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Abstract. Accurate guidance of towed implements is important for performing agricultural field operations 
and for gaining the ultimate benefit from an agricultural automatic guidance system. The study of open 
and closed loop system responses can be helpful in the design of practical guidance controllers. A 
dynamic model of a tractor and a towed implement system was developed. Open loop analysis of the 
kinematic and dynamic models revealed that the dynamic model was essential for capturing the higher 
order dynamics of the tractor and implement system at higher operating velocities. In addition, a higher 
fidelity dynamic model was also developed by incorporating steering dynamics and tire relaxation length 
dynamics. Closed loop system characteristics were studied by using a linear quadratic regulator (LQR) 
controller. The tractor position and heading and implement heading states along with respective rate 
states were fed back to close the loop. The higher fidelity closed loop system used a practical range of 
steering angles and rates to keep the response within nominal off-road vehicle guidance controller design 
specifications in the forward velocity range of 0.5 m/s to 10 m/s (1.8 km/h to 36 km/h). These simulation 
studies provided understanding about the characteristics of the tractor and towed implement system and 
showed promise in assisting in the development of automatic guidance controllers.      
Keywords. dynamic vehicle model, implement guidance, automatic guidance, LQR design, relaxation 
length 
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1. Introduction 
 

Automatic guidance of agricultural equipment has been an active research area for 
several decades. The study of relative position based guidance systems was started in the 
1970’s and 1980’s (Julian, 1971; Gerris and Surbrook, 1984; Smith et al., 1985), and continued 
into the 1990’s and new millennium (Chi et al., 1990; Benson et al., 2001). In the mid and late 
90’s, excited by the successful application of Global Positioning System (GPS) in navigating 
airplanes and marine vehicles, researchers started applying high accuracy GPS signals to 
automatically guide agricultural equipment (O’Connor et al., 1996; O’Connor, 1997; Bell, 1997; 
Stombaugh et al., 1999). In contrast to vision-based or other relative position sensors, GPS 
provided absolute position and bearing measurements of agricultural vehicles. Due to its global 
availability and relatively low cost, GPS technology was key in bringing agricultural automation 
technology up to a new level.          
 

In the past decade, several researchers developed automatic steering controllers to 
guide agricultural vehicles to straight and curved paths. Stombaugh et al. (1999) developed a 
GPS-based navigation controller using a double integrator vehicle model. The steering 
controller was based on a second order derivative transfer function. The controller was stable 
for velocities less than 6.8 m/s. Bell (2000) developed a linear quadratic regulator (LQR) 
steering controller based on a kinematic tractor model. Bevly et al. (2002) developed a system 
identification (ID) based tractor model and compared the performance of the automatic steering 
controllers designed based on the kinematic, dynamic and system ID-based models.  
 

These automatic guidance controllers used position and/or heading feedback from only 
tractor mounted sensor(s). To make the agricultural automation widely acceptable, the 
capabilities of the automatic guidance systems must be extended to implements as well (Bevly, 
2001). In the end, it is the implement which often performs the field operation and as such 
navigating the implement is equally or even more important than guiding the tractor (Karkee et 
al., 2007).  
 

Some researchers have developed guidance controllers for tractor-and-implement 
systems. O’Connor et al. (1996) and O’Connor (1997) developed an automatic steering 
controller based on a kinematic tractor-and-implement model. They designed a hybrid controller 
to provide a fast response to large errors. A coarse steering command was generated by a non-
linear control law. When the errors were reduced to certain threshold level, an LQR controller 
took over. Bell (1997) developed a kinematic model of a tractor-and-implement system and 
designed an automatic tracking LQR controller. He demonstrated that implement control is 
possible, but is more problematic due to the need of steering angles larger than the practical 
limit and difficulties in estimating position and attitude of the implement without a sensor on the 
implement. Takigawa et al. (1998) developed a trajectory control method for an agricultural 
vehicle and a mounted implement system. The feedback controller was designed based on a 
kinematic vehicle model. Also based on a kinematic model, Karkee et al. (2007) developed an 
integrated position and heading feedback controller for a tractor-and-implement system. 
Simulation results showed that the tractor-and-implement steering controller can meet the 
nominal design specifications of 16 s settling time and 10% maximum overshoot.  
 

One common element in all tractor-and-implement tracking controller design studies was 
that they used a kinematic tractor-and-implement model. Because the model neglects important 
dynamics at higher velocities, a kinematic model based guidance controller goes unstable at 
higher velocities (Bevly et al., 2002). Development of tractor and implement dynamic models 
and the study of the open and closed loop system characteristics is essential to better 
understanding the system and developing a robust guidance controller. Another limitation of 
these tractor and implement guidance controllers was that only the implement position and 
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heading were fedback to the controllers and the tractor position and heading were neglected. A 
simultaneous tractor position and heading, and implement position and heading feedback 
guidance system is essential to get the real benefit from the automatic steering controller.  
   
The objectives of this work were to: 
• Develop a dynamic model of a tractor and towed implement system 
• Study the open and closed loop characteristics of the tractor and implement system and 

evaluate the response of the closed loop system 
 
2. Dynamic Bicycle Model of a Tractor and Towed Implement System 
 

A dynamic model was developed for a tractor-and-wheeled-towed-implement system 
(called tractor-and-implement system in the text to follow, Fig. 1). This model, took a “bicycle” 
approach meaning that the lateral forces in the left and right wheels were assumed to be equal 
and summed together, and front wheel steering was used. The system was constained to only 
allow yawing and lateral motion with a constant forward tractor velocity. The model thus 
included lateral velocity and yaw rate states for the tractor and a yaw rate state for the 
implement, which were driven by the lateral tire forces generated through tire side slip. The 
tractor and the implement rigid bodies were linked by a revolute joint at the hitch point (Feng et 
al., 2005). The tractor and implement velocities were coupled to each other using the constraint 
caused by the joint. Common vehicle dynamics symbols were used to describe the dynamics of 
the tractor-and-implement system (for notation, see the list of the variables).  
 
For a constant forward velocity, the yaw plane lateral motion is given by (Greenwood, 1969), 
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Similarly, yaw motion is given by, 
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The velocity of the tractor at the hitch point, p, is given by (Greenwood, 1965), 
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Resolving in the implement coordinates, 
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Translating the hitch point velocities to the implement CG, 
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Taking derivatives, the lateral acceleration is,  
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Now, the implement lateral motion is given by,  
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b) 
 

Fig. 1: Dynamic bicycle model of a tractor-and-towed-implement system; a) forces on the 
system, and b) velocities at different locations of the system.  
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The yaw dynamics of the implement are given by, 
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We have, based on the linear tire model (Wong, 1993)  
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Using eqs. 17-23, the system equations in matrix form are,  
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In state space representation,  

BuAXX +=&   (25) DuCXY +=    (26) 
 

where, NMA 1−= , PMB 1−= ,  C = diag[1 1 1 1 1 1], [ ]0=D  
3. Steering Dynamics and Relaxation Length 
 

A steering unit can not reach the commanded steering wheel angle instantaneously. 
This steering delay has to be modeled to make the simulation response of the agricultural 
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equipment realistic. The steering valve dynamics can be represented by (Bevly et al., 2002; 
Stombaugh, 1999), 
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where dv is the damping constant, Kv is the input gain and Iv is the inertial constant,all of 
the steering system. 

 
Another important dynamic mode of an agricultural vehicle steering system is the tire 

relaxation length. Tire relaxation length effects of an agricultural tractor can be modeled by a 
first order dynamic model (Bevly et. al., 2002).  The relaxation length is defined as the distance 
a tire rolls before the steady state side slip angle is reached. A first order delay model of the slip 
angle due to the tire relaxation length is given by (Bevly et. al., 2002),  
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where  σ  is relaxation length and 0α is the steady state side slip angle of the tire. 
Including the steering unit dynamics and the tire relaxation length dynamics, a higher 

fidelity tractor-and-implement model was developed and represented by eqs. 29 to 36. In the 
text that follows, this model will be called the ‘higher fidelity model’ whereas the model 
developed in the previous section without steering dynamics and tire relaxation length will be 
called the ‘dynamic model’. The model equation are: 
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4. Open Loop System Analysis 
 
John Deere (JD) 8320 agricultural tractor and typical grain cart parameters were used to 

simulate the models (Table 1). The tractor parameters and the formula for the z-moment of 
inertia were adapted from Bosserd (2007). The grain cart geometric parameters were measured 
using a three dimensional geometric model, and the mass was estimated to be a full load of 
corn. MATLAB and SIMULINK (The Mathworks, Natick, MA) were used to model and simulate 
the system.   

Table 1: Geometric and tire parameters of a JD 8320 tractor and a typical grain cart 
Tractor Implement 

Parameters Values Parameters Values 
a 1.745 m d 3.5 m 
b 1.225 m e 2.0 m 
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c 2.125 m   
Lt 2.97 m Li 5.5 m 
mt 12660 kg mi 8000 kg 
Izt 67555 kg-m2 Izi 60500 kg-m2 
Cαf

t 373432 N/rad   
Cαr

t 633422 N/rad Cαr
i 373432 N/rad 

 
For a CASE 7220 farm tractor, Stombaugh et al. (1999) calculated the ratios dv/Iv = 11.4 

and Kv/Iv = 13.8. Bosserd (2007) used a time constant of 0.1 s in the steering dynamics model of 
the JD 8320 tractor. In this work, the parameters used were Kv  = 10.0, Iv = 1 and dv = 10.0, 
which corresponded to the time constant used in Bosserd (2007). A tire relaxation length σ  of 
1.5 times the tire radius was used in this work (Bevly et al., 2002). The tire radius was 1.0 m. 
The kinematic model developed by Karkee et al. (2007) was used to compare the open loop 
system responses of kinematic, dynamic and higher fidelity model.   

 
Eigenvalue maps (Fig. 2) were used to compare the open loop characteristics of the 

kinematic model and the dynamic model over a range of forward velocities. The kinematic 
model was a third order model with two eigenvalues at the origin. The two pure integrators were 
representing the dynamics that the steering angle was integrated twice to get the lateral 
position. At a velocity of 4.5 m/s, the non-zero eigenvalue of the kinematic model was located at 
-0.81 whereas the dominant non-zero eigenvalue of the dynamic model was located at -0.88 
(Fig. 2 b). The remaining three dynamic model eigenvalues were located at -5.33 or further to 
the left on the real axis. At this and lower velocities, the response of the dynamic model was not 
much different than that of the kinematic model as the locations of the dominant eigenvalues 
were not substantially different. When the forward velocity was 0.5 m/s, the three dominant 
eigenvalues of the models completely overlapped at 0, 0 and -0.09 (Fig. 2 a). However, when 
the forward velocity was increased to 7.5 m/s, the locations of the dominant non-zero 
eigenvalue of the two models moved apart substantially (-1.9 for dynamic model, -1.4 for 
kinematic model) and the fourth eigenvalue of the dynamic model moved closer to origin (-2.6). 
The result indicated that the kinematic model represented the tractor-and-implement dynamics 
as accurately as the dynamic model did in the lower range of operating velocities. However, the 
dynamic model was necessary to represent the additional fidelity of the system when the field 
operation required higher forward velocities.  

 
The open loop characteristics of the three models were studied for a range of operating 

velocities. The three eigenvalues of the kinematic model represented the tractor lateral position, 
the tractor heading and the implement heading states. This model did not incorporate inertial 
dynamics of the system. As the velocity increased, the non-zero eigenvalue of the model moved 
to the left on the real axis, thus decreasing the system settling time (Fig. 3 a). This result was 
expected because the implement straightens sooner as the tractor moves faster in the forward 
direction. 

 
The dynamic model represented the velocity states of the tractor-and-implement system 

in addition to the positional states represented by the kinematic model. At lower velocities, the 
three dominating eigenvalues of the dynamic model represented the tractor lateral position, the 
tractor heading and the implement heading states. Eigenvalues representing the velocity states 
(the tractor lateral velocity and the tractor and the implement yaw states) were further to the left 
(Fig. 3 b). Following the trend of kinematic model, the first non-zero dominant pole of the 
dynamic model moved further to the left as the velocity increased. However, the dominant 
eigenvalue moved faster in this case than in the kinematic model. More interestingly, as the 
velocity increased, the remaining faster eigenvalues of the dynamic model moved to the right. At 
a velocity of 8.0 m/s, the eigenvalues started to form complex conjugate pairs causing the 
system to have underdamped dynamics. As mentioned earlier, this result indicated that the 
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additional fidelity represented by the dynamic model comes into play at higher operating 
velocities.  

 

 
a)  b) 

 

 
c)  
 

Fig. 2: Eigenvalues of the state matrix A of the tractor-and-implement system for 
kinematic model and dynamic model; a) 0.5 m/s (1.8 km/h), b) 4.5 m/s (16.2 km/h) and c) 7.5 
m/s (27 km/h); dot – kinematic model, x – dynamic model, two eigenvalues at the origin. At 0.5 
m/s, dominant eigenvalues of kinematic model and dynamic model completely overlaped. As 
the velocity increased, the dominant eigenvalues separated apart. 

 
In case of the higher fidelity model, three of the eleven eigenvalues were located at 

origin. The third pure integrator was a part of the steering dynamics, which was used to get the 
steering angle from the hydraulic flow. The second eigenvalue of the steering dynamics was 
located at -10, which was the fastest eigenvalue among the 11 eigenvalues of the open loop 
system at 4.5 m/s (Fig. 3 c). Interestingly, in this case also, the positional states described in the 
kinematic model and the dynamic model were clearly identifiable and dominating the system. 
However, the tire relaxation length states coupled with the inertial states and formed complex 
conjugate pairs. At lower velocities, these conjugate pairs were highly underdamped and very 
close to the imaginary axis to cause significant oscillation and overshoot in the system 
response. At a very low velocity, the model might be marginally unstable, which was unlikely to 
happen in the real agricultural vehicle. This result indicated that the tire relaxation length 
dynamics with constant relaxation length parameter did not represent the reality accurately at 
lower velocities. As the velocity increased, the eigenvalues systematically moved further to the 
left while the imaginary parts of the complex conjugate pairs remained almost constant. This 
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result indicated that in the velocity range of 1.0 m/s to 8.0 m/s, the open loop system became 
faster and more damped as the operating velocity increased.            

 
a) Kinematic model, two eigenvalues at origin      b) Dynamic model, two eigenvalues at origin  

 
c) Higher fidelity dynamic model, three eigenvalues at the origin  

 
Fig. 3: Eigenvalues of the state matrix A of the tractor-and-implement system for forward 

velocities of 1.0 m/s, 4.5 m/s and 8.0 m/s. a) Kinematic Model (Karkee et al., 2007), b) Dynamic 
Model and c) Higher Fidelity Dynamic Model. All eigenvalues were real and negative, which 
showed that the systems were stable. Several eigenvalues of the dynamic and higher fidelity 

model were located further to the left from the left margin. 
 
It was important to test the controllability and the observability of the model with the 

parameters selected. The controllability matrix of the dynamic model has a full rank, which 
means that any state of the system can be driven to zero from an arbitrary initial value. 
Observability plays a key roll in the controller design. The system was observable with the 
assumption that the tractor lateral position, tractor heading angle and implement heading angle 
were the measured variables. This characteristic provided an opportunity to estimate three 
immeasurable states namely tractor lateral velocity, tractor yaw rate and implement yaw rate, 
which were necessary to have a full state feedback closed loop system to be discussed in the 
next section. The higher fidelity model was also controllable. Because the slip angle states and 
the steering position and rate states were not measured, partial state feedback was used to 
study the higher fidelity closed loop system. 

 
5. Closed Loop Analysis 
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The closed loop characteristics of the kinematic model was studied by Karkee et al. 
(2007). However, the kinematic model failed to represent the higher order dynamics of the 
tractor-and-implement system, which was essential at higher velocities. It was important to 
study the closed loop characteristics of the dynamic model to extend the possibility of the 
tractor-and-implement guidance system in higher velocity operations.  

 
To study the closed loop characteristics of the tractor-and-implement dynamic model, a 

linear quadratic regulator (LQR) was used to close the loop around the system (Fig. 4).  The 
output signal we wanted to make as small as possible in the shortest possible time was y(t). The 
command input to the system was p(t). 

 
Fig. 4: Block diagram of a feedback controller. The command input to the system is p(t) and 

output is y(t). The control effort is u(t).   
 

The controller transfer function C(s) was found in such a way that minimized the 
objective function (Franklin et al., 2002), 
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The state vector of the dynamic model consisted of the lateral velocity of the tractor CG, 

yaw rates of the tractor and the implement, y-axis position of the tractor CG and heading angles 
of the tractor and the implement. The last three states were measurable using high accuracy 
GPS receivers. Because the system was observable, an estimator could be designed to 
estimate the remaining three states. Assuming all six states of the state vector X could be 
measured (or estimated) and fed back, the control law, with zero command input p(t) became, 
 )()( tKxtu −=          (38) 
 
The closed loop system with state feedback controller was then given by, 
 xAx c=&&          (39) 
 where, )( BKAAc −=  
 

The LQR controller design process seeks to find the control law, K, so that the 
optimization goal (Eq. 37) is reached. Matlab ‘lqr’ utility was used to find K and simulate the 
response of the closed loop system. The ‘lqr’ utility solves an algebraic Riccati equation 
associated with the system to obtain the gain K. Two matrices Q and R were used to establish a 
tradeoff between the control effort and the control output. Since there were six states in the 
system, Q needed to be a 6x6 matrix where as R needed to be just a scalar as there was only 
one input, the steering angle. The first set of guesses of Q and R in the iterative procedure of 
the controller design did not penalize either of the controlled outputs and control effort (Eq. 40).  

 
Q = diag[1 1 1 1 1 1],  R=1       (40) 

BA,LQR Controller 
C(s) 

-

Plant 

Feedback 

y(t) 

x(t) 

p(t) u(t) 
C  
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The dynamic model closed loop system with the first choice of the LQR parameters and 

the forward velocity of 4.5 m/s was stable and responded very quickly to the tracking errors. The 
dominant eigenvalue of the closed loop system was -0.87, which corresponded to a settling time 
of 4.6 s and settling distance of 20.7 m. The dominant damping ratio was 0.7. However, for the 
tractor initial off-track error of 5 m and tractor and implement initial heading errors of 20°, the 
steering angle and steering rate were larger than the practical limits of ±35° and 6°/s 
respectively (Karkee et al., 2007; Takigawa et al., 1998). Because no steering dynamics were 
modeled, it was implicitly assumed that the steering wheel could be rotated by any angle 
instantaneously. The steering history improved when the control effort was penalized (Fig. 5). 
However, even with a large value of R, the instantaneous jump at t= 0 s and quick ramp in the 
interval of 0 < t < 1 s still remained in the steering angle history. Due to this problem, the higher 
fidelity model was used in further analysis of the closed loop system.  

 
Fig. 5: Steering angle history produced by the dynamic model closed loop system at a velocity 
of 4.5 m/s. Tractor initial off-track error was 5 m and tractor and implement initial heading error 

was 20°. At t = 0, steering angle jumped to a large value and steering rate formed a spike. 
Because no steering dynamics were modeled, it was assumed that the steering wheel could be 
rotated instantaneously. As the control effort was penalized more, the steering history improved.   
 

Five states (three slip angles, steering rate and steering angle states) of the eleven state 
higher fidelity model were not measured. So, the closed loop system with the higher fidelity 
model used partial state feedback. The control effort penalty R was 800. The steering angles 
and rates were more realistic in this case (Fig. 6). For the tractor initial off-track error of 5 m and 
tractor and implement initial heading error of 20°, the steering angle reached only up to 11° 
while keeping steering rate reasonably low. There was no instantaneous jump at t = 0 s as in 
the dynamic model closed loop system. In the beginning, the steering rate was about 10° /s, 
which is towards the upper limit of the practical steering rate. However, this rate lasted for less 
than a second, which should not have substantial effect on the accuracy of the non-linear 
simulation results. 
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Fig. 6: Steering history generated by the higher fidelity closed loop system. The tractor initial off-

track error was 5 m and tractor and implement initial heading error was 20°. 
 

All eigenvalues of the closed loop system at the velocities 1.0 m/s, 4.5 m/s and 8.0 m/s 
were located in the left half plane, which showed the closed loop system was stable in this 
range of velocities (Fig. 7). At each velocity, a conjugate pair of eigenvalues dominated the 
response. At 1.0 m/s, all 10 eigenvalues were located close to the origin and close to the 
dominant pair. Most of the complex pairs were highly underdamped. Meantime, there were two 
real eigenvalues nearby the dominating pair, which helped to improve the system damping. As 
the velocity increased, the closed loop eigenvalues moved to the left as in the open loop 
system. However, the dominant conjugate pair diverged while moving to the left, which 
decreased the damping ratio. Consequently, the closed loop system became faster but more 
oscillatory as the velocity increased (Fig. 7 – Fig. 9).     

 
Fig. 7: Eigenvalues of the state matrix Ac of the higher fidelity model closed loop system 

for forward velocities of 1.0 m/s, 4.5 m/s and 8.0 m/s. Control effort penalty R was 800. All 
eigenvalues were located in the left half plane, which showed the closed loop system was stable 
in the range of velocities from 1.0 m/s to 8.0 m/s. 

 
The closed loop characteristics of the higher fidelity model were further assessed using 

settling distance and damping ratio of the response over a set of control effort penalty R and a 
range of operating velocities.  For R = 1, the settling distance of the closed loop tractor-and-
implement system remained almost constant in the operating velocity range of 0.5 m/s to 7.0 
m/s (Fig. 8). As the velocity increased beyond 7.0 m/s, the settling distance started to rise 
gently. In contrast, for R = 200, 400 and 800, the settling distance started at about 24 m and 
increased almost linearly over the velocity range from 0.5 m/s to 10 m/s. From the eigenvalue 
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map (Fig. 7), we observed that the settling time decreased as the velocity increased. However, 
the rate of decrement lagged the rate of velocity increment so that the settling distance did not 
remain constant. The higher the value of R, the faster the settling distance increased with the 
increasing velocity. This trend of settling distance was expected. When the control effort was 
penalized harder, the steering effort became less aggressive, which caused the system to 
respond slowly.     
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Fig. 8: Higher fidelity model closed loop settling distance over a range of forward velocities and 

different values of R. The settling distance remained almost constant for R=1 and increased 
almost linearly with velocity for R = 200, 400 and 800.       

 
Generally, the dominant pair damping ratio decreased as the velocity increased, which 

showed the closed loop system was more oscillatory at higher velocities. The result also 
showed that the damping ratio with smaller R decreased faster with increasing velocity. This 
trend of damping ratio indicated that the control effort must be penalized more as the operating 
velocity increases in order to maintain the same level of damping in the closed loop response. 
The damping ratios were quite small in the velocity range of 0.5 m/s to 10.0 m/s. However, there 
always were one or more real eigenvalues located nearby the dominant conjugate eigenvalue 
pair. In many cases, the real eigenvalue(s) were even dominating over the complex conjugate 
pairs. These real eigenvalues forced the system response decay faster than suggested by the 
conjugate eigenvalue pair. For R = 800 and forward velocity of 4.5 m/s, the dominant pair 
damping ratio was 0.51, which corresponded to the closed loop maximum overshoot of 15%. As 
discussed in the next section, simulated value of the closed loop maximum overshoot was 
substantially less than the maximum overshoot of 15% calculated from the dominant eigenvalue 
pair. 

 
For R = 800, the dominant eigenvalue characteristics of the higher fidelity model closed 

loop system remained reasonable over a wide range of operating velocities. The performance in 
terms of stability, settling time and damping ratio remained well within the off-road vehicle 
guidance system design specification (Karkee et al., 2007) in the practical operating velocity 
range of 0.5 to 7.0 m/s (Stombough et al., 1999).  
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Fig. 9: Dominant damping ratio of the higher fidelity model closed loop system response over a 
range of forward velocities and different values of R. For R = 200, 400 and 800, the damping 
ratio remained almost constant in the velocity range of 2.0 m/s to 6.0 m/s. The damping ratio 

started to decrease rapidly as the velocity was increased beyond 7.0 m/s. 
 
6. Simulation Results and Discussion 
 

To study the closed loop response of the tractor-and-implement model, an LQR 
controller was used in the feedback loop of the higher fidelity dynamic model. The closed loop 
system response was evaluated using the simulation plots.  

 
The closed loop system brought the initial off-track and heading errors of the tractor-and-

implement system back to zero (Fig. 10). The settling time for the tractor off-track and heading 
error was about 12 s to 13 s for a forward velocity of 4.5 m/s. Similarly, the implement off-track 
and heading error settling time was about 14 s to 15 s. These settling times were slightly higher 
than the settling time calculated from the dominant eigenvalues. The discrepancy was because 
of the effect of other real eigenvalue(s), which were located nearby the dominant conjugate 
eigenvalue pair. From the simulation, it was observed that the tractor-and-implement system 
kept going in the initial direction for some period of time (Fig 10). This sluggish initial response 
was expected because the relaxation length dynamics introduced delays to the steering 
response of the vehicle model.  

         
The closed loop system was substantially underdamped. The dominant eigenvalue of 

the closed loop system showed that the response would have 15% maximum overshoot. 
However, the simulated off-track error showed only about 10% overshoot (Fig. 10). The 
overshoot was subsided due to the damping effect of other two real eigenvalues of the closed 
loop system, which were close enough to affect the response of the dominant conjugate 
eigenvalue pair.  

 
The heading errors of the response went up to 24° and 20° respectively for the tractor 

and the implement for an initial heading error of 20° and tractor off-track error of 5m. Similarly, 
the steering angle reached up to 11°. The small angle assumption used in the linearization of 
the model may not hold beyond 10°.These angles remained above 10° for some time (<5 s) in 
the transient period, which will have no effect in the steady state performance but may have 
some effect in the transient response. The maximum value of the heading and steering angles 
remained below 10° when the tractor initial off-track error was reduced to 3 m and the tractor 
and implement initial heading error was reduced to 10°.  
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(a) b) 

Fig. 10: Simulation response of the closed loop system; a) tractor and implement off-track error 
b) tractor and implement heading error. The forward velocity was 4.5 m/s. The initial tractor off-

track error was 5 m and initial tractor and implement heading error was 20°.  
 

The closed loop system was stable for a wide range of operating velocities. The system 
response was within the nominal performance specification of an off-road vehicle guidance 
system (Karkee et al., 2007). Because the open loop system had three eigenvalues at the 
origin, the steady state error was driven to zero without having an integrator in the feedback 
loop. These simulation studies provided understanding of the closed loop characteristics of the 
tractor and towed implement system, which opened up new opportunity to develop tractor and 
towed implement guidance controllers using the feedback from the tractor mounted position and 
heading sensors and the implement mounted heading sensor simultaneously.  
 
7. Conclusion 

A dynamic tractor and implement model was developed using the interaction at the hitch 
point. The steering dynamics and the tire relaxation length dynamics were also incorporated. 
Open loop and closed loop system characteristics of the model were studied. A LQR guidance 
controller was used to close the loop around the system. From this work, we can conclude that: 

• In the lower range of operating velocities, the kinematic tractor and towed implement 
model represents the system dynamics as accurately as the dynamic model does. The 
dynamic model is necessary to represent higher order dynamics of the system, which is 
essential when the field operation requires higher forward velocities.  

• A stable tractor and implement guidance controller for high speed operation can be 
developed using the feedback from the tractor mounted position and heading sensors 
and the implement mounted heading sensor.  
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Notation and List of Variables:  
 

t
cyv ,

 
 
Variable:  The variable itself.  
  Big or bold letter – vector or matrix, small letter – scalar  
Superscript: Denotes whether the variable is related to tractor or implement 
  t – tractor, i – implement 
 
Subscript 1: Specifies the co-ordinate axis the variable corresponds to. 
  x – x axis, y – y axis, z – z axis 
 
Subscript 2: Specifies the location the variable corresponds to. 
  f – front tire axle, r – rear tire axle, c – center of gravity, p – toe pin (hitch point)  
 
List of variables  
 a distance between front axle and CG of tractor 
 b distance between rear axle and CG of tractor 

c  distance between hitch point and CG of tractor 
d distance between hitch point and CG of implement 
e distance between rear axle and CG of implement 
L  wheelbase 
F force  

 u longitudinal velocity 
v lateral velocity  
r yaw rate 
y  position of CG in y- axis of the world co-ordinate system  
ψ  heading angle 
δ   steering angle 
α  side slip angle or the angle between the direction the tire is going and the 

direction it is facing. The velocity vector to the right of the tire is positive and 
reverse is negative.     

λ  angle between tractor heading and implement heading 
α0 steady state side slip angle 
σ relaxation length 
Iv, dv and Kv steering unit actuator parameters  
uc(t) steering unit actuator input 
m mass  
Iz yaw moment of inertia 
Cα cornering stiffness 
n size of state (square) matrix A 
Xc control state vector 
Q LQR controlled output penalty matrix 
R  LQR control effort penalty matrix  

Superscript 

Subscript 1 

Variable 

Subscript 2 
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