
ELASTIC WAVE SCATTERING FROM MULTIPLE AND ODD SHAPED FLAWS 

V. V. Varadan, V. K. Varadan and D. J. N. Wall 
Wave Propagation Group 

Department of Engineering Mechanics 
The Ohio State University 
Columbus, Ohio 43210 

ABSTRACT 

Using the T-Matrix or Null Field method elastic wave scattering from the following geometries have 
been studied {a) Rotationally symmetric configurations consisting of two spheroidal cavities separated by 
a finite distance and with different eccentricities. Exact calculations are compared with single scatter­
ing approximations. The frequency spectra are interpreted for various scattering geometries and compared 
with experiments. The effect of change in distance between the scatterers is also discussed. 
(b) Scattering from rotationally symmetric cavities with odd shapes 1 ike "Pinnochi o", Rockwe 11 Science 
Center sample #73 and "Micky Mouse", Rockwell Science Center sample #70 was also studied and compared with 
numerical results using other techniques as well as experiments. Several ways of studying such problems 
is also discussed. (c) A numerical technique is proposed to study dynamic stress concentrations. 

INTRODUCTION 

The study of elastic wave scattering from two 
cavities has important implications from an NDE and 
fracture mechanics point of view. In many practi­
cal applications it is desirable to find out 
whether the flaw is a single one or two closely 
spaced ones separated by a small distance. In the 
latter case, it may be quite likely that the two 
flaws (cracks) will propagate towards each other 
according to fracture mechanics principles increas­
ing the possibility of failure. In such cases, 
dynamic stress concentrations on the surface of 
each cavity particularly at corners and edges 
becomes relevant. This report deals with the scat­
tering from two flaws separated by a finite dis­
tance (Fig. 1), odd shaped or compound flaws (Fig. 
2) and the study of dynamic stress concentrations 
on the boundary of infinitely long cylindrical 
samples (2-D problems) with singular corners (Fig. 
3). Whenever possible theoretical results are 
compared with available experimental results. 

In a previous report1 , we gave a self­
consistent formulation to obtain the T-matrix of 
two flaws separated by a finite distance. The 
expression that we obtained was ide~tical to that 
given earlier by Peterson and Strom for electro­
magnetic wave scattering from a configuration of 
two scatterers. Recently Bostram3 has obtained 
limited numerical results for elastic wave scatter­
ing from two cavities. Using the expression for 
the T-matrix as given in Ref. 1, we have made 
calculations of the scattering from dissimilar or 
similar spheroidal cavities for a range of frequen­
cies and a variety of scattering geometries. In 
all these calculations the configuration is 
rotationally symmetric about the chosen z-axis. We 
also give a T-matrix formulation for configurations 
without rotational symmetry in a subsequent section. 
This study is still in progress. Numerical results 
for rotationally symmetric configurations are dis­
cussed from an NDE point of view. 

Following the discussion of two scatterers, 
the problem of elastic wave scattering from a com­
pound flaw is presented. As the name suggests, 
this problem can be viewed as the scattering from a 
single odd shaped flaw or as a multiple scattering 

problem of two flaws that are touching each other. 
Both methods are discussed. 

Lastly for a two dimensional example of SH­
wave incidence on a cylinder whose cross-section 
has sharp corners, the dynamic stress concentration 
around the boundary is studied for several frequen­
cies and angles of incidence. Details of this 
calculation may be found in a separate report by 
Wall, Varadan and Varadan4. 

DISCUSSION OF RESULTS FOR ROTATIONALLY SYMMETRIC 
CONFIGURATIONS OF TWO SCATTERERS 

Plane harmonic elastic waves are incident on 
the configuration shown in Fig. 1. Both flaws that 
are separated by a distance '2d' are figures of 
revolution about the common z-axis. Thus, without 
loss of generality the plane of incidence can be 
assumed to be the x-z plane. Let uO and uS be the 
displacement fields due to the incident and scat­
tered waves, given by 

where p is the polarization vector, k = k/lkl 
defines the direction of propagation of the inci­
dent wave and !kl = w/c, where 'c' is either the 
velocity of P- (longitudinal) waves or S- (trans­
verse) waves depending on ~. The vector Re ~ is 
the vector spherical function that is regular at 
the origin. Explicit expressions for these and the 
associated normalization fact~rs may be found in 
Ref. 5. The scattered field us may be represented 
as 

3 

~s(';t) L L fTnmcr ~Tnma(kt). (2) 

T=l nmcr 

The expansion coefficients f are unknown and the 
function ~is the vector spherical function that is 
outgoing at infinity (see Ref. 5). Our aim is to 
relate the unknown 'f' to the known 'a' via the T­
matrix of the configuration. 
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In Ref. 1 an expression was obtained for the 
T-matrix by considering the total field incident on 
each scatterer and generalizing the definition of 
the T-matrix. Translation theorems for the spheri­
cal basis functions had to be invoked to have a 
common origin for the coordinate system for the two 
flaws. The final expression that was obtained can 
be cast into the form 

T(l ,2) = R(<f)T1 {1 - a(-2<f)T2a(2<f)T1 }-l 

{1 + a(-2<f)T2R(2<f)}R(-<f) 
(3) 

,. 2 ,. 1 ,. 2 -1 
+ R(-a)T {1 - a(2a)T a(-2a)T } 

{1 + a(2<f)T1 R(-2<f)}R(<f) 

where 2<1 is the vector joining the centers 01 and 
o2 of the two obstacles, Tl and T2 are the T­
matrices of the individual obstacles with respect 
to parallel coordinate systems centered at 01 and 
02 respectively and T(l ,2) is the T-matrix of the 
configuration. Details of calculating Tl and T2 
may be found in Ref. 5. The matrices R and a are 
translation matrices, convenient expressions for 
which are given in Ref. 3. 

The scattered field coefficients may now be 
written in vector matrix notation as 

f = T(l,2)a. (4) 

For incident P-waves, the coefficients 'a' of Eq. 
(1) are given as 

_ ~ /'-m(2n + 1 )(n - m)! 
t;nm - \' 4rr(n + m)! 

cos ms·a = 1 
sin 11\'3 ~a = 2; 

(5) 

where (a,f3) define the vector k. In all numerical 
calculations, f3 = 0, since the x-z plane is taken 
as the plane of incidence. 

As the distance 2<1 between the scatterers 
becomes large, the expression for T(l ,2) as given 
in Eq. (3) is unsuitable for numerical computations 
since the matrix elements of R(2<l) become rather 
large. In this case it is more convenient to use 
certain analytic properties of the R-matrix when it 
operates on the plane wave associated with the 
incident field and the outgoing spherical wave 
associated with the scattered field at distances 
far from the scatterer. This was first suggested 
by Peterson and Strom2. Using this idea, the T­
matrix simplifies to the following form 

T(l ,2)~ exp i(kpd cos a- k d cos 6) x 
lrl+oo T 

T1 {1 - a(-2<f)T2a(2<f)T1 }-l x 

{1 + a(-2d)T2 exp (2ikpd cos a)} 

+ exp i(k d cos 6- k d cos a) x 
T p 

T2 {1 - a(2d)T1a(-2d)T2}-l x 

{1 + a(2<f)T1 exp (-2ikpd cos a)}. 

(6) 
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Fig. 1 Rotationally symmetric two 
scatterer configurations (a) Dissimi­
lar spheroids (b) Identical spheres 
(c) Dissimilar spheres. 
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Fig. 4 Back scattering cross section as a function 
of frequency of identical spheres for incident P­
waves. 
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Fig. 6 Back scattering cross section as a function 
of frequency of identical spheres for incident P­
waves. 

In Eq. (6), kT = kp or k5 depend;ng on the row 
index of the appropriate T-matrix element. This 
expression for the T-matrix is quite well suited 
for '2d' large. The disadvantage is that it is no 
longer independent of the scattering geometry. The 
major computation in Eq. (6) can however be per­
formed independent of scattering geometry. 

If the matrix inverses appearing in Eq. (3) 
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Fig. 5 Back scattering cross sectton as a function 
of frequency of tdentical spheres for incident P­
waves. 
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Fig. 7 Back scattering from two identical spheres, 
comparison of experiment and theory. 
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are expanded, one can identify the various multiple 
scattering processes that contribute to the total 
scattered field. If one wants to include only 
single scattering, then 

T(l ,2) ..,. R(d)T1 R(-d) + R(-d)T2R(d) • (7) 

The amplitude of the scattered longitudinal field 
at distances far from the origin is given by 
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Fig. 8 Back scattering from two identical spheres, 
co~~arison of experiment and theory. 
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Fig. 10 Back scattering cross section of two sphe­
roids, b1;a = 0.5 and b2/a = 0.33, for incident 
P-waves. 

"' n 

f(e.~) = ~~s L L t;nm i-n p~(cos e) x 

P n=O m=O (8) 

{f 1 nm 1 cos m~ + f 1 nm2 sin m~} • 

The scattered energy or the cross section is given 
by 
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Fig. 9 Back scattering cross section of two sphe­
roids, b1;a = 0.5 and b2/a = 0.33, for incident 
P-waves. 
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Fig. 11 Back scattering cross section of two sphe­
roids, b1/a = 0.5 and b2/a = 0.33, for in~ident 
P-waves. 

2 2 
o(e.~) = lf(e,~ll /(kpa) (9) 

where 'a' is a characteristic dimension of the 
scatterer. Equations (8) and (9) may be used for 
both single and multiple scatterer configurations. 

In the numerical results that follow, if the 
single scattering approximation is used for T(l ,2) 
(Eq. 7), the scattering cross section is 
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Fig. 12 Back scattering cross section of two sphe­
roids, b1/a = 0.5 and b2/a = 0.33, for incident 
P-waves. 
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Fig. 13 Back scattering cross section of two sphe­
roids, b1ta = 0.5 and b2ta = 0.33, for incident 
P-waves. 

distinguished as S. The two forms a and a are com­
pared for several two scatte~er configurations. It 
must be noted that although a may be called a 
single scattering approximation, it still depends 
on the distance between the scatterers since the 
two single scattered complex amplitudes are added 
together with the proper phase. In the strict 
sense, a single scattering approximation would just 
correspond to adding the cross sections of the 
individual scatterers and all knowledge of the rel­
ative phase would be lost. This result is 
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Fig. 14 Bistatic cross section of two spheroids, 
b1/a = 0.5 and b2/a = 0.33 for incident P-waves. 
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Fig. 15 Mode converted bistatic cross section (P + 

S) of two spheroids, h1ta = 0.5 and b2ta = 0.3j. 

completely independent of the distance between the 
scatterers and is distinguished as as.s. We also 
observe that for back scattering at go• incidence 
for example, the two single scattered amplitudes 
are in phase and e = 2as.S· 

In Fig. 4, the back scattering cross section 
is plotted as a function of kpa for p;..wave inci­
dence perpendicular to the line joining two identi­
cal spheres of radius a. In this case e = 2as.s as 
discussed above. It is seen that a approaches & 
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Fig. 16 Mode converted bistatic cross section (P ~ 
S) of two spheroids, b1/a = 0.5 and b2/a = 0.33. 
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Fig. 17 Mode converted bistatic cross section of 
two identical spheres. 

as the distance between the two spheres increases. 
In Fig. 5, the back scattering cross section is 
plotted for P-waves incident along the line joining 
the two spheres. It is seen that even when the 
distance between the two spheres is as small as 
2.927a, a and e compare very well and display sharp 
zeroes. The spacings of the zeroes can be corre­
lated to the interference of waves that creep 
around each of the spheres. The path difference 
between the two waves is twice the distance between 
the centers of the spheres and shows up in the 
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Fig. 18 Mode converted bistatic cross section of 
two identical spheres. 

3.5 

(j 

2.5 

1.5 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 
I I 
I I 
II 
II 
II 
II 

" I 

I 

I 
I 

I '" , ' /~ ,' 
p_ p, 2d/0 :3.402 ~ ,' I I 

'v' \ ' 
--a=457-a=l35° '.,' 

0.5 L----1..--~-_.J--~:----'----:: 
0 1.6 3.2 4-8 

Fig. 19 Back scattering cross section for incident 
P-waves of two dissimilar spheres, ratio of radii = 
3.0, 'a' is the radius of the small sphere. 

spacing of the minima. In Fig. 6 we have the same 
scattering geometry, but now the distance between 
the spheres has increased to 7.927a, resulting in 
very closely spaced minima. In this case a was 
almost equal to e and hence ~ is not displayed in 
the graph. In Figs. 7 and 8, for (l = 140° and (l = 
160°, the back scattering cross section is compared 
with experimental results showing excellent agree­
ment. The results were plotted on the same graph 
by matching just one point, the maximum value of 
the cross section. 
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Fig. 20 Back scattering cross section for incident 
P-waves of two dissimilar spheres, ratio of radii = 
3.0, 'a' is the radius of the small sphere. 

5.6~--~-----r-----r----.-----~----. 

4.0 

2.4 

P. P, 2d/a= 3.402 , a=l8o•. B·o· ~ 

0 
I 
I 

Cb 

0.8 '------L---'---...1---'------'----' 
0 1.6 3.2 

~~pa 
4·8 

Fig. 21 Back scattering cross section for incident 
P-waves of two dissimilar spheres, ratio of radii 
3.0, 'a' is the radius of the small sphere. 

In Figs. 9-14, the back scattering cross sec­
tion of two dissimilar oblate spheroids, shown in 
Fig. la is considered. The minor to major axis 
ratios were taken to be 0.5 and 0.33. Although 
interference of creeping waves does show up in the 
cross section, specularly reflected waves also con­
tribute to the interference pattern, unlike the 
case of two identical spheres. In Fig. 15-18, the 
mode converted cross section is displayed for the 
geometries in Fig. la and lb. 

The next geometry that is considered is the 
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P-waves of two dissimilar spheres, ratio of radii 
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Fig. 23 Angular variation of the bistatic cross 
section of 'Pinnochio' (Fig. 26) for P-waves inci­
dent broadside at kpa 2.0. 

case of two dissimilar spheres of radii a2 and a1, 
with a2/a1 = 2.976 (see Fig. lc). In Fig. 19, the 
back scattering cross section for a = 45• is com­
pared with that for a= 135° when the distance 
between centers is 3.4a,. In Fig. 20, the distance 
has increased to 8.4al, and cross sections for a = 
45° and a = 135• are again compared. It is also 
interesting to compare Fig. 19 with Figs. 21 and 
22. Figure 21 is the back scattering cross section 
for a= 180°, illuminating the big sphere and Fig. 
22 is the corresponding result for a o• where the 



small sphere is illuminated and also a large part 
of the big sphere. The results for the two cases 
are strikingly different. In fact, Fig. 21 looks 
almost like the scattering cross section of the big 
sphere of radius a2, if the abscissa is rescaled in 
terms of kpa2. The interference pattern is due to 
the path dlfference between the specularly reflect­
ed wave and a creeping wave. 

Samples exist at the Rockwell Science Center 
for the geometries shown in Figs. la and lc, how­
ever experimental results are available only for 
the case of identical spheres (Fig. la). 

SCATTERING FROM COMPOUND FLAWS 

The compound or odd shaped flaws that have 
been considered are shown in Figs. 2a and 2b. 
These are popularly known as "Micky Mouse" and 
"Pinnochio" respectively. Experimental data is 
available for both. To date most of the analytical­
computational procedures have been confined to 
idealized scatterers like spheroids, penny shaped 
cracks or elliptical cracks. All these flaw sur­
faces can be described by a single equation. The 
geometries illustrated in Fig. 2 are however com­
pound voids and different equations are needed to 
describe different portions of the surface. Hence 
these shapes are quite challenging for numerical 
computations. 

Consider the geometry in Fig. 2a. At the 
junction, where the two spherical parts intersect, 
there is a discontinuity in the outward normal. 
Matrix methods are numerically unstable in the 
presence of such sharp concavities. Moreover the 
nature of the stress singularity at a sharp frac­
ture such as this is unknown and remains one of the 
unsolved static boundary value problems in mechan­
ics. Experimental evidence indicates that these 
stress singularities do not influence the scattered 
far field to any great extent. This has also been 
verified numerically for the two dimensional anti­
plane problem. In this case the analytical form of 
the stress singularity is known. 

Two different approaches were used. In one 
method, the small portion where the two spheres 
intersect was smoothed out by a straight line seg­
ment, in the second method Legendre polynomials 
were used to fit the contour smoothly. In the 
latter case there was a still a concavity, but it 
was not sharp. A third method of calculation is 
still in progress. This is to consider the void as 
a compound void with the two parts of the sphere 
just touching each other, the centers of the parts 
being separated by a finite distance. The T-matrix 
of each separate part is computed by closing off 
the open end by a straight line segment, on which 
the normal displacement must be prescribed. But 
the displacement on the straight line segment for 
the lower sphere will exactly cancel this when the 
two T-matrices are superposed in Eq. (3) to get the 
combined T-matrix. Preliminary results indicate 
that this approach is numerically much more stable 
and will enable us to consider much higher incident 
wave frequencies. 

In Figs. 23-24, the angular behaviour of the 
scattering cross section for P-waves which are 
incident broad side on both samples. The actual 
scattering geometry is shown in the figures. In 
Fig. 24, the scattering cross section of a prolate 
spheroid and a sphere of the same over all 
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dimensions as "Micky Mouse" are displayed for pur­
poses of comparison. Both figures indicate a sharp 
drop in the cross section at ~ = 0° and ~ 180° 
corresponding to weak scattering from the two 
edges. For the case of "Pinnochfo", experi~ental 
results obtained by B. Tittmann shown on Fig. 25 
seems to be in qualitative agreement. Comparison 
of the numerical results for the spectra with ex­
periments is still in progress, since these became 
available only recently. In Figs. 26 and 27, the 
back scattering cross section as a function of 
frequency is displayed for incidence along the sym­
metry axes. 

DYNAMIC STRESS CONCENTRATIONS 

A method is presented for the calculation of 
dynamic stress concentration factors when a time 
harmonic SH-wave is incident upon a cylindrical 
cavity of arbitrary cross section. The stresses in 
the vicinity of the cavity are markedly different 
from those that would be present if the cavity were 
not present. This effect is known as dynamic 
stress concentration. The study for more general 
polarizations (in-plane problems) is still in 
progress. Exact determination of the dynamic 
stress concentration caused by a cylindrical cavity 
is only possible for a restricted class of cross 
sectional shapes, namely those for which the elas­
tic wave differential operator is separable. Pao 
and Mow6 give a detailed description of the separa­
tion of variables approach for this problem. For 
more general cross sections, in particular if sin­
gular corners are present, a numerical technique is 
called for. We employ such a technique here. 

Our algorithm is based on a method that has 
been called the null field method by Bates and 
Wa117 or the transition matrix (T-matrix) method. 
It reduces to the solution of a particular integral 
equation. This method has two major advantages 
over other methods when applied to the problems 
discussed here. The solution is unique and solu­
tions of the complimentary problem are decoupled. 
For cavities, the unknown function is the surface 
displacement. The evaluation of surface fields is 
much more difficult than the evaluation of scatter­
ed fields. In a sense, with the regular T-matrix 
approach used in the 'previous sections, the surface 
field is in fact calculated. But in the final 
analysis, due to the particular structure of the 
formulation (the use of the null field equation), 
the result is insensitive to an inaccurate deter­
mination of the surface field. For the problem at 
hand since the determination of the surface field 
is the end result, basis functions used to repre­
sent it must be picked with particular care. 

When the scatterer has corners it is necessary 
to ensure that the basis used has the correct edge 
behaviour. Wedge functions are used for this pur­
pose and they are found from the solution of the 
canonical problem of scattering from an infinite 
wedge. The surface of the cavity is divided into 
several regions and within each region an appropri­
ate basis is used. The null field equations to­
gether with the constraint equations necessary to 
ensure continuity at the nodes are sufficient to 
solve for the unknown coefficients of the basis. 
If there are no corners, but just an increase in 
the stress concentration facto~an appropriate met­
ric function is incorporated into basis representa­
tion. Details of the numerical procedure and more 
extensive results may be found in Ref. 4. 
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Fig. 28 Dynamic stress concentration on the surface 
of an elliptical cavity for four different minor to 
major axis ratios and incident SH-~aves. 



For the anti-plane problem, the boundary con­
dition at the surface of the cavity may be stated 
as the vanishing of the normal traction 

crnz = 0 on S 

where S is the surface of the cavity and ~ is the 
outward normal in the x-y plane, the z-axis being 
parallel to the cylinder axis. The only non-zero 
stress component at the surface is then crtz where t 
is taken to be tangent to S in the x-y plane. In 
Figs. 28 and 29 crnz is plotted at all points on the 
boundary. In the abscissa v/2rr is the angular 
measure as one traverses the contour and it varies 
from 0 to 1 for a complete revolution. Figure 28 
is for an elliptical cavity, the scattering geome­
try being displayed in the lower left corner. If 
'a' is the semimajor axes of the ellipse and 'A' 
the incident wavelength a/A is taken to be 0.2 
corresponding to ka 1 .4. Four different minor to 
major axis ratios ranging from 0.25 to 1 .0 are con­
sidered for this frequency. In Fig. 29, a cavity 
with corners arising from the sharp intersection of 
two circles is considered. In this case for 45° 
incidence, the stress concentration crtz is plotted 
for three values of the a/A ratio 0.02, 0.2 and 
0.4. 

We conclude this section by observing that the 
success of this method depends on a good knowledge 
of the approximate behaviour of the stress in the 
vicinity of the scatterer. For three dimensional 
scatterers, many of the canonical problems are 
unsolved. The choice of appropriate basis func­
tions at corners is crucial. The sharp singulari­
ties in the stress manifest themselves as barely 
discernible discontinuities in plots of the surface 
displacement, so that the latter must be calculated 
very accurately. 

MULTIPLE SCATTERING CONFIGURATIONS WITH 
NO ROTATIONAL SYMMETRY 

All the cases considered above for both multi­
ple and compound flaws possessed an axis of rota­
tional symmetry. Since vector spherical functions 
were used to describe the fields, the rotational 
symmetry renders all matrices diagonal in the azi­
muthal index. This simplifies the calculation 
enormously, Without this symmetry matrix sizes 
will become so large even at small values of kpa 
1 .0 to make computations unfeasible. However, the 
need exists for long wavelength scattering informa­
tion from non-axes symmetric configurations. It is 
for this particular application that we propose the 
following. The formalism that is given below is in 
principal applicable· for the range of frequencies 
for which the T-matrix of the individual scatterer 
can be computed, the limitation is in the machine 
computations. 

We consider two coordinate systems centered at 
0, x-y-z and x'-y'-z' respectively. Let cr, S, y be 
the Euler angles of the primed system with respect 
to the unpri med system (Fig. 30). It is often 
desirable to calculate the T-matrix of an individu­
al scatterer with respect to a coordinate system 
that is chosen based on the geometrical symmetries 
of the scatterer. This will minimize computations. 
If the scatterer has an axis of rotational symmetry, 
the T-matrix is diagonal in the azimuthal index. 
However, it may be necessary to express this T­
matrix in a different coordinate system, say the 
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Fig. 29 Dynamic stress concentration on the surface 
of a cylindrical lens shaped cavity with sharp cor­
ners for different incident SH-wave frequencies, 
c/cT is the normalized contour length. 

Fig. 30 Euler angles for rotation of coordine>te 
systems. 
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Fig. 31 Spheroidal scatterers with no rotational 
axis of symmetry. 



primed system because the experimental set up may 
necessitate it or there may be another scatterer 
with its axis of symmetry aligned with the primed 
system. For the particular application we have in 
mind, refer to Fig. 31. Two spheroidal scatterers 
are considered with their centers separated by a 
distance '2d', perpendicular ~o the ax~s of rota­
tional symmetry. In the prev1ous sect1ons the 
translation was along the axis of symmetry. The 
resulting configuration is not rotationally symmet­
ric hence the total T-matrix loses its block diag­
onai property. In this case als~ the e~pressi~n 
for T(l ,2) given in Eqs. 3 or 6 1s appl1cable 1f 
one keeps the general form of the translation 
matrices. However, it is more convenient to ex­
press the T-matrix of the individual spheroids in 
coordinate system that is rotated by a goo angle 
and then perform the translation along this new 
z-axis. 

The transformation of the T-matrix under an 
Euler rotation may be .conveniently expressed by 
noting that the spherical harmonics used in deriv­
ing the T-matrix are the eigenfunctions of the 
rotation operator5,8. Thus if T' is the T-matrix 
in the primed system, then it is related to the 
T-matrix of the unprimed system according to 

Tl = D-l (a,l3 ,y)TD(a,l3,y) (10) 

where the rotation matrix D is given by 

D~ , m (a, 13 , y) = im' adn (l3)eimy 
e mm' (ll) 

where 

k( ~) m'+m 
d~m' (13) = [ ( n + m I ) ! ( n - m I ) ! r CQS 

-Til+m)! (n - m)! ( 12) 

x (sin ~)m'-m P~~~7m,m'+m) (cos 13) 

In Eq. (12), p~j are the Jacobi polynomials which 
can be expressed in terms of the associated 
Legendre polynomials. For more details on E~s. 
(11) and (12) we refer the reader to Edmonds . If 
Tl and T2 in Eqs. (3) and (6) are replaced by 
D-lTlD and D-1T2D we obtain T(l ,2) for the config­
uration shown in Fig. 31. Numerical computations 
at wavelengths long comparable to the overall 
dimensions of the configuration are still in 
progress. 
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