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Abstract 

We report benchmark calculations of the correlation matrix renormalization (CMR) approach 
for 23 molecules in the well-established G2 molecule set. This subset represents molecules 
with spin-singlet ground state in a variety of chemical bonding and coordination 
environments. The QUAsi-atomic Minimal Basis-set Orbitals (QUAMBOs) are used as local 
orbitals in both CMR and full configuration interaction (FCI) calculations for comparison. 
The results obtained from the calculations are also compared with available experimental data. 
It is shown that the CMR method produces binding and dissociation energy curves in good 
agreement with the QUAMBO-FCI calculations as well as experimental results. The CMR 
benchmark calculations yield a standard deviation of 0.09 Å for the equilibrium bond length 
and 0.018 Hartree/atom for the formation energy, with a gain of great computational 
efficiency which scales like Hartree-Fock method. 

Keywords: Electron correlation, First principles, Gutzwiller  

 

1. Introduction 

First-principles calculation of strongly-correlated electron 
materials remains a grand challenge. The strong electron 
correlation effects drive the systems beyond descriptions of 
the normal Landau Fermi liquid picture [1, 2], where 
commonly used density functional theory (DFT) excels. The 
multi-reference nature of the ground-state many-body wave 
function in strongly-correlated electron systems also renders 
the (single-reference) quantum chemistry “gold standard” 
coupled-cluster method at single and double excitation level 
broken down [3-5]. Multi-determinant-based quantum 
chemistry methods, such as multi-reference coupled-cluster 
[6], multi-configuration self-consistent field, FCI and multi-
reference CI [7-9], could be very accurate. However, these 
methods are limited to samll molecules due to the rapid 

increase in complexity of the many-body wave function as 
size of the system increase. Quantum Monte Carlo (QMC) 
method has achieved impressive progress, especially with the 
aid of massive parallelization in supercomputers [10-14]. The 
applications to real correlated materials have been 
demonstrated [15], but generally it is computationally still 
very demanding. Meanwhile, hybrid approaches which 
combines DFT with many-body techniques, such as 
DFT+onsite Coulomb interaction [16, 17], DFT+dynamical 
mean-field theory [18-20], and DFT+Gutzwiller method [21-
26], have been shown to be very successful in describing real 
correlated materials. However, the inclusion of adjustable 
screened Coulomb parameters limits the predictive power of 
the hybrid methods. Moreover, the question of how to 
subtract the double-counting term from the DFT-related local 
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onsite correlation contributions remains open and still under 
active investigations [27-31]. 

Recently, we have proposed a highly efficient ground state 
approach for electronic structure and total energy 
calculations of strongly correlated electron systems without 
using adjustable Coulomb parameters, namely, the 
correlation matrix renormalization (CMR) method [32-35]. 
The CMR method adopts Gutzwiller variational wave 
function (GWF) to calculate the expectation value of the ab 
initio many-electron Hamiltonian describing the physical 
system, and follows the idea of commonly used Gutzwiller 
approximation in the evaluation of both the one-particle 
density matrix and two-particle correlation matrix [36-39]. 
The Gutzwiller approximation allows the expectation value 
of the many-electron Hamiltonian based on GWF in our 
CMR method to be evaluated with much reduced 
computational complexity. The computational efforts of the 
CMR method therefore scale as N4 or better with respect to 
the number of basis-set orbitals N, like Hartree-Fock. 
Moreover, CMR method has no double counting issues in 
evaluating the total energy. As shown in previous studies  
and will be shown in the benchmark calculations to be 
presented in this paper, CMR method can produce fairly 
accurate binding energy curves of various molecules 
especially at the bond-breaking and longer inter-atomic 
distances which are notoriously difficult to deal with due to 
the strong electron correlation effects. 

In our previous work [33], we presented the details of the 
CMR method for both molecular and periodic systems, 
including a simplified general form of the orbital 
renormalization factors and sum-rule corrections as the 
improvement in formulations. The good accuracy of the 
CMR method has also been demonstrated in several 
molecules, one-dimensional linear hydrogen chain and three-
dimensional hydrogen atomic crystals, with a comparison to 
experiments or highly accurate numerical calculations, such 
as FCI and QMC. 

While the details of the CMR theory, formalism, and some 
of its application have been presented previously, the aim of 
this work is to make a relatively more comprehensive 
assessment of the CMR method through benchmark 
calculations of a subset of molecules with spin-singlet 
ground state, from the G2 test set. The G2 molecules set was 
first established by Pople and collaborators and are widely 
accepted to assess new theoretical methods [40]. The CMR 
calculations for higher spin-multiplet states are possible and 
will be presented in a follow-up publication. We will show 
that the CMR method produces binding and dissociation 
energy curves in good agreement with FCI calculations as 
well as experimental results. 

The rest of the paper proceeds with a brief review of the 
CMR method, followed by the benchmark calculation results 
and discussions of the G2 subset of molecules. Finally, we 

give a summary and some perspective on the future 
development of the CMR method. 

2. Methods 

In the form of second quantization, the full ab initio non-
relativistic Hamiltonian for an interacting many-electron 
system can be expressed as 

𝐻𝐻 = �E𝑖𝑖Γ| �Γ𝑖𝑖 〉〈Γ𝑖𝑖 �|
𝑖𝑖Γ

+ � 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖σ
† 𝑐𝑐𝑖𝑖𝑖𝑖 σ

′

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,σ

 

+
1
2

� 𝑢𝑢
′

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ,𝜎𝜎𝜎𝜎 ′

(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑐𝑐𝑖𝑖𝑖𝑖σ
† 𝑐𝑐𝑖𝑖𝑖𝑖 𝜎𝜎 ′

† 𝑐𝑐𝑘𝑘𝑘𝑘σ′𝑐𝑐𝑘𝑘𝑘𝑘𝜎𝜎                (1) 

where i, j, k, l are the atomic site indices, α, β, γ, δ refer to 
orbital indices, and σ, σ’ indicate the spin indices. Here, t is 
the one-electron hopping integral expressed as 
𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 〈𝜙𝜙𝑖𝑖𝑖𝑖 ��𝑇𝑇� + 𝑉𝑉�𝑖𝑖𝑖𝑖𝑖𝑖 ��𝜙𝜙𝑖𝑖𝑖𝑖 〉                                             (2) 

where T�  and V�𝑖𝑖𝑖𝑖𝑖𝑖  are the operators for kinetic energy and 
electron-ion interaction, and u is the two-electron Coulomb 
integral expressed as 

𝑢𝑢(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖;𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) = �𝑑𝑑𝑑𝑑� dr′𝜙𝜙𝑖𝑖𝑖𝑖∗ (r)𝜙𝜙𝑖𝑖𝑖𝑖∗ (r′)U���r

− r′|�𝜙𝜙𝑘𝑘𝑘𝑘(𝑑𝑑′)𝜙𝜙𝑘𝑘𝑘𝑘 (𝑑𝑑)                               (3) 

with the Coulomb interaction operator U�. In eq.(1), the first 
term is a spectral representation of site-wise local 
Hamiltonian, in which {Γi} are eigenstates of the local onsite 
many-body Hamiltonian Hi,loc, which can be written as 

H𝑖𝑖,loc

= �𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎
† 𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎

𝑖𝑖𝑖𝑖

+
1
2

� 𝑢𝑢(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; 𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘)
αβγδ,𝜎𝜎𝜎𝜎 ′

𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎
† 𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎 ′

† 𝑐𝑐𝑖𝑖𝑘𝑘𝜎𝜎 ′𝑐𝑐𝑖𝑖𝑘𝑘𝜎𝜎                      (4) 

𝐸𝐸iΓ ≡ �Γi�H𝑖𝑖,loc �Γi� is the energy of the local configuration 
| �Γi〉� . The second and third terms in eq. (1) describe the 
nonlocal one- and two-body contributions, respectively. Σ' 
means that the pure local on-site terms are excluded from the 
summation.  

The ground state many-body wave function in the CMR 
approach is approximated by the Gutzwiller variational wave 
function, which is constructed based on a non-interacting 
wave function �|Ψ0〉 

�|ΨG〉 = ��� giΓ
Γ

�|Γ𝑖𝑖 〉〈�Γ𝑖𝑖| ��
𝑖𝑖

�|Ψ0〉,                               (5) 

where {giΓ} are the Gutzwiller variational parameters. Due to 
strong electron correlations, the local onsite configuration 
weight can deviate significantly from the mean-field value 
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determined by non-interacting wavefunction Ψ0 . Therefore, 
the key Gutzwiller parameters { giΓ}  are introduced to 
optimize the occupation probability of the local configuration 
{Γi} in response to electron correlations. 

The total energy in CMR thus has the following form 
𝐸𝐸CMR = 𝐸𝐸loc + 𝐸𝐸𝑖𝑖𝑘𝑘

(1) + 𝐸𝐸𝑖𝑖𝑘𝑘
(2) + 𝐸𝐸sr ,                                  (6)  

with 

𝐸𝐸loc = �EiΓ𝑝𝑝iΓ 
iΓ

,                                                              (7) 

𝐸𝐸𝑖𝑖𝑘𝑘
(1) = � 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

′

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝜎𝜎

〈𝑐𝑐𝑖𝑖𝑖𝑖σ
† ��𝑐𝑐𝑖𝑖𝑖𝑖 σ〉G,                                        (8) 

𝐸𝐸𝑖𝑖𝑘𝑘
(2) =

1
2

� 𝑢𝑢
′

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ,𝜎𝜎𝜎𝜎 ′

(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)〈𝑐𝑐𝑖𝑖𝑖𝑖σ
† 𝑐𝑐𝑖𝑖𝑖𝑖 σ′

† ��𝑐𝑐𝑘𝑘𝑘𝑘σ′𝑐𝑐𝑘𝑘𝑘𝑘𝜎𝜎 〉G, (9) 

𝐸𝐸sr =
1
2

� λ𝑖𝑖𝑖𝑖 �〈𝑖𝑖�𝑖𝑖𝑖𝑖𝜎𝜎 𝑖𝑖�𝑖𝑖𝑖𝑖𝜎𝜎 ′〉𝐺𝐺 − 𝑁𝑁𝑒𝑒〈𝑖𝑖�𝑖𝑖𝑖𝑖𝜎𝜎 〉𝐺𝐺�.
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝜎𝜎𝜎𝜎 ′

        (10) 

Here 𝑁𝑁𝑒𝑒  is the total number of electrons. The expectation 
value of a generic operator 𝑂𝑂�  with respect to the ΨG  is 
abbreviated as 〈𝑂𝑂�〉𝐺𝐺 ≡ �ΨG�𝑂𝑂��ΨG� , and similarly for 
〈𝑂𝑂�〉0 ≡ �Ψ0�𝑂𝑂��Ψ0�. 

Following the kinetic energy renormalization idea of the 
Gutzwiller approximation (GA) [36, 38-39], the single-
electron density matrix is evaluated approximately as 
〈𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎

† 𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎 〉G ≈ zi𝑖𝑖𝜎𝜎
𝑖𝑖𝑖𝑖 〈𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎

† 𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎 〉0,                                       (11) 

with z𝑖𝑖𝑖𝑖𝜎𝜎
𝑖𝑖𝑖𝑖 = z𝑖𝑖𝑖𝑖𝜎𝜎 z𝑖𝑖𝑖𝑖 𝜎𝜎  if (𝑖𝑖𝑖𝑖) ≠ (𝑖𝑖𝑖𝑖) and 1 otherwise. Within 

the CMR approach, the orbital renormalization factor has the 

form of zi𝑖𝑖𝜎𝜎 = �z𝑖𝑖𝑖𝑖𝜎𝜎𝐺𝐺𝐺𝐺  based on the exact analytical solution 

of hydrogen dimer. Here z𝑖𝑖𝑖𝑖𝜎𝜎𝐺𝐺𝐺𝐺  is the renormalization factor by 
the conventional Gutzwiller approximation, 

z𝑖𝑖𝑖𝑖𝜎𝜎𝐺𝐺𝐺𝐺 = �
�𝑝𝑝𝑖𝑖Γ𝑝𝑝𝑖𝑖Γ′��Γi�𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎

† �Γ′i��

�𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎0 (1 − 𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎0 )
                                 (12)

ΓΓ′

 

with 𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎0 = 〈𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎
† 𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎 〉0. The two-electron correlation matrix 

is approximated by the following factorized form, 

〈𝑐𝑐𝑖𝑖𝑖𝑖σ
† 𝑐𝑐𝑖𝑖𝑖𝑖 σ′

† � �𝑐𝑐𝑘𝑘𝑘𝑘σ′𝑐𝑐𝑘𝑘𝑘𝑘𝜎𝜎 〉G

= 〈𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎
† 𝑐𝑐𝑘𝑘𝑘𝑘𝜎𝜎 〉G 〈𝑐𝑐𝑖𝑖𝑖𝑖 𝜎𝜎 ′

† 𝑐𝑐𝑘𝑘𝑘𝑘𝜎𝜎 ′〉G

− 𝑘𝑘𝜎𝜎𝜎𝜎 ′〈𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎
† 𝑐𝑐𝑘𝑘𝑘𝑘𝜎𝜎 〉G〈𝑐𝑐𝑖𝑖𝑖𝑖𝜎𝜎

† 𝑐𝑐𝑘𝑘𝑘𝑘𝜎𝜎 〉G        (13)  

The Hartree-Fock type factorization introduces errors in the 
calculations of inter-site Coulomb interactions. The errors are 
alleviated by the last sum-rule correction term 𝐸𝐸sr  in eq. (6), 

which effectively shifts the inter-site two-body terms to more 
accurate onsite evaluations. The prefactor λ𝑖𝑖𝑖𝑖  is determined 
by the weighted average of the relevant inter-site two-
electron Coulomb integrals. 

λ𝑖𝑖𝑖𝑖 = −
∑ 𝑢𝑢(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑅𝑅𝑖𝑖𝑖𝑖−6
𝑖𝑖≠𝑖𝑖 ,𝑖𝑖

∑ 𝑅𝑅𝑖𝑖𝑖𝑖−6
𝑖𝑖≠𝑖𝑖,𝑖𝑖

                                (14) 

where 𝑅𝑅𝑖𝑖𝑖𝑖  is the distance from atom j to atom i and 𝑅𝑅𝑖𝑖𝑖𝑖−6 
services as the weighting factor here. The exact form of the 
weighting factor is not crucial, as long as it decays 
sufficiently fast. 
    The minimization of the CMR total energy functional 
amounts to solve a coupled set of eigen-value equations to 
determine �|Ψ0〉 and {𝑝𝑝iΓ}, in a self-consistent way [32, 33]. 
The solution for �|Ψ0〉 is equivalent to Hartree-Fock approach 
with renormalized single-particle Hamiltonian, which scales 
as N4 with the dimension of basis set orbitals N. The onsite 
configuration block { 𝑝𝑝iΓ } is solved atom by atom 
independently, with a linear scaling of the number of atoms. 
Therefore, the CMR method features a Hartree-Fock like 
scaling overall. 

In our implementation, we use the QUAsi-atomic Minimal 
Basis-set Orbitals (QUAMBOs) [41] as the basis-set to 
represent the many-electron Hamiltonian of the system in our 
CMR calculations. The same QUAMBO basis set is also 
used in FCI calculations for comparison. The results from the 
CMR and FCI calculations are also compared with available 
experimental results. The QUAMBOs maintain maximally 
the atomic characters while preserve the occupied mean-field 
molecular orbital subspace, which encodes the favourable 
bonding environment effects. They have been shown to be 
good approximations to the multi-configurational self-
consistent field-determined correlating orbitals, recovering a 
large percentage of the correlation energy [42]. Our CMR 
computational package uses an interface with PySCF to 
obtain the ab initio molecular Hamiltonians, the atomic 
orbitals and Hartree-Fock occupied molecular orbitals [43]. 
QUAMBOs are then constructed and the corresponding 
Hamiltonian is derived, which is subsequently solved within 
the CMR approach. For computational efficiency, we also 
replace the local onsite configurations {Γ} by the Fock states 
generated based on QUAMBOs, which holds approximately 
owing to the dominance of the onsite density-density type 
interactions. 

3. Results and Discussion 

In our earlier publication [32-35], we demonstrated the 
satisfactory performance of the CMR approach in several 
small molecules. Here we aim to present a relatively more 
comprehensive assessment of the method on a larger set of 
molecules from the G2-test set [40]. The molecules in this 
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test set come from the first three rows of elements in the 
periodic table and have reliable experimental data to compare. 
The results are presented in two groups: homonuclear dimers 
and heteronuclear molecules. 

3.1 Homonuclear Dimers 

We have calculated all the dimers with singlet ground 
states in the first three rows of the periodic table. Figure1 
shows the binding and dissociation curves of the dimers. The 
calculated equilibrium bond length and formation energies 
are summarized in Table 1. The QUAMBOs adopted in the 
CMR and full configuration interaction (FCI) calculations 
are constructed based on restricted Hartree-Fock molecular 
orbitals expanded in terms of aug-cc-pVTZ basis set [44]. 
The available experimental data are also included for 
comparison. 

For dimers with effective two valence electrons, such as 
H2, Li2 and Na2, the CMR method produces potential energy 
curves in perfect agreement with the FCI results based on 
QUAMBOs. While the theoretical results agree very well 
with the experiment for H2, the formation energy errors are 
about 0.01 Hartree per atom (Har/atom) for Li2 and Na2. The 
equilibrium bond lengths are also overestimated by 0.11 and 
0.42Å, which can be attributed to the approximation that, 
inner semi-core shells of 1s orbital for Li and 2p orbitals for 
Na are treated as frozen core shells in the present QUAMBO-
based FCI and CMR calculations. In fact, these semi-core 
shells are often required to be treated as valence electrons for 
accurate energies as discussed in the DFT pseudopotential or 
effective core potential community [45, 46]. 

Accurate potential energy curves of halogen dimers have 
been proven to be very difficult to produce by ab initio 
calculations [47, 48]. Remarkably, the results of F2 and Cl2 

obtained from our CMR are in close agreement with 
QUAMBO-based FCI calculations. Both theoretical curves 
follow the experimental data very well. The CMR 
equilibrium bond lengths are quite accurate, with 0.02 and 
0.04 Å of deviations for F2 and Cl2 respectively. The 
formation energy errors are also very small, 0.002 Har/atom 
for both F2 and Cl2. Overall, the CMR approach predicts 
satisfactorily the binding and dissociation behaviour for 
dimers with effective single bond, like alkali and halogen 
dimers. 

The description of the dissociation behaviour of N2 and P2 

involves highly open-shell atoms with three unpaired 
electrons and is rather challenging theoretically [49-51]. Yet, 
the CMR approach agrees very well with the QUAMBO-
based FCI in the calculations of binding and dissociation 
curves of N2 and P2 dimers as shown in Figure 1. Both 
theoretical results are also close to experimental data, with 
about 0.04 Å or less for the equilibrium bond length 
deviations and less than 0.02 Har/atom for the formation 
energy errors. 

The proper description of the C2 dimer dissociation 
involves breaking a multiple bond, therefore is also a great 
theoretical challenge [51,52]. Nevertheless, the CMR 
approach consistently predicts reasonably accurate binding 
and dissociation energy curve compared to the QUAMBO-
based FCI method. In comparison with experiment, the CMR 
calculation shows a small equilibrium bond length deviation 
of 0.05 Å and a formation energy error of 0.02 Har/atom. 

3.2 Heteronuclear Molecules 

We intended to benchmark the performance of the CMR 
method by comparing with the FCI calculations under the 
same QUAMBOs basis. Therefore, we focused on 
heteronuclear molecules of relatively small size, where 
QUAMBO-based FCI calculation is still affordable. The 
theoretical potential energy curves are shown in Figure 2, 
and equilibrium bond lengths and formation energies are 
summarized in Table 1. 

For the heteronuclear dimers with an effective single bond, 
such as HF, HCl, LiH, LiF, NaCl and FCl, the CMR method 
performs very well in calculating the binding and 
dissociation curves, as shown by the comparison with the 
QUAMBO-based FCI results in Figure 2. Generally, the 
CMR calculated results also show very small errors of less 
than 0.01Å for equilibrium bond lengths and 0.01 Har/atom 
for the formation energies, when compared to the 
experimental data. The exceptions are LiF and NaCl, which 
show relatively large formation energy errors of 0.027 and 
0.056 Har/atom, respectively. It can be attributed to the 
frozen core approximation in the QUAMBO-based FCI and 
CMR calculations as discussed previously. 

The hydride polyatomic molecules HmXn, including H2O, 
H2S, NH3, PH3, CH4, and SiH4, represent a first set for 
benchmarking the CMR method in treating various 
geometrical environments with single polarized covalent 
bond. The theoretical total energies as a function of 
uniformly stretching H-X bond from the CMR calculations 
are in good agreement with the QUAMBO-based FCI results. 
The CMR equilibrium bond lengths and formation energies 
are also reasonably accurate, with the errors under 0.02 Å for 
the bond length and about 0.02 Har/atom for the formation 
energy in comparison with experiment.  

Finally, the calculations of oxide molecules XOm, 
including CO, CO2 and SiO, demonstrate the quality of the 
CMR method in describing the formation and breaking of 
double polarized covalent bond. Indeed, the QUAMBO-
based CMR and FCI calculations give quite consistent 
binding and dissociation curves for all of them. On a more 
quantitative level, the agreement between QUAMBO-based 
CMR and FCI is not uniform across the set of molecules. 
More detailed energy component analyses for the results will 
be necessary to identify the underlying reasons, which may 
lead to further improvement of the CMR approach. 
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It should be pointed out that the numerical calculations 
results of some molecules are not exactly the same as those 
reported in our early publication [32]. In principle, the 
minimal basis set orbitals in the CMR and FCI calculations 
can be variationally optimized. In the case of hydrogen 
molecule, it is found that the result from numerically 
optimized minimal basis-set orbitals is very close to the 
results obtained from the QUAMBO. For molecules like N2, 
the numerical orbital optimization shows a bit bigger effect 
close to the atomic limit. As a result, some optimization for 
the QUAMBOs were carried out in the work of Ref.32. 
However, the orbital optimization incurs additional 
complications for the numerical simulation, while only 
introduces differences comparable or smaller than the mean 
errors of the methods when compared with experiments. 
Therefore, QUAMBOs which preserve the Hartree-Fock 
occupied space are used without further optimizations for all 
the present calculations. 

4. Conclusions 

We present a series of benchmark calculations of the 
CMR method on the G2 subset of molecules with spin-
singlet ground state. The binding and dissociation energy 
curves are consistently in close agreement with FCI results 
using the same QUAMBOs basis, as well as the experimental 
measurements. The CMR method naturally applies to both 
finite molecules and infinite systems, as has been 
demonstrated in the recent calculations of periodic atomic 
hydrogen systems [33]. The physical reason of the good 
accuracy of CMR method in describing the total energies, 
especially in the dissociation process with increasing static 
correlation effects, is that the underlying Gutzwiller wave 
function explicitly takes the atomic many-body correlations 
into account, which guarantees the system evolves to proper 
atomic states subject to the Gutzwiller constraints on the 
local onsite density matrices. The residual correlation effects, 
such as nonlocal correlation and dynamical correlation 
effects beyond the CMR approach, might become 
increasingly important for systems with more electrons, 
including heavier elements and larger systems. The first 
approximate way to alleviate the residual correlation error is 
to introduce a correlation energy functional, with a form like 
local density approximation in DFT, which has been 
practiced in the recent publication [33]. The generalization of 
the CMR calculations to magnetism is straightforward. The 
effect of Gutzwiller constraints on magnetic calculations, 
which effectively confines the many-body manifold where 
the magnetic solution can search, is of interest and to be 
investigated. 
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Table 1. Summary of Equilibrium Bond Length R0 and Binding Energy Eb of Test Set from Ab Initio Calculations on Various 
Methods  with the errors measured in σ, ME and MAEa  

 R0(Å) Eb (Har./atom) 

A2 QUAMBO-CMR QUAMBO-FCI Exp. QUAMBO-CMR QUAMBO-FCI Exp. 

H2 0.76 0.76 0.74 0.082 0.083 0.082 

Li2 2.78 2.89 2.67 0.004 0.007 0.020 

C2 1.29 1.24 1.24 0.092 0.105 0.114 

N2 1.10 1.10 1.10 0.181 0.176 0.178 

F2 1.43 1.44 1.41 0.027 0.021 0.029 

Na2 3.50 3.50 3.08 0.006 0.005 0.015 

P2 1.93 1.94 1.89 0.078 0.074 0.091 

Cl2 2.03 2.06 1.99 0.042 0.035 0.044 

AB QUAMBO-CMR QUAMBO-FCI Exp. QUAMBO-CMR QUAMBO-FCI Exp. 

LiH 1.60 1.58 1.60 0.035 0.032 0.045 

CH4 1.10 1.10 1.09 0.126 0.119 0.125 

NH3 1.03 1.01 1.01 0.128 0.107 0.110 

H2O 0.94 0.93 0.96 0.134 0.115 0.117 

HF 0.93 0.92 0.92 0.103 0.101 0.109 

SiH4 1.51 1.49 1.48 0.113 0.095 0.097 

PH3 1.44 1.42 1.42 0.116 0.086 0.090 

H2S 1.32 1.32 1.34 0.107 0.087 0.092 

HCl 1.27 1.26 1.27 0.090 0.078 0.082 

LiF 1.55 1.54 1.56 0.083 0.083 0.110 

CO 1.12 1.12 1.13 0.200 0.190 0.206 

CO2 1.20 1.20 1.16 0.211 0.180 0.204 

SiO 1.52 1.51 1.51 0.173 0.126 0.150 

FCl 1.64 1.65 1.63 0.048 0.034 0.049 

NaCl 2.39 2.39 2.36 0.023 0.023 0.079 

σ 0.09 0.10  0.018 0.012  
ME 0.03 0.04  -0.002 -0.012  
MAE 0.04 0.04  0.013 0.012  
aQUAMBO-CMR and QUAMBO-FCI results are compared with experimental data [40, 53-54] reported with the standard deviation 
σ and the Mean Error (ME), Mean Absolute Errors (MAE). The R0 values for CH4, NH3, H2O, SiH4, PH3 and CO2 are equilibrium 
bond lengths of C−H, N−H, O−H, Si−H, P-H and C-O, respectively. 
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Figure 1. Potential energy curves of homonuclear dimers, including H2, Li2, Na2, F2, Cl2, Na2, N2, P2, and C2. The CMR and 
FCI calculations are at QUAMBOs level which are constructed from the aug-cc-pVTZ basis-set. The available experimental 
data are included [53-59].  
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Figure 2. Potential energy curves of heteronuclear molecules. The CMR and FCI calculations are based on the QUAMBOs 
constructed from the aug-cc-pVTZ basis-set. The available experimental data are included [53-54, 60, 61].  
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