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INTRODUCTION 

This is an expository summary of our work [1] building a mathematical model of 
scanned acoustic imaging of complicated solid-solid interfaces comprised of scatterers at 
several length scales, many of which are less than a wavelength. We construct an 
approximate two dimensional model of a scanned confocal acoustic imaging arrangement 
operating in a transmission or reflection mode using anti-plane shear or SH waves. 
Further, we suggest how the sound scattered from the interface is mapped into the sound 
collected by the transducers. The scalar approximation, while restrictive, still captures 
many of the basic ideas, ideas that we are at present extending to a three dimensional 
calculation. 

The work that served to motivate this study is that of Margetan et al. [2]. They 
constructed model, solid-solid interfaces and interrogated them with compressional waves, 
reporting their experimental results as generalized transmission and reflection coefficients. 
They defined each coefficient, at a given frequency, as the temporal Fourier component of 
the signal transmitted by or reflected from the interface divided by the temporal Fourier 
component of a reference signal. Either a single focused transducer or focused transducers 
arranged as a coaxial confocal pair were used to direct ultrasound across a layer of fluid 
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couplant and into the solid specimen, with approximate focusing taking place at the mean 
plane of the interface. 

Although imperfections may occur at many length scales, Margetan et al. [2] were 
principally concerned with those whose lengths varied between 100 and 1000 J.UIl. They 
operated their transducers at frequencies in a neighborhood of 5 to 10 MHz. Because the 
transducer apertures were many wavelengths in diameter and the focal regions large 
enough to encompass more than one scatterer, at each scan position, the signals scattered 
from several heterogeneities in the interface, along with signals resulting from multiple 
scattering among the heterogeneities, were all collected. Recall that each transducer's 
voltage is the summed magnitude and phase of all these signals. Accordingly, the 
generalized transmission and reflection coefficients measured, at each point along the 
interface were the outcome of complex multiple scattering events. 

THEORY 

Here we give a summary of the model. A complete discussion, along with a 
discussion of related research by others is given in [1]. The model is a combination of a 
theory of scattering from thin interfaces, plates or shells advanced by Wickham [3], and a 
model advanced by Yogeswaren and Harris [4] of how the scattered sound is collected by 
the receiving transducers. 

Model of the Heteogeneous Layer 

Our purpose is to examine the reflection from and transmission through a general 
interface insonified by a focused beam. Figure 1 shows the geometrical configuration we 
have in mind. We introduce three approximations to enable us to do this. 

Firstly, we consider the anti-plane shear problem rather than the fully tbree
dimensional one, anticipating that many of the general features will not be lost with this 
approximation. 
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Figure 1. The geometrical configuration of a typical interface to be interrogated and of 
the focused beam scanning the interface. 
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Secondly, we embed the interface to be interrogated within a large cell, width 2a, 
that is periodically repeated. Within each cell scatterers at many smaller variations in 
characteristic size are enclosed. These scatterers may have different mechanical properties 
and the geometry of the interface may vary. Figure 1 shows inclusions with shear constant 
J.l* and density p *. The upper and lower interfaces are indicated by rt and rf, 
respectively. The whole interface is enclosed within a layer of thickness 2h. Because the 
interrogating beam is focused, we anticipate a localized interaction over a region small 
compared with the length scale a along the interface (the Xl direction). This strategy is a 
mathematical device that effectively truncates the domain of integration of the partial 
differential equations to an infinite strip of finite width. 

Thirdly, we characterize the interface by its polarizations, namely, 

(la, b) 

We are concerned with interfaces where the dimensionless parameter (kh) < 1 (k is the 
wave number). Provided the material contrasts 

M* = (J.l* /J.l-l) and 0" = (p" /p -1) (2a, b) 

are not too great the average polarizations are O(kh). The Green's terms that appear in the 
integral representation may then be approximately evaluated on the mean plane and the 
polarizations averaged through the thickness so that the scattered wave field is represented 
by an integration over a plane rather than a volume. The outcome of these approximations 
is the following representation for the total wave field. 

where 

(4a,b) 

The upper and lower boundaries, controlling the degree of contact of the interface, are 
described by X 2 = h1J±(xl / a). The Green's function is given by Eqs. (7) through (10) of 
[1]. Expanding the average polarizations as Fourier series 

~ ~ 

~ _" "" ;: iq1<X./a and _ A _ P "";: iq1<X./a 
V{33 -,... ~_/~{3q e P3 - c.t.. 'o3q e (5a,b) 

q=-~ q=-~ 

(c is the wave speed of the host material) reduces Eq.(3) to 

U3(Y) = u~(Y) - ~ t : [;n + /(n sgn(Y2 );2n] eik[(nlrlka)Y.+IC,ly, l] 

n=-oo n 

(6) 
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where 

(7a,b) 

and sgn(x) denotes the distribution [2H(x) -1]. An infinite system of algebraic equations 
for the unknown Fourier coefficients ~n and ~2n is constructed by forcing self-consistency 
on Eq.(6). 

Measurement Model 

We now introduce definitions of the generalized reflection and transmission 
coefficients. The suggested defmitions model the fact that a transducer integrates all the 
scattered waves striking its aperture to produce a voltage, but that, among those waves, the 
dominant contributions come from those that phase match to the incident wave. The 
incident wave field is a focused beam whose construction is described in [1] and is 
essentially identical to that used in [5]. 

To define generalized transmission and reflection coefficients we begin by applying 
a reciprocity relation to a region bounded by the receiving aperture Sr and the emitting 
aperture Se' and containing the interface. One of the reciprocating wave fields is the 
incident wave field plus that scattered from the interface, while the other is selected so as to 
provide an integrated measure of the responses at one or the other of the transducer 
apertures [1]. The outcome of these arguments is the following definition of the 
generalized transmission coefficient T, with a similar one for the generalized reflection 
coefficient R. 

f =! f 7;(6) cos2 6 E*(sin6) E(sin6) d6. 
p -6. 

(8) 

The coefficient 7; (6) is a measure of the scattered wave field at a single point on the 
aperture Sr and 26b measures the angular extent of the aperture. The constant P is a 
normalization that makes T one when T,. is one. The function E(x) models the shading 
of the aperture. It is given by 

E(x) = [U3 /(2ka1()] e-(FXil<l'm (9) 

where F and mare parameters controlling the shape of the beam, and U3 is a constant The 
* indicates the complex conjugate. Finally, using the reciprocity relation and Eq.(3), we 
obtain an expression for the generalized transmission coefficient f in terms of the Fourier 
coefficients of the interfacial polarizations, namely, 
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Similar arguments give the generalized reflection coefficient R as 

R- -hrc ~E' Ik) i.",I.): ):) = -- ~ (nn a e (". -1(."2 •. 
2ka P .=-N 

(11) 

NUMERICAL EXPERIMENTS 

In [1] we show several plots of the change in transmission 11- 1'1 for model 

interfaces. In the following numerical experiments we explore the difference between f 
and Ii.. In the limit of an open crack with traction free surfaces we should expect 
R = 1- f, while in the limit of a rigid layer we should expect R = f -1. 

Figure 2 shows the interface we explore here. The distance ka = 26.7 and 
corresponds approximately to 7.5 mm in water at 1 MHz. The ratio kh/ ka = 0.019. 
Reference to Fig.3 of [1] would show that the focal region occupies approximately 40 scan 
units so that 3 cylinders are insonified at each position. We consider three material 
combinations: gold inclusions in glass, M* = -0.014 and 0* = 6.70; gold inclusions in 
lucite, MO = 19.0 and D° = 15.0; yttria inclusions in INl00, MO = -0.230 and 
D° = -0.360. The case with gold in glass gives somewhat larger material contrasts than 
our theory was designed for, but does give a good contrast in the shear constants. 

In Figures 3 to 5 we plot INI, the solid line, and 11- 1'1, the dashed line, with 

cylinders ±1 and ±4 removed, over half the cell (the interface is symmetric). In each case 
the absent cylinders are clearly indicated, but only for the yttria in IN100 is there a strong 
difference between what is reflected and what is transmitted. 

ka = 26.7 

100 scan units 

Figure 2. Half an interface comprised of symmetrically arranged, small penetrable 
cylinders that can be removed at will. The cylinders are numbered from 0 to 5, with 
cylinder 0 being at the origin. The dashed cylinders indicate those removed. 
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Figure 3. IRI. the solid line. and 11- fl. the dashed line. are plotted over half the cell 
for gold inclusions in lucite. Cylinders ±1 and ±4 have been removed. 

CLOSURE 

The model is founded on three ideas. Firstly. the sources of the scatter may be 
accurately represented by the through-thickness mean stress and momentum polarizations. 
Secondly. the response of a focused transducer or a coaxial confocal pair of transducers 
may be represented in terms of certain well defined generalized transmission and reflection 
coefficients. These coefficients take account of the fact that, while many signals are 
collected by its aperture. essentially the transducer acts reciprocally and responds most 
strongly to the signals that phase match with the emitted signal. Thirdly. the mathematical 
device of introducing a large scale. periodic structure can be used to effectively truncate the 
ideally infinite domain of integration to a fmite region. facilitating the numerical 
calculations. 
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Figure 4. Similar to Fig.3. Gold inclusions in glass. 
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Figure 5. Similar to Fig.3. Yttria inclusions in IN100. 

The numerical experiments demonstrate that the change in transmission or 
reflection represents an approximate image of the interface discriminating the geometry and 
material contrasts, while Fig. 5 suggests that for weak interfaces reflection images are more 
satisfactory. 
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