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I. GENERAL INTRODUCTION

The field of magnetogasdynamics is basically & study of the inter-
action of an electromagnetic field with a conducting compressible fluid,
The mathematical model for such a sfudy includes equations from gasdynamics
and electromagnetic theory. By considering flows which have velocities
much less than the speed of light, the relativistic effects can be
neglected.

In most practical problems, we are interested more in the resultant
effect due to the motion of a large number of particles, rather than in
the motion of an individual particle in the fluid. Therefore we use a
macroscopic analysis of the fluid rather than view it in terms of
microscopic quantities, Hence the fundamental equations used in analyzing
the dynamics of the conducting fluid are based on the conservation laws
of mass, momentum, and energy together with Maxwell's equations. In this
case, the electromagnetic forces are considered as well as the ordinary
gasdynamical forces,

From a mecroscopic viewpoint, there are two methods of attack in
solving problems, If the conducting fluid is an lonized gas consisting
of a mixture of species of ions, electroms, and neutral particles, the
conservation laws can be written for each species, For other than the
most simple problems, this involves a large number of equations to be
solved., We can also choose to consider the fluid as a whole and use the
gross quantities or the average quantities of all the species, Here the
basic equations involved are the gasdynamic equations of conservation of

mass, momentum, ard energy with additional terms added to the energy and



momentum equations to account for the electromagnetic field, Along with
the gasdynamic equations, we use the Maxwell equations for electro-
magnetic fields and we usually employ Ohm's law as an approximation to
more accurate analysis as an equation relating the gasdynamic equations
and Mexwell's equations,

Along with the assumption that the velocity of the fluid is much
smaller than the veloclty of light, the additional assumptions will be
made that the electric field is of the same order of magnitude as the
induced electric field, and that problems of very high frequency are not
considered. With these assumptions a number of authors (a recent
development is found in Pai (1)) have shown that the displacement
current can be neglected in Maxwell'!s equetions, the excess electrical
charge is negligible, and that the energy in the electric field is much
smaller than that in the magnetic field, As a result, all the electro-
magnetic variables can be written in terms of the magnetic field., Thus
we have reduced the problem to one involving the interaction of the
magnetic field and the gasdynamical equations,

We are now interested in the wave motion in a magnetogasdynamic fluid,
Much of the work done in wave motion considers the fluid to be perfectly
éonducting, that is, to have infinite electrical conductivity. With
this assumption, the basic equations give the Lundquist (2) equations,
This set of equations shares with the equations of gasdynamics the
property of being a.symmetric hyperbolic system of first order partial
differential equations. Thus as in gasdynamics, disturbances propagate

with finite épeeds. Using the theory of characteristics, it has been



shown that three types of wave motion can exist, There is a transverse
wave called the Alfven wave and two longitudinal waves called the fast
and slow waves, As a result of the nature of the Lundquist equations,
much of the work in magnetogasdynamics involves the same techniques used
in gasdynamics,

Friedrichs (2) studied the Lundquist equations in 1954 and brought
out several of the analogies between these equations and the equations
of gasdynamics, He showed that just as in the gasdynamic equations, the
Lundquist equations possess real characteristics, Riemann invariants, and
simple waves, He showed that three types of shock waves exist correspond-
ing to the three types of wave motion, and he alsoc showed the existence
of contact discontinuities, In addition, a conducting fluid can possess
switch on and switch off shocks, across which a component of the magnetic
field is created or destroyed,

A wegk shock or weak discontinuity is a surface across which there are
discontinuities in the derivatives of certain variables, It has been
shown (3) that these weak discontinuities occur along the characteristics
of the flow, The growth of these weak discontinuities into a strong
discontinuity or a shock was first obtained by Thomas (4). In gasdynamics
the velocity of propagation of a weak discontinuity into a gas at rest is
independent of the direction of the normal to the wave-front, In
contrast, in magnetogasdynamics, the propagation is anisotropic, that is
the velocity of the wave-front depends on the direction of the normal,
This anisotropy introduces s numbér of complications in the integration

of the equastions, Lighthill (5) gave a general method of obtaining



asmyptotic solutions of the linearized equations. Weitzner (6) gives a
wethod of integrating these equations for all times in a two dimensional
flow, Ludwig (7) also gives a method of obtaining the strength of the
wave-front at singular points of the wave-front. The general equation of
growth for an Alfven wave was obtained by Kaul (8), and for fast and slow
waves was obbained by Nariboli (9).

All of the above studies are based on the gssumption of infinite
electrical conductivity., With finite conductivity, the picture changes,
Its effect is dissipative., In gasdynamics, viscosity introduces dissipa-
tion, and it is well known that in the presence of viscosity (lO), no
shock can be formed, The influence of finite conductivity in magnetogas-
dynamics was studied by Ludford (11) in discussing the structure of
stationary shock waves, He proved that when the normal component of the
magnetic field is zero, an inviscid, finitely conducting gas admits of a
shock across which the magnetic field is continuous while the velocity,
density and pressure are discontinucus, Thus the shock is more of the
gasdynamical nature, Pal shows the existence of real characteristics in
a one dimensional flow with a perpendicular magnetic field,

The above discussion shows that the effect of finite conductivity
in megnetogasdypamics is different from the effect of other dissipative
parameters such as viscoslity, Thomas (12) gave a general method of
studying discontinuities in continuum theory, Using these compatibility

conditionsl, one can study the propagation and growth of arbitrary

;Appendix.



discontinuities across moving surfaces, called singular surfaces, Using
the compatibility relations, one can prove not only the existence (if
they exist) of surfaces which admit discontinuities across them, but carn
also obtain the general equations of the propagation and growth of such
discontinuities as the surface moves, Thomas has applied these to a
number of gasdynamical (4) and plasticity (13) problems and obtained the
growth of a sonic wave, the decay of a blast wave, the formation of
Luderbands, etc, Truesdell (1L4) gives a general review of the historical
development and the derivation of these equations,

In the present work, we first consider the one-dimensional flow of
a fluid with finite conductivity, zero viscosity and heat conductivity,
and the magnetic field perpendicular to the flow, We assume the quantities
are all functions of the space variable x and the time t, When conducti-
vity is infinite, the velocity of propagation is the "effective" speed
of sound, that is, a, = (a? + A?)%; where a 1s the sound velocity, and
A is the Alfven velocity., Following this wave-front, we seek to study the
growth of waves of finite amplitude along the lines that Lighthill (lO)
does for the gasdynamical case, We derive a "Burger's" type equation,
which seems to be difficult to integrate,

Next we use the technique developed by Thomas (12) to study the
equations of magnetogasdynamics in the presence of finite conductivity,
but with zero viscosity and heat conduction, We prove the existence of
a singular surface moving with the velocity of the gasdynamical speed of
sound, and show that the discontinuities in demsity, velocity and pressure

are stronger than those for the msgnetic field, Equations are then



obtained for the growth of the wave, and it is shown that the front may
either terminate into a shock in a finite or infinite time, or may be
damped out, The time for the formation of the shock is seen to depend
on the direction of the normal to the wave-front,

In the second part, we study the decay of a shock wave along the
same lines as Thomas, We obtain the differential equation for the
velocity of the shock wave, However, it depends on the direction of the
normal to the wave-front; so the integration has been done only for a
perpendicular field,

In the last part, we apply the same technique to obtain the jmmp
in vorticity and current across a shock wave. For completeness, we
give the cases of both finite and infinite conductivity. Although the
final results are not as elegant as for the gasdynamical case, the

present technique is simpler and more straight forward than others,



II. THE EFFECT OF FINITE CONDUCTIVITY ON THE GROWTH

OF WEAK DISCONTINUITIES IN MAGNETOGASDYNAMICS

A, Qualitative Discussion of the Effect of Finite
Conductivity for Linear and Non-Linear Problems

It is well known that masgnetogasdynamical equations belong, in the
absence of all dissipative mechanisms, to a general class of hyperbolic
equations, that is the symmetric hyperbolic equations., The gasdynamical
equations also belong to the same class in absence of viscosity. Such a
system of first order equations is known to have a number of common
properties; existence of real characteristics, and corresponding Riemenn
invariants, and hence sre expected to admit shock formation, But as
discussed by Whitham (15), a shock 1s possible only in an ideal system;
in all actual systems dissipative mechanisms cannot be neglected within
the region where the gradients of quantities are large. Thus a general
process of smoothing occurs due to these dissipative mechanisms. A
study of such a problem is done by Whitham in full generality,

It is interesting to note that different dissipative mechanisms
cannot be regarded to play an equally important role in the process of
smoothing., In the study of the structure of shocks, Ludford and Pai have
noted that the presence of viscosity admits of no sharp discontinuities
in megnetogasdynamics, while the absence of viscosity, but the presence of
finite electrical conductivity, admits of a shock under certain conditions,
Ludford, in particular, notes that under certain conditions, this shock
is one across which the magnetic field is continuous, while its deriva-

tive is discontinuous and the velocity and density are discontinuous.



This shock is then more of a gasdynamical nature., This feature distin-
guishes electrical conductivity from viscosity in magnetogasdynamics,

The study of wave phenomenon for the linearized problem of a
finitely conducting medium appears to have been first made by Cole (16)
for a perpendicular magnetic field. Tanuiti (17) also stﬁdied the case
of an arbitrary magnetic field where the existence of real hyperbolic
characteristics was shown. Nariboli and Hyesyadhish (18) noted the
complete identity in the mathematical sense of Cole's problem with that
of thermo-elasticity and stressed the important point that the existence
of real characteristics in & linear problem implies the admissibility of
shock formation in a corresponding fully non-linear problem, It is
precisely this feature we are going to study in greater detail., We
first note a few general considerstions,

Considering a simplified problem with a perpendicular magnetic

field, the basic equations are,

%9-+ ug—p+ ,05— (2.1.1a)
p(§—+ug—) %9”3;—“}{%%:0 (2.1.1b)
%I-—I+u%§+}{g—=%£-:-2—H- (2.1.1¢)
Tp (gf- +u g;sc) = = (%ic-l)‘2 (2.1.14)

In the gbove, it is assumed that the viscosity and heat conduction
are zero, p is the density, u is the velocity in the x-direction, H is
the magnetic field in the y-direction, S is the entropy, T is the
temperature, and that all quantities depend on the space variable x

and the time t only. We employ &,k,d, units throughout. We also have



the equation of state as p = » (p,S8), T = T(p,S).
Linearizing these equations, by letting p—.»-po + p, u—u, H —>Ho+h,

S—»So + S, T—->TO + T and neglecting products and squares of (p,u,h,S,T)

we get,
%% * 0 % =0 (2.1.2a)
o QD+ LS ipn S0 (2.1.20)
S+, Qu = nt (2.1.2¢)
L -0 (2,1.24)

dt
From Equation 2,1,2d, it follows that the entropy is constant, Thus
we assume ‘that %Sc- = 0 in Equation 2.1.2b, and eliminate the density from

Equations 2,1.2a and 2,1,2b, to obtain finally,
H
Fu 02 Fu + 0 Fh

at2 0 axz hﬁpo oxot -

0 (2.1.3a)

dh du _ kx &Fh
v + HO g;% = ’—g gt; (2.1.313)

If we use the Laplace transform technique to solve these last
equatiors with zero initial conditions, we obtain

-m. X -m. X
Al e Ty B, e "2 (2.1.ka)

-m, X -m. X
h = C e L +D e e (2.1.4D)

where my and m, are the positive roots of the equation

mhr.mg[ﬁl+r)s+sz]+s3
€ 2 2
) € a

o o
, €= %1‘. , where Ai = g—— is the Alfven velocity squared,
Po

u

n
(@]

with r =

o™ {0’
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C,, and D, are arbltrary functions of s,

1’ 1

and the barred quantities are the Laplace transforms of the corresponding

a, is the sound velocity, Al’ Bl’

variables, The other two roots are the negatives of m and m,, and are
pertinent for flow in the negative x-direction,

The functions Al’ Bl’ Cl’ and Dl are determined by the boundary
conditions and cannot affect the nature of the solution, It is the
arguments of the exponents, that is m and I, which determine the nature
of the propagation,

In the absence of the magnetic field, we obtain only one root given
by s/ao, leading to the gasdynamical wave,

If ¢ = 0, that is, the conductivity is infinite, we obtain only one
root, as s/ae where ai = Ai + ai. Thus the nature of the solution

remgins the same as above; the ordinary speed of sound is merely replaced

by the effective speed of sound.

"L
In the general case, for large s, we obtain m = s/ao, m= (s/e)2.

Now as discussed by Neriboli and Nyayadhish (18), and Erdelyi (19), the
point s —~»» remains a so called saddle point of the problem for all e,
however small., Since a saddle point gives the major contribution to the
integral, the wave nature described by the above values dominates for all
times, o gives the sound wave, m, can be compared to the case of
viscosity in the gasdynamical case, Here m = s/(ai + us)%, v being the
kinematic coefficient of viscosity., The expansion of this for s infinite
is exactly similar to that for 3.

Pai has obtained the characteristics ¥(x,t) = constant as given by

BTy vy ¥ (4 + wwy) o Doy +(u+ a )y oDy (wa ¥, ] =0

which gives parabolic and hyperbolic characteristics, corresponding
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exactly to m, and o, respectively, We thus expect the wave-front
corresponding to ml to develop into e shock, This is exactly the result
we prove in section C, A4s for the root Iy, this is the wave-front
travelling with the effective speed of sound, but which is now diffused,
The effect of finite conductivity on this wave can be seen to be exactly
similar to that of viscosity in ordinary gasdynamics, the kinematic
viscosity v Jjust replacing e.

Lighthill (1) has studied the effect of finite viscosity on waves
of finite amplitude. It is reasonable to assume that the wavefront,
travelling with velocity a. is damped just as the sound wave in the case
of viscosity., With this idea in mind, we have obtained a non-linear
equation of the Burger'®s type in section B, However, the equation turns
out to be more complicated and not easily amenable to integration, as in
Lighthill®s case. The theory of singular surfaces or the method of
characteristics dcoes not admit a sharp discontinuity across this front.
Whether the non-linesrity of this type overcomes the demping to lead to a
shock remains open, however, and although we feel a shock cannot develop
across this front, we have been unable to prove 1t.

B. The "Burger's" Equation for the Wave-Front
Travelling with the Effective Speed of Sound

We now wish to study the <llect of finite conductivity on the
wave-front travelling with the velocity N relative to the fluid. Consider
the one-dimensional flow of a fluid with finite electrical conductivity,
but which is inviscid and non heat-conducting. The additional assump-

tions are mede thet the flow is parallel to the x-axis, the magnetic
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field H is planar and perpendicular to the velocity, and that all quantities
are functions of the space coordinate x and the time t only., The basic
equations are then given by Equations 2.1.1,

Following Lighthill and neglecting squared and higher order terms,
Equation 2,1,1 implies that the entropy S can be considered constant
across the wavefront, For a perfectly conducting fluid, Equations 2,1,la
and 2,1,lc are equivalent and imply that H=kp. Also under this condition,
it can be shown that the characteristics for the Equations 2,1.1b and
2.1l.1c are

ax

at

where ai = a® + A% is called the effective speed of sound, a2 = dp/dp

=u+a (2.2.1)

2
is the ordinary speed of sound and A% = %EE is the Alfven velocity.

The Riemann invariants for this system of equaitions are:

2r = u + ® = constant along %% =4+ a (2.2.2a)
2s =i - ® = constaent along dx/dt = u - a, (2.2.2b)
where

e a(p)
w = d
5 o
o]

Since the entropy is considered to be constant, the pressure is
assumed to be a function of the density only, PFor an ideal gas p = kp?,

so ‘that

N~

_ y-1 1
&, = (kye + I ko)
From the paper by Mitchner (20), it would seem reasonable to assume
&, is proportional to some power of p, that is 8, = Dpn where D is a
proportionality constant and n is some given number, Using this value

for 8. it follows that



15

n
w=D/n p (2.2.3a)
n
a, = D(H/K)" = nw (2.2.3D)
Now consider Equations 2,1.1b and 2.1.lc, Using H=Kp, and p=p(p),
these equations become,
-OH Ol du b/ FH

g{'!‘ll&'+H&= g}-{-z—
- (2.2.4)

. H OH _H_ dw
Then using = a5 and Pl a v these reduce further to,

ou lmae FH _’ﬂ[ 52w+ (ae B Hae‘) (Bwa
o

%@ +tu 3- e X T THo S;:a- - 32 ai 3=

W, uWya Lo (2.2.5)
Substituting from Equations 2.2.5 into these equations, we obtain
Wy, S8 -——[a + (22 (2.2.68)
N aPya 2o (2.2.60)

Add and subtract these equations and use the Riemann invariants

2.2,2 to further obtain,

_ 2m faaw _1-n (5(.0\2-!

%%+ (w+ 8‘e) X g Lézcz aw ox’ | (2.2.72)

Js Fo , l-n Ow
<+ (w - a) 5‘ — == (&)2 (2.2.7p)
e
Following Lighthill and considering a disturbance initially limited
to x < 0, all the backward leaning characteristics start from initial
positions with x > 0, and therefore s = 84 which is its value in the

undisturbed fluid ahead of the wave, Thus Equations 2.2.7 reduce to
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the one equation

or dr 2x| Fr  1-n or
5 + (u -+ ae) = = 5| = + o (&‘))2 (2.2.8)
3
Now u+a, =r+s +Dn0=r+s5 +n (r - s5.,) = (n+1) r + (l-n)so
and u + & = (n+1) r, + (1-n) S
Therefore Equation 2,2.8 bzcomes

or or 2n[62r+l—n 1 (Br)g

§—+((l+n r+ (1- n)s ) = 5 7 7 'S5y
%= 0
Let z = (l+n)(r—ro) = uta, - (uO + a_ ) and substitute into Equation

2.2,9, to obtain

Lzt +a) .2 }:B‘Zr - <g§>2] (2.2.10)

o] axz n I‘-—SO
Making the trensformation X = x-(u_+ a_ ) t, this becomes
o eo’ 7’

or or EK Fr 1l-n 1 (Br)z
F g- ax2+n I‘—SOB-}Z

and trensforming this to z, we get

oz dz 2xn | Fz 1-n 0z \2 .
N _2n ($2) (2.2.11)
AN [sz n(ntl) (= + 7 -s) 3=

0O

Let z = £(y), and £ind f such that the coefficient of the terms

(%%)2 vanish, that is, find f(y) which satisfies the equation,

11 l -1l t 2 —
f (y) + (f( ) n (n+l)(r e ) [f (y)] =0 (2.2.12)
Cy+E ° .9
Thus f(y) = (=)0 - (n41)(r_-s ) where C and E are constants of
n o o
integration,

Under the transformation z = £ (y) as obtained, Equation 2.2,11

becomes

%% + (QXE;FE)H - (n+l)(ro—so) %% = GE

15

(2.2,13)
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which is a Burger's type equation;

%% + &(y) %}E =20 gfxg (2.2.14)

Some general results have been shown for an equation of this type.

In particular, Lighthill has shown that for g(y)

y, the equation can

2
%‘6 é_ﬂ and thus no

be reduced to the familiar diffusion equation %ﬁ
&F

t
shock will form in this case,

Lighthill implies that the g(y) term in this equation acts to cause
a shock wave to form, whereas the ézg is a dissipative term and tends to
smooth the f£low so as to eliminateaa shock, There may or may not be a
function g(y) such that a shock will form, and since we are unable to
integrate Equation 2,2,15, we cannot say whether a shock wave will form
in our case or not. Therefore, although we do not feel the characteris-
tic we are following will develop into a shock wave, we have been unable
to prove it.

C. Propagation of & Wezk Discontinuity into a Shock

In the last section, we derived the equation for a wave of finite
amplitude, limihing our attention to the wave-front travelling with the
effective speed of sound, The difficulties of integration did not lead to
any final conclusion, although they do indicate the wave-front is
diffused, In the present section, we study the general three-dimensional
problem of magnetogasdynamics with finite electrical conductivity and
arbitrary magnetic field, Using the compatability conditions, and the
assumpticns stated below, we first prove that there exists a singular

surface with the velocity of propagation equal to the usual gasdynamical

sound velocity, This verifies our earlier inference, Proceeding by the
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use of the second order compatability conditions, we obtain the equations
of growth of a discontinuity. The velocity of propagation of the
wavefront is now independent of the normal to the surface. It is therefore
possible to integrate the equation of growth for an arbitrary initial
waveform,

The result brings out a number of interesting results. First, it
shows the possibility of the formastion of a shock; it also brings out the
dependence of the time of formation of the shock on the angle between the
normal to the surface and the magnetic field, and on the initial curvature
of the wave-front,

We are now going to consider the flow of an inviscid, non heat-
conducting fluid with finite electrical conductivity., If we use the

equation of state p = p (p,S), T = T(p,S), the equations for such a flow

becone,
%E + u, + pu =0 (2.3.1a)
AL B e Y N e
duy 1

olggtuyy g) == (epo; +0g8 ;) + 37 (B (B - B H)
(2.3.1Db)

T (BS +u, S.) -1 ( - 2 .) (2.3.1e)

P AT i1’ "o Hk,m Hk,m Hk,m m,k M

aHi = - H, - H. . + bn H (2,3,14)

T T e e T R T e - al e

Assuming the velocity, density, entropy, and megnetic field are
continuous across the shock, but that the first derivatives of the velocity

and density are discontinuous, we obtain

[, = [p] = [81 = {§;] =0



oy jlo =2 s 1=0
(p ;1 =& [, ;1=0
Y oS, _
szl =-» € (571 =0 (2.3.2)
3 3,
(51 = - ¢ [zl =0
R (5,451 mym5 = B
[p ;5] mymy = £ [y glogm = 73

where G is the velocity of the wave-front normal to itself, and the
square brackets denote jumps across the surface,

It is also assumed that quantitiés in front of the shock wave are
constant in space and time and that the velocity is zero in front of the

wave, The compatibility conditionsl with the relations 2,5.2 become,

Bzui _ SXi B
[Ej&] = (G Ay +5g) By -G TN X5 g

- 5 ap
(og, ] = Ry By BT My (B g+ ) 55)

of ot 2303
_xi & & bOlU XJ:B Xk:'f

Bzui o 6Ki
[ atz] =GN - 26 %

- ap
[9,13] Enn, +e ¢t (nixa,fa njxi)ﬂ)

op ot

;Appendix.
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éf& = 2 ok
[Bta] Gt - 2G =
- 2s -
[S;lJ] = B nan [SXiSt] =-G 5n1
[at2] =P [Hi,jk] =7 My
PH, ) PH, .-
Ewl ey FE e

Now applying these compatability relations to the equations 2.3.1,

we obtain,

~EG+pAmD =0 - (2.3.ka)
-0 Gki + DPp §ni =0 (2.3.4p)
g =~
My = Hiheey + o7y e, =0 (2.3.kc)
or
-G+ p A =0 (2.3.5a)
~pG\; = - Pp En; (2.3.5b)
by -
ani - Hi xn -5 1 (2.3.5¢)
Multiply Equation 2,5.5b by ni and sum over the repeated indices
to obtain, -p & xn = - ppt and then substitute this into Equation 2.,3.5a

to obtain -8G + E%i = 0,

Therefore, §G2 = ppk = a?g where 82 = Pp and thus G = + a,

Thus the velocity of the wavefront is constant; so the moving
wavefront forms a system of parallel surfaces. The successive positions
of the surface can be obtained by erecting equal normals to the initial
surface, The geometry of the wave-front does not change with time.

With this last result, Equations 2,3.5 become,

—a§ + P )\.n =0 (205-68')
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oN; = 8f 1y (2.3.6b)
g -
Bidn = Bhy = 5 7 (2.5.6¢)

Now differentiate Equations 2,3.,1 with respect to xJ. to obtain,

Fo
+ . . . . . . . . N
ngf p,lJ up * p,l ul,J + p,,j u1,1 + pul,lJ 0 (2.5.7a)
Fu, ou.

1 1
P (5xj5t Tl g U P Y gs) he s (SE )

= - o+ S . p.+p.8.)+ s . g
[Poe ,5 °,1 * Pes ( ,3 %P5 8,) ¥ B 8 4

,i
1
N T L o T A TR ST
2
I{k...i I{k.’j] (2-5071))

08
p,jT(E+ui8’i)+p(‘l‘p p,J+T S 3 (5——+u S.)

Fs
+ pT (BEESE -+ ui,j S,i + ui S,ij)

1
r [Hk,mj Hk,m + Hk,m Hk,mj - Hk,mj Hm,k - Hk,m Hm,kj]
(2.3.7c)

Applying the compatability conditions 2,5.5 to these equations

they become,

Fe iy meo® =
(-Gg + 8‘b)nj g ,Q J,[B + Enam + P [}\.:.Lninj
ap _ oB cr'r -
tET M g\ (n; %58 F %5 % ) A8 Pos *i,6 ¥5,71 = 9
(2.3.8a)
0 [(—G%.i + _S'E) ny - Gg A 1, %3, ﬁ +p I nj%.ink] - gnj)s.iG

- - aB ‘
= - n.n, = n.n, -+ n.x. + n.x.
Ppp : 1] pp £ 1J & §,a ( 13,8 d 1:5)

g ot . = 1 - _1 =
-tet g by Xy o ¥ 1 - By Bugny T e 7y nats 1 el TR
(2.,3.80)
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- oTG B ny =0 (2.3.8¢)

Since p, T, and G are not zero, then B = [S

Multiplying Equations 2.3.8a and 2.3.8b by n., summing over the

repeated indices, and using this last result, we obtain

e i+ S8

oB -
= + 2¢ x + p X +pg Ki,a xi,B = 0 (2.3.9a)
.o )
o) (—G xi + —gE) + p xnxi -t Gxi = - ppp s2 ni - pp E ni
ap
NS LS LA (2.5.9v)

Equation 2.3.4b implies that Moo= M. Using this condition,

Equeations 2.3.6 become,

A= &t (2,3.10a)
p

Lt . -

5 7y = (- Hiong)

and Equations 2.3.9 hecome;
GE+ 24 28n + ok n+ 0 g™ (an,) =0 (2.3.11a)
ot 1 e 1,5 *oe
_ 5(xn .
- -0 = -
p ( Ghy + —=% ) + p A2 n, - & G\n, Poo £ n,
. < _ (075} 1 - 1 =
P Eny - P 8 b X gt Y I e e Wy (2.5.11p)

Multiplying Equation 2.3.11b by n. and summing over the repeated

indices, we obtain

%% =G E, - ?_§ N - p}:n + 2p}\,_ﬂ, (2-5.123)
- 8}‘. Sni 2 2 -
oGin+pon (F+r—p) +o% -t =-p % -p k
1 - 1 -
"I "n T Ix Hk 7 (2.3.12b)

or
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5&_ - -
= Gt - 2EN + 200 -p Ay (2.3.13a)
BN _ ~ 2 _ - . 2 _ .2 R
P 5% PGA, + PN éGx—pppé pp§+I;~HHn7n-rﬁP§(7k,

where £2 is the mean curvature of the surface.

Differentiating Equation 2.3,10a, we obtain %% = g g% . Using this,

and the facts that G = a and p_ = a2, Equations 2.5.13 becone,

o
85 - e - 20+ 200N 0 (2.3.1ka)
58 _ =L T2 F N 2l
8t - PN Poo £ -~ a" ¢ e (H Hi) (2.3.1kb)

Multiplying Equation 2.3.1lka by a and adding the two equations, we

obtain finally,

0 jel
dg 2 (28 pe _____U 2 =
agpt & (-+—5g) ¢t (327&3 B -an) =0, (2.3.15)

where Hd = H sin 6, 6 denoting the angle between the magnetic field and
the normael to the wave-front.

This is the differential equation for the variation of t along the
normel trajectories of the family of sonic wave surfaces, as these
gurfaces, as these surfaces are propagated into & uniform gas at rest.

Let n be the distance along the normel trajectory to the initial

wavefront, Then since G = a is the velocity of the wavefront, we have

a _atan _oar_, a
T A T (2.3.16)
Now let
p

a=2. L0 | (2.3.17a)

] 28.2

o3

B = (2.3.17b)
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Therefore Equation 2,3,15 becomes,

a
aﬁ + A2+ (B-)¢E=0 (2.3.18)

We will now discuss the cases corresponding to different initial
waveforms.

1. Plane wave

For a plane wave, . = 0, Therefore Equation 2.3.18 becomes,

d
Egi + A2+ Bt =0 (2.3.19)

Integrating this equation, we have, 1if B # 0,

E = (2.3.20)
Bn ,1 A A
e ('-g—" + -ﬁ) - -E'
o
where go is the value of £ at the initial wavefront. A shock is said

to form in this case when the denominator of the expression for £ goes

to zero, or equivalently ¢ ., That is,

Bn
1,1 A A
(E;- + E) -5 = 0 ' (2.3.21)
Solving for n, we obtain,
1 B
mo=-pin () (2.3.22)

It can be seen by use of Weyl's condition, thet both A and B are
greater than zero, so we have two cases to consider.

go >0

This case corresponds to an expansion wave and no shock will form,

70

This is & compressive case and ny > 0 and is finite if O <ZK§— + 1 <1,
o}
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Letting go = - Eo we get the restriction on the strength of the magnetic

field allowable for a shock to form:

b
R (2.5.25)

which is seen to depend on the speed of sound and the density ahead of

the shock.

2. Spherical waves

In this case{) = - % » where the negative sign is used since the
normal is chosen in the direction of the propagation of the wave. We
also can replace n by R in this case, and Equation 2.3.18 becomes,

dat 2 1 -
A (BrRE=0 (2.3.24)

Integrating this, we have

-BR
= —S /R - (2.3.25)

BB, B
e /RogO + A = dR
R

o)

where Ro and go are the values of R and £ at the initial wave-front,
Here sgain we say a shock forms if the denominator of this quantity

goes to zero, that is,

R e»BR e_BRo
A — ®=- 5 (2.3.26)

R 0°0
O -
If go > 0, no shock will form, whereas if go < 0, there is a
positive value Rl for which this equation is satisfied. It is interest-

ing to note that since B = B(6), the wave front does not develop into a

shock simultareously at all points of the surface. To see this, let Rl



2k

be the root of this equation for 6 = 0 and R the root for any 6. Then

it can be written as

Rl l_e—Bu 1 -BR

u R ¢

implying Rl < R.

Thus, when the magnetic field is parallel to the normel to the
surface, the megnetic field has no effect, as is well known. While,
at points where the normal to the front is inclinded to the magnetic
field, the field retards the formation of the shock. This retardation
is maximum for 6 = g .

3, General mean curvebure

=no -kon
1-20n+x1p°
0 o

In the general case (4), N where n is the

distance along the normal to the wave surface as before, and ko and.flc
are the Gaussian: and mean curvatures of the initial surface.

The gdifferential Equation 2.,3.1€ can now be written in the form,

J (L (n)-B)an f(n-p) an
E ) =Ae (2.3.27)

But jp(fl—B)dn =-1n¢ (n) - Bn where ¢ (n) =4/ 1 - 20 n + kon?.

Integrating Equation 2,3.17 form O to n, we obtain,

n
-Bn
%”Bn‘“n)[%;”/ S o
o]

and thus,
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e-Bn
£ = (2.3.28)

o _Bn
¢(n)[J§'—+AV/‘&Ey dn]

Let

1 ne-Bn
J(n)=-§-;-+A Omdn

Equation 2,3,28 then becomes,
e-Bn

1Y €Y (2.3.29)

It is interesting to note, that as in the last two examples, the
magnetic field tends to retard the growth of the shock wave, when one is
formed, so that all points of the surface do not develop into a shock
simultaneously.

Now, following Thomas, we consider two cases:
Case 1. K >0,£1 <0 Here ¢ (n) >0 forn >0
a) go > 0 Under these assumptions, there is no value of n for which
J(n) is zero. Thus no shock wave will form.
D) g, <0 Here there is a positive value n, for which J(nl),= 0,
implying the existence of & strong shock.
Case 2. K <0, >0

For this case, there exists a value n, for which o (nl) = 0, with
¢ (n) >0 for 0 <n< n, .
a) &, >0 With this assumption, J(n) <0 for 0 <n<ny, and J(nl)
is finite, Therefore a shock wave exists since ¢ (nl) = 0.

b) &, <0 If J(nl)z 0, & shock forms as n—>n;., If J(nl) < 0, there



26

exists a value n2 < oy for which J(ne) = 0., Thus in this case & shock

develops as n-—» n2.

Thus a shock develops in all cases for this particular geometry of
the initial wave-front,

Following Thomas, similar results could be obtained for other
initial wave-fronts.

We finally note that go < O implies that the discontinuity is
compressive, Thus, a compressive wesk wave can develop into a shock

in a finite time or an infinite time, or may be completely damped out.

It depends on go, the strength of the initial discontinuity.
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ITI, BLAST WAVES IN MAGNETOGASDYNAMICS

WITH FINITE CONDUCTIVITY

In this section, we assume a medium with finite conductivity and
zero viscosity and heat conduction, Helliwell and Pack (21) obtain
shock relations for this case, However, they assume the velocity of
propagation of the shock is zero, We rederive the Jjump conditions for a
propagating shock wave, If in these relations, we further assume the
magnetic field is continuous across the shock wave, we obtain relations
andlogous to gasdynamics, with an extras condition for the jumps in the
derivatives of the magnetic field across the shock,

Courant and Friedrichs (5) have sbudied the decgay of a plane shock
wave, The methods used in treating the plane wave differ from the
techniques used by other authors for the spherical wave. Thomas (22)
discusses the problem again by the use of the compatability conditions,
The shock relations leave the velocity of propagetion infeberminate, One
needs an additional assumption to make it determinate, Thomas mekes an
energy hypothesis and integrates the equation for the velocity of pro-
pagation of the shock,

Following the last author, we obtain the differential equation for
the velocity of propagation of the wave-front in the fluid we are
considering., Since the resulting differential equation depends on the
angle between the magnetic field and the normsl to the surface, its
integration in the general case cannot be achieved, However, we integrate
the equation for the case of a cylindrical wave-front with a perpendicular

magnetic field,
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The flow of a fluid with the above assumptions is governed by the

following set of equations,

o

S+ Paty Ty ;=0 (5.1a)
du, 1 1

Pst % Yk TP T Tm i T T B, Bia (5.10)

% u . H - . (3.1c)
e M e S S R S.le

where the equation of state for the gas that has been used is p = k p7,
v being the gas constant,

If we assume the magnetic field is continuous across the shock wave,
shock conditions derived by Kanwall (24) for the equation of continuity

and the equation of motion hold and reduce to the ordinary gasdynamical

jump conditions, That is
pl (uln - G) = 92 (u2n - G) (5-28')

Dl (uln - G) [ui] = - [P] ni (5-2}3)

Also from the equation Hi'i = 0, we can obtain
2
= o2
(B]=0 (3.2¢)
Since Kanwall considers the infinite conductivity case, we cannot
use his jump conditions for the energy equation, and Helliwell and Pack
consider a stationary wave. Therefore, since we wish to consider a

- moving front, we must derive the energy jump condition,

The energy equation with finite conductivity is

d dh 57

where j =¥ x H, Multiplying the equation of motion by the vector u
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we obtain,
du

— l . 3
ugg=-2-vetipuc (JxH (3.4)
Adding this equation to 3.3 and using the equation of continuity

to give

d d
g%=pﬁ(§)—p v - u

we obtain,

dh a a 2
pd—t+%p—jﬁ-pa¢5(—§)+p v 'E+B'VP-";—

1.
t3zd s (wxH =0 (3.5)

Using the generalized Ohm's law and Maxwellls equations, we get

it @xp - =-5-BE=-E-(VxB =V ExH

-2+ (V xE)

But, we have

1 OH
VxE=-3m3% -

Therefore integrating Equation 3.5 over an arbitrary volume, and

using the above results, we obtain

fp%‘g[h+%u2'§] dv+f (py-u+u-vp+V- (ExH
v v

1 JH®

+ -8} _gt_) dv = 0O (5.6)

Using the relation d

_ af . ;
o p fdv —U/; P I dv and Gauss' theorem, this

can be reduced to

a. o [h+ %1 - Py av + d/~ (pu) = n as + u/ﬁ (E x H) * nS
at v P s B s~

1 .
+ -ﬁ &— dv = O (3-7)

v



30

Applying the equation

d
Ef fdv_fg-dv+/fu do+/ (£1-£,)G do
v

to this equation and letting V approach zero in such a way that in the
1imit it passes into a finite part ZO of the shock surface ¥, Then the
volume integral in the above is of higher order than the surface integrals
and can be neglected, We must also consider that

f u.n dg ~—» - fluln do

Sl zo

f u do -—>L//ﬂ £
n
S z
o)

2
where Sl and 82 are the parts of the surface S on sides 1 and 2 of the
shock respectively,

Under these conditions, Equation 3,7 becomes

f [0 Gy - @(n+ 302 - B) - o (w -G)(n ot 2P - B
%

+ Py Uy 7Py Wt (Ex H) - n|2 - (ExH) » gll J dg = 0 -
3,8

Since this integral is independent of the extent of the surface

Zb, we obtain the jump condition desired,

o (u, -+ 3w -]+ pul+[(ExH - nl=0 (3.9)

;Appendix.
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Helliwell and Pack derive another jump condition from Maxwell's

equation
, E
VX§=-'E1‘['_t .
It is,
[nx E] =0

Since we are assuming the magnetic £iéld to be continuous across the
shock, it is seen that this condition is the same as [(E x Hj*n] =0 in

Equation 3.9, Thus Equation 3.9 reduces to

py (W - G) [B+ 3w - 2]+ [pul=0 (3.11)

where we have also used Equation %.2a,

Now considering the velocity in fromt of the shock to be zero, and
7P

using the notation Ci = —Bl , we can reduce Equations 3,2a, 3.2b and 3,11
1
to ( - 2
2p, (6= - C7)
[p] = —= X (3.12a)
(y+1)G= + 2c§
2p. (GB - &)
1 1
p] = T (3.12D)
2 (6 - ¢3)
[w,] = L (5.12¢)
Y E T A6 i .
Using the following notation,
[ui] = 7\.1) (o] = €, [p] = B [Hl] =0
[ui,j] nj = )\i) [p,i]ni = g’ [p,i]n.l. = 5 J {Hl,J]nj = l
(3.13)

the compatability relations become,
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- a oB

[P,l] = Pn. + g B,a Xi,g
[ 1:j] - &i nJ

Uy Ohs
[l = - ™ G5

o, = DE
(sgl =-¢G+ =

9y - _pga. OB
(5¢] = - BG+5g

aH

[—F ] Q. G (3.14)

Applying these compatability relations toc Equaticns 3.1 with %Di = 0,
g/

gives,
= 13 ap = oB =
-EC gy (B gt x o)+ (e B)(ymy + e Xy )0
(3.158)
sxi op op
g (A8 +—5p) + (pp + 8y (hy oy + @70 o o)¥Bmy + 878 %5 g
1 - 1 -
=iz Hpy O o - 5 Hp oomy (3.15Db)
1
7%1 (- G + %%) TSN (Bn; + ga%)a X8t (p+p ) (Ayn; +
op =15 Sn -X&n. 5
g ki,a 1,5) =7 X nJ aknj g anJ Oh The (3.15¢)
These equations become
E(n, -G) +h, (pp +8) =4 (3.16e)
Ny ((pg + €D, - €G) + Bn; = £, (3.16b)
B(n -G+ (y-1)(p+p A, =B (3.16¢)

where

__% _ oB . ap
A=-=2 é,a)\,ﬁ (py +£) & Mo %i,p (3.178)
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8)\.1

R B
£, = g5t " (Pt E)ET Ny N - 8

!
* 17 B0 E_ Hy 00y

B=-2. gOBB N - (7-1)(p + p )™ 1,

Bt

+ 24— & Q@ - Z—— o2

g

(3.17b)

(3.17c)

Now consider Equation 3,10, In subscript notation this becomes

1 (

n H, .
g 35,1 J i

where Ohm?!s law has been used to eliminate E,

Using Equation 3.2¢ this gives,

- g g

% T Ix H,i >"n T I Hln M

From Equation 3.12c we obtain

2(¢® - cﬁ)
M = o106
Ao =0
B
Therefore we find theat;
oy (r+1)6®
py tE =
(y-1)G®+ ECi
p p
=L (op2 - L
Pl+6—7+l (2G (%_-l_pl)
(1-7) G® - eci
A =G
n (y+1)G
ph, + 8N, -G) =0
= . Of op

1 1
- n'Hi,j) "I Dy u, Hj + T njujHi] =

(3.18)

(3.19)

(3.20a)

(3.20b)

(3.212)

(3.21Db)

(3.21c)

(3.214)

(3.21e)
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O\

n 1 =
e D TR T (3.21f)
5 | -1 -
B = -2+ (y-1)(g + py)a™ Bop M * %—l P (5.21g)
where we have used,
}\i:a xi:B Ty baﬁ
O\, N
&t % T E G.22)
With these results, we obtain
A S (5.238)
n = (7-1)(6 * 2;) 238
B =1 (3.25D)
A (pl + 5) [B = (>‘-n - G) fn]

EeN e T TR, - @0 + B (5.23¢)

n

Differentiating Equations 3,12 and substituting into the quantities

for A, fn’ and B, we get,

L (y+1) e ho,NG (@@ - @)

o)

A= - 1 %é— + L (3.24a)

(eci + (y-1) G&)* (y-1) G® + 20_3_

~koy (6 - CF) Cf 4 oUW - H (@ - c))
f = (1+-=) 5% - (3.2Lb)
T (+1) ((7-1)6P+ 265) 6P 852 (y+1)G

bo,6 4o Mo (1)@ -CD) 0 py
B=-—7 %% (2G= - c] + =) (3.2ke)

Tt (y+1)2a Py

, (-1 (8] - B2 )(c®-03)?

1
b® (y41)% 67

Therefore ;‘n’ B, and E become respectively o -
ae  Hop L (r-1)(E - c)

o :
- 1
n 2 _ a2 1 dt (7+1)G
(7"'1) (2G Cl + -5']-)
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Lo (7-1)o (8] - B )(¢® - &3) , (1-7)6* -2c%)

&
f1 b (741) G2 G
koy (& - €3) (1 + Ei) a . o(Hy - By ) (& - ¢f) (3.25)
(#1)[(r-1)68 + 221 @& T 82 (pe1)c "
b (G2 - C3) c2 o(H - B2 )(c® - C3)
-— = 1+ DT .- I L (5.250)
(7+1)[(7-1)6% + 207] ¢® 8% (7+1)G
e _ (ol (741) py ©F G ag Mo G(6% - )
= - - - +
(1-y)e® - 2cF (2c] + (7-1)6%)2 W (y1)6® + 2c%

py (r1)% @ i
+ My (3.25¢)
((7-1)6 + 2¢3)%

Thus it can be seen that the jumps in the derivatives of the velocity,
density and pressure across the shock wave are known in terms of the
guantities in front of the shock, G and derivatives of G. We need an
additional assumption before we can completely specify Xn’ t, and B.

Following Thomas, we state an energy hypothesis from which we are
able to obtain G. Iet AQ be the energy in a differential shell element
of the shock surface, Then the energy hypotehsis says that the energy
AQ is a) proportional to the total energy Q reieased by the explosion,

b) proportional to the volume AV of the differential shell element, and
¢) inversely proportional to the volume V(t) enclosed by the shock wave,

This then becomes,

O QAV where the proportionality constant ¢ will depend on the

M = (%)

gas considered.



36

Now the energy in the shell will consist of the energy AQ and the
energy contributed by the undisturbed gas. This latter energy is ElpEAV.

Also in the case of Joule heating, an additional term must be added which

is,
=
5 P
Therefore the total energy in the shell is equal to
ORAV bl %
7 T B AV - oy AV (3.26)
The energy in the shell can also be expressed by
E2p2 AV (3.27)
Equate these, and simplify to obtain,
2
[E] - 0 V + o (5028)
2
where
[E] = E2 - El
The Equation 3.1l implies that,
P
(x] - 228 (3.29)
Py
Equating Equations 3.28 and 3.29, we obtain
plG péV a
Since
.2
S oL@, .owm, . -m, . H,
o o ( 2k, 2K, 2k, J EJ:k)
=2 (& - &)

£_ole | (3.51)
g
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where we have used the faects that Hli f
2

From Equations 3,19 and 3.20a, we find that this can be written

=0 and @ = O,
n

further as,
ﬁ _ g (Hi = Haln) (G2 - Ci)a (5 32)
T 4 (1) B )

Substituting this into Equation %.50, we see that,

J(Hi - Hzlh) (6% - cﬁ)2

Polon = oQ
(3.33)
PG eV b (y+1)2 G2
Solving Equations 3.12 for Uy 0 Pos and Pps WE cbtain
2(G® - ¢®)

= (3.34a)
Yon T ¥ 1)G .

1 @ 22
Pp = 7 (= - 5y Ci) (3.34D)

(7+1) p,G%
A (3.3k4)

o -
2 2% + (7-1)¢?
Substituting these expréssions into Equation 3.35 and rearranging,

we obtain the following quadratic in G% - ci;

y o o(E - H)
@ - B)2 -
( i [ 7 2 (541 ]

. (@ - C?)(Ej?‘ ) oglsy-l) ) O‘ng:l)ci -0 (5.55)
et 162 - o2

A= _thz_q

Then Equation 3.35 becomes,

(@ - B (5hp) + (& - D& - - ﬁ(%)ﬁ .30
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Solving this equation for GZ - Ci, Wwe obtain,
@ .2 =R - 1) (1)
1 2pl VA YA
1, 1\2nt - 2 1
‘1 4 (3+1) oy ) 1&(7+l)0§ oQ(y=-1) . 0PQ2(,P-1)2 . o (7+1) C? 2
%2 22 7inA pi y2 a2 prA

(3.37)
To determine the constant of proportionality ¢, write Equation

3.28 in the form

.2
. EEQEV ] Elp2V i p2V J 3.38)
q q qo -3
Now consider this equaticn as V— 0, that is,
.2
BV BV g eV
a = lim ) - lim o " yeo0 —ao (3.39)
V-0 ¥ 0 o

It is seen from Equation 3.37 that G« as V-» 0., Using this in

Equation 3.34c, we see that,
(7+l)ey

T (3.10)

lim p2 =

G»x

Therefore P is bounded and the last two limits in Equation 3.39

vanish. Thus, we have

E.p, V
o= 1lim 2Q2
V-0
B p,V o]
= lim (_27621—) Lim (=2)
V=0 V-0 F1
EV p
=Lﬁ lim (———2Q 1) (3.42)
772 y0

If it is assumed that the energy released in the explosion is
distributed uwniformly throughout the volume at the first instant,

this implies that,
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E2 Vpl
Q

lim
V=0
Using this value of &, Equation 5.37 becomes,

B Q(’)’+l)2 (7+l) C?_

2 2
(% - cq) “2p, VA ”
1
. [ (P 0] b (R B ke M0OH)° & ] 2
1 - +
s 7o, VA2 2z (7oA

(3.h42)
From this equation, it can be seen that the velocity of propesgetion
of the wave~front approaches the speed of sound in the undisturbed
region as V—»wo, that is G~>cl.

Equation 3,42 can now be used to determine the jump in the pressure

across the shock wave as V—>w, Using Equation 3.12b to eliminate G° - ci,
in Equation 3,42 we obtain,

[p] = Qy+l) 201 O]

b VA 7A

72A? Y Pq VA ey V2A2 7mLiPy (3.15)

It can be seen from this reletion that as V—»«, [p]-+»0, which
implies that the shock decays as it travels,

We will now consider a cylindrical blast wave, Since the radius R
of the cylinder is in the direction of the normal to the wave-front, ;
we have G = dR/dt. Constdering a unit length of the cylindrical wave,
we see that V = sR®., Therefore the differential equation for the

determination of R as a function of the time t is,
. dR 2 Q(y+1)2 (7+1)07
T 1¥ T TR
2pl "REA
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. [ W(y-1)% o CM® A g M) ci] i
A% 7Py 12 Az p‘:’-L CRYn2 (7—l)plnR2A
(3.14)
Thus, with the addition of an energy hypothesis, we are able to
determine G and mske the problem determinate, The Jjumps in the deriva-
tives of the velocity, density and pressure across the shock wave are

completely known,
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VI, JUMPS IN THE VORTICITY AND CURRENT ACROSS A

MAGNETO-GASDYNAMIC SHOCK

In 1952, Truesdell (24) studied the jump in the vorticity across a
stationary shock wave for a two-dimensional wave in gasdynamics., He
showed that the relation is of a purely kinewmatic nature, in that he
only used the equation of motion to obtain his result.

In 1957, Lighthill (25) considered the same problem in a three-
dimensional flow; but he used the eguation of energy to obtain his final
relations,

In the same year, Hayes (26) obtained a result similar to Lighthill,
without the use of the equation of energy. He considered the case of a
moving shock wave,

Later, Kanwal (27) discusses the two-dimensional shock wave for
magnetogasdynamics., He considers a stationary wave-front, and obtains
both the jumps in vorticity and current across the shock wave,

A1l of these authors employ differént techniques, In the following
section, we show that the results can be deduced in a simple, elegant,
and straightforward ménner by use of the compatibllity conditions,

In addition, for the sake of completeness, we discuss the complete
three~-dimensional case for a moving shock wave with finite and infinite
electrical conductivity.

A, PFinite Electrical Conductivity

In this section, we will find expressions for the jump in vorticity

and the jump in current across a shock wave, We assume the magnetic |

field is continuous across the shock wave, but that the velocity, density,
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and pressure have finite discontinuities across the front.

The equation of motion for a finite conducting fluid is,

du
i 1 1
Pt Yy TPt s T E =0 (L)

The notation that will be used for the jumps in the quantities across

the shock wave is given in Equation 5.13.

Considering the f£luid in front of the shock to be unifcrm, we apply

the compatibility conditions from Eguation 3,14 to the Equation 4,1.1 to

obtain,
O\

(y % E)(n; €+ =) +(8 hy + oy + uyt + oy ) (my + 6%y o o)

- op 1 - ! -
- I i s M e e ) (4.1.2)

Now if we let

B = Mg Uy

and rearrange, this can be written as,
i ) oA o op

(o) + 8)(A -G)A; = - By - (pg + B)gg = (o + EMAg &8 Ny o
(k.1.3)

- &% Bo*i,s it;z'f Hip O - %IE Hyy Oy
Using the compatibility conditions for the jump in vorticity,
we obtain
(@] = e; 4 [uk’J]
= g (g 1y ¥ gw”x,a %3,6)

The jump conditions as given in Equations 5.2a and 3.2b imply that,

(ko1.k)
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Therefore Equation 4.1.4 becomes,

B x

w.] = € . MO+ €. :
[ 1] 13k ang Tk 8 J:ﬁx: ok

_ 0B 78
Nk B Xy g 8T Doy Xy g (4.1.5)
where we have used,
R 4=
nk;a T E bO«")’ xk;ﬁ

But,

B0y =0
Mik &8 Pay *5p Mk,8

Therefore, this is further reduced to,

- = ap
[wi] = €5k xknj + ik & X5 g x,a n (4.1.6)
Now multiply this equation by (pl + §)(An - @) and substitute for

Xk from Equation 4,1,3 to obtain,

(o + B)(A, - @)y ] = (py + E)(a, - G)ei‘jkg(xB X o Mg P

o
Moy #5186 oM

)
go@ gyb

+k(pl +§)eijk By AB

ar “k,8

- ap
€ Pa kB
1 -
Thr M G Py % (h.1.7)
where we have used the relations,

- . /B
nk’o‘ & ba')' xk)ﬁ
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From Equation 3.2b, we can write

Py (u1n -G)A=-8 (4,1.8)
Now differentiate this with respect to tangential coordinate ua

to obtain,

B o =My G,a L (uln - G) Na T PLM R o

2
= APy G,a + g kulﬁgoﬁboy -~ Py (u:Ln - G) M (4.1.9)
From Equation 3.2a, we obtain

poh = - (uy, - G)E

and since
Pt £ = P
we obtain
(py + 8)(A, - G) =py, (A +u ~G)
=py (w, -0 (L4.1,10)
Using Equations 4,1.9 and 4.1,10 in Equation L4,1,7 we obtain,
- - B
oy (wy, - @] =AE ¢y 0y 87 G X g
- op V4
Moy s Gk By 8 *k,p 8 ghy
op 75
+ A (pl + g)AB €k By & 8 b07 X5
+ =2 N (k.1.11)

H €... n. H
1652 In ijk jJ k™
where we have uséd Equation 3.19 for ak.

Therefore we can write,

- 8 OB
(] =e50 ~Tig 238

G;a xk:ﬁ
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5 O B _ spQ B
T T M % Fr,p Pq T O By N g Py

B
B plil+6§ M 0y H]_k) (h.1.12)

where

(w, - G)®

A= 1+5

has been used, and

1s the shock strength.

Using the compatibility conditions for the jump in current, we obbtain

1
930 = 57 e [y 5]

1 -
=T Cagx % Ty (k.1.13)
Now using Equation 3,19 and the fact that Xk = Knk’ this becomes

g
7] = —— e . H. . (b.1,1k)
1 16:2 ijk "1k "nJ
Substituting for A in terms of the shock strength, &, we finally

obtain

o( - Q)3
(7,1 = - 1-6%9(—1;;)_ & i T 2 (4,1,15)
Therefore we have been able to find the jumps in vorticity and
current across the shock wave in terms of the shock strength & and the
quantities shead of the shock., We also see from the above, that the
Jumps in vorticity and current can be cbtained in the case of finite

electrical conductivity by use of only the equation of motion and the

shock relations, Thus the result is purely & kinematical one,
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B, Infinite Electrical Conductivity
For completeness in demonstrating the use of the compatibility
relations for determining the jumps in the vorticity and velocity across
a shock wave, we now consider the case of infinite electrical conductivity.

The equation of motion and the magnetic field equation for this case

are
duy 1 1
P at + P,i + pre Hk Hk,i - Ix Hi,,j HJ =0 (4.2.1&)
aHi
ST W,y Byt Hi,j uy o+ Hy U = O (4.2.Dp)

We assume there are jumps in the density, pressure, veloclty, and

magnetic field across the shock wave., The notation to be used is then

[u;1 =2 [0 51ny = Ay

[p] = ¢ (p ;1n; = £

[p1 =18 [p ;In; = B

[Hi] = [Hi,j]nj = 6& (4.2.2)

With this notation, the compatibility conditions become,

[y 4= Rymy v 6™ hy % o
[o’i] =En + g® £ o %8
[p,i] = pn, + gaﬁa o Fi,p
[Hl, ] =amn,+ P % 0 *3,p
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Ot
[g%] =-EG+ EE
(L] = - 5+
o, oy
1=~ ¢+ = (h2.3)

Applying these compatibility conditions to Equations 4.2,la and

L,2.1b, we obtain

+m«&e+ >+(pgmu.+xxxn+gwx )

(pl lJQ JsB

+ B ga%,a *5,8 7 ifE (B + o) (Gn; + gaﬁo‘k,a % 80

- I (H .+a)(an, + &P ) =0 (k.2.k4a)

. X,
>d J 1 i, " 3,B

m s
aG+—-(H.+aj)(xinj+gaﬁ>\ x. )

ot 1,0 " J,B
- B
+ (g mg)lagng + e oy g%y o)
+ (H’i + ozi)(xknk + gaﬁxk’a xk,B> =0 (k.2kb)

We can now write these as,

(pl+E)(“:Ln*)‘n‘G)}‘i“L%TR(HJ_k*Ok)&kni

L

- %; (Hln + an) &i + éni =g, (4.2.5a)

(wp, + 2, -G) G + (H,i + o )R, - (B, + o)k =f  (h2.5b)

where we have used the notation that,

Gki op
gi = - (pl + g)—éE - (Dl + E‘)(ul + )\B)g Ki,a
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ap 1 aB
-8B o %y T By (B Y dET o o % g

1
+ (Hl[3 + OLB) gasozi,a (k.2.6a)
£ L o® ® o

i="ﬁ+(Hle,+af3)g i,0 ~ (ula+ 5)5 1,0

- (i + ay)e™ Me, ok, (4.2.60)

Resolving these into the normal and tangential components, we obtain

(uln +A, - G) =f (k.2.7a)

n n

+ a)n - (H

(HlB 2 +a )k =f  (k.2.70)

(uln+)\.n—G)&B+

(o + 8wy, + 2 -GN, + = (5, + 07)67 +B=g, (h2.Tc)

+ 1) (uyy + Ay - G)R - =, ra)a (4.2.7d)

(pl 1n n Bzgﬁ

First eliminating &B from Equations 4,2.7b and 4,2,7d, and then

eliminating XB we obtain,

. ] 2 1 T , , \2y & 1
("‘:Ln Y / -)-I-—TE (uln + o'n) ) /\-g + Hkﬂln n) (HleB) )\

= (u, + Ay - Glgg + %E (i, + ) £, (4.2.88)

M,

(o + 8)(upy + 2y = OOF Tz (B + 0208 +(py+) (v 0 6) (Hy iy,

= (Hln

to) gy + oy + E)uy + Ay - @)T (4.2.8b)
These can now be written in the form

Lk + M R, =n (4.2.92)

L o +N A _=c¢e (4.2.9D)
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where we have used the notation,

L= (py + E)(u +nr -G - %E (B, + @)% (4.2,10a)
MB = (Hln + ocn) (HlB + aﬁ) (4.2,10D)
NB = (pl + g)(uln + A - G)(HJLB + aﬁ) (k.,2,10c)
By = (uy, +h, - Glgy + %ﬁ (y, + )%, (4.2.104)
eg = (Hln + ozn)g6 + (pl + §)(u1n + A - G)fa (4.2.10e)

We now substitute for db from Equation 4,2,9b into Equation 4,2.Tc

to obtain,
N y e _
o (o + 8)(w, A, - G) - H%i (] + o)) = g, - E%L_ (87 + o7)-g
(k,2,11)
Now let
N
p = (p, + E)(uy, + 2 -G) -l (H] + ) (4.2.122)
e
- - Y4
Q=g - (8 +d7) | (4.2,12b)
and this equation becomes,
o) }:n =Q - é (4.2.15)

Therefore we have found Xn’ Moy Oy &B in terms of known quantities

B’ m

end the unknown quantity B, That is,

in = Q—pi—é (u.e.ll»a}
XB = If&% B+ ;ﬁ - D—/I%% (4.2,1kb)
Q = (i; S (é.z.lhc)
&B = g% B + ;é - %g (k,2,144)
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Now using the compatibility conditions in the relations for the

Jumps in the vorticity and current, we obtain
[e]1 = € 3k [uk’j]

€551 (Mgl + g " Mo, o5,

i

ceon (Ron 4Rk ) e, &P
igk %5 W i,0f T Cigk 8 Mk,dy,p

i

=~B oB
S T N XS T (h.2.152)
1
T30 = 3% €ipe (B, 5]
_ 1 s ap
=T g (G 5T e %,a %5 o)

= %E € 5k iat ny % gt %E € 5k g % o 5.8 (4.2,15b)

Thus it is seen that the jumps in the vorticity and current depend
only on the quantities XB and &6 respectively, and do not depend on the
normal components Xn and dn.

Since XB and &n depend on the unknown gquantity f, we must use another
basic equation besides the equation of motion and the magnetic field
equation to meke the problem determinate, This means it is no longer of
a purely kinematic nature.

Therefore we use the equation of energy as our other equation, that
is,

o % = %% (4h.2.16)
where h is enthalpy.

Using the equation of state,

7-l)p
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Equation 4.2.16 becomes,

dp -
at T7PY ;=0 (%.2.17)

where we have used the equation of motion to simplify the equation.

Applying the compatibility equations to this equation we obtain,

-GB + %% + (uli + xi)(é n. + gaﬁg )

X.
1 O T 1L,B

+7(py + )X my + go‘Bxi’a % g) =0 (k.2.18)

Letting, )
5 B B
d = - —E- - K -
st - (Mgt rg) e B - (e BET A X s () po1)
this can be written as,

(w,+r, -GB+7(p +B)A =4 (4.2.20)

With this last equation, the quantities iﬁ and Q. can now be written

B

in terms of known quantities, Thsat is,

.M 7(pp +B)Q byt MQ
Ry = E% (% - ____lRP ) + 2 - _E.Lp (k.2.21a)
X y(p, +B8)Q e N.Q
, - i% (% - ___%P___) + EE - _%5 (k.2.21b)
where
7(py + B)
R=w +x -C-—5— (k.2.22)

Thus the above results lead to the calculation of the jumps in the
vorticity and the current across a shock wave, We see that in this case,
the energy equation is needed.

The quentities like Ki obtained from the shock relations can be
substituted and simplified further, but since the derivatives of Xi are

involved in the final expressions, the simplifications do not lead very

far,
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V. CONCLUSION

In this work, we have studied megnetogasdynamical problems in the
presence of finite conductivity. Althbugh resistivity is a dissipative
parameter, its nature is distinet from that of other similar parameters,
It is interesting to meke a comprehensive study of the relative importance
of such parameters, The distinciive feature of conductivity in magneto-
gasdynamics is that it does admit of certain singular surfaces, The
singular surfaces which we have defined are the ones which admit of
discontinuities in certain variables, We have not only asserted the
existence of such surfaces, but have also studied how the discontinuities
gTowW,

In a real gas, all the dissipative parameters are called into play.
But as we have shown, these act more predominately at different wavefronts,
The question remsins open as to which discontinuity is generated for an
assigned set of initial conditions, There is the fast wave, the slow
wave, the Alfven wave and the sound wave, Tﬁese waves are all possible
in a given medium, It is possible, although we do not feel it has been
proven, that there do exist certain initial conditions due to which only
one type of wave is generated,

As is well known, a shock wave is a mathematical discontinuity which
is introduced for convenience, Such an ideal discontinuity surface
cannot exist in a real gas, The non-linearity of the equations has the
effect of continually changing the waveform, to cause it to become
steeper and steeper, On the contrary, thc dissipative mechenisms

continually assert themselves to smooth out the profile, There exists a
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competition between these two mechanisms, With the increase in the
gradients of the quantities, the effect of the dissipative mechanisms
increases, Thus it is possible that there exists a limit beyond which
the gradients cannot increase and therefore do not allow a shock to form,
Even so, it is well known that the region in which these dissipative
mechanisms ultimately dominate, is of very small thickness; so in
actuality, we always have a shock layer instead of a shock surface. It
is also well known, that in these regions the picture of a gas as a
continuum ceases to remain valid (10). Since the thickness of the layer
is small, the usual procedure is to substitute a shock for the layer and
modify it by the use of the asymptotic theory., The latter studies are
known as the studies in the structure of shock waves.

For all real gases, we thus £ind that the combination of the studies
of discontinuity surfaces with an asymptotic study of thin layers provides
a fairly good picture of the flow, There do remain other interesting ques-
tions, It would be more realistic to take the conductivity as variable,
instead of constant as we have done., The theory of singular surfaces can
then also be applied, Such studies are being made for stationary shocks
(28, 29, 30). Since the temperature changes across a shock wave may be
large, a variasble conductivity would describe tﬁe actual situation more
correctly. In fact, in these papers, the studies are made under the
assumptions of zero conductivity ahead of the shock and infinite conducti-
vity behind the shock., These are called ionization fronts by the authors.

The theory of sirngular surfaces enables us to study these problems for
moving wave profiles, This study would be more general than the studies

done thus fa=z,
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VI. APPENDIX

Throughout the work, we assume a number of results taken from
differential geometry, the geometry of a moving surface, and the compati-
bility conditions which were obtained from the stated references. Thus
we note below some of the results needed in the work,

A. Results from Differential Geometry for a Moving Surface

Consider a moving surface;Z:(t) represented by,

x; = cbi (ul,ug, t) i=1,2,3 (a.1)

where the u; and u? are curvilinear coordinates of the surface and the X5
are the orthogonal cartesian coordinates referred to a fixed coordinate
system, We assume throughout thet the ¢ipmssassthe necessary differenti-
ability and continuity properties required. We shall use the summation
convention from tensor analysis, where we must distinguish between
covariant and contravariaent indices when the indices represent the
curvilinear coordinates uQ, while for X, we do not make this distinction,
Latin indices range over 1, 2, 3 and Greek indices will range over 1, 2.
From any book on differential geometry (31), we can write the

coefficients of the first fundamental form for the surface as

= 0. - (A.2)
goﬁ ¢1,d ¢1)B
where the comme denotes partial differentistion,
Since,
= A-
¥, © 1, 2 (A.3)

are vectors lying in the tangent plane, we define ng to be & unit vector

normal to the surface, and thus we have the relations,
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n, n, =1 (A ba)

X, n, =0 (A.UD)

It can be seen that any vector can then be decomposed into its
normal and tangential components, that 1s,

— o
A, =A n +A % Q (A.5)

where Ai is any arbitrary vector,

Also from the theory of surfaces, we have the relations,

X. =Db _n,. A, 6a
i,08 g L ( )
- By
n, = - b, x, A.6b
1,& g Ba 1,7 ( )
where the X5 op are the components of the second covariant derivative of
2>

the quantities Xi and the bQB are the components of the second fundamental
form of the surface,

In addition, we have,

2N =g%®b (A.7)

B
where L1l is the mean curvature of the surface and is given in terms of
the curvature as,

no= % (kg o+ k) (2.8)

where k, and k, are curvatures.in the u- and v° directions respectively,

Lane (32) shows that for parallel surfaces,

L ~-kn
R S (A.9)
1-2N1 n+k i
o} o -

where _fLO is the mean curveture of the first surface, k  is the Gaussian

curvature of the first surface, where in general,
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and n is the distance along the normal to the first surface,
We have also made use of the fact that,

on,
—L oL OB
st - "8 Ca*ip (&.12)

which Thomas (11) has proved,
B, Compatibility Relations

A singular surface (t) is one across which.there are jumps in a
function Z or its derivatives, We consider the jumps or the discontin-
ulties in a function Z and its derivatives across a moving surface., The
function Z could be pressure, density, entropy, or the components of
velocity and magnetic field,

We define the discontinuity in Z as

[2] = 2, - 2 (A.12)
where the subscripts 1 and 2 refer to the sides 1 and 2 of the surface,
We assume the normsl is pointing from side 2 to side 1, and that the
side 1 is ashead of the moving surface, A similar notation is used for

the derivatives of Z,

We use the notation,

[z] =4 , [Z,i]ni =B , [z’ij] mng = C (A.13)

Then Thomas (11) has obtained several compatibility conditions, The

geometrical conditions of compatibility of the first order are,

- op
(2,1 =Bn; + & A % g (A.1ka)

The kinematical condition of compatibility of the first order is,

[g-f-] = - BG + %’% | (A.14p)
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The geometrical conditions of compatibility of the second order are,

Z . . ]=Cnn. +g®@ _+¢7b A . .
[ :lJ] 14 g fled & bow )T)<n1 XJ:B * nJ Xi:ﬁ)

e® e’ (4 -B )

,Q0 ao’ *i,8 ¥i,7 (A.1lke)

And finally we have the kinematical conditions of compatibility of the

second order, which are

P7 ap oy oB ,1
[m] ( -CG + 6t A,Oﬁ xk;B —-é%)ni + g A,Ct Xi:ﬁ (A.lll-d)
P > . BB oB o0y aat
[a—t;] =0~ -Gz +Ce A,oz 1,6 5t + ¢ (A,1ke)
where
- 1%

These are the compatibility conditions which we have used throughout
the work where the A, B, and C are replaced by the appropriate quantities
depending on which property of the fluid we are considering.

Another relation we have used frequently is,

[Pl = [PI[Q] + Py [Q] + @, [P] (A.15)

which follows immediately from the definition of a jump across the surface,
C. TFundamental Conservation Equations and Shock
Conditions for Gases
Equations in continuum mechanics can alwsys be written as conserva-
tion laws, When written in this form, they ean be rearranged and
combined in an integral form instead of as the usual system of first
order partial differential.equations. The integral forms are more
fundemental since they are valid even across surfaces of discontinuity.,

Using Reynolds transport theorem, one can always obtain the differential
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forms from the integral forms, In addition, the integral forms can be
used to obtain the shock relations, The differential forms are not valid
in this region, where the derivetives have no meaning,

In order to make the work self-contained, we indicate below the
proof of the Reynolds transport theorem, and explain how the integral
relations can be used to obtain the differential forms and the shock
relations,

D. Reynolds Transport Theorem

This theorem states that

%-t- £ av =f (% +fu ) dv (A.16)
V(%) v(t) ?
where f is an arbitrary differential fumction of Xy and t.
Proof:
Let
X =X (Xj, £) i,3=1,2,3

where Xj is a coordinate system moving with the fluid, and X5 is a
fixed systen,

Let, a(xl, X5 X5)

U7 %y &)

Then we have,

a a
- fx,, t) dV = = fx, (X.,t), t) J av
dt fV(t) i dt v i J o

0]
ar aJ
f (-EJ+:E‘-d—t) av_
v

e}

ar
f\/} (?ﬁ:' + f ui,i) Jav_
0

i}

]
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ar
(dJC + f ui,i) av

v

where we have used the fact that,

aJ
-9 YN

Thus we have obtained the desired result,
Expanding the material derivative and applying Gauss'® Theorem, we

can further write this as,

d _ of
EE/ fdv—f&- av + £ G as (£.17)
v v s

where G is the component of the velocity of the surface S along the
outward normal to S,

We will now give the derivation of the differential form of the
equation of cortinuity from integral form;

d

' p dV =0 (A,18)

V
Applying Equation A.16 to this equation, with £ = p, we obtain
(G2 4 ou, ) av=o0 (A.19)
at i,i . (A_19)
Vv

Since V is arbitrary, it follows that,

dp =
Tt P g 0 (A.20)

which is the familiar differential form of the equation of continuity.
Similarly, the differential forms can be derived from the integral
forms for the conservation of momentum and the conservation of energy.

Now to use t .e integral forms tc obtain the shock relations, we

first consider V to be a moving voluwe in the fluid which is divided by
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the moving surface 2. into two volumes, Vl and V2. Let S be the surface
of V, and let Sl and S2 denote the portiocns of S which form part of the
boundary of the volumes Vl and Vé respectively. The remaining part of

the bounderies of V. and Vé will be furnished by the surface 2 .

1

Now,

ol ! a [

T fav =5 £av + = £ av (A.21)
v 2 v,

Applying Equation A,1T7 to this equation, we obtain,

g—f de:/ g%dv+/ fu as + [ £ Gas
V1 V1 5 £
.
-d—/ de:/ afdv+‘/ fu as - | £ as
at 3t n 2
Vo Vo So b3

where w is the unit vector normal to the surface S everywhere, It is to

ct

be noted, that if the unit normal vector to the surface 2. is assumed
positive when it points from side 2 to side 1 acrossz:, the normal
velocity of the surface, G, is positive whaaZ:is taken as part of the
boundary of Vl and negative when it is teken as part of the boundary of VE‘

Thus substituting these resnlts into Equation A.21, we obtain,

a B of
T £ av _/ 5z v +/ fu a8 + /(fl-fz)G as (A.22)
v v S 5

Using the equation of continuity, we now give an example of the
derivation of the shock condition, Using Equation A.22 on the integral

form of the equation of continuity as given by Equation A,18, we obtain

d _ .
5% av +\j/p puhdS +U//‘ pu as + (pl-pe)G as =0 (A.23)
vV Sl 52 s
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where Py and p2 denote the values of the density on the sides 1 and 2 of
Z: . DNow let the volume V approach zero at a fixed time t, such that in
passing to the limit, it becomes a finite paz%;z:o of the surface Ei .

Then the volume integrals are of a higher order than the surface integrals,

and can be neglected, Also,

SlpundS-—b - Zoplulnds

S —»
P, d Po Uy das

2
82 Z.o

where W and u2n are the normal components of the fluid velocity on
sides 1 and 2 of the surface respectively,

Therefore we obtain,

[y (w, -G -0, (uy, -G)]dS=0
Z,
Since the 2:0 is arbitrary, we finally obtain,

oy (g, - @) =p, (u, -G) (A.2k)
which is the desired shock relation,

Similar results can be obtained from the other conservation laws,
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