

Investigation of a grid-free density functional theory (DFT) approach

Kurt R. Glaesemann and Mark S. Gordon

Citation: The Journal of Chemical Physics 108, 9959 (1998); doi: 10.1063/1.476494
View online: http://dx.doi.org/10.1063/1.476494
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/108/24?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals
J. Chem. Phys. 143, 204107 (2015); 10.1063/1.4936280

Orbital-free density functional theory implementation with the projector augmented-wave method
J. Chem. Phys. 141, 234102 (2014); 10.1063/1.4903450

Density functional theory embedding for correlated wavefunctions: Improved methods for open-shell systems and transition metal complexes
J. Chem. Phys. 137, 224113 (2012); 10.1063/1.4770226

Auxiliary basis sets for grid-free density functional theory
J. Chem. Phys. 112, 10738 (2000); 10.1063/1.481763

Evaluation of gradient corrections in grid-free density functional theory
J. Chem. Phys. 110, 6580 (1999); 10.1063/1.478559

Investigation of a grid-free density functional theory (DFT) approach

Kurt R. Glaesemann and Mark S. Gordon
Department of Chemistry and Ames Laboratory, United States Department of Energy, Iowa State University, Ames, Iowa 50011

(Received 28 January 1998; accepted 18 March 1998)

Abstract

Density functional theory (DFT) has gained popularity, because it can frequently give accurate energies and geometries. Because evaluating DFT integrals fully analytically is usually impossible, most implementations use numerical quadrature over grid points, which can lead to numerical instabilities. To avoid these instabilities, the Almlöf-Zheng (AZ) grid-free approach was developed. This approach involves application of the resolution of the identity (RI) to evaluate the integrals. The focus of the current work is on the implementation of the AZ approach into the electronic structure code GAMESS, and on the convergence of the resolution of the identity with respect to basis set in the grid-free approach. Both single point energies and gradients are calculated for a variety of functionals and molecules. Conventional atomic basis sets are found to be inadequate for fitting the RI, particularly for gradient corrected functionals. Further work on developing auxiliary basis set approaches is warranted. © 1998 American Institute of Physics. [S0021-9606(98)30124-5]

I. INTRODUCTION

In recent years, density functional theory (DFT), formulated in terms of the spin densities $\left(n_{\alpha}, n_{\beta}\right)$ representing all electrons, has gained popularity as a method for determining molecular properties and structures as an alternative to $a b$ initio wave functions. Functionals of the density have been fit to the uniform electron gas, ${ }^{1,2}$ and have incorporated corrections that depend upon the density gradient. ${ }^{3-5}$ "Hybrid functionals" that mix in Hartree-Fock exchange can help correct for the inadequacies of a single-reference wave function, although the meaning of terms such as single-reference and multi-reference are not entirely clear for density functionals. ${ }^{6,7}$ Nonetheless, a multi-reference wave function is still necessary for some problems, e.g., to describe bond breaking, and to obtain the correct electronic spin and space symmetry. ${ }^{8,9}$ DFT can frequently give energies, relative energies, and geometries more accurately than second-order perturbation theory, with significantly less computational expense. ${ }^{10}$ DFT can also give results in qualitative agreement with coupled cluster methods, ${ }^{11}$ although reports of failures of DFT are not uncommon in the literature, ${ }^{12-14}$ partially because DFT is not strictly variational. ${ }^{15-17}$

Integrating the functionals over the spin densities to obtain energies would require a computational effort of order N^{4} or higher, where N is the size of the atomic basis set. Because evaluating integrals over the functionals in a closed analytic form is usually impossible, most DFT implementations evaluate the integrals using numerical quadrature over a finite set of grid points

$$
\begin{equation*}
\int_{\text {All space }} f\left(n_{\alpha}, n_{\beta}\right) d \mathbf{r} \approx \sum_{\text {Grid points }} f\left(n_{\alpha}, n_{\beta}\right) \Delta \mathbf{r} . \tag{1}
\end{equation*}
$$

These grids are usually organized in atom centered Lebedev spheres. ${ }^{18-20}$ Dunlap et al. eloquently discussed how the use
of grids can lead to numerical instabilities. ${ }^{21,22}$ Recently, grid-free approaches have been developed to avoid these difficulties. ${ }^{21-25}$ However, these analytic approaches involve their own approximations, and their convergence with respect to basis set has not been explored extensively. The primary focus of the current work is on these basis set convergence properties of grid-free DFT. In Sec. II the AlmlöfZheng (AZ) grid-free approach to DFT is discussed, with emphasis on its implementation into the electronic structure code GAMESS. ${ }^{26}$ This will require calculating several types of integrals and doing several types of matrix manipulations. The derivation and implementation of analytic energy gradients are also discussed in this section. In Sec. III results based on the AZ approach are presented. Several prototypical systems are studied to explore the convergence of properties (geometries, dipole moments, singlet-triplet splittings, isomerization energies) as a function of the basis set. These results will demonstrate in detail the basis set dependence of the grid-free approach.

II. A GRID-FREE APPROACH TO DFT

A. Single point energies

In this section the AZ approach of using matrix relations to evaluate the complicated DFT integrals is explained. Initially methods of simplifying the integrals using approximations will be examined. This will result eventually in exactly evaluating a four-center integral and a gradient integral. The initial integral simplification uses the resolution of the identity RI. ${ }^{27}$ Consider the product of two arbitrary functions, $f(x, y, z)$ and $g(x, y, z)$. In matrix representation the resolution of the identity can be expressed as

$$
\begin{equation*}
M_{0}[f \cdot g] \approx M_{1}[f] M_{2}[g] \tag{2}
\end{equation*}
$$

where M_{r} are matrix representations in terms of some atomic basis set $\left\{\chi_{i}\right\}$. In terms of individual elements of the matrices (and therefore integrals)

$$
\begin{align*}
M_{0}[f \cdot g]_{i, j} & =\int \chi_{i}(f \cdot g) \chi_{j} d \mathbf{r} \tag{3a}\\
& \approx \sum_{m} \int \chi_{i} f \theta_{m} d \mathbf{r} \cdot \int \theta_{m} g \chi_{j} d \mathbf{r} \tag{3b}\\
& =\sum_{m} M_{1}[f]_{i, m} M_{2}[g]_{m, j} \tag{3c}
\end{align*}
$$

The foregoing expressions are exact if $\left\{\theta_{m}\right\}$ is a complete orthonormal set; otherwise, one expects some dependence of the calculations on the size of the basis set. Within Gamess, the average of $f \bullet g$ and $g \bullet f$ is used, to preserve matrix symmetry. One well-defined choice for $\left\{\theta_{m}\right\}$ is the set of orthonormal molecular orbitals from the current self-consistent field (SCF) cycle. This choice appears to maintain a proportionality between the accuracy of the resolution of the identity and the accuracy of the wave function (the RI basis set and the atomic orbital basis set are the same size). As will be shown in Sec. III, this is unfortunately not the case.

As an example of using the resolution of the identity, consider the DePristo-Kress gradient corrected exchange functional, ${ }^{28}$ which multiplies the uniform electron gas limit of $n^{4 / 3}$ times a term that depends on the gradient of the density. After substituting the density matrix D for one factor of n in Eq. (4a) and applying the resolution of the identity in Eq. (4b), this functional simplifies to

$$
\begin{align*}
& \int n^{\frac{3}{4}} y^{2} \frac{1+a_{1} y}{1+b_{1} y^{2}} d \mathbf{r} \\
&=\sum_{\mu \nu}^{\text {AO's }} D_{\mu \nu} \cdot \int \chi_{\mu} n^{\frac{1}{3}} y^{2} \frac{1+a_{1} y}{1+b_{1} y^{2}} \chi_{\nu} d \mathbf{r} \tag{4a}\\
& \approx \sum_{\mu \nu}^{\mathrm{AO} \text { ' }} D_{\mu \nu} \sum_{m}^{\text {Orthonormal }} \int \chi_{\mu} n^{\frac{1}{3}} \theta_{m} d \mathbf{r} \\
& \cdot \int \theta_{m} y^{2} \frac{1+a_{1} y}{1+b_{1} y^{2}} \chi_{\nu} d \mathbf{r} \tag{4b}
\end{align*}
$$

where $a_{1}, b_{1}=$ fitted parameters

$$
y=\left|\frac{\nabla n}{n^{4 / 3}}\right|,
$$

$f(n)$ in Eq. (3) $=n^{\frac{1}{3}}$,
$g(y)$ in Eq. (3) $=y^{2} \frac{1+a_{1} y}{1+b_{1} y^{2}}$.

This leaves complicated integrals involving functions of the density n and the dimensionless density gradient y. Another resolution of the identity is used, ${ }^{29}$ to evaluate these integrals, because they cannot be solved directly. This new resolution of the identity will rely upon the special properties of diagonalized matrices.

This resolution of the identity will transform $M[n]$ into $M[f(n)]$ for an arbitrary function f. Any function of the density, $f(n)$, may be represented in matrix form as follows. $M[n]$ is transformed into a new matrix $M^{\prime}[n]$ using an orthonormal basis set

$$
\begin{equation*}
M^{\prime}[n]=\tilde{V} M[n] V \tag{5}
\end{equation*}
$$

The matrix of LCAO coefficients is chosen for V, for which $\tilde{V} S V=I$, with $S=$ overlap matrix in the atomic orbital basis set. $M^{\prime}[n]$ is then diagonalized by a unitary transformation U, yielding eigenvalues λ

$$
\begin{equation*}
M^{\prime}[n]=U \lambda \tilde{U} \tag{6}
\end{equation*}
$$

The function f is then evaluated at the eigenvalues, and incorporated into M^{\prime}

$$
\begin{equation*}
M^{\prime}[f(n)] \approx U f(\lambda) \tilde{U} \tag{7}
\end{equation*}
$$

Equation (7) is exact in a complete basis (see Appendix A). Finally, $M^{\prime}[n]$ is transformed back to the atomic basis, giving

$$
\begin{equation*}
M[f(n)]=(\tilde{V})^{-1}(U f(\lambda) \tilde{U})(V)^{-1}=S V U f(\lambda) \tilde{U} \tilde{V} \tilde{S} \tag{8}
\end{equation*}
$$

Therefore, once the matrix representation of the density is determined, the matrix representation of any function of the density can be readily obtained. Similarly, this can be shown to be true for the matrix representations of y, n_{α}, or n_{β}.

The matrix representation of the density $M[n]$ is calculated from the first-order density matrix D and atomic orbitals i, j, k, and l, by

$$
\begin{align*}
M[n]_{i, j} & =\int \chi_{i} n \chi_{j} d \mathbf{r} \\
& =\sum_{k, l} D_{k l} \int \chi_{i} \chi_{k} \chi_{l} \chi_{j} d \mathbf{r}=\sum_{k, l} D_{k l}(i k l j) . \tag{9}
\end{align*}
$$

The four-center one-electron integrals $(i k l j)=\int \chi_{i} \chi_{k} \chi_{l} \chi_{j} d \mathbf{r}$ can be evaluated using a recursion formula similar to recursion formulas used by others ${ }^{30,31}$

$$
\begin{align*}
\int \chi_{a} \chi_{b} \chi_{c} \chi_{d} d \mathbf{r}=(a b c d)= & \left(\frac{\alpha_{a} A_{x}+\alpha_{b} B_{x}+\alpha_{c} C_{x}+\alpha_{d} D_{x}}{\alpha_{a}+\alpha_{b}+\alpha_{c}+\alpha_{d}}-\alpha_{a} A_{x}\right)\left(a-1_{x} \mid \mathrm{bcd}\right) \\
& +\frac{a_{x}\left(a-2_{x} \mid \mathrm{bcd}\right)+b_{x}\left(b-1_{x} \mid \mathrm{acd}\right)+c_{x}\left(c-1_{x} \mid \mathrm{abd}\right)+d_{x}\left(d-1_{x} \mid \mathrm{abc}\right)}{2\left(\alpha_{a}+\alpha_{b}+\alpha_{c}+\alpha_{d}\right)} \tag{10}
\end{align*}
$$

where $\alpha_{a}, \alpha_{b}, \alpha_{c}, \alpha_{d}=$ Gaussian exponents
$A_{x}, B_{x}, C_{x}, D_{x}=X$ positions of atoms
with orbitals a, b, c, and d,
$a_{x}, b_{x}, c_{x}, d_{x}=$ exponents of the x^{0}, x^{1}, x^{2}, etc.,
part of the orbital
(for $a=f_{x^{2} y}$ orbital: $a_{x}=2, a_{y}=1, a_{z}=0$).
Here, the integral $\left(b-1_{x} \mid \operatorname{acd}\right)$ is the integral (abcd) with the x component of the angular momentum of orbital b decreased by one. Although the four-center one-electron integrals are unusual, they do appear in other contexts, such as the density based orbital localization method. ${ }^{32,33}$ These oneelectron integrals are analogous to the two-electron integral $\int \chi_{i}(1) \chi_{k}(1)\left(1 / r_{12}\right) \chi_{l}(2) \chi_{j}(2) d \mathbf{r}$ and are equivalent to the two-electron integral $\int \chi_{i}(1) \chi_{k}(1) \delta_{12} \chi_{l}(2) \chi_{j}(2) d \mathbf{r}$. The one-electron ($i k l j$) integrals formally scale computationally as order N^{4}, as do the corresponding two-electron integrals. Screening, parallelization, vectorization, direct, and symmetry techniques used to reduce the N^{4} dependence of the twoelectron $\left(i(1) k(1)\left|1 / r_{12}\right| 1(2) j(2)\right)$ integrals ${ }^{34}$ are easily extended to the $(i k l j)$ integrals. For example, $(i k l j)$ integrals can be screened to avoid their evaluation by using the Schwarz inequalities

$$
\begin{align*}
& (i k l j) \leqslant \sqrt{(i i k k)(l l j j)}, \tag{11a}\\
& (i k l j) \leqslant \sqrt{(i i l l)(k k j j)}, \tag{11b}\\
& (i k l j) \leqslant \sqrt{(i i j j)(k k l l)} . \tag{11c}
\end{align*}
$$

Evaluation of the set of one-electron integrals takes less time than the set of two-electron integrals, because the index symmetries $[(i k l j)=(i l k j)=\cdots]$ allow fewer unique integrals to be computed. Note, however, that the dominant time bottleneck is the number of indices, not whether the integral involves one or two electrons. The notion that one-electron integrals are significantly faster than two-electron integrals is historical, since usually one-electron integrals are of the type ($i \hat{h} j$), where $\hat{h}=$ one-electron part of Hamiltonian operator. In the work of Almlöf and Zheng, these four-center oneelectron integrals were approximated with three-center oneelectron integrals, whose number grows as order N^{3}, using the resolution of the identity

$$
\begin{equation*}
(i k l j) \approx \sum_{m}\left(i k \theta_{m}\right)\left(\theta_{m} l j\right) \tag{12}
\end{equation*}
$$

This application of the resolution of the identity is computationally equivalent to expanding the density n in the $\left\{\theta_{m}\right\}$ basis and then calculating $M[n]$ (see Appendix B). This would result in a computational savings by reducing the number of integrals that have to be computed. In this work, ($i j k l$) integrals are evaluated directly, although an option to use the three-center integral approximation has been implemented in GAMESS. Although the integrals scale as order N^{4}, the matrix multiplications and diagonalizations in the AZ grid-free approach scale as order N^{3}.

The more popular DFT functionals involve terms that depend upon the gradient of the density. Integrals over $|\nabla n| \cdot n^{-4 / 3}$ are computed as follows:

$$
\begin{align*}
& \int \chi_{\mu}\left(n^{-4 / 3} \frac{d n}{d x}\right) \chi_{\nu} d \mathbf{r} \\
&= \int \chi_{\mu}\left(n^{-4 / 3} \frac{d n}{d x}-3 n^{-1 / 3} \frac{d}{d x}\right) \chi_{\nu} \mathbf{r} \\
&+\int \chi_{\mu}\left(3 n^{-1 / 3} \frac{d}{d x}\right) \chi_{\nu} d \mathbf{r} \tag{13a}\\
&=-3 \int \chi_{\mu} \frac{d}{d x}\left(n^{-1 / 3} \cdot \chi_{\nu}\right) d \mathbf{r}+3 \int \chi_{\mu} n^{-1 / 3} \frac{d}{d x} \chi_{\nu} d \mathbf{r} \tag{13b}\\
& \approx 3 \sum_{m}^{\text {Orthonormal }}\left(-\int \chi_{\mu} \frac{d}{d x} \theta_{m} d \mathbf{r} \cdot \int \theta_{m} n^{-1 / 3} \chi_{\nu} d \mathbf{r}\right. \\
&\left.+\int \chi_{\mu} n^{-1 / 3} \theta_{m} d \mathbf{r} \cdot \int \theta_{m} \frac{d}{d x} \chi_{\nu} d \mathbf{r}\right) \tag{13c}\\
&=-3 \sum_{m}^{\text {Orthonormal }}\left(\int \chi_{\mu} \frac{d}{d x} \theta_{m} d \mathbf{r} \cdot \int \theta_{m} n^{-1 / 3} \chi_{\nu} d \mathbf{r}\right. \\
&\left.+\int \chi_{\nu} \frac{d}{d x} \theta_{m} d \mathbf{r} \cdot \int \theta_{m} n^{-1 / 3} \chi_{\mu} d \mathbf{r}\right) . \tag{13d}
\end{align*}
$$

The last step follows, because $d / d x$ is anti-hermitian and $n^{-1 / 3}$ is hermitian. The $\int \chi_{i} d / d x \chi_{j} d \mathbf{r}$ are dipole velocity integrals. The $d / d y$ and $d / d z$ contributions are calculated similarly. We only study the gradient of the energy, because no popular functional uses higher order derivatives, due to numerical stability problems. ${ }^{35,36}$

In order to calculate energies, the wave function must be optimized using a (SCF) method. This requires calculating Fock matrix elements, which are the derivatives of the energy with respect to changing the orbitals. The contribution of functional $f\left(n_{\alpha}, n_{\beta}, \nabla n_{\alpha}, \nabla n_{\beta}\right)$ to the alpha Fock matrix is computed from the spin densities (n_{α}, n_{β}), and atomic orbitals $\chi_{i}, \chi_{j}{ }^{37}$

$$
\begin{align*}
F_{i j}^{\mathrm{DFT}, \alpha}= & \int\left(\frac{\partial f}{\partial n_{\alpha}}\left(\chi_{i} \chi_{j}\right)+\frac{\partial f}{\partial \nabla n_{\alpha}} \nabla\left(\chi_{i} \chi_{j}\right)\right. \\
& \left.+\frac{\partial^{2} f}{\partial \nabla n_{\alpha}^{2}} \nabla^{2}\left(\chi_{i} \chi_{j}\right)+\cdots\right) d \mathbf{r} . \tag{14a}
\end{align*}
$$

A more easily coded, but less transparent formulation for the first two terms is ${ }^{10}$

$$
\begin{align*}
F_{i j}^{\mathrm{DFT}, \alpha}= & \int\left(\frac{\partial f}{\partial n_{\alpha}}\left(\chi_{i} \chi_{j}\right)+2 \frac{\partial f}{\partial\left(\nabla n_{\alpha} \cdot \nabla n_{\alpha}\right)} \nabla n_{\alpha}\right. \\
& \left.+\frac{\partial f}{\partial\left(\nabla n_{\alpha} \cdot \nabla n_{\beta}\right)} \nabla n_{\beta}\right) \nabla\left(\chi_{i} \chi_{j}\right) d \mathbf{r} . \tag{14b}
\end{align*}
$$

It is important to note that (unlike traditional Hartree-Fock) the dot product of F^{DFT} with the density matrix does not give the DFT energy contribution; the DFT contribution to the energy must be explicitly calculated. For example, the dot

TABLE I. He energies in hartrees with the Slater exchange functional.

Basis set	Hartree-Fock	Grid	Grid free
$5 s$	-2.858589	-2.719253	-2.722985
$10 s$	-2.861647	-2.723547	-2.723952
$15 s$	-2.861679	-2.723630	-2.723731
$20 s$	-2.861680	-2.723638	-2.723674

product of the $X-\alpha$ Fock matrix with the density matrix would overestimate exchange by $1 / 3$ (see Appendix C).

B. Analytic nuclear gradients of the energy

Chemists usually not only want the energy for a single arbitrary geometry, but the geometry at a stationary point on the potential energy surface as well. To efficiently search for these geometries, the derivative of the energy with respect to nuclear coordinates is needed. Although many DFT codes calculate these nuclear gradients, the potential energy surfaces sometimes suffer from grid noise. ${ }^{21,22,24}$ Because the grid moves with the atoms, derivatives with respect to the grid are needed, but many DFT codes neglect these terms. ${ }^{10,38,39}$ Such irregularities make determining saddle points and energy minima difficult. Methods for eliminating these effects have been developed. ${ }^{40,41}$ However, the corrections can introduce numerical difficulties of their own, and therefore other research groups now advocate relying on tighter grids to eliminate these problems. ${ }^{41,42}$

The grid-free DFT approach can be extended to the computation of gradients as follows. The Hartree-Fock formalism for the derivative with respect to nuclear coordinate X_{A} for restricted closed shell noncomplex wave functions is

$$
\begin{equation*}
\frac{\partial E}{\partial X_{A}}=\left\langle\Psi\left(\frac{\partial H}{\partial X_{A}}\right) \Psi\right\rangle+4 \sum_{i}^{\text {occ }}\left\langle\psi_{i}^{\prime}\right|(\hat{V}+\hat{T}+\hat{J}-\hat{K})-\epsilon_{i}\left|\psi_{i}\right\rangle, \tag{15}
\end{equation*}
$$

where $\psi_{i}^{\prime}=\sum_{r}^{\mathrm{AO}} C_{\mathrm{ri}} \partial \chi_{r} / \partial X_{A}$ and the other operators and symbols have their usual meaning: operators $\hat{V}=$ nuclear-electron attraction, $\hat{T}=$ kinetic energy, \hat{J} $=$ Coulomb,$\quad \hat{K}=$ exchange; $\quad \chi=$ atomic orbitals, $\quad \Psi$ $=$ molecular wave function, $\psi=$ spin orbitals, and ϵ_{i} $=$ orbital energy. The sum of Eq. (15) is over occupied spin orbitals. Only the exchange term \hat{K} in the resulting integral

$$
\begin{equation*}
\int\left(\frac{\partial \chi_{r}}{\partial X_{A}}\right) \hat{K} \chi_{s} d \mathbf{r} \tag{16}
\end{equation*}
$$

must be modified to calculate DFT gradients. \hat{K} is replaced with the DFT exchange-correlation term \hat{K}^{DFT}. If atomic or-

TABLE II. Be energies in hartrees with the Slater exchange functional.

Basis set	Hartree-Fock	Grid	Grid free
$5 s$	-14.479361	-14.131597	-14.156690
$10 s$	-14.571727	-14.221960	-14.224846
$15 s$	-14.572985	-14.223236	-14.223890
$20 s$	-14.573021	-14.223284	-14.223487
$25 s$	-14.573023	-14.223289	-14.223369

bital χ_{r} is not on atom A, then the derivative is zero, because χ_{r} has no dependence on the position of atom A. If χ_{r} is centered on atom A, then the nuclear coordinate X_{A} is replaced by the negative of the electronic coordinate x. This is because X_{A} appears in the Gaussian basis function χ_{r} as $(x$ $-X_{A}$)

$$
\begin{equation*}
\int\left(\frac{\partial \chi_{r}}{\partial X_{A}}\right) \hat{K}^{\mathrm{DFT}} \chi_{s} d \mathbf{r}=-\int\left(\frac{\partial \chi_{r}}{\partial x}\right) \hat{K}^{\mathrm{DFT}} \chi_{s} d \mathbf{r} \tag{17}
\end{equation*}
$$

The resolution of the identity is then applied, giving

$$
\begin{align*}
\int\left(\frac{\partial \chi_{r}}{\partial X_{A}}\right) \hat{K}^{\mathrm{DFT}} \chi_{s} d \mathbf{r} \approx & -\sum_{m}^{\text {Orthonormal }} \int\left(\frac{\partial \chi_{r}}{\partial x}\right) \theta_{m} d \mathbf{r} \\
& \cdot \int \theta_{m} \hat{K}^{\mathrm{DFT}} \chi_{s} d \mathbf{r} \tag{18}
\end{align*}
$$

Evaluation of both integrals in Eq. (18) is possible, because these are related to dipole velocity and the DFT contribution to the Fock matrix. It is important to realize that this approach is independent of the functional chosen. Once the grid-free gradients are implemented, they are available for all functionals for which single point energies are available. The resolution of the identity in Eq. (18) can introduce problems, if the basis set $\left\{\theta_{m}\right\}$ is inadequate. For example, the exchange-correlation contribution to a translation of the entire molecule in the x direction clearly must be zero

$$
\begin{align*}
\delta T_{x} & =4 \sum_{i}^{\text {occ }} \int\left(\sum_{A}^{\text {atom }} \frac{\partial \psi_{i}}{\partial X_{A}}\right) \hat{K}^{\mathrm{DFT}} \psi_{i} d \mathbf{r} \\
& =-4 \sum_{i}^{\text {occ }} \int\left(\frac{\partial \psi_{i}}{\partial x}\right) \hat{K}^{\mathrm{DFT}} \psi_{i} d \mathbf{r}=0 . \tag{19}
\end{align*}
$$

With the application of the resolution of the identity, this becomes

TABLE III. He energies in hartrees with the Becke88 exchange functional.

Basis set	Grid	Grid free $(+1 p)$	Grid free $(+3 p)$	Grid free $(+5 p)$	Grid free $(+10 p)$	Grid free $(+15 p)$	Grid free $(+20 p)$
$5 s$	-2.859231	-2.801225	-2.845034	-2.857012			
$10 s$	-2.863302	-2.797241	-2.848139	-2.860223	-2.863275		
$15 s$	-2.863373	-2.796592	-2.846943	-2.860447	-2.862979	-2.863351	
$20 s$	-2.863378	-2.796338	-2.846451	-2.858871	-2.862903	-2.863271	-2.863366

TABLE IV. Be energies in hartrees with the Becke88 exchange functional.

Gasis set	Grid	Grid free $(+1 p)$	Grid free $(+3 p)$	Grid free $(+5 p)$	Grid free $(+10 p)$	Grid free $(+15 p)$	Grid free $(+20 p)$
$10 s$	-14.564943	-14.415043	-14.500901	-14.541349	-14.565649		
$15 s$	-14.566296	-14.417206	-14.502231	-14.540217	-14.564638	-14.566347	Grid free $(+25 p)$
$20 s$	-14.566353	-14.415954	-14.502004	-14.538576	-14.564523	-14.565936	-14.566589
$25 s$	-14.566362	-14.414982	-14.501644	-14.537827	-14.564432	-14.565804	-14.566240

$$
\begin{align*}
\delta T & =-4 \sum_{i}^{\text {occ }} \int\left(\frac{\partial \psi_{i}}{\partial x}\right) \hat{K}^{\mathrm{DFT}} \psi_{i} d \mathbf{r} \\
& \approx-4 \sum_{i}^{\text {occ }} \sum_{m}^{\text {Orthonormal }} \int\left(\frac{\partial \psi_{i}}{\partial x}\right) \theta_{m} d \mathbf{r} \cdot \int \theta_{m} \hat{K}^{\mathrm{DFT}} \psi_{i} d \mathbf{r} \tag{20}
\end{align*}
$$

which is not necessarily zero. This also applies to translations in the y and z directions, and to net rotations about the molecule's center of mass. These variances (which vanish in symmetric molecules), are projected out in GAMESS. This is done by summing all the contributions to a translation or torque and then subtracting it back out. This emphasizes the need for an adequate basis set $\left\{\theta_{m}\right\}$ to ensure that the resolution of the identity has been sufficiently converged. These variances are also present in the grid based approach, but are reported not to occur in the $X-\alpha$ specific approach of Werpetinski and Cook. ${ }^{25}$ The sizes of the variances $\delta T_{x}, \delta T_{y}, \delta T_{z}, \delta R_{x}, \delta R_{y}, \delta R_{z}$ can be used as diagnostics for the adequacy of the basis set's capability to resolve the identity.

C. The grid connection

Now that the implementation of the grid-free approach is clearly laid out, it is worthwhile to examine its relationship to the grid based approach. Careful analysis reveals that the grid based approach may be thought of as a special case of the grid-free approach. Consider the generic integral $\int \chi_{i} f\left(n_{\alpha}\right) \cdot g\left(n_{\beta}\right) \chi_{j} d \mathbf{r}$. An auxiliary basis set of nonoverlapping normalized step functions $\left\{\theta_{m}\right\}$ is used for the resolution of the identity. The resolution of the identity as in Eq. (3), which is exact in a complete basis $\left\{\theta_{m}\right\}$, is applied, to give

$$
\begin{align*}
\int \chi_{i} f\left(n_{\alpha}\right) \cdot g\left(n_{\beta}\right) \chi_{j} d \mathbf{r} \approx & \sum_{m} \int \chi_{i} f\left(n_{\alpha}\right) \theta_{m} d \mathbf{r} \\
& \cdot \int \theta_{m} g\left(n_{\beta}\right) \chi_{j} d \mathbf{r} \tag{21}
\end{align*}
$$

The atomic orbitals $\{\chi\}$ are assumed to vary insignificantly over an individual step function θ_{m}, therefore the atomic orbitals act like step functions in the region of θ_{m}. This gives

$$
\begin{align*}
\int \chi_{i} f\left(n_{\alpha}\right) \cdot g\left(n_{\beta}\right) \chi_{j} d \mathbf{r} \approx & \sum_{m} \xi_{i, m} \int \theta_{m} f\left(n_{\alpha}\right) \theta_{m} d \mathbf{r} \\
& \cdot \xi_{j, m} \int \theta_{m} g\left(n_{\beta}\right) \theta_{m} d \mathbf{r} \tag{22}
\end{align*}
$$

where $\xi_{i, m}$ is a grid-size weighted overlap. For a fine grid, this is the value of the orbital χ_{i} at the step function θ_{m} multiplied by the size of θ_{m}. Now, the matrix function representation in Eq. (8), which is exact in a complete basis $\{\theta\}$, is used. Because $M\left[f\left(n_{\alpha}\right)\right]$ and $M\left[g\left(n_{\beta}\right)\right]$ are diagonal in the θ basis, $U=I$ in Eq. (8), so

$$
\begin{align*}
\int \chi_{i} f\left(n_{\alpha}\right) \cdot g\left(n_{\beta}\right) \chi_{j} d \mathbf{r} \approx & \sum_{m} \xi_{i, m} \xi_{j, m} f\left(\int \theta_{m} n_{\alpha} \theta_{m} d \mathbf{r}\right) \\
& \cdot g\left(\int \theta_{m} n_{\beta} \theta_{m} d \mathbf{r}\right) . \tag{23}
\end{align*}
$$

If the grid of step functions is very tight, then the step function is a single grid point. This gives the integral in terms of a grid

TABLE V. Neon energies in hartrees with the Becke88 exchange functional.

Basis set	Grid	Grid free $(+0 d)$	Grid free $(+1 d)$	Grid free $(+3 d)$	Grid free $(+5 d)$	Grid free $(+10 d)$
$10 s 10 p$	-128.580485	-128.337180	-128.424312	-128.538924	-128.578138	-128.584228
$15 s 10 p$	-128.589469	-128.351221	-128.436205	-128.548799	-128.582479	-128.588480
$15 s 15 p$	-128.589771	-128.352051	-128.438204	-128.549564	-128.583082	-128.589235
$20 s 10 p$	-128.589749	-128.353294	-128.438981	-128.549593	-128.582621	-128.588607
$20 s 15 p$	-128.590051	-128.354483	-128.440131	-128.550023	-128.583751	-128.589404
$20 s 20 p$	-128.590069	-128.354434	-128.440120	-128.548917	-128.583121	-128.589297
$25 s 10 p$	-128.589767	-128.354170	-128.440521	-128.549615	-128.582726	-128.588583
$25 s 15 p$	-128.590069	-128.355356	-128.441362	-128.550457	-128.583821	-128.589407
$25 s 20 p$	-128.590087	-128.355502	-128.441220	-128.548636	-128.583303	-128.589306
$25 s 25 p$	-128.590090	-128.355500	-128.441166	-128.548669	-128.583157	-128.589280

TABLE VI. CO and N_{2} results with the Becke88 functional.

Atomic and molecular energies (hartree)	Grid	Grid free
C	-37.69044	-37.68825
O	-74.83315	-74.82951
CO	-112.87314	-112.87204
N	-54.40088	-54.40026
$\mathrm{~N}_{2}$	-109.08620	-109.08526
Binding energies (eV) $_{\mathrm{N}_{2}}$	7.68	
CO	9.51	7.75
Bond lengths (\AA)	9.64	
CO	1.147	1.148
$\mathrm{~N}_{2}$	1.113	1.113
Dipole moments (debye)		
CO	0.1655	0.1621

$$
\begin{align*}
& \int \chi_{i} f\left(n_{\alpha}\right) \cdot g\left(n_{\beta}\right) \chi_{j} d \mathbf{r} \\
& \quad \approx \sum_{m} \xi_{i, m} \xi_{j, m} f\left(n_{\alpha} \text { at grid point } m\right) \\
& \quad \cdot g\left(n_{\beta} \text { at grid point } m\right) \tag{24}
\end{align*}
$$

This is the grid based approach to evaluation of the integrals that arise in DFT.

III. GRID-FREE DFT RESULTS

A. Functionals and methods

The grid-free approach outlined in Secs. II and III is used to implement several DFT functionals in GAMESS:
(1) Local exchange: $X-\alpha^{1}$ which is exact in the limit of a uniform electron gas for $\alpha=2 / 3$. The more popular empirical value of $\alpha=0.7$ is also available if no gradient correction to exchange is present.
(2) Local correlation: VWN5 ${ }^{2,10}$ and the PW local, ${ }^{43}$ which are designed to interpolate between the ferromagnetic limit and paramagnetic limit of the Ceperley and Alder ${ }^{44}$ Monte Carlo results. The PW local approach is a newer more accurate fit that is reported to give overall better energetics and structures than the VWN fits.
(3) Local exchange and correlation: three Wigner forms, ${ }^{43,45-47}$ which are designed to model exchange and correlation simultaneously. These are modifications of the simple, yet effective, equation
$E_{x c}=\int \frac{C_{1} n^{4 / 3}}{1+C_{2} n^{1 / 3}} d \mathbf{r}$,
which in the limit of $C_{2}=0$ is $X-\alpha$. The Wigner form does not involve any terms that depend upon the spin-

TABLE VII. NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ dipole moments with the Becke88 functional.

	$\mathrm{H}_{2} \mathrm{O}$ grid free	$\mathrm{H}_{2} \mathrm{O}$ grid dipole	NH_{3} grid free	NH_{3} grid
cc-VDZ	1.6675 D	1.8016 D	1.3818 D	1.5027 D
cc-VTZ	1.8415 D	1.8379 D	1.4935 D	1.5084 D
cc-VQZ	1.8057 D	1.8086 D	1.4912 D	1.4832 D
cc-VPZ	1.8140 D	1.8099 D	1.4690 D	1.4661 D

FIG. 1. NH_{3} dipole with the Becke88 and 6-311+ $+G(3 d, 3 p)$.
polarization $\xi=\left(n_{\alpha}-n_{\beta}\right) /\left(n_{\alpha}+n_{\beta}\right)$; therefore, the portion of correlation that results from $\alpha-\beta$ interaction is not included.
(4) Gradient-corrected exchange: DePristo-Kress, ${ }^{28}$ Becke $88,{ }^{48}$ and the CAMA ${ }^{43}$ and CAMB ${ }^{43}$ modifications to Becke88. These all multiply a local exchange term by functions of the dimensionless density gradient y $=|\nabla n| / n^{4 / 3}$. Becke 88 is by far the most popular functional.
(5) Closed shell gradient-corrected correlation: LYP ${ }^{49,50}$ which is designed to reformulate the correlation formulas of Colle and Salvetti ${ }^{51}$ in terms of the electron density and the local kinetic energy density. This functional is not based upon adding a correction term to a local correlation functional.

Naturally, combinations of these functionals, such as BVWN with Becke88 exchange and VWN correlation are available to the user. Hybrid functionals such as mixing half Hartree-Fock exchange and half Becke88 exchange are available also.

All comparisons presented below are made to the grid based DFT code in Gaussian 92/DFT. ${ }^{52}$ A pruned $(75,302)$ grid of approximately 7000 points per atom ${ }^{53}$ is used, because looser grids gave off-axis dipole components for NH_{3} and a net dipole moment for planar NH_{3}. Both GAMESS and Gaussian92/DFT calculate all nonexchange/correlation terms explicitly from Ψ, rather than from n and the dimensionless gradient y

FIG. 2. NH_{3} bend potential with the Becke88 and $6-311++G(3 d, 3 p)$.

FIG. 3. $\mathrm{NH}_{3} \mathrm{rms}$ gradient with the Becke88 and $6-311++G(3 d, 3 p)$.

$$
\begin{align*}
E= & \int\left[C_{\text {kinetic }} n^{5 / 3}+C_{\text {potential }} n+C_{\text {exchange }} n^{4 / 3} \cdot f(y)\right] d \mathbf{r} \\
& \text { where } y=\left|\frac{\nabla n}{n^{4 / 3}}\right| \tag{26}
\end{align*}
$$

as was done in older purely DFT implementations. The current implementation of grid-free DFT in GAMESS does not use an auxiliary basis set, so the same basis that is used for the linear combination of atomic orbitals (LCAO) expansion is also used for the resolution of the identity. Consequently, as the basis set size is increased, both the accuracy of the wave function and the accuracy of the resolution of the identity are increased. Of course, use of an auxiliary basis set for the resolution of the identity would be more efficient and will be implemented in a subsequent version.

B. Energies of atoms

Small closed shell atoms provide a good initial test case. Absolute energies for atoms are calculated using even tempered uncontracted basis sets. ${ }^{54,55} \mathrm{He}, \mathrm{Be}$, and Ne are studied here. As can be seen in Tables I and II, the Slater functional ($X-\alpha$ with $\alpha=2 / 3$) energy converges with relatively small basis sets. Tables III-V show that gradient corrected functionals require basis functions of one higher angular momentum quantum number, because of the resolution of the identity introduced in Eq. (13d). When i and j are on the same atom, the integral $\int \chi_{i} d / d x \chi_{j} d \mathbf{r}$ vanishes if i and j do not differ by exactly one in x angular momentum. Even though s

FIG. 4. NH_{3} bend potential with the Becke 88 functional.

FIG. 5. NH_{3} rms gradient with the Becke88 functional and correlation consistent basis sets.
functions on Ne provide a gradient correction to the p functions, the addition of d functions greatly enhances the accuracy of the calculation, by providing an additional gradient correction as can be seen clearly in Table V. Although adding d functions to helium would make the basis set more complete (and therefore make the resolution of the identity more exact), it would not improve the accuracy of the calculation, unless the functional includes second derivatives of the density. This is because the second derivative of the density would involve $\int \chi_{i} d^{2} / d x^{2} \chi_{j} d \mathbf{r}$ integrals and these vanish unless i and j have the same x angular momentum or differ by exactly two in x angular momentum.

C. Energies and dipole moments of diatomics

The bond distances, dipole moments, and binding energies for CO and N_{2} calculated with the B-null (Becke88 exchange, no correlation) functional using uncontracted even tempered basis sets ${ }^{54,55}$ are given in Table VI. The isolated atoms are calculated using unrestricted wave functions. The basis sets used are $20 s 13 p 10 d 3 f$ for $\mathrm{N}, 20 s 13 p 10 d 1 f$ for C , and $20 s 13 p 10 d 1 f$ for O . The grid and grid-free results for both N_{2} and CO are very comparable, differing by only $0.001 \AA$. Both approaches predict CO dipole moments that

FIG. 6. NH_{3} energy with the Becke88 functional and correlation consistent basis sets.

FIG. 7. NH_{3} rms gradient with the Becke88 functional and correlation consistent basis sets.
are within 2% of each other. B null overestimates the N_{2} bond length compared to the experimental ${ }^{56}$ value of 1.098 \AA, and underestimates the experimentally predicted ${ }^{56} \mathrm{~N}_{2}$ binding energy of 9.90 eV . This functional also overestimates the CO bond length compared to the experimental value of $1.128 \AA,{ }^{57}$ and underestimates the experimentally predicted ${ }^{58} \mathrm{CO}$ binding energy of 11.1 eV . The sign of the CO dipole moment is predicted correctly (difficult to do ${ }^{59,60}$) and close to the experimental ${ }^{61,62}$ value of 0.112 D .

D. Energies and dipole moments

Dipole moments and energies for $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} are examined with B-null using correlation consistent ${ }^{63}$ basis sets in Table VII. The water geometry is fixed at $R(\mathrm{OH})$ $=0.95781 \AA, \theta(\mathrm{HOH})=104.4776^{\circ}$, and that of ammonia is fixed at $R(\mathrm{NH})=1.012 \AA, A(\mathrm{HNH})=106.7^{\circ}$. As the basis set size increases, the dipole moments converge to the same answer. For the grid-free approach, a triple zeta basis set is
necessary to adequately represent the resolution of the identity, based on the agreement of grid and grid-free approaches. A quadruple zeta basis for water and a pentuple zeta basis for ammonia is necessary to converge the dipole moment and energy. So, for these species, the resolution of the identity is converged with respect to basis set before the dipole moment is. These dipole moments are within 0.04 D of the experimentally observed ${ }^{62}$ dipole moments of 1.85 D for $\mathrm{H}_{2} \mathrm{O}$ and 1.47 D for NH_{3}.

E. The ammonia bend potential

The bend potential of NH_{3} was studied initially with the B-null exchange functional and the $6-311++G(3 d, 3 p)$ basis set. ${ }^{64}$ The $\mathrm{N}-\mathrm{H}$ bond distance was constrained to the optimal $X-\alpha(\alpha=2 / 3)$ value of $1.0496 \AA$ to match the previous work by Werpetinski and Cook. ${ }^{22}$ Because the NH bond is optimized for the $X-\alpha$ functional, the gradient will never go to zero. The energy, net dipole moment, and root-mean-square (rms) cartesian gradient at each point along the bend angle from 55° to 90° in 0.5° increments are presented in Figs. 1-3, respectively. The dipole moments (Fig. 1) differ by no more than 0.116 D and 5.95%. The grid-free and grid based energies (Fig. 2) differ by 0.0606 hartree, but the shapes of the surfaces are very similar (the standard deviation of the energy difference between the curves is 0.00073 hartree). This suggests that for this size basis set the grid-free approach gives reliable relative energies, even though the absolute energies are too high. The rms gradient is significantly different (Fig. 3); this is probably a result of errors introduced by the resolution of the identity, particularly applying it to derivatives in Eqs. (13) and (18). Uncontracting the $6-311++G(3 d, 3 p)$ basis set improves the fitting of the resolution of the identity, and therefore the quality of the grid-free results. To further explore these issues, the systematic correlation consistent basis sets of Dunning are

TABLE VIII. CH_{2} geometry optimizations with B-VWN5 functional.

TABLE IX. $\mathrm{C}_{3} \mathrm{H}_{6}$ geometry optimizations with B-VWN5 functional.

	Propene energy (hartree)	Propene $\mathrm{C}=\mathrm{C}$ bond distance (\AA)	Propene C-C bond distance (\AA)	Cyclopropane energy (hartree)	Cyclopropane C-C bond distance (\AA)	Cyclopropane H-C bond distance (\AA)	Energy difference (eV)
Hartree-Fock	-117.108688	1.317	1.511	-117.096518	1.498	1.073	-0.33
Grid	-118.604631	1.338	1.524	-118.588178	1.521	1.083	-0.45
Grid free	-118.457918	1.328	1.544	-118.456606	1.544	-0.04	
Uncontracted						1.084	
Grid	-118.607912	1.339	1.539	1.526	-118.591789	1.520	1.083
Grid free	-118.540559	-118.523173	1.525	1.088			

utilized. ${ }^{63}$ The energy for basis sets that fail to adequately resolve the identity can be too low (Fig. 4). Therefore, just as an inadequate grid can give nonvariational and erratic energies and properties, an inadequate basis set to represent the resolution of the identity can suffer from the same problem. Grid-free results for all but the $c c-p \mathrm{QZV}$ basis set give incorrectly shaped rms gradient curves (Fig. 5). To further explore the resolution of the identity, the $c c-p$ TZV basis set is systematically uncontracted (Figs. 6 and 7), because $c c-p \mathrm{TZV}$ gave the worst rms gradient curves. By uncontracting the valence p shell on the nitrogen the resolution of the identities in Eqs. (13) and (18) are more correctly represented. By further uncontracting the s shell on the hydrogen the resolution of the identity is better fit and the curves become more reasonable, although the minimum rms gradient is mispositioned by 5°.

F. Electronic states of triatomics

The ${ }^{1} A_{1}$ and ${ }^{3} B_{1}$ states of $\mathrm{CH}_{2}{ }^{65}$ are compared in Table VIII for both B-VWN5 and Hartree-Fock using an aug-cc-p VTZ^{63} basis set. The ${ }^{3} B_{1}$ state is optimized with a restricted open shell wave function. Table VIII shows that a basis set that is well designed for modeling occupied molecular orbitals, is not necessarily well designed to converge the resolution of the identity. For CH_{2}, the $a u g-c c-p \mathrm{VTZ}$ basis set is too contracted to adequately represent the resolution of the identity. Uncontracting the s functions and then the p functions results in more sensible predicted properties. Additional sets of polarization functions (one set of more diffuse d 's and one set of tighter d 's on C and one set of more diffuse p 's and one set of tighter p 's on H), improve the resolution of the identity in Eqs. (13) and (18). Results for the quadruple zeta basis set show a similar trend, with the additional polarization functions agreeing with the grid based approach. Unlike Hartree-Fock, the B-VWN5 results agree with the experimentally observed splitting of $0.369-0.390$ eV $(8.5-9.0 \mathrm{kcal} / \mathrm{mol}),{ }^{66,66}$ and the experimental geometries ${ }^{67}$ of $1.11 \AA, 102^{\circ}$ for ${ }^{1} A_{1}$ and $1.07 \AA, 134^{\circ}$ for ${ }^{3} B_{1}$.

G. Isomers of polyatomics

The geometries and energies of cyclopropane and propene ${ }^{68}$ are compared in Table IX using both HartreeFock and B-VWN5 with a $6-311++G(3 d, 3 p)$ basis set. ${ }^{64}$ Although the grid-free approach gives reasonable geometries, it badly underestimates the energy difference. By uncontracting the basis set, and thus increasing the accuracy of
the resolution of the identity, the grid-free approach, gives reasonable geometries and energy differences. The experimental $\Delta H_{298.15}$ is about 1.7 eV , with zero point energy (ZPE) corrections predicted to be significant. ${ }^{68}$ While direct comparison with experimental values is not entirely appropriate, both the grid based and the grid-free results appear to be poor.

IV. CONCLUSIONS

The grid-free approach to DFT provides an alternative to the grid based approach to DFT. The resolution of the identity ${ }^{69}$ (especially for gradient corrected functionals and energy gradient calculations) requires a more accurate basis set than does the wave function. The use of such large basis sets results in the calculation of a large number of twoelectron integrals that are not otherwise needed. A more efficient approach will be to augment the atomic basis set with auxiliary functions only during the DFT part of the calculation. The vast knowledge base available for dealing with wave function basis set completeness in DFT^{70} appears to be inadequate for addressing this issue, particularly for gradient corrected functionals. Previous work on auxiliary basis sets has dealt with the fitting of the $n^{1 / 3} X-\alpha$ potential ${ }^{71}$ or the Coulomb potential. ${ }^{72}$ Little or no work has been done on fitting the gradient of the density as in Eq. (13) or fitting the resolution of the identity between the alpha density and the beta density as in Eq. (15).

ACKNOWLEDGMENTS

This work was supported in part by grants from the Air Force Office of Scientific Research (F49-620-95-1-0073) and by the Ames Laboratory, U.S.-DOE. The authors would like to thank Dr. Mike Schmidt for many enlightening conversations. We would also like to thank the late Professor Jan Almlöf and Y. C. Zheng for providing us with an early version of the grid-free code in SUPERMOLECULE for comparisons to the GAMESS grid-free code.

APPENDIX A: PROOF OF EQUATION 7

$\tilde{M}[f(n)]$ is in an orthonormal basis in which $\tilde{M}[n]$ is diagonal (i.e., $\tilde{M}[n]=\lambda$)

$$
\tilde{M}[f(n)]=\tilde{M}\left[\sum_{m} \alpha_{m} n^{m}\right],
$$

series expansion of the function

$$
\begin{aligned}
& =\sum_{m} \alpha_{m} \tilde{M}\left[n^{m}\right] \\
& =\sum_{m} \alpha_{m}(\tilde{M}[n])^{m},
\end{aligned}
$$

by the resolution of the identity (exact in complete basis)

$$
=\sum_{m} \alpha_{m} \lambda^{m} \text {, since } \tilde{M}[n] \text { is diagonal }
$$

$$
\tilde{M}[f(n)]=f(\lambda) .
$$

This should not be confused with the commonly used relationship, which is true in any basis:

$$
f(\tilde{M}[n])=f(\lambda) .
$$

APPENDIX B: APPROXIMATE THREE-CENTER APPROACH

Expand the density in an orthonormal basis set

$$
\begin{aligned}
& M[n] \approx M\left[\sum_{m=1}^{K} C_{m} \theta_{m}\right], \\
& M[n]_{i, j}=\int \chi_{i} \sum_{m=1}^{K} C_{m} \theta_{m} \chi_{j} d \mathbf{r} .
\end{aligned}
$$

Because $\{\theta\}$ is orthonormal, the expansion coefficients are given by

$$
\begin{aligned}
C_{m} & =\int n \cdot \theta_{m} d \mathbf{r}, \\
C_{m} & =\sum_{r, s}^{\mathrm{AO}} D_{r, s} \int \chi_{r} \chi_{s} \theta_{m} d \mathbf{r} .
\end{aligned}
$$

Substituted into $M[n]_{i, j}$ gives

$$
M[n]_{i, j}=\int \chi_{i} \sum_{m=1}^{K}\left(\sum_{r, s}^{\mathrm{AO}} D_{r, s} \int \chi_{r} \chi_{s} \theta_{m} d \mathbf{r}\right) \theta_{m} \chi_{j} d \mathbf{r},
$$

which rearranges to give

$$
M[n]_{i, j}=\sum_{r, s}^{\mathrm{AO}} \sum_{m=1}^{K} D_{r, s} \int \chi_{i} \chi_{j} \theta_{m} d \mathbf{r} \cdot \int \theta_{m} \chi_{r} \chi_{s} d \mathbf{r}
$$

which is equivalent to just applying the resolution of the identity.

APPENDIX C: $\boldsymbol{X}-\alpha$ FUNCTIONAL ENERGY

For the closed shell $X-\alpha$ functional f, with molecular orbitals ψ

$$
\begin{aligned}
& \hat{K}_{v, \nu}^{\mathrm{DFT}}=\int \psi_{v} \psi_{\nu} \frac{\partial f}{\partial n} d \mathbf{r} \\
& \hat{K}_{v, \nu}^{\mathrm{DFT}}=C_{\alpha} \frac{4}{3} \int \psi_{v} \psi_{\nu} n^{1 / 3} d \mathbf{r} .
\end{aligned}
$$

Forming the dot product of the DFT Fock matrix with the diagonal density matrix yields

$$
\begin{aligned}
& \hat{K}^{\mathrm{DFT}} \cdot D=\sum_{v}^{\text {occupied }} 2 \cdot C_{\alpha} \frac{4}{3} \int \psi_{v} \psi_{v} n^{1 / 3} d \mathbf{r}, \\
& \hat{K}^{\mathrm{DFT}} \cdot D=C_{\alpha} \frac{4}{3} \int n^{4 / 3} d \mathbf{r} \\
& \hat{K}^{\mathrm{DFT}} \cdot D=\frac{4}{3} \cdot E^{\mathrm{DFT}} .
\end{aligned}
$$

This is not the DFT energy.
${ }^{1}$ J. C. Slater, Adv. Quantum Chem. 6, 1 (1972).
${ }^{2}$ S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
${ }^{3}$ D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1909 (1983).
${ }^{4}$ M. Rasolt and D. J. W. Geldhart, Phys. Rev. B 34, 1325 (1986).
${ }^{5}$ P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
${ }^{6}$ J. P. Perdew, K. Burke, and M. Ernzerhof, J. Chem. Phys. 105, 9982 (1996).
${ }^{7}$ A. D. Becke, J. Chem. Phys. 104, 1040 (1996).
${ }^{8}$ B. I. Dunlap, Chem. Phys. 125, 89 (1988).
${ }^{9}$ B. I. Dunlap, Phys. Rev. A 19, 2902 (1984)
${ }^{10}$ B. G. Johnson, P. M. W. Gill and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).
${ }^{11}$ G. E. Scuseria, J. Chem. Phys. 97, 7528 (1992).
${ }^{12}$ T. G. Wright, J. Chem. Phys. 105, 7579 (1996).
${ }^{13}$ S. Gronert, G. N. Merrill, and S. R. Kass, J. Org. Chem. 60, 488 (1995).
${ }^{14}$ H. M. Sulzbach, H. F. Schaefer, III, W. Klopper, and H. P. Lüthi, J. Am. Chem. Soc. 118, 3519 (1996).
${ }^{15}$ R. G. Parr and W. Wang, Density-Functional Theory of Atoms and Molecules (Oxford, New York, 1989), Sec. III.
${ }^{16}$ A. I. M. Rae, Chem. Phys. Lett. 18, 574 (1972).
${ }^{17}$ B. G. Johnson, C. A. Gonzales, P. M. W. Gill, and J. A. Pople, Chem. Phys. Lett. 221, 100 (1994).
${ }^{18}$ V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz. 15, 48 (1975).
${ }^{19}$ V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz. 16, 293 (1975).
${ }^{20}$ P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 197, 499 (1992).
${ }^{21}$ B. I. Dunlap, J. Phys. Chem. 90, 5524 (1986).
${ }^{22}$ K. S. Werpetinski and M. Cook, Phys. Rev. A 52, R3397 (1995).
${ }^{23}$ Y. C. Zheng and J. Almlöf, Chem. Phys. Lett. 214, 397 (1993).
${ }^{24}$ Y. C. Zheng and J. Almlöf, J. Mol. Struct.: THEOCHEM 288, 277 (1996).
${ }^{25}$ K. S. Werpetinski and M. Cook, J. Chem. Phys. 106, 7124 (1997).
${ }^{26}$ M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Mongomery, Jr., J. Comput. Chem. 14, 1347 (1993).
${ }^{27}$ O. Vahtras, J. Almlöf, and M. W. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).
${ }^{28}$ A. E. DePristo and J. D. Kress, J. Chem. Phys. 86, 1425 (1987).
${ }^{29}$ B. A. Hess, R. J. Buenker, and P. Chandra, Int. J. Man-Mach. Stud. 29, 737 (1986).
${ }^{30}$ S. Obara and A. Saika, J. Chem. Phys. 84, 3963 (1986).
${ }^{31}$ A. M. Köster, J. Chem. Phys. 104, 4114 (1996).
${ }^{32}$ W. von Niessen, Theor. Chim. Acta 27, 9 (1972).
${ }^{33}$ W. von Niessen, J. Chem. Phys. 56, 4290 (1971).
${ }^{34}$ J. Almlöf, in Modern Electron Structure Theory Part 1, edited by D. R. Yarkony (World Scientific, River Edge, NJ, 1995), p. 110.
${ }^{35}$ F. Herman, I. B. Ortenburger, and J. P. van Dyke, Int. J. Quantum Chem. IIIS, 827 (1970).
${ }^{36}$ R. Neumann and N. C. Handy, Chem. Phys. Lett. 266, 16 (1997).
${ }^{37}$ K. Kobayashi, N. Kurita, H. Kumahora, and K. Tago, Phys. Rev. A 43, 5810 (1991)
${ }^{38}$ R. Fournier, J. Chem. Phys. 92, 5422 (1990).
${ }^{39}$ J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
${ }^{40}$ B. G. Johnson, P. M. W. Gill, and J. A. Pople, Chem. Phys. Lett. 220, 377 (1994).
${ }^{41}$ J. Baker, J. Andzelm, A. Scheiner, and B. Delley, J. Chem. Phys. 101, 8894 (1994).
${ }^{42}$ V. Termath, D. J. Tozer, and N. C. Handy, Chem. Phys. Lett. 228, 239 (1994).
${ }^{43}$ Equations (4) and (5) of Q. Zhao and R. G. Parr, Phys. Rev. A 46, R5320 (1992).
${ }^{44}$ D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 466 (1980).
${ }^{45}$ Equation (24) of G. J. Laming, V. Termath, and N. Handy, J. Chem. Phys. 99, 8765 (1993).
${ }^{46}$ E. P. Wigner, Phys. Rev. 46, 1002 (1934).
${ }^{47}$ E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938).
${ }^{48}$ A. D. Becke, Phys. Rev. A 38, 3098 (1988).
${ }^{49}$ B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).
${ }^{50}$ C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
${ }^{51}$ R. Colle and D. Salvetti, Theor. Chim. Acta 37, 329 (1975).
${ }^{52}$ Gaussian 92/DFT, Revision G.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1993.
${ }^{53} \mathrm{Int}=$ FineGrid and $\mathrm{SCF}=$ tight. It is worth noting that this is the default grid in Gaussian 94.
${ }^{54}$ M. W. Schmidt and K. Ruedenberg, J. Chem. Phys. 71, 3951 (1979).
${ }^{55}$ Exponents for higher angular momentum (d, f) were generated using the outermost shell exponents.
${ }^{56}$ K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), p. 412.
${ }^{57}$ D. Sundholm, P. Pyykko, and L. Laaksonen, Mol. Phys. 56, 1411 (1985).
${ }^{58}$ L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991).
${ }^{59}$ X. W. Fan, X. J. Chen, S. J. Zhou, Y. Zheng, C. E. Brion, R. Frey, and E. R. Davidson, Chem. Phys. Lett. 276, 346 (1997).
${ }^{60}$ M. P. C. M. Krijn and D. Feil, Chem. Phys. Lett. 150, 45 (1988).
${ }^{61}$ J. S. Muenter, J. Mol. Spectrosc. 55, 490 (1975).
${ }^{62}$ Handbook of Chemistry and Physics, edited by D. R. Lide, 74th ed. (CRC, Boca Raton, FL, 1993), pp. 9-42.
${ }^{63}$ T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
${ }^{64}$ R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
${ }^{65}$ N. Matsunaga, S. Koseki, and M. S. Gordon, J. Chem. Phys. 104, 7988 (1996).
${ }^{66}$ D. G. Leopold, K. K. Murray, A. E. Stevens Miller, and W. C. Lineberger, J. Chem. Phys. 83, 4849 (1985).
${ }^{67}$ A. R. W. McKellar, P. R. Bunker, T. J. Sears, K. M. Evenson, R. J. Saykally, and S. R. Langhoff, J. Chem. Phys. 79, 5251 (1983).
${ }^{68}$ K.-N. Fan, Z.-H. Li, W.-H. Li, W.-N. Wang, H.-H Huang, and W. Huang, Chem. Phys. Lett. 277, 257 (1997).
${ }^{69}$ In this work, Eqs. (3b), (7), (13c), and (20).
${ }^{70}$ J. M. Martell, J. D. Goddard, and L. A. Eriksson, J. Phys. Chem. A 101, 1927 (1997).
${ }^{71}$ N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Chem. 70, 560 (1992).
${ }^{72}$ K. Eichkorn, O. Treutler, H. Öhm, M. Häser, and R. Ahlrichs, Chem. Phys. Lett. 240, 283 (1995).

