are

FIG. 7. NH3 rms gradient with the Becke88 functional and correlation con-
sistent basis sets.

TABLE VIII. CH 2 geometry optimizations with B-VWN5 functional.

Singlet energy
~hartree!

Singlet bond
distance~Å!

Singlet HCH
angle

Triplet energy
~hartree!

Triplet bond
distance~Å!

Triplet HCH
angle

Triplet-singlet
splitting ~eV!

aug-cc-pVTZ basis
Hartree–Fock 238.892 71 1.096 103.6° 238.932 68 1.070 129.5° 21.09
Grid 239.378 03 1.115 101.0° 239.391 97 1.079 134.0° 20.38
Grid free 239.450 45 1.411 60.5° 239.455 21 1.253 82.3° 20.13
UncontractedS
Grid 239.378 88 1.115 101.0° 239.392 71 1.079 133.9° 20.38
Grid free 239.237 49 1.134 93.8° 239.266 04 1.079 136.6° 20.78
Uncontracted
Grid 239.378 95 1.115 101.0° 239.392 76 1.079 133.9° 20.38
Grid free 239.344 17 1.121 98.8° 239.358 17 1.081 134.6° 20.38
12 more polarization
Grid 239.380 12 1.114 101.2° 239.393 19 1.079 134.0° 20.36
Grid free 239.355 78 1.119 100.0° 239.369 99 1.080 135.3° 20.39
aug-cc-pVQZ basis
Grid 239.382 32 1.113 101.4° 239.395 67 1.079 134.0° 20.36
Grid free 239.319 40 1.111 102.7° 239.334 94 1.079 134.2° 20.42
Uncontracted
Grid 239.382 43 1.113 101.4° 239.395 77 1.079 134.1° 20.36
Grid free 239.364 37 1.122 98.7° 239.377 46 1.081 132.5° 20.36
12 more polarization
Grid free 239.370 65 1.115 101.1° 239.384 26 1.079 133.8° 20.37
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utilized.63 The energy for basis sets that fail to adequately
resolve the identity can be too low~Fig. 4!. Therefore, just as
an inadequate grid can give nonvariational and erratic ener-
gies and properties, an inadequate basis set to represent the
resolution of the identity can suffer from the same problem.
Grid-free results for all but thecc-pQZV basis set give in-
correctly shaped rms gradient curves~Fig. 5!. To further ex-
plore the resolution of the identity, thecc-pTZV basis set is
systematically uncontracted~Figs. 6 and 7!, because
cc-pTZV gave the worst rms gradient curves. By uncon-
tracting the valencep shell on the nitrogen the resolution of
the identities in Eqs.~13! and~18! are more correctly repre-
sented. By further uncontracting thes shell on the hydrogen
the resolution of the identity is better fit and the curves be-
come more reasonable, although the minimum rms gradient
is mispositioned by 5°.

F. Electronic states of triatomics

The 1A1 and3B1 states of CH2
65 are compared in Table

VIII for both B-VWN5 and Hartree–Fock using an
aug-cc-pVTZ63 basis set. The3B1 state is optimized with a
restricted open shell wave function. Table VIII shows that a
basis set that is well designed for modeling occupied mo-
lecular orbitals, is not necessarily well designed to converge
the resolution of the identity. For CH2, the aug-cc-pVTZ
basis set is too contracted to adequately represent the reso-
lution of the identity. Uncontracting thes functions and then
the p functions results in more sensible predicted properties.
Additional sets of polarization functions~one set of more
diffuse d’s and one set of tighterd’s on C and one set of
more diffusep’s and one set of tighterp’s on H!, improve
the resolution of the identity in Eqs.~13! and ~18!. Results
for the quadruple zeta basis set show a similar trend, with the
additional polarization functions agreeing with the grid based
approach. Unlike Hartree–Fock, the B-VWN5 results agree
with the experimentally observed splitting of 0.369–0.390
eV ~8.5–9.0 kcal/mol!,66,66 and the experimental
geometries67 of 1.11 Å, 102° for1A1 and 1.07 Å, 134° for
3B1 .

G. Isomers of polyatomics

The geometries and energies of cyclopropane and
propene68 are compared in Table IX using both Hartree–
Fock and B-VWN5 with a 6 – 31111G(3d,3p) basis set.64

Although the grid-free approach gives reasonable geom-
etries, it badly underestimates the energy difference. By un-
contracting the basis set, and thus increasing the accuracy of

the resolution of the identity, the grid-free approach, gives
reasonable geometries and energy differences. The experi-
mental DH298.15 is about 1.7 eV, with zero point energy
~ZPE! corrections predicted to be significant.68 While direct
comparison with experimental values is not entirely appro-
priate, both the grid based and the grid-free results appear to
be poor.

IV. CONCLUSIONS

The grid-free approach to DFT provides an alternative to
the grid based approach to DFT. The resolution of the
identity69 ~especially for gradient corrected functionals and
energy gradient calculations! requires a more accurate basis
set than does the wave function. The use of such large basis
sets results in the calculation of a large number of two-
electron integrals that are not otherwise needed. A more ef-
ficient approach will be to augment the atomic basis set with
auxiliary functions only during the DFT part of the calcula-
tion. The vast knowledge base available for dealing with
wave functionbasis set completeness in DFT70 appears to be
inadequate for addressing this issue, particularly for gradient
corrected functionals. Previous work on auxiliary basis sets
has dealt with the fitting of then1/3X-a potential71 or the
Coulomb potential.72 Little or no work has been done on
fitting the gradient of the density as in Eq.~13! or fitting the
resolution of the identity between the alpha density and the
beta density as in Eq.~15!.
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Almlöf and Y. C. Zheng for providing us with an early ver-
sion of the grid-free code inSUPERMOLECULEfor compari-
sons to theGAMESS grid-free code.

APPENDIX A: PROOF OF EQUATION 7

M̃ @ f (n)# is in an orthonormal basis in whichM̃ @n# is
diagonal~i.e., M̃ @n#5l!

TABLE IX. C3H6 geometry optimizations with B-VWN5 functional.

Propene energy
~hartree!

Propene CvC
bond distance~Å!

Propene C–C
bond distance~Å!

Cyclopropane
energy~hartree!

Cyclopropane C–C
bond distance~Å!

Cyclopropane H–C
bond distance~Å!

Energy
difference~eV!

Hartree–Fock 2117.108 688 1.317 1.511 2117.096 518 1.498 1.073 20.33
Grid 2118.604 631 1.338 1.524 2118.588 178 1.521 1.083 20.45
Grid free 2118.457 918 1.328 1.544 2118.456 606 1.544 1.084 20.04
Uncontracted
Grid 2118.607 912 1.339 1.524 2118.591 789 1.520 1.083 20.44
Grid free 2118.540 559 1.339 1.526 2118.523 173 1.525 1.088 20.47
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M̃ @ f ~n!#5M̃ F(
m

amnmG ,
series expansion of the function

5(
m

amM̃ @nm#

5(
m

am~M̃ @n# !m,

by the resolution of the identity

~exact in complete basis!

5(
m

amlm, since M̃ @n# is diagonal

M̃ @ f ~n!#5 f ~l!.

This should not be confused with the commonly used rela-
tionship, which is true in any basis:

f ~M̃ @n# !5 f ~l!.

APPENDIX B: APPROXIMATE THREE-CENTER
APPROACH

Expand the density in an orthonormal basis set

M @n#'MF (
m51

K

CmumG ,

M @n# i , j5E x i (
m51

K

Cmumx jdr .

Because$u% is orthonormal, the expansion coefficients are
given by

Cm5E n•umdr ,

Cm5(
r ,s

AO

Dr ,sE x rxsumdr .

Substituted intoM @n# i , j gives

M @n# i , j5E x i (
m51

K S (
r ,s

AO

Dr ,sE x rxsumdr D umx jdr ,

which rearranges to give

M @n# i , j5(
r ,s

AO

(
m51

K

Dr ,sE x ix jumdr•E umx rxsdr ,

which is equivalent to just applying the resolution of the
identity.

APPENDIX C: X2a FUNCTIONAL ENERGY

For the closed shellX2a functional f , with molecular
orbitalsc

K̂y,n
DFT5E cycn

] f

]n
dr ,

K̂y,n
DFT5Ca

4
3E cycnn1/3dr .

Forming the dot product of the DFT Fock matrix with the
diagonal density matrix yields

K̂DFT
•D5 (

y

occupied

2•Ca
4
3E cycyn

1/3dr ,

K̂DFT
•D5Ca

4
3E n4/3dr ,

K̂DFT
•D5 4

3•EDFT.

This is not the DFT energy.
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