
Predictive Thread-to-Core Assignment on a Heterogeneous
Multi-core Processor

Viswanath Krishnamurthy, Tyler Sondag, and Hridesh Rajan

TR #07-10
Initial Submission: June 29, 2007.

Keywords: static program analysis, heterogeneous multi-core processors, thread-to-core assignment, phase behavior.

CR Categories:
D.3.4 [Programming Languages] Processors - Optimization D.3.3 [Programming Languages] Language Constructs and Features - Control

structures D.4.1 [Operating Systems] Process Management - Multiprocessing/multiprogramming/multitasking, Scheduling, Threads

Submitted.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA

Predictive Thread-to-Core Assignment on a Heterogeneous
Multi-core Processor

Viswanath Krishnamurthy
Dept. of Computer Science

Iowa State University
viswa@cs.iastate.edu

Tyler Sondag
Dept. of Computer Science

Iowa State University
sondag@cs.iastate.edu

Hridesh Rajan
Dept. of Computer Science

Iowa State University
hridesh@cs.iastate.edu

Abstract
As multi-core processors are becoming common, vendors are start-
ing to explore trade offs between the die size and the number of
cores on a die, leading to heterogeneity among cores on a sin-
gle chip. For efficient utilization of these processors, application
threads must be assigned to cores such that the resource needs of
a thread closely matches resource availability at the assigned core.
Current methods of thread-to-core assignment often require appli-
cation’s execution trace to determine it’s runtime properties. These
traces are obtained by running the application on some represen-
tative input. A problem is that developing these representative in-
put set is time consuming, and requires expertise that the user of
a general-purpose processor may not have. In this position paper,
we propose an approach for automatic thread-to-core assignment
for heterogeneous multi-core processors to address this problem.
The key insight behind our approach is simple – if two phases of
a program are similar, then the data obtained by dynamic monitor-
ing of one phase can be used to make scheduling decisions about
other similar phases. The technical underpinnings of our approach
include: a preliminary static analysis-based approach for determin-
ing similarity among program sections, and a thread-to-core assign-
ment algorithm that utilizes the statically generated information as
well as execution information obtained from monitoring a small
fraction of the program to make scheduling decisions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors - Optimization; D.3.3 [Programming Lan-
guages]: Language Constructs and Features - Control structures;
D.4.1 [Operating Systems]: Process Management - Multiprocess-
ing/multiprogramming/multitasking, Scheduling, Threads

General Terms Algorithms, Experimentation, Performance

Keywords static program analysis, heterogeneous multi-core pro-
cessors, thread-to-core assignment, phase behavior

1. Introduction
The number of processor cores in a die is expected to continue
to multiply in coming years making multi-core CPUs with large
number of cores a commodity item [6]. The increasing demand for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

multi-core processors over single core general purpose processors
can be attributed to the fact that no significant performance increase
is obtained when the processor clock frequency is scaled [14].
Moreover the processor is mostly idle since the instruction feed rate
cannot match the speed of the high performance core. Multi-core
processors solve this problem by placing multiple cores on a single
die to boost performance and account for better area utilization.

A multi-core processor is heterogeneous when the cores on a
single die differ in their characteristics e.g. cache-size, core-type
(in-order or out-of-order), clock frequency, instruction issue width,
etc [10]. Heterogeneous multi-core processors are seen as more
viable alternative by many due to better die area utilization, reduced
heat dissipation, power consumption and often better performance -
power ratio compared to their homogeneous counterparts [7]. They
also help cater to a wider class of applications with varying levels
of parallelism [9].

There are two challenges to efficient utilization of heteroge-
neous multi-core processors. First, amount of parallelism present
in the workload must increase significantly. This can either be done
by automatic extraction of thread-level parallelism [13] or by de-
veloping novel parallel programming language constructs [5]. Sec-
ond, thread-to-core assignments techniques must be developed that
match the resource needs of a thread closely with the resource avail-
ability, while maintaining fairness and optimizing overall through-
put. This paper presents a technique to address the second issue.

The basic idea behind our technique is as follows. A program
exhibits phase behavior [15] in that it goes through several phases
of execution that show approximately similar runtime character-
istics compared to other phases of execution. If we can approxi-
mately predict similarity among program phases statically, we can
use this information to determine assignments of threads-to-core at
a low runtime cost. In particular, by monitoring the execution of an
initial phase in the program, we can predict the execution charac-
teristic of the later phases of the program that resemble this phase.
Statically predicted similarity and dynamically measured execution
characteristics of the representive initial phase can then be used
for selecting an appropriate thread-to-core assignment for the later
phases in the program.

Based on this idea, our technique consists of a static analyser,
which can be augmented into a compiler, and a dynamic monitoring
and scheduling framework, which can become part of the operating
system’s scheduler. The purpose of the static analyser part is to
classify an application into a set of phases, and to group these
phases into clusters such that each phase in the cluster is likely
to show similar runtime behavior. The purpose of the dynamic
monitoring and scheduling framework is to estimate the expected
resource needs of a cluster by monitoring the execution of one
representative phase in the cluster and to extrapolate the resource

Figure 1. Infrastructure

needs of the representative phase to determine core assignment
policy for other phases in the cluster.

The rest of this paper is organized as follows. Section 2 de-
scribes our approach for determining similar phases of execution
and mapping phases to processor cores as well as our testing infras-
tructure in detail. Section 3 presents our planned evaluation frame-
work. Section 4 compares and contrasts our approach with related
work. Section 5 describes some potential benefits of our approach
and Section 6 discusses future work and concludes.

2. Approach
In this section, we describe our proposed approach for utilizing stat-
ically determined approximate program phase information to assist
predictive thread-to-core assignment. We first describe our static
analysis technique. We then describe our approach for determining
scheduling policy.

2.1 Determining Similar Behaviors
The key requirement for our preliminary analysis approach to de-
termine similar sections in the program is to use only static infor-
mation about the program unlike other techniques [15] that use dy-
namic profile of the application. This design decision was made to
avoid the need to profile the application, thereby avoiding the need
to develop a set of representative testcases for the application.

The technique presented here considers program intervals at the
basic blocks level. Basic blocks are then grouped together so that
blocks containing similar proportions of instruction types are in the
same group. In our approach, basic blocks are grouped into cate-
gories of similar basic blocks based on their machine instruction
types (arithmetic, data transfer, control transfer, etc.). Currently we
only consider instruction types, but a similar technique based on a
combination of instructions and operand types may also be consid-
ered. We consider only basic blocks larger than a particular number
of instructions, which helps us to minimize the overhead associated
with frequent core switching that may result otherwise. Currently,
we set this number to 20 instructions.

To illustrate, let us consider a basic block which has 70% arith-
metic instructions, 10% data transfer instructions and 20% control
transfer instructions. This basic block has a majority of computa-
tionally intensive instructions. Therefore, this basic block will be
grouped with other basic blocks which contain a similar proportion
of instructions (i.e. a majority of computationally intensive instruc-
tions). The process of creating instruction type vectors and cluster-
ing is illustrated in Figure 2. Basic block 1 and 2 and basic block
3 and 4 have similar ratio of instruction types, therefore they are
grouped together into clusters.

Our current approach uses a very simple technique that can be
significantly improved by considering other information that is also
available statically. For example, our current technique does not

Figure 2. Clustering

1. Randomly select k of the basic blocks, the k vectors corre-
sponding to these basic blocks become the initial cluster cen-
ters.

2. For each vector, determine which of the cluster centers is closest
and become a member of that cluster.

3. For each cluster, calculate the average of all members of the
cluster, this becomes the new cluster center.

4. Repeat steps 2 and 3 until there is no more change in the cluster
centers.

Figure 3. k-means algorithm[11]

account for the ordering of instructions that may lead to different
characteristics of basic blocks due to control and data dependences
between instructions specially when executed on an out-of-order
processors. During static analysis, a conservative approach to ac-
count for execution order, control and data dependences is likely
to lead to better results. Another important factor to account for
is cache hit/misses. Two seemingly similar basic blocks may ex-
hibit substantially different behavior depending on the locality of
the data accessed. A little more detailed, but still static, analysis that
considers the upper bounds on the pipeline stall delays is likely to
lead to better approximation. Nevertheless, note that the objective
of our static analyser is to provide us with approximate similar-
ity between basic blocks and our initial simple strategy provides a
good starting point in this direction.

In case of the simple example presented in Figure 2 the simi-
larity among basic blocks can be easily identified by exhaustively
comparing the vector of instruction types, but this na’́ive strategy
does not scale for large programs. For classifying similar basic
blocks in large programs into clusters, we use the k-means clus-
tering alogorithm proposed by MacQueen [11]. For the benefit of
the reader, this algorithm is described briefly in Figure 3.

We apply the k-means algorithm on the normalized vector of
instruction types for each block. The normalization is done by
dividing the instructions in each category by the total number of
instructions within that basic block. Each cluster now contains
basic blocks which have a similar proportion of instruction types.
Therefore, we may expect each basic block in a cluster to exhibit
approximately similar runtime behavior to the other basic blocks in
the cluster barring the exceptions that we considered before, which
will further narrow down the variance. This method allows us to
obtain profile information for any execution path taken at runtime.

We have built our static analyzer using Intel Analysis Tools for
Object Modification (ATOM) [1], which serves to demonstrate the
feasibility of our approach; however, our approach is not limited to
the ATOM tool. ATOM is a binary instrumentation engine which

Figure 4. Example state of coreResult data structure

contains support for the creation of custom tools for analyzing
program structure and collecting runtime information.

2.2 Predictive Thread-to-Core Assignment
Now we have grouped the basic blocks into clusters. Next, we
would like to determine an efficient thread-to-core mapping policy.
This mapping policy needs to be created dynamically in order to
eliminate simulation overhead.

In order to know whether or not a basic block type has previ-
ously performed well on a core, we use a data structure to store this
information. One such data structure is given in Figure 4.

This data structure is simply a two dimensional array in which
the rows correspond to clusters and the columns correspond to the
cores. All values are initially set to 0, indicating that we do not
know about the execution of that cluster type on that core. Once
it is determined that a basic block from a given cluster executes
efficiently on a certain core, the corresponding value is set to 1.
Similarly, if it is determined that a basic block from a given cluster
performed poorly on a certain core, the corresponding value is set
to −1.

We use the instructions committed per cycle (IPC) as the mea-
sure of poor vs. efficient execution of a basic block on a core. If
the instructions per cycle (IPC) executed for a basic block is above
a certain (heuristically determined) threshold for this cluster, then
the basic block performed well. Otherwise, it did not perform well.
In the event that no core executed any basic block type above the
threshold for this cluster, the threshold is reduced and the runtime
information gathered thus far for this cluster must be reset. This
forces the system to gather new information for the new threshold.

if(block.ipc > threshold[block.group]){
coreResult[block.group][getCurrentCore()] = 1

}
else{
coreResult[block.group][getCurrentCore()] = -1
decrement = 1
for each i in numCores{
if(coreResult[block.group][i] > -1){
decrement = 0

}
}
if(decrement){
threshold[block.group] -= stepSize
for each i in numCores{
coreResult[block.group][i] = 0
}

}
}

Figure 5. Finished Executing Block

When a basic block finishes execution on a core, it must be de-
termined how well this core met the resource needs of this work-
load. An algorithm for this is given in Figure 5.

block = current_block
core = -1
if(block.instructionCount > minCount){
block.group = getGroup(block)
for each i in numCores{
if(coreResult[block.group][i] == 1){
if(coreNotBusy(i)){
core = i
break

}
}

}
if(core == -1){
for each i in numCores{
if(coreResult[block.group][i] == 0){
if(coreNotBusy(i)){
core = i
break

}
}
}

}
if(core != -1){
switchToCore(core)

}
}

Figure 6. Beginning Executing Block

When a basic block is encountered that is larger than a certain
size, we must determine which core it should execute on. An
algorithm for this is given in Figure 6. Using the data structure
from Figure 4 check if a core to efficiently execute this cluster type
has been determined. If one such core is found, and if the core is
not busy, switch the basic block to that core. If no cores have been
determined to run this cluster efficiently, then find a core which has
not run a basic block belonging to the same cluster as the current
basic block, and if it is not busy, switch to that core.

3. Planned Evaluation
In this section, we describe the methods which will be used to
evaluate our approach. The infrastructure described here is already
setup and evaluation efforts are currently underway. For our exper-
imentation, we are using the M5 Simulator System to execute the
application and to determine information about its characteristics
at runtime [4]. M5 is a (optionally) full system simulator that cur-
rently provides support for different architectures, including chip
multi-core processors. M5 simulator supports detailed cycle accu-
rate simulation.

The current configuration that we are using for our test has
three slow operating at ’1GHz’ and one fast processor operating
at ’2GHz’.

The performance statistics obtained as output from the M5 Sim-
ulator System are fed to the performance analysis module which
measures the effectiveness of the cluster to core mapping policy.
The performance analysis module can instruct the M5 Simulator
System to change the current mapping policy, if a mapping strategy
which better exploits the heterogeneous core structure was discov-
ered. Using runtime performance statistics we determine how well
a basic block belonging to a specific cluster performs on the core
to where it was mapped. Once it is determined that a basic block
has run effectively on a core, all other basic blocks belonging to
the same cluster are executed on that core. The infrastructure to be
used in this procedure is shown in Figure 1.

3.1 Workload Construction
Our approach for developing the workload for simulation is sim-
ilar to that of Becchi et al.. They created workloads from 11
benchmarks of the SPEC2000 benchmark suite [3]. Workloads are
formed that contain between 1-40 randomly selected threads where
each thread corresponds to one of the 11 benchmarks. Each bench-
mark was run using the M5 simulator to obtain execution traces for
each core type available. The output of the M5 simulator helped
their CMP simulator (used to model each heterogeneous core con-
figuration) to perform appropriate thread-core assignment. Instead
of selecting from only 11 benchmarks, we are considering selecting
all benchmarks in the SPEC2000 benchmark suite. We will choose
a uniform amount of integer and floating point benchmarks as well
as benchmarks which have a large memory footprint and those that
do not.

3.2 Evaluation Metrics
We will use weighted speedup to evaluate how well the workloads
are executed using our approach [16]. The IPC when all bench-
marks in the workload are executed on the fastest core serves as a
reference to compare against. This will help us to compare our re-
sults with the results of related approaches. Additionally our results
will also be compared with the pseudo best static assignment.

4. Related Work
Since the thread-core assignment policy plays a crucial role in de-
ciding performance, Becchi et al. claim that dynamic thread assign-
ment policies better make use of the benefits of a heterogeneous
CMP [3]. According to this assignment policy, run-time behavior
of threads is observed and thread switching is carried out accord-
ingly. Another phase detection and optimization approach which
dynamically optimizes the application based on the current execu-
tion profile is given by Nagpurkar et al. [12]. Our approach simi-
larly uses dynamic results from the program’s execution to change
the thread assignment policy.

Kumar et al. introduce an approach for dynamically schedul-
ing threads on heterogeneous multi-core architectures [10]. After a
certain amount of execution, a trigger is generated which starts a
sampling phase which modifies the current thread assignment. Our
approach first groups the program instructions into sections stati-
cally. Our approach differs from their method in that we monitor
the performance of these sections on the assigned core and then ap-
ply the performance results to other sections which are determined
to be similar.

Sherwood et al. presented a dynamic profiling-based technique
for similar program phase identification that performs application
runs to obtain execution traces of applications [15]. This profile
information is then used to identify appropriate simulation points
within the application. Here program execution is broken up into
fixed length sections and basic block vector profiles are collected
for every section. A similarity metric is used to group similar
sections based on their basic block vector profiles. Our approach
only uses static information therefore it does not require a dynamic
profile.

Our procedure for determining similar basic blocks is also re-
lated to the approach used by Sherwood et al., where the cluster-
ing is done on the basis of similar intervals of execution [15]. In
our approach, basic blocks are grouped into categories of similar
basic blocks based on their machine instruction types (arithmetic,
data transfer, control transfer, etc.), whereas in their approach Basic
Block Vectors (BBVs) are grouped into clusters.

Another related work that strongly motivates the usage of het-
erogeneous multi-core architectures is by Tullsen et al. [8]. This
paper shows that heterogeneous multi-core processors offer greater

advantages in terms of performance and power when compared
with any other class of Chip Multiprocessors (CMPs). The paper
stresses the fact that applications achieved performance improve-
ments of up to 40% when power and area constraints were tighter.
It also gives us a deep insight into the design issues of a hetero-
geneous multi-core processor. The paper lays emphasis on tuning
cores to a workload set which exhibit certain common execution
characteristics rather than running all kinds of workloads. Our ap-
proach statically determines which sections of code exhibit similar
characteristics in order to tune the thread assignment policy.

5. Discussion
The approach discussed in this paper is likely to provide two major
benefits.

5.1 Reducing Profiling and Simulation Overhead
A potential benefit of our approach is reduction in the profiling
and simulation overhead of thread-to-core assignment techniques
that rely on execution traces to determine appropriate assignments.
These techniques often execute a program on a representative test
set to determine its runtime characteristics, which is then used de-
termine appropriate assignments. By monitoring the execution of
few representative phases during the normal execution of the pro-
gram and then using the results on the fly to determine assignments
for later phases, we eliminate the need for a separate profiling and
simulation phase.

Moreover, the assignment determined from the techniques that
rely on execution traces may become invalid, if the program is
executed with a completely different set of inputs, which was not
covered during profiling.

Finally, eliminating the need for writing a representative test set
for a program is likely to influence the practicality and generality
of our approach. We detail some anticipated benefits in the next
section.

5.2 Better support for end-users
With the proliferation of multi-core processors in general-purpose
computing infrastructure, there is a greater need to find efficient
thread-to-core assignment policies for applications developed by
end-users. By end-users we mean the group of people who will
operate some software system. End-users programming is popular-
ized by languages like Visual Basic that are intuitive enough be-
cause of their inherent simplicity that it requires little technical ex-
pertise to use it. Another important class of end-users is a typical
programmer in a domain-specific language.

As opposed to industry standard benchmarks and off-the-shelf
applications, where representative sections (which represent the en-
tire benchmark) can be easily identified and simulated, applications
written by end-users might not be frequently run. In addition, end-
users are less likely to be computer architecture experts, who can
fine tune application behavior based on the architecture of the un-
derlying machine. For example, approaches such as that presented
by Balakrishnan et al, that requires that in addition to the operating
system kernel being aware of the asymmetry in the multi-core ar-
chitecture, the application is also aware of the heterogeneity among
the cores in order to obtain a steady performance [2].

End-users are less-likely to rewrite or modify their application
in order to better utilize the architectural capabilities. They are
also less likely to develop a sufficiently representative test set for
profiling and simulation purposes. By eliminating the need for
profiling and simulation our technique has the potential to be more
useful for programs written by end-users.

6. Conclusion and Future Work
In this paper, we described a technique for thread-to-core assign-
ment for a heterogeneous multi-core processor. Our technique stat-
ically determines the approximate phase behavior in a program.
This phase behavior and the exhibited execution characteristics of a
small set of representative phases is then exploited at runtime to de-
termine likely profitable thread-to-core assignments for later phases
of the program. By monitoring the execution of a small representa-
tive set, as opposed to simulating the application, our approach is
likely to reduce the simulation overhead. With support in the oper-
ating system kernels and compilers, our technique can be used au-
tomatically without requiring any special input from the user. This
may allow programs written by an end-user with no expertise to
harness the capabilities of a heterogeneous multi-core processor.

Currently our approach determines similarity at the basic block
level. As part of our future work we will group instructions at a
more coarse level of granularity. One such approach could be to
combine basic blocks into intervals and then form clusters from
intervals rather than from basic blocks. This increased granularity
will help to reduce the overhead associated with frequent core
switching. Increasing this granularity will also give a better picture
of the programs execution since the current method considers only
certain basic blocks.

Acknowledgements
This work is supported in part by National Science Foundation
grant 0627354.

References
[1] Intel Analysis Tools for Object Modification (Intel Atom): Release

Notes: Release 1.0 Beta.
[2] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad

Lai. The impact of performance asymmetry in emerging multicore
architectures. In ISCA ’05: Proceedings of the 32nd annual
international symposium on Computer Architecture, pages 506–517,
Washington, DC, USA, 2005. IEEE Computer Society.

[3] Michela Becchi and Patrick Crowley. Dynamic thread assignment on
heterogeneous multiprocessor architectures. In CF ’06: Proceedings
of the 3rd conference on Computing frontiers, pages 29–40, New
York, NY, USA, 2006. ACM Press.

[4] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Network-oriented
full-system simulation using m5. In Sixth Workshop on Computer
Architecture Evaluation using Commercial Workloads (CAECW),
2003.

[5] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and
Vivek Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. In OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, pages 519–538, New York, NY,
USA, 2005. ACM Press.

[6] David Geer. Industry trends: Chip makers turn to multicore
processors. Computer, 38(5):11–13, 2005.

[7] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy
Ranganathan, and Dean M. Tullsen. Single-isa heterogeneous multi-
core architectures: The potential for processor power reduction. In
MICRO 36: Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture, page 81, Washington, DC, USA,
2003. IEEE Computer Society.

[8] Rakesh Kumar, Dean M. Tullsen, and Norman P. Jouppi. Core
architecture optimization for heterogeneous chip multiprocessors.
In PACT ’06: Proceedings of the 15th international conference on
Parallel architectures and compilation techniques, pages 23–32, New
York, NY, USA, 2006. ACM Press.

[9] Rakesh Kumar, Dean M. Tullsen, Norman P. Jouppi, and
Parthasarathy Ranganathan. Heterogeneous chip multiprocessors.
Computer, 38(11):32–38, 2005.

[10] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan,
Norman P. Jouppi, and Keith I. Farkas. Single-isa heterogeneous
multi-core architectures for multithreaded workload performance. In
ISCA ’04: Proceedings of the 31st annual international symposium
on Computer architecture, page 64, Washington, DC, USA, 2004.
IEEE Computer Society.

[11] J. B. MacQueen. Some methods for classification and analysis
of multivariate observations. In Proceedings of the 5th Berkeley
Symposium on Mathematical Statistics and Probability. University of
California Press, 1967.

[12] Priya Nagpurkar, Chandra Krintz, Michael Hind, Peter F. Sweeney,
and V. T. Rajan. Online phase detection algorithms. In CGO ’06:
Proceedings of the International Symposium on Code Generation and
Optimization, pages 111–123, Washington, DC, USA, 2006. IEEE
Computer Society.

[13] Jeffrey T. Oplinger, David L. Heine, and Monica S. Lam. In search
of speculative thread-level parallelism. In PACT ’99: Proceedings
of the 1999 International Conference on Parallel Architectures and
Compilation Techniques, page 303, Washington, DC, USA, 1999.
IEEE Computer Society.

[14] Jeff Parkhurst, John Darringer, and Bill Grundmann. From single
core to multi-core: preparing for a new exponential. In ICCAD ’06:
Proceedings of the 2006 IEEE/ACM international conference on
Computer-aided design, pages 67–72, New York, NY, USA, 2006.
ACM Press.

[15] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In
ASPLOS-X: Proceedings of the 10th international conference on
Architectural support for programming languages and operating
systems, pages 45–57, New York, NY, USA, 2002. ACM Press.

[16] Allan Snavely and Dean M. Tullsen. Symbiotic job scheduling for a
simultaneous multithreaded processor. In ASPLOS-IX: Proceedings
of the ninth international conference on Architectural support for
programming languages and operating systems, pages 234–244, New
York, NY, USA, 2000. ACM Press.

