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I. GENERAL INTRODUCTION 

The field of magnetogasdynamics is basically a study of the inter

action of an electromagnetic field with a conducting compressible fluid. 

The mathematical model for such a study includes equations from gasdynamics 

and electromagnetic theory. By considering flo'ws which have velocities 

much less than the speed of light, the 'relativistic effects can be 

neglected. 

In most practical problems, we are interested more in the resultant 

effect due to the motion of a large number of particles, rather than in 

the motion of an individual particle in the fluid. Therefore we use a 

macroscopic analysis of the fluid rather than view it in terms of 

microscopic quantities. Hence the fundamental equations used in analyzing 

the dynamics of the conducting fluid are based on the conservation laws 

of mass, momentum, and energy together with Maxwell's equations. In this 

case, the electromagnetic forces are considered as well as the ordinary 

gasdynamical forces. 

From a macroscopic viewpoint, there are two methods of attack in 

solving problems. If the conducting fluid is an ionized gas consisting 

of a mixture of species of ions, electrons, and neutral particles, the 

conservation laws can be written for each species. For, other than the 

most simple problems, this involves a large number of equations to be 

solved. We can also choose to consider the fluid as a whole and use the 

gross quantities or the average quantities of all the species. Here the 

basic equations involved are the gasdynamic equations of conservation of 

mass, momentum, and energy with additional terms added to the energy and 
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moment-urn equations to account for the electromagnetic field. Along with 

the gasdynamic equations, -we use the Maxwell equations for electro

magnetic fields and we usually employ Ohm's law as an approximation to 

more accurate analysis as an equation relating the gasdynamic equations 

and Maxwell's equations. 

Along with the assumption that the velocity of the fluid is much 

smaller than the velocity of light, the additional assumptions will he 

made that the electric field is of the same order of magnitude as the 

induced electric field, and that problems of very high frequency are not 

considered. With these assumptions a number of authors (a recent 

development is found in Pai (l)) have shown that the displacement 

current can be neglected in Maxwell's equations, the excess electrical 

charge is negligible, and that the energy in the electric field is much 

smaller than that in the magnetic field. As a result, all the electro

magnetic variables can be written in terms of the magnetic field. Thus 

we have reduced the problem to one involving the interaction of the 

magnetic field and the gasdynamical equations. 

We are now interested in the wave motion in a magnetogasdynamic fluid. 

Much of the work done in wave motion considers the fluid to be perfectly 

conducting, that is, to have infinite electrical conductivity. With 

this assumption, the basic equations give the Lundquist (2) equations. 

This set of equations shares with the equations of gasdynamics the 

property of being a symmetric hyperbolic system of first order partial 

differential equations. Thus as in gasdynamics, disturbances propagate 

with finite speeds. Using the theory of characteristics, it has been 
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shown that three types of wave motion can exist. There is a transverse 

wave called the Alfven wave and two longitudinal waves called the fast 

and slow waves. As a result of the nature of the Lundquist equations, 

much of the work in magnetogasdynamics involves the same techniq_ues used 

in gasdynamics. 

Friedrichs (2) studied the LuQdq.uist equations in 195^ and brought 

out several of the analogies "between these equations and the equations 

of gasdynamics. He showed that just as in the gasdynamic equations, the 

Lundquist equations possess real characteristics, Riemann invariants, and 

simple waves. He showed that three types of shock waves exist correspond

ing to the three types of wave motion, and he also showed the existence 

of contact discontinuities. In addition, a conducting fluid can possess 

switch on and switch off shocks, across which a component of the magnetic 

field is created or destroyed, 

A weak shock or weak discontinuity is a surface across which there are 

discontinuities in the derivatives of certain variables. It has been 

shown (3) that these weak discontinuities occur along the characteristics 

of the flow. The growth of these weak discontinuities into a strong 

discontinuity or a shock was first obtained by Thomas (4), In gasdynamics 

the velocity of propagation of a weak discontinuity into a gas at rest is 

independent of the direction of the normal to the wave-front. In 

contrast, in magnetogasdynamics, the propagation is anisotropic, that is 

the velocity of the wave-front depends on the direction of the normal. 

This anisotropy introduces a number of complications in the Integration 

of the equations, Llghthill (5) gave a general method of obtaining 
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asmyptotic solutions of the linearized equations, Weitzner (6) gives a 

method of integrating these equations for all times in a two dimensional 

flow. Ludwig (7) also gives a method of obtaining the strength of the 

wave-front at singular points of the wave-front. The general equation of 

growth for an Alfven wave was obtained "by Kaul (8), and for fast and slow 

waves was obtained by Nariboli (9). 

All of the above studies are based on the assumption of infiiiite 

electrical conductivity. With finite conductivity, the picture changes. 

Its effect is dissipative. In gasdynamics, viscosity introduces dissipa

tion, and it is well known that in the presence of viscosity (lO), no 

shock can be formed. The influence of finite conductivity in magnetogas-

dynamics was studied by Ludford (ll) in discussing the structure of 

stationary shock waves. He proved that when the normal component of the 

magnetic field is zero, an inviscid, finitely conducting gas admits of a 

shock across which the magnetic field is continuous while the velocity, 

density and pressure are discontinuous. Thus the shock is more of the 

gasdynamical nature. Pai shows the existence of real characteristics in 

a one dimensional flow with a perpendicular magnetic field. 

The above discussion shows that the effect of finite conductivity 

in magnetogasdynamics is different from the effect of other dissipative 

parameters such as viscosity. Thomas (l2) gave a general method of 

studying discontinuities in continuum theory. Using these compatibility 

conditions^, one can study the propagation and growth of arbitrary 

^Appendix, 
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discontinuities across moving surfaces, called singular surfaces. Using 

the compatibility relations, one can prove not only the existence (if 

they exist) of surfaces which admit discontinuities across them, "but can 

also obtain the general equations of the propagation and growth of such 

discontinuities as the surface moves, Thomas has applied these to a 

number of gasdynamical (4) and plasticity (ij) problems and obtained the 

growth of a sonic wave, the decay of a blast wave, the formation of 

Luderbands, etc, Truesdell (l4) gives a general review of the historical 

development and the derivation of these equations. 

In the present work, we first consider the one-dimensional flow of 

a fluid with finite conductivity, zero viscosity and heat conductivity, 

and the magnetic field perpendicular to the flow. We assume the quantities 

are all functions of the space variable x and the time t. When conducti

vity is infinite, the velocity of propagation is the "effective" speed 

of sound, that is, a^ = (a^ + A^)^, where a is the sound velocity, and 

A is the Alfven velocity. Following this wave-front, we seek to study the 

growth of waves of finite amplitude along the lines that Lighthi11 (lO) 

does for the gasdynamical case. We derive a "Burger's" type equation, 

which seems to be difficult to integrate, 

Next we use the technique developed by Thomas (12) to study the 

equations of magnetogasdynamics in the presence of finite conductivity, 

but with zero viscosity and heat conduction. We prove the existence of 

a singular surface moving with the velocity of the gasdynamical speed of 

sound, and show that the discontinuities in density, velocity and pressure 

are stronger than those for the magnetic field. Equations are then 
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obtained for the growth of the wave, and it is shown that the front may 

either terminate into a shock in a finite or infinite time, or may be 

damped out. The time for the formation of the shock is seen to depend 

on the direction of the normal to the wave-front. 

In the second part, we study the decay of a shock wave along the 

same lines as Thomas, We obtain the differential equation for the 

velocity of the shock wave. However, it depends on the direction of the 

normal to the wave-front; so the integration has been done only for a 

perpendicular field. 

In the last part, we apply the same technique to obtain the jump 

in vorticity and current across a shock wave. For completeness, we 

give the cases of both finite and infinite conductivity. Althoijgh the 

final results are not as elegant as for the gasdynamiccil case, the 

present technique is simpler and more straight forward than others. 
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II. THE EFFECT OF FINITE CONDUCTIVITY ON THE GROWTH 

OF WEAK DISCOWTIiroiTIES IN MâGHETOGASDYMlŒCS 

A. Qualitative Discussion of the Effect of Finite 

Conductivity for Linear and Non-Linear Problems 

It is well known that magnetogasdynamical equations belong, in the 

absence of all dissipative mechanisms, to a general class of hyperbolic 

equations, that is the symmetric hyperbolic equations. The gasdynamical 

equations also belong to the same class in absence of viscosity. Such a 

system of first order equations is known to have a number of common 

properties; existence of real characteristics, and corresponding Riemann 

invariants, and hence are expected to admit shock formation. But as 

discussed by Whitham (l$), a shock is possible only in an ideal system; 

in all actual systems dissipative mechanisms cannot be neglected within 

the region where the gradients of quantities are large. Thus a general 

process of smoothing occurs due to these dissipative mechanisms. A 

study of such a problem is done by Whitham in full generality. 

It is interesting to note that different dissipative mechanisms 

cannot be regarded to play an equally important role in the process of 

smoothing. In the study of the structure of shocks, Ludford and Pai have 

noted that the presence of viscosity admits of no sharp discontinuities 

in magnetogasdynamics, while the absence of viscosity, but the presence of 

finite electrical conductivity, admità of a shock under certain conditions. 

Ludford, in particular, notes that under certain conditions, this shock 

is one across which the magnetic field is continuous, while its deriva

tive is discontinuous and the velocity and density are discontinuous. 
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This shock is then more of a gasdynamical nature. This feature distin

guishes electrical conductivity from viscosity in magnetogas dynamic s. 

The study of "wave phenomenon for the linearized problem of a 

finitely conducting medium appears to have been first made by Cole (l6) 

for a perpendicular magnetic field. Tanuiti (17) also studied the case 

of an arbitrary magnetic field where the existence of real hyperbolic 

characteristics vas shown. Nariboli and Hyayadhish (18) noted the 

complete identity in the mathematical sense of Cole's problem with that 

of thermo-elasticity and stressed the important point that the existence 

of real characteristics in a linear problem implies the admissibility of 

shock formation in a corresponding fully non-linear problem. It is 

precisely this feature we are going to study in greater detail. We 

first note a few general considerations. 

Considering a simplified problem with a perpendicular magnetic 

field, the basic equations are, 

(2.1.1a) 

(2.1.111) 

TP (i + u ||) = i (|)^ (S.l.ld) 

In the above, it is assumed that the viscosity and heat conduction 

are zero, p is the density, u is the velocity in the x-direction, H is 

the magnetic field in the y-direction, S is the entropy, T is the 

temperature, and that all quantities depend on the space variable x 

and the time t only. We employ ë.in.û, units throughout. We also have 



the equation of state as p = p (p^S), T = T(p,S). 

Linearizing these equations, by letting p —».p^ + p, u —*-u, H —>H^+h, 

S->S^ + 8, T-^T^ + T and neglecting products and squares of (p,u,h,S,T) 

•we get, 

ËÊ. 
dt 

= 0 

(2.1.2a) 

(2.1.2b) 

(2.1.2c) 

(2.1.2d) 

From Equation 2.1.2d, it follows that the entropy is constant. Thus 

we assume that ̂  = 0 in Equation 2.1.2b, and eliminate the density from 

Equations 2.1.2a and 2.1.2b, to obtain finally, 

S^u 2 B^u ^ 3^h „ - a + T \ = U 
^2 O ^ 

ôh ÔU W ̂h 

(2.1.5a) 

(2.1.5b) 

If we use the Laplace transform technique to solve these last 

equatior -i with zero initial conditions, we obtain 

-fflgX -m^x 
u = e + B, e 

-m, X -DipX 
h = e + e 

(2.1.4a) 

(2.1.4b) 

where m^ and m^ are the positive roots of the equation 

m - nf 
(l+r)s 

< J ^ ="0 

^ ~ a ' 

If 
o 

? '  ^ ~ a ' 

= 0 

is the Alfven velocity squared. 



10 

is the sound velocity, and are arbitrary functions of s, 

and the barred quantities are the Laplace transforms of the corresponding 

variables. The other two roots are the negatives of and and are 

pertinent for flow in the negative x-direction. 

The functions and are determined by the boundary 

conditions and cannot affect the nature of the solution. It is the 

arguments of the exponents, that is and m^, which determine the nature 

of the propagation. 

In the absence of the magnetic field, we obtain only one root given 

by s/a^, leading to the gasdynamical wave. 

If 6 = 0, that is, the conductivity is infinite, we obtain only one 

root, as s/a where a^ = + a^. Thus the nature of the solution 
' ' e e o o 

remains the same as above; the ordinary speed of sound is merely replaced 

by the effective speed of sound. 
••i 

In the general case, for large s, we obtain m^= s/a^, m2= (s/e)^. 

Wow as discussed by Hariboli and Wyayadhish (l8), and Erdelyi (1$), the 

point s —*00 remains a so called saddle point of the problem for all e, 

however small. Since a saddle point gives the major contribution to the 

integral, the wave nature described by the above values dominates for all 

times, m^ gives the sound wave, m^ can be compared to the case of 

viscosity in the gasdynamical case. Here m = s/(a^ + us)^, D being the 

kinematic coefficient of viscosity. The expansion of this for s infinite 

is exactly similar to that for m^, 

Pai has obtained the characteristics t(x,t) = constant as given by 

p^Tg (ilr^ + u ' [\ +(u + = 0 

which gives parabolic and hyperbolic characteristics, corresponding 
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exactly to nig and respectively. We thus expect the wave-front 

corresponding to to develop into a shock. This is exactly the result 

•we prove in section G. As for the root nig, this is the wave-front 

travelling with the effective speed of sound, hut which is now diffused. 

The effect of finite conductivity on this wave can "be seen to he exactly 

similar to that of viscosity in ordinary gasdynamics, the kinematic 

viscosity o just replacing e. 

Lighthill (16) has studied the effect of finite viscosity on waves 

of finite amplitude. It is reasonable to assume that the wavefront, 

travelling with velocity a^ is damped just as the sound wave in the case 

of viscosity. With this idea in mind, we have obtained a non-linear 

equation of the Burger's type in section B, However, the equation turns 

out to he more complicated and not easily amenable to integration, as in 

Lighthill's case. The theory of singular surfaces or the method of 

characteristics does not admit a sharp discontinuity across this front. 

Whether the non-linearity of this type overcomes the damping to lead to a 

shock remains open, however, and although we feel a shock cannot develop 

across this front, we have been unable to prove it. 

B. The "Burger's" Equation for the Wave-Front 

Travelling with the Effective Speed of Sound 

We now wish to study the effect of finite conductivity on the 

wave-front travelling with the velocity a^ relative to the fluid. Consider 

the one-dimensional flow of a fluid with finite electrical conductivity, 

but which is inviscid and non heat-conducting. The additional assump

tions are made that the flow is parallel to the x-axis, the magnetic 
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field H is planar and perpendicular to the velocity, and that all quantities 

are fimctions of the space coordinate x and the time t only. The "basic 

equations are then given hy Equations 2,1,1. 

Following Lighthill and neglecting squared and higher order terms. 

Equation 2.1.1 implies that the entropy S can he considered constant 

across the wavefront. For a perfectly conducting fluid. Equations 2.1,1a 

and 2.1.1c are equivalent and imply that H=kp. Also under this condition, 

it can he shown that the characteristics for the Equations 2.1.1h and 

2.1.1c are 

t - " t % (2.2.1) 

where a^ = a^ + is called the effective speed of sound, a^ = dp/dp 
e 

is the ordinary speed of sound and A = is the Alfven velocity. 

The Riemann invariants for this system of equations are: 

2r = u + OD = constant along ̂  + a^ (2.2.2a) 

2s = y - 0) = constant along dx/dt = u - a^ (2.2.2h) 

where 
r p  a  ( p )  

CD = / dp 

Jo ' 

Since the entropy is considered to he constant, the pressure is 

assumed to he a function of the density only. For an ideal gas p = kpy, 

so that 

a^ = (kyp^"^ + k^p)^ 

From the paper hy Mitchner (20), it would seem reasonable to assume 

a, is proportional to some power of p, that is a^ = Dp^ where D is a 

proportionality constant and n is some given number. Using this value 

for a , it follows that 
e'' 
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0) = D/n (2.2.3a) 

Bg = D(h/K)" = no) (2.2.5b) 

Mow consider Equations 2.1.11) and 2.1.1c. Using H=Kp, and p=p(p), 

these equations hecome. 

3t * 

8u ôu Ap _ 
(2.2.4) 

= 0 

_ . ÔH H ÔÛO _ ÔH H ôco ^ ^ 
Then using ̂  ~ ̂ and ̂  these reduce further to, 

e e 

Bm 3(0 ôu 4 It ô^cD ~ ^^e ^ /3m\2 
+ 

a 

ôu ôu ÔÛD 
(2.2.5) 

Substituting from Equations 2.2.5 ihto these equations, ye obtain 

00) , ôm , ôu kit ô^co , /l-nwôcDxî 
5t + ̂  s = — I — + W's' 

ÔU . ôu 

e 'Sx 

ôm 

(2.2.6a) 

(2.2.6b) 

Add and subtract these equations and use the Riemann invariants 

2.2.2 to further obtain, 

3^ r1 „ _ I 
(2.2.7a) 

L ôxp 

ôs 
3t 

+ (u - a ) ÔS 
35E 

El 
a 

ô^m 1-n /ôo). 
(2.2.Tb) 

Folloving Lighthill and considering a disturbance initially limited 

to X < 0, all the backward leaning characteristics start from initial 

positions with x > 0, and therefore s = which is its value in the 

undisturbed fluid ahead of the wave. Thus Equations 2.2.7 reduce to 
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the one equation 

1-n 
(5)' (2.2.8) 

Now u+a^=r+s + nm = r + s +n(r-s)= (n+l) r + (l-n)s e  o  o  o ' ^ '  o  

and u + a = (n+l) r + (l-n) s . 
o eo o o 

Therefore Equation 2.2.8 "bscomes 

Il +((l+n)r + (l-n)s^ ) ^ ̂ 

Let z = (l+n)(r-r ) = u+a - (u + a ) and substitute into Equation ^ ^ o e o eo' 

2.2.9; to obtain 

3r / , V ôr 2:n: 
^ + (z + + a^^) ̂  — 

gi d'^r l-n 1 
n r-s (2.2.10) 

Making the transformation X = x-(u^ + a^^) t, this becomes 

ôr , ôr l-n 1 

and transforming this to z, ye get 

ÔZ ÔZ 2:1 l-n 

3%^ n(n+l)(^+r^-sj 
(2.2.11) 

Let z = f(y), and find f such that the coefficient of the terms 

(^)^ vanish, that is, find f(y) which satisfies the equation. 

Thus f(y) = (•^^—)" - (n+l)(r^-s^) where C and E are constants of 

integration. 

Under the transformation z = f (y) as obtained. Equation 2.2.11 

becomes 

8^ (2^)" - (n.l)(v=„) $ = (2.2.13) 
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"Which is a Burger' s type equation; 

^ + g(y) B ^ ̂  ̂  (2.2.14) 
dt dx 

Some general results have "been shovn for an equation of this type. 

In particular, Lighthill has shown that for g(y) = j, the equation can 

"be reduced to the familiar diffusion equation ̂  = 40 ^ and thus no 

shock will form in this case, 

Lighthill implies that the g(y) term in this equation acts to cause 

a shock wave to form, whereas the is a dissipa.tive term and tends to 

smooth the flow so as to eliminate a shock. There may or may not he a 

function g(y) such that a shock will form, and since we are unable to 

integrate Equation 2.2.15, we cannot say whether a shock wave will form 

in our case or not. Therefore, although we do not feel the characteris

tic we are following will develop into a shock wave, we have been unable 

to prove it. 

C. Propagation of a Weak Discontinuity into a Shock 

In the last section, we derived the equation for a wave of finite 

amplitude, 1imi •hi ng our attention to the wave-front travelling with the 

effective speed of sound. The difficulties of integration did not lead to 

any final conclusion, although they do indicate the wave-front is 

diffused. In the present section, we study the general three-dimensional 

problem of magnetogasdynamics with finite electrical conductivity and 

arbitrary magnetic field. Using the compatability conditions, and the 

assumptions stated below, we first prove that there exists a singular 

surface with the velocity of propagation equal to the usual gasdynamical 

sound velocity. This verifies our earlier inference. Proceeding by the 
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use of the second order compatahility conditions, ve obtain the equations 

of growth of a discontinuity. The velocity of propagation of the 

wavefront is now independent of the normal to the surface. It is therefore 

possible to integrate the equation of growth for an arbitrary initial 

waveform. 

The result brings out a number of interesting results. First, it 

shows the possibility of the formation of a shock; it also brings out the 

dependence of the time of formation of the shock on the angle between the 

normal to the surface and the magnetic field, and on the initial curvature 

of the wave-front. 

We are now going to consider the flow of an inviscid, non heat-

conducting fluid with finite electrical conductivity. If we use the 

equation of state p = p (p,S), T = T(p,S), the equations for such a flow 

become, 

& + = 0 (2.5.1a) 

ÔU. , 

^(-5% + ^0 = - (FP P^i + Ps s^i.) + s ("i.A -

(2.5.1b) 

^ ^ - "k ̂ i,k + T ̂i,kk (2.3.la) 

Assuming the velocity, density, entropy, and magnetic field are 

continuous across the shock, but that the first derivatives of the velocity 

and density are discontinuous, we obtain 

[u^] = [p] = [S] = [H^] = 0 



IT 

[•U-j - N [8 .] - 0 X^J XX ^x 

[p .]n. = ^ [H. .] = 0 
 ̂ X X ^ J 

ÔU. -ÔS. [^] = - \ G [^] = 0 (2.^.2) 

p. ÔH. 
[f ] = - IG [^1=0 

"fk " \ "l°3 ° P 

Vj = ^ = ^1 

•where G is the velocity of the -wave-front normal to itself, and the 

sqimre brackets denote jimps across the surface. 

It is also assumed that quantities in front of the shock wave are 

constant in space and time and that the velocity is zero in front of the 

Tt 

ô^u. ô\. 

•wave. The compatibility conditions^ vith the relations 2.5.2 become. 

' ̂1 "A + + Vo,p) 

e* s'" >=j,p 

Ô^U. ô\. 

^ 

("Aj] = : Vc + Sa (Vo,p + 

- 5 g'* g"^ 

[^3tl ' + It' ''i " ® s'* Sa ""l.p 

(2.3.3) 

^Appendix. 
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[^] = f - 2G |i 

= P ts^l = - G pnj 
i 

° ^ =/i "j\ 

ô^H. Ô^H. 
• [%&] = - "j. 

Now applying these compatability relations to the eqmtions 2.3.1_, 

we obtain, 

- I G + p Xj^n^^ = 0 (2,3,4a) 

-p + pp En^ = 0 (2.3,41]) 

- "iW + T 7i ° (2.5.1tc) 

or 

- |G + p — 0 (2.3«5a) 

-pG\^ = - pp Inij, (2,5.5b) 

% - \ - T (2.$.5c) 

Multiply Equation 2.3.3b by and sum over the repeated indices 

to obtain, ^ ̂n " " then substitute this into Equation 2,5.5a 

to obtain -|G + = 0. 

Therefore, |G^ = pp| = a^g where a^ = pp and thus G = + a. 

Thus the velocity of the wavefront is constant; so the moving 

•wavefront forms a system of parallel surfaces. The successive positions 

of the surface can be obtained by erecting equal normals to the initial 

surface. The geometry of the wave-front does not change with time. 

With this last result. Equations 2.5.5 become, 

-a| + p \^ = 0 (2,5.6a) 
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= a| (2.3,6b) 

- W = T (2.3.6c) 

ÏÏOW differentiate Equations 2,3,1 with respect to to obtain, 

+ ".la ""l + P,i "l,j + "l,i + P\,lo = 0 (2.3.7a) 

SPu. ôu. 

^ôx^ôt ^i,k ^ ôt 

= - [Ppp ^3 P,i + ï-ps + ",3 + %s 

^ ®P *•,« % ®,lo' "k ̂  \,j • Vij ®k 

- \i «k.j] (^'3-T^) 

P'j ̂  + P (^p P,j + ®S + \ 

+ (Spt + "1,3 + "i ̂ ij) 

0 ^,inj ̂ m,k ^m,kj ̂ 

(2,3.7c) 

Applying the compataMlity conditions 2,3,3 to these equations 

they become, 

(-Gi + |i)n. - G g°P x.^p + En^^.n. + p [i;.n.ti. 

+ s'* \,o: + °3 \ s'* s"" ^l,p ^3,T1 = ° 

(2.$.8k) 

P [(-=\ + ̂ ) "3 - ® \,a ̂3,p' + " "3^ - ^"'3^1'^ 

= -fpp : -^1-^3 - ®P V3 + (V3,p + "3'^l,p' 

- I s"* g"'" !>„„ - Pg p n.u. + s \ /i n.Dj^- ̂  H^rj, nk°3 

(2,3.8b) 
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- pTG p nj = 0 (2.5.8c) 

Since p, T, and G are not zero, then p = [S ..] =0. 
} 

Multiplying Equations 2.3.8a and 2.5.8b "by n. summing over the 
J > 

repeated indices, and using this last result, we obtain 

- G E 4- + p + p = 0 (2.3.9a) 

ô\ 
P \ "6t) + ^ W - g = - Ppp 8^ n. - p^ : 

- ^p + h ^i - ^ ^i 

Equation 2.5.4b implies that = \n^. Using this condition. 

Equations 2.5.6 become, 

\ = ^  ( 2 . 3 . 1 0 a )  
P 

^ 7i = \ (Hi - \ "i) 

and Equations 2.3.9 become, 

"G-f + ̂  + 2|\ + px n + p (Xn^) ̂  p ~ ̂  (2.3.11a) 

B(\n.) 
P (-^^i + 6t ) + P ^ = - Ppp ^ ^i 

" ̂ p ^ \ • ̂p ^i,p \ ̂i ~ \ ""i (2.5.11b) 

Multiplying Equation 2.3.11b by n^ and summing over the repeated 

indices, we obtain 

= G f - 2| \ - p\n + 2pXfl (2.5.12a) 

-p G \n + p n. (^ + X ^) + PX= - SGX. = - f 1 

+ feSn " fe (2.5.:i^1>) 

or 
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^ = G f - 2g\ + 2pA.n. -p (2.5.15a) 

P B ^ \ P = -^pp - ^p ^ n 

vhere-fl is the mean curvature of the surface. 

Differentiating Equation 2.5.10a, we obtain ̂  " ^^^"8 this, 

and the facts that G = a and = a^. Equations 2.5.15 "become-, 

II = a! - 2^\ + 2pyi \ -p (2.5.14a) 

a II - P a\ = - p 1 - a^ I - ̂  (H^ - sg) (2.5.lU"b) 6t n pp n 

Multiplying Equation 2.5.1^a "by a and adding the tvo equations, we 

o"btain finally, 

^ ( r  +  ^  -  . j i ) . 0 ,  ( 2 . 5 . 1 5 )  

•where = H sin 0, 0 denoting the angle between the magnetic field and 

the normal to the wave-front. 

This is the differential equation for the variation of | along the 

normal trajectories of the family of sonic wave surfaces, as these 

Surfaces, as these surfaces are propagated into a uniform gas at rest. 

Let n be the distance along the normal trajectory to the initial 

wavefront. Then since G = a is the velocity of the wavefront, we have 

Now let 

A = i  +  f p £  ( 2 . 5 . 1 7 a )  
P 2a2 

a Hg 
B = — (2.5.1Tb) 

52rt^ pa 
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Therefore Equation 2.5.15 becomes, 

^ + (B --Q. ) I = 0 (2.3.18) 

We will now discuss the cases corresponding to different initial 

waveforms. 

1. Plane wave 

For a plane wave^Jl = 0. Therefore Equation 2.5.18 becomes, 

|i + A = 0 (2.3.19) 

Integrating this equation, we have, if B ̂  0, 

I = (2.3.20) 
Bn /I A\ A 
= 'r B' - Ë 

o 

where is the value of | at the initial wavefront. A shock is said 

to form in this case when the denominator of the expression for | goes 

to zero, or equivalently g <». That is, 

e ^ (|- + |) - I = 0 (2.3.21) 
o 

Solving for n^ we obtain, 

\ ~ ~ 5 ̂  5^^ (2.3.22) 

It can be seen by use of Weyl's condition, that both A and B are 

greater than zero, so we have two cases to consider, 

5o > 0 

This case corresponds to an expansion wave and no shock will form. 

So < 0 

This is a compressive case and n^ > 0 and is finite if 0 < ̂ —h 1 < 1, 
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Letting ve get the restriction on the strength of the magnetic 

field allowable for a shock to form: 

p a l  p  
H:<—^ 

which is seen to depend on the speed of sound and the density ahead of 

the shock. 

2. Spherical waves 

In this caseXI = - ^ ; where the negative sign is used since the 

normal is chosen in the direction of the propagation of the wave. We 

also can replace n "by R in this case, and Equation 2.5.18 becomes, 

II + A|^ + (B + i)| = 0 (2.5.24) 

Integrating this, we have 

-BR, 
^ = ^ g (2.5.25) 

-BR r -BR 
e °/BoSo + A / -B-- as 

J R 
o 

where R and E are the values of R and | at the initial wave-front. 
o 0 

Here again we say a shock forms if the denominator of this quantity 

goes to zero, that is, 

-BR "^o 
A ^ dR = - -r— (2.5.26) 

J«0 

If I >0, no shock will form, whereas if | <0, there is a o o 

positive value R^ for which this equation is satisfied. It is interest

ing to note that since B = B(e), the wave front does not develop into a 

shock simultaneously at all points of the surface. To see this, let R^ 
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be the root of this equation for 0=0 and R the root for any 6. Then 

it can "be written as 

' R-, _ -Bu - -BR 
 ̂ / i:#- a" = sY 

o o 

< 0, 

implying R^ < R. 

Thus, when the magnetic field is parallel to the normal to the 

surface, the magnetic field has no effect, as is well known. While, 

at points where the normal to the front is inclinded to the magnetic 

field, the field retards the formation of the shock. This retardation 

is maximum for 6 = g . 

3. General mean curvature 

-no - V 
In the general case (4), J~l = where n is the 

1 - 2jQ n + X n^ 
o o 

distance along the normal to the wave surface as before, and k^ ar.d_ri ̂  

are the Gaussian; and mean curvatures of the initial surface. 

The differential Equation 2.3.18 can now be written in the form, 

/(/! (n)-B)dn J (n-B) dn 

(Î ) = A e (2.3.27) 

But J' (il-B)dn = - In (j) (n) - Bn where (j) (n) = ̂  1 - 2fl^n + k^n^'. 

Integrating Equation 2.3.17 form 0 to n, we obtain. 

and thus. 
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^ = 
-Bn e 

n (2.3.28) 

(j) (n) -^ + A 
L 

Let 

L  

n 

J(n) = ̂  + A 
o 

o 

Equation 2.5.28 then "becomes. 

^ " (j)(n) J(n) (2.3.29) 

It is interesting to note, that as in the last two examples, the 

magnetic field tends to retard the growth of the shock wave, when one is 

formed, so that all points of the surface do not develop into a shock 

simultaneously. 

Now, following Thomas, we consider two cases: 

Case 1. K > 0, JT <0 Here (j) (n) >0 for n > 0 o- ' o ' 

a) Êq > 0 Under these assumptions, there is no value of n for which 

j(n) is zero. Thus no shock wave will form. 

Td) < 0 Here there is a positive value n^ for which J(n^) = 0, 

implying the existence of a strong shock. 

Case 2. K < 0, JT >0 o - ' o 

For this case, there exists a value n^ for which (j) (n^) = 0, with 

(j) (n) > 0 for 0 < n < n^. 

a) > 0 With this assumption, J(n) < 0 for 0 < n < n^, and J(n^) 

is finite. Therefore a shock wave exists since (j) (n^) = 0. 

b) ÇQ < 0 If J(n^)> 0, a shock forms as n->n^_. If J(n^) < 0, there 
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exists a value for which j(ng) =0. Thus in this case a shock 

develops as n-» Hg. 

Thus a shock develops in all cases for this particular geometry of 

the initial wave-front. 

Following Thomas, similar results could be obtained for other 

initial wave-fronts. 

We finally note that g < 0 implies that the discontinuity is 

compressive. Thus, a compressive weak wave can develop into a shock 

in a finite time or an infinite time, or may be completely damped out. 

It depends on the strength of the initial discontinuity. 
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III. BLAST WAVES HT MàGMETOGASDYHAMICS 

WITH FINITE CONDUCTIVITY 

In this section, we assume a medium with finite conductivity and 

zero viscosity and heat conduction. Helliwell and Pack (21) obtain 

shock relations for this case. However, they assume the velocity of 

propagation of the shock is zero. We rederive the jump conditions for a 

propagating shock "wave. If in these relations, we further assume the 

magnetic field is continuous across the shock wave, we obtain relations 

analogous to gasdynamics, with an extra condition for the jumps in the 

derivatives of the magnetic field across the shock. 

Courant and Friedrichs (j) have studied the decay of a plane shock 

wave. The methods used in treating the plane wave differ from the 

techniques used by other authors for the spherical wave. Thomas (22) 

discusses the problem again by the use of the compatability conditions. 

The shock relations leave the velocity of propagation indeterminate. One 

needs an additional assumption to make it determinate. Thomas makes an 

energy hypothesis and integrates the equation for the velocity of pro

pagation of the shock. 

Following the last author, we obtain the differential equation for 

the velocity of propagation of the wave-front in the fluid we are 

considering. Since the resulting differential equation depends on the 

angle between the magnetic field and the normal to the surface, its 

integration in the general case cannot be achieved. However, we integrate 

the equation for the case of a cylindrical wave-front with a perpendicular 

magnetic field. 
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The flow of a fluid vith the above assumptions is governed "by the 

following set of equations, 

3t + P,i"i + P*i,i = 0 (3'la) 

1 1 
P -3t + P"k *i,k + 9,1 = BkHi,k - Bk, Hk,i 

ÔH. , 

" ̂i,k \ " %k \ ' \\,k a" ®i,kk (5.1c) 

where the equation of state for the gas that has "been used is p = k p^, 

7 being the gas constant. 

If we assume the magnetic field is continuous across the shock wave, 

shock conditions derived "by Kanwall (24) for the equation of continuity 

and the equation of motion hold and reduce to the ordinary gasdynamical 

jump conditions. That is 

- G) = pg (ug^ - G) (3.2a) 

P^ (u^^ - G) [u^] = - [p] n^ (5.2b) 

Also from the equation ^ = 0, we can obtain 

[H^] = 0 (5.2c) 

Since Kanwall considers the infinite conductivity case, we cannot 

use his jump conditions for the energy equation, and Helliwell and Pack 

consider a stationary wave. Therefore, since we wish to consider a 

moving front, we must derive the energy jump condition. 

The energy equation with finite conductivity is 

a f  =  p i - #  

where j = 7 x H, Multiplying the equation of motion "by the vector u 
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•we obtain, 
du 

pu ' ât = " - ' VP + - ' (à % H] (5.4) 

Adding this equation to 5.3 and using the equation df continuity 

to give 

dp d /P\ 
dt = P dt • P V ' u 

we obtain, 

^ u u ' V P -

^ X H) = 0 (3.5) 

Using the generalized Ohm's law and Maxwell's equations, we get 

1 42 
^ j ' (uxH) - ̂  = - 2 . E = - E . (VxH) = V- (ExH) 

- H • (V X E) 

But, we have 

^ 1 ÔH 
V ^ 1 = - Ti;? St • 

Therefore integrating Equation 5.5 over an arbitrary volume, and 

using the above results, we obtain 

y p|:^[h + -|u^-^]dv+y (p 7 ' u + u ' VP+V* (ExH) 

+ & = 0 (3.6) 

Using the relation ̂  J' P ^ p dv and Gauss' theorem, this 

can be reduced to 

d_ 
dt 

I p [h + •§• u^ - —] dv + I (pu) • n dS + / (E x H) • nS 
J V ^ ^ S ^ S 

+ 

V 

f 1 ÔH^ 
I Bit ôt 
V 

dv - 0 (3.7) 
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Applying the equation^ 

k f  ' f  3#^^+ ̂  + f  (V^2)0 da 

to this equation and letting V approach zero in such a way that in the 

limit it passes into a finite part of the shock surface Z. Then the 

volume integral in the above is of higher order than the surface integrals 

and can be neglected. We must also consider that 

f dc - / f^u^ da 

Si So 

f da -> / fg ug^ da 

where and Sg are the parts of the surface S on sides 1 and 2 of the 

shock respectively. 

Under these conditions. Equation 3,7 becomes 

f [ ̂ 2 (^n - G)(h + i ̂2 - g)g - (u^-G)(h + ̂  

J%o 

+ Pg ^2n " Pi * (- * -) * - (E x H) . nj^ 1 da = 0 

J (5.8) 

Since this integral is independent of the extent of the surface 

Z^, 'we obtain the jump condition desired, 

[p (u^ - G)(h + i u^ - ^)] + [p %%] + [(E X H) • n]= 0 (3.9) 

^Appendix, 
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Hellivell and Pack derive another jump condition from Maxwell's 

equation 
an 

^ ^ 3t • 

It is, 

[n X E] =0 

Since we are assuming the magnetic fiêld to he continuous across the 

shock, it is seen that this condition is the same as [(Ex H)*n] = 0 in 

Equation 5.9. Thus Equation 5.9 reduces to 

Pi Wn " [h + i u^ - ^] + [pu^] = 0 (5.11) 

•where we have also used Equation 5.2a. 

Mow considering the velocity in front of the shock to be zero, and 

7Pi 
using the notation Or = , "we can reduce Equations 5.2a, 3.2b and 5.11 

Pi 
to 

2p (0= - c!) 
[p3 = _ & (5.12a) 

(y+DGf + 2CÇ 

2Pi (&= 

7+1 

2 (G^ • 

[p-1 = (3.12b) 

n. (5.12c) 1 

Using the following notation, 

[Uj, ] = [p] = [p] = p , [H^] = 0 

= P , = 5. 

the compatability relations become, (5.15) 

= H "j + ^i,a 
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tP,il = P'i + s"® P,a 

1^1,01 = a. n. 
1 J 

Ô?v. 

G + -gt 

[|f ] = - ! G + H 

[^] = - M + If 

ÔH 
G (5.14) 

Applying these compataMlity relations to Equations 5.1 with u . = 0, 
Q)̂  

this gives, 

- I G + ̂  + \^ (1 ni + x^^p) + (Pi + 

(3.15a) 

G + -5%) + (Pl + 5)%% (\i Sk + 8°P\i^aXk^p)+Pni + 

(5.15b) = ^ik ôi "k - iâ ^ik 0% %i 

^ (-M + If) + ̂  X. (pn. + g°^p^Q, Xi,p + (P+P]^) (Â^n. + 

s'f'tlja =i,p) = ÔL *j ô^n. - ô^n. ô. 

These equations "become 

I (^.^ -G) + (p^ + %) - ̂  

\ ((Pl + g)\ - |G) + POj, = 

P (^.^ - G) + (7-1) (P + ~ B 

1 -

•where 

A = - §t - - (Pi +S) 8°^^ ki,a %ï,p 

(3.15c) 

(5.16a) 

(5.16b) 

(5.16c) 

(5.17a) 
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= - : % - (Pi + 

+ S Vi - fe 

= - - If - 8*P,„ \l,o %1,P 

Now consider Equation 3.10. In subscript notation this becomes 

:? (Vj.i - Yi,j) - fc °j -j + i = ° (3.18) 

where Ohm's law has been used to eliminate E. 

Using Equation 3.2c this gives, 

H,i (3.19) 

From Equation 3.12c we obtain 

2(0= -

^n " (7+1)G (3.20a) 

\p = 0 (3.20b) 

Therefore we find that; 

Pi (7+1)G^ , 
p +1 = (3.21a) 

(7-1)G^+ 2CÇ 

^1 ^ ~ ~ (5.21b) 

(1-7) Qf - 2C! 
X - G = / (3.21c) 
n (7+1)0 

+ I (\^ - G) — 0 (3.21d) 

A = - Et + (Pl + S) 6°^* \ % (3.21e) 
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5\ 

^n - -  ̂  ~  h  

B = - §t + (7-1) (P + top \n + of 

(5.21f) 

(3.21g) 

vhere we have used. 

^i,Q *i,p " ^op 

6\_ 
fin 
5t i ôt 

With these results^ we obtain 

B - (X, - G) f, 

n (7-1)(p + p^J 

(3.22) 

P =^n 

- A _ '• X ••• " n 
- G - G)(7-1)(P + 

Differentiating Equations 5.12 and substituting into the quantities 

for A, f^, and B, ve get, 

} _ k 0.no (G^ - C?) 
(5.24a) 

(p^ + l)[B - (Xg - G) f^] 

(3.25a) 

(5.25t) 

(5.25c) 

A = -

f = 

4 (7+1) G gg 4 PjJlG (0= -

(2CÇ + (7-1) (7-1) G^ + 2C| 

-4p^ (G^ - Cj) 

(7+1) ((7-1)0%+ 2GÇ) G' 

ta. 
+ T) at 

Qt^ (7+1)G 

B = -
4p-,G dG 

+ 
7+1 at 

1 " "In 

f... 1 \2-i -L p-j^ 

(7-1)0 (iÇ - H^)(G^-C|)^ 

k-T^ (7+1)^ G^ 

Therefore \ , 6. and 1 become respectively 
" G r __ 4piJT. (7-1)03= - cP) 

— (2G^ = 

(7-1)(2G2 - Cj + |i) 

dG 
- ^Pl^ ̂  + —(75^ 
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p (7-1)0 (H? - H? )(G2 - cf) (1-7)G^ -2C?) 
- C? + —) + — — + 

k-T^ (7+1) G 

(G? - C^) 

(7+1)[(7-1)G^ + 2cJ] ̂ G=' 8^ (nl)G 
(3.25a) 

. ̂ -.p, - Cf) ^ a,g 

(7+1)[(7-1)G^ + 2C?] G^ at 

ë - (y+i)G 

(1-7)G^ - 2C? 

4(7+1) G 

(2(Ç + (7-1)G^)' 

(7+1)= G? 

((7-1)G^ + 2CÇ)^ 
n 

a(4 - 1^) (a^ - c|) 

Qt̂  (7+1)G 
(3.25b) 

^ ̂ ̂Pj G(G^ - C^) 

at (7-l)G^ + 2CÇ 

(3.25c) 

Thus it can be seen that the jumps in the derivatives of the velocity, 

density and pressure across the shock vave are known in terms of the 

quantities in front of the shock, G and derivatives of G. We need an 

additional assumption before we can completely specify and p. 

Following Thomas, we state an energy hypothesis from which we are 

able to obtain G. Let aQ be the energy in a differential shell element 

of the shock surface. Then the energy hypotehsis says that the energy 

AQ is a) proportional to the total energy Q released by the explosion, 

b) proportional to the volume AV of the differential shell element, and 

c) inversely proportional to the volume V(t) enclosed by the shock wave. 

This then becomes, 

AQ = where the proportionality constant a will depend on the 

gas considered. 
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the energy in the shell will consist of the energy AQ and the 

energy contributed by the undisturbed gas. This latter energy is Ê p̂ AV. 

Also in the case of Joule heating, an additional term must be added vhich 

is. 

Therefore the total energy in the shell is equal to 

(3.26) 

The energy in the shell can also be expressed by 

(3.27) 

Equate these, and simplify to obtain. 

(3.28) 

where 

[E] = Eg -

The Equation 5.11 implies that. 

(3.29) 

Equating Equations 5.28 and 5.29, we obtain 

^2 *2n _ ÙQ. , 
P]_G PgV a 

(3.30) 

Since 

' • 
a 

we find that. 

(3.31) 
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where we have used the facts that H. . . = 0 and a =0. 
n 

From Equations 3.19 and 3.20a, we find that this can "be written 

further as, 

2 P (Hf -
^ = — — (3.32) 
* 4*2 (7+1)2 gZ 

Substituting this into Equation 3.30, we see that, 

P2"2n = OQ "(«Î -

(y+1)^ ' 

Solving Equations 3.12 for u^^, p^, and pg, we obtain 

2(G^ - 09) 
"2n = (r + l)G <5.3lta) 

22 = (GZ - 2:1 (Ç) (3.3to) 

(7+1) 

20^ + (7-1)G^ 
(3.34c) 

Substituting these expressions into Equation 3.33 and rearranging, 

we obtain the following quadratic in G^ - C^; 

+ (G- - c!)($ - . 0 (3.35) 
"1 ^ 7 

Let 
iSt^ - a# 

A 

!I!hen Equation 3.35 becomes. 

(G" - + (G' - <?)(? - (5-3Ê) 
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Solving this equation for we obtain, 

2 2 _ oQ (yZ - 1) (7+l)cf 
G - Cl - 2p^ VA " —JK 

+ i 
4 (i+l)2c^ 4(y+l)c2 aQfyZ-l) Q2Q2(y2_i)2 4oQ(7+i)2c^ ] i 

^ f A^ .V^ A^ ^ 

(3.37) 

To determine the constant of proportionality a, write Equation 

3.28 in the form 

E p V E p V p T f 
• — (5-38) 

Nov consider this equation as V —> 0, that is, 

" = ^ ^ ^ (5-3S) 

It is seen from Equation 5.57 that G-*» as V -* 0. Using this in 

Equation $.34c, ye see that, 
(7+1)Pi , , ^ 

lim Pp = -r-^ (5.^0) 
G-*-00 / 

Therefore p^ is "bounded and the last two limits in Equation 5.39 

vanish. Thus, ve have 

EgPg V 
a = lim —p; 

V->0 ^ 
EgPiV Pg 

= lim (-%^ ) lim (/) 
V-*0 ^ Y-*0 Pi 

= ̂  11. (^) D.ti) 
/ v-*o 

If it is assumed that the energy released in the explosion is 

distributed uniformly throughout the volume at the first instant, 

this implies that. 
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li. ̂  .1 
v-*o ^ 

Using this value of a, Equation 5.37 becomes, 

- 0Î) ^ 

4 (7+1)2 4 (y+l)3 c2 Q 4Q(7+1)S ^ ^ 

f P? 7P. VA^ * p2 ?= "" (y+l)PlVA 

(3.42) 

From this equation, it can "be seen that the velocity of propagation 

of the -wave-front approaches the speed of sound in the undisturbed 

region as V—*oo, that is G-^c^. 

Equation 3.^2 can nov be used to determine the jump in the pressure 

across the shock -wave as Y—*-oo, Using Equation 5.12b to eliminate - c 

in Equation 5.^2 we obtain. 

7+1 

1^(7+1)^ 4(7+1)=" Cf Q ̂  (y+i)4Q2 ̂  4Q(7+1)^ 1 i 

^ L 7 Pi VA2 + l7-l)Pi VA 

It can be seen from this relation that as V-» «», [p]"*0, which 

implies that the shock decays as it travels. 

We -will now consider a cylindrical blast wave. Since the radius R 

of the cylinder is in the direction of the normal to the wave-front, 

we have G = dE/dt. Considering a unit length of the cylindrical wave, 

we see that V = jtR^. Therefore the differential equation for the 

determination of R as a function of the time t is. 
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4(7-1)2 4(7+1)^ Q ^ ^2 ^(y+i)^ C^l il i 

7P^ itR^ A^ I? ît^R^A^ (7-1) Pn rtR^A J 

(5.44) 

Thus, -with the addition of an energy hypothesis, we are able to 

determine G and make the problem determinate. The jumps in the deriva

tives of the velocity, density and pressure across the shock wave are 

completely known. 
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VI. JUMPS IN THE VORTICITY MD CURRENT ACROSS A 

MAGNETO-GASDYNAMIC SHOCK 

In 1952, Truesdell (2k) studied the jump in the vorticity across a 

stationary shock wave for a two-dimensional wave in gasdynamics. He 

showed that the relation is of a purely kintnatic nature; in that he 

only used the equation of motion to obtain his result. 

In 1931} Lighthill (3S5) considered the same problem in a three-

dimensional flow, but he used the equation of energy to obtain his final 

relations. 

In the same year, Hayes (26) obtained a result similar to Lighthill, 

without the use of the equation of energy. He considered the case of a 

moving shock wave. 

Later, Kanwal (27) discusses the two-dimensional shock wave for 

magnetogasdynamics. He considers a stationary wave-front, and obtains 

both the jumps in vorticity and current across the shock wave. 

All of these authors employ different techniques. In the following 

section, we show that the results can be deduced in a simple, elegant, 

and straightforward manner by use of the compatibility conditions. 

In addition, for the sake of completeness, we discuss the complete 

three-dimensional case for a moving shock wave with finite and infinite 

electrical conductivity, 

A, Finite Electrical Conductivity 

In this section, we will find expressions for the jump in vorticity 

and the jump in current across a shock wave. We assume the magnetic 

field is continuous across the shock wave, but that the velocity, density. 
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and pressure have finite discontinuities across the front. 

The equation of motion for a finite conducting fluid is, 

-] n 
P "St P W,k ^ ^ ̂i,A = ° (4.1.1) 

The notation that will he used for the jumps in the quantities across 

the shock wave is given in Equation 3.15. 

Considering the fluid in front of the shock to "be uniform^ we apply 

the compatibility conditions from Equation $.l4 to the Equation 4.1.1 to 

obtain, 
BX _ ^ 

(Pl G + +U \ ® ^i,(/k,p 

+ ; = h ^i °k - h 

Wow: if we let 

and rearrange, this can he written as, 

(pi + g) - (pi + - (pi + ^1,3 

- ^0! ""i^p + h ̂in °i - n 

Using the compatibility conditions for the jump in vorticity, 

we obtain 

- =ijk 

= «ijk "j + %j,p) 

The jump conditions as given in Equations 5.2a and 5.2b imply that. 
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Therefore Equation 4.1.4 "becomes, 

[">il = ^iok Vj + «Ijk e'* a\ 

^ , 7 5 
^^ijk G *j,p G ^07 *k,6 (4.1.5) 

where we have used, 

\,a ® ^07 

T.Qp„75 -h V y =0 

But, 

Therefore, this is further reduced to, 

["•il = hm Vj + ®ijk e'* \a \ 

Now multiply this equation "by (p^ + E)(A^ - G) and substitute for 

^ from Equation 4.1.3 to obtain, 

(p^ + g)(\ - = (P]_ + Xj^p °k 

+ \(pi +S)eijk G^ofk,p 

•^^(Pl +G)eijk ^07 %5 

+ h ̂In ^ijk ""j ^ 

where we have used the relations, 

7B \,a = - ® V %? 



From Equation 3.2b, we can write 

Pi ("in - G) \ = - P (4.1.8) 
ry 

Now differentiate this vith respect to tangential coordinate u 

to obtain, 

- ^1 \Q: - Pi ^"",1 

^1 ~ ^1 ("in " \a (^'^'9) 

From Equation $.2a, we obtain 

Pg^ = - - G)E 

and since 

Pi + E = Pg 

we obtain 

(p^ + " G) = Pg (X, + - G) 

= Pi - G) (4.1.10) 

Using Equations 4.1.9 and 4.1.10 in Equation 4.1.7 'we obtain. 

Pi ^ ^ijk 

- \P^ U g Ilj g°^ 

+ \ (p^ + 5)Ap 6\j^ g°^ g^ b^ %6 

^ ̂In ^ijk ""j ^Ik\ (4.1.11) 

where we have usêd Equation 5.19 for Q^. 

Therefore we can write, 

l^^i^ ^ Gijk " Ï+Ô \ ̂ 
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* ^ ^ " 3  \ p  " a  

' 0^(1+5) ''j "li' (k.1.12) 

where 

Wn - G)5 

^ M 

has "been used, and 

Ô 
^2 -

Pi 

is the shock strength. 

Using the compàtihility conditions for the jump in current, we obtain 

'•^i^ " Tw ^ijk 

= fe "ijk \ "o 

Now using Equation 5.19 and the fact that this becomes 

[̂ î  " ̂  =ijk ̂ Ik \j (4.1.14) 

Substituting for \ in terms of the shock strength, 5, we finally 

obtain 

'^Wn ~ 

Therefore we have been able to find the jumps in vorticity and 

current across the shock wave in terms of the shock strength 5 and the 

quantities ahead of the shock. We also see from the above, that the 

jumps in vorticity and current can be obtained in the case of finite 

electrical conductivity by use of only the equation of motion and the 

shock relations. Thus the result is purely a kinematical one. 
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B. Infinite Electrical Conductivity 

For completeness in demonstrating the use of the compatibility 

relations for determining the jumps in the vortlcity and velocity across 

a shock wave, -we now consider the case of infinite electrical conductivity. 

The equation of motion and the magnetic field equation for this case 

are 

du 

p -d# + ̂ ,1 + ï; "S. \j ° 

ÔH 

We assume there are jumps in the density, pressure, velocity, and 

magnetic field across the shock vave. The notation to be used is then 

[ p ]  =  E  =  I  

[ p ]  =  P  =  P  

[H ] = a [H ]n =5: (4.2.2) 
XX X ̂ (J J X 

With this notation, the compatibility conditions become, 

[P,ll = I + 8* 5,a 

' Pi + 

"i,c< %j,p 

ÔU. 

" H ̂ ~ôt 
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[5#i = - : = + % 

ÔH. _ ôa. 
- - °ï G + 5t (4.2.5) 

Applying these compatibility conditions to Equations h,2.1a and 

k.2.1'b, we obtain 

- = 0 (4.2,4a) 

ÔCX 
-°1 G + Bt" - (%,j + \,a *j,p) 

+ (u^j +^j)(ai%j + «i^p *j,p) 

+ (H,i + OliCSkGk + s°^^k,a =k,p) = 0 (4"24b) 

We can now write these as, 

(Pl + E)Cuj^ + - G) ̂  ̂  + a|j)\ Dj^ 

• fe ("in + °n' =1 + pn. = (lt.2.5a) 

(u^ + \^ - G) âj. + - (%in + °h) \ ̂ ̂i 

•where we have used the notation that, 

Ô\. QO 
gi = - (Pi + S)-5t - (Pi + S)("i + kp)G 
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" ® " "Gt (^Ik °k,Qi *i,p 

+ fe ("ip + "p) 8°^%L,o (4^2.6») 

ÔQ!. 
fl = - -5# + (Hip + V i,a - ("ip + "1 i.a 

- («11 + ^,,a"k,p (''•2-6l'> 

Resolving these into the normal and tangential components^ ye obtain 

("in + ̂ n - G) n = ^n (^.2.7a) 

("in + - G)Ô p + (H^p + " (%!% + Oa)\p = fp (4.2.7%) 

(p^ + ^)(\n ^n " ^ (®l7 + P = §% (4.2.7c) 

(Pi + r)(u^ + - G)Xp - fe + Vâp = gp (it.a.Td) 

First eliminating from Equations 4.2.7b and 4.2.7d, and then 

eliminating Â,^ ^e obtain. 

((»1 + 5'("ui " "n - C'ln ^ fe("ln'^u>("lp'^p' ^ 

= («1^ + - G)gp + ̂  fp (k.2.8a) 

((Pl + :)(^n + \ - %; {-Hjjj + %)®)Op +(Pi+E)(Uin+X^-G)(E^p+ap) 

= ("in + Sp + (Pi + 5) (>% + X^ - G)fp C^.2.8b) 

These can now be written in the form 

^ + "p ̂  \ (^-2.9a) 
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where we have used the notation, 

L = (P-j_ + \ ^ (4,2.10a) 

Mp = (Hi. + + Gp) 

Hp = (pj^ + S)(Uj^ + \ - G)(H + Op) (lt.2.10o) 

hp ° (^Tn + - °)Gp + SÏ (Kin + "n)fp (4.2.103) 

% ' (Hln + + (Pl + \ - G)fp {K2.10e,) 

We now substitute for 5^ from Equation 4,2.913 into Equation 4.2.7c 

to obtain, 
U e 

n ((Pl + - %§% (H? + o/)) = (H? + of)-; 4-n|j 

(4.2.11) 

How let 
ÏÏ 

P = (p^ + - G) r -çl^- (4.2.12a) 

Q = g% - + 0:^) (4.2.121)) 

and this equation becomes, 

p \^ = Q - p (4.2.15) 

Therefore we have found à^, cc^ in terms of known quantities 

and the unknown quantity p. That is, 

(4.2.14a) 

h , Mo 
S " if ̂  ^ (4.2.14b) 

f 
a = n (4.2.14c) 
n " - G) 

E e_ ÏÏ Q 
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Now using the compatibility conditions in the relations for the 

jumps in the vorticity and current, we obtain 

= =ijk 

" ̂ijk 

^ ̂ ijk (^n "k + ̂  ^ijk ^k,afj,p 

" =ijk ^ijk ^k,Qfj,p (4.2.15a) 

ïïît ^ijk 

~ 'H ̂ ijk ^ ̂  ^;Q: 

" fe ^ijk ̂  Tw ^Ijk \a Xj,p (4.2.15b) 

Thus it is seen that the jumps in the vorticity and current depend 

only on the quantities and 0^ respectively, and do not depend on the 

normal components and â^. 

Since and depend on the unknovn quantity p, we must use another 

basic equation besides the equation of motion and the magnetic field 

equation to make the problem determinate. This means it is no longer of 

a purely kinematic nature. 

Therefore we use the equation of energy as our other equation, that 

IS. 

^ = Ir (4.2.16) P dt =âk 

where h is enthalpy. 

Using the equation of state. 
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Equation k.2.l6 "becomes,, 

ag + 7 P = 0 (4.2.17) 

where "we have used the equation of motion to simplify the equation. 

Applying the compatibility equations to this equation we obtain, 

-Gp + II + (^x^ + \.)(p Oj + 

+ 7{Pi + n. + = 0 {lt.2.18) 

Letting, , 

• ôt • Kp ^q: • ?(Pl ^i,a *i,p' (4.2.19) 

this can be written as, 

- G)p + 7 (p^ + p) \^ = d (4.2.20) 

With this last equation, the quantities \ and â can now be written 
P P 

in te::ms of known quantities. That is, 

i, • S <> - -'f-'4 

where 
7(P-, + P) 

^ ^ ^ P (4.2.22) 

Thus the above results lead to the calculation of the jumps in the 

vorticity and the current across a shock wave. We see that in this case, 

the energy equation is needed. 

The quantities like obtained from the shock relations can be 

substituted and simplified further, but since the derivatives of are 

involved in the final expressions, the simplifications do not lead very 

far. 
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V. CONCLUSION 

In this work, we have studied magnetogasdynamical problems in the 

presence of finite conductivity. Although resistivity is a dissipative 

parameter, its nature is distinct from that of other similar parameters. 

It is interesting to make a comprehensive study of the relative importance 

of such parameters. The distinctive feature of conductivity in magneto-

gasdynamics is that it does admit of certain singular surfaces. The 

singular surfaces vhich we have defined are the ones which admit of 

discontinuities in certain variables. We have not only asserted the 

existence of such surfaces, but have also studied how the discontinuities 

grow. 

In a real gas, all the dissipative parameters are called into play. 

But as we have shown, these act more predominately at different wavefronts. 

The question remains open as to which discontinuity is generated for an 

assigned set of initial conditions. There is the fast wave, the slow 

wave, the Alfven wave and the sound wave. These waves are all possible 

in a given medium. It is possible, although we do not feel it has been 

proven, that there do exist certain initial conditions due to which only 

one type of wave is generated. 

As is well known, a shock wave is a mathematical discontinuity which 

is introduced for convenience. Such an ideal discontinuity surface 

cannot exist in a real gas. The non-linearity of the equations has the 

effect of continually changing the waveform, to cause It to become 

steeper and steepeF, On the contrary, the dissipative mechanisms 

continually assert themselves to smooth out the profile. There eJâsts a 



competition between these two mechanisms. With the increase in the 

gradients of the quantities; the effect of the dissipative mechanisms 

increases. Thus it is possible that there exists a limit beyond which 

the gradients cannot increase and therefore do not allow a shock to form. 

Even so, it is well known that the region in which these dissipative 

mechanisms ultimately dominate, is of very small thickness; so in 

actuality, w'e always have a shock layer instead of a shock surface. It 

is also well known, that in these regions the picture of a gas as a 

continuum ceases to remain valid (lO). Since the thickness of the layer 

is small, the usual procedure is to substitute a shock for the layer and 

modify it by the use of the asymptotic theory. The latter studies are 

known as the studies in the structure of shock waves. 

For all real gases, we thus find that the combination of the studies 

of discontinuity surfaces with an asymptotic study of thin layers provides 

a fairly good picture of the flow. There do remain other interesting ques

tions. It would be more realistic to take the conductivity as variable, 

instead of constant as we have done. The theory of singular surfaces can 

then also be applied. Such studies are being made for stationary shocks 

(20, 29, 32i). Since the temperature changes across a shock wave may be 

large, a variable conductivity would describe the actual situation more 

correctly. In fact, in these papers, the studies are made under the 

assumptions of zero conductivity ahead of the shock and infinite conducti

vity behind the shock. These are called ionization fronts by the authors. 

The theory of singular surfaces enables us to study these problems for 

moving wave profiles. This study would be more general than the studies 

done thus fas. 
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VI. APEEKDIX 

Thro'ughout the work; we assume a number of results taken from 

differential geometry, the geometry of a moving surface, and the compati

bility conditions which were obtained from the stated references. Thus 

we note below some of the results needed in the work. 

A. Results from Differential Geometry for a Moving Surface 

Consider a moving surface^ (t) represented by, 

Xi = (j)^ (u\u^, t) i = 1, 2, 5 (A.l) 

1 2 where the u and u are curvilinear coordinates of the surface and the 

are the orthogonal cartesian coordinates referred to a fixed coordinate 

system. We assume throughout that the (j)^ posHeLSB the necessary differenti

ability and continuity properties required. We shall use the summation 

convention from tensor analysis, where we must distinguish between 

covariant and contravariant indices when the indices represent the 

curvilinear coordinates u^, while for x^ we do not make this distinction. 

Latin indices range over 1, 2, 3 and Greek indices will range over 1, 2. 

From any book on differential geometry 01!), we can write the 

coefficients of the first fundamental form for the surface as 

where the comma denotes partial differentiation. 

Since, 

are vectors lying in the tangent plane, we define n^ to be a unit vector 

normal to the surface, and thus we have the relations. 
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= 1 (A. 4a) 

%l,a =i = 0 

It can "be seen that any vector can then "be decomposed into its 

normal and tangential components, that is, 

A. = n. + a" (A.5) 

•where is any arbitrary vector. 

Also from the theory of surfaces, we have the relations, 

= Vl 

V =1,7 

•where the x. are the components of the second covariant derivative of 
x,Qp 

the quantities x. and the "b ^ are the components of the second fundamental 
X op 

form of the surface. 

In addition, •we have, 

2.n = gOP (A.7) 

•where JTl is the mean curvature of the surface and is given in terms of 

the curvature as, 

JTl = i + kg) (A.8) 

1 2 vhere and are curvatures.in the u and u directions respectively. 

Lane (32) shows that for parallel surfaces, 

jTl - k n 
_a = ——2— (A.9) 

1-2 Jl n + k nP o o • 

•where J1 is the mean curvature of the first surface, k is the Gaussian 
o " 

curvature of the first surface, -where in general, 

k = k^ kg (A. 10) 
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and n is the distance along the normal to the first surface. 

We have also made use of the fact that, 

which Thomas (ll) has proved, 

B. Compatibility Relations 

A singular surface (t) is one across which there are jumps in a 

function Z or its derivatives. We consider the jumps or the discontin

uities in a function Z and its derivatives across a moving surface. The 

function Z could î)e pressure, density, entropy, or the components of 

velocity and magnetic field. 

We define the discontinuity in Z as 

[Z] = Zg - Z^ (A. 12) 

where the subscripts 1 and 2 refer to the sides 1 and 2 of the surface. 

We assume the normal is pointing from side 2 to side 1, and that the 

side 1 is ahead of the moving surface. A similar notation is used for 

the derivatives of Z. 

We use the notation, 

[Z] = A , [Z ]n. = B , [Z ..] n.n. = C (A.15) 
J J" J 

Then Thomas (ll) has obtained several compatibility conditions. The 

geometrical conditions of compatibility of the first order are, 

[Z ] = Bn + gOP A X, (A.l4a) 

The kinematical condition of compatibility of the first order is, 

[|] = - K + f (A.lto) 
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The geometrical conditions of compatibility of the second order are, 

+ g"'' (A - Bb^„) %j,T ('*••1'^' 

And finally we have the kinematical conditions of compatibility of the 

second order, which are 

(^1 - (-0G + If - g°P ^)n. + g°P (A.ll^a) 

[gl = CS^ - G i + G g^P A ^ ^ (A-ll^a) 

where 

= [#] 

These are the compatibility conditions which we have used throughout 

the work where the A, B, and C are replaced by the appropriate quantities 

depending on which property of the fluid we are considering. 

Another relation we have used frequently is, 

[pq] = [p][q] + pi [q] + [p] (a.15) 

which follows immediately from the definition of a jump across the surface, 

C. Fundamental Conservation Equations and Shock 

Conditions for Gases 

Equations in continuum mechanics can always be written as conserva

tion laws. When written in this form, they ean be rearranged and 

combined in an integral form instead of as the usual system of first 

order partial differential equations. The integral forms are more 

fundamental since they are valid even across surfaces of discontinuity. 

Using Reynolds transport theorem, one can always obtain the differential 
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forms from the integral forms. In audition, the integral forms can he 

used to obtain the shock relations. The differential forms are not valid 

in this region, where the derivatives have no meaning. 

In order to make the work self-contained, we indicate "below the 

proof of the Reynolds transport theorem, and explain how the integral 

relations can be used to obtain the differential forms and the shock 

relations. 

where is a coordinate system moving with the fluid, and is a 

fixed system. 

D. Reynolds Transport Theorem 

This theorem states that 

where f is an arbitrary differential function of x^ and t 

Proof: 

Let 

X = X (X , t) i,j = 1, 2, 5 
X X J 

^ ô(x^, Xg, x^) 

= Ô(X^, Xg, X^) 

Then we have. 

- / dt / f 
f V O 
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V 

vhere we have used the fact that, 

dJ _ T 
dt - J 

Thus ve have obtained the desired result. 

Expanding the material derivative and applying Gauss' Theorem, we 

can further write this as, 

II dV + I f G dS (A. 17) 

V J Y J S 

where G is the component of the velocity of the surface S along the 

outward normal to S. 

We will now give the derivation of the differential form of the 

equation of continuity from integral form; 

p dV = 0 (A. 18) 

^ / f dV = 

Applying Equation A.l6 to this equation, with f = p, we obtain 

(|| + P .) dV = 0 (A.lQ) 

v 

Since V is arbitrary, it follows that, 

+ p u . =0 (a, 20) 
Q u J. 

•which is the familiar differential form of the equation of continuity. 

Similarly, the differential forms can be derived from the integral 

forms for the conservation of momentum and the conservation of energy. 

Now to use t .e integral forms to obtain the shock relations, we 

first consider V to be a moving volume in the fluid which is divided by 
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the moving surface21 into tvo volumes, and V^. Let S he the surface 

of V, and let and denote the portions of S -which form part of the 

"boundary of the volumes and Vg respectively. The remaining part of 

the boundaries of and Vg -will be furnished by the surface ZI . 

How, 

^ ^ fdV = |r fdV + |r/ fdV (A. 21) 
dt I dt I dt j 

J \ 

Applying Equation A.IT to this equation, we obtain, 

fdV = / ^ dV + fu^ dS + f^ GdS 

It / f av = / av + / as _ / f^G as 

J Vg 

•where is the unit vector normal to the surface S everywhere. It is to 

be noted, that if the unit normal vector to the surface 21 is assumed 

positive •when it points from side 2 to side 1 across ZZ , the normal 

velocity of the surface, G, is positive when Y. is taken as part of the 

boundary of and negative when it is taken as part of the boundary of Vg. 

Thus substituting these results into Equation A.21, we obtain, 

^  I fdV= / ||dV+/ fu^dS + / (f^-fg)G dS (A.22) 

J V J V J S 

Using the equation of continuity, we now give an example of the 

derivation of the shock condition. Using Equation A.22 on the integral 

form of the equation of continuity as given by Equation A.lS, we obtain 

^ dV + pu^dS + pu^ dS + ̂  (p^-Pg)G dS = 0 (A.2$) 
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vhere and denote the values of the density on the sides 1 and 2 of 

^ , Now let the volume V approach zero at a fixed time t, such that in 

passing to the limit, it "becomes a finite part of the surface ̂  , 

Then the volume integrals are of a higher order than the surface integrals, 

and can he neglected. Also, 

Si as Pi as 

,j. P2 "2n as 
O 

where u^ and u^^ are the normal components of the fluid velocity on 

sides 1 and 2 of the surface respectively. 

Therefore we obtain, 

[p]^ - G) - pg (Ug^ - G)] dS = 0 

'Z. 
Since the Z ̂ is arbitrary, ve finally obtain, 

P^ - G) = P2 (^2n " (A.2i)-) 

•which is the desired shock relation. 

Similar results can be obtained from the other conservation laws. 

pu dS 
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