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I. INTRODUCTION

The essence of fast fracture is that it is a failure mechanism
involving the unstable propagation of a crack in a structure. In other
words, once the crack has started to move, the loading system is such
that it produces accelerated growth. In the history of failure by fast
fracture in service structures, fracture has almost always been produced
by applied stresses less than the design stress calculated using the
appropriate code and safety factor. This has naturally enhanced the
catastrophic nature of the fractures and has led to the general
description of them as being brittle. A brittle fracture is the start
of unstable crack propagation produced by applied stress less than the
general yield stress of the uncracked ligaﬁent remaining when
instability first occurs. Such brittle fractures are related to
fracture parameters, called the stress intensity factors (SIF). The
goal of engineers is to avoid fracture in structural and machine
elements by calculating the SIF for a particular crack geometry and
loading condition.

Photoelastic experiments have been used to extract the SIF or K
factors by taking data points from the fringe loops surrounding a crack
tip. The SIF should be measured very close to a crack tip. The main
disadvantaée of using the method of photoelasticity is that we do not
know the plastic zone size or dimpled area (lens effect) resulting from
the stress intensification in the region surrounding the crack tip. In

order to avoid these areas data are collected far from the singularity

area.




The method of caustics in various investigations has proven to be a
poverful method to measure SIF at a crack tip in static and dynamic
fracture mechanics problems. In the method of caustics all the
information is obtained from the initial curve (the lens effect) of the
caustics lying in the close vicinity of the crack tip which is a region
of much interest in fracture mechanics.

There are some difficulties in the determination of mixed mode
SIFs, the opening Mode KI and the sliding Mode KII’ using the
experimental method of caustics. These are:

1. By the nature of the caustics resulting either from the light
transmitted through a cracked transparent material or the light

SR reflected from the front face of a cracked nontransparent
- material, it is difficult to extract KII .

2. .The reflected caustics from a cracked transparent material
contains information to extract mixed mode SIFs. Current
methods utilizing the method of caustics use only a limited
amount of data from the generalized epicycloid. The angle
betwveen the axis of symmetry and the crack axis along with the
maximum transverse diameter of the external caustic are used to
determine K; and KII’ If there are errors in these
measurements, then the accuracy of the KI and KII results
suffer.

3. The location of the crack tip is obscured by the caustic.

4. Due to the reduction of the thickness of the specimen, the area
surrounding the crack tip acts similar to a divergent lens. As

a consequence the light transmitted through or reflected from




the specimen is deflected outwards. As a result of a divergent
factor, the initial curve size can not be seen on the caustic
image.

The main goal in this dissertation has been to solve some of these
difficulties. The experimental accuracy was improved by using the
digital image analysis system (EYECOM III) to determine the crack
orientation and the individual points of the caustics.

An interaction between two edge cracks for different cases has been
studied. The validity of the experimental results is compared with the’
numerical results.

An iterative least-squares technique has been developed to extract
KI’ KII and the initial curve radius L, values from an overdetermined
set of data. The method presented treats the crack tip location as an
unknown and is determined numerically during the iteration process.

The method of caustics was extended to the determination of the
stress optical constants by applying the method of caustics in the
region very close to a circular hole in a thin plate. A new technique
has been developed to determine both the transmitted and the reflected

from the rear face stress optical constants.




II. LITERATURE REVIEW

The theory of fracture strength in brittle materials in terms of
their surface was introduced by Griffith [1]). This theory infers the
existence or initiation of cracks in a solid during loading. A rapid
extension of a crack occurs as soon as an increase of the external load
creates a rate of strain energy release during extension of the crack
which is larger than the rate of the gain of energy resulting from the
formation of a new surface area. Irwin [2] suggested that Griffith’s
theory can be extended to any type of fracture by taking into
consideration the energy spent in the localized plastic strain at the
vicinity of a crack tip in estimating the resistance to crack extension.
The existence of the.plastic zone around a crack tip is related to the
effective stress concentration at the crack tip. Considering the
influence of plastic yielding-at the root of a sharp notch, Neuber [3]
suggested that the average stress (o¢’) from the root across the distance

of the plastic zone for a single edge crack can be expressed by

o = \/E (2_1)
n

vhere K is the SIF and r is the radius of the plastic zone in the
direction of the crack. Irwin [4] suggested that it is convenient and
satisfactory to accept that the plastic zone has a circular shape and
the crack tip is at the center of the circle. He introduced the
plasticity correction to the crack size and estimated the radius of the
plastic zone. The stress and displacement fields associated with

each loading mode at the vicinity of the crack tip has been related to




the corresponding SIF by regarding the plastic zone to be negligibly
small [5]. It has been observed in tests with cracked steel plates,
that the plastic zone has a vedge shape [6,7,8]. Ault and Spretnak [9]
vith sharp notches, and Gerberich [10] with cracks in several aluminum
alloys have detected that the plastic area has a circular shape.
Theocaris [11] studied the constrained zone in plexiglas elastically
loaded under mode one deformation and proved theoretically and
experimentally that the shape of the constrained zone is a circle. He
concluded that the stress field around the crack tip may be regarded as
homogeneous, so that the elastic singularities at the crack tip dominate
and control the enclosed plasticity around the tips. He also suggested
that the dimensions of a thin cracked plate should be sufficiently large
compared with the crack length for the constrained zone to be regarded
as negligibly small and the elastic stress distribution dominating at
the crack borders [12].

For the elastic infinite plate under conditions of generalized
plane stress and the crack under the opening mode of deformation, a
direct evaluation of the stress components around the crack can be
derived from Westergaard’s solution [13]. Vestergaard made use of the
properties of complex variable functions to show that the normal and
shearing stresses in the x and y directions, with the origin at the
crack tip and the x axis coinciding with the direction of the crack, can
be stated in the form:

a, = ReZ(z) - yIm2’(2)
Qy = Rez(2z) + yImZ/(z) (2-2)

Tky = -yReZ’(2)




where 2z = x + iy, 2(2) is the stress function in complex form
2’ = 32/3z and Re and Im indicate the real and imaginary components.

Westergaard proposed the following complex form for the stress function

(2-3)

by substituting equation (2-2) and its derivative into equation (2-1),
the stress components in the vicinity of the crack are given by

KI ] 0 K1)
cos — (l-sin — sin — ) + HOST

X ,/lz<nr' 2 2 2
1

-] ] 36

cos — (l+sin — sin — ) + HOST (2-4)
2 2 2
-] 2] 36

sin — cos — cos — ) + HOST

T =
¥ Jene 2 2 2

where HOST denotes a higher order stress terms and r and © are the polar

<
<N
di

coordinates with the origin at the crack tip. It was demonstrated that
the shape of the caustic is virtually unaffected by the presence of
higher order terms except when the crack tip reaches the boundary [14] .
Through the use of the experimental method of photoelasticity, the
Vestergaard equations have proven not to be accurate. Therefore, Irwin
suggested adding a nonsingular term o, to the o expression in equation
(2-3) [15]). Sneddon concluded that for an edge crack only oh/Z should

be added to the stress distribution at the vicinity of the crack tip

[16].




For mixed mode loading, the stress distribution equations often

called the modified Westergaard equations are:

2] e 3 KII e e 3
cos — (l-sin — sin — 6)- sin — (2+cos — cos — 6)-cm

X Ve 2 2 2 Jim 2 2 2

KI ] e 3 KII 2] e 3
= cos — (l+sin — sin — O)+ sin — (2+sin — cos — @) (2-5)
2

[ 4
Y Vore 2 2 2 v2nr 2 2

K o () 3 KII ) () 3
T, = sin = cos — cos — O + cos — (l-sin — sin — ©)

Xy 2 2 2 2 J2ne 2 2 2

The addition of o, OF oh/Z to the stress equations has no effect on
the shape of the generalized epicycloid using the experimental method of
caustics as will be demonstrated in Chapter III. Since relgtions (2-5)
vere obtained by neglecting higher order terms in r, they may be
regarded as approximations valid only in the region where r is small
compared to the other dimensions of the specimen. These relations
become exact in the limit as r-» 0. It is important to note that the
method of caustics inherently provides information close to the crack
tip wvhere the theory of elasticity near field solution is valid. Thus
the method of caustics can have an advantage over other optical
techniques which require the use of data some distance from the crack
tip.

The method of caustics, also known as "Shadow Spot Method", has
proven to be a powerful optical method to measure stress intensity
factors at a crack tip for static and dynamic fracture mechanics

problems. In the method of caustics, all of KI and KII information is




obtained from the initial curve (the lens effect) of the caustic due to
deformation in the close vicinity of the crack tip.

The word caustic is Greek for focal line. The method of caustics
is a relatively nev experimental technique for determining SIF. The
first attempt to use the caustics and their properties for studying
singular fields in elasticity was made by Manogg in 1966 [17]. He
developed the theory for the transmitted Mode I caustics only.
Theocaris in 1970 developed the technique where he used the reflected
light from both the front and rear face [11). The technique was
extended later by Theocaris and Ioakimides [18), Theocaris [19,20],
Rosakis and Freund [21], Rosakis et al. [22], Kalthoff et al. [23],
Beinert and Kalthoff [24]. As shown in Fig. 2-la, they determined Mode
I SIPFs by measuring the maximum transverse diameters (Dt max) of the
caustics obtained from optically isotropic materials. Rosakis used the
reflected caustics from nontransparent materials and Kalthoff used the
transmitted caustics through transparent materials. The method of
caustics was extended to study Mode I SIF by using optically anisotropic
transparent materials [25-27].

The shape of the caustic is a generalized epicycloid as shown in
Fig. 2-la to Fig. 2-1d. Mode I effects the size of the caustic while
mode II effects the shape of the caustics. A comparison between
different KI as normalized to KI of Fig. 2-1l1a (KIa) and u (u=KII/KI) are
listed in Table 2-1.

The first attempt to study mixed mode SIF using the experimental
method of caustics was made by Theocaris and Gdoutos in 1972 [12]). The

reflected light from both the front and rear face of an optically




isotropic material was used. Mixed mode SIF was determined by measuring

the maximum (Dx max) and the minimum (Dx min) longitudinal diameters

shown in Fig. 2-1d. This technique was used at Iowa State University as
a part of this dissertation. It was used for the study of the
interaction between two edge cracks and proved not to be a very accurate
technique for that specific case. Theocaris [28), Theocaris and Razem
'[29], improved the technique by introducing the generalized epicycloid
axis of symmetry. This axis can be determined experimentally from the
inner caustic that results from the reflection of the light from the
front face of a transparent material. The angle between the axis of
symmetry and the crack axis along with the maximum transverse diameter
of the external caustic Fig. 2-1d were used to determine KI and KII‘ It
vas established that the axis of symmetry of the reflected caustic
represents the crack growth direction for a crack under combined
environmental conditions and applied loads [30].

The experimental reflected caustics from nontransparent material
and the transmitted caustics are shown in Figs. 2-2 and 2-3
respectively. The transmitted caustic is of better quality than the
reflected caustic, but the transmitted caustic does not provide enough
information for determining mixed mode SIF. This is due to the lack of
information required to establish the axis of symmetry. This is also
the case for the reflected caustic from nontransparent materials. From
Fig. 2-4 the axis of symmetry can be determined by drawing a
perpendicular line to the flanks’ tangent and passing through the cusp
point. The transmitted caustic is widely used for the determination of

KI for stationary and propagating cracks under dynamic loading [31,32].
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Mixed mode SIF of a crack propagating with constant velocity can be also
determined by using the reflected caustics from both the front and rear
faces [33].

The reflected caustics from optically isotropic material have been
used to study the influence of the boundary or other singularities on
the crack tip and then compared to the available analytical solutions.
The method vas used to study the interaction between two collinear and
symmetric edge-cracks in addition to a single edge crack and a straight
boundary [34]. It was also used to study the interaction between
asymmetric collinear internal cracks of different lengths by varying the
distance between the two cracks [35]. Theocaris also extended the
method of reflected caustic to study ﬁixed mode SIFs at bifurcated

cracks wvhere the side branch subtended different angles to the main

branch [36].

Table 2-1. Comparison between four different
cases for the epicycloids generated

in Fig. 2-1
Fig. No. KI/KIa u
2-1la 1.0 0
2-1b 1.5 0
2-1c 1.0 0.5

2-1d 1.5 0.5




a. Mode I SIF

/ "7t max

7
(S

b. The effect of mode I //’

Fig. 2-1. The shape and size of different generalized epicycloids




\\\
'\.'
c. The effect of mode II /// AN ,

/] -
\

* h.d’/ ‘
J
! !

d. Mode II techniques t
max

of Symmetry

Fig. 2-1. (continued)
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Fig. 2-2. Reflected caustic from a nontransparent material

Fig. 2-3. Transmitted caustic through a transparent material
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Fig. 2-4. Reflected caustic from a “ransparent material
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III. PHYSICAL AND MATHEMATICAL PRINCIPLES OF THE METHOD

As discussed in Chapter II, tvo caustic techniques for the
determination of mixed mode stress intensity factors (SIF) have been
developed. The two techniques use only a limited amount of data points
from a wvell defined generalized epicycloid and can be applied only on a
reflected caustic from a transparent material. The study presented in
this dissertation takes advantage of the whole caustic image by taking a
number of points from the epicycloid. One of the goals was to establish
a nev method which eventually will use only the inner caustic to
determine SIFs. This would allow the use of the new method for
determining mixed mode SIFs on nontransparent materials.

In this chapter, the basic formulas and the procedure for the
interpretation of K-factors are presented for the current methods that
utilize the method of caustics and the new method. The three available
methods are tabulated as, 1) the difference between the longitudinal
diameters, 2) the epicycloid’s angle of symmetry, and 3) an iterative
least squares method. The physical principle and comparison between the
theoretical and experimenthl caustics are discussed. The extent of the
three dimensional region of the crack tip stress field and the effects

of higher order stress terms are presented.
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A. Physical Principle of the Method of Caustics

The basic physical principle describing the method of caustics is
shown in Fig. 3-1 [24]). Due to the high stress concentration in the
region surrounding the crack tip, both the thickness and the refractive
index of the material change. As a consequence, the area surrounding
the crack tip acts similar to a divergent lens and is also called the
initial curve. A monochromatic light beam emitted from a He-Ne laser
impinges on the stressed cracked specimen. The reason for using laser
light beam is that such a beam has a greater intensity than an ordinary
light source beam and can be concentrated in the vicinity of the crack
tip to produce a clear caustic. Due to the presence of the lens effect
very close to the crack tip, the reflected or transmitted light rays are
deviated outwards. These deviated rays are concentrated along a
strongly illuminated surface in space, which forms the caustic surface.
Screens in front and behind the specimen are placed parallel to the
specimen and at distances Zo. WVhen the caustic surface is projected on
these screens a singular curve, called the caustic, is formed on them.
Thus, the stress singularity of the elastic field is transformed to an
optical singularity represented by the caustic. The shape and
dimensions of the caustic, which is always a generalized epicycloid
curve, depend on the stress field singularity, material properties and
experimental set up.

The caustic is the resulting image of the light beam transmitted or
reflected from the divergent lens. The transmitted or reflected light

rays are deviated outwards as shown in Fig. 3-1 [24]. Thus, both the




17

crack tip and the initial curve can not be seen on the caustic image.
Therefore, any iteration technique used to locate the individual points
on the caustic image should treat the crack tip location as an unknown.
Furthermore, the reflected caustic from the front face is related only
to the mechanical properties (E,Vv) of the material, whereas the
transmitted caustic and the reflected caustic from the rear face are
related fo both the mechanical and optical prdperties of the material
(E, v, n).

The theoretical and experimental caustics are shown in Fig. 3-2.
Both the crack tip and the initial curve can not be seen on the
experimental caustics as mentioned earlier. Furthermore, the
experimental inner caustic, resulting from the reflection from the front
face, is not closed. This is due to the crack opening displacement
[37,38]. '

As mentioned before, KI can be determined by measuring the maximum
transverse diameter. Theoretically the relevant caustic line should be
defined by the transition from the dark inner region to the bright rim
of the caustic pattern. Due to the light diffraction effects, the
caustic rim will have a band shape rather than a fine line. It was
confirmed that correct results would be obtained if the line of maximum
light intensity within the bright rim is considered [32,39]). More
recently, the wave-optics aspects of caustic analysis has been used
[40]. It was suggested that if the mean distance between the shadow
edge and the first intensity peak was used, optimum accuracy in

evaluating KI would be achieved [41].
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B. The Basic Formulas and Procedures For Determining Mixed Mode Stress

Intensity Factors

The reflected caustics from both the front and rear face of
mechanically and optically isotropic materials are considered. The
formulas for caustics transmitted or reflected from a nontransparent
material are the same except for the optical path changes. The
experimental setup is shown in Fig. 3-3. A light beam traverses the
specimen at péint P(r, v) in the object plane as shown in Fig. 3-4. The
nondeflected beam would pass the shadow image plane, also called the
reference plane, at point Pm defining the vector E;. Due to the
presence of the lens, the reflected light beam is displaced to point
P'(x’, y’) by a vector'it i’is a function of the coordinates r, v of
point P. The vector t’ of the image point P’ is given as

T en sV ' (3-1a)
When the light is slightly converging or diverging, the image size at
the screen is not the same as that at the model. If the image
magnification factor is )\, then the vector r’ of the image point p’
becomes

P e N+ W (3-1b)

The shadow optical image is completely described by Equation (3-1).
For each point P(r, V) in the vicinity of the crack tip, the
corresponding image point P’ of the shadow image is obtained. After
passing the object, the reflected light beams form a caustic on the
reference plane. As an envelope, the caustic is a singular curve of the

image Equation (3-1) and the necessary condition for the existance of
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such a singularity is that the Jacobian determinant is zero

axl ayl axl ayl
- =0 (3-2)
o v v ar

The vector L is the projection of r onto the image plane and can easily
be determined. The light beam impinges under a small angle of incidence
on the specimen. It is partly refracted through the thickness, then
partly reflected on the back surface, and again partly refracted through
the thickness when emerging from the specimen. This twice refracted and
once reflected part of the light ray is absolutely retarded when passing
through the specimen according to Maxwell and Neumann’s law. The
absolute retardation of the light rays depends on the change of the
refractive index and the thickness variation of the plate. The
emerging wave front satisfies the Eikonal relation [42] according to
vhich the gradient of the geometric wave front S is constant. The
vector G’is given as

E&r, V) = Zo grad A4s(r, v) (3-3)
wvhere As is the change of the optical path length caused by the specimen
and zo is the distance from the model to the screen. The path length
change As is correlated to the stresses o(r, v) by the basic

elasto-optical equations. The change in the optical path is given by

[20]
8s = ¢ d (0)+0,) (3-4a)
s = cg d (0)+0y) (3-4b)
8s = c, d (o;+02) (3-4c)

where Cg and c, are the reflected from the front face and rear face

stress optical constants respectively. c, is the transmitted caustic
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stress optical constant. d is the optical path thickness, 9 and o, are
the princpal stresses.
The stresses at each point near the crack tip are given by fracture

mechanics equations (2-5). For mixed mode SIF, the sum of the principal

stresses are

7 v v
0y +0y= "x“’y' Kh cos ;— - KI - sin -2- -9 (3-5)

Introducing Equation (3-4) into Equation (3-3) yields
Wz dcgrad (o+0) (3-6)
vhere c is e for the caustic reflected from the front face and e, for
the reflected caustic from the rear face.
If the sum of principal stresses, Equation (3-5), is introduced in
Equation (3-6), the deviation vector.a in the cartesian coordinates

(u,v) shown in Fig. 3-3 is given by

P=r73/2((k D Reisin — )u + (Rysin — 2
= 7€08 —2—-— IIsnz—)u+ ( Isn2—+ KIIcos—z—)V] (3-7)

Zodc
Vhere § = —77 (3-8)
(2n)
-

From equations (3-1) and (3-7) the vector r’ in the cartesian

coordinates (x,y) is
3 3

?’-xi+y5 = [r cosv + 8r'3/2(KIcos —_— - KIIsin —-v)]i
2 2
-3/2 3 3wl
+ [r sinv + &r (KIsin _— 4 KIIcos — V)13 (3-9)
2 2
The evaluation of J=0 gives
2/5 ,,2 2 \1/5 ‘
r=r = (38/2)) (K 1t K II) (3-10)
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Equation (3-10) indicates that the constrained zone around the crack tip
subjected to mixed mode deformation is a circle of radius r, and is
function of KI’ KII’ the distance Zo and the model thickness d. Using
Equation (3-10) in Equation (3-9) then the image equations become (’

means screen coordinates)

2 3 2 3
X' = rolcos Vot — (1+u2)'1/2cos _— - -—-u(1+u2)'1/zsin — v] (3-11a)
3 2 3 2

3

2 3 2
y' = rolsin v+ — (1+u2)'1/251n ;—-v + --u(1+u2)'1/2cos ;—-v] (3-11b)
3 3

where u is the ratio of KII/KI. The angle v varies between 0 and 4m,
and the caustic image has the generalized epicycloid shape shown in Fig.

3-5. The points on the epicycloid are located by drawing a vector of

magnitude 2ro(1+u2)'1/2/3 from the initial curve of radius Lye This

vector forms an angle of 3v/2 with the x axis. From the end of this

-1/2

vector another vector of magnitude 2r°u(1+u2) /3 is drawn

counterclockwise perpendicular to the first vector.

Solving relation (3-10) for KI and KII yields

5/2
1.671 r,

K, = -
I 2 de (1+u2)1/2

(3-12a)

u= KII/KI‘ (3-12b)
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Fig. 3-5. Theoretical form of the caustic formed at a crack tip for
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The current methods that utilize the method of caustics and the new
method for the determination of mixed mode stress intensity factors are

as follows.

1. The difference between the longitudinal diameters method [12,18,28]

This method was introduced by Theocaris and Gdoutos in 1972 [12] as
a first attempt that utilizes the method of caustics to extract mixed
mode stress intensity factors. This method was developed for the
determination of mixed mode SIFs in internal symmetric cracks at
different angles.

It can be concluded from equation 3-11 that the shape of the
generalized epicycloid depends on the ratio u of the stress intensity
factors. Four types of generalized epicycloids for different values of
u are shown in Fig. 3-6. For u=0, the epicycloid is symmetric to the
x-axis, which coincides with the crack direction. ?or u larger than 0
the epicycloids are asymmetric and their tails cut the negative x-axis
at different points. As the values of u are increasing, the area
contained by each principal generalized epicycloid is decreasing. Fig.
3-7 [12] shows the variation of the maximum longitudinal diameter
D max’ the transverse diameter Dt’ and the minimum longitudinal

X

diameter Dx as normalized to the initial curve radius r, versus the

min
ratio u. The definitions of the symbols used in Fig. 3-7 are

/ro, dZ’Dt/ro’ and d3=D /r_. Each of the generalized

dl' x min’ ‘o

X max
epicycloids corresponding to each value of u has some particular
properties, which are invariant. Thus, it is possible to make use of
these invariant properties for interrelating the shape of the epicycloid

to the corresponding value of u. Theocaris and Gdoutos concluded that
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the most sensitive property is the distance along the negative x-axis.

« maxCx min)’Px max ¢an be determined from the

intersections of the curve with the x-axis. Fig. 3-8 [12] presents the

The ratio (D

)/D versus u. Introducing

variation of the ratio ¢ = (D X max

X max x min

the terms smax . max/ro, 8 = D /x o' and § min™ x min/r into Equation
(3-12) gives
1.671
5/2
K= (D/ 8) (3-13a)
1 7 dc)?/2(1+ 2)1/2
usKy /Ky (3-13b)

wvhere ¢ is the reflected from the rear face stress optical constant.
The ratio D/8§ takes any of the values Dx max’smax’ Dtlst, - min’shin
Thus, mixed mode SIFs can be determined by determining the ratio & from
the experimental caustic image. With the experimental value of &, Fig.
378 give the corresponding value of u which cén be used in Fig. 3-7 and
Equation (3-13) for the determination of KI and KII' '

Some of the generalized epicycloid properties were studied by
Theocaris [20]. The maximum distance from the crack tip to the caustic
curve is OM shown in Fig. 3-9. OM = 5r°/3. The minimum distance is
from the crack tip to the cusp point ON and ON = r°/3. Therefore, the
crack tip can be located by measuring the distance b shown in Fig. 3-9
and OM/ON = 4. The disadvanteges of this method are:

1. The difference between D and D can not be seen in many

X max X min
experimental situations. For example see Figs 2-2 and 2-4.

2. The crack tip location can not be determined accuratly in actual

caustic experiments.




a. K../K

b. KII/KI = 0.2

N

Fig. 3-6. Variation of the theoretical form of the caustic with the
ratio KII/KI
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do K /K = 006
& i § //
Fig. 3-6. (continued)
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2. The epicycloid’s angle of symmetry method [18,20,28,29]

Theocaris improved this technique by relating mixed mode'SIFs to
the maximum transverse diameter and the axis of symmetry of the

generalized epicycloid. Introducing the complex stress intensity factor

* * 12 2 2
K™ = Kp=1Kpp, that is [K[%= (R%p+K

complex SIF K* as -w, Equation (3-11) can be written as

II). Defining the argument of the

2 3
X'= r _[cos Vv + = cos(— v +w)] (3-14a)
0 3 2
2 3
y'= r [sin v + = sin(— Vv +w)] (3-14b)
° 3 2

Taking into consideration that z’=x’+iy’=p exp(i¢), it can be shown that
the epicycloid is a symmetric curve to the x axis which subtends an

angle to -2w with the x-axis. Furthermore, the maximum transverse

diameter Dt max-3.17ro . Then mixed mode SIFs can be determined from
Ry = 0.3735(D,/ N>/ (1)1 2/ || - (3-15a)
Ky = 6.6843(r /N> (1)1 %/ || (3-15b)
vhere
u=tan -tan(eo/Z) (3-16)

Ic| is the overall constant = 4cZ t/\

Thus, mixed mode SIFs can be determined by using the angle between
the axis of symmetry and the crack axis along with the maximum
transverse diameter. The axis of symmetry can be determined by drawing
a perpendicular line to the flanks’ tangent and passing through the cusp
point as shown in Fig. 3-9. It has been proven that the maximum

transverse diameter is always parallel to the common tangent of the cusp

internal caustic.




Fig. 3-9.
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The epicycloid’s angle of symmetry
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3. An iterative least-squares method

The two previous techniques use only a limited amount of data from
the well defined generalized epicycloid to extract Ry and KII' If there
are errors in locating these data points, then the accuracy of the Ki
and Kig results suffer. Furthermore, the two techniques can be applied
to only the reflected caustics from a transparent material. In order to
. reduce the amount of possible error, more data points from the
generalized epicycloid should be taken. Then by locating a number of
data points on the inner and outer caustics Ly KI and KII can be
determined. One of the goals of this dissertation was to eventually use
the inner caustic to determine mixed mode stress intensity factors.

This would allow the use of the method on nontransparent models which is
of most interest. The least squares method has been applied to
photoelastic problems'by taking a number of data points from the whole
field fringe pattern [43]. In order to use the vhole caustic pattern an
overdeterministic approach'is used. A number of points from the
generalized epicycloid are located. One problem that is immediately
noted is that the location of the crack tip is obscured by the caustic
as discussed earlier. Thus, the method presented treats the crack tip
location as an unknown along with KI’ KII and rye

In Fig. 3-10a a line is drawn from the initial curve circumference
to the point on the epicycloid. If ¢ denotes the angle ABC it can be
seen that the angle ¢ is related to the mixed mode SIFs as follows

tan ¢ = AC/BC = u (3-17)
Therefore, from Equations (3-16) and (3-17) it is found that y=w. From

Fig. 3-10a it is seen that
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W+ V2 =0 (3-18)
and

AB= 2r°/3 (3-19)
where © is the angle from the initial curve circumference to the axis of
symmetry of the epicycloid. If (xo, yo) is the estimated location of
the crack tip, then the measured length between the estimated crack tip

and the point on the caustic (inner or outer) LM can be determined from

Fig. 3-10b
el (x-x )% + (v-y)2112 (3-20)
From Fig 3-10a and by using the law of cosines
LE= [r (13+12 cos &/2)]V/%/3 (3-21)

where LE is the distance from the expected crack tip location to the
point on the epicycloid (inner or outer). By using the law of sines,
the angle o« can be determined as

2 sin ©/2

sin o= -
(13 +12 cos o/2)1/2

(3-22)

For a perfect fit the residuals € between LE and LM would be zero.
However, the residuals are generally not zero and a best fit can be
obtained by making them as small as possible. This is accomplished when
the sum of the squares of the residuals is minimum [44]. That is

n g R g N ) :
1E§LE-LH)1 -if{gi(ro, Xyt Yor GB)] -15{81) = minimum (3-23a)
wvhere n is the number of data points and must be larger than 4.
Hinigizigg the sum of squares of the residuals yields
€1

zﬂi —= =0

- (3-23b)
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Fig. 3-10a. Geometry of the principal epicycloid
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Fig. 3-10b. The difference between LM and LE
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where Aj = (ro, Xor Yo! GB). If g4 is evaluated at initial values

(;op’ xop’ yop’ebp)’ the function g4 can be found using a Taylor series

expansion [45].
g.(A)= g . (Ay )+ L — (A;-A, ) (3-24)
TR | o, Jaea, 3 OIP
k k 'k
The initial values may be intelligent guesses or preliminary

estimates based on available information. From equations (3-23) and

(3-24)
[M] [B] = - [M] [M]7[24] (3-25)

where

%8, %) ]

r
) o aro

K
™o ' (3-26a)
ol
ayO
ag1 agn
;E: 20

[M] =

(3-26b)

CeRE

&
Q000

[4A] =

[B] = |+ (3-26c)

FED
L S|
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r )
g = -%'(13+12 cos '-%')1/2 - [(xi-xo)2+(yi_yo)2]1/2 (3-27)

The angle of the points on the caustic with respect to the estimated

crack tip is

Yy =Y
i X, - X
i o

The angles are positive counterclockwise. From Fig. 3-10 the angle ©

can be found from

2 sin G&/Z '
5—9 - 6, (3-29)

Sy = 4y - are sin (T2 cos 0,72 )Y
All iterative procedures require initial values of the parameters to be
determined. All available information should be used to make these
starting values as reliable as possible. Good starting values will
often allow én ?terative technique to converge to a solution fast. The
procedure for determining the best fit values of the four ﬁnknowns (ro,
Xgr Voo GB) is as follows:

1. Assume initial values of Lot Xgr Yoo G% . A technique for
estimating X0 and Yo utilizes the fact that b/c = 4 in Fig. (3-9). The
distance b can be measured from the caustic and is used in estimating
the crack tip location [28]. The initial curve value can be estimating

by measuring the maximum transverse diameter where D =3.17 Ly The

t max
angle between the axis of symmetry and the crack direction gives an
estimate for GB. A nonzero positive value for r, is used. No
difficulties were encountered even with rs being 1/3 or 3 times the
actual value.

2. Evaluate ’i from equation (3-28) for each data point.




39

3. Compute Gh from equation (3-29) for each data point by FNROOT
program [46].
4, Evaluate the elements of matrices [M] and [B] for each data point

from equations (3-26a) and (3-26c¢) reépectively.
5. Compute [8A] by Gauss Elimination method from equation (3-25).

6. Repeat steps 2, 3, 4 and 5 with

(ro)ml-(ro)n + Aro (3-30a)
(%),,17(%), + &, (3-30b)
Volne1=Vodn + &g (3-30c)
(6,),,1=(8,), + 88, (3-30d)

until the absolute average error [AA] becomes small using CAUSTIC 1
program [47j. See the appendix for listing of the program.
7. Calculate KI and KII using Equations (3-15) and (3-16).

Several epicycloids with different sizes and shapes were generated
similar to the one shown in Fig. 3-9. A digital image analysis system
wvas used to determine the coordinates of selected points on the caustic.
The crack tip was treated as unknown, the initial curve value was
assumed to be 50X of its real value and the angle of symmetry was taken
to be 30° the actual value. The angle v must range from 0 to 4n in
order for the complete caustic to be traced and obviously the angle &
has the same range. Without additional information the computer program
can not tell whether or not a point on the caustic is in the 0 to nm, n
to 2n, 2n to 3n or 3n to 4n range for ¢ In actual experimental
situations, the regions on the inner caustic from point a to b and point

¢ to a are not visible because of the crack opening displacement. The
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visible inner caustic regions bec and cd (the only parts of the inner
caustic considered) are in the range of # betveen & to 2n, 2n to 3n
respectively. The distinction of these two regions during the iteration
vas made from the fact that the distance LM is always less than the
initial curve radius r, as shown in Fig. 3-11 and & equals #2n. The
region oa of the outer caustic can be picked automatically since it is
in the range O to n. Although the region ae (due to KII) of the outer
caustic seems to be in the range 0 to m, it is actually part of the
region in the range 2n to 3n. This part is predicted from the fact Queb
is less than n, LM is greater than r, and ¢ is &2n. The region eo of
the outer caustic is in the range 3n to 4n as predicted from the
negative ¢ and then #=4n-4%. The differences between the actual r, and
Gb values and the iterative least squares technique (ILSM) values were
extremely small as shown in Table 3-1.

Table 3-1. Comparison between the generalized
epicycloids and ILSM

Parameter Generated  Initial ILSM

values estimates results

L, 1.5 0.5 1.5132
-4

KII/KI 0 0.4 1.368x10
r, 1.0 2.5 1.0256
KII/KI 0.15 0 0.1526
r, 1.5 3.0 1.4965
K../K 0.3 - 0.2 0.296
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Fig. 3-11. Reglons of the generalized ep(cycloid for
o of 0 to 4n
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C. The Three Dimensional Effects and The Effects of the Presence of

Higher Order Terms

It has been demonstrated experimentally that the radius r, of the
initial curve affects the results and it is necessary to use a value of
r, larger than a definite one [48]. The extent of the three dimensional
region of the crack tip stress field has been investigated. It was
concluded that plane stress conditions prevail at distances from the
crack tip greater than 0.5 times the plate thickness [49]. It has been
demonstrated that if r, is not large enough in comparison to the
thickness of the specimen the three dimensional effects produce
significant errors and r, should be at least 0.4 times the plate
thickness [50].

The analysis of the caustic equations are based on neglecting the
higher order terms in Equations (2-4) and (2-5). Neglecting higher
order terms could produce significant errors in determining stress
intensity factors. It was demonstrated theoretically that, except in
extreme cases, the shape of the caustic is virtually unaffected by the
presence of higher order terms. However, neglecting the higher order
terms can result in significant errors when the crack in a birefringent
material approaches the boundary [14,51,52,53]). It was proven
experimentally that the near field solution (neglecting higher order
terms) is accurate using optically isotropic materials. It was

concluded that there is no necessity to resort to higher approximation

solutions [54].
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D. Methods of Determining the Stress Optical Constants

In addition to the experimental setup and the model thickness, KI
and KII depend on the stress-optical constant for either the transmitted
or reflected caustic (Equations 3-13a and 3-15). Studies that utilize
the method of caustics usually use an optically isotropic material
(PMMA, plexiglas) to extract KI and KII although a birefringent model
material can also be used.

The experimental method of caustics has been used on cracked plates
subjected to an uniaxial tensile load to determine the transmitted and
reflected stress-optical constant. The maximum transverse diameters of
the two caustics are used along with Poisson’s ratio, Young’s modulus,
and the two magnification factors to determine the optical constants. A
new technique has been developed to determine stress-optical constants
for the transmitted caustic and the caustic reflected from the rear
faceof the model. The method does not require the use of Poisson’s
ratio or Young’s modulus. The reflected caustic from the plate with a
small circular hole will directly give the reflected stress optical
constant. The transmitted caustic will directly give the transmitted
stress-optical constant.

The current method and the new technique for the determination of
the stress optical constants are as follows.

1. The technique of using a cracked plate [55,56]

If a cracked plate is subjected to the opening mode only, then

Equation (3-15) becomes
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Ky = 0.3735 (0,/0>% / |2e ' | (3-31)
For the transmitted caustic the opening mode can be determined from
Ky = 0.3735 (0,/N2 / |e,| (3-32)

vhere c, is the transmitted stress-optical constant. If the
magnification factors for the transmitted and reflected caustics are not

the same, then from Equations (3-31) and (3-32), ¢, is related to C, by

2¢ D
£ tr)5/2(_j§03/2 (3-33)
t D¢ A

where Dtr and Dtt are the reflected and transmitted caustics transverse
diameters, respectively.

The change of the optical path of the reflected light from the rear
face (Mach-Zehnder interferometer) is given by Equation (3-4a). The
change of the optical path of the transmitted light (Fizeau

interferometer) is

8s = c, d(o +0,) (3-34)
It has been proven that the relationship between c, and c, [53-54-57-
58] is

c =c +V/E (3-35)

where v is the Poisson’s ratio and E is Young’s modulus.
Thus the stress optical constants can be determined from Equations
(3-34) and (3-35). This can be done by determining Dtt’ Dtt’ v, E, and

the magnification factors.
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2. The technique of using a circular hole in a plate

There is no need to obtain both caustics if only one stress optical
constant is needed. The first technique has been used to determine the
transmitted and reflected stress-optical constants. The maximum
transverse diameters of the two caustics are used along with Poisson’s
ratio, Young’s modulus and the two magnification factors to determine
the optical constants. Any measurement error in any of the six
quantities will result in errors in both stress optical constants.

A nev technique has been developed to determine both the
transmitted constant and the reflected constant associated with the
light reflected from the rear face of the plate. The physical principle
of the method of caustics is extended to the determination of the
stress-optical constant by applying the methodbof caustics in the region
very close to a circular hole in a thin plate. Due to the high stress
concentration in the region surrounding the hole, both the thickness and
the refractive index of the material will change. As a consequence, the
area surrounding the hole acts similar to a divergent lens. A thin
plate of infinite length and width with a circular hole subjected to a
uniform tensile stress in the y direction as shown in Figure 3-12 is
considered. The two dimensional stress field about the hole can be

determined by the following stress equations in polar coordinates given

by [59].
% a2 3a2
0. = 5 {(1- 5 ) [1+ ( —5— - 1)cos 26]} (3-36a)
r r .
% a2 3a4
gg =7 [(1+ ;§~ ) + (1+ X’ Ycos 26)] (3-36b)
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% 3a2 a2
o™ 7 [(1+ ;7_ ) (1~ rz )sin 26)] (3-36¢)

vhere % is is the uniform stress in the y direction and a is the
circular hole radius. Following Equations (3-1) to (3-6), the only
change is the stress Equation (3-5). Using Equations (3-36), the sum of
the principal stresses 9 and 9 for a thin, infinite plate with a
circular hole subjected to uniaxial tensile load is

daz

g
Oy +0q= ——(2+ cos 26) (3-37)
1*%= 7, 2

vhere % is the uniform stress in the y direction and a is the circular

hole radius. From equations (3-6) and (3-37)

% 432
Va zodcr,t -;—(2+ rz cos 20) (3-38)
c is the reflected from the rear face and the transmitted stress-

r,t
optical constant, respectively. d is the optical path thickness. The

vector W in the cartesian coordinates (u, v) is
V= 8 r™> (cos 26 u+sin 20 v) (3-39)

where 2

= Azocdoba (3-40)

c is C, for transmitted case and c. for the light reflected from the
rear face. From Equations (3-1) and (3-39), the vector r’ is

r'= xi+y] = (r cos +8r™> sin 36)i + (r sinB+8r~> sin 36)j (3-41)
The caustic is a singular curve and should satisfy Equation (3-2). The
evaluation of J=0 gives

rer, - (38)174 . (12z°cda2)1”‘ (3-42)
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Equation (3-42) indicates that the constrained zone around the circular
hole subjected to uniaxial tensile load % is a circle of radius r, and
is a function of the hole size, the distance Zo and the model thickness
d. VWhen the light is slightly converging or diverging, the image size
at the screen is not the same as that at the model. If the image

magnification factor is X and substituting Equation (3-42) in Equation

‘(3—41), then the image equations becomes (’ means screen coordinates)

1

x'= X r, (cos & + — cos 36) (3-43a)
3
1

y'= A r, (sin © + — sin 30) (3-43b)
3

The angle © varies between O and 2n, and the theoretical caustic image
has the shape shown in Fig. 3-13. The points on the caustic are located
by drawing a vector of magnitude r°/3 from the initial curve of radius
r,. The ro/3 term forms an angle of 30 with the x axis. Taking into
consideration that z’=x’+iy’=p exp(i¢), then it can be shown that
1

p=r, [cos(©-¢)+ ;— cos(36-9)] (3-44)

It is obvious that p has the maximum value when © = ¢ = 0 or 6= ¢ = n.

Thus, from Equation (3-44), the maximum distance from the center is
P .= =T (3-45)

therefore, the maximum transverse diameter Dma along the x’ axis is

X

e — (3-46)

From Equations (3-42) and (3-46) we obtain
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c=0.001648 (Dmax

Thus, the stress-optical constants can be determined by measuring the

" 1z aoazx-”) (3-47)

maximum longitudinal diameter from the caustic image as shown in Fig.
3-13. The reflected caustic from the plate with a small circular hole
will directly give the reflected stress optical constant. The
transmitted caustic will directly give the transmitted stress optical
constant. The method does not require the use of Poisson’s ratio or

Young’s modulus.
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Fig. 3-12. Coordinate system vith respect to the hole center
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.
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IV. MIXED MODE STRESS INTENSITY FACTORS EXPERIMENTS

The experimental method of caustics is a relatively new method. It
has been widely used to estimate Mode I stress intensity factor for
static and dynamic loading. Because the transmitted caustic has a
sharper optical quality than the reflected caustic, it has been commonly
used to determine Mode I. However, the transmitted caustic does not
provide sufficient information to determine mixed mode stress intensity
factors. Although the reflected caustics from the front and back face
have a great potential to determine mixed modes SIFs, they are not
widely used.

In this chapter, the methods from Chapter III-B are used to
determine mixed mode SIFs. An interaction between two edge cracks was
studied. A comparison between the experimental and the available
numerical values are presented.

The detailed procedures from the preparation of the models to the

final results are discussed and described.
A. Test specimen

1. Material and model preparation

The material used for all models was polymethyl methacrylate (PMMA,
plexiglas). In most experiments, plexiglas is proven to be a suitable
material. It has the advantage of being a mechanically and optically
isotropic material. Furthermore, it does not present an extensive

plastic zone at room temperature even in the close vicinity of
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the crack tip for sufficiently large loading. The material properties
of plexiglas are given in T;ble 4-1.

Vhile the exterior geometry was easily machined, achieving proper
crack tip conditions was important. For the simple linear approach of
the stress distribution around a stationary crack it is sufficient to
replace an edge crack with an external slit which is perpendicular to
the longitudinal boundary of the model and has a very small radius of
curvature. The selected plates were first machined to their final
sizes, the slit was then made by means of a metallic disc cutter with a
thickness on the order of 0.006" to 0.008". Since, the root radius of
the slit was sufficiently sharp, radius of curvature approaching zero,

the slit simulates a real edge crack.

Table 4-1. Material properties of plexiglas

Property Symbol Value
Poisson’s ratio v 0.33
Young’s modulus E 3.34 Gpa

4.84 x 10° psi
Reflected from the front g 0.988 x 10'%0 mzéN
face stress-optical constant 0.681 x 10" 1in“/1b
Reflected from the rear c, 3.22 x 10'%0 mzéN
face stress-optical constant 2.22 x 107" in®/1b
Transmitted stress-optical ¢, 1.11 x 10'20 m%/N
constant 0.77 x 107" in“/1b
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2. Model geometries

For the determination of mixed mode stress intensity factors, an
interaction between two edge cracks was studied. Two different cases
were considered using plexiglas with a thickness of 1/8". In the first
case an interaction between two equal length edge cracks was studied.
The shape and size of the machined cracked specimen is shown in Fig.
4-1. The effect of the far boundary on the crack tip was kept small by
holding the ratio of a/V to less than 0.137. To insure a uniform
tensile type load, which produces a uniform far field tensile stress,
models with the dimensions shown in Fig. 4-1 were used. Final
dimensions of the six models used are shown in Table 4-2. All models

vere taken from the same plexiglas sheet.

Table 4-2. Geometrical parahetets of equal length crack

spec:lmensa

Specimen a b c d H W

No. (inch) (inch) (inch) (inch) (inch) (inch)
1A 0.25 0.25 4,195 4.180 0.125 1.827
2A 0.25 0.25 4,135 4.115 0.25 1.835
3A 0.25 0.25 4.052 4.073 0.375 1.833
4A 0.25 0.25 3.96 4.03 0.50 1.823
5A 0.25 0.25 3.82 3.93 0.75 1.825
6A 0.25 0.25 3.48 3.52 1.50 1.830

85ee Figure 4-1 for the definition of the symbols.
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In the second case an interaction between unequal length edge
cracks was studied. The size and shape of the specimens are shown in
Fig. 4-2. The effect of the far boundary on the crack tip was kept
small by holding s/V less than 0.164 and 1/V less than 0.21. All models
are taken from the same plexiglas sheet and the final dimensions of the

six models used are shown in Table 4-3..

Table 4-3. Geometrical parameters of unequal length crack

specimensa

Specimen s 1 c d H v

No. (inch) (inch) (inch) (inch) (inch) (inch)
1B 0.3 0.4 4.13 4.17 0.2 1.826
2B 0.3 0.4 4,035 4.065 0.4 1.829
3B 0.3 0.4  3.97 3.93 0.6  1.826
4B 0.3 0.4 3.85 3.85 0.8 1.835
5B 0.3 0.4 3.63 3.67 1.2 1.831
6B 0.3 0.4 3.1 3.06 2.4 1.831

85ee Figure 4-2 for the definition of the symbols.
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B. Experimental Setup

The experimental set up for the reflected caustic is shown in Fig.
4-3. A monochromatic and coherent light beam emitted from a point
source He-Ne laser, which is widened by spatial lens, impinges normally
on the plexiglas cracked model. Divergent light is used primarily to
enlarge the caustic image. The light is partially reflected from the
front and eventually the rear face of the model. The deviated light
rays from the area surrounding the crack tip are projected on the screen
vhich is parallel to the model.

If the coordinates of the focus of the lens are not zero, then the
optical axis of the lens is not coinciding with the center of the crack
tip and a translation of the caustic takes place. A noncoincidence of
the axis of the light beam and the crack tip produces only a
displacement of the caustic without any modification in shape, size and
relative position of the internal part or the external part of the
caustic. The rotation of the the model about the x and y axes produces
a light beam that is not perpendicular to the specimen. This rotation
creates only a translation of the caustic without effecting the size,
shape and relative position of the caustics. However, a rotation of the
screen distorts the caustic image. Therefore, the screen should be

alvays parallel to the model.
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C. Calibration Procedure

1. Calibration of the stress optical constants

Although the reflected caustics were used for the determination of
mixed mode stress intensity factors, the transmitted caustic was needed
to determine the reflected from the back face stress optical constant.
This is discussed in Chapter III Section D. An artificial edge crack,
which is perpendicular to the longitudinal boundary, was seen in the
middle of the calibration model. The crack is inserted the same way as
the two edge cracks used for Models A and B. This will take care of the
residual stress, if any exist. The residual stress can be predicted
from the small pseudocaustic it produces. The residual caustic
can be eliminated by applying a small compressive load and the zero load
level is taken as the point when the pseudocaustic disappeared.

The transmitted and reflected caustics diameters along with the two
magnification factors were measured. They are used in addition to the
Poisson’s ratio and Young’s modulus to determine the stress-optical
constant. The reflected from the back face stress optical constant was
determined using Equations (3-33) and (3-35). The resulting values are
shown in Table 4-1. The transmitted caustic, Poisson’s ratio and
Young’s modulus would not be needed using the technique of a central
hole in a plate discussed in Chapter III-D, but this technique had not
yet been developed when the experiments were conducted.

2, Optical calibration

The screen must alvays be parallel to the model. The rotation of

the screen effects the shape and size of the caustic. The magnification
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factor A\ can be determined by‘using the following relation:

any length in the reference plane
A= (4-1)
corresponding length in the image plane

However, if the screen is not parallel to the model, an error in the
evaluation of magnification factor is obtained. This can be eliminated

by using the well known divergent light magnification factor law:

zo + zi

A= (4-2)

24
where Zi is the distance between the divergent light source and the
model and Zo is the distance between the model and the screen.
The difference between the calculated magnification factor from
Equations (4-1) and (4-2) indicates the extent of the errors. The main
error is that the screen is not parallel to the model and can be easily

eliminated.

D. Test Procedure

The tests for each model were conducted as follows. After the
calibration stage, the test model was statically loaded in tension. The
model was loaded by using the loading frame shown in Fig. 4-4. The
static load was read on the load cell readout. The load range on the
load cell readout is from O to 200 lb. The range of applied load was
from 100 1b to 170 1b. To reduce the three dimensional effect, the load
level was used that gave ro/d greater than 0.4, where d is the model

thickness and r, is the initial curve size. The initial curve can be
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determined from {[24)
0 = Dt max/(3.17 Am) ' (4-3)

Thus, the initial curve radius (the lens size) can be determined by

r

measuring the maximum transverse diameter of the outer caustic. For the
determination of mixed mode SIFs, the angle between the axis of symmetry
and the crack axis along with the maximum transverse diameter of the
external caustic were needed (Chapter III-B). The angle of symmetry was
determined from the inner caustic resulting from the reflection from the
front face. The axis of symmetry was traced by drawing the tangent to
the two flanks and a normal to this tangent passing through the cusp
point. The maximum transverse diameter D was determined from the

t max

outer caustic resulting from the reflection from the rear face. Dy max

is always parallel to the tangent to the two flanks and is a tangent to

the external caustic.

Fig. 4-3. Experimental reflected caustic setup
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E. Data Analysis and Results

1. Mixed mode SIPs by epicycloid’s angle of symmetry

Theocaris developed the the method of caustics using the reflected
light from both the front face and the rear face for the determination
of Mode I and mixed mode stress intensity factors. In his measurement
of the maximum transverse diameter, the inside diameter of the caustic
rim was considered. Accordiﬁg to References 24 and 50; for experimenfal
determination of dynamic stress intensity factor using the transmitted
caustic, correct results are obtained when the line of maximum intensity
within the caustic rim is considered [60] (in German). Most recently,
after the auther had finished all the experiments, it was suggested that
the average distance between the caustic edge and the maximum intensity
point should be considered [41].

For the evaluation of mixed mode SIFs for Models A and B the inside
diameter of the outer caustic was considered. The points of the maximum
light intensity were not considered. The auther was unaware of
Reference [60] at the time the interaction between two edge cracks was
studied. However, the points with the maximum light intensity were
considered (for Model 3B) for the measurement of the maximum transverse
diameter in the comparison with the iterative least squares method.

This will be discussed in the next section.
The estimated KI/KIo and KII/KIo values are compared to values

obtained from using the numerical displacement discontinuity methods

[61]. The SIFs results and the percentage difference between the
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experimental and numerical results for Model A are shown in Table 4-4.
The numerical and experimental results from Table 4-4 for KI/KIo and

KII/KIo are plotted on Figs. 4-5 and 4-6 respectively. The definitions

of the symbols used in these figures and tables are:

K. and KII are Mode I and Mode II stress intensity factors,

1
respectively.

KI/KIo is the nondimensional Mode I stress intensity factor

KII/KIo is the nondimensional Mode II stress intensity factor

KIo = ¢ na, normalized stress intensity factor

¢ is the applied stress as calculated from P/A (P is the applied load
and A is the cross sectional area)

a is the edge crack length

H is the distance between the slits

X difference is the percentage difference between the experimental and

the numerical values as calculated from:

Experimental value - Numerical value

% difference = (4-4)
Average of the experimental and numerical values

For Model B, the estimated KI/KIo and KII/KIo results and the
numerical values for crack tip S and L (Fig. 4-2) are shown in Tables
4-5 and 4-6, respectively. A comparison between the numerical and the
experimental KI/KIo a“d-KII/KIo values for crack tip S is shown in Figs.
4-7 and 4-8 respectively. Fig. 4-9 shows the numerical and experimental

KI/KIo values for crack tip L and Fig. 4-10 shows KII/KIo values.
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Table 4-4. Experimental and numerical results for model A

Model LSS Ri/Kp % Diff. Rp,/K; Ki1/Kyo % Diff.
No. Exp. Num. Exp. Num.

1A 0.74 0.797 7.41 0.16 0.152 5.1

2A 0.877 0.85 3.1 0.131 0.132 0.7

3A 0.904 0.885 2;1 0.117 0.109 7.1

4A 0.89 0.915 2.7 0.093 0.085 7.9

5A 0.94 0.96 2.1 0.057 0.054 5.4

6A 1.043 1.052 1.0 0.0109 0.012 9.1

Table 4-5. Experimental and numerical results for model B tip S

Model LSUSH KI/KIo % Diff. KII’KIo Ki1/Kgo X Diff.
No. Exp. Num. Exp. Num.

1B 0.42 0.397 5.6 0.168 0.172 2.3

2B 0.65 0.635 2.3 0.144 0.158 9.1

3B 0.706 0.745 5.3 0.128 0.126 1.5

4B 0.836 0.819 0.9 0.0868 0.0939 7.5

5B 0.91 0.92 1.1 0.054 0.053 1.8

6B 1.054 1.048 0.5 0.0108 0.011 1.7
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Table 4-6. Experimental and numerical results for model B tip L

Model  Ky/K;  Ky/Ky X Diff. Ky /Ry, Kpp/Kp o % DAff.
No. Exp. Num. Exp. Num.

1B 1.09 1.062 2.6 0.045 0.049 8.4

2B 1.028 1.01 2.7 0.081 0.075 7.6

3B 0.950 0.995 4.6 0.069 0.0705 2.5

4B 1.01 0.998 1.2 0.061 0.0582 4.6

5B 1.03 1.04 0.9 0.036 0.037 2.7

6B 1.086 1.08 0.5 0.0 0.0072 0.02

a
KIExp./KINum.

The size of the initial curve r, affects Mode I stress intensity
factor as discussed in Chapter III (Section C). The initial curve size
r, is calculated by measuring the maximum transverse diameter Dt max and
using Equation (4-3). The initial curve size is normalized to the model
thickness to show the three dimensional effect for Model A, Fig. 4-11.
The experimental SIF is normalized to the numerical value. The rold
versus the normalized SIF for tips S and L (model B) are shown in Figs.
4-12 and 4-13, respectively. The results of KI/KIo and KII/KIo are

discussed in section F.
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2., Mixed mode SIFs using an iterative least squares method

To determine pure mode one stress intensity factor the transmitted,
the reflected from a nontransparent material, or the reflected from a
transparent caustic can be used. KI can be calculated by using only two
data points which define the maximum transverse diameter. An error in
locating these two points would cause error in calculating Ky using any
of the three techniques previously discussed. Mixed mode SIFs can be
determined using the reflected caustics from a transparent material by
using only five points. The question posed is "Why do we use only two
or five points from the well defined epicycloid and not any other
points?”. In order to use a large number of points the iterative least
squares method (Chapter III) was used.

Two cases of different KI and KII values (Model 3B) were
considered. The calibration technique and the material properties -
remained as before. The experimental set up is the same except that the
camera was replaced with a video camera and the digital image analysis
"EYECOM III" shown in Fig. 4-14.

The EyeCom unit consists of an image scanner, a real fime
digitizer, a display system, and a minicomputer [62]. The image scanner
consists of a special vidicom television camera. The picture is divided
into 480 lines and each line is divided into 640 picture elements,
called pixels. The brightness or the light intensity of each pixel is
converted into digital values (2 values). The real time digitizer
digitize the image in 1/30 second and stores the resultant values in a

fresh memory where it can be accessed later by the computer. The
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display system or the monitor visualizes the information and acts as a
graphics terminal for data processing and graphical data displays. Fig.
4-15 is a schematic diagram of the system.

A light intensity profile was generated and used to automatically
pick the highly illuminated individual points on both the inner and
outer caustics. The effects of the number of points on KI and KII
values for tip S and L are shown on Tables 4-7 and 4-8, respectively.

In order to take points from the inner caustic and use the
iterative least squares technique (Chapter III), a correction factor
must be used. This is due to the fact that the stress optical constant
in Eq. (3-15b) is associated with the outer caustic. The correction
factor can be calculated from Eq. 3-10 and Table 4-1 as follows:

(rg) /(r)g = (e /e0)?/® =(3.22x10719/0.988x10710)2Pu1.604 (4-5)

Therefore, every point location on the inner caustic must be multiplied

by the correction factor (Eq. 3-11).

The graphical capability of the digital image analysis was used to
visualize the generalized epicycloid characteristics. The initial
values of the four unknown parameters (ro, Xy Yoo Gb) were estimated
based on the the available information as follows:

1. The initial curve r, value was estimated by measuring the
longitudinal diameter (Dlu3r°). This was done by using CAUSTIC 1
program [46] by specifying the two flanks points and the cusp point
of the inner caustic. A perpendicular line to the flank’s tangent
passing through the cusp point would be drawn, which was the axis of
symmetry of the caustics, and intercepting the outer caustic on two

points which defined the maximum longitudinal diameter. The
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parallel line to the flank’s tangent determined the maximum
transverse diameter and r, vas estimated from the fact that
Dtmax'3'17ro’

2. It wvas essential to have a reasonable crack tip location estimate.
The location of the crack tip (xo, yo) vas estimated by utilizing
the ratio of the distance between the flank’s tangent and the cusp
point to the distance between the cusp point and the crack tip is
4.0 (Chapter III-D). After specifying the two points of the
longftudinal diameter in Step 1, a line was drawn from one of these
points to the estimated crack tip. Hence, the estimated crack tip
location was achieved by using both the inner and outer caustics.

3. The ratio of KII/KI vas estimated by measuring the angle
betveen the axis of symmetry (Step 1) and the crack axis.
Therefore, the estimated value of the ratio KII/KI is determined
from Equation (3-16).

The results of KI/KIo and KII/KI for crack tips S and L are shown
in Tables 4-9 and 4-10, respectively. Since the points with the highest
light intensity of the caustics were considered using the iterative
least square technique, it was necessary to calculate KI/KIo based on
the points of the highest light intensity of the maximum transverse
diameter as shown in Tables 4-9 and 4-10. The ratio KII/KI is
determined by measuring the angle between the crack axis and the caustic

axis of symmetry. KI and KII/KI are calculated from Equations (3-15a)

and (3-15b), respectively.
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Table 4-7. SIPFs of crack tip S using
an iterative least square technique

Z

No. of points KI/KI° KH/KI
35 0.697 0.1583
40 0.708 0.161
45 0.724 0.1647
50 0.7216 0.1629

Table 4-8. SIFs of crack tip L using
an iterative least square technique

No. of points KI/KIo KH/KI
35 0.975 0.0735
40 0.983 0.0721
45 0.985 0.0724

50 0.9846 0.0728
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Table 4-9. Calculated KI/KIo and KII/KI for crack tip S

using four techniques

K;/K

Technique 1'%10 11/%1
The outer caustic bgnd, inner maximum 0.706 0.172b
transverse diameter
The digplacement.discontinuity numerical 0.745 0.169
method
The outer caustic band, maximum light 0.720 0.172b
intensity, maximum transverse diameter
The iterative least square method 0.724 0.1647

gFrom Table 4-5.

The same angle of symmetry.
Table 4-10. Calculated K./K. and KII/KI for crack tip L

using four tgchﬁgques

Technique KI/KIo KII/KI
The outer caustic bgnd inner, maximum 0.950 0.069b
transverse diameter
The diaplacement discontinuity numerical 0.995 0.0708
method
The outer caustic band, maximum light 0.972 0.069b
intensity, maximum transverse diameter
The iterative least square method 0.983 0.0721

gFrom Table 4-6.
The same angle of symmetry.
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The EyeCom system
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F. Conclusion and Discussion

In this study, experimental solutions for the interaction between
tvo equal and different length parallel edge cracks is obtained. The
slits are machined by a circular cutter which prbduces low pressure on
the model and result in low heat generation. The experimental technique
of caustics was used. Mixed mode stress intensity factors were
determined by using the current technique and the developed iterative
least squares method.

From the results obtained it is seen that the Mode I stress
intensity factor is predominant as shown in Tables 4-4, 4-5 and 4-6.

For the interaction between two equal length cracks (Model A), KI
increases as the distance between the two cracks increases, while KII
decreases. The numerical and experimental KI results are in good
agreement and the maximum percentage difference is 4.41% for Model 1A as
indicated in Table 4-4. Although it is not necessary that the numerical
results are the exact ones, there is an error in determining the
experimental result for Model 1A. This is due to the three dimensional
effect (rold = 0.277) as shown in Fig. 4-11. The ratio of rO/d should
be greater than 0.4. For Mode II, the numerical and experimental
results are not as consistent as KI and the percentage difference is up
to 9.1 as shown in Table 4-4.

For Model B (crack tips S and L) there is no distinct difference
between the numerical and experimental KI values and the difference

between the KII results is less than that for Model A. It is seen that
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for crack tip S, KI increases and KII decreases as the distance between
the two cracks increases. Crack tip L results indicates that KI
decreases when the ratio of H/a increases from zero to two and then Ky
increases for ratio H/a greater than two. KII for tip L increases for
the ratio of H/a increases from zero to one. For H/a ratio greater than
one KII decFeases.with increasing H/a ratio.

The dashed lines in Figs. 4-5, 4-7 and 4-9 represent the
theoretical KI/KIO value of a single edge crack in semi-infinite plate
(KI/KIO-I.IZ). The zero lines in Figs. 4-6, 4-8 and 4-10 represent the
theoretical KII/KIo results. The difference between the theoretical (KI
and KII) and the experimental (or the numerical) results
is an indication of strong interaction between the two cracks,
especially when H is small.

The opening mode for crack tips S and L for Model 3B is calculated
by measuring the maximum transverse diameter based on the points of the
maximum light intensity. The results are listed in Tables 4-9 and 4-10.
The percentage difference between these results and the ones obtained by
measuring the outer caustic band inner diameter is 1.97 for tip S and
2.28 for tip L. This shows a good correlation.

The iterative least square method results coincides with the KI and
KII values calculated by measuring the maximum transverse diameter and
the angle of symmetry of the generalized epicycloid. This indicates
that KI and KII can be determined by taking a number of points from the
caustic image and not by taking only five points defining the maximum
transverse diameter and the axis of symmetry.

There are some areas that need to be explained. These areas
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The difference between the longitudinal diameters method
(Chapter III-B) was used in different studies for the
determination of mixed mode stress intensity factors and the
experimental results compared satisfactorily with the
theoretical results [12,33-35]. For the particular case in
this study, interaction between two edge cracks, the technique
did not yield very'accurate results. Errors in determining
both Mode I and Mode II were noticed.

The ratio of the initial curve r, to the model thickness d
should be larger than 0.4 so that plane stress conditions
prevail. The effect of the three dimensionality error of Model
1A (ro/d = 0.277) could not be eliminated, because when the

load was increased the two caustics were distorted. This

.distortion vas due to'the interaction between the two

epicycloids and the.initial curves no longer had a circular
shépe. Thus, it could be concluded that there is a limitation
as to where the experimental method of caustics can be used.

It is concluded that the method of caustics can be used for the
study of interaction of two edge cracks where the distance
between the cracks is larger than the model thickness.

The initial estimation of the four unknown parameters, using
the iterative least square technique, was based on the
properties of the generalized epicycloid. A nonzero r,
estimate is necessary. This condition is mathematically due to
Equation (3-25) and physically there will be no caustic without

the initial curve. Estimation of the crack tip within r°/3
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the initial curve. Estimation of the crack tip within r°/3
distance from the actual crack tip location is essential. This
is mainly due to Equation (3-27) which is based on minimizing
the residuals between LE and LM as shown in Equation (3-23).
The current method relies upon measuring the distance between two
points that define the maximum transverse diameter. Since there could
be a discrepancy in measuring the maximum transverse diameter, data from
the wvhole caustic image should be used to help reduce the possible
error. In this dissertation a first attempt to take a number of points
from the caustic image was accomplished. The technique can be extended
for the determination of mixed mode stress intensity factors from the

transmitted or reflected from a nontransparent material caustics.
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V. STRESS OPTICAL CONSTANTS EXPERIMENTS

As demonstrated in Chapter III, in addition to the experimental
setup and the model thickness, KI and KII depend on the model stress
optical constant. The basic difference in calculating SIFs from the
transmitted or the reflected caustics is the value of the stress-optical
constants. Studies that utilize the method of caustics use an optically
isotropic material (PMMA, Plexiglas) to extract KI and KII although a
birefringent model material can be used.

A nev technique has been developed to determine both the stress
optical constants for the transmitted caustic and the caustic reflected
from the rear face of the model. The maximum longitudinal diameters of
the resulting transmitted and reflected caustics were used to determine
the respective stress optical constant. The new caustic technique was
applied to a thin plate with a circular hole where the caustic image is
no longer a generalized epicycloid.

The schematic of the experimental setup for the reflected caustic
is the same as the one shown in Fig. 3-3. The transmission caustic
setup is shown in Fig. 5-1,

The transmitted and reflected stress-optical constants results are

compared to the available reported values. The effect of the hole size

is investigated.
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Fig. 5-1. Schematic transmitted caustic setup
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A. Model Geometry

An optically isotropic material, polymethyl methacrylate (PMMA,
plexiglas) vas used for the experiments. Thin plates with a thickness
of 1/8" were used for all the models. To insure a uniform tensile type
load, wvhich produces a uniform stress Oy models with the dimensions
shown in Fig. 5-2 were used. The loading apparatus used was the same as
in Fig. 4-4. The effect of the hole size upon the determination of the
stress optical constants was investigated by varying the ratio of the
hole size a to the plate width W. A small drill was used to slowly bore

the holes in the models. Final dimensions of the five models used

(Model C) are shown in Table 5-1. All models were taken from the same

.plexiglas sheet.

Table 5-1. Geometrical parameters of model C

Specimen 2a b c v a/V
No. (inch) (inch) (inch) (inch)

1C | 0.0625 4.244 4.256 1.83 0.017

2C 0.0781 4.235 4.265 1.81 0.216

3c 0.125 4.262 4.237 1.81 0.034

4C 0.1875 4.213 4.286 1.80 0.052

5¢ 0.250 4.21  4.29 1.81  0.069
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The maximum load of 200 lb can be applied using the loading
apparatus in Fig. 4-4. More load was needed to complete the
investigation of the hole size and the dimension of the model changed to
model D shown in Fig. 5-2. The loading apparatus used for model D is

shown in Fig. 5-3. The final dimensions of the four models used are

shown 6n Table 5-2.

Table 5-2. Geometrical parameters of model D

Specimen 2a b c v a/V
No. (inch) (inch) (inch) (inch)

1D 0.0625 4.54 4.46 3.4 0.009

2D 0.0781  4.544 ~ 4.456  3.394 0.0114

3D 0.125 4.5 4.5 3.41 0.0183

4D 0.1875 4.58 4.42 3.4 0.0275

B. Test Procedure

The calibration of the experimental setup remains the same. A
monochromatic light beam emitted from a He-Ne laser impinges on the
specimen. Screens in front and behind the specimen were placed parallel
to the specimen at distance Zo’ On these screens the caustics resulting
from the transmitted or reflected light rays were formed. The reflected
experimental setup is shown in Fig. 4-3 and the transmitted setup is

shown in Fig. 5-4. The experimental reflected caustic pattern is shown
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in Fig. 5-5. The outer caustic is due to the light reflected from the
rear face and the inner caustic is due to the light reflected from the
front face. The outer caustic vas considered for the determination of
the reflected stress-optical constant. The experimental transmitted
caustic is shown in Fig. 5-6. It was noticed during the experiment that
the caustic band resulting from the light transmitted or reflected from
the area surrounding a circular hole was wider than the epicycloid band
that resulted from the area in the vicinity of a crack tip. Caution was
taken in the determination of stress optical constant since not only is
the caustic band wider, but the maximum transverse diameter is raised to
the 4th pover while the caustic diameter for a crack is raised to the
5/2 pover.

All models were loaded in tension. Due to the diffraction effects,
the points with the maximum light intensity within the bright rim were
considered. The digital image analysis system was used to determine the
ligﬁt intensity profile at both ends of the maximum diameter. Each
model was subjected to five different loads and the corresponding
maximum diameter was measured. The maximum longitudinal diameter can be
determined by moving the EyeCom cursor on the caustic rim at both ends
of the maximum longitudinal diameter. To reduce the amount of possible
error in moving from one side to the other of the maximum diameter,
CAUSTIC 2 program was used [63] (see the appendix for listing of the
program). A tangent line to points A and B shown in Fig. 3-12 is drawn.
Different color parallel lines to line AB within 2 to 3 pixels are drawn

and the cursor moved along the maximum longitudinal diameter indicating

line:
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The magnification factor for the transmitted setup was kept between
3.1 and 4.1. The applied stresses and the resulting transmitted
stress-optical constants for each model are shown in Table 5-3. The
average of the five c, results for each model and also the percentage
difference between the maximum and minimum values are presented in Table
5-3. The average Cyr the maximum C, and minimum c, versus a/v are shown
in Pig. 5-7. The magnification factor for the reflected case was
between 4.6 and 5.46 and the resulting Cpo corresponding to different

load levels, for each model are shown in Table 5-4. The variation of

the maximum and minimum values along with the average ¢, are shown in

Figo 5-8 .

Table 5-3. Load test results for c,

Model o c, avg. ct. X difference
No. (psi) (107 1n%/1b) (107 in%/1b)
515 0.752
604 0.748
1c 711 0.752 0.750 0.73
800 0.747
888 0.750
515 0.752
604 0.753
2c 711 0.748 0.751 0.66
800 0.749
888 0.754
400 0.764
515 0.757 |
3¢ 604 0.749 0.759 0.78
711 0.765

800 0.759
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Table 5-3. (Continued)
Model o c avg. X difference
No. (psi) (107 in%/2b) (1079 in%/1b)
400 0.805
515 0.802
4C 604 0.810 0.807 1.05
711 0.811
800 0.805
515 0.878
604 0.881
5C 711 0.866 0.875 1.4
800 0.871
888 0.878
660 0.757
840 0.753
1D 970 0.748 0.752 1.2
1067 0.754 i
1164 0.749
660 0.753
840 0.752
2D 970 0.750 0.751 1.06
1067 0.747
1164 0.755
660 0.757
840 0.756
3D 970 0.751 0.753 1.08
1067 0.753
1164 0.748
680 0.747
873 0.748
4D 1067 0.755 0.750 1.07
970 0.749
1164 0.753
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Table 5-4. Load test results for c,

Model
No.

(psi)

r

(1078 1n2/1b) (107 in?/1b)

avg.

% difference

1c

2C

3C

4C

5C

604
711
755
800
888

515
604
711
800
888

400
515
604
711
800

400
515
604
711
800

515
604
711
800
888
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2.330
2.300
2.32

2.26

2.27

2.27

2.31

2.32

0.80

0.88

2.4

0.86

1.7
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Table 5-4. (Continued)
Model a c avg. X difference
No. (psi) (1079 1n?/1b) (1076 1n%/20)
795 2.262
873 2.267
1D 970 2.263 2.26 0.21
1067 2.264
1164 2.263
660 2.268
776 2.260
2D 970 2.268 2.26 0.35
1067 2.264
1261 2.260
630 2.276
776 2.273
3D 970 2.225 2.27 0.91
1067 2.271
1164 2.264
660 2.275
873 2.268
4D 970 2.289 2.276 1.0
1116 2.266
1213 2.282
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____Fig.. 5-3. Pressure loading apparatus
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Fig. 5-4. Experimental transmitted caustic setup
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Fig. 5-5. Reflected from a central hole caustic pattern
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C. Conclusions and Recommendations

A nev experimental technique for the determination of the
stress-optical constants for the transmitted caustic and the caustic
reflected from the rear surface of the model was developed in this study
using the experimental method of caustics. The stress-optical constants
were determined by measuring the maximum longitudinal diameters of the
caustic resulting from the monochromatic light transmitted or reflected
from the area surrounding a circular hole in an infinite plate. The
reflection from the front surface stress-optical constant was not
considered in this study since its value is Poisson’s ratio divided by
Young’s modulus.

The dashed line in the Fig. 5-6 represents C, = 0.751 x 10"6 in2/1b

-6 , 2

which compares to C,= 0.744 x 10 ~ in“/1b as reported by Beinert and

Kalthoff [24]). The dashed line in Fig. 5-7 is the average of the six
smallest a/w ratios and represents c. = 2.27 x 10"6 inz/lb. The
resulting . value is in a good agreement with the reported value of
2.26 x 107° in/1b [64] and 2.278 x 1076 1nZ/1b [65].

The proposed method is a direct and accurate technique for
independently determining the transmitted and reflected stress-optical
constants. It is seen from Figs. 5-6 and 5-7 that the size of the hole
a should be very small compared to the width of the model. It is
concluded that an a/w ratio less than 0.03 should be used for both

reflected and transmitted studies and several load levels should be used

for each hole size used.
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An experiment was run with two extra holes at distance of w/2 from
the central hole in model B. The extra holes did not alter the readings
of the original hole. Thus three hole sizes can be investigated using

the same model.
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VIII. APPENDIX: PROGRAMS

A. CAUSTIC 1 PROGRAM
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Ll Lt e ie

Liah
PTEELAT VT

L I I R
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Ay

CLOAT(IXY

=FLOATITD
SORT(KD-4TTI&AZ.+7 il TV aal. 0
CITT-YD: /AL

k, ‘COSE=’,CO5E

{NTT-%00 /%L

ui
fon S
K]

e

l H

e
T

&

= O

o i

L~ B B
- i

=30

UETEEMINIMG THE SCALE

FAUSE 'PUT THE CURSOR O THE FIRST GELD POINT.HIT<RETURN: °
CALL COORDS(IXNGL,IYQLS

PAUSE ‘PUT THE CURSOR 01 THE SECOHD GRIG POINT.HLIT<RETUKH:
CALL CODRDSCIXGZ, IYRZ)

DX=FLOAT{ IXG2-IX01}

DY=FLOAT( IYQ2-1YG1)

PICDIS=SQRT(DXAX2. +0(AKZ. }

Ti{FPEX, ‘WHAT IS THE ACTUAL UISTANCE BETWEEM THESE TWO FOINTS’
4CCEFTA  ROIST

S5CALE=KDIST/PICTIS

TYFE#, SCALE=’,SCALE

CALL DISPLY (VIDEQ)

PAUSE 'AARANGE CAMERA TO SHOW CAUSTIC. -

CALL DISFLY (FICTURS

LOCATING THE CRACK TIF, THE aAXInUM TEANSYERSE DLIAMETER(D max)

CALL aLCud

PAUSE ‘PUT THE CUKRSGE O# LEFT CUSP.HIT <RETUEN:
CALL CDORDS{IXFI,IYPL:

FAUSE 'PUT THE CURSOR OM PIGHT CUSP.HLT <RETURN>=
CALL COORDS(IXFI, IYP2D

PAUSE ‘PUT THE CUERSGER e CUEe PUIWT.HLT “RETURM:
CALL COORDS(IXP3,IYPI:

CAHLL ZRIPCIXPL,IVFL

CA4LL DRalW{ IXFZ, IvP2:

TORAL=1YP2-I¥F1

(AN
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e

IpnyY1=15ri- TIP3

CALL SKIP{IXPI+L&ATILOAL, cirs+ah fOD:
CALL DRAWCIXFZ-44TI0LAY , [P 3-48100L 10
PAUSE ‘PUT THE CUREQR ON LOWER D maw FOTNT.HRIT
CALL CODRDE(ILAPD, IYFDD

PAUSE 'PUT THE CURZGR OM UPFER D m.ax POIMT.HIT
CALL COORDS{IXFG, ITFRG -

UCE=FLOAT{ IXFO-TIXFS:

DCY=ELOAT! IYPE-IYRS
UTKR=50QRT{(DCRA*XZ . +DCY#%2, ¢

TYPEA,. "DITR=".DTER

00={(DTRASCALE)} /3.

IVPE#, "RKOO=" ,RO0

XPI=FLOUAT{IXPS !

YFS=FLOAT(IYFS)

LF3=FLOAT(TAPZ)

YP2=FLOAT(IYF3?
MH=S0RT({XPS- AP kRl +{IPS-TPI3IAAZ.)
TYFE*, M=~ .MM

LOST=(XPS-XF3) /i

SINT=(YPS-YF3) /titi
IXTE=IXPS-(1.666ARC0ACTST) /SCALE
IYTE=IYF3~(1.666AK00ASINT ) /SCALE
CALL COLOR (*140)

CALL SKIF (IXF35,IYFS)

CALL DRAW (IXTE,IYTE:

SRETURMN

<RETURMN

PAUSE "FUT THE CURSO0R ¢ THE CRACK TIP.HIT <RETURH:

CALL COORDS{IXT, IYT:
START COLLECTING DATA POLIS

TPEX, "HUWEER 2F POIHTES DESIEED”
GCCEPTX LM

£T1
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PROGEAR PRUEIL

Conrdy /ALY s

ADD, ALLC , SUE  SURBCALRC ,ADRL A B, ALNVYT ,,BIRVT,
+

AND, DR, DR INVY , 50K, AN0E, CLEAK ,SE1.OFLOW, ELAG

Call DISPLY (LUJESOR:
FRUSE “Flace cursor on bBlack.’
CALL COORDDS (IX,1v»
IMIN = 25¢
g 10 1 = -3,3
ng o1 J = -2.13
1Z{1) = IHTENS (IX+1,1¢+3}
IF (IZ(1Y.LT.IWINY f{iIN =
PAUSE ’'Place oursor on wiite.’
CALL OISFLY (,CURSOER?
CaALL COORDS (IX,.IY)
Iriax = @
o 20 1 = -3,3
oo 20 J3J = -3,3
TZ{1)» = INTENS (IX+1,17+3}
IF (IZ(13.GT.IMAX)Y IMAaX = IZ(11
CALL CONTIR (IMIN, IMAX)
D0 110 Kl=1,NUn

IZ¢15

fienerate profiles of image.

CALL DISPFLY (CURS0R?

FAUSE ‘Select Origqin Foini.’
CALL COORDS (IX,IY:

PAUSE ‘Selectl End Point.”
LALL COORDS C1H1.IV1D

CALL ERASE _

CALL DISPLY (GRAFIC

CALL COLOE ("140°

CALL SEIP (IX, 1V:

711
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116
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hap]

CALL BACK
CALL SKIF (IX,IBOT-INTERS(IX,IY>/2)

IXK=1

X

IYK=T1Y
TS(1y=INTENS(IX, T3 /3

IMAX=
a0 24
IX

I8¢
¢ 1=
= IX

I741.LT. 1Y) IBOT = IY1l - 2O

CIEDT.LTLYIGED IBOT = JBOT + 1&8
LABS{IX1-T3)

= ELOAGTOITY - Vi) AFLOATCIY]

CIALLLT.IXAY IX = IX]

(14, IX{+ILEN, IBDT~-128, IEOT

1, ILEN
+ ]

ISCII=INTENS(IX, IY+INT(TASLOFEY ) /2
IFCIS(I) LT, INAXIGOTO 2320

iMAX=

IS(13

IXE=T¥
TYK=TIY+INTLIASLOFE)

CaLll DRAWOTX, TROT-IS(I)
COMNTINUE

K=Kl

KP=SCALEAELOAT{ IXK-IXT?
YP=BCALEAFLOAY (IYK-IVT)
YK I={PABINR+YPACOSE
Y(KI=XFXCO5B-TPASINE

TYPEA

far e s
v R4

TYFE®, ‘Y’
CONT IHUE

TaLL

EEASE

o T g RKD

S aEt D

I£3

A
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faid [TERATIVE LEAST SOUARL METHON

.RD I THE INITIAL CUEYE RaALIUS ESTINMATE

#0748 IS5 THE ESTInAYIOE OF THE CEACE TIF LIOCATION
TO 135 KII/KI ESTIMATE

TiFEX, ' INFUT THE RO.X0,Y5,T6G°
ACCEFTA,K0,X0,Y0,T0
ICONT=1
FACTOR=1.6
FLaAG=0.9
continue
IF{FLAG.EQ.1.0YFACTOR=1.0
FLAG=1.0
g 190 11=1,NUM
I=711
LiI=SORT({X{TI1=-XO02 k2T +i7{L2-YUrkk2.D
PHC D) =ATANZ(Y(I)-Y0 X1 -XG)

LOCATING THE DIFFEREWNT REGIONHE OF THE CaUSTIC IMAGE

TEC(L(I) JLT.RO)PHC(I)=PH{ I3 +2 . &P
IF(FH{ D ~T0.GT . PI.ANDLLOL) BT ROIFHC DY =2, AP T+FH{ 1
TECPHCI) LT 0. )PH{LI)=FH Li+4.4P1
PHII=FH{I)%180./F1T

THETA(I) = ENROOT(PH:{I),PHI,1Z.556037,0.,1E-4}
THETAI=THETA(I)%180./P7T
T{FEXx, "THETA= ’,THETAI

CALCULATIMG ELEMEMTS OF fMaTRIZ Lwl AD LRI
LE{I)=ROASQRTI(13.4+4(1EL P RCOS(THETA L 7200 2/

Al=SIN{THETA(TI} /2.3
AZ=CO5(THETA(TI /2.0

AN

911
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1

Al
Lot

A3=50RT LI+ {12, phau)

A= (003 PHO D) D AARaAROAAL A LT O~y T3 0 0K -Z0 T ikn izl

AS={G.A(AL/A3) A28 +A2) ALOSIFHO L -THETAC L ) -TO) +45

AG={COS(PH(I) 1AL #E0XAALACL{ T~ KO ) /UL AL-RA T ARD LT
DLECTI 13=A3/3. TR
OLE(L,Z2={X{1)-KO /L L3+ A4/ A5) VX
DLECL,33=0r{Li-YD3 Lil)~ A6/ Ab) VYO
GLELiI,41=ROKAL/AD VT

COHTINUE

CALCULATION OF “i{i,i) AND Y(NI} MATRICES.

U0 200 I=1,4
E{(I>=0.0
00 200 I=1,NUr
B(I)=B(I)+(L{I}~-LEC(I})ADLE(I,I)
COMT INUE
Uo 300 I=1,4 )
0 300 K=1,4
M{T.HI=0.0
D0 300 I=1,HUH
MOT K =tH(I HI+DLE( T, K)&ADLECT, 1)
CONT INUE
CALL GAUSE(M,E,4,ERK)
TYFE, ' IKO s B(L
TYFEA, ’I1X0 ‘G RHL2)
TYFE, ‘DYOD s E(3)
TYPEX, 'OTO ‘  BCA47
ERREI={ABS(R(1) ) +ABS(E {2 1 +ARS(R(3))I+4B5(E(4))) /4.
IF(ERR2.LE..1E-2.0R. ICONT.GT.30)G0OTO 400
BO=RO+R{1)
X0=¥D+E{(2)
TO=(0+B{3)
TO=TO+E(45
TIPEL,’

LTT



400

e On o

TIPES,  1LOAY=", TLLUHT
TYFE+, KD ‘RO
TYFPEX, "X ', X0
TYFEXx, 700 /.70
TYPEX, "Tt0O *,T0
MU=SIN(-TD/2.)/C05(-T0 2,
TYPE#, 'HU ", MU
ICONT=ICONT+

nT0 5

IYPEx, 30 ITER.-
TYPEX, 'R0 ‘', k{0
TYFE4, "X 7, X0
TYPEX,'¥0 ’,¥Y0
IYFPEX,’T0 °,T0

S5TIOF

ENDI

ENROOT SUBROUT INE

Rif

THIS SUBROUTINE IS EGR THE DETERMINATION OF THE ARNGLE THETA

—— o ———— > 3+ St — —— - - ———— Gt . ——— —— e = W TED G- T M e e - - e = v W —— - " o = W P W e aes s m— am—

REAL FUNCTION PHI (THET&?
COMMON/PARAM/ RO,X0,Y0.TOD
Al=SIN{THETA/2.)

A2=S0RT (3. 25+3 . XCOS(THETA/E.3 )
ASIHN=-ACO5(AL7A2)+3.1415937 /2.
PHI=THETA+AS IM+TO

RETUE®

END
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ZUBROUTIHE GAUSE (M,Y,H.ERE

THIS SUBKOUTINE CALCULATES THE INITIAL CURYE YALUE, THE
CAUSTIC AMGELE OF SYMMETRY, THE CRACK TIP FOSITION

v.—_,nnt".lr‘ﬁr.’"

ZUBROUTINE GAUSE (HM,Y,MN,EEE]
REALX4 MIN N, T(H) EER (]

NMORMALIZE COLUMMS.

e R

g 110 1I=1,N
EEE{(I})=0.0
g 100 J=1,H

1690 ERR(I)=ERK{I}+ABS(H{TI, 13
ERR{IJ=ERR{I)}/N
IF(ERR(1}.LT.1E-36) GQOTO 1
0g 110 JI=1,n

1i¢ (T, I3=HM{J, I)/ERE(I"
i
i GAUSSTAN ELIMINATION.
i
g 230 I=1,8-1 TELIMIHATION RGW
BRAX=0.0
g 2310 I=1,# YLOCATE PLVGT RiW
AUR=0 0
Lo 240 }‘l,ﬂ
200 M=t araBS AT I K17

rﬂhg AVGATR-1+1)

PE CABSINLT . L)y cLE.damanisaddGr 1 G0TH 210
PRI TS WU I I =1 1] P

ce s aa . . .
LI i £ YIS A O B LN}

PhetPerie fina SRV IS

611
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42 g2

]
o

310

=y Yy

pot

My liigsa, Li=e0 0, § -
M7, Dy =arak
AMaY=TEnR®"

iy 220 J=I+1,M
TEWP=M {iva¥ , J
ﬂ'lﬂHR J!=ﬁiI.J

by ‘: Ii“i

¥

i
YR E]

..\n-

H ‘:‘ " I:r

R
232
X=1
CI)AAMAX

oo 230 P‘1+1nﬂ

AT, K= eI Ki~-H{I, K)&xaMas

IF{AES(M{N. N)‘. T.Hba\lth)k

Yfﬂﬁ—,LNJ/ﬁ\ﬂ
Mo, HI=1.0

vl SUBSTITUTION.

It CazE OF MO SOLUTIOM

1E-

G Eoooai iy ZaodlE L

S50

G0T0

i

A E

oct
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REAL EFUNCTION ACOS5¢L3
REaL Z
PI=4.AATANIL.)
A=SRRT(L . ~ZAxT5
TEC(Z.EG.OYGROTE 10
BE=4/2

Z1=ATAN(E)
IF(Z.LT.03Z1=FPI+Z]
HO0TO 20

Z1=F1/2. "

AL0S=Z1

EETURN

END

121
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CAUSTIC 2 PROGRAM
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ban]

bt an

THYZ FROGEAM LDCATES THE CAUSTTL MAX[Mild DTAHETER aCCURATIY

e - oot i o ot e G o o e e fae S G4 4oh S ke vt bme Tt ahet S et o oot e

COMMnN SEYECOMS UTBEE€4),PD
+ ALUAE cAaLlitG,

REALA4 SCALE.RUIST PICHI5. 40"
REALX4 EBETAl,BETAZ,D0.0D
TNTEGER IZ(600), I5(6007

CALL SETUF
CALL DISFLY (VYIJEG:
PAUSE “ARRANGE LAMERA.
CALL DNISPLY (FPILTUR:
CALL ACCUN
CALL ERASE

CALL DISFLY (GRAFIC)
CALL LISFLY(CUERESOR?
PI=4.kATAN(L.)

GDETERSINING THE SCALE
‘PUT THE CURS0R Od THE

CHORDE (TAB1,.TyR):
PUT LH‘ LUEE0R 06 THE

R, GRAFTL  CURSOR, RED,BLUE ,AREEN.
IET,3TaT ,EAM{IG)
O).YiLUUF.QL?HQL.QLPHﬁd

FIRST GEID POINT.HITORETURH: *

SECUMD B lD FUoldT  HITORETUEREM

weSTAECE BETWEES THREZE Tl vuidls”

T A T mE e

1 X4
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COOREGS{INFL.IVFL:
L, IXFl’,IXFi

ke TITELS VIVPL
E

-

g B R
R

COORDS( IXP2, IYF2
k. ‘IXPZ’,1XFZ
2, IYFR/ L IYED
CALL SHIP (IXFL,IYFL)
CﬁLL DRAW (IXF2. IVED
LOPE=FLOAT{ ITF2-IYP1) JELOAT ¢ TXP2Z-IXPL}
B IYF1-SLOFEAIXP]
T{FEk, 'SLOFE =/,5LOPE,’% =',B
D0=0. 6

[ T v it SN
"‘ﬂlﬁﬂﬂﬁ?ﬂlﬁ

H

‘PUT THE CUESOER 0O THE ELSAT CUSP POIMT.HIT <RETURHI

THIS SUEBROUTIHE GENMERATEDZ LIMNES Pa&RALLEL Y0 THE FLAHK'E
TANGENT

d I5 THE DISTAWCE BETWEEH LINES
ALFHAL1 I5 THE MIMIMUM x VALUE
ALFHAZ IS5 THE WAXIMbd X “aLuE

HUM 15 THE NUMNBER OF POLIHTES DESIKEQ

TIPFE., “INFUT THE 4d,aLPHal,alvdal,sun-
ACCEFTA d ALPHAL ; ALFPHAZS | LR
0 131 Il=1:,Hii
i=11
IEES W nili;f CPLLTUR
TaLL BISFLY (BRarFIC
;ﬁ:E]DHl'I}*d
EETAl=5Li-naal PFHE T B0
].I'ILHPI L= IT AL FNA G
TEET® L 10 BET N

DETA =N LdFiREAL Y Ha [ -4

RN T Y PPN B & 1 P
FebTaL T A

KA



inG31=1ALHA]
I{RZ=TALHAZ
IYi31=1IEET4I]
IYGE=IRETAZ

CALL DISPLY(GRAF IO
LALL COLOX (“13203
CALL 3KIFP (IXGi,.IviGl:
CALL DRAW (YXG3:, IfGe:
continue

CALL DISPLY (FICTUR)
CHaLL aCCuM

CALL DISPLY {(CUESOR)

FAUSE “PLACE CURS0R ON BLACKH. "

CALL CUORDS <I%, 1Y}

It IN= 256

00 10 I=-3,3

oo 1¢ J=-3,3

TZ(1)=IHTENS C(IX+I,I¥+3}

IF (IZC13.LT.IMIM) IMIM=1Z¢is
VAUSE ‘PLACE CURSOR OR WHITE.
LaLL DISPLY {,CUKZOR}

CaLL COORDS (IX, 173

1MAX=0

0 20 I=-3.3

D 3¢ J=-2.3
(T4Li=INTENS(IC+ T, LE+10
[FIZ013 BT INAXY IMAX: §2010
CALL CONMTR ¢ LI, Lith <

i 119
CALL DISPLY (TURS

- e

Valty n SELECT ORI

]
b
—

i
ot
e

-~

cabl CUOOEGE
IR 0

CALL TGRS

cal



rasa

240

LaLll met?
LALL DiEAW
IROT =1%-2
1Fiflfi.LT.

IFCIBUT.LT.L 168y [EBU

C1E.

Iy

S RS P

Y
17

LEDT=

1oE

\"x
i—r ity

3

'J'" l

l i
=I

TLEN=TARS(IZL1-1X}

5iFE= FLO
IEVIXILLY.
LALL BACK
Call SKEIP

- TAK=

IYK=IY

IS5C(1=TINTENS

IAX=1I5(1"

a T

al{i71l-19) /FPLGAT I~ 1x

Ix3

(1%,
(I,

IZ=1%1
IX+iLEW, [BOT-128, LBEOT
TEOT- INTENS L Ix, IV /20

(LA, 1IY2 72

U0 240 I=1,ILEN

IX=1X+1]

IS(I)=INTERS(IX, IY+IHNTCXASLARPEY ) /
IECIS(I) LT IMAX) GOTO 220

IMAX=IS(TI7
IXK=1X

TiE=I7+INT(1%5SLOFE?

CALL DEAWC
CONTINUE
=41

1,

IEOT-I5v 125

X (K} =5CALEXELODAT{ IXK)
Y'F‘“TP*LE*ELDﬁT(IEF‘

TYPEX,
.lifb;-c,."(\'
CONTINUE
5107
END

oy’

S

b= ':<ll'\}
= ¥
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