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Linear factorization relations are derived for the matrix elements of quantum mechanical operators defined 
on some space X=J{\® X 2 which are diagonalizable on X I' The coefficients in these relationships do not 
depend on the operators per se but do depend on the representations in which the operators are diagonal. The 
formulation is very general with regard to the nature of the "input" information in the factorization. With 
each choice of input information there are associated consistency conditions. The consistency conditions. in 
turn. give rise to a flexibility in the form of the factorization relations. These relations are examined in detail 
for the operators of scattering theory which are local in the internal molecular coordinates. In particular. this 
includes $ and T matrices in the energy sudden (ES) approximation. A similar development is given for the 
square of the magnitude of operator matrix elements appropriately averaged over "symmetry classes." In the 
ES these relations apply to transition cross sections between symmetry classes. In particular. they apply to 
degeneracy averaged cross sections in situations where the symmetry classes correspond to energy levels. 

I. INTRODUCTION 

The rapid development of molecular scattering theory 
in recent years has been based to a large extent on the 
general class of dynamical approximations denoted 
generically as sudden approximations. 1 A particularly 
useful feature of certain approximations in this class 
was first exploited by Goldflam et al. 2 in their study of 
atom-diatom collisions in the infinite order sudden (lOS) 
approximation. They showed that scattering informa
tion for all possible rotational transitions is not inde
pendent but, in fact, is complete.ly characterized by 
transitions out of the rotational ground state. Thus, 
for example, elements of the S matrix can be written 
in factorized form as a linear combination of S-matrix 
elements for transitions out of the ground state. The 
coefficients in the factorization relation are indepen
dent of the collision dynamics of the system. A simi
lar factorization holds for the degeneracy averaged 
cross sections in terms of degeneracy averaged cross 
sections for transitions out of the ground state. Such 
relations are important because they greatly simplify 
the computational work required to calculate lOS quanti
ties and because they approximately relate independently 
measurable experimental quantities. 

It was later shown by Khare3 that these factorization 
relations also hold in the energy sudden (ES) approxi
mation for the atom-diatom system. The various sud
den approximations have been viewed by Goldflam et 
al. 4 and Kouri5 as closure approximations which dia
gonalize (localize) the Green function in an appropriate 
set of coordinates. In a recent paper, primarily con
cerned with extending factorization relations beyond the 
sudden approximation, De Pristo et al. 6 gave a simple 
argument (for quite general molecular systems) es
tablishing factorization of the S matrix in the ES ap
proximation using its diagonality in the internal co-
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ordinates. Factorization of the degeneracy averaged 
cross sections is less general but does hold exactly 
for some systems and approximately for others. 

In all of these treatments the "input data" for the 
factorizations are scattering information derived from 
transitions out of (or, equally well, into) the ground 
state. This limitation was removed by Hoffmann et al. 7 

for rotational transitions in atom-diatom scattering by 
deriving factorization relations for degeneracy averaged 
cross sections which have as input degeneracy averaged 
cross sections for transitions out of an arbitrary j 
state (rotor energy level). Similar relations for the 
T matrix were also derived. One result of this investi
gation was the discovery of certain consistency condi
tions which ES degeneracy averaged cross sections 
must obey. 

Removing the restriction that transitions from the 
ground state be the source of the input data has two 
advantages if the ultimate goal is to use factorization 
relations to predict scattering information in cases 
where the input data is not derived from the ES. First, 
predictions of cross sections, not ES derived, generally 
become less accurate as the input state is removed 
from the state out of which the transition of interest 
arises, and hence the choice of input state influences 
the accuracy of predictions. Second, input cross sec
tions from experiment might well be known more ac
curately for higher states than for the ground state. 

In Sec. II of this paper we explore the general fac
torization relations which hold for all operators that 
are local in the internal coordinates for an arbitrary, 
nonreactive, molecular scattering system. We treat 
the general case where transitions from an arbitrary 
state serve as the source of input data. Special at
tention is given to the consistency conditions which arise 
from the choice of input state. Since the Green func
tion is local in the internal coordinates in the ES, these 
results provide factorization relations for the T (or S) 
matrix in this approximation. In Sec. III we define, for 
certain systems, "symmetry classes" as particular 
groupings of quantum states associated with the prop-
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erties of the internal state eigenvectors for the colliding 
molecules. Exact factorization relations are then 
derived for quantities which are the squares of matrix 
elements of local operators averaged over the quantum 
states of the initial symmetry class and summed over 
the states of the final one. For those cases where the 
symmetry class corresponds to an energy level, this 
is a degeneracy average. For scattering systems in 
the ES, various exact averaged transition cross sec
tion factorizations result. If they do not include the 
degeneracy average, then factorization relations for 
these quantities are only approximate. 8 

Our treatment shows that there is considerable 
flexibility in the form of those factorization relations 
which do not make use of the ground state as the input 
state. This flexibility, which in general increases with 
the energy of the input state, is tied directly to the con
sistency conditions. It is hoped, for reasons previously 
stated, that these generalized factorization relations 
will provide a useful starting point for deriving fac
torizations which are applicable outside the ES. In this 
regard the flexibility of form in the factorization rela
tions should prove advantageous. 

In both Secs. II and III we start from a very general 
point of view which shows that all operators defined 
on some space JC =JC1 ® JCa which can be diagonalized on 
JC1 have factorization relations associated with them. 
Since we may pick JC1 =JC, this includes virtually all 
operators of interest. However, these relations in 
many cases are purely formal in the sense that their 
direct application requires a knowledge of the represen
tation in which the operators are diagonal. 

II. FACTORIZATION AND CONSISTENCY 
CONDITIONS ON LOCAL OPERATORS IN THE 
INTERNAL VARIABLES 

We first describe a simple property of an operator 
Won a Hilbert space JC =JC1 ® JCa which is diagonal in 
some representation {R} of JC1 with basis vectors IR) 
(if {R} is the coordinate representation, such an opera
tor is called "local"). Explicitly, we have that 

(2.1) 

where ORR' is a Kronecker/Dirac delta function in the 
discrete/continuous part of the representation. Here 
WRR ' and WR may be taken as operators on JCa or as 
specific matrix elements of Won 3Ca (with the state 
labels suppressed). 

Let {M} be some other representation with basis vec
tors 1M) and expansion coefficients 

a: =<RIM) . (2.2) 

Then 

wMAI,=(MlwIM') (2.3) 

= t t (MIRXRI WIR'XR' 1M') 
R R' 

This equation can be rewritten identically in the form 

W ( R) (~)* a;, (2.4) 
WMM ' = ~ WR aii a~ 

R M 

for arbitrary M. From completeness of the {M} repre
sentation we have that since WR ~ is in JCl> 

(2.5) 

- V- W-aR - L).- I.JI L, 
_ L 

where the t sum/integral converges in norm. Sub
stituting Eq. (2.5) into Eq. (2.4), we obtain 

w: - V- It W - [a~(a:)*a;,] MM' -,g.." LM R • 
R L aii 

(2.6) 

If ~R and tL can be interchanged, a factorization relation 
for general W-matrix elements in terms of matrix 
elements out of the M state results. .[ Clear ly, the 
same general argument could be used to derive an 
analogous expression to Eq. (2.6) interchanging the 
roles of the indices of the W-matrix elements.] 

Such factorization relations are extremely general. 
(In fact, our tacit assumption that the representations 
{R} and {M} consist of orthogonal, rather than bi
orthogonal, basis vectors is unnecessary.) For ex
ample, if JC1 =JC, then Eq. (2.1) [and hence Eq. (2.6)] 
applies to all diagonalizable operators and hence to 
virtually every operator of importance. However, the 
factorization relations are only of formal interest un
less the diagonalizing representation {R} is known ex
plicitly. We now consider an important class of opera
tors for which this is the case. 

From this point on we consider the nonreactive scat
tering of two molecules (structured particles). The 
Hilbert space JC can be decomposed into JC1nt ®JCtrlDll , 

where JC1nt is associated with the internal structure 
of the particles and JC trlDll with their translational de
grees of freedom. Since reaction is not pOSSible, 
JC1nt is spanned by bound state wave functions. We shall 
develop factorization relations for operators W local in 
the internal coordinates (e. g., the S or T matrices or 
Green function in the energy sudden approximation or 
such operators as the interaction potential or the iden
tity on JC). Thus, we choose IR) = I r), where r denotes 
the internal coordinates and 

(2.7) 

where cf>M(r) is an eigenfunction of the internal Hamil
tonian with quantum label M. If we consider M to be 
the unique positive ground state9 (denoted by M = 0) 
and substitute Eq. (2.7) into Eq. (2.6), then the inter
change of tR and tL is easily justified since no trouble
some zeros appear in cf>o(r) and since the integrand is 
well behaved at infinity.10 The factorization relation 

(2.8) 

where 
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724 Chan, Evans, and Hoffman: The sudden approximation 

[A(M'!O)] = Jdr cJ>L(r)cJ>j,(r)cJ>M·(r) (2.9) 
ML . cJ>o(r) 

is thus obtained. This is the factorization result of 
De Pristo et al. 6 The case for M #0 0 requires more 
careful discussion. Here the situation is complicated 
by the fact that cJ>1i(r) has nodes (more generally, nodal 
surfaces) and consequently a matrix element 
[A(M'IM)]ML, analogous to that of Eq. (2.9), is ill de
fined. We now discuss cases of this kind by considering 
several examples of increasing complexity. 

A. Single variable internal state wave functions -

We first consider systems such as a collinear atom
oscillator collision where the vibrational coordinate 
x is the only internal coordinate and ranges from - 00 

to +00 (the potential well has infinite width). The internal 
state wave functions cJ>M(X) are labeled by a single quan
tum number M which corresponds to the number of 
nodes in the wave function. All of these are simple 
zeros. 11 Equation (2.6) then is of the form 

W -Jd ~W_[cJ>L(X)cJ>t,(X)cJ>M'(X)J (2.10) 
MM' - x 7' L'" cJ>11 (x) , 

where the quantity in square brackets has only simple 
poles. Now it is possible to rewrite this equation in 
the form 

( J f:<~"j) WMM • =llm dx - 1: / _ dx 
e/- 0 / Xg-& / 

.j-o 

xL: W _ [cJ>L(x)cJ>:(X)cJ>M' (x)] 
L LM cJ>il(X) , 

(2.11) 

where ~ is the ith zero of cJ>ii(X). Since the sum on L 
converges in norm and since cJ>t,(X)cJ>M' (X)/cJ>ii(X) is L2 
on the restricted domain of x, the sum and integral can 
be interchanged as a consequence of the Schwartz in
equality. The rhs and lhs of Eq. (2.11) must be equal 
no matter how the limit is taken. In particular, if 
we let €~ and €j go to zero in some fixed ratio, the in
tegration over x can now be carried out to yield 

- ~ W {i d [cJ>L(X)cJ>Z(X)cJ>M'(x)] (2.12) 
WMM • - Lr III ) x cJ>il(X) 

+ 1: cJ>L(X~)Res(cJ>t~M' !X~)limln(€i/€) , 
/ cJ>M "1-0 ( 

where fdx( ) denotes the Cauchy principal value integral 
and Res( Ix~) denotes the residue at x =x~. The limit 
lime1-o(€j/€j) is completely arbitrary and so it must be 
true that 

L WIllcJ>L(x~)=O, i=l to M. (2.13) 
L 

These relations, which are called consistency condi
tions, must hold for any local operator, and from Eq. 
(2.5) it is, in fact, seen that they are a simple conse
quence of the local nature of W. The consistency con
ditions are so named because they provide a test of 
consistency with the ES approximation for S- or T
matrix elements obtained from any source. 

Since lim",-o(€~ / Ej) is totally arbitrary, we have from 

Eq. (2.12) that the general factorization expression is 

(2.14) 

where 

(2.15) 

and the constants cf M (i) are arbitrary. 

The various possible factorization relations implied 
by Eqs. (2.14) and (2.15) are all valid (and, in fact, 
equivalent) for local operators because of the existence 
of the consistency conditions of Eq. (2; 13). However, 
one of the reasons that factorizations are of interest 
is that one anticipates using them in a predictive capacity 
for cases where the input W-matrix elements WLil, are 
not obtained from a local fv (e. g., S- or T-matrix ele
ments which are not obtained from the sudden approxi
mation). In regard to such applications, it is of interest 
to note that if the consistency conditions of Eq. (2.13) 
hold for the W-matrix elements of the input state M, 
they then hold for the W-matrix elements predicted from 
Eq. (2.14). To see this we examil}e the sum 

where x~. is the jth zero of cJ>"'" M' arbitrary. Only 
the Cauchy principal value integral appears in the final 
expression of Eq. (2.16) because the input W-matrix 
elements are assumed to obey the consistency condi
tions. The sum over M can be carried out explicitly 
by invoking closure. If x~, is not a zero of cJ>1i(x), then' 
we obtain after integration 

~ cJ> L (x~, )cJ>M' (x~.) =0 ~ WMM'cJ>M(xk')=~ WLllcJ>g(xJ,,) 

(2.17) 

[since cJ>M' (xJ,.) =0]. If~, is also a zero of cJ>ll(x), then 
the expression still vanishes because of the consistency 
of the input data. This establishes the desired result. 
An interesting corollary is that, since there are no con
sistency conditions for M =0 (the ground state), pre
dicted W-matrix elements from a ground state factoriza
tion always satisfy conSistency conditions regardless 
of the source of the input matrix elements WLO• Hence, 
analysis of a given set of W-matrix elements by simple 
ground state factorization relations is inherently limited 
by the degree to which the true W matrix fails to satisfy 
the consistency conditions. This is also true for fac
torization relations based on input data from other 
states if the input data satisfY consistency relations. In 
such a case the factorization relations of Eqs. (2.14) 
and (2.15) are all the same no matter how the constants 
Cf M (i) are chosen. However, if the input data do not 
satisfy consistency conditions, then various choices of 
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the ~'AI (i) coefficients lead to different factorization 
relations. 

In regard to the above considerations, it should be 
pOinted out that A(MIM) is the identity matrix if and only 
if the coefficients c!AI (i) are all zero. 

In general, the M consistency conditions of Eq. (2.13) 
can be considered as a set of linear equations for the 
M downward transition matrix elements WAill where 0 
:'S M < M. Provided the set of equations is nonsingular, 
it can be solved so that the consistency conditions be
come expressions for the W-matrix elements for down
ward transitions out of the M state in terms of matrix 
elements for upward transitions. If the oscillator is an 
harmonic OSCillator, these expressions can be made to 
assume a particularly simple form. First, Eq. (2.13) 
reduces to .. 

L: 2LLI1T-1/4HL(y~)WLll=0, i=1 toM, (2. 18) 
L=O 

where H L (y) is the L th Hermite polynomial and y~ is 
the ith zero of Hll(Y). (Here Y =(3x is the usual dimen
sionless coordinate.) Next, if we multiply Eq. (2.18) 
by W~2A1MI1T-1/4HAI(Y~)' where M<M and w~ is the weight 
of the ith zero for the Gauss-Hermite integration of or
der M, then by summing over i (using the fact that the 
Gauss-Hermite integration has a precision 2M - 1) we 
reduce the consistency conditions to the form 

L.2M-AI 

(2.19) 

This is the desired result. 

For a harmonic oscillator the integrand of the Cauchy 
prinCipal value integral of Eq. (2.15) reduces toa ratio 
HLHAlHAI , /Hll of Hermite polynomials multiplied by the 
Hermite polynomial weight function. This integral is 
clearly zero if the integer M +M' +M +L is odd since 
then the integrand is odd. If this integer is even, then 
the integrand reduces to a rational function of x!-, re
gularatr =0, multiplied by the Gaussian weight and 
thus f:: dx may be replaced by 2 f 0' dx. It is convenient 
to express the rational function as a polynomial plus a 
contribution from each pole of the form DI /(x2 - xff), 
where x~ is one of the nonnegative singular points and 
DI is the appropriate constant. Then by using the rela
tion 

f
oo e-·2 i1Te-a2 ,[if 

O 
ds ~ ='f -- [erfc(±ia) -1] = - - F(a) s -a 2a . a ' 

(2.20) 

where F( ) is Dawson's integral,12 the Cauchy principal 
value integral is easily evaluated. Actually, to obtain 
the general form of Eq. (2.15) it is only necessary to 
integrate the polynomial contribution since the con
tributions from the poles can be absorbed into the ar
bitrary constants cf AI (0 (as will become clear in the 
next section). The explicit form of the factorization 
matrix when M = 0 has been given by De Pristo et al. 6 

For problems where the range of the vibrational co
ordinate is restricted because the potential well has 
finite width (e. g., a square well), the "nodes" at x = ± 00 

for an infinite width well now occur at the finite end 
pOints. Since the asymptotic behavior of the wave func
tions at these pOints is essentially state independent, 
from Eq.(2. 5) clearly no additional consistency condi
tions are introduced. The previous discussion goes 
through essentially unchanged (where the state label 
again gives the number of interior nodes). 

B. Wave functions with (possibly) nonsimple zeros in 
one variable 

For some atom-molecule systems a simple separa
tion of variables factorizes the total internal wave func
tion in the form 

</>L(r)=</>~(x)</>"(r'), r=(x, r'), L :::(t, IJ.), 
(2.21) 

and the nodes or nodal surfaces of the total wave func
tion correspond to zeros of </>~ (x) only [1. e., </>" (r') has 
no nodes). Typically, x is related to an angular vari
able and its range is finite. In general, any zeros 
corresponding to interior pOints must be simple. 13 How
ever, this need not be true for zeros occurring at the 

I -
~d poi~s. Denote by x =xll the zeros of </>'f (x), where 
M = ([, IJ.) including end points if appropriate, and in ad
dition assume that each of the set of functions {</>~ (x)}, 
for all 1, is analytic at xiI in some parameter z I(X). 
Let nl be the order of the zero in ZI at x~. The atom
rigid rotor an atom-asymmetric top systems satisfy 
all the above criteria. 

It fOllows from Eq. (2.5) that there exist consistency 
conditions on the W-matrix elements W,,,.;;:;, namely, 

L:' W,,,.;;:; (!ii </>~) II =0 
I I "ii 

(2.22) 

for O:'S j :'S nl - 1, for each i and for each IJ. (of which 
there are an infinite number of possible choices). These 
are satisfied exactly for a local operator W. Here ~; 
means the sum over those 1 values consistent with the 
fixed choice of IJ., It is easily shown that all choices of 
Z I which satisfy the analytiCity requirement lead to the 
same set of conditions. Note that some of the condi
tions (2.22) may be trivial. 

From Eq. (2.6) it follows that the corresponding 
factorization relations are 

(2.23) 

where 

"1-1 
~ ~ c" ,,' '0"0 (. .) (di ,,) I + L... L... T;; jJ. t, J dzi </>, I' 

I ~O I ~ 

(2.24) 

Here the C::: (i, j) are arbitrary constants, 
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and 

[ ( , 1-)] = fdr' <f>" (r') <f>"O(r') <f>'" (r') (6) 
a Il Il "0" <f>iI (r' ) ,2. 2 

where XI(x) is a function defined so that XI (~) = Ii Ii and 
to be "sufficiently flat" at x~ for all j. (As suggested by 
the notation, a characteristic function which is nonzero 
on a small interval that includes x~ is satisfactory. ) 
The e.quations (2.22) serve as consistency conditions. 
The integral in Eq. (2.25) is not a Cauchy principal value 
integral because no singularities appear. However, at 
any simple pole x~, the Cauchy principal value form is 
obtained by taking the limit of Eq. (2.25) for an in
creasingly sharply peaked sequence of X functions for 
which each XI is symmetric about x~. For systems 
discussed in Sec. II A, Eq. (2.24) is equivalent to Eq. 
(2.15), independent of how the XI functions are picked, 
since the difference in the integrals can be absorbed 
in the arbitrary constants. In fact, the singular integrals 
can also be regularized in ways different from Eq. 
(2.25) and still provide equivalent sets of factorization 
relations (cf the collinear atom-harmonic oscillator 
problem). 

It should be remarked that it sometimes happens that 
the integrand of the integral 

f d <f>t (x) <f>to°(x)*<f>t: (x) 
x <f>~(x) 

may be noysingular at some zero x1 (simple or other
wise) of <f>¥ (x) for all values of l. In this case it is of 
course not necessary (although not incorrect) to sub
tract the regularizing term 

"tot zi d i 

XI(X) ~ (dZ i 
i=O J I 

in Eq. (2.25). 

We now consider two important examples. The rigid 
rotor wave functions may be chosen to be the spherical 
harmonics t4 

Y (8 <f» = (_1)(m+I",1>/2 [21+1 (1-lmIH1
1

/
2 

I", , 41T (l + 1,111 I )l 

Xplml(x)elm~, Imls1, (2.27) 

where x =cos8 and e, <f> are the usual polar angles. The 
only zeros of the wave function are in pI"" (x). There 
are 1 - 1m I simple zeros inside the interval (-1, + 1) 
and (possibly) nonsimple zeros at x = ± 1. At these 
points, pI"" (x) may not be analytic in x but always is in 
z=(1_x2)1/2 and the zeros are of order Iml inz. One 
should note that since 

[a(m' I m)] .. om ex: limo-"" ,m-m , (2.28) 

one can always omit the regularizing terms in Eq. 

(2.25) for xb = ± 1 and the resulting integral will be 
convergent at these points. The previously derived 
factorization result out 'of the ground state2t 3. 5-7 is re
covered here as a special case. 

The symmetric top wave functions may be chosen 
as the normalized R (3) matrix elementst5• t6 

(
21 + 1 )1/ 2 nl ( a ) =(21 + 1 )11 a d I ( ) 1"'00 1111 s;r kill cr,.,y 8~ km X e e , 

Ikl, Iml Sl, (2.29) 

where x = cos{3 and cr, (3, yare the usual Euler angles. 
The only zeros are in df.", (x). There are 1 - max{l m I , 
Ikl) simple zeros inside the interval (-1, +1) and 
(possibly) nonsimple zeros at x =± 1. At these pOints 
df.",(x) may not be analytic in x but always is in z~ 
=(1'Fx)1/a atx=±1, where the zero is of order Im'Fkl 
in z*. One should note that since 

[a(k'm' Ikm)]ko"'Qtkm<X: lik{jk',k-kli"'o-m',m_iii , (2.30) 

one can always omit the regularizing terms in Eq. (2.25) 
for x~ = ± 1 and the resulting integral will be convergent 
at these points. Finally, we remark that by setting the 
k labels to zero, one recovers the rigid rotor case. 

C. Simply factorizing internal state wave functions 

For a general system, the total internal state wave 
functions are most naturally chosen as products of the 
internal state wave functions for each molecule, since 
the full precollisional wave function has this form. 
This section covers the special case where there exists 
a separation of variables for which the internal state 
wave function of each molecule factorizes in the form 

(2.31) 

By simply factorizing we mean that no III depends on a 
quantum number jk' although the {Ill} maybe inter
dependent. The jk =0 to 00 are here chosen to label 
the number of interior zeros of <f>~:(Xk) (this is possible 
since each set {<f>~:}, jk = 0 to 00, is a solution to a 
separate Sturm-Liouville problem). The nodes or nodal 
s,!rfaces of <f>lJk"kl (r) are determined by the zeros of 
<f> ikk(Xk) only (1. e., <f>{"kl (r') has no nodes). 

I -
Denote by Xk =Xj";k the zeros of <f>~kk(Xk) (excluding the 

end pOints for restricted vibrational coordinates as dis
cussed at the end of Sec. nA). We shall in addition as
sume that the set of functions {<f>~~(Xk)}' for all jk' is 
analytic in some parameter ZIl(Xk} at xt"k' Let n{ be 
the order of the zero in Z Ik at X~";k' For interior zeros 
we may pick'z Ik =Xk and then n l = 1 as discussed previous
ly. 

If the total internal state wave function for each of a 
pair of colliding molecules is simply factorizing, the 
same is clearly true for the total internal state wave 
function of the system which then has the form 

<f>{Jkt.a"kl.a' (r) = <f>{ ik1"kt' (rt ) ®<f>lJka"ka' (ra) , 

r = (rl , r a), {jkl.aMkl.a} =Uktjkz Mkl Mka} • (2.32) 
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Below we list some molecules for which a simply 
factorizing choice of wave function is available: an atom 
(structureless particle) setting cp;: 1; a rigid rotor using 
the eigenfunctions described previously and setting 
j =l - 1 m I, IJ. =m; a symmetric top using the eigen
functions described previously and setting j = 1 
-max(lm I, Ik I), IJ. = (m, k)j an uncoupled vibrotor with 
the above rigid rotor or symmetric top choice of angular 
wave functions; and an isotropic three dimensional har
monic oscillator in Cartesian coordinates. 

It should be emphasized that a system which is simply 
factorizing in one representation need not be in all 
representations where the wave function factorizes. 
For example, the rigid rotor, symmetric top, and un
coupled vibrotor are not simply factorizing with a choice 
of real valued angular wave functions and the isotropic 

where 

three dimensional harmonic oscillator is not in polar 
coordinates. These cases will be discussed in the next 
subsection. 

There exist consistency conditions arising from each 
molecule s = 1, 2 on the W-matrix elements 

W( Jk1. 2~ kl.2)' (jk1.2;J k1• 2) 

of the form 

for O:Sr:Sn'-1, for eachi, PsE{ks} , 

for s =1,2, and for eachjk <ks "*Ps), IJ.k • s s 
(2.33) 

The corresponding factorization relations have the form 

(2.34) 

A ({j~1., 21J.~1., 2} I {Jk1• 2 "'jj.k1) = A ({j~llJ.~) I Uk1 "'jj.k) h~ A({j~21J.~2} I Uk2 "'jj.k) + CCT . (2.35) 

Here the nature of the consistency condition terms CCT, although notationally complicated to write in detail, should 
be clear from previous examples. This tensor product structure is apparent in the previously derived factoriza
tion result (out of the ground state) for a two rotor system.4,17 The matrix elements of A({j~ IJ.~} I{Jk ""iLk}) have the 

s s s oS 

form (omitting the s) 

[A ({j ~ lJ.a I Uk ""iLk})]( (Jolk(~olk)' (Jk~k) = [a ({lJ.n I {""iLJ)] (~O)k)' (~k) II [a*~Olk(j ~ I Jk)](Jol k• Jk • (2.36) 
• k 

Here the matrix elements of a~~:O)k(j ~l }k) and 
a ({IJ.U I {""iLJ) may be given by formula analogous to Eqs. 
(2.25) and (2.26), respectively. In general, the ma
trix a({tlk} 1 {""iLk}) may further factorize. If certain 
degrees of freedom for a single molecule are completely 
uncoupled (e. g., the uncoupled vibrotor), then 
A ({j ~ IJ.U 1 Uk ""iLk}) will exhibit a corresponding tensor 
product factorization [cr. Eq. (2.35)]. 

D. General factorizing internal state wave functions 

In the last section we remarked on some examples 
where the internal state wave functions are not simply 
factorizing. One such caSe is the atom-rigid rotor 
system with the wave functions chosen as real spherical 
harmonics14 Y¥m, v =c, s, where 

no(8, cp) =Y/O(8, cp) , 

v ( )_[2l+1 (l-lml)l]1/2 1011) ) 
Y 'm 8, cp - 2w (l+lmIH P, (x .v(mcp , 

O<m:Sl, 

c(mcp) =cosmcp, s(mcp) =sin(mcp) . (2.37) 

There are two families of nodal surfaces corresponding 
to certain fixed x values in one case and cp values in the 
other. The complication arises here since the "nodal" 
label of the cp-dependent function appears in the x-de
pendent function. 

From Eq. (2.5) we may immediately write down the 
consistency conditions corresponding to the zeros of the 
input wave function in the x variable. Since these have 
the form described previously in Eq. (2.22), they are 
not given here. The consistency conditions correspond
ing to zeros in the cp variable are not this Simple how
ever; from Eq. (2.5) they have the form 

cp!. _ wi 
Ms - in i =1, 2, ... , 2m 

(2.38) 

Note that only the first m values of i give independent 
consistency conditions. We now show that there is suf
ficient flexibility in the W-matrix elements to satisfy 
Eq. (2.38) by converting it to a set of linear relations 
between the W'mv• iiiiii with constant coeffic ients. 

Let {F
" 

(x)} be a complete set of functions in the x 
variable (e. g., F

" 
=P

"
, the Legendre polynomials). 

Then we may expand plml (x) as 

(2.39) 

where the coefficients are uniquely determined. Upon 
substitution into Eq. (2.38), the consistency conditions 
reduce to 
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" [2l +1 (l-Iml )IJ1/2 11.,1 !. )_ 
~ W'mv.iiiill 2i" (l+lml)1 ai' v(m4>Mv -0, 

(2.40) 

i = 1 to iii and for all l' , 

which is in the required form. Different choices of 
functions F

" 
of course lead to equivalent sets of con

sistency conditions. 

By analogy with Sec. lIB, the factorization relation 
matrix may be written as 

[AU'm'v' I lmv)],o"ovo'I.,v = [a;!:mO(l' I'l)]'()t I 
X [a(m' v'I iiiv)]movO' mv + CCT . 

(2.-41) 

We must suitably handle the singularities in the cP (as 
well as the x) variable (e. g., using a Cauchy principal 
value form of the integral). One should note that it is 
again possible to omit the regularizing terms for x =± 1 
because [a(m'v'liiiv)J..ov()tmv is identically zero in those 
cases where a singularity at these points arises. More 
completely 

[a (m' v' I iiiv)]mov()tmv =0 , km *± m' ±m ± mo (2.42) 

for every combination of +/ - signs and every integer 
k (see Appendix A). 

A similar discussion to that above may be given for 
the symmetric top where real wave functions are 
chosen. 

Next we discuss an important example where no sim
ply factorizing form is available for the internal state 
wave functions. This is the case where one (or both) 
of the colliding molecules is treated as a coupled 
vibrotor. We describe here in detail the atom-diatom 
case for which the total internal state wave functions 
have the form 

(2.43) 

where r, e, cP are the usual polar coordinates. Here 
there are two families of nodal surfaces corresponding 
to certain fixed r values in one case and () values in the 
other. For the input wave function CPii;iii these nodes are 
denoted by r =r~i and x = cos(} =xfm' respectively. The 
complication arises here because the llabel associated 
with the (} nodes appears in the r-dependent function. 

We consider first the consistency conditions cor
responding to fixed-r nodal surfaces. The radial equa
tion for 4>iii(r) is 

d 2
/ dr 2[rcp (r)] + [E _l~ ~ 1) . _ V(r)] [rcp (r)] =0 (2.44) 

(setting Ii = 1), where E is the energy and V(r) the po
tential. Since in cases of physical interest V(r) is re
pulsive and goes to infinity much faster than c/rZ as 
r-O, the asymptotic behavior of the 4>(r) at r=O is de
termined by V(r) and thus is essentially state indepen
dent. Therefore, no consistency conditions are intro
duced from this node. The remaining r~i>O corre
spond to simple zeros and from Eq. (2.5) introduce 
consistency conditions of the form 

L:' for each i and l, m, 
n 

(2.45) 

where ~~ is the sum over those n consistent with the 
fixed choice of land m. in the case of the isotropic 
harmonic oscillator where V(r)a:r 2 , the radial function 
CPii; (r) - r i at r = 0 and consequently extra consistency 
conditions involving higher derivatives will in general 
occur corresponding to this node. 

The consistency conditions corresponding to zeros in 
the () variable are not as Simple, and from Eq. (2.5) 
have the form 

", [2l +1 (l- 1m I )1]1/2 lOll I 
~ Wnlm,ii;iiiCPnl(r) --:r.;r- (l+lml)1 P, (Xjjjj) =0 , 

(2.46) 

for those i where - 1 < x {iii < + 1 and for each m. Here 
~~, means the sum over those n, l consistent with the 
fixed choice of m. Should x =± 1 also be nodes cor
responding to (possibly) nonsimple zeros, then there 
are also sets of consistency conditions involving deriva
tives of the form analogous to that described previously. 
By expanding the 4>nl(r) in terms of any set of functions 
{wn(r)} complete on the Hilbert space 

{w(r): f drr 2I w(r)12<+oo} , (2.47) 

we may convert Eq. (2.46) into a set of linear relations 
between the Wnlm,iiijjj with constant coeffiCients. 

The factorization relation matrix, by analogy with 
previous examples, may be written in the form 

[A (n'l 'm' Inlm)]nolomo.nlm 

=[at ' '0 (n' In)] [a!!'mO(l' In] [a(m'lm)] +CCT , r no,n WI. '0" "'()t'" • 
(2.48) 

The integrals in the first two factors must be suitably 
regularized. 

This dicussion may be ext;ended in the obvious way to 
the more complicated case where real valued angular 
wave functions are chosen for the diatom. 

We now review the baSic ideas of factorization and 
consistency common to all previous examples in a gen
eral context, and indicate how these methods and results 
are applicable to more general systems including the 
case where no complete separation of variables fac
torization of the wave function is available (e. g., the 
asymmetric top). Typically, the nodal surfaces of the 
wave function can be grouped into a number of nonover
lapping families .c: (where j labels the family). In a 
suitable coordinate system, each family .c: is associated 
with simple zeros of the wave function in one variable 
xJ (which assumes a fixed value x~ on .cp. Some excep
tions of note are where isolated nodes occur or where 
otherwise nonoverlapping nodal surfaces meet. 

For an input state 4>11, the consistency condition as
sociated with the nodal surface £~(M) may be written as 

(2.49) 
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Using methods described previously in this subsection, 
we may convert Eq. (2.49) into a set of linear relations 
between the WL l1 with constant coefficients. Isolated 
nodes or places where nodal surfaces intersect must be 
treated separately and we have seen that if they are as
sociated with higher order zeros, then a corresponding 
number of conSistency conditions involving higher 
derivatives result (some of which may be trivial). 

In the factorization relations, the integrals must be 
suitably regularized. For the "simple poles" associated 
with the nodal surfaces it suffices to adopt the natural 
multidimensional generalization of the Cauchy principal 
value integral. Again, if any higher order nodes occur, 
they must be suitably treated separately. W-matrix 
elements generated from these factorization relations 
using input data satisfying the consistency conditions 
described can be shown to also satisfy consistency 
conditions. This is easily verified for conditions of the 
form (2.49) associated with" Simple zeros" and the 
analysis may be extended. to cover the more general case 
case where derivatives of wave functions are involved 
(see Appendix B). 

Finally, we remark on some gen,eral properties of 
the factorization matrix A(M' I M). First, since the 
factorization analysis applies to the identity operator 
1 on Je, we conclude that 

(2.50) 

for any choice of A(M' 1M). Second, if we consider 
systems where only simple pole singularities require 
regularization, as was the case with most examples 
presented, then 

A(M" jM')A(M'jM)=A(M" jM) (2.51) 

and, in particular, 

AWjM)=1 (2. 51a) 

for the Cauchy principal value integral choice of reg
ularization. Another property of interest is readily 
derived using this form of regularization. Let us suppose 
that there is a pairing of state labels M - it such that 

CP:=C",·cp;, jclIj =1 

(the correspondence is trivial where the eigenfunctions 
are real, i. e., M=M and Cli = 1). From the appropriate 
form of Eq. (2.6), we conclude that 

[A(M'!M)];il,L=C:,/C;6L,M', (2.52) 
from which it follows that 

(2.53) 
so 

j Wil,,,,' j = j WAi',]; j . (2.54) 

Clearly, Eq. (2.53) must hold independent of the form 
of regularization used and may be derived directly from 
Eq. (2.3). 

III. FACTORIZATION AND CONSISTENCY 
CONDITIONS FOR CROSS SECTIONS AND RELATED 
QUANTITIES 

In this section we consider factorziation relations 
which apply to suitable averages of I WlIlI ' (K I K') IZ, the 

square of the magnitude of a matrix element of an opera
tor W which satisfies Eq. (2.1). Here M and M' label 
states in Je 1 and K and K' denote states in 3Cz CK1. =Je'llt 
and 3Cz =JC traaa for our purposes). Because the Hilbert 
space decomposes as Je =Je l®Je z, the factorization ex
preSSions relate quantities of arbitrary, but fixed, 
values of K and K', and the coefficients in the factoriza
tion relations are independent of these state labels. 

The scattering cross section is related to the square 
of the magnitude of the on-shell T matrix, for the transi
tion of interest, by a factor which depends on the kinetic 
energy of the relative motion and is thus determined by 
K and K ' (using the notation of the previous paragraph). 
In the ES, if K', M' - K, M is on shell for some values 
of M' and M, it is also on shell for all va,lues of M' 
and M for the same fixed values of K' and K. It follows 
that suitably averaged transition cross sections in the 
ES obey the same factorization relations as do the cor
respondingly averaged square magnitudes of matrix 
elements of all operators which are local in the internal 
coordinate s. 

Useful factorization relations are not expected to 
exist directly on the I Willi' (K I K' ) IZ regarded as the 
M, M' matrix elements of a new operator on Je l . Given 
the existence of a diagonalizing representation (as is 
easily verified for real ~), previous arguments do, in 
fact, show that the I W'" M' (K I K' ) IZ obey factorization 
relations, but the coefficients will depend on the details 
of this new representation rather than just on {R}. (In 
the case of the T matrix in the ES, this will involve the 
collisiondynamics.) However, if IWIIII,(KIK')IZisap
propriately averaged (and in certain cases this is just 
degeneracy averaging), the averaged quantities do obey 
factorization relations determined simply by {R}. Ac
cordingly, we assume that each M is decomposed into 
two sets of (discrete) quantum numbers M =Mlo Mz 
and define WZ(MlIM{) by 

where gM' is a weight associated with M{ which is yet 
to be derfned. The quantity WZ(MlIM{) also depends on 
K and K' but since these state labels are always fixed, 
we have not indicated them explicitly. 

From Eq. (2.3) we have that 

W Z(MljM{) =_1_ L L l t (aZ)* 
g "'i MZ "'~ R R 

xa=,a~(a=,)* WR (K j K)W;(K j K') 

1 t lp"'l(RjR)PM'l(RjR)WR(KjK)Wi'(KjK') , 
R R 

(3.2) 

where 

P li (RjR)=P: l (RjR)= L: ~(~)* 
1 "'z 

(3.3) 

is the projection operator for the span of the states with 
the quantum numbers M l • We later show that for an ap
propriate division of quantum labels M=Mt> Mz and for 
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values of Rand R such that P)ll(RIR)¢O, the complete
ness type relations 

Pill (RIR)P.v'l (RIll) , _ 
P (RIR) = L[F(M1IM1)]1I1L1PL1(RIR) 

111 Ll 
(3.4) 

are valid. There is some flexibility in the choice of the 
constant coefficients [F(M{ I Ml)]1I1Ll which is associated 
with the (possible) existence of singular points in the 
ratio of projection operators. The fact that this flexi
bility cannot appear ultimately in the relationships be
tween factorizing quantities imposes consistency con
ditions on these quantities. Assuming Eq. (3.4) to hold 
and substituting it into Eq. (3.2), we obtain 

g)l 
WZ(M1IM{) = _1 L [F(M{ 1 Ml)]1I1Ll WZ(L1IM1) 

glli Ll 

= L [G(M{IM1)11L1WZ(L1IM1), (3.5) 
Ll 

which defines G(M{ IM1) and is the desired factoriza
tion relation. 

The validity of this factorization relation rests on 
Eq. (3,4). To establish the circumstances under which 
the latter holds, it is convenient to consider the ab
stract projection operator Pill which has Pill (R IR) as 
its R, R component and to define a new operator 
~l.v'l which has the lhs of Eq. (3.4) as its R, R COffi-

1 t . ponen, 1. e., 

..Jill' Plll (RIR)PM, (Rill) 
l'°li! l(R!R)= P (Rlih (3.6) 

il 

(Actually this equation doesn't uniquely specify the 
operator unless one also gives a prescription for handling 
the A sinliularities in integrals which arise from the action 
of I1tl on arbitrary state vectors.) We first show that 
Eq. (3.4) holds if the state vectors I M1> Ma>, for each 
fixed M1> form the basis of a different, single unitary 
irreducible representation of some group. Here, by 
"single" we mean that the number of possible values of 
Mz is the dimension of the representation. This value, 
denoted by gMI' is chosen as the weight in Eq. (3.1). 
Consider 

(3.7) 

where R is any element of the group. NOW, since 
~~.v'1 is defined as a function of group invariants, we 
have that 

A AMllii 1 ) AlllM"l AI) KF)ll L l , L z =F111 K L1> L z 

411 1"I''t ~ Ll 1 ' > =Fl1 .i..J U LZL~ L1> La 
1 Lil 

~ Ll AlilMi 1 ,> = .i..J U LaL2FMl L l , L z , 
Va 

(3.8) 

where ui:!'L~ is a matrix element of the unitary group 
representation for which the state vectors I L1> Lz >, for 
fixed L11 serve as a basis. Since by our assumption the 
state vectors are a basis for a single irreducible repre
sentation, it follows from Schur's lemma that 

~AlAIi > > F)l~ I L11 Lz can differ from I L1> L2 by only a factor, 
independent of L z• This factor, which we denote by 
[F(M{IM1)]1I1L l to be consistent with Eq. (3.4), is given 
explicitly by 

[ , 1- )] 1 Allll1i A F(Ml Ml II1Ll = - Tr(F111 PL1) , 
gLl 

(3.9) 

where gLl is the dimension of the irreducible representa
tion and Tr( ) denotes a trace. Typically, this trace 
involves an integral of some integrand which has sin
gular points. There is then some flexibility in 
[F(M{ I M l )]1I1L l; the value of the coefficient depends on 
how the integrand is regularized. Finally, we have that 

= L [F(M{ !Ml)]M1L PL • 
Ll 1 1 

(3.10) 

The R, R matrix element of this operator equation is 
Eq. (3.4). 

Consistency conditions arise if Tr<.F;ti PL1) re
quires regularization for some Ll due to nonintegrable 
singularities in the ~!lIl kernel. Substituting Eq. (3.9) 
into Eq. (3.5), we obtain 

It is clear that if the right-hand side is to be independent of 
the choice of regularization, we must have the consis
tency conditions 

L _1_ PI,l(RoIRo)WZ(LlIMl) =0 , 
Ll gL l 

(3.12) 

where Ro and Ro correspo~ to any of the above men
tioned singularities of p;l 1 that are simple [i. e., a 
simple zero of P)ll (R IR) i~ a suitable variable]. If Ll 
is a multivariable index, then Eq. (3.12) can be de
composed into an infinite number of independent con
sistency conditions [cf. Eqs. (2.22) and (2.33)]. 

Sometimes there exist consistency conditions associ
ated with singularities in frZt'l at points where the fac
torization matrix coefficients do not require regulariza
tion (cf. the treatment in the rigid rotor S-matrix ex
ample at the points x =± 1). In fact, we later show that 
consistency conditions arise from any zeros of PIll (R IR). 
If these are higher order zeros with respect to some 
variable in which PMl ( I ) is locally analytic, then the 
corresponding set of consistency conditions involve 
appropriate higher derivatives of Pill ( I ). Typically, 
here M 1 is a multivariable index, so the above mentioned 
decomposition of these consistency conditions can be 
made and in general some of the resulting conditions 
may be trivial (as we shall see in the atom-symmetric 
top example). 

As a consequence of Eq. (3.12), we can add to 
[F(M{ I M l )]1I1L, a term of the form (const) x (l/gI,) 
PI, l(Ro/In (where the constant can depend onM~, M\, 
Ml , R o, and Ro, but not on L l ) and still have Eq. (3.5) 
remain invariant. Additive terms corresponding to 
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consistency conditions from any higher order zeros in
volve the appropriate derivatives of PL1 ( I ). This 
flexibility is formally seen to be consistent with the fact 
that I1!JI{ (RIR) is uniquely defined by Eq. (3.6) except 
at singular points. The arbitrary terms corresponding 
to Eq. (3.12) makes a contribution to the rhs of. Eq. 
(3.4) of the form 

(3.13) 

where l)(Ro, RoIR, R) acts as a I) function when applied 
to functions of the group projectors. In the arbitrary 
term corresponding to a consistency condition involv
ing higher derivatives of the projection operators, the 
functions PL1(RoIRo) and l)(Ro, RoIR, R) in Eq. (3.13) 
are replaced by their appropriate hi~her derivatives. 

Note that the approach taken here could have been 
used for the treatment of W-matrix factorization by 
expanding (a:)*a:, laD instead of WRa~ in Eq. (2.4) in 
terms of ~ [duly accounting for flexibility associated 
with the singularities of (a:)*a~, la~]. 

The validity of the consistency conditions described 
above may be verified from the factorization relations 
out of the ground state (where the input data have no 
associated consistency conditions and can be used to 
generate all other data). This analysis extends to show 
that if the general factorization relation is used with 
input data satisfying the consistency conditions, then 
the generated data also satisfy the consistency condi
tions. The method of derivation of these results is anal
ogous to the S-matrix analysis of Appendix B and is 
therefore omitted here. 

We now consider the case where the eigenvectors 
corresponding to each PII are not associated with a 
single irreducible repres~ntation of the group. Suppose 
we can decompose R = (Z, S), where the group acts only 
on S and there is a corresponding decomposition of 
IM1Mz)=IM1Mz-)®IM1Ma), where IM1Mi) is associ
ated with Z and IM1Ma> with S. Further, we suppose 
that the I Ml M a), for each fixed M 1, provide a different 
irreducible representation of the group. Then since 
{IM1Ma)} are orthogonal and thus {IM1Mi)}, for each 
fixed Mh are complete in the Z variable, we conclude 
that 

(3.14) 

and 

1I1Jli/Ti1 ) 1771 PII1(SIS)PJlt(SIS) 
Fil \Ll. R =I,Z Z) P11

1
(SIS) (3.15) 

Here j is the identity operator on the Z variable. Clear
ly, the analysis described previously is again applicable 
with S playing the role of R. 

Finally, the proof can be further extended to the case 
where S decomposes into S ={S,} in such a way that 
PJll~IS) factorizes into a direct product TI,pJI'{S, IS,) 
and each PJI'{S,IS,) corresponds to a Single ir~educible 
representatfon of some group of operations which act 
only on S,. In this case Ml ={Mn. 

Henceforth, we shall refer to the set of states with 
fixed Ml as a symmetry class. Within the restrictions 
imposed in the preceding paragraphs there is often 
some latitude in the choice of symmetry classes for a 
given system. In some cases the symmetry classes can 
be chosen to exactly correspond to energy levels, and in 
other cases (more commonly) they can be chosen to cor
respond to fixed values of the magnitude of the internal 
molecular angular momentum. The quantity WZ(M1IMP, 
as previously defined, is then an average of the square 
magnitude of the matrix elements of W over the states 
of the symmetry class M ~ (which we call the initial 
symmetry class) and a sum over the states of Ml (which 
we call the final symmetry class). This definition has 
been made so that the factorization relations for 
WZ(Mll MD will apply directly to degeneracy averaged 
cross sections when the symmetry classes are also 
energy levels. The factorization relations of Eq.' (3.5) 
provide expressions for WZ(M1IM~), Ml and M~ ar
bitrary, in terms of input information which consists 
of the set of quantities WZ(L1IM1) for all values of Ll 
and fixed (but arbitrary) initial symmetry class M1• 

The consistency conditions relate the values of the 
vario\ls WZ(L11 M1) within the input symmetry class. 
We could obviously equally well choose the final sym
metry class as the source of input information, in which 
case Eq. (3.5) would have to be appropriately modified. 

In the following we shall consider several important 
cases where Je1 =3<'."nt' Jez =Je trlUlS , and W is local in the 
internal coordinates. 

A. The collinear atom-oscillator with symmetric potential 

The full symmetry group of this system is a finite 
group consisting of the inversion operation i : x - - x and 
the identity. There are two irreducible representations 
denoted here by v =e and 0 provided by even and odd 
functions, respectively. The variable x is naturally 
decomposedasx=(z, s), wherez=lxl, s=sgn*x=±l, 
and any function f(x) is represented as a vector of the 
form 

[

fe(lxl) + fo(1 xl)] 
f(lxl, ±)= fe(lxl)-fo(lxl) 

(s =+0 

(s=-O' 
(3.16) 

w~ere fe (x) =Hf(x) ± f(- x)]. The eigenfunctions in this 
representation have the form 

(3.17) 

where the quantum label has been chosen as (N, v). 

We now analyze factorization relations for expres
sion of the form 

(3.18) 

In the above representation the required projection 
operators for the symmetry classes are given by 

Po =( t!. 
-2 

(3.19) 
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The factorization matrix is then 

(3.20) 

which immediately reduces to 

G ~) if'll =v , 

G(v'lv) = 

C :) ifv';!v. 

(3.21) 

The v' =v case leads to trivial identities and v';!V yields 
the simple expressions 

W2(e 10) = W 2 (ol e) 

and 

(3.22) 

B. The atom-rigid rotor system 

The results derived in this section are equivalent 
to those obtained by Hoffman et al. 7 using a different 
approach. Here we shall take the full symmetry group 
of external rotations R(3) to define the symmetry 
classes. The rigid rotor wave functions {Y,m (9, <p)}, 
for each fixed I, provide a different irreducible repre
sentation of R(3). Here s =r = (9, <p). We derive fac
torization relations and consistency conditions for the 
quantities 

(3.23) 

i. e., (energy) degeneracy averages. 

It follows readily from the addition theorem for 
spherical harmonics that the projection operators for 
the symmetry classes are given by 

-I 21 +1 P 1(8<p 9<p) = ~ PI(cosy) , (3.24) 

where PI (cosy) is a Legendre polynomial and y is the 
angle between (8, (j) and (9, <p). Note that the validity 
of the expansion (3.4) may be demonstrated directly 
from the completeMss of the P, (cosy). 

- i-
Since the Pj(x) have I simple zeros Xi, i =1 to I, in-

side the interval (- 1, + 1), we have a corresponding set 
of consistency conditions 

00 

'" 2 1- i L..J W (1 l)p,(X;) =0, i=1 toY. (3.25) 
'=0 

The factorization matrix is given by 

1
- (2l +1) ~'o" ~ 

[G(l' m,o' = (21' +1)(21 +1) Tr(Fj PI) 

= (210 +1) f+1 dx P'o(x)P,. (x)p, (x) +CCT, 
2 -1 Pi (x) 

(3.26) 

where the CCT terms are obtained from Eq. (3.25). 
For T =0 (the ground state), Eq. (3.26) reduces t02,3,5-7 

10 I) 2 

o 0 
(3.27) 

If we define t::..(l' 110 ), symmetric in the arguments, by 
the triangle relation 

~ 1 , 
t::..(l' 110 ) = ) 

( 0 , 

if II' -10 I :51:51' + 10 , 

otherwise, 
(3.28) 

then [G(l' 10)]'0' =0 if t::..(l' 110) =0 or when l' +1 +10 
is odd and is nonzero otherwise. The alternative ap
proach of Hoffman et al. 7 exploited this structure of 
G(Z'IO). Their factorization relations are just one of 
the equivalent set described by Eq. (3.26). 

Finally, we remark that the 1 consistency conditions 
of Eq. (3.25) can be considered as a nonsingular set of 
linear equations for the l downward transitions W~(Z 11) 
between different symmetry classes where 0:51 < 1. 
These can be solved by multiplying Eq. (3.25) by 
wf P, (xli), where 10 < T and wf is the weight of the ith o _ 
zero for the Gauss-Legendre integration of order I, 
and then by summing over i (using the fact that Gauss
Legendre integration has preCision 21-0 to obtain 

T 

W 2 (101l>=- ~ [Lu{P'0(xY)P,(xP]w2(ZIZ), 10<7. 
'=2'-'0 i=1 

(3.29) 

This is precisely the form of the consistency conditions 
obtained previously by Hoffman et a1. 7 

c. The atom-diatom system 

For this system we may again pick the symmetry 
group of external rotations R(3) to define the symmetry 
classes. ChOOSing the eigenfunction <Pn'm (r) = <Pn, (r) 
x Y'm(9, <p) as in Eq. (2.43), we have that z =r and s 
= (9, <p) and 1 labels the different irreducible representa
tions. We may derive factorization relations and con
sistency conditions for the quantities 

(3.30) 

which are identical to those of Sec. III B. However, in 
constrast, for the present case the symmetry class con
sists of states with different energies (but still the same 
magnitude of internal angular momentum). Hence, for 
cross sections this provides a factorization relation for 
transitions between total angular momentum states 
(classes). 

D. The atom-symmetric top system 

We start the discussion of this system by defining the 
symmetry classes using the full symmetry group of the 
symmetric top, namely, R(3)xDooh (i.e., external rota
tions x internal symmetries). The top wave functions 
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where 0 = (a{3')'), for each fixed 1 and I k I, provide dif
ferent irreducible representations of R(3)X D"h [of 
dimension (21 +1) for Ikl =0 and 2(21 +1) for Ikl >0]. 
Here s =r =0. We derive factorization relations and 
consistency conditions for the quantities 

w2(11 kill' I k' I ) = (2 -6Ik , 1~0}(21' + 1) 

x L L I W,km, I' k' ",.(K I K')12 , 
sank 111m· 

81111k' (3.31) 
i. e., (energy) degeneracy averages. 

To determine the form of the symmetry class projec
tion operators, we use the relations 

L D:"'(n)D~~",(O) =D!k' (0') , (3.32) 

'" 
where 0' =00.1 represents a rotation through n fol
lowed by one through 0.1• Equation (3.32) follows from 
the group closure property and unitarity of the repre
sentation. 16 We conclude that 

P llkl (n I 0) 

- (21+1) (2-6 Ikl •O) d~k(x')cos[k(a'+y')], (3.33) 
- 87T2 

setting 0' = (a' (3' y') and x' = cost!. Note that the 
validity of the expansion (3.4) may be demonstrated 
directly from the completeness of {d ~k({3') cos[k(a' +y')]} 
on functions of {3' and a' + y' which are even and periodic 
(of period 27T) in a' +y'. 

ConSistency conditions on the W2(l1 k I III kl ) arise from 
the no~s of the functiond~({3') cos[k(a' +y')]. The cosine 
has 21 k I zeros of which I k I produce independent consistency 
conditions; d~(x') has T - Ik I Simple zeros in -1 <x < +1 
and a zero of order I k I in x' at x = - 1 all of which 
produce consistency conditions. Note that the (possibly) 
higher order zero of d ~ (x') at x' = - 1 does not produce 
a singularity in the Tr~1A11 PL1) integral since the one 
dimensional integral over a' +')" vanishes in those 
cases where such a Singularity would occur (cf. Ap
pendix A). 

, I 1 
Let xTI il be a zero of order n l of dki(x'). The cor-

responding consistency conditions are 

t w
2
al k llilk I )(dd/J d ~k) I =0 , 

1=lkl X ""Iii 

for 0:S j:S nl - 1, for each i and I k I • (3.34) 

The consistency conditions corresponding to zeros in 
the a' + y' variable are derived from the equations 

L W2(llkIIZlkl)d~k({3')coS(kCPllil)=0, (3.35) 
1,Iki 

",I. _ 7T(i +t) i =1 to l"ill . 
'l"lkl - Ikl ' 

The procedure for reducing these conditions to expres
sions involving constant coefficients has been discussed 
previously and hence will not be given here. 

The corresponding factorization matrix is given by 

[ ( '1 '11-1-1)] - (2-6IJiI.o) (2Z+1) ~/olkOI/'lk'l ~ 
Gl k 1 k 10IkOI,/lkl-(2-6Ikl,0}(2-6Ik'I,O) (21+1)(21'+1) Tr(Fjlil P llkl ) 

= (2-6Ikol.0)(2l0+1) [i-1dX d~oOko(X)d!:k'(X)d~k(X)] 
47T .1 d~(x) 

X [l.'ls dCP cos(koCP) cos(k'cp) cos (kCP)] +CCT 
) 0 cos(Rcp) , (3.36) 

where the CCT terms are obtained from Eqs. (3.34) and (3.35). For T = II? I =0 (the ground state), Eq. (3.36) re
duces to 

, , (2 - '".".)(2~ + 1) 1 ( I' [G(l Ik 1100)]/OlkOI,lIkl = 4 
-Ik'i 

(" 10 I)' (" + -Ik'i I kl + Ik'i Ikol 

Another interesting set of factorization relations 
follow by defining the symmetry classes using the 
smaller symmetry group R (3)X COO (where the internal 
rotations are about the symmetry axis). The top wave 
functions provide different irreducible representations 
for each fixed 1 and k (those for ± k are conjugate). We 
derive factorization relations and consistency conditions 
for the quantities 

10 I)' C' 10 I)' 
Ikl + Ik'i -Ikol -Ikol Ikl 

10 

1:1)'\ ' (3.37) 
Ikol 

W
2
(lkll'k')= (21;+0 ~ IW,km,l'k,,,,.(KIK')12. 

"'''' (3.38) 

The symmetry class projection operators are given by 

(3.39) 

with 0' defined as previously. The validity of the ex-
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pansion (3.4) in this case may be demonstrated directly 
from the completeness of {D ~k(O')} on functions of f3' 
and ci +')1', which are periodic (of period 211") in' cl +')1'. 

The consistency conditions here arise only from the 
nodes in the f3' variable and have the same form as Eq. 
(3.34). Note that those of Eq. (3.35) do not occur. 

The corresponding factorization matrix is given by 

I I' I 
dk Ok (x) dk • k' (x) du(x)] 

o 0 i Oko-k ...... ii + CCT . 
dn(x) 

(3.40) 

For 7 =k =0 (the ground state), Eq. (3.40) reduces t018,6 

(

1' 
[G (1 ' k' 100) ]IQkOt /k = (210 + 1) k' 

(3.41) 

E. The atom-spherical top system 

The symmetry classes are defined here using the 
full symmetry or ,noninvariance group for this system, 
namely, R(4) =R(3)xR(3) (external rotations x internal 
rotations).19 The wave function's can be taken as those 
for Sec. III D) and, for each fixed 1, provide a different 
irreducible representation of R (4) of dimension (21 + 1)Z. 

The factorization matrix is given by 

We derive factorization relations and consistency con
ditions for the quantities 

(3.42) 

i. e., (energy) degeneracy averages. 

The symmetry class projection operators are de
termined from Eq. (3.32) to be 

p,<oIO)= 218? x'(cp'), (3.43) 

where x' is the character -ror the lth irreducible repre
sentation of R(3) and cp' is the class parameter (angle) 
associated with 0' = 0'0-1• zo The validity ofthe expansion 
(3.4) may in this case be demonstrated directly from the 
completeness of {Xl ( )} on the class invariant functions 
for R (3). Z1 

Consistency conditions arise here from the zeros 
of the characters i ( ) which are related to U2,( ), 

the even Chebyshev polynomials of the second kind, by 

Xi(,h)=sinW+~)cp] =U-(cos,h/Z). (3.44) 
'Y smcp/2 ZI 'Y 

If we denote the positive zeros of UzT(x) by x~" i = 1 to 
T, then we have 

_ (27 +1)(210 +1) 1 
- (21 + 1 )(21' + 1 ) 11" fo~ Xl 0 (CP ) Xl' (cp)xl (cp) (1 - coscp) dCP + CCT 

xT(CP) 

_(2T+1)(210+1) Z £+1 UZIO(X)UZI,(X)UZI(X) (1-x2)1/2dx+CCT, 
- (21 + 1)(21' + 1) 11" _1 Uzi(x) 

(3.46) 

where the explicit form of the Hurwitz integral for R(3) has been used in Eq. (3.46).20 For 1: =0 (the ground state), 
Eq. (3.46) reduces to 

'I - (2l0 +1) 
[G(l O)]I()o1 - (21' +1)(21+ 1) t:..(l' 110), (3.47) 

from which it is clear that the matrix approach of Hoffman et al. 7 could alternatively be used here to derive the 
general factorization relation and consistency conditions starting withEq. (3.47). 

Finally, we remark that the T consistency conditions of Eq. (3.45) can be considered as a nonsingular set of 
linear equations for the T downward transitions WZ (111) between different symmetry classes where 0::: 1 < T. These 
can be solved by multiplying Eq. (3.45) by W~TUZI (X~i)' where 10<1 and W~T is the weight of the ith positive zero for 
the Gauss-Chebyshev integration of order 21, an~ then by summing over i (and using the fact that this Gauss
Chebyshev integration has precision 4T - 1) to obtain 

(3.48) 

J. Chern. Phys., Vol. 75, No.2, 15July 1981 



Chan, Evans, and Hoffman: The sudden approximation 735 

F. The atom-general top system 

The wave functions for a general top (including the 
asymmetrical case) can be written in the form 15

•
1s 

(3.49) 

The a~' 's correspond to a unitary transformation of the 
D:""'s (which, in the case of the spherical or symmetric 
top, may be chosen as the identity). We observe that 
the {CP;m (O)}, for each fixed l, provide a different ir
reducible representation of R(4) =R(3)XR(3) even though 
for a nonspherical top this is not a symmetry group for 
the Hamiltonian of the system. Thus, choosing the total 
internal angular momentum quantum number l to label 
the symmetry classes, the P, (n 10) are again given by 
Eq. (3.43) and the analysis and results of the previous 
section apply unchanged. 

As for the example in Sec. III C, this provides a 
factorization relation for averaged transition cross 
sections between total angular momentum states 
(classes). 

G. The atom-uncoupled vibrator system 

For this system we choose for z the vibrational 
coordinates and set s =0, the angular variables (cf. 
the atom-diatom system). The possible choices for 
the group depend only on the angular top eigenfunctions 
and those available are described in the previous sub
sections. The resulting factorization relations and 
consistency conditions will be identical with these 
cases. The same type of averaged transition cross 
section factorizations are therefore valid. 

H. Systems of two structured particles 

We consider a system of two structured particles 
denoted s = 1, 2. Suppose that symmetry classes de
noted Mt may be chosen for the internal wave functions 
of each molecule [thus, M1 = (ML Mf)] and that at least 
one of these classifications is nontrivial. It is readily 
verified that 

(3.50) 

where S = (S1> S2) are the appropriate variables. The 
existence of factorization relations and consistency con
ditions now follows from the general discussion and the 
factorization matrix has the form 

(3.51) 

where the notation is self-explanatory. As a Simple 
example one may consider a system of two rigid rotors 
where the symmetry classes are labeled by (ll, lZ). 
Note that in the light of the tensor product structure of 
Eq. (3.51), it is clear that the matrix approach of 
Hoffman et al. 7 could be extended to this case to derive 
the general factorization relations (and consistency con
ditions)22 starting with that out of the ground state 
(0, 0).4.23.17 

Finally I we remark on some general properties of 
the factorization matrix G(M: IM1) apparent in the ex
amples described. First, since the factorization anal-

ysis applies to the identity operator 1 on Je, we con
clude that 

(3.52) 

for any choice of G(M{ I M1) [cf. Eq. (2.50)]. Second, 
for the systems we consider where only simple pole 
Singularities require regularization, then 

and in particular 

G(M1IM1)=1 

(3.53) 

(3. 53a) 

for the Cauchy principal value integral choice of 
regularization [cf. Eq. (2.50]. Another property may 
be easily derived usinILthis form of regularization. 
Suppose there is a pairing of symmetry class labels 
M 1 - tV! 1 such that 

P M1 (r 11')* =PM1 (r II') , 

then 

and 

(3.54) 

(3.55) 

(3.56) 

For the case of most interest where the symmetry 
classes correspond to the eigenspaces of some self
adjoint operator (e. g., energy or total angular mo
mentum classes), we have M1 =M1 so 

(3.57) 

IV. CONCLUSION 

In this paper we have considered operators defined 
on some space Je =Je 1 ®Je 2 which are diagonalizable on 
Je l' Our primary focus has been on the case where 
Je 1 =Je 1nt but other choices, such as Jet =Je, are pos
sible. Linear factorization relations were developed 
for the matrix elements of these operators, and for the 
square of the magnitude of their matrix elements 
appropriately averaged over symmetry classes. The 
development is general in that the choice of input state 
or input class, as the case might be, is totally ar
bitrary. The coefficients in the factorization relations 
depend on the diagonalizing representation but not on the 
operator per se. In order to compute explicitly the 
factorization coefficient, the diagonalizing representa
tion must be known. Detailed consideration has been 
given to an important case where this is true, namely, 
when W is local in the coordinate representation of the 
internal variables. In particular the results hold for 
Sand T matrices in the ES approximation. 

The factorization relations for the averaged square 
magnitudes of the matrix elements for local operators 
are also applicable to averaged cross sections (dif
ferential or integral) for transitions between symmetry 
classes. In a number of important cases the symmetry 
classes can be chosen to correspond to energy levels 
and, correspondingly, the factorization relations apply 
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to degeneracy averaged cross sections. These include 
systems where each of the colliding molecules can be 
represented by anyone of the following molecular 
models: (a) a structureless particle, (b) a rigid rotor, 
(c) a symmetric top, and (d) a spherical top (which is not 
just a special case of the symmetric top because it has 
a different degeneracy). For a number of systems, it 
is also possible to choose the symmetry classes so that 
they correspond to fixed values of the total angular 
momentum quantum numbers for each of the colliding 
molecules. This is true if each molecule is anyone of 
the molecular types listed above or, in addition, (e) 
an asymmetric top, (f) a diatom (more generally, a 
linear, coupled vibrotor without bending modes), and 
(g) an uncoupled, nonlinear vibrotor. (The symmetry 
classes in some of these cases are the same. ) 

We have also shown that each factorization relation, 
in general, has associated consistency conditions. 
These are linear relations among the input data. The 
number of consistency conditions depends on the 
choice of input state (or input symmetry class) and the 
existence of symmetry conditions introduces a degree 
of flexibility in the form of the factorization relations. 

If the energy levels for a colliding pair of molecules 
do not correspond to a choice of symmetry classes, 
the factorization relations given by Eqs. (3.5) and (3.9) 
can, of course, still be used approximately for de
generacy averaged cross sections. The nature of the 
approximation is to ignore off -diagonal elements of 
.itJt'l in Eq. (3.10); the validity of the approximation 
must be separately assessed in each case. 6.24 

APPENDIX A 

To evaluate [a(m'v' Imv)]",ovo''''v described in Sec. 
n D, we must consider integrals of the form (to within 
a constant) 

I = L [5 dr L 
(sl/"r') 1/ L 

=L 
L 

using the completeness of the <PI/' This proves the re
sult described for M =0 and for general M unless 
(x 1/' ,r') is a zero of <Pi of order N or higher. However, 
the result still holds in this case since the input data 
are assumed to satisfy the consistency conditions. 
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where C. is obtained from the full circle C by deleting 
intervals of width E: about the zeros of the denominator. 
All possible combinations of +/ - signs must be con
sidered. For the function/.(<p) defined by 

I.(<P) = ~ eliii~ ~e-liiilb , 

( 0, <P ~ C. , 

a Fourier expansion is available of the form 

The Ck(E:) implicitly depend on in and ± and exist in the 
limit E: - 0 as Cauchy principal value integrals. The 
result described in Eq. (2.42) now follows easily upon 
substitution of this expansion into the expression for I, 
taking the E: - 0 limit and finally performing the <P in
tegrals. 

APPENDIX B 

Suppose rl/' = (xl/', r') corresponds to a zero of 
<PI/' (x, r') of order N in z(x), so 

for 0::; j ::; N - 1. We show that data generated from the 
factorization relations out of the ground state satisfy the 
consistency conditions derived previously from Eq. 
(2.5). More generally, we show that if the consistency 
conditions are satisfied by general input data (out of 
any state), then they are satisfied for data generated 
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