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Abstract

We study minimax rates of convergence for nonparametric regression and prediction
under a random design with dependent errors. It is shown that dependence among errors
in general does not hurt a prediction of the next response. For estimating the regression
function, however, dependence may damage the minimax rate of convergence. Under the
assumption that the errors are independent of the explanatory variables, we show that
minimax rates of convergence are determined in terms of the massiveness (characterized by
metric entropy) of the function class assumed to contain the underlying regression function,
and behavior of the covariance matrix of the errors. It is shown that the minimax risk
i1s at the worse rate between two quantities: the minimax risk of the same function class
but under the assumption of i.i.d. errors, and the minimax risk of estimating the mean of
the regression function. Examples of function classes under different covariance structures
including both short and long range dependences are given.
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1 Introduction

1.1 Problem of interest

Assume we observe random variables (X;,Y;)™,, where Y; takes value in R and X; takes value
in X, a subset in R? for some d > 1. The relationship between response variables Y;’s and the

explanatory or experimental variables X;’s is modeled as
Yi=u(X) +ei, 121, (1)

where u is an unknown regression function. The random errors {¢;, ¢ > 1} are assumed to have
a joint normal distribution conditioned on {X;, ¢ > 1} with mean zero and a known covariance
matrix. A goal is to estimate the regression function u, which is assumed a priori to be in
a nonparametric function class & (e.g., monotone or Lipschitz). Another related goal is to
predict the next response Y41 given the data and X, 4. In this paper, we study how well one

can estimate u and how well one can predict Y,4; both under a minimax consideration over



the function class /. The focus is on determination of minimax rates of convergence for the
estimation and prediction problems when the errors are dependent. We will characterize how
dependence of the errors as well as the function class affects the minimax rates of convergence

under appropriate conditions.

1.2 Some background

In recent years, there has been an increasing interest in statistical estimation based on long-
range dependent data (the reader is referred to Beran (1994) for a survey of work in this
area). Long-range dependence has been observed in many applied scientific disciplines. Kiinsch
et al (1993) wrote: “Perhaps most unbelievable to many is the observation that high-quality
measurement series from astronomy, physics, chemistry, generally regarded as prototypes of
4..d.” observations, are not independent but long-range correlated”. Based on the empiri-
cal evidences of long-range dependence in measurements and other applications, it becomes
important to study how long-range dependence affects statistical estimation.

For parametric regression with fixed designs, asymptotic results for MLE and least square
estimators under long-range dependence are established by Yajima (e.g., 1991). Kiinsch et al
(1993) show that for certain analysis of variance models with random designs, contrasts can
be estimated at the same rate as that under independent errors. Asymptotic results for the
estimation of long-range dependence parameters under parametric models are in Beran (1986),
Fox and Taqqu (1986), Dahlhaus (1989), Giraitis and Surgailis (1990), Robinson (1995) and
others.

For nonparametric regression, effect of long-range dependence on minimax rates of conver-
gence is studied in a pioneering work of Hall and Hart (1990a) for a differentiable function
class, later by Wang (1996), and Johnstone and Silverman (1997) for Besov classes, all under a
fixed equally spaced design. These results show that a certain long-range dependence of errors
damages the minimax rate of convergence for regression estimation. The latter two papers
propose adaptive wavelet estimators. In addition, Wang shows that for some inhomogeneous
Besov classes, linear estimators can not achieve the minimax rate of convergence, and John-
stone and Silverman show that when an unknown dependence parameter is properly estimated,
a wavelet threshold estimator is adaptive with respect to both the dependence parameter and
the smoothness parameters. Robinson (1996) derives local asymptotic normality for kernel
estimators under long-range dependence.

In this work, we study effects of a general dependence among the errors on regression
estimation and on prediction for a general nonparametric function class, under a random design.
The focus is on the theoretic determination of the minimax rate of convergence. We do not

address issues of estimation of dependence and adaptive estimation in this paper.



We finally point out that independently of our work, Efromovich (1999) obtains minimax
rates of convergence for regression estimation for Hélder classes under a long-range dependence
and a random design. He proposes a series expansion estimator and shows it is adaptive with
respect to a smoothness parameter. Qur results on minimax rates of convergence apply to

general classes of regression functions satisfying a mild richness assumption.

1.3 A summary of our findings

We summarize our results informally below. The conclusions are in terms of minimax rates of
convergence under square Ly type of loss under a random design. The errors are assumed to be
independent of the explanatory variables for the results on estimating the regression function,
but the independence is not required for prediction.

1. If the variances of the errors are uniformly upper bounded, then the regression function
up to a constant can be estimated as well as under i.i.d. errors.

2. Under some mild conditions, the minimax risk for estimating the regression function in
a class converges at a rate of the maximum of two quantities: the minimax rate of the same
function class but under i.i.d. errors, and the minimax rate for estimating the mean value of
the regression function.

3. Dependence among the errors and/or dependence among the explanatory variables (as
long as they have the same marginal density) do not make prediction of next response harder.

From above, the effect of dependence of serially correlated errors on regression is sort of
“parametric”, in the sense that it does not affect the rate of convergence more than adding the
risk for estimating a single parameter (the mean of the regression function). Similar phenomena
have been observed earlier for some parametric models (e.g., Kiinsch et al (1993)) and density
estimation (Hall and Hart (1990b)) both under long-range dependence.

The paper is organized as follows. Some preliminary considerations are given first in Section
2. The main results on both regression estimation and prediction are presented in Section 3.
A key proposition on minimax risk bounds is presented in Section 4. The proofs of the main

results as well as useful lemmas are given in Section 5.

2 Risks of interests and metric entropy
2.1 Risk for regression estimation

We assume that {X;,¢ > 1} are i.i.d. with density h with respect to a measure p. For the non-
parametric class U supposed to contain u, we assume that ¢/ is uniformly bounded throughout
the paper.

For regression estimation, we obtain results when the errors are independent of X", i.e., the

conditional covariance matrix €2,, of {;,1 < ¢ < n} given X" = (Xy, ..., X,,) does not depend



on X". We assume that €, is known. Let || u—v [|5, = (f(u — ’U)th,u)l/Z be the Ly distance
between two functions u and v with respect to the design density of X;y. Since U is uniformly
bounded, the distance is well-defined within the function class.

The minimax risk we examine for estimating the regression function u is

2

RS2 m) = min i B = [z, oo

where % is over all estimators based on (X;,Y;)" , and the expectation is taken under the
true regression function u. The minimax risk measures how well one can possibly estimate u
uniformly over the function class.

A condition, namely, Tr(2!) is of order n (Tr(-) denotes the trace of a square matrix), will
be used for identifying minimax rates. It is satisfied by short- and long-range dependent cases
as given in Section 3.3. It also holds for stationary invertible autoregressive errors as studied
in Hall and Hart (1990a). Let o? = Var(s;). A simple sufficient condition for Tr(Q,!) < n is

2)

that sup o? < oo and there is a white noise component in the errors, i.e., &; = ) + el , where

i i
{82(»1),1' > 1} are i.i.d. and independent of {52(»2)} (see Lemma 7 in Section 5). When the trace
condition is not satisfied, rates better than that under i.i.d. errors are possible. For instance,
assume that the errors are independent with decreasing variances o? of order i~!. Then it is
intuitively clear that the rate of convergence can be faster compared with that under i.i.d.

€ITOorS.

2.2 Estimation of the mean of the regression function

Related to the above problem of regression estimation is the problem of estimating the mean
value of the regression function with respect to the design density. As will be seen, this “para-
metric” problem characterizes the influence of serial dependence of errors on regression estima-
tion.

Let A = {n(u) = [uhdp : u € U} be the set of all possible mean values of u(X) for the
class U. Let

r, = min max £(7 — n(u))? (2)
n  ueld

be the minimax risk for estimating n(u), where the minimization is over 7 based on (X;, Y;)™,.

2.3 Estimation of the regression function up to a constant

Long-range dependence makes the estimation of the mean of the regression function harder and
therefore may affect the rate for estimating the whole regression function. In some applications,
it is the trend or change of the function that is of interest. Then it is appropriate to estimate

the regression function up to a constant.



Let ug(z) = u(z) —n(u) be a centered version of the regression function (centered according
to the design density). The minimax risk for the estimation of wg is

Ro(U;Q;n) = min rggg{E || wo — o H%Q(h)v

Uo

where g is over all estimators based on (X, Y;)™,.

2.4 Risk for prediction

For prediction, we assume that X;, ¢ > 1 have the same marginal density h with the joint
distribution known. When the data are dependent, the problem of prediction of the next
response Y, based on X, and the past observations (Xj,Yj)?:_ll may be essentially different
from the problem of estimating the regression function. For the purpose of prediction, we may
first “estimate” the conditional mean function of Y,, given X,, and (X}, Y])?:_l1 From a standard
calculation, the conditional density of Y, given X,, = z and the past data, is normal with mean
Mp_10(2) = u(z) + B, 27, (Y*~1 — U™ ') and variance o2 — §,_, Q" 8,1, where 8,
Qu_1 Bn
2

is from partition 2, = ﬁ/
n—1 On

1 <% < n—1. Here the conditional covariance matrix €2, is allowed to depend on X" in general

) and Un_l = (U17---7Un—1), Wlth UZ = U(XZ) fOf

and therefore is random. For a given “estimator” m,_; of m,_1,, the square risk is
~ 2 ~
E (mn-1,u(X5) = Mn1(Xn))" = E || mu—1u = Tt 12,0,
where || - ||%2(1,.) (2 > 0) denotes the Ly distance with respect to the conditional distribution of
Xiy1 given X
Once we have an estimator m,_1, we may predict Y,, by m,_1(X,) at X,,. This predictor

has square risk

E (Y, — in_ (Xn))? E (B [(Ya = o (X)) X7y X))

= kK (0721 - /B;_lﬂgilﬁn—l) + E(mn—l,u (A’Yn) - mn—l(fyn))Z .

Note that the first term in the above decomposition does not depend on the predictors, indicat-
ing the prediction problem is equivalent to the problem of “estimating” the conditional mean

My—1,, as expected. Now we define the minimax average cumulative prediction risk as

n
i 1/n) > E || mictu — M1 |2,
i vl (/) Z B i = i ity

where the minimization is over all m;_; based on (Xj,Yj);:
i = 1, mg is any initial guess, which does not have any effect in terms of rate of convergence).

1 for 1 <4 < n respectively (for

The average cumulative risk is natural for consideration for a prediction problem where one is

interested in performance of a prediction strategy not just once but averaged over time.



Because of a technical reason, we study a clipped version of the prediction risk. For a fixed
constant A > 0, let || g ||1,(;),4= (f min (|g|,A)2 dyi) V2 denote the clipped L, norm with
respect to the conditional distribution ;. We now redefine the minimax average cumulative
prediction risk as follows

Racp(U; n; A) = mlig,< m&?{((l/”) ZE | Mzt — M1 H%Q(yi_l),A : (3)
mi—1,1<i<n U =1

2.5 Metric entropy as a measure of massiveness of a function class

It is clear that the bigger the function class U is, the larger (at least no smaller) the minimax
risk. For nonparametric regression with independent errors, it is known that massiveness of
a target function class affects the minimax rate of convergence in terms of metric entropy
order of the function class (see, e.g., Ibragimov and Hasminskii (1977), Bretagnolle and Huber
(1979), Birgé (1983, 1986), Le Cam (1986, Chapter 16), Yatracos (1988), and Yang and Barron
(1999)). Metric entropy as a measure of massiveness of a function class was intensively studied
in Kolmogorov and Tihomirov (1959) and since then results have been obtained on the orders
of metric entropy for the classical function classes and some others under various norms (see,
e.g., Lorentz, Golitschek, and Makovoz (1996)).

A finite subset N, is called an e-packing set in &/ under a distance d if d(u,v) > € for any
u,v € N with u # v. Let My(€) = My(€e;U) be the maximal logarithm of the cardinality of any
e-packing set under the Ly(h) distance. Clearly Mj;(¢) is nonincreasing in ¢. The asymptotic
behavior of Mj(¢) as ¢ — 0 reflects how massive the class ¢ is under the given distance. We
call M3(¢) the packing e-entropy or simply the metric entropy of U.

Throughout the paper, we assume Mj3(€) < oo for every € > 0 (which necessarily requires
U to be bounded in Lgy(h) norm) and M;(¢) — 0o as € — 0 (which excludes trivial cases when
U is finite). These conditions are satisfied if U/ is not finite, separable, and compact in Ly(h)
norm.

For most function classes, the metric entropies are known only up to orders. For that reason,
we assume that M (¢) is an available nonincreasing function known to be of order Mj(¢). We

call a class U rich if for some constant 0 < 7 < 1,
lim iélf M(re)/M(e) > 1. (4)
[ d

This condition is a characteristic of familiar nonparametric classes (except classes of analytic
functions), for which the metric entropy is usually of order ¢e* log (1/6)5 for some o > 0 and

B € R.



3 Main results

In this paper, the expression a,, < b, means that lim sup (a, /b,) < co. If a,, < b,, and b,, < a,

(i.e., @, and b, are of the same order), we write a,, < b,,.

3.1 Regression Estimation

For regression estimation, the explanatory variables X, X, ... are assumed to be i.i.d. with
known density h with respect to a measure u. They are further assumed to be independent of
the errors g;’s in model (1). The following additional assumptions will be used for our results.

Assumption A1l: The class U is uniformly bounded, i.e., there exists a known constant L
such that sup,gy || % [« < L < o0.

Assumption A2: The class ¥/ is rich as defined in (4).

Assumption A3: The class U contains the constant functions « = ¢ with ¢ € A.

Assumption A4: The mean value set A contains an interval [a, b] with @ < b.

Assumption A5: sup;s o? < oo.

Assumption A6: Tr(Q;!) < n.

Assumption A4 excludes cases where the estimation of n(u) is trivial.

Choose ¢, such that

M (e,) =< ne2. (5)

Under the richness assumption in (4), any two sequences of solution to the equation are of the
same order, and €2 gives the minimax rate of convergence for estimating the regression function
under i.i.d. errors (see, e.g., Birgé (1983), Le Cam (1985) and Yang and Barron (1999)). An
interpretation of the equation is that if we discretize the function class ¢/ using an e-net, then
€, balances the estimation error of order M(¢)/n (due to identifying a good representor in
the e-net based on data) and the approximation error (bias squared, due to discretization) €.

Throughout the paper, unless stated otherwise, ¢, is defined as above.

THEOREM 1: If Assumptions A1-A6 are satisfied, we have the following conclusions.

1. The minimaz risk for estimating ug is of order €2, i.e.,

Ro(U; Q;n) < 2. (6)

2. The minimaz risk for regression function estimation is at rate of the mazimum (or equiv-
alently, the sum) of two quantities: the minimaz rate of the same class but under i.i.d.
errors, and the rate for estimating the mean n = Eu(X) of the regression function under

the correlated errors. That is,

R(U;Qn) <1y + €2, (7)



2
n

REMARKS: 1. Without assuming 77(€2;!) < n (Assumption A6), the above quantities ¢
and r, + €2 give valid upper rates respectively (see the proof of Theorem 1 in Section 5), but
they are not necessarily optimal in general (see Section 2.1).

2. A parametric analogue of (6) is in Kiinsch et al (1993), where it is shown that the rate
of convergence for estimating a contrast (similar in spirit to ug) remain unchanged for some
ANOVA models.

From above, in particular, for stationary Gaussian errors independent of X, the regression
function up to a constant can be estimated as well as under i.i.d. errors. For the estimation
of the whole regression function, however, the minimax rate for estimating n(u) may hurt.
Roughly speaking, the difficulty in estimating u is determined by the maximum of that caused
by largeness of the function class ¢ and that caused by the dependence among the errors in
estimating a constant. The separation of the roles of the function class and dependence is some-
what surprising. This separation may not hold when the random errors and the explanatory
variables are not independent.

From Theorem 1, once we know the metric entropy order of a nonparametric class and the
minimax rate for estimating 7n(u), the minimax rate for regression is determined. The metric
entropies for classical function classes are usually of order M(c) =< ¢~ (log(1/¢))?, where d

is the dimension of X', a is a smoothness parameter of the class measured in some way (e.g.,

2
n?

we have ¢2 of order n=20/(20+d) (Jog )28/ (2a+d) |~ =7 for some 0 < v < 1 (as for the

in terms of derivatives, or a modulus of continuity) and g € R. Then solving M(e,) = ne

long-range dependence case in Section 3.2), then

p=20/(204d) (Jog )28/ (2o4d) i o 5 90 /(204 d), or v = 2a/(20+ d) and § >

R(U;Q;5m) {n—'y if v < 2a/(2a+ d), or v =2a/(2a+ d) and 8 <

If for some reason Eu(X) =0 forall uw € U, i.e., A = {0}, then there is no need to estimate
n(u). As a consequence of Theorem 1, the rate of convergence for estimating the regression
function is of order ¢2 regardless of the dependence among the errors.

We now consider the rate of convergence of r,. Under Assumption A3, the problem of
estimating n € A based on Y; = n+¢;, 1 <1 < n (without X;, 1 < < n)is an easier subproblem
with smaller minimax risk than that of estimating n(u) = Fu(X) based on (X;,Y;)", with
Y = u(X;) +¢ei,1 <i<n (see Lemma 6 in Section 5). That is, r, > 7,, where 7, is the
minimax mean square error of the easier problem. Since {X;}”_, is not involved, 7, is handled
more easily. Some results on 7, were given in Hall and Hart (1990b). The following lemma
gives useful bounds on r, and 7,. Let 1" = (1,1,...,1) of dimension n.

LEMMA 1: Under Assumption A/, the minimaz risk v, satisfies

(1'9;11)_1 <7, < (1'Qn1) /n2.



If (1'(2;11) (1/Qn1) =< n? and 1'Q,1 = n, then under Assumptions A3 and A/,
Ty X Ty X (1’Qn1) /n’.

REMARKS: 1. The quantity (1/Q;11) ! is the variance of the best linear unbiased estimator
(BLUE) of n based on Yi,...,Y, with Y; = n+ ¢;, where {;,1 < i < n} have the covariance
matrix €,. Adenstedt (1974) showed that for a wide range of stationary error sequences having
a spectral density, the minimum variance (1/Q;11)_1 depends asymptotically only on the
behavior of the spectral density near the origin.

2. Note that 1IQn1/n2 is the variance of the average of the errors, which determines the rate
of convergence of 3°" | Y;/n as a simple estimator of 7. For the case of long-range dependence,
it behaves as well as the BLUE in terms of rate of convergence (see Adenstedt (1974) and
Samarov and Taqqu (1988)). The condition (1'9511) (1'Qn1) = n? is to say that BLUE and
the simple estimator converge at the same speed (as in the case for the short- and long-range
dependent cases in Section 3.3). The condition 1'Q,1 = n exclude unusual situations (e.g.,
independent errors with o2 = i~!) where a better rate than €2 is possible for regression.

3. I | 307 j=1 Cov(es,g5)] < m, then the dependence is weak and 1'Q,1/n2 < 1/n . As
a result, r, < 1/n and from Theorem 1, we have the same rate of convergence for regression
estimation as in the case of i.i.d. errors. For another extreme with 1'Q,1 =< n? (see Section 3.3,
Case 5), the minimax risk for estimating the regression function does not converge to zero at
all under Assumptions A3 and A4, though the rate remains to be €2 for estimating wuo.

THEOREM 2: Under Assumptions A1-A6, if (1'9511) (1’Qn1) =< n? and 1'Q,1 = n then
R(U;Qsn) < <1/Qn1) /n* + €. (8)
3.2 Rates under long-range dependence

3.2.1 Long-range dependence

Assume that the errors are stationary and that the spectral density, say f(A) of the serially
correlated errors exists. Let r(7) denote the correlation between ¢; and €;4,. The error process

is said to be long-range dependent if for some ¢ > 0 and 0 < v < 1,
FO) ~ex 0 as X 50 (9)

(see, e.g., Cox (1984)). Then r(j) is of order |7]77.
COROLLARY 1: Assume that f(\) satisfies (9), is continuous except at the origin and is
bounded away from 0. Under Assumptions A1-A4, we have 7, <X r, <X n~" and the minimaz

rate of convergence for regression estimation is

R(U;Qn) < n™7 4 €.



3.2.2 An example with Besov classes

For1 <o <o0,1<¢g<00,and a/d > 1/g—1/2,let By (C) be the collections of all functions
g € L,[0,1]¢ such that the Besov norm satisfy || ¢ HBqug C' (see e.g., DeVore and Lorentz
(1993) and Triebel (1975)). Then the Ly metric entropy is of order €% (see, e.g., Triebel
(1975) and Lorentz, Golitschek, and Makovoz (1996, Chapter 15)). Assume the design density
h(z) of X with respect to Lebesgue measure i is bounded above and away from zero. Then

dfo

the metric entropy of the Besov class under Ly(h) distance is of order e%/®. Application of

Corollary 1 yields the minimax rate of convergence under the long-range dependence:

R(BZ,(C); Q;n) x n~ min(2a/Qatd)), (10)
3.2.3 A comparison with an equally spaced fixed design

Results on minimax rates are obtained for long-range dependent errors with a one-dimensional
equally spaced fixed design in Hall and Hart (1990a), Wang (1996), and Johnstone and Sil-
verman (1997) for some concrete smoothness function classes. The model being considered
is

Yi=u(i/n)+e;,1<i<mn,
where Cor(g;,e;) ~ c|i — j|77 for some 0 < v < 1, and u is in Besov class By (C) (or a
differentiable class in Hall and Hart (1990a)). The minimax rate of convergence for estimating
u under squared Lj loss is shown to be of order n=2e7/(2a+7)

Assume there are only measurement errors (independent of the sampling sites X;’s) in the
responses and the errors are long-range dependent in the order of measurements. For this case,
if one uses an equally spaced fixed design, and if the order of measurements corresponds to
the order of the sites, the rate of convergence is n=227/(22+7) from above. Alternatively, if one
uses a random design, from (10), the rate of convergence is n~ min(2e/(20+1)7) | which is faster
compared to that with the fixed design. An explanation of the difference in rates is as follows.
Under the fixed design, observations with 2 values close to each other are highly correlated.
With the random design, however, the orders of the measurements of the observations at nearby
x values are not necessarily adjacent but on average quite far away from each other, resulting
in weaker correlations between observations that are close in terms of x values. Thus it is clear
that the latter is preferred to the former design. A closer look suggests that the difference
in rates is not due to the difference in random and fixed designs, but rather because the
order of measurements are not randomized for the fixed design case. If one uses an equally
spaced fixed design, one should randomize the order of measurements and we expect the same
rate of convergence as under the random design. This example also illustrates importance of
the randomization principle in statistical experimental design as well demonstrated earlier in

Kiinsch et al (1993) under some parametric settings with long-range dependence.
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3.3 Examples of dependence

For simplicity, we focus on stationary errors.

1. Ezponentially decaying correlation. Let r(j) = %67, j > 0 for some constants o > 0 and
@ with || < 1. Then it can be shown that Tr(Q;") < n and 1'Q,1/n? is of order n~".

2. Short-range dependence. More generally than the above case, we assume that the errors
are weakly correlated or short-range dependent in the sense Y ;. |r(k)| converges as m — oco.
Then 1/9711/712 is of order n=1'. A special case is finite memory dependence where the errors
are correlated only when they are not far away from each other, i.e., r(j) = 0 when 5 > j* for
some j* > 1. Another example is r(k) =< |k|™7 with v > 1.

3. Long-range dependence. Assume f(\) = f*(A)|1 — e*|=(1=7) for some 0 < v < 1,
where f*(A) is a strictly positive continuous function. This includes the spectral density
of a fractional Gaussian noise model (Mandelbrot and Van Ness (1968)) and a fractional
ARIMA model (Granger and Joyeux (1980) and Hosking (1981)). For the first case, r(j) =
¢/2(l7+ 1277 = 2|§|>7 4 |j — 1|>77) (then r(j) ~ ¢ j~7 for some constant ¢ > 0). Fractional
ARIMA(p, d, q) process has a spectral density f(A;d,¢,8) = c|6 (ei)‘) 12/|¢ (ei)‘) (1 — e)9)?,
where 0(z) =1 - 321 6;2 and ¢(z) = 1 — Z§:1 ¢;2’ are polynomials of order ¢ and p respec-
tively. From Corollary 1, r, < n~7 (see also Hall and Hart (1990b)).

4. Alternating dependence. For the above long-range dependence, the errors are eventually
positively correlated, i.e., 7(j) > 0 when j is large enough. Now suppose r(j) ~ ¢(—1)7|j| = for
some v > 0 as j — oo. One can obtain such a dependence from long-range dependent errors
{e;} by considering {(—1)'e;}. Then because the covariances essentially cancel out even when
0 < v < 1, the rate of convergence for estimating 7(u) under this correlation is still of order
1/n.

5. An excessively highly correlated case. Let €, have diagonal elements o? and off-diagonal
elements 2. For 0 < 8 < 1, €, is positive definite for all n. For this case, (119111) /n? =<1,
and since 1 is an eigenvector of 2,,, the product (119511) (1/9111) is easily seen to be of order
n? as useful for applying Theorem 2.

For Cases 2-4, it is assumed that the spectral density of the errors is bounded away from
0. Then Tr(Q,') < n (see Lemma 8 in the appendix). Note that the trace condition is
automatically satisfied for the other cases.

Take the Besov classes By (C) for examples. Based on Theorem 2, the minimax rate
of convergence for estimating u is n=2°/(20%4) for Cases 1, 2 and 4, and is worsened to
p~min(2e/(2a+d)7) for Case 3 (as seen in the previous subsection). For Case 5, by Theorem
1, the minimax rate for estimating ug is still n~20/(2a+d) However, since (1/9111) /n? =< 1, the

minimax risk for estimating u does not converge at all.
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3.4 Rate of minimax risk for prediction

For prediction, different assumptions will be used for model (1).

Assumption A7: X;,7 > 1 have the same marginal density function A with known joint
distribution.

Assumption A8: There is an i.i.d. component in the errors, i.e., &; = 5,51) —|—€£2) with {5,51)}
i.i.d. independent of {82(»2)}.

Assumption A9: The conditional covariances of the errors are uniformly bounded, i.e.,

sup sup sup Var(g;]| X" =2z") < oo. (11)
n>11<i<n z”

THEOREM 3: Under Assumptions A1-A2 and A7-AY9, dependence among the errors does
not hurt the rate of convergence for prediction, i.e., the average cumulative prediction risk in
(3) satisfies

Racp(U;Q5n; A) < cl.

Note that when the errors are independent, the average cumulative prediction risk and the
individual prediction risk are of the same order as €2 (see Yang and Barron (1999)). The above
result shows that as long as the covariances are known, dependence of errors does not harm
prediction in terms of rate of convergence as intuition also suggests. Dependence can result
in faster rate of convergence for prediction. For example, as an extreme case, if the errors are
identical, then under smoothness conditions on the regression function u, prediction risk can
be as small as of order n=2 by a simple interpolation.

For the prediction result, the errors are not required to be independent of the explanatory

variables. For example, consider the following dependence structure
Cov(ei, | X" = 2") = oy 6ij + o&ps(v; — z;) + ofpr(i - j), (12)

where o, > 0, 2 and 0% are nonnegative constants, d;; equals 1if i = j and equals 0 otherwise,
ps is a correlation function defined on {z — 2’ : z,2" € X'} and pr is a correlation function
defined on integers. An interpretation of this dependence structure is that the total errors in
the response come from three independent components: white noise {ew;,¢ > 1}, “spatially”
correlated errors {eg;,¢ > 1}, and time (or order of observation or measurement) dependent
errors {e1;,% > 1}. The two correlation functions could be general (but known), including short-
range and long-range situations. Spatial long-range dependent processes have been constructed
(e.g., Whittle (1962), Gay and Heyde (1990) and Renshaw (1994)). The representation of the
overall covariance in terms of sum of the three components is not necessarily unique. Since the
covariance is assumed to be known, this is not a problem here. The condition in (11) becomes

ps(0) < oo and pr(0) < co.
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COROLLARY 2: With dependence given in (12), under Assumptions A1, A2 and A7, and
ps(0) < oo and pr(0) < oo, we have

Racp(U; Q;n; A) < €.

ExaMPLE 1: For simplicity, consider a one-dimensional case. Assume {X;,i > 1} are
i.i.d. from Cauchy distribution (i.e., h(z) = (7 (1 + 562))_1 with respect to Lebesgue measure).
Let U consist of all monotone nondecreasing functions on R bounded between two constants.
The emetric entropy of ¢ under Lo(h) distance is of order ¢=! (which is seen using tan=!
transformation on x and the fact that the Lo metric entropy of a uniformly bounded monotone
function class with a compact support is of order 1/¢). Assume that the errors have a conditional
covariance matrix as in (12). The spatial and/or serial correlations can be either short- or long-

range dependent. For an example of a long-range spatial correlation, let {V(t),t € R} be a

stationary process with spectral density
fv(w) = a*r tsin?(w/2)w 215,

where 0 < ys < 1/4 (see Gay and Heyde (1990)). The asymptotic covariance is Cov(V (t), V(t+
7) ~ er®571 as 7 — oco. From Corollary 2, solving equation 1/¢ = ne?, we know that the

minimax rate for prediction is O (n‘Z/S) .

4 A key proposition and its derivation
4.1 Minimax upper and lower bounds for regression

Assume that the errors are independent of X™. Let p,, = Tr(21).
Choose €, such that

Ma(e,) = (1/2) Pngi- (13)
Let
Vn = (11/2) pa + log (SLn'/?/2,)
and let ¢, be chosen to satisfy

Ms(e,) = 29y, (14)

Let €, satisfy
My (%,) = ne /2, (15)

and define
G = (11/2) ne + log (8Ln'/2/2, ),

¥, = min (Qbm%n) .
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Typically, (e.g., when p,, is of a polynomial order in n), the component p,¢2 (or ne2) dominates
the other term in %, (or %,). Then under the richness condition in (4), €, and ¢, are of the
same order. If p, < n, then &,, ¢,,, €., ¥n/n, and ¥, /n are all of the same order. They are also
of the same order as ¢, determined by M (e,) = ne2 in (5) with M () of order M3 (¢€) (see Yang
and Barron (1999)). Let 7 = sup;», o7,

ProposITION 0:  Under Assumptions Al and A5, the minimaz squared Lq(h) risk for

regression function estimation is bounded as follows:
max (2/8, ) < RU;Qm) < 1o+ Cp s/,

where C'y 22 is a constant depending on L and 2.

REMARK: Without the richness assumption (4), even under p,, < n, the upper and lower
bounds in the above proposition may not be of the same order. For example, for classes of
analytic functions, the metric entropies are of polynomial orders of log(1/¢€) (Kolmogorov and
Tihomirov (1959)) and the upper and lower bounds differ in a logarithmic term unless r,
dominates. It seems that an use of local entropy (instead of global entropy) as pioneered by Le

Cam (1975) and Birgé (1983) in the construction of the upper bound may overcome the gap.

4.2 Proof of Proposition 0

In Yang and Barron (1999), minimax rates of convergence for regression under independent
Gaussian errors are derived using a connection between density estimation and data compres-
sion. The Cesaro average of the Bayes predictive density estimators of the joint distribution of
(X,Y) based on the uniform prior on a suitably chosen e-net in the regression function class U
is used to produce an estimator of the regression function to obtain a minimax upper bound.
For regression with dependent errors, however, due to correlations, the Bayes predictive density
“estimators” are targeted at the conditional distributions of (X;,Y;), ¢ > 1, given the past obser-
vations. They are no longer appropriate for estimating the distributions of (X;,Y;). It becomes
much harder to derive a rate-optimal estimator under general conditions on &/ and Q. The
difficulty is overcome through rather delicate adjustments of the Bayes predictive estimators as
will be seen.

We give more notations first. Let 7 = (X,Y), z = (z,y), 2" = (z1,..,2,). Let U" =
(u(X1), .., u(Xp)) and u" = (u(z1), ..., u(zy)).

4.2.1 Lower bound

We prove R(U;Q;n) > ¢2/8 and R(U;8;n) > r, separately. The second inequality follows
basically from the observation that estimating the whole regression function is at least as
difficult as estimating the mean of the regression function. The proof of the first one utilizes

Fano’s inequality together with a suitable upper bound on the involved mutual information.
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Let Ngn be an ¢,-packing set with the maximum cardinality in U/ and let G¢, be an ¢€,-
net for & both under Ly(h) distance. Since an e-packing set with the maximum cardinality is
automatically an e-covering set, we can find a G, such that log|G:, | = M2(€,). Following now
a standard argument using Fano’s inequality (see, e.g., Birgé (1983, Proposition 2.8), Yu (1996,
p. 427) and Yang and Barron (1999, pp. 1570-1571), we have

1(U;Z7") + log 2
min ma}j(Eu |u—1u H%Q(h)z (/4) (1 I (U;27) +log )
u  u€

log |Ngn|
where the Shannon’s mutual information I (U;Z") is equal to the average (with respect to

the uniform prior w) of the Kullback-Leibler (K-L) divergence between p,(z") and p“(z") =
ZuENsn pu(2")/INg, |- Here

pulz") = (g h(w:) (20) 7% Qa7 2 exp (= (1/2) (v — ") @77 (" — ™)) .

Since the Bayes mixture density p"(z") minimizes the average K-L divergence over all choices
of joint density ¢(z™) on the sample space 2", the mutual information is upper bounded by the

maximum K-L divergence between p,(z") and any ¢(z™). That is,
I (U;2"™) < max D (Pgzn, || Qzn) .

We will choose ¢(2") = (1/|G|) 3 _,cq Pu(2") for a certain appropriate covering set G.
Key to the analysis is the following expression for the K-L divergence between Pz~ , and

Pzn ,, (see Lemma 2 in Section 5):

D (Pzn |l Pznw) = (1/2) pa | w = v L, +(1/2) (wa,f) (Bu(X)— Ev(X))*,  (16)
#i

where wijjl denotes the (i,7)-th element of ©;!. When the errors are i.i.d. the second term
in the above expression is zero and one can simply take G to be G¢, and obtain the right
order upper bound on maxuen, D (Pzn. || @z») as shown in Yang and Barron (1999). For
dependent errors, ;. w;jl might be large compared to p, and the choice of G¢, together
with the familiar bound (Eu(X) — Ev(X))® <|| u — v H%Q(h) is not sufficient for the result. We
instead construct a covering set carefully to handle this term (Z#j w;jl) (Eu(X) — Ev(X))?.
The idea is to slightly enlarge G¢, by adding constants so that for each u € U, we can find v in
the enlarged covering set such that both terms in (16) are well behaved. Details are as follows.

Let A, = {a1,aq,...,a,}, a;j = —2L + jo¢, be equally spaced points in [-2L,2L] with
width &8¢, and m = [4L/ (§€,,)] (recall that L is an upper bound on the sup-norms of functions
in U). Let us consider an enlarged net Gz, = {v+a : v € Gz, and a € A,}. Note that
log (|égn|) < My(é,)+og (4L/ (8€,)) . For any u € U, there exist & € G, and a* € A, such that
| w1, < & and | [ (@ — u) hdp—a* |< 6¢,. Then | @* |< Se, 4| f(u—u)hdu| < (14-8)&,.
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Let & = ii —a, then | [ (u =) hdp| < 6én, and || u—1 ||, <Il w = Iy + || = ||y <
(2 4 6)é,. Clearly we have & € G¢,. From (16), we have D(Pzn, | PZ":ZV) < (1/2) (2 +
8)2pne2 +(1/2) max(0, @, )82€2, where w,, = Yitin<ii<n w;jl. Now choose wy to be the uniform
prior on G¢, and let ¢(z") = p"'(2") = Zueéen wi(u)py(2") and @Qz» be the corresponding
Bayes mixture density and distribution respectively. Let Aqyy, < Ay, <+ ++ < Ay, be the
eigenvalues of ,,. Then w, < 1/(2;11 < "’\(_13,71' Since p, = Y.,y /\(_i),n > /\(_l)m’ we have

@n/pn < n. From above we have that for any u € U,

D P "y n — El ~ pu(zn)
( zn, H QZ ) 8 (1/|G€n|)zu ege p“,(Zn)

< Flog —2«(1)
= (1/1Gen )p=(=7) (17)

= log |ng| + D <PZTL7u H PZn i‘,)

< My(E,) +log (4L/ (8¢,)) + (1/2) (24 8)%pné + (1/2) np,82E2.

Taking § = n~='/2, together with our choice of &, in (13), we have
D (Pzn || Qzn) < log (4Ln'/2/2,) + (11/2) pa2. (18)

Thus we have shown that I (U;Z") < log (4Ln1/2/€n) + (11/2) pne?. By our choice of ¢, in
(14), (I (U; Z™) +1og 2) /log N, | < §. Thus ming maxyuey F || w — @ H%Q(h) > 2 /8.

The inequality R (U;2;n) > r, follows from the simple fact that for any estimator u based
on Z™, let 7 = [ uhdu, then

2
-7 =5 ([ G- whdn) < Bla-ule

4.2.2 Upper bound

We divide the proof of the upper bound in several steps. In Step 1, as in the derivation of
the lower bound, consider the covering set égn with uniform prior. We show the resulting
Bayes predictive densities (at different sample sizes) are good “estimators” of the conditional
densities of the observations Z; given the past Z'~!. The Bayes predictive densities are mixtures
of Gaussian densities. In Step 2, based on the Bayes predictive densities, we construct density
estimators (of the same conditional densities) that have the form of a single Gaussian density
(instead of a mixture) still with good risk bounds. Being a single Gaussian density is important
in the later construction of the regression estimator. In Step 3, the risk bounds on the estimators
in Step 2 are shown to imply that the regression function can be estimated well up to a constant.
In Step 4, the estimation of the constant is shown to be determined by the correlations between
the errors. Together with Step 3, we have a good estimator of the regression function. In Step
5, we consider the case when p,, is of higher order than n. A suitable modification improves
the upper rate of convergence. This is why %) is used instead of i, in the upper bound in

Proposition 0.
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Step 1 As in the derivation of lower bounds, consider the covering set égn with uniform prior
wy. Let the Bayes predictive density estimators be p;(2) = p (Z;41|7) evaluated at Z;14 = z,
which equal p“1 (7%, 2)/p"”" (Z%) for i > 0 and p;(z) = p“1(z) = (1/|égn|) Zueégn pu(z) fori=0.

Q,_ - . . .
Forn>1,let Q, = ( ﬁ,n ! ﬁ; ! ) be the partition of £2,,. Under the Gaussian assumption,
n—1 Iy

given X;41 = z and (X}, Y)] 15
u(z) + 5.7 (Y? - U?) and variance ol — B:Q7' ;. Let

Yiy1 has a normal distribution with mean mm(a;|Zi) =

pZi+1|Zi;u($i+17yi+1) = h(xi-}-l) (27T< ﬁ Q 162))_1/2 X (19)

X exp (—1/ (2 (U?_H - @/Qflﬂz)) (y¢+1 M u(Tip1] 2’ )) )

It is the conditional density of Z;y; given Z° under the regression function u. Then by the

chain rule (e.g., Barron (1987)), for any v € U,

Paipr|7iu(Zit1) pu(Z")
Elog L2l 21 oo P2 )y pos Q) < s
Z 5:(Zien) B o (77) (Pzru || @zn) <

where the last inequality is as in (18). Thus

n—1

IqTLIEaXZ ED(p,, 1] Zi || Pi) < ¥p. (20)

2
Since the squared Hellinger distance satisfies d% (p1,p2) = [ (p}/z - pé/Z) dp < D(py || p2), we

have
n—1

ng,){( Z Ed%}(pzi+1|zi;u7ﬁi) S ¢n
1=0

This means that we can estimate (or predict) well the conditional densities of Z;;; given Z' by

p;i’s in terms of the cumulative squared Hellinger risk.

Step 2 Note that p;(zit1,yi+1) takes the form of A(2iy1)gi(yiv1|zit1), where §i(yit1|zit1) is
an estimator of the conditional density of Y;+; given X, and Z¢. Tt is a mixture of Gaussians
using a posterior based on the uniform prior on the ¢-net. We now construct an estimator taking
the form of a single Gaussian density. The simplified form (instead of a mixture) is easier to
work with in the next step. First fix v* € R'. For given (X; Y) -, and v*, for each z, let
m;(z) = m;(z|v') be the minimizer of the Hellinger distance dg (§;(+|z), ¢s) between §;(y | z)
and the normal density ¢;(y) with mean b and the variance o, — B! 3; over choices of b with
16— 371 (Y —v') | < L. Here f;(z|v?) and %; (z) = % (z|v*) = #(z) — ;27" (Y = v') can be
viewed as “estimators” of the conditional mean m;, and of u respectively based on (X' Y]);:1

except that v is used in place of U’ (unknown) in the second term of u(z) + 3:Q;7 ' (Y = U?) .
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Denote by p... |7i;s the density function of (241, yit1):

—-1/2

heisr) (27 (o2 - BT B)) T x
exp (=17 (2 (oh1 = B8 ) (s = (slan) + 527 (= )).

with given Z*, function s(z), and v*. Let v’ be the minimizer of d%l(ﬁi,pzl._}‘llzi;ﬂﬁvi) over v' € R’

and denote the corresponding m; and u; by m; and @;. Then using triangle inequality,

2 ) ) .
d (pzi+1|Z'§u7p2i+1|Z‘;Uf§Ui)

< QdH(Pz,-+1|Zi~u7@) + 2% (D, | 7020012 D)
< 2d3(payyy |70 D) + Qd%(pzi+1|zi;ﬂ?;Ui7ﬁi)
< 2d3(payyy 70 D) + 24F (Payy ) 70500 Di)

= (Pz,+1|21 s Di)s

where in the second inequality, @9 is @;(z|U*) (v' = U?) and for the third inequality, we use the
fact that dH(pZ¢+1|Zi;ﬂ?;Ui7pi) = fh(miﬂ)d%[ (ﬁi('|$i+1)7 ¢ﬂ?+ﬁfﬂ,ﬂ_l(Yi—U")) dy is upper bounded
by [ h(ziy1)d% (gi(-|mi+1), qulu) dp = d}(Di; Dy | 7i5) - 1t follows that

n—1 n—1
TeaXZEdH Pz +1|Z‘u’p2¢+1lziﬂf;vi) < 4T€aXEEdH Dz; +1|Zlu’p2) < 4.
=0 =0

Thus the estimators p,._|7igs,i of a simpler form continue to have a good bound on the

,’U

cumulative Hellinger risk.
Step 3 Now note that
B3y (D 75500 Doy | 2057 0) = QE/h (1 iy ((“(z)—ﬂ?(@)—ﬁfﬂfl(Ui—vi))2/(8(a§+1—ﬁfﬂjlﬁé))) "
From Lemma 3 in Section 5,
[ s (1 _ ~(wo-me-sar ) (s(wh-slen a))) »

L [ (o) (ula) = T (@) = ) d

where 7; = [h(z) (u(z) — @} (z)) dp and cj 52 is a constant depending only on L and a*. Thus
for any w € U,

X P [ ho) (o) = ) = )y (21)
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IA

(crz)” nf E / h(z) (1 (o <I>—ﬁiﬂrl(Uf—vm’)2/(8(a?+1—mrlﬁ;))) i
=0

_1 n—1
-1 2
= (CL,E2) Z 2 EdH(pz¢+1|Zi;u7pzi+1|Zi;E:.‘;Ufﬂ)
1=0
-1
S (CL,E2) 2¢n

This means that we have obtained a sequence of estimators @’ of u with the variances
E (f h(z) (u(z) — T (z) — 75)° d,u) of uw — w; well controlled on average. However, a possibly
large bias remains. To get a final estimator of u, we estimate the mean n(u) = [ hudu based

on current data Z°.

Step 4 For any 7); based on Z%, let @;(z) = w(z)— [ @ (z)h(z)dpu+7;. Then the new estimator

k3 k3

satisfies

[ @) (ute) = 7)) du = [ (a) (we) = @) = 7)2de -+ (G = )
It follows that

2

n—1
D E/h(m) (u(2) - () dp
=0
n—1 n—1
= X F [ hla) (u@) ~ T (@) = ) d 3 B = ()
=0 =0
_1 n—1 R )
< 2 (CL,E2) Y+ Y B — n(w)?.
=0
Taking 7; to be the minimax estimator of 7 based on Z*, we have
n—1 N 2 _1 n—1
$ E/h(m) (@) ~ (@) dp <2 (e ) ut Yo
=0 =0

/ 2 . . .
Here ro = min » maxy,ey (77 - n(u)) . As a consequence, we have the following cumulative risk

bound .
e N -1 _
(/) > B llu=i 3,0 2 (crm2) Ya/n+Ta,
=0

where 7, = (1/n) Y%7 r;. For the usual risk R (U;Q;n), we do not need to require 7; to

depend only on Z'. Then we set 7; = 7, for all 1 < i < n, where 7, is the minimax estimator
-1

based on Z". Then the above risk bound becomes 2 (Csz) Yp/n + r,. From Lemma 4 in

Section 5, we have an estimator %, based on Z" such that

n—1

E b, 12 1< E w—; ||2 < 2 - 22
mapt 2l 0 € mapg 3 Il = 5l (cr2) Gu/n+ra. (22)
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Step 5 When p, is of higher order than n, the upper bound above may be suboptimal. For
instance, suppose we have independent errors with ¢ = i1=% for some 1 < § < 2, which implies
that p, =< n®. Assume that Ma(e) < ¢~ for some @ > 0. Then the upper bound rate given
in terms of v, is n®~17228/(22+4d) which is worse than the rate n=2%/(22+4) ghtained with i.i.d.
errors. Clearly, this inferior rate is not because the problem is more difficult. It can be improved
in general as follows. Let us generate i.i.d. random variables €1, €5, ...,&, from a standard normal
distribution. Let }7; =Y;+&;,1<1<mn. Then the random errors &; + &; in 172 have covariance
matrix Q, = I,, + Q, (I, is the n x n identity matrix). Then p, = Tr (ﬁ;l) <Tr(I;Y)Y=n
because I, + @, > I, implies (I, + Qn)_l < I7! (here the symbol “>” for matrix comparison
means the difference is nonnegative definite). Note also that the variances of the new errors
€; + &; are uniformly upper bounded by 5 = 5 + 1. Applying similar analysis to (XZ',YQ)
replacing p,, by n yields

Z B [ 1) (o) - w1 @)~ <2 (e, ) T (23)

where @!’s are obtained with the new data (Xj,?j);:l. Estimating 7(u) the same way as

before, we obtain a randomized estimator u, with risk bounded by 2 <CL§2> 1 ¥, /n+r,. The
estimator depends on both Z”™ and the generated random variables &;, 1 < ¢ < n. One could
average out the randomness in €; to get a nonrandomized estimator with no bigger risk since
the loss being considered is convex. Thus R (U;Q;n) < 2 <CL§2) 1 . /n+ r,. This completes
the proof of Proposition 0.

5 Proofs of the main results

ProoF oF LEMMA 1: For the upper rateon 7, takingn = 3>"" ;| Y;/n, weget 7, < (1/Qn1) /n?.
For lower bound, consider 2 equally spaced points in A,, = [a,,b,] C A. Denote the set of
these points by D,, and let © take values in D,, with equal probability. Let é, = (b, — a,,) 27™.
Then as in the proof of Proposition 0, we have

I1(©;Y") + log 2)
m log 2 ’

7 > 82/4 <1 —

Similarly to the analysis there, consider a rougher net in A,. Let D; be the set of 2m/
equally spaced points in A, and let 5; = (b, — ay) 2_7”/. Then it can be shown similarly
! Y ’ — [ -1/2
that 1 (©;Y") < m log2 + (1/2) (5n) (1 inl). Take b, — a,, of order (1 inl) / and
' ;= -1
m = 1to have I (©;Y") < 1 (note that (1 inl) is the variance of the best linear unbiased

, -1
estimator and thus (1 Q;ll) < 1). Thus there exists a constant C' such that I (©;Y") < C
for all n. Take m suitably large (independent of n) such that (C' + log2) /(mlog2) < 1/2. Then
s -1\ —1
T > 62 /8. This establishes the lower bound rate (1 inl)

20



For an upper bound on r, in the second statement, consider 7, = Y = (1/n) > j=1Y;. Then
B~ n(u)? = E(%Z“ a ZE’)

g )

= L [ ufo) = n(w)? o)+
4L2+1Qn1

Under the given conditions, together with Lemma 6 later in this section, we have
P < < (1'0Q,1) /0.

If (1/9511) (1/Qn1) = n?, then clearly 7, < r, < (1’Qn1) /n?. This completes the proof
of Lemma 1.

Proor oF THEOREM 1: The upper bound part for the first conclusion follows from (23)
in the proof of Proposition 0 using iy = (1/n) X"y (@ (z) — [ @ (z)h(z)du) as an estimator

of ug. From (23) and using Lemma 4, we have that
B [ h@) (uo(e) = o)) du < %Z © [ ) (uo<x> - (@) - [w@h(dn)) Cdn

S 2 <CL,%2) 1% 6y

Note that Assumption A6 is not needed for the above upper rate of convergence for estimating
ug.
To prove €2

f (o — v0)2 hdp, where ug = u — [uhdp and vg = v — [ vhdp. Replacing Ly(h) distance by dg

is also a lower rate for Ro(U;2;n), consider distance dy defined as do(u,v) =

in the derivation of the lower bound in the proof of Proposition 0, we have
Ro(U; Q;m) > 17./8,

where 7, is determined by Mq(n,) = 21, with My(e) being the packing entropy of & under dy.
It is straightforward to show that Mg(e) is of the same order as M3 (€) for a uniformly bounded
rich class. As a consequence, under Assumption A6, 5, < €,.

The second conclusion in (7) follows directly from Proposition 0 using that €2 and ¢ /n are
both of order ¢2 under the condition Tr(€2;!) < n. Note that the upper bound in Proposition
0 always satisfies ¥%/n < €2, regardless of the trace condition. This completes the proof of
Theorem 1.

Proor orF THEOREM 2: The conclusion follows directly from Theorem 1 and Lemma 1.
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PrOOF OF COROLLARY 1: Assumption Ab is obviously satisfied. From Lemma 8 later in this
section, Assumption 6 is satisfied. It remains to verify (119511) (1'Qn1) = n?, (1'Qn1) >n
and 1'Q,1/n% < n=". Since r(j) ~ |§|77, it is straightforward to show that (1/Qn1) = n?,
Under our assumptions on the spectral density, Adenstedt (1974, Theorem 5.2) shows that
(1/9511) - is of order n=7 (note that (1/9511) - is the variance of the BLUE). This completes
the proof of Corollary 1.

ProoF oF THEOREM 3: We make some modifications to the derivation of the minimax
upper bound in Proposition 0. Note now that the conditional covariance matrix €2,, depends on
X"™in general. Under the assumption that there is an i.i.d. component of errors, the eigenvalues
of ,, is uniformly lower bounded, i.e., there exists a positive constant A; (independent of X"
and n) such that ¢'Q,a > A; || @ ||? for all n-dimensional vector a (); is the variance of the

i.i.d. portion of errors). Then from (24) in the proof of Lemma 2 later in this section, we have
2D (Pgny || Ppny) = E(U" =V Q7N (U = V7

NS X - (X))

IN

= w7 lu—v 7, -

Similarly to (17), we have that the mutual information I (U; Z") is upper bounded in order by
ne + Ms(e,). Without the i.i.d. assumption on X;,¢ > 1, h(z;41) in (19) should be replaced by
the conditional distribution of X;4; given X'. It will be denoted by A(z;51|X ") for convenience
regardless of whether the conditional density with respect to u exists or not. Proceed as before
but replacing A(x;41) by h(z;41|X?), we have that

n—1

2 ) ) ) 2
ng,){( E EdH(pZz‘_},l|Zl;u7pz1‘+1|Z1;E:‘ﬂ;’U;) j ney,.
1=0

Note that
~ 2 '
i —(miu—m}) /(8 0? —ﬁlﬂt_lﬁz
Ed%[(pzi+1|z";u7pzi+1|Zi;ﬂf;ui) = 2E/h($2_|_1|X ) (1 — e ( ) ( ( +1 ))) dlu

Using the fact that for any A > 0, there exists a constant ¢ > 0 such that 1 — e’ >
cmin (22, A) , together with (11), we have

. —(miu—m* 2802, —p0! i
E |l mig = 17,0,4< '5E/h(wi+1|XZ) (1—6 (=21 (30000 ﬁ))) dpe

for a constant ¢ depending only on A and an upper bound on the quantity in (11). Averaging

2

2 as an upper rate on the average cumulative prediction risk. This

over 0 < i< mn—1, we have €

completes the proof of Theorem 3.
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5.1 Proofs of the technical lemmas

Let Pzn ,, denote the distribution of 7™ = (XZ,Y)Z ; When the regression function is u. The
density of Pzn ,, is

pulz") = (Mg h(w:) (20) 7% Qa7 2 exp (= (1/2) (v — ) Q70 (" — ™)) .

Let w;jl denote the (7, j)-element of Q;'. Recall that the Kullback-Leibler divergence D(P || Q)
between two distributions P and ) with densities p and ¢ with respect to u is defined as

D(P || Q)= [ plog(p/q)dp.
LEMMA 2: The K-L divergence between Pyzn , and Pzn ,, is

D (Pzns || Pznw) = (1/2)Tr (971 [ u=v |20 +(1/2) (Zwu) (Fu— Ev)”

Proor: We have

pu(zn) n ' o—-1,n ny o—=1,n ny o-1,n
210g =2 —-v Qn Yy —u Qn w4+ (v Qn v,

Given X",

pu(Z")

Then

2Ezn , log i:g:g = FE (Z Wi} (w(Xq) = o(Xy)) (w(X;) - U(Xj)))

i

= Yowii lu—vllL,m +D e EuXi) - v(Xy) (w(X;) - v(X;)).

=1 t#]

Under the i.i.d. assumption on Xy, ..., X,,, we have

i=1 i#]

2o BT = Y il u v g + (Zw;;) (B (u(X) - v(X))*.

This completes the proof of the Lemma 2.
LEMMA 3: Assume sup, |g(z)| < A for some constant A and o? < of. Let h(z) be a

probability density function. Then

r@réilr%l/h 1 — e lole )_6)2/‘72) dp > c/h(m) < /h ,u) du,

where the constant ¢ depends only on A and o3.
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2
C Tt \ o~ (g(x)—6)? o2 clg—0)" 0] <24
ProoF: It is easy to prove that for |[g] < A, 1 —e > { cq? 0] > 24

for some constant ¢ depends only on A and o3. It follows that [ h(z) (1 - e_(9_€)2/02) dup >

2
{ ifzzgg(ég?d; 6)" d IZI § gﬁ . Since [ h(z) (g(z) — a)® dpis minimized when a = [ h(z)g(z)dp,
the conclusion of the lemma follows.

LEMMA 4: Let 4y, ..., be k estimators of u. Then the estimator u, = (1/k) 35,

satisfies
k
Elw—ag |[7,0)< (/R E | w—1: 17,0 -
=1

Proor: The result follows from that || v — v H%Q(h) is convex in v.

LEMMA 5: Let 0, be the n X n finite section of the covariance matriz of a stationary process.
Assume Q,, is invertible for n > 1. Then Tr (Q;') is at least of order n. More generally, if
SUP;>1 0? < oo, then Tr (1) = n.

Proor: Let Q,, = ( Q/n_l 5721—1 ) . Then

Br_1 0n
0L+ (02 = Bt i Bact) DBt B 0l — (02 = Bt Bum) 25k
- (‘7721 - ﬁn—lﬂr_zilﬁ;_—ll)_l ﬁ;—ﬁz;il (‘7721 - ﬁ;—lgr_zilﬁn—l)_l

It follows that

Ol =

n

Tr (1) > Tr (1) + (oF - a0 Bumn) 2 T (951) + 03

The conclusion follows from induction. This completes the proof of Lemma 5.

Let r,, be defined as in (2) and let 7, = min;max,ea E(7) — n)? be the minimax risk for
estimating 7 based on (Y;)”_; under model ¥; =n+4¢;, 1 <i< n.

LEMMA 6: Under Assumption A3, we have r, > T,.

ProOF: Under Assumption A3, r, decreases when u € U is instead restricted to the set of
constant functions {n,n € A}. For the restricted model, it is easy to see by factorization theorem
that (Y1, ..., Y,) is a sufficient statistic for . Then for any estimator 7 based on (X;, Y;)",, we
may take ;7: FE (7|Y1, ..., Y,) to get an estimator based only on Y1, ..., Y, with no bigger mean
squared error. The conclusion follows.

The following two lemmas give sufficient conditions for Tr(£2;1) < n as used in Section 3.

LEMMA 7: Assume sup,0? < oo and that Q,, can be expressed as the sum of two components
Q, = Qg)—l—Qg), where 97(11) = diag (w1 5, ..., Wn,n) With minj<;<, Win > ¢ > 0 for some constant
¢ > 0 independent of n, and 97(12) is nonnegative definite. Then Tr (1) =< n.

PrOOF: By Lemma 5, under the condition sup,0? < oo, we have Tr(Q,1) > n. Under the
other condition, we have €2,, > 97(11) and hence Q! < (Qg))_l .So Tr (1) <Tr (97(11))_1 <

n. This completes the proof of Lemma 7.
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LEMMA 8: For stationary serially correlated errors with spectral density bounded away from
zero, one has Tr(2; 1) < n.

ProOF: From Lemma 5, Tr (Q2,;!) is at least of order n. From Grenander and Szegd (1958,
p. 64), the minimum eigenvalue of €, is uniformly bounded away from zero for n > 1. Since
Tr(2,;1) is the sum of the reciprocals of the eigenvalues of Q,,, we have Tr (Q,;') < n. This

completes the proof of Lemma 8.
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